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1. Introduction.

A graph G = (V,E) is an ordered pair consisting of a finite set V
of vertices and a set of unordered pairs (v,w) of distinct vertices,
called edges. Two vertices v,w are adjacent if (v,w) eE . A set S

of vertices is independent (or internally stable) if (v,w) ¢E for all

v,2weS . A set S of vertices is a clique if (v,w) ¢E for all v,we S
The complement of a graph' G = (V,E) is the graph G = (V,E) where
E={(vw)|vweV, v #w, and (v,w) £E} . Clearly S € V is an
independent set of G if and only if S is a clique of G . (Note: some
authors require that a clique be a maximal set of pairwise adjacent
vertices; we do not.)

A path from vl to v, in a graph G = (V,E) is a sequence of

k

vertices VysVps+- -5V, such that (vi’vi+l) €eE for 1<i<k. A set
of wvertices S is connected if, for all v,w ¢S , there is a path from v
to w containing only vertices in S . The vertices of a graph G can
be partitioned into maximal connected subsets, called the connected
components of G . If G = (V,E) 1is a graph and S is a set of vertices
the graph G(S) = (S,E(S)) , where E(S) = {(v,¥) ¢E | v,w eS8} is called
the subgraph of G induced by the vertex set S

We consider the problem of finding a maximum-size independent set in
.a given graph G = (V,E) ; or, equivalently, finding a maximum-size clique
"in a given graph. This problem has been studied extensively, but no
polynomial-time algorithm is known. In fact, the maximum independent set
problem is NP-complete [4,7], and thus is unlikely to have a polynomial-time
algorithm. Our goal is to provide an algorithm, which, though not polynomial,
is significantly faster in the worst case than the obvious enumeration

algorithm or any other algorithm known to us.



Let n = \V\ . The number of subsets of V is 2" . By listing each
possible subset of V and testing it for independence, one can find a
maximum clique in O(p(n)En) time, where p(n) is some polynomial.

Other algorithms have been proposed [2,9,10], but for none except the one
in [10] has a worst-case time bound better than 0(55 been proved.

We extend the algorithm of [10] to provide an 0(2n/5) ~time algorithm.
The algorithm is recursive and depends upon a somewhat complicated case
analysis. Though the algorithm is tedious to state in detail, it would
be straightforward to program, and we suspect that it would perform well
in practice. Nevertheless, 1its main interest seems to be theoretical;
its existence shows that at least one NP-complete problem can be solved
in a time boundsignificantly better than that of the obvious enumeration
algorithm. For a similar algorithm to solve another NP-complete problem,
see [5].

It is also worth noting that the maximum number of independent sets
maximal with respect to the subset relation in a graph of n vertices
is 5n/5 One could find a maximum-size independent set by enumerating
all maximal independent sets (using an algorithm such as in [1, 3,6,8])
and choosing the largest. However, the algorithm to be proposed is

substantially better than even this method, in the worst case.

The algorithm uses a recursive, or backtracking scheme. Its starting
:point is the following observation. Let veV . Let A(v) be the set
of vertices adjacent to v . Then any maximum independent set either
contains v or it does not. Thus any maximum independent set of G is

either {v} combined with a maximum independent set in G(V- {v} -A(v)) ,

or it is a maximum independent set in G(V - {v}) .



We extend this idea. For any S ¢ V , let A(S) = U A(v) . If
ved

s ¢cv, then any maximum independent set I in G consists of an independent
Set INS in G(S) and a maximum independent set I-S in G(V-S -A(I))
Our algorithm selects a subset S ¢ V-, finds each independent set J
in G(S) , and, for each such J , recursively finds a maximum independent
set in G(V-S-A(J))

We improve this method further by introducing the concept of dominance.
If SC V and I,J are independent in G(S) , we say I dominates J
if, for any J' C V-S such that JUJ' 1is independent, there is a set
I' € V-S such that TUI' 1is independent and ‘IUI'I }_|JUJ'| . For
any such dominated J , we need not solve a subproblem, since we get an
independent set at least as large by solving a subproblem for I

Dominance is important because in certain cases it can be confirmed
quickly. We give two examples which are used extensively in the algorithm.
Let veV . Let S= {v}UA(v) . If weA(v) , then {v} dominates
{w} in S, since I < V-S and IU {w} independent implies IU {v}
independent. Similarly, {v} dominates ¢ in S

Let SCV . Let I and J = IU {v} be independent in G(S)
Suppose (V-8) NA(v) = {wl,wg} . In 8U{w;,w,} , J dominates both

I U {Wl} and I U {Wg}. We distinguish three possibilities.

(i) (w.,,wg) €eE or IﬂA({Wl,w2}) #¢ . Then J dominates I in S
if I' € V-S and I' UI is independent, then |I! ﬂ{wlng}i <1.
Thus J' = I'- {wy,W,} satisfies |J' UJ| > |I'UI| and J"ug

is independent.



G (W) FE TNA(Dww)) - fhrand| (V-8 -A(9)) Na(lwpwp])| <0 1.
Then I dominates J in S (and ILJ“H!WB} dominates J in
s u{WUWE}) : If J'< V-S and J' UJ is independent, then
' = (I Ulwp,w,1) - A({wp,sw,)) satisfies |l uz| > |or uJ|

and I' UI is independent.

(iii) (wp,w,) £ B, INA({wpwyl) = ¢, and |(V-—S-—A(J))rWA({wl,wg})l >2
In this case we need further information to determine whether I

dominates J or vice-versa.

In summary, the algorithm selects a set 8§ C V , determines a set of

dominating independent sets in S using the two observations above, and

recursively solves one subproblem for each dominating set.



2. The Algorithm.

A detailed specification of the algorithm appears below. & call
maxset (8) will return an integer which is the size ol amaximum
independent set in G(S) ; the graph G = OBED is assumed to be a
global variable. The statement of the algorithm consists of a sequence
of cases and subcases. The first case which applies is used to define
the value of maxset(S) . Thus, inside a given case, the hypotheses of
all previous cases can be assumed to be false. It is easy to modify the

algorithm so that it returns a maximum independent set as well as the

size of such a set.

Qrocedure maxset (V) ;
begin

0: V is not connected.

Let Vl’VQ""’Vk be the connected components of V .

Note that every maximum independent set consists of a union of

maximum independent sets, one from each connected component.

k
Let maxset = 2 maxset(vi)
i=1

V is connected. Let v be a vertex of minimum degree.
1: d(v) =1 .
Let A(v) = {w} .
Let maxset = 1+ maxset(V- {v,w}) .

2:  d(v) = 2.

2.1: d(w) = 2 for all weV.

Note that the vertices of V form a cycle.

Let maxset = L|v|/2]



There exist v,w such that d(v) = 2 , d(wl) >3,and

(v,wl) €eE . Let A(v) = {Wl’WE} .

2.2: (Wl’WE) cE.

Let maxset = 1+ maxset(V - {v,wl,wg}) )

2.3: (wl,w2) £E .
Let maxset = max{l¢ maxset(V - {v,wl,wo}) ,

o4 maxse't(V-A(wl) —A(wg))} .
d(v) = 3.
Let A(v) = {wl,wg,w5} .

3.1: (Wl-’.WE)’ (wl’WB)’(WQ’WB) €eE |

Let maxset = 1+ maxset(V - {v,wl,w2,w5}) )
3.2: (wl’WQ)’(Wl’WB) ¢E (or any symmetric case).
Let maxset = max{l+ maxset (V- {V’wl’WE’WB}) s
2+ maxset (V - A(w,) -A(wj))} ,
3.3 (wl’WQ) ¢E (or any symmetric case).

For i = 1,2,3, let ‘Ki = V- {Wl’W2’w3} -A(wi) .

Note that |A [, [E,| < |v|-5 , |&5] < |v]|-6
3.3.1: |Alﬂf\3| < |1§20_K5\ = |v|-6 (or the symmetric case).
Note that ‘5201_\5 = 115 . Thus {WE,WB}
dominates {Wl’WB} i

Let maxset = max{l+ maxset(V - {V’Wl’WQ’WB}) s

o+ maxset(%) 1.



3.3.2: |Alnﬁ5|,|52m§5l<_|vl-7
Let maxset = max{l+ maxset(V '{V’Wl’we’w5}) ,

2 + maxset (El 0115) ,

2+ma.xset(l-&'202\3)} .
(wisws) £E for 1,J c {1,2,5} .

For i = 1,2,3, let Ai = V- {wl,wg,w5} -A(Wi)

Note that [4;] < |v|-6 for i = 1,2,3.

Set {Wl’WE’WB} dominates {Wi,wj} for i,j e {1,2,3} .
Let maxset = max{l+ maxset(V - {V’Wl’WQ’WB]) s
5+M(Alm'xem‘\5)} .
3.h.2; \Alﬂﬁgﬂﬁil=|v‘—8 or |v]-9

1f, for some i,j, \Aiﬂl_\jl < |Alﬂﬁgﬂ:015\+l 5
then {vi,wj} is dominated by {wl,wg,w5} .
For distinct i, 7 , k ,

IAi‘ = |AlﬂZ\.2r\Zx§| + lAinAj - (Alﬂfkg DAB) |

+ ‘Aiﬂﬁk- (AlﬂAE ﬂ“%) |

IAil < |v|-6 , and lﬁlﬂﬁgﬂ%l > |v|-9

Thus Ifxiﬂ/_&j|>J_Elﬂ.f\20A5l+2 for only one

possible pair i #j . Let 1,2 be the pair

(if any).



3.4.2.1: |IxinIAlJ.| <IE NE NAj|+1for all i # 3

Let maxset- max{l+ _ma.xset(v-{‘v,w],\/{?,wﬁ}),

Skmaxscb( A, A, N A)}

L

3.h.2.2: |A +2  (or any symmetric
Let maxset = max{l+ maxset(V - {V,Wl,wg,w5}) ’
2+maxset(AlﬂA2) ,

3 + maxset (All’\A2 0A5)}
5430 |A nA nAs| <v|-10

- 3.4.3.1: |AiﬂAJ.| < |A10A20A5|+1 for all 1if j
Same as 3.h.2.1.

3.4.3.2: IAlﬂA?_‘ >—“K‘1D'K‘OD‘Z\?U2 (or any symmetric
case).

Same as 3.4.2.2.
5.5.3.3: A 0By, [ nA;| > [E nA, nA 42 (or any
symmetric case).
Let maxset = max{l+ maxset(V - {V’Wl’WE’WB}) s
2+ maxset(AlﬂAg) ’
2+ ma,xset(AlﬂA5) s

3+ maxset (Ay N4, nAB) } .

55 A Ayl B 0Bl 1B, &yl > 1A nA, A |+

For i = 1,2,5 , let uil,uige(AjﬂAk)-Ai

3,k £ 1) .



3.4.3.0.1: IAj na, | = IAlﬂA20A5l+2
and (uil,uig)r E for some
distinct 1, 7, k .
Then.{wl,wg,WB} dominates

{wj,w Same as 3.k.3.3.

K} -

3.4.3.4.2: \AjﬂAk| = \AlﬂA20A5\+2
and (uiflﬁﬁ ¢E for all

distinct i, j , k . Let

maxset = max{l+maxset(V - {v,w ,w,,w;}) ,

b+ maxset (&) NE,NA;- Aluy;) - Auy,))
b+ maxset (A NA,NA;- A(uyy) - A(wy)) 5
L+ mexset(Ay NAyNA5- A(uyy) -A(wy,))

3+ maxset (A N4, OAB) 1.

5.4.3.0.3: A N4, \AlnA5| - |AlﬂA20A5l+2

(or any symmetric case).

Let
maxset = max{l+-g§§§gg(v-{v,wl,wg,w5}),
4+ maxset (A) NA, NAz - Aluz) - A(usp)) 5
h*‘EEEEEE(Alr\Ag 055 - A<u21) -A(ugg)),
2+ M(Ag N 1:\5) ’

54—maxset(Alf\A2r\A5)}

10



ni,| = [A Nk, NA [+

(or any symmetric case).

Let
maxset = max{l+maxset(V - {V’wl’WE’WB}) s
h+maxset (A, N fig n }_\3 - Auzy) - Ausp)) 5
2+ maxset (A) NA,),
2+ M(Ag n A5) ’

% + maxseb (.Z\l n ZXQ ﬂf\a)}

3.4.3.4.5: |Ixin.ﬂj\ > |& nA, NA5|+3

fori%—j

Let
maxset = max{l+ maxset(V - {V,Wl,WE,W5}) ’
2 + maxset (I\l N I\E) s
o +'maxset(ﬁl 0115) s
O+ ma.xset(f\.2 N /'ij) ,

34 ma.xset(j_xl N 5.2 N ./15) }
h: d(v) = L,

h.1: d(w) = 4 for all vertices w .

4.1.1: There are vertices v, w such that (v,w) ¢E and

|a(v) Na() | > 2 .

4.1.1.1: |A(v) na(w)|> 3.
Then {v,w} dominates both {v} and {w}

in {v,w}.

11



Let

maxset {2 + maxset (V- {v,w} - A(v) -A(w)),

maxset (V- {v,w})} .

4.1.1.2: (A(v) nA(w)| =2 .

Let X,y €A(v) -A(w) , g,r €A(w) -A(v) .

Let A(z) = V- {2z} -A(z) for zcV .

h.1.1.2.1: (x,y),(q,r) €& . ‘
Then {v,w} dominates both (v}

- and {w} in {v,w}

Let
maxset = max{2+ maxset(A(vV)NA(wW)),

maxset(V - {v,w})} .

4.1.1.2.2: (%,y) ¢E , (q,r) fE (or symmetric
ease) .
Let

maxset = max{2+ maxset(A(v) NA(W)) ,

3+ maxset (A(v) NA(w) NA(q) NA(r)),

maxset (V- {v,w})} .

h.1.1.2.3: (x,7),(q,7) £E ,
|A(v) N&(w) NA(a) NA(x)| > |v]-9
(or symmetric case).

Let

12



maxset = max{3+maxset(A(v) NA(W) NA(x) NA(y)) ,
3+ maxset (A(v) NA(w) NA(q) NA(r)) ,

maxset (V- {v,w})} .

L.l.1.2.%:  (x,y), (g,r) £E,
|A(v) nA(w) NA(q) NA(x)]| ,
|A(v) NA(w) NA(x) NA(y)| < jv|-10 .
Let
maxset = max {2+ maxset(A(v) NA(w)) ,
5+ maxset(A(v) NA(w) NA(x) NA(Y))
5+ maxset (A(v) NA(w) NA(q) NA(r)) ,

maxset (V- {v,w})} .

4.1.2:  If (v,w) #E , then |A(v) NA(w)| < 1

Let A(v) = {Wl;WQ;WB:Wu} . For i = 1,2,3,k , let

A; = V-A(V) -A(wi) . Then, for i # 3,

=

iﬂAJ. = ¢ . AlSO, if (Wi)wj),(wi)wk) ek ’

*
then (wj’wk) €E .

h.i1.2.1: (Wl’wi) €¢E for i = 2,3,4 (or any symmetric

case).

It follows from ¥ above that the problem
graph is a complete graph of five vertices.

Let maxset = 1

15



Lh.1.2.2: (Wl’WQ)’(wl’WB)’(WE’WB) ¢cE ,
(wl’wh)’ (WQ’W!I)’ (wi,),w,’) /T (or any

symmcelri e casc) .

Let™ maxset = max{l+maxcet(V- {v} -A(v)) ,
2+M(Alm]\h) ,
2+g18_x_se_t(f\2 ﬂ}_\h) ,

2+ mza.xse’c(!i5 ﬂﬁu) ]

h.1.2.3: (Wl’wz)’(WB’WLL) €cE ,
(Wl’WB)’(wl’wl&)’ (WQ;W5>:(W2:W)+)) ¢ E (or

any symmetric case).

Let maxset = max{l+maxset(V- {v} -A(v)) ,

2+ ma,xset(./il NA,) ,

3

2+ ma.x::ct(/_\p N /-\j) ,
2+ma.xset(AlﬂAh) ,

2 + maxset (112 n Ah) 1

h.1.2.h: (Wl,W ek

2) €E .

(Wl,WB), (w2,w5), (Wl’wh)’ (Wg’wb,)’ (W5’Wh) LE
(or any symmetric case).

Let maxset = max{l+maxset(V- {v} -a(v)) ,
2+maxset (A N4;) ,
2+g§s_et_(112053) )

2+ maxset (A, nAy)

2+ maxset (A, NA)) ,

2+ maxset(h, NK) ,

3 +m_<'=13€_§£’£(f\1“55”5\u)’
5+w(ﬁenfx§ mAh)}

14



4.1.2.5: (wi,wj),éEfori%j.

Let maxset = max{l+maxset(V- {v}-A(v)),
?+w(ﬁlﬂﬁe) ,
2+ maxset (A N4;) ,
2+M(Alﬂfxu) ,
2+ga.£s_ei(§2 055) s
2+maxset (A, NA)) ,
2+m_;a.xﬂ(.2\.5 ﬂ;‘lh) ’
5+M(Alnfxenlx3) )
5+ maxset(A; NA;, NA)) ,
5+ maxset (A, NA; NAy)
5+ maxset (A, NA; NA))

b+ maxset(l_kl ﬂ}-\g m'% m'xu)} .

L.2: d(w) > 5 for some vertex w .
Let v,w be such that d(v) =14 , d(w) >5, (v,w) ¢E.
Let maxset = mex{l+maxset(V- {w} -A(w)),
maxset (V- {w}) .
Note that V- {w} contains a vertex of degree three and
all vertices are of degree three or greater.
d(w) =5 for all vertices w .
5.1: |v| = 6

Let maxset = 1

15



5.2: |v] > 6

Let maxset = max{l+ maxset(V=-{v} -A(v)),

axset (V- {v}) .

Note that V- {v} contains a vertex of degree four, a vertex

of degree five, and all vertices are of degree four or greater.
6: Some vertex w has d(w) >6.

Let maxset = max{l+ maxset(V-{w}-A(w)) ,

maxset (V- {w})} .

end maxset.™
A ——

16



3. Resource Bounds.

Let T(n) be an upper bound on the worst-case running time of
maxset (V) when |V| = n . Let Ti(n) be an upper bound on the worst-
case running time of maxset(v)*when |V| = n and case i occurs at
the outermost level of recursion. Let p(n) be a polynomial which
bounds the running time of the outermost level of recursion, exclusive
of recursive calls. We have the following inequalities. (Starred

inequalities are the worst cases.)

M=

k
To(n) < mex .Z T(ni)|
i=1

.

n.=n,l<ni§rn+p(n)

i <

H

T,(n) < T(n-2)+p(n).

T, 1(n) < p(n).

T, »(n) < T(n-3) +p(n) .

Ty 3 < T(n-3)+T(n-5) + p(n) .

< T(n-4) + p(n) .

3

W

H/\
2
A

< T(n-k) + T(n-5) + p(n) .

=]
o
o
2
AN

‘5.1(11) S T(n'h) + T(n-6) . p(n) .
5.5_2(n) < T(n-h) + 2T(n-7)+‘P(n) . *

Tﬁ.h.l(n) < T(n-4) + T(n-7) + p(n) .

.)-L.E.l(n) < T(n-4) + T(n-8) + p(n) .

N

.ll—.2.2(n) < T(n-4) + T(n-6) + T(n-8) + p(n) ‘*

W

17



3™ =
55,0 (M) S
Tz 5.3 () <
Ty 54,1
T s o)
T 45045 ()

IA

IA

IA

T(n-4) + T(n-10) + p(n) .

< T(n-4) + T(n-8) +T(n-10) -I-p(n) .

T(n-4) +27(n-8) + T(n-10) +p(n) @

< T(n-b) +2T(n-8) + T(n-10) +p(n) .
< T(n-h) +4T(n-10) .

< T(n-4) + T(n-8) +3T(n-11) .

< T(n-k) +20(n-9) +2T(n-12) .

< T(n-k) +3T(n-10) + T(n-13) .

T(n-2) + T(n=-6) +p(n) .*

IA

T(n-2) + T(n-8) +p(n) .

T (n-2) +2T(n-8) +p(n) .*

IA

(A

T(n-2) +2T(n-8) +p(n) .

< T(n-2) +T(n-8) +2T(n-10) +p(n) .~
p(n) .

T(n-5) +3T(n-9) +p(n) .

T(n-5) +4I(n-9) +p(n) .

T (n-5) +4T(n-10) + T(n-11) +2T(n-13) +p(n) .

T(n-5) + 6T(n-11) +4T(n-1%) + T(n-17) +p(n) .

18



Th.e(n) < TB(n-l)+T(n-6)+p(n)
max {T(n-5) + T(n-6) , T(n-5) + 20(n-8) , T(n-5) +T(n-7) *+T(n-9),

T(n-5) + 2T(n-9) + T(n-11) , T(n-5) + 4T(n-11) ,

T(n-5) + T(n-9) + 3T(n-12) , T(n-5) + 2T(n-10) + 2T(n-13) }

+ T(n-6) + p(n) .

p(n) .

=3
\J1
}_‘/\
B
~
A

Ts.o(n) <1, . 5(n-1) +7(n-6) + p(n)
< max{T(n-6) + T(n-7) , T(n-6) + 2T(n-9) , T(n-6) + T(n-8) + T(n-10) ,
T (n-6) + 2F(n-10)+T(n-12) , T(n-6) + 4r(n-12),

T (n-6) +T(n-10)+ 3T(n-13) , T(n-6) + 2T(n-11) + 2T (n-14)}

-

+ T(n-6) + p(n)
T6((n) < T(n-1) + T(n-7) + p(n)

T(n) < max T.(n) .
S mexdy

From each of the recursive bounds

k
T,(n) < El aiT(n—bi) +p(n)

we get a polynomial equation

b k

x¥ - a; x
i=1

If y is the maximum of the positive solutions to all these equations,

+
ey ¢ is a bound on the running time of the algorithm. It happens that

the value of y 1s slightly less than 3/> . By means of a tedious

n
calculation using Table 1, one can prove by induction that T(n) < c2 /3

19



without solving lots of polynomials. The constant ¢ depends upon
p(n) . The worst cases of the recursion are 4.1.1.2.4 and 4.1.2.5.

The storage required by the algorithm is certainly polynomial,
since the depth of recursion is only 0(n) . With careful programming,

the storage required can be made linear in the size of the graph.

n 2n/5
1 1.2599%
2 1.5876%
~ 3 2.0000
4 2.5198"
5 3.17h7t
b 4.,0000
1 5.0397F
8 6.3496"
9 8.0000
10 10.079*"
11 12.69g*%
12 16. o000
13 20.158"
14 25.398%
15 32.000
16 40.317%
Table 1. Fractional Exponentials for Inductive Proof

of Time Bound.

20



4. Conclusions

We have presented a recursive algorithm which finds a maximum
independent set in a graph of n vertices in 0(2n/5) time. The
algorithm is an extension and improvement of one described in [10].
Though the case analysis used is lengthy, the algorithm could be
programmed easily, and we believe the algorithm would perform well
in practice.

Nevertheless, the main interest of the result is theoretical; it
shows that even for NP-complete problems it is sometimes possible to
develop algorithms which are substantially better in the worst case
than the obvious enumeration algorithms. Whether the algorithm presented
here can be improved substantially, and whether similar algorithms can be

developed for other NP-complete problems, are open questions.
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