
FINDING A MAXIMUM INDEPENDENT SET

by

Robert Endre Tarjan

Anthony E. Trojanowski

STAN-CS-76-550

JUNE 1976

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Pros

Finding A Maximum Independent Set

*/
Robert Endre Tarjan

Computer Science Department

Stanford University
Stanford, California 94305

KK

Anthony E. rrojanowski —/
Mathematics Department

University of California, San Diego
La Jolla, California 92037

Abstract -

We present an algorithm which finds a maximum 1ndependent set in an

n-vertex graph in 012%) time. The algorithm can thus handle graphs

roughly three times as large as could be analyzed using a naive algorithm.

Keywords: algorithm, clique, computational complexity, graph,

maximum independent set, NP-complete problem.

v3

*/ Research partially supported by National Science Foundation Grant
MCS 75-22870.

We

xf Research partially supported by National Science Foundation Grant
DCR TL-0277k.

1

1. Introduction.

A graph G = (V,E) is an ordered pair consisting of a finite set V

of vertices and a set of unordered pairs (v,w) of distinct vertices,

called edges. Two vertices vV,w are adjacent if (vow) eE . A set S

of vertices 1s independent (or internally stable) if (v,w) £F for all

v,2we3 . A set S of vertices is a clique if (v,w) ¢E for all v,we S .

The complement of a graph' G = (V,E) is the graph G = (V,E) where

E={(vw)|vweV, vw, and (v,w) £E} . Clearly S € V is an

independent set of G if and only if S is a clique of G . (Note: some

authors require that a clique be a maximal set of pairwise adjacent

vertices; we do not.)

A path from vl to Vv, in a graph G = (V,E) is a sequence of

vertices Vi3Vps+e +5 V, such that (viv, q) ¢E for 1 <i<k. Aset
of vertices S is connected if, for all v,w ¢S , there is a path from v

to w containing only vertices in S . The vertices of a graph G can

be partitioned into maximal connected subsets, called the connected

components of G . If G = (V,E) is a graph and S is a set of vertices

the graph G(S) = (8,E(8)) , where E(S) = {(v,w) ¢E | v,we8} is called

J the subgraph of G induced by the vertex set S .

We consider the problem of finding a maximum-size independent set in

.a given graph G = (V,E) ; or, equivalently, finding a maximum-size clique

© 1n a glven graph. This problem has been studied extensively, but no

polynomial-time algorithm 1s known. In fact, the maximum independent set

problem is NP-complete [4,7], and thus is unlikely to have a polynomial-time

algorithm. Our goal is to provide an algorithm, which, though not polynomial,

1s significantly faster in the worst case than the obvious enumeration

algorithm or any other algorithm known to us.

2

Let n = |v] . The number of subsets of V 1s ot By listing each

possible subset of V and testing it for independence, one can find a

maximum clique in o(p(n)2™) time, where p(n) 1s some polynomial.

Other algorithms have been proposed [2,9,10], but for none except the one

in [10] has a worst-case time bound better than o(2") been proved.

We extend the algorithm of [10]to provide an 0 (2/2) -time algorithm.

The algorithm 1s recursive and depends upon a somewhat complicated case

analysis. Though the algorithm 1s tedious to state in detail, it would

be straightforward to program, and we suspect that 1t would perform well

in practice. Nevertheless, 1ts main interest seems to be theoretical;

1ts existence shows that at least one NP-complete problem can be solved

in a time boundsignificantly better than that of the obvious enumeration

algorithm. For a similar algorithmto solve another NP-complete problem,

see [5].

It 1s also worth noting that the maximum number of independent sets

maximal with respect to the subset relation in a graph of n vertices

1S 30/5 . One could find a maximum-size independent set by enumerating

all maximal independent sets (using an algorithm such as in [1, 3,6,8])

and choosing the largest. However, the algorithm to be proposed 1s

substantially better than even this method, in the worst case.

The algorithm uses a recursive, or backtracking scheme. Its starting

.point 1s the following observation. Let veV . Let A(v) be the set

of vertices adjacent to v . Then any maximum independent set either

contains v or 1t does not. Thus any maximum independent set of G 1s

either {v} combined with a maximum independent set in G(V-{v} -A(Vv)) ,

or it is a maximum independent set in G(V -{v}) .

3

We extend this idea. For any S © V , let A(S) =U A(v) . If
Ve

s cv, then any maximum independent set I in G consists of an independent

Set INS in G(S) and a maximum independent set I-S in G(V-S -A(I)) .

Our algorithm selects a subset S c¢ V-, finds each independent set J

in G(S) , and, for each such J , recursively finds a maximum independent

set in G(V-S-A(J)) .

We improve this method further by introducing the concept of dominance.

If SC V and 1, J are independent in G(S) , we say I dominates J

if, for any J' € V-S such that JUJ' 1s independent, there is a set

I' C V-S such that TUI' is independent and |IUI'| > |JUJd'| . For

any such dominated J , we need not solve a subproblem, since we get an

independent set at least as large by solving a subproblem for I .

Dominance 1s important because in certain cases 1t can be confirmed

quickly. We give two examples which are used extensively 1n the algorithm.

Let veV . Let S= {vlUA(v) . If weA(v) , then {v} dominates

{w} in S , since Ic V-S and IU {w} independent implies IU {v}

independent. Similarly, {v} dominates ¢ in §S .

Let SCV. Let I and J = IU {v} be independent in G(S) .

° Suppose (V-S)NA(v) = RAPA . In 8U{w,,w,} , J dominates both

| U {w, } and I U tw, }. We distinguish three possibilities.

(i) (wysw,) cE or INA({w ,w,}) £¢ . Then J dominates I in S :

if I'C V-S and I'UI is independent, then |I! N{w wb <1.

Thus J' =1' - {ww} satisfies | J UJ] > | I UI| and J"UdJd

1s 1ndependent.

(iy (ww)FEC INA(Lw Wp) - grand [(V-8 -A(9)) NA(fwp,wD)| <1
Then I dominates J in S (and TU {wy,w,} dominates J in

su {(Wy5W,}) : If J'<C V-S and J' UJ is independent, then

It = (J' Ulwp,w,}) -A({wp,W,}) satisfies Tru] > |r ud]
and I' UI is independent.

(iii) (wp,w,) # BE, INA(fw,wo}) = ¢ | and |(V-8-A(J)) NA({wy rw) | >2
In this case we need further information to determine whether I

dominates J or vice-versa.

In summary, the algorithm selects a set § C V , determines a set of

dominating independent sets in S using the two observations above, and

recursively solves one subproblem for each dominating set.

2. The Algorithm.

A detailed specification of the algorithm appears below. call

maxset (3) will return an integer which is the size of amaximum

independent set in G(S) ; the graph G = (V,E) is assumed to be a

global variable. The statement of the algorithm consists of a sequence

of cases and subcases. The first case which applies 1s used to define

the value of maxset(S) . Thus, inside a given case, the hypotheses of

all previous cases can be assumed to be false. It 1s easy to modify the

algorithm so that 1t returns a maximum independent set as well as the

size of such a set.

procedure maxset (V);

0: V 1s not connected.

Let Vi,Vps «ees Vy be the connected components of V .

Note that every maximum independent set consists of a union of

maximum independent sets, one from each connected component.

k

Let maxset = 2, maxset (V,) :
i=1

V 1s connected. Let v be a vertex of minimum degree.

oT 1: dv) = 1.

Let A(v) = {w} .

Let maxseb = 1+ maxset(V- {v,w}) .

2: d(v) = 2.

2.1: d(w) = 2 for all wevV.

Note that the vertices of V form a cycle.

Let maxset= L|V|/2] .

]

There exist v,w such that d(v) = 2 , d(w,) >3,and

(v,wy) €E . Let A(v) = {wow}

Let maxset = 1+ maxset(V- {vw ,w,1) :

Let maxset = max{lg maxset(V- {vw wh) ,

2+ maxset (V - A(w,) -A(w,)) :

5: d(v) = J.

Let A(v) = {Wp Ws] :

5.1: (WysW,) 5 (Wy sz) 5 (Wy Ws) ck .

Let maxset = 1+ maxset (V - {vw ,W,,W5 1) .

3.2: (WysW5) 5 (W)5Ws) ¢eE (or any symmetric case).

Let maxset = max{l+ maxset(V- {vow 5W,,W,3) ,

2+ maxset (V - A(w,) -A(w,))}

3.3: (wys,) cE (or any symmetric case).

For i = 1,2,5 , let A; = V- {ws Wns Ws] - Aw) .

Note that |A;[, [A] < |v|-5 , |&5] < |v|-6 .

3,3,1: 1A; NA] < A, NA, | = |v|-6 (or the symmetric case).

Note that Ay NAg = Az; . Thus (wy, v5]

dominates (wy, ws] .

Let maxset = max{l+ maxset(V- AAS) ’

2 + maxset (A) } :

3.3.2: [A N45], [A NAL] <_|v]-7 :

Let maxset = max{l+ maxset (V -{v,w,,w,,w,}) ,

2+ maxset (Ay ni) ,

] 2 + maxset (A, NAz) :

Note that A, | < |v|-6 for 1 = 1,2,5.

3.4.1: [A NE, NAS] > |v|-7 .

Set {Wyss} dominates LPL for i,j e¢ {1,2,3} .

Let maxset = max {1+ maxset (V - AAU NPS) ’

5+ maxset (A) NA; NAL) :

3.h.,0: A, NA, NA, | = |v]-8 or |v|-9 .

If, for some i,j , A; NA, | < [A NA, NAL [+1 ;

then (vgs) is dominated by {Wy W,, Ws) :

For distinct 1, J , k ,

3;| = A, NA, NA] + |; NA, - (A, NA, NAL) |

+ |A NA, - (ANA, NA) | >

A, | < |v|-6 , and | A, NA, NA, >|v|-9 .

Thus |B; 0A |>]A nA nA +2 for only one
possible pair i # j . Let 1,2 be the pair

(1f any).

8

3.4.2.1; 2; NA. | <|A; NA, NA; |+1for all 1 # 3 .

Let maxset- max{l+ _maxset (V=-{v,w ,w,,w, 1).

5 Fmaxscet (Ay NA, N A) |

5.4.2.2: |A; NA; | > [A 1 As A |+e (or any symmetric
case).

Let maxset = max{l+ maxset(V- RANANLES))

2+ maxset (A; NAL) ,

5+ maxset (A) NA, NAg)] :

5.0.3: |A nANA] wi-10

- 2.4.3.1; 1A; NA] < | A, NANA, |+1 for all if 3 |
Same as 5.4.2.1.

5.4.3.2: A, na] >| A, NA, NA, |+2 (or any symmetric

case).

Same as 5.4.2.2.

3.4.3.3: |ANAL],A nA > [A NA NA; [+2 (or any
symmetric case).

Let maxset = max{l+ maxset(V- APLSPALES) ,

2+ maxset (A; NA) ;

D+ maxset (A) N Az) ;

5+ maxset (A; NA, nAa;)] :

5.h.3.0: {ANAL, 4, NAL], A, nA] > |A; NA, Nhs +2 |

For i = 1,2,3 , let Us Uoe(A NA) - A

9

3.4.3.0.1: 4, nA.| = [A NA, nA |+2
and (Ug75U50)¢ E for some
distinct i, J , k .

Then {wry Ws dominates

wow] . Same as 3.4.3.3.

3.4.3.4.2: A, NA, = |A nA NA; |+2
and (us u ¢E for all

distinct 1, J , k . Let

maxset = max{l+ maxset(V- AAS) ,

L+ maxset (A) NA, NA, - Avy) - A(u,,)) J

L + maxset (A) NA, NA - Aus) - A(us,)) ,

3 + maxset (A; NA, NA5)] .

3.4.3.4.3; [A NAL [A NA, = |a, NA, NA; [+2
(or any symmetric case).

Let

maxset = max{l+ maxset(V- {vyw Ws, Wa) ’

4+ maxset (A, NA, nA; - A(uz,) - A(uz,)))

b+ maxset (A; NA, nA, - A(u,q) - Au) ’

2 + maxset (A, N As))

5+ maxset (A; NA; NA;)]

10

5.4.3.0.0: |nA,| = |& 0A, NA +2
(or any symmetric case).

Let

maxset = max{l+ maxset (V - RAUFLNIES) ’

2+ maxset (Ay NA) ,

| 2+ maxset (A, N Az) ,
| 5+ maxset (A; NA, NAz)]

3.4.3.4.5: 14; NA, | > |B, NA, NA; |+3
for i £3 .

Let

maxset = max{l+ maxset(V - {vy Wy s WW 1) ,

2+ maxset (A; NA.) ,

2 + maxset (A; NA) ,

2 + maxset (A, NA) ,

5+ maxset (A; NA, NAz)] :

he: d(v) = Lk.

h.1l: d(w) = U4 for all vertices w .

4.1.1: There are vertices v, w such that (v,w) ¢E and

|A(v) NAW)| > 2

4.1.1.1: |A(v) nA(w)|> 3.

Then {v,w} dominates both {v} and {w]

in {v,w}.

11

Let

maxset{2 + maxset (V- {v,w} - A(v) -A(w)),

maxset (V- {v,w})} .

4.1.1.2: (A(v) nA(w)| = 2 .

Let X,y €A(v) -A(w) , q,r €A(w) -A(v) .

Let A(z) = V- {2} -A(z) for zcV .

h.l.1.2.1: (x,y), (q,r) ¢E .

Then {v,w} dominates both (v}

. and {w} in {v,w} .

Let

maxset = max{2+ maxset(A(v)NA(w)),

maxset(V- {v,w})} .

4.1.1.2.2: (x,y) cE, (a,r) fE (or symmetric

ease) .

Let

maxset = max{2+ maxset(A(v) NA(W)) ,

3+ maxset (A(v) NA(w) NA(q) NA(r)),

maxset (V- {v,w})} .

L.1.1.2.3: (x,y), (a,r) £E ,

|A(v) NEW) Nha) NA)| > [v]-9

(or symmetric case).

Let

12

maxset = max {3+ maxset(A(v) NA(w) NA(x) NA(y)) ,

3+ maxset (A(v) NA(w) NA(q) NA(r)) ,

maxset (V- {v,w})} .

L.1.1.2.%: (x,y), (a,r) ¢E ,

|A(v) NAW) NA(g) NA(r)] ,

|A(v) NA(w) NA(x) NA(y)| < |v|-10 .

Let

maxset = max {2+ maxset(A(v) NA(wW)) ,

3+ maxset (A(v) NAW) NA(x) NA(Y)) ,

3+ maxset (A(v) NA(w) NA(g) NA(r)),

maxset (V- {v,w})} .

4.1.2: If (v,w) ¢E , then |A(v) Na(w)| < 1.

Let A(v) = {Ws Wes Was),] . For i = 1,2,3,4 , let

A, = V-A (Vv) - Aw) . Then, for 1 # J

x

then (ww) elk .

L.1.2.1: CIN cE for i = 2,3,4 (or any symmetric

case).

It follows from ¥ above that the problem

graph is a complete graph of five vertices.

Let maxset = 1 .

13

symmetric case) |

Let™ maxset = max{l+maxcet(V- {v} -A(v)) ,

2+ maxset (A, NA) ,

2 + maxset (A, MA) ,

2+ maxset (A Nay) J

h,1.2.3; (WyW5) 5 (Ws wy) cE ,

(WysWz) (wy Wy) (Wor Wz) 5 (Ws wy,) FE (or
any symmetric case).

Let maxset = max{l+ maxset(V- {v} -A(v)) ,

2+ maxset (A, NA) ,

2 + maxseb(A, N A) ,

2+ maxset (A; NA) ,

2+ maxset (A, NA))

h.1.2.4h; (wys¥,) cE ,

(wy5W2) 5 (Wpyv2) 5 (WysWy)s (Woo wy) s (w35),) LE
(or any symmetric case).

Let maxset = max{l+maxset(V- {v} -A(v)) ,

2+ maxset (A; N As) ,

2 + maxset (A, NA))

2+ maxset (A, nA) ,

2 + maxset (A, NA) ,

2+ maxset (A, NA) ,

3 +maxset (A) NANA)),

5+ maxset (A, NA; NA) } :
14

4.1.2.5: (wow) FETT 1A].

Let maxset = max{l+maxset(V- {v}-A(v)) ,

2+ maxset (A; NA) ,

D+ maxset (A, N A) ,

2+ maxset (A; NA) ,

2 + maxset (A, na))

2+ maxset (A, NA) ,

2+ maxset (A, NA))

5+ maxset (A) NA, NAz) ;

2 + maxset (A, NA, NA) ,

~ 5+ maxset (A; NA; NA))

> + maxset (A, NA, NAY) 5

Lh + maxset (A; NA, NA, nay)! :

Lh.2: d(w) > 5 for some vertex w .

Let v,w be such that d(v) =L4 , d(w) >5, (v,w) ¢E.

Let maxset = max{l+maxset(V- {w} -A(w)),

maxset (V- {w}) .

Note that V- {w} contains a vertex of degree three and

all vertices are of degree three or greater.

5: d(w) = 5 for all vertices w .

5.1: |v| = 6 .

Let maxset = 1 .

15

5.2: |v| > 6 .

Let maxset = max{l+ maxset(V =~ {v} -A(v)),

maxset(V- {v}) .

Note that V- {v} contains a vertex of degree four, a vertex

of degree five, and all vertices are of degree four or greater.

6: Some vertex w has d(w) >6.

Let maxset = max{l+ maxset(V- {w} -A(w)) ,

maxset (V—- {w})} .

end maxset.™

16

3. Resource Bounds.

Let T(n) be an upper bound on the worst-case running time of

maxset (V) when | v| = n . Let T,(n) be an upper bound on the worst-

case running time of maxset(V) *when |v] = Nn and case 1 occurs at

the outermost level of recursion. Let p(n) be a polynomial which

bounds the running time of the outermost level of recursion, exclusive

of recursive calls. We have the following inequalities. (Starred

inequalities are the worst cases.)

k k

To(n) < max 2 Tn) | Zn. =n, <n < n¥Wp() .
- . i . _1 — 1 =i=1 i=

1,(n) < T(n-2)+p(n).

T, ;(n) < p(n).

T, »(n) < T(n-7) + p(n) .

) *

Ty, 3m < T(n-3)+T(n-5)+p(n) -

r, 1(n) < T(n-k)+ p(n) .

T, (1) < T(n-d)+ T(n-5) + p(n) .

*

Ty 5.01) < T(n-L)+ 2T(n-7)+ p(n) .

Ts).1(n) < T(n-4)+ T(n-7) + p(n) .

Ty y.0.1(0) < T(n-4)+ T(n-8)+ p(n) .

*

Tz 4.0.00) < T(n-4) + T(n-6) + T(n-8) + p(n) .

17

Ty 4.5.1 < T(n-4)+ T(n-10) + p(n) .

I. 4.5.0 (n) < T(n-4)+T(n-8) +T(n-10) -I-p(n) .

I, 5.5 (0) < T(0k) +22(n-8)+ 2(2-10) p(n) @

Ts 4.5.0.1 (0) < T(n-4) +2T(n-8)+ T(n-10) + p(n) J

| Ly (0) < T(-b)+ 47-10) J

Ty 4.5.4.3 (n) < T(n-4)+T(n-8) +3T(n-11) a.

To 3.5.0.0) < T(n-4) +2T(n-9)+ 2T(n-12) J

T, 3.5.0.5) < T(n-4) + 3T(n-10) + T(n-13) .

T, 1 1.(n) < T(n-2)+T(n=6)+ p(n) J

T) 1 1.0.10) < T(n-2) + T(n-8)+ p(n) .

Ty, 1 1.0.0®) < T(n-2) +2T(n-8)+ p(n) ;

T) 1.1.0.3") < T(n-2) +2T(n-8) + p(n) .

T, 1 15) < T(n-2) +T(n-8) +2T(n-10)+ p(n) J

T1210) <p).

T), 1 5.010) < T(n-5) +3T(n-9) +p(n) .

I) 1.0.51) < T(n-5) +A4T(n-9) +p (n) J

T), 1.5.0) < T(n-5) +47 (n-10) + T(n-11) + 2T(n-13) + p(n) .

Ty, 1.0.51) < T(n-5) +6T(n~-11) +4T(n-14)+ T(n-17) + p(n) J

18

Ty, o(n) < T,(n-1) + T(n-6) + p(n)

< max{T(n-5) + T(n-6) , T(n=5) + 2T(n-8) ; T(n-5) +T (n-7) +T(n-9) ,

T(n-5) + 2T(n-9) + T(n-11) , T(n-5) + 4T(n-11) ,

T(n-5) + T(n-9) + 3T(n-12) , T(n-5) + 2T(n-10) + 2T(n-13)}

+ T(n=6)+ p(n) .

T, 1(n) < p(n).

Ts.o(m) <1, . (0-1) +T(n-6)+ p(n)

< max{T(n-6) + T(n-7) , T(n-6) + 2T(n-9) , T(n-6) + T(n-8) + T(n-10) ,

T(n-6) + 2T(n-10)+T(n-12), T(n-6) + 4r(n-12),

_ T(n-6) +T(n-10) + 3T(n-13) , T(n-6) + 2T(n-11) + 2T(n-14)}

+ T(n-6) + p(n)

r(0) < T(n-1)+T(n-7)+p(n) .

T(n) < max T.(n) .
= 3

From each of the recursive bounds

k

T,(n) < p2 a,T(n-b,) + p(n)
i=1

we get a polynomial equation

b k b, -b.

x k _ > a x k 1)
i=1 |

If y 1s the maximum of the positive solutions to all these equations,

ey € is a bound on the running time of the algorithm. It happens that

the value of y 1s slightly less than 2/2 . By means of a tedious

| < oP/?calculation using Table 1, One can prove by induction that T(n) <c¢

19

without solving lots of polynomials. The constant ¢ depends upon

p(n) . The worst cases of the recursion are h.1.1.2.h and 4.1.2.5.

The storage required by the algorithm is certainly polynomial,

since the depth of recursion is only O(n) . With careful programming,

the storage required can be made linear in the size of the graph.

n 1/3

1 1.2599%

2 1.58761

~. 3 2.0000

4 2.5198"

5 3. 17h7t

0 4.0000

7 5.0397*

¢ 6.3496"

9 8.0000

10 10.079%

11 12.699t

12 16. 000

13 20.158"

14 25.398%

15 32.000

16 ho.317"

Table 1. Fractional Exponentials for Inductive Proof

of Time Bound.

20

4. Conclusions

We have presented a recursive algorithm which finds a maximum

independent set in a graph of n vertices in 0 (21/7) time. The
algorithm is an extension and improvement of one described in [10].

Though the case analysis used 1s lengthy, the algorithm could be

programmed easily, and we believe the algorithm would perform well

in practice.

Nevertheless, the main interest of the result 1s theoretical; it

shows that even for NP-complete problems it 1s sometimes possible to

develop algorithms which are substantially better in the worst case

than the obvious enumeration algorithms. Whether the algorithm presented

here can be improved substantially, and whether similar algorithms can be

developed for other NP-complete problems, are open questions.

21

|

References

[1] J. G. Augustin and J. Minker, "An analysis of some graph theoretical

cluster techniques," J.ACM 17 (1970), 571-588.

[2] E. Balas and A. Samuelson, "Finding a minimum node cover in an

arbitrary graph," Management Sciences Research Report No. 325,

Graduate School of Business Administration, Carnegie-Mellon

University (1973).

[3] C. Bron and J. Kerbosch, "Algorithm 457: Finding all cliques of an

undirected graph," Comm. ACM 16 (1973), 575-577.

[4] S. Cook, "The complexity of theorem-proving procedures," Proceedings

Third ACM Symposium on Theory of Computing (1970), 151-158.

[5] E. Horowitz and S. Sahni, "Computing partitions with applications to

the knapsack problem," Technical Report No. 72-134, Computer Science

Department, Cornell University (1972).

[6] H. C. Johnston, "Cliques of a graph: Variations on the Bron-Kerbosch

algorithm," International Journal of Computer and Information Sciences

5, (1976).

[7] R. Karp, "Reducibility among combinatorial problems," Complexity of

Computer Computations, R. E. Miller and J. W. Thatcher, eds.,

Plenum Press, New York (1972), 85-10kL.

[8] G.D. Mulligan and D. G. Corneil, "Corrections to Bierstone's algorithm

for generating cliques," J.ACM 19 (1972), 2hkh-2k7.

[9] G. L. Nemhauser and L. E. Trotter, Jr ., "Vertex packings: Structural

. properties and algorithms," Mathematical Programming 8 (1975),

232-248.

[10] R. Tarjan, "Finding a maximum clique, " Technical Report No. 72-12,

| Computer Science Department, Cornell University (1972).

22

