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Abstract

A read-forward polyphase merge algorithm 1s described which performs

ne

the polyphase merge starting from an arbitrary string distribution. This

algorithm minimizes the volume of information moved. Since this volume

1s easily computed, 1t 1s possible to construct dispersion algorithms
“

which anticipate the merge algorithm. Two such dispersion techniques

are described. The first algorithm requires that the number of strings

to be dispersed be known in advance; this algorithm 1s optimal. The

second algorithm makes no such requirement, but 1s not always optimal.

In addition, performance estimates are derived and both algorithms are

shown to be asymptotically optimal.
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1. Introduction.

. This paper presents a mathematical analysis of the structure of the
polyphase sort with special emphasis on those properties which are related

to the performance of the sort. This analysis will enable us to construct

o a poly-phase sorting algorithm with optimal performance characteristics.
We will also construct a near-optimal polyphase sort which 1s more suitable

for applications. Finally, we will investigate the asymptotic performance

of both of these algorithms.

Although the polyphase sort has been 1n use for over a decade,

comparatively little work has been done in the direction of optimizing

o its performance. In an early unpublished paper[7], Sackman and Singer
developed methods for predicting the performance of the polyphase merge

and showed empirically that in certain cases that the performance of the

o usual method of implementing the polyphase sort could be greatly improved.

Independently, Shell [8] developed similar techniques and used them along

with some empirical observations to construct an optimal polyphase

« sorting algorithm. D. E. Knuth [5] has also investigated the optimal

polyphase sort and several of his results have been incorporated into

this paper.

\
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2. The Polyphase Merge.

3 We will begin with a brief discussion of the polyphase merge which

will serve primarily to introduce our terminology. Further details, as

| well as information on internal sorting and string merging, which we will

| not discuss, may be found in the books of Flores [2] and Knuth [5].

| Let us suppose that we are given a collection of records containing

| various kinds of information and let us further suppose that some linear

ordering has been defined on this collection. To sort the records 1s to

| arrange them into a sequence which 1s increasing with respect to the

ordering relation. One method of accomplishing this 1s by means of merging.

| First, the collection of records is partitioned into a number of small
| groups of records which each sorted to form a "Strimg" of recordsn d ,

the sorted strings are merged to form larger sorted strings, and so on,

| until a single sorted string containing all of the records 1s formed.

In practice, merge sorts are employed when there are more records

| to be sorted than may be accommodated by a computer% main storage. Groups
| of records are sorted into strings using the available main storage. The

| strings are then "dispersed" to some secondary storage medium such as mass

| storage or magnetic tape. The string merging operations are performed as

| transfers of information from one part of secondary storage to another.

| The poly-phase sort 1s a merge sort which 1s characterized by the
| manner in which the dispersed strings are merged. Let us suppose that

| there are T >3 tape units which are numbered from zero to t = T-1 .

We define the distribution numbers H for 1 = 1,...,t and n > 1 by

;



5 = 1 for 1<i<t

(2.1) 5, = st forn >1, and

gh _ ght + ght for n>1 and 2<i<t .
i i-1 t — =

From this definition it is easily show that for n > 1 , we have

(2.2) 5; <S,<... <8 .

Suppose that for some n > 1 that 5, +... + S, strings have been
*dispersed to the tapes in the following fashion:

tape: oc 1 2 . . . t

n n n

strings: O 51 Sy - Co Si .

We will call this configuration the perfect stage n distribution and the

sum

n_ .n n
(2.3) S 51 RR 5;

will be called the stage n perfect number.

Example 2.1. The following table provides some values of the distribution

numbers and perfect numbers when T = 5 (t = 4) :

n n n n n

n Sq So 52 5), S

1 1 1 1 1 4

2 1 2 2 2 7

3 2 3 4 L 13

L by 6 7 3 25

5 8 12 1h 15 49

6 15 25 27 29 Ol

i 29 Ly 52 56 181

8 56 85 100 108 349

9 108 164 193 208 673

10 208 316 272 401 1297
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Suppose that we start with the perfect stage n distribution'. If

we merge together one string from each of the tapes 1l,...,t , then we

will obtain a single string which may be written to unit zero. If n=1,

then this operation will merge all of the strings since each tape contains

exactly one string. If n >1 , then, in view of (2.2), we may perform

this operation Ss, times after which we will arrive at the distribution.

tape: 0 1 2 Ca t

n n n n n

strings: Sy 0 S, = Sy con Sy - 5;

From the formulas (2.1) we see that this distribution 1s the same as

tape: 0 1 2 . . . t

n-1 n-1 n-1

strings: S, 0 S51 Ca SHE

so that if we renumber the tapes %,0,1,2,...,t=1 , then we obtain the

perfect stage n-1 distribution.

By repeating this process, we obtain the perfect distributions for

stages n-2, n-3 , and so on, until we arrive at the perfect distribution

for stage one. A single merge will then produce the final sorted string.

This method of merging a perfect number of strings is called the polyphase

merge.

In practice, the distribution routine rarely produces a perfect

number of strings. In order to use the polyphase merge in this case it is

necessary to include a number of "dummy" (empty) strings in order to fill

out the-total number of strings to a perfect number. There are therefore

two choices which have to. be made before using the polyphase merge to sort

X strings. First we must choose a starting stage number n ; any n for

Co. n

which x < 8" is eligible. Second, we must decide how the S -X dummy

p



strings are to be distributed among the x strings. Although many

N methods have been proposed for distributing the dummy strings, most
authors recommend starting with the smallest possible stage number n ;

we will refer to these approaches collectively as the standard

polyphase sort.
“~

Since the speed of a merge is usually limited by the transfer rate

of the tape units and the speed of the merge algorithm, we see that the

| time required to perform the polyphase merge 1s approximately proportional
hp

to the total volume of information that moves through the merge. In

order to make this idea precise, we assume that the dispersion routine

produces strings of approximately the same size; this size will be our

unit of information, the unit string. The size of a string formed by

merging several strings 1s the sum of the sizes of the input strings and

o the size of a dummy string is zero. We say that a string is moved when
that string or any string formed from it by a sequence of one or more

merges becomes one of the inputs for a merge. The volume of information

o moved by the polyphase merge is then equal to the sum of the products of
the size of each string of the starting distribution and the number of times

that string 1s moved. In this paper we will show how this volume may be

| minimized.
p-

~~
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5. The Movement Numbers.

In general, the polyphase merge does not move all of the Ss" strings

of the stage n perfect distribution the same number of times. 1+ is

for this reason that the polyphase sort 1s much more difficult to analyze

than other merge sorting algorithms. However, much useful information is

supplied by the set of movement numbers M? (J) which are defined for

n>1l, 1<i<t, and all integers 5 by the relations

Mi(1) = 1 for 1<i<t,

CM (3) = 0 for 3 #1 and 1 <i <t%t,
5.1

2-1 M1 (3) = MEH (5-1) for n >1, and
M; (J) — YE) + MEH (3-1) for n > 1 and 2 < i <t .

We claim that M?(J) is precisely the number of strings on tape unit i

of-the stage n perfect distribution which will be moved exactly

times by the poly-phase merge. For this to make any sense it is necessary

that M(j) be nonzero only if 1 < j < n and that 5; = M(1)+ . ..+M(n) .
We will prove these assertions together by induction on n . When

n =1, everything is obvious since each of the tapes 1,...,%t of the

perfect distribution contains exactly one string which will be moved by

the poly-phase merge exactly once. Now suppose that n >1 and that

everything has been proved for stage n-1 . For M (3) to be nonzero we

must have, by (3.1), MEH (5-1) #0 or i > 2 and Me 1 (3) #0 . These
inequalities imply that 1 < j-1 < n-1 or 1 < j < n-1 which both imply

that 1 < j-<n . We may show that 5% = M, (1) + i co + M,(n) by summing
the last two formulas of (3.1) over J and by applying the corresponding

equality for stage n-1 and the last two formulas of (2.1). We recall that

]
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the stage n polyphase merge is performed by merging so strings from

« each of the tapes and then by applying the stage n-1 polyphase merge.

A string on unit one which will be moved Jj times will become part of a

string on the output tape which will be moved j-1 times. Since every

o string on the output tape contains exactly one string from unit one and

since the output tape becomes unit t for the stage n-1 merge, we see

that unit one must contaln exactly Me H(5-1) strings that will be moved
“ exactly Jj times. If 2 <1 <t, then a j movement string on unit i

will either be moved to the output tape or will remain on the tape. From

similar considerations, we see that unit 1 must contain exactly

‘ MT(5-1) + M13) strings which will be moved exactly J times. This
completes the proof.

Example 3.1. Table 3.1 lists some of the movement numbers 1n the case
"

t =k .

In this paper we will make use of quite a few sets of numbers which

- are defined using the movement numbers M, (9 . We list the definitions:

M3) = My(3)+ Mo (3)
n,. .

- 5, (3) a M, (1) 2 a a oe = M; (3) ®
n,. n,. .

(3.2) SUH =D +. MD =) +r... +E)
n,., _ 0 ‘ally

G;(3) =8;2) +. . . +80),
- n n n n n

G3) = +... +850) =60) +... +g)

In addition, we have already defined

“ n nh
S; = 8, (n)

n __n hn n

S = 8(n) = 8; + SEE

~ :



In a number of the form A-(j) the superscript n is the associated
A

stage number, the subscript 1 is the number of a tape unit, and j is

some number of movements. A’ (J) is formed from A;(3) by summing over

i=21...,t and As 1s formed from WE) by setting J =n. In a
_ n n n,.

similar fashion we may form A" from A; or A (3) .
n,. n,.

Except for the numbers G; (J) and G (j) , which are used in

connection with the volume function, the various sets of numbers which

we have defined express some simple properties of the perfect stage n

distribution:

M.(3) The number of strings on unit i which will be moved
exactly Jj times.

M(5) The number of strings which will be moved exactly J times.

5, (3) The number of strings on unit i which will be moved at
most J times.

s™(3) The number of strings which will be moved at most J times.

S, The number of strings on unit 1 .
n

S : The total number of strings.

| A set of numbers A(j) is said to be a t-array if the following
relation is satisfied for all integers n and Jj:

n ' n-1 o -—
(3.3) Ad) = A (3-1) +... + A" 5-1) .

We will call a sum of this form a t-sum. When a t-array is represented

as a table of numbers, then we will let J index the rows and n index

the columns. It is clear that the't-arrayA (Jj) 1s completely determined

by its values on the vertical strip 1-t <n <0 (or any other strip of

width t ). We will call this strip the initialization region.

9



Most of the sets of numbers which we have defined can be expressed

| as t-arrays. The t-array approach exposes many of the interesting properties

of these numbers which are obscured by the original definitions. Since all

| of these numbers are defined in terms of the movement numbers, we will

begin by showing that the movement numbers may be defined as t-arrays.

For each 1 = 1,...,%t we define the t-array £5 (3) by specifying

| that A; (0) = 1 1s the only nonzero element of the initialization
region for A, (3) . We will show that for all n>1, 1< i <t and

| all J that A; (J) = M?(j) . It is clear that the only nonzero values

in the columns n = —-t are a7" (-1) = 1 and a7" (0) = —-1 for 1 < 1 <t .
If we let Br denote the Kronecker Delta, then for -t <n < 0 we have

| SS RN < Fy n _Jj Ney _ 0 oJ nig, :A(3) = 80g + 8.8%, and A[(§) = 5,89 bi bifor 1< i <t .
Therefore, for 1-t <n < 0 , we have

n-1,. n-1_j n Jj n oj n,.- = + = =i Ap T(3-1) = 8, "53 51.480 = B18 = A103)
and for 2 <i <t

n-1,. n-l1,. n-1 J n-1_ Jj n-1_j-1 n-1_j-1+ - = -Rip(3) + ApT(I-1) = oT 8) - BT eg + sp TRH + 8]

| un J on, |
= 854% = 400)

These relations correspond to the last two formulas of (3 .l) and since they

hold for n and Jj in the initialization region, they can be extended to

all values of n and J by a simple induction argument using the

—-recurrence relation (3.3). Since the only nonzero values in the columns

| 1

| n = 1 are A; (1) = 1 , we see that the numbers A(3) also satisfy the

first two relations of (3.1). We therefore conclude that M (3) = A (3)
for all n >1 .

r



Below we list the various t-arrays in which we will be interested

| and specify the nonzero values in their respective initialization regions:

M3 (3) My) = 1,
M3) M0) = 1 for 1-t <n <0 ,

53(3) $i) = 1 for § 20,

s™(3) s™(3) = 1 for 1-t <n <0 and j > 0,

G3 (3) G3) = #1 for § 20,

G (3) G(3) = +1 for 1-t <n <0 and § >0 .

It 1s not difficult to show that these t-arrays satisfy the definitions

given in (3.2).

| Example 3.2. Table 3.2 shows a portion of the t-array HE) when
1=2 and t=2%4 . In this case, the only nonzero elements of the

initialization region are S23) =1l for j>O0.



Lk. Optimal Merging.

In this section we will examine some of the properties of the

poly-phase merge when it 1s implemented using read-forward tape units.

(Read-forward tape units can be thought of as queues in which strings

are written at the end of the tape and are read from the beginning.)

Of particular importance 1s the close relationship with generalized

Fibonacci numbers. These results will be used to construct an optimal

polyphase merge algorithm which has a number of desirable characteristics.

From (2.1) 1t 1s easily shown that

Sy = sp + ES for 2 <n <t , and

5, = sp + ES for n >t

If we define F = 0 for n < 0 , Fy = 1, and Fo = Sy for n > 1,
then, from the above relations, we have

(4.1) Fo=F +t... +F4

forn >1 . Because of the similarity of (4.1) to the defining recurrence

relation for the Fibonacci numbers, we will call these numbers Fo the

t-Fibonacci numbers.

The t-Fibonacci numbers play a central role in the problem of analyzing

the motion of the strings for the read-forward poly-phase merge. Indeed,

suppose that the strings have been dispersed according to the perfect stage

n distribution and that the string positions on each tape are numbered

from zero starting at the front of the tape. If we perform the polyphase

merge starting with stage n , then the number of times m that a string

in position p on one of the tapes will be moved 1s computed by the

following algorithm;

12



Algorithm 4.1 Simulate String Motion.

Step1.etm = 1, k = n-1, andgq = p .

Step 2. If k = 0 , then terminate.

Step 3. If q <F_, then go to Step 5.

Step 4. Let q = q-F, and go to Step 6.

Step 5. Let m = ml .

Step 0. Let k = k-1 and go to Step 2.

This algorithm simply follows the motion of the string as the polyphase

merge 1s performed. In particular, k+l is the stage number of the

polyphase merge being performed. If g < Fe = 5; = si, then the string
will be moved (and m incremented), but its position on the output tape

will be the same as its position on the input tape. If g > Fy, , then

| the string will not be moved but its position will be changed to q-F,
since Fy strings will have been removed from the tape. Since we are

simulating the poly-phase merge, we always have gq < Fre = Sle (this
may also be shown by induction) so that g = 0 when the algorithm

terminates.

Let us define the sequence S17855 «058 1 as follows: we let

55 = 1 if, when performing Algorithm 4.1, we perform Step 4 with k = J ;

otherwise, we let = 0 . Obviously, the number of times that the string

in position p is moved is N=S, =8,= «ee =8 4 « From the mechanics

of the algorithm and the fact that it terminates with g = 0 , we find that

n-1

Pp = 2 s.F, .
j=1 J J

Since a string can not remain on a tape for t consecutive merges, we see

that the sequence Sys+e+y8 , cannot contain more than t-1 consecutive

ones.

13



5 We have shown that p may be represented as a sum of distinct

| t-Fibonaccl numbers 1n such a way that at most t-1 consecutive

N

t-Fibonacci numbers appear in the sum. We will now study some properties

] of this type of representation.

We define a t-sequence to be a sequence Sy3853 000 of zeros and ones
.

| with the properties that only finitely many ones appear and that no t

: consecutive ones appear. It will sometimes be convenient to assume that

| S =0 for m <0 . The length L(s) of a t-sequence s is defined to
(Ne

be the largest m for which Sy = 1 or zero if S, = 0 for all m .

| If s and s' are t-sequences, then we say that s < s' if for some m

we have s < 8' (i.e., s_ =0 and s8' =1) and s_ = s' for all
= m m m m Il n

n>m. It is clear that this defines a linear ordering of the set of

all t-sequences.

| A t-sequence s represents a number F(s) in the sense that

F(s) = 2 s F

| We have the following theorem concerning such representations:
“

Theoremé&l. For each p >0 , there exists a unique t-sequence R(p)

| for which p = F(R(p)).Furthermore, if p < p', then R(p) < R(p') .

First we require some lemmas:

Lemma L.1. If s is a t-sequence for which L(s) <n , then F(s) < F .
| ~

Proof. If L(s) = 0 , then F(s) = 0 < F, for all n >0 . Now suppose
that s 1s a t-sequence of length m >0 and that the result has been

proved for all t-sequences of length less than m . Clearly there must

| be a k 20 with m=t+1 < k <m for which 8, = 0 . We form the’

1h |



: t—-sequence s' by letting Sy = 3. for Jj < k and 83 = 0 for jj > k .

If k =0, then F(s') = 0 <F,_ . If k >0 , then L(s') <k <m so

that by our induction hypothesis we have F(s') < Fy . Consequently, if

m <n , then we have

= F(s’ F, + +o...| F(s) F( ) + Ls.Fug Fy EY + F

Fi t+ TS

Lemma 4.2. If s and s' are t-sequences for which s < s', then

i F(s) < F(s') .

Proof. Let m be the largest integer for which S < S. . We then have

| 8S. = 0 and Sh = Sp for n >m . From Lemma 4.1 it follows that

| F(s) = 2 s.F, = 2, 8F + 2 s.F
k>1 FF pa KE on, EE

| <F+ UL sF< 2 siF . Fs')
k >m k>1

| Lemma 4.3. There are precisely Fo t-sequences for which L(s) < n .

Proof. We will use induction on n . Clearly the result is true when

n=1. If n>1l, then we may partition the set of all t-sequences s

| for which L(s) <n into t classes as follows: for each k with
1 <k<t, we define the k-th class to be the set of all such t-sequences

| > 5 3

| s which have the property that s, = 1 for n-k < j <n (this condition

is vacuous when k = 1 ) and Sq = 0 . Assuming that the lemma has been

proved for all n' < n , we will show that for each k that the k-th

! class contains Fy K elements. If nk < 0 , then we must have Sy = 1

for any s in the k-th class and therefore the k-th class contains



| F _, = 0 elements, If n-k 20, then for any t-sequence s in the

“ k-th class, we may construct a t-sequence 8' by letting 5 = 5: for

J <n-k and BL = 0 for J > n-k . It is easily seen that this
construction defines a bijection between the k-th class and the set of all

“ t-sequences s8' for which L(s') < n-k . Since the latter set contains

Fy elements, so does the k-th class. Summing over k , we find that

there are exactly Fa +... + Foot = Fo t-sequences s for which

“« L(s) <n . [O

Proof of Theorem k.l. It is clear that the numbers Fo are unbounded.

~ Therefore, 1f p > 0 1s given, then we can find an n for which p < F .

By Lemma 4.3, there are Fh t-sequences of length less than n which by

Lemma 4.1 are mapped by F into the nonnegative integers less than Fo .

~ By Lemma 4.2, this mapping is injective and therefore, by pigeonholing,

is surjective. Consequently, we can find a t-sequence R(p) for which

p = F(R(p)) . Uniqueness and the strict monotony of the mapping R both

~ follow from Lemma 4.2. O

Remarks. Theorem 4.1 is an extension of a well known theorem of

- Zeckendorf which concerns the representation of integers by sums of

| Fibonacci numbers. The extension given here is due to Knuth ([5],

Exercise 5.4.2-10) although our proof is somewhat different. Lynch [6]

-. has generalized this result and has shown how generalized Fibonacci

numbers may be used to control dispersion and merging in the standard

polyphase sort. There is another extension of Zeckendorf's theorem

“ which contains the others as special cases. Let r(n) be a positive

integer-valued function of n > 1 which has the property that r(n) > 2



for infinitely many values of n . We define the r-Fibonacci numbers tf

by £, =0 for n<oQO, ty = 1, and 3 = £1 out A for n >1 .
Every positive integer 1s uniquely represented by a sum of r-Fibonccci

numbers t with distinct subscripts n > 1 which has the property that

if SN ERLE LS, all appear in the sum, then so does 1. . A proof
may be constructed along the lines of our proof of Theorem 4.1 although

some care 1s required when r(n) = 1 . When r(n) = n for all n > 1

then the above result implies the existence and uniqueness of representations

in the binary number system.

Let D(p) be the number of ones in the t-sequence R(p) . In the

discussion following Algorithm 4.1 we showed that if a string appears in

position p on some tape of the perfect stage n distribution, then the

polyphase merge will move the string exactly n-D(p) times. Therefore,

1t 1s of some interest to determine those values of p for which D(p)

| takes a given value.

Let J be a nonnegative integer. We define E(j) to be the smallest

| nonnegative integer p for which D(p) = Jj . The following theorem and

the corollary provide methods of computing E(j) :

| Theorem 4.2. E(0) = 0. If j> 0, then E(3j) = E(j-1)+ Fark where
k= L(3-1)/(t-1)J.

Proof. We will prove the theorem together with the fact that L(R(E(3))) = j+k

for J >0 by induction on j . Clearly E(0) = 0 . Now suppose that

J > 0 and define s = R(E(3J)) , m = L(s) , and p = E(J) -F . Clearly

D(P) = Jj-1 so that p > E(j-1) . If we let k = | (j-1)/(t-1)] , then

we must have m > j+k for othrrwise s would contain t consecutive ones

or would have less than j ones. It follows that E (J) > E(j-1) + Firk

17



|

| and to prove equality, it is sufficient to show that D(E(j-1)+ Fir) = 3.|

We assume that everything has been proved for j' < j . If k = 0 , then
«

we clearly have

- = + 4E(j=-1) Fy Fi)

~ (the sum being zero when j = 1 ) and since j <t we have D(E(j-1)+ Five) = Jj .
We also observe that L(s) = j = j+k . If k >0 , then let j' = k(t-1)+1 .

Clearly J' < j and we have k = | (n-1)/(t-1) 5 for j' <n < Jj . From

- our 1nductilion hypothesis we obtain

| + . = | j! - + - + . oot 'B(I=1)+ Fup = B(3'=1) + Fypy Fak

However, if we let k' = | (§'-2)/(t-1), then L(R(E(j'-1))) = j'+k'-1 =

J'tk=2 . Since j-j' <t-1 , it follows that the t-sequence s' = R(E(J'-1))

remains a t-sequence if we let Ss. = 1 for j'+k <n < j+k . It follows

« at once that D(E(j-1)+ Fir) = j and that L(s) = j+k .This completes
the proof. Cl

- Corollary k.1. For J >0 and k defined as before we have

i Jk
E(J) = 2 F-1

m=kt

[C the sum having at most t terms.

Proof. The proof 1s by induction on J . When J = 1 we have k = 0
|

so the above expression 1s FytF-1 = 1 = E(l) . Now suppose that the
|

—corollary has been proved for all j' < j , in particular, for j' = k(t-1) .

Since |(n-1)/(t-1)] = k for j'< n < j we have from the theorem

No i.

|



Applying the corollary with j' and k' = | (j'-1)/(t=1)J = k-1 , We

| obtain

j +k! kt-1

E(3') = 2 F -1 = 2. F-1
m=k't m=kt-t

= Fg ~ 1 .

| Since Jj'+kt1l = kt+l , it follows that

BJ) = Fp +... + Fol.

| Finally, we observe that j+k-kt = 1+ (j-1) =-k(t-1) < 1+ (t-1) =t
so the sum contains at most t terms.

If J >1 , then there are infinitely many positive integers p for

which D(p) = J . We have just shown how to find the smallest such p so

now we will show how to find the others. ye will do this by constructing

| an algorithm which computes, given p > 0 , the smallestp' > p for

| which D(p')= D(p) .

| Let s = R(p) and s' = R(p') . We already know that gg < gt if

and only if we can find an m for which s = 0 , s' =1, and s! =s
m m k k

| fork >m . Consequently, to find the smallest p' > p for which

| D(p') = D(p), we must first find a suitable value of m . Clearly the

: smaller the value of m that is chosen, the smaller the value of p'.

There are three conditions that m must satisfy: First there is the

condition s = 0 which was given above. Second, we must have 5, = 1
| for some k <m for otherwise we would have D(p')> D(p) . Third, we

can not have S11= 0 0 0 T Spttel = 1 for otherwise any sequence s'

| with s' = 1 and Sp _ 8, for k >m will not be a t-sequence.
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Therefore, let us choose m to be the smallest integer for which

C = _ _ :
S 0, Sh-1 1 , and 81” « oot 8 tol <t-1 . This choice can

always be made since m = L(s)+l satisfies the requirements. If we

define ©P' by

. p' = E(s;+ . ..+ 5 0) +B + 2 8, Fy
k >nm

then it is easily verified that p' > p and that D(p') = D(p) and that

it is the smallest integer to have these properties.

In order to use the formula above, 1t 1s necessary to know the

representation R(p) of p . The following algorithm computes p' by

‘ combining the conversion of p to R(p) (using a technique similar to

Algorithm 4.1) and the search for m . The algorithm is easily implemented

on digital computers since it is fully arithmetic and does not involve

‘ t-sequences.

Algorithm 4.2. Find the smallest p' >P for which D(p') = D(p) .

Step 1. Let g = p and k = 0 and choose some m for which p < Li .

Step 2. If Fo <q , then go to Step 4.

Step 3. Let m = m-1 . If m = 0 , then go to Step 10; otherwise

o to Step 2.
« 9 IS

Steph. Tet q'= gq, m'*'=m , andk* = k .

Step 5. If m <t , then go to Step T.

Step 6. If gq < Fo, ~ Fote1 » Chen go to Step T; otherwise, let

q = Jq = (Fp = Fpoten) , m = mt , and k = ktt-1l and
go to Step 8.

< Step 7. Let q =q-F  » m=m-1, and k = ktl .

Step 8. If m= 0 , then go to Step 10.

« 20



| Step 9. If Fo <4 , then go to Step 5; otherwise, *go to Step 3.

| Step 10. Terminate with p' = p-q' TE ore” E(k-k'-1) .

To understand this algorithm, let s = R(p) . If F< gq in

| Step 2, then S, = 1 and the values of gq , m , and k are saved. The
- = + oe

| | check that gq > Fl Fot+1 F . eet Fo t40 determines whether or

not s =... = S £42 = 1 and 8 —t+1 = 0 . Steps 6 and 7 decrement m

in such a way as to bypass ineligible values of m , that 1s, those for

| which Spl — 1 Or 8, = 0 and s 5 = «oe . TY . The variable

k contains the number of nonzero values of Sm which have been encountered.

At completion, the last values of g , m , and k saved by Step Li enable

| us to compute p'.

Example 4.1. First we list some values of F and E(n) for the case
| t =Lk :

| n Fo E(n) n F E(n)

1 1 1 9 188 1339

| 2 2 3 10 361 3921

| 2 4 7 11 695 8897
| | L 8 22 12 13k0 18488

| | : 5 15 51 13 2582 54126

6 29 7 14 L976 122820

| 7 46 285 15 ~~ 9591 255232

8 98 6L6 16 18489 747209

| If we let p = 3913 and let s = R(p) , then it is easily shown that

| s = {0,1,1,1,0,1,1,0,1,1,1,0,1,0,0,...]}

; so the representation of p' has the form

Ss! =-{1,1,0,0,1,1,1,0,1,1,1,0,1,0,0, «..}

and it follows that p' = 3917 .
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We are now in a position to examine the problem of optimizing the

| polyphase merge for an arbitrary initial distribution. Suppose that the

~ dispersion routine writes Xp9eeesXy strings to units 1, |, t,
| respectively, and that the choice 1s made to perform the polyphase merge

| starting with stage n . The only requirement on n is that xi < 3
- for each 1 . If this requirement is met, then it is only necessary to

include 5; - X, dummy strings on each tape 1 in order to obtain the
perfect stage n distribution. Je have already observed that the number

~ of times that a string is moved depends upon its tape position. Therefore,
the manner of placement of the dummy strings has a direct influence on

the volume of information moved.

It 1s quite obvious how to arrange the dispersed strings and the

dummy strings so as to minimize the volume of information moved. On

: each unit 1 , we place M;(1) of the dispersed strings 1n the M; (1)
S string positions which will be moved once, M; (2) strings into the

positions which will be moved twice, and so on, until we exhaust the Xs

. dispersed strings; we then place dummy strings in the remaining 5, =X,
string positions. In this way we insure that the dummy strings are in the |
positions which will be moved the most.

| One practical difficulty with the above approach 1s the problem of

N placing the dummy strings 1f the dispersed strings are already on the
tapes. With read-forward tape units 1t 1s not permissable to write

. randomly on a tape. For this reason, we will transform the above approach
into a practical algorithm in which dummy strings do not explicitly appear.

If 5, (3-1) <x; < 5(3) , then, with the above scheme, there will
| be some J movement string positions which contain dispersed strings and
A

others which contain dummy strings. We have not said how they are to be
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| arranged. We propose placing all of the j movement dispersed strings 1n

3 front of all of the J movement dummy strings on each tape. It does

: however have the important property that the pattern 1s preserved as the

| | polyphase merge 1s performed. It is not difficult to see that any time
during the operation of the merge, any k movement strings of nonzero

| length will be in front of any k movement dummy strings on the same tape.

| Another important consequence of this choice is that we are able to

| calculate the positions of the J movement dispersed strings. Since these

, positions p have the property that J = n-D(p) , we see that the first

| of these positions 1s E(n-3j) and that the remaining positions are

| | calculated by repeated application of Algorithm 4.2. Since the pattern

| 1s preserved, the same observation holds throughout the polyphase merge.
| The algorithm which we will present 1s controlled by the two arrays

| Cli,3] and P[§] (0 <i <t, 1 <j <n) . Cl[i,j] will contain the
i ) number of strings on tape i which will be moved j times and P[7]

| | contains the next J] movement position on the input tapes. It is also

convenient to have arrays for the numbers Fo and E(m) , but we will

| not mention these explicitly.

The inputs to the algorithm are the numbers SERRATE of dispersed

strings on tape units 1l,...,t and the starting stage number n of the

polyphase merge to be performed. (The next three sections of this paper

| are devoted to the proper choice of these numbers.) In order to facilitate

| implementation, we will explicitly mention the tape rewind operations

3 required.



Algorithm 4.3 Optimal Read-Forward Polyphase Merge. |

Step 1. [Initlalization.] Let clL,3]-= M(J) for 1. <j <n
- and 1 <i<t. Let C[0,j] =0 for 1 <j <n. Let

m=n and u =0 « Rewind all of the tapes.

| Step 2. '[Initialize C.] For each 1 = 1,..eeyt find the smallest

) j for which Xy <Cl[i,1}+...+C[1,§] ; let
Cli,i] = x, =C[4,1] . «o= C[i,j=-1] and let Cl[i,k] = 0 for

J <k<n.
“

Step J. [Test for termination.] If m >0, then go to Step 4.

Otherwise, the sort 1s finished. Rewind all of the tapes.

. The sorted records are on tape u'.
step 4. [Initialize for stage m.] For j = 1l,e..,m let

P[j] = E(m-j) if C[i,§] > 0 for some i ; otherwise,

X let P[J] = F_;.
To Step 5. [Test for the end of a merge,] Find the value of

which minimizes P[j] (1 < j <m) . If PIJI>F , ,

then go to Step 9.

Step 6. [Merge some strings.] Merge one string from each unit

i # u for which ¢[i,§] >0 and write the resulting

string to unit u .

Step 7. [Update C .] If m >1 , then increment C[u,j-1] by one.

| For each i # u for which ¢{1,3j] >0 , decrement Cli,]]

oN I by one. If each of these decrements results in a value

of zero, then let P[j] = Fl and go to Step 5.

| Step 8. [Update Q .] Using Algorithm 4.2, find the smallest

_ | | p > P[j] for which D(p) = D(P[j]) . Let P[j]l=pand
oo go to Step 5.
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Step 9. [End of a merge.] Let m = m-1 , u'=u , and

u=u+lmodT . Rewind tapes u and uf and go to

Step 3.

In view of the discussion, this algorithm 1s reasonably straightforward.

However, we will comment on a few points. The computations required 1n

Step 1 can be performed without any additional storage by careful use of

the recurrence relations (3.1). Our use of Fol in Steps 4, 5, and 7

1s accounted for by the fact that F 1° sp = 5, which 1s the number

of strings produced by the Stage m merge; consequently Fo 1s the first

position which will not be used for this merge.

Although the computations required by the algorithm are formidable,

they do not really require much time. The bulk of the computation is

performed in Steps 5, 7, and 8 which are performed once for each string

that 1s output. Since a unit string will represent a large fraction of

the storage utilized by the sort, it 1s clear the time required will be

insignificant when compared with the time required for merging.

The storage requirements are not much larger than for other polyphase

merge algorithms. The only extra storage which is not required by other

algorithms is the storage for the arrays C and P and, possibly, the

arrays containing the numbers E (m) and Fo. for a suitable range of m .

We remark that the additional storage required for these arrays when

merging 100000 strings, using ten tapes and the dispersion algorithm we

will describe, should be less than four hundred locations.

Remarks. Shell [8] has described an optimum polyphase sort which is

somewhat different from ours. He describes a method of generating the

D(0),D(1),D(2),... directly and uses an array based on this sequence

25



to control the placement of the strings and the assumed placement of the

dummy strings. Unfortunately, this array becomes prohibitively large

for large applications. An accountof Shell's work also appears in [5]

(Section 5.4.2).
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| 5. The Volume Function.

| Let us suppose that we have x < §° unit strings which we wish to

merge with the stage n polyphase merge. Obviously, in order to

minimize the volume, we should place the unit strings into the positions

which will be moved the least and the dummy strings into the positions

| n,. n,.
which will be moved the most. Thus, if S$ (Jj) < x < 87(j+1) , then unit

n,. CL

strings should be placed in all of the § (J) positions which will be

moved J or fewer times and in x - 873) of the Jj+1 movement positions

“When this is done, the volume of information which will be moved by the

merge 1s found to be

i Nn, .\: 5 kM (k) + (+1) (x-8(3)) .
| =

We will call the value of this expression the volume function and denote

| it by v(x) . The expression may be simplified by observing that

| . 3 3
| (FFL) (3) - ZT xMUk) = T (G-e1)M(k)

k=1 k=1

J J J i
= 2 Y M®= Z IT M(x

k=1 1i=k i=1 k=1

| n,. n,.= Sof) = BG)
i=1

We may now write

; : n,.
(5.1) Vix) = (#1) - 6(3)

|

n n

1 where S (J) < x < 8 (§+1) .

5 In Section4, we looked at the similar problem of optimizing the

stage n polyphase merge when it is known that tapes 1,...,% contain

|
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x:.0 ld¢ dispersed strings, respectively. By similar reasoning, the
volume of information moved in this case is

ACHETER ACH

where each v(x) represents the contribution of tape i to the volume.
This contribution 1s given by

a _ Al(5.2)  vi(x) = (3g+L)x, -G,(d,)

: n n

where Jj, is chosen to satisfy 8;(3;) <x < 5,(3;+1) :
Obviously we must have

We are interested 1n those distributions X19 ees for which we have

equality. Such a distribution is said to be optimal for stage n .

Theorem 5.1. A distribution Xs eeerXy 1s optimal for stage n if and

only 1f we can find a Jj such that 5,(3) < Xy < 5, (3+1) for each 1 .

| Proof. If the condition 1s satisfied, then optimality for stage n

follows at once from formulas (5.1) and (5.2) and the fact that

biG(3) = 69) + JER {
Conversely, suppose that «1% does not satisfy the condition.!/

We can then find a J and two indices a and b such that x, < 5, (3)
n .

and x > s, (3) . If we define the distribution RSEERRIRH by xX = x +1 ,

X, = %-1 , and x} = x, for i # a,b , then it is clear that

N ty ov 3Co Vax) -v(x) <5 and

- t q(x) -(x) < +L.
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It follows that

LJ !| ACHE ACH ER ACH IEPRER ACH

and therefore x54 Ul) can not be optimal for stage n . u

| Example 5.1. We lett = 4 as in our other examples and x = 500 .

From the table in Example 2.1, we see that the smallest value of n for

which x < 8" is 9 . Let us evaluate V(x) for this value of n .

Since s%(5) = 338 <x < 534 = 5" (6) , we may apply formula (5.1) with

J =5 to obtain

Vix) = (3#+l)x-G(j) = 6°500-L78= 2522.

This volume 1s the best possible volume obtainable with the stage 9 merge

no matter how the strings are dispersed. If we let n = 10 , then a

similar calculation shows that V(x)= 2448 which illustrates how the

choice of a larger stage number than the minimum may improve the

performance of the polyphase sort. We will discuss this subject in

Section 6.

We will conclude this section with two theorems concerning the volume

function which will be required later.

Theorem 5.2. If x< 8°, then Wx) - P(x) < xX.

Proof, We may assume that x >0 . Let J andk be the unique integers

for which

n,,
s%(3) < x < SMG) and STE) < x < ST (w1) |

n,, ntl,
From the recurrence relation for t-arrays, we see that 8 (j+l) < S (j+2) ,

so that ‘

)



HE) < x < 8% #1) < STR) |

\ which 1mplies that k < j+#1 . From the recurrence relation, we also have

Gt (k-1) < (x) . We may now write

I. Vx) - v(x) = (ex-dE) - (3+1)x+ GNI)

~ | n n+l
| oo = (k=3)x+ G(J) -6 (k)

< (k-9)x+ G(3) -G(k-1)

. < (k=3)x+ (§-k+1)ST(3)

\

Theorem 5.5. Suppose that 0 < Xy <. 0.0L X, and that Xs < A for

each 1 . If x) ¢ ..,%1 1s a permutation of Xp) eeorXy which has the

property that x3 < 5, for each 1, then we have
«

Proof. First we will prove the result for a simple interchange. Suppose

~ n n
that 1 < a <b <% and that x<§, x <5, and 0 <x <x . If

Xx Sy<x , then let 7 and j' be the unique integers for which

n,. n,. n,., J PE

. 5.03) < y <8 (3+1) and SJ") =v < (3+)

Since 5, (k) < 5, (k) for all k , it is clear that j > j' and therefore

V(r) = Vly) = 31 < 1 = Vo(y+l) -V (vy)

"By summing over y , we obtain

V(x)= V(x) < Vax) -vo(x)

~ which may be rewritten as

V(x) + V(x) S V(x) + (x)



| The general result is proved by permuting the numbers IRE:
into x,,. JOR by a series of interchanges which successively place the

proper values into positions 1,...,t and by applying the above result

at each step. It is clear that we only change the numbers Vg and ZN
: — n n

1n positions a <b when Yy < Ve, . Also, since Vy, < S, < Sy , we
never place a number which exceeds SH into any position i . =
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6. Optimal Dispersion. |

“ In much of the literature on polyphase sorting, it 1s assumed that

the best starting stage number when merging x strings 1s the smallest |

n for which x < s® . This method generally gives nice looking results

C when the usual polyphase merge algorithms are used. However, when an

algorithm such as Algorithm 4.3 or the optimum polyphase sort of Shell [8]

1s employed, 1t 1s found that better results may be obtained by choosing

“ larger values of n . In this section we will investigate the problem

of finding the value of n which minimizes (x) :

A good starting point 1s the following lemme on t-arrays:

Lemma, 6.1. Let A denote one of the t-arrays M , S , or G . Let

J and d be positive integers and let n( j,d) denote the smallest

integer n >1 for which INGE) > A%4 (3) , then the following. are true:
L | '

(a) If n' > n(3,d) , then 2° (5) > a" 743) .

(b) If j*> j , then n(j',d) > n(j,d) .

C Proof. It 1s easily verified that

(6.1) 21% (0) = ,,, = 2%(0) > 0 = Ato) = A%(0) = ,,,

and that for j >1,
“

6 _ _ 0 1(6.2) 0 < A-@3) =... = A(J) < A°(J) .

It is clear that n(j,d) always exists since A%(j) is zero for n

“ sufficiently large. From (6.1) it follows that

a1) > 221) > PO) > at) >...

so that n(1,1) = 1 and (a) is true for n(3,1) .
“

We will now show that if (a) is true for n(j,1) , then it is true

| for n(j,d) for § > 1 and for n(j+1,1) . Let d > 1 be given and
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nl m+dl.
let m > 1-t be the smallest such integer for which A (j) > A (J)

Lo n+d
It is clear that md > n(j,1) . We will show that A'(j) > A (J)

for n >m . This is certainly true if n > n(j,1) . Also, if

m <n < n(J,1) , then we have

n f m ' m+d - nd, .
A'(3) > A'(3) >A 70) >A

Since n(j,d) >m , we see that (a) is true for n(j,d) . From the

recurrence relation for t-arrays, we have

n+l . n . n ' n-t .
AT (31) -AT(3+L) = AT) -AT (5)

Consequently, if we let d = t in the above argument, we see that we may

choose n(j+1l,1) = mt and that (a) is true for this choice. The validity

of (a) now follows by induction.

To prove (b), let j >1 and let n = n(j+1l,d) . From the recurrence

relation for t-arrays, we have

nt+d t. n,. nt+d-k, . n-k,.
0 > A (J+1) - ATH) = IT (a (3) -a777(3)

k=1

-K, d-k, .
so that A- (3) > AR (3) for some k with 1 < k <t . If

n-k > 1, then n-k > n(j,4) so that n > n(j,d) . If n-k < 0 , then

we must have md-k > n(j,1l) so that

1,. n-k,. ntd-k, 1+4d, .
A(3)> A (3)> A (3)> a7 7(3)

and therefore' n(j,d) =1< n . We have therefore shown that

n(j+l,d) > n(j,d) and (b) follows. nl

" The lemma 1s particularly useful in the following form:
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.
; Corollary 6.1. Let A denote one of the t-arrays M , S , or G , then

« the following are true:
:

(8) If A'(3) < A" (J) for some l<n<n' and j > 1 , then
1

| AR) <A" (3) for all j' >j .
n . t

. (b) If A°(J) > A" (3) for some 1 <n < n' and j >1, then
! 1

A531) > a" (3') for all j' with 1< 3' < J.

Proof. To prove (a) let d = n'-n . Certainly n < n(j,d) so it

| follows that n < n(j',d) for all J'> j and the result follows from

| the definition of n(j',d) . This also proves (b) since (b) is the

| contrapositive of (a). O

| 1

Theorem 6.1. If n <n' and (x) > (x) for some x < st , then
'

there exists a Jj <n for which G" (3) < ou (3) . Furthermore, if
1

> x <y <8, then V'(y) > V" (3) .
Proof. Clearly x >0 . Let J and k be the unique integers for

i

which

sP(3)<x < ss) and 0S (kK) < x <8 (1)

| We observe that j < mn . By assumption
IN (#D)x - (3) = V(x) > V(x) = (kx -G (k)

| which reduces to
| n,, n'
| G (3) <a (K+ (3-k)x .

- n' .

| In order to prove that (3) < Gc (J) we will show that
(5-6(x)

| (J-k)x < “".If j = k, then there is nothing to prove.
If J > k , then we have

oN J nt n n
(3-k)x < Zs (1) = 6 (J) -6¢ (k) .

i=kt1
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3 Similarly, 1f j < k , then

| 5 n' n' n'
bo | (3-k)x = -(k=3)x < - 2 8 (1) = 6 (J) -G (¥) -

| i=j+1

Now suppose that there 1s a smallest y with x <y < gs" for
| ?

) which vy) < ve (y) . Let j' and k' be the unique integers for

which

1 nt !

| sT(3") <y < s(§'+1) and ST (K') <y < §° (k'+1)
1 t

| . Since vi (y-1) > (y-1) , we find that

. L 1 4

| Jl = Vy) - V(3-1) < VV (3) - VF (3-1) = kL

| from which it follows that J' < k' . On the other hand, since

! _ n n'
(3) < g° (3) , we can find an m < j for which §(m) < 8 (m) .

]

: By (a) of Corollary 6.1, we see that s" (m') < g" (m') for all m' >m .

] Since j'tl1 > J > m , it follows that

n .  { t
| y < 831) < 8s (3H) <5 (x) <

] | which is impossible. This completes the proof. U

| corollary 6.2. Let N(x) be the smallest integer n which minimizes

] vo (x) , then N(x) 1s an increasing function of x .

Proof. Suppose that N(x) > N(x+l) for some x and let a = N(x) and

= . b = N(xtl) . Since b <a, we must have v(x) < V(x) . Also, since
| a b

xtl < s° <8 , it follows from Theorem 6.1 that V>*(x+l) < V (x+1) which

implies that N(xt+l) # b . O

| Remarks. Most of-these results were first proved by Knuth ([5], Exercise

5.4.2-14), however, our proof of Theorem 6.1 is somewhat different. Shell

: [8] has observed Corollary 6.2 empirically.
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In the remainder of this section, we will solve the problem of

determining the range of values of x for which N(x) takes a given

value. We will begin by examining some of the more subtle properties

n,.

of the numbers G (J)

Lemma 6.2. For each t >2 , there exists a number n, with the property

that G (3) < G (j) for some j with 1 <3jJ<n, if and only 1f

n>n, . Inparticular n, = 8, nz = 5, ny =L, and n, =5 for tT >5 .

Proof. If G (3) < (3) for some j with 1 < j <n , then we can
. n,., ntl, .,

find a J' < j for which S (j') < 8 7(j*) . By (a) of Corollary 6.1

n n+l i.
we find that S (k) < 8° “(k) for k > j > J' and consequently

G(n-1) < ™L(n-1) . It follows at once that such a j exists if and

only if ¢" (n-1) < a (n-1) . Furthermore, if this inequality holds

for n , it holds for ntl since, by (a) of Lemma 6.1, we have

- ~k+

g" K(n-1) <q" k L(n-1) for k = 1,...,t and it follows from the

recurrence relation for t-arrays that

n+2 n+l n+l t+2m) -™ tm) = tw) - el) > 0

The following table will serve to verify the values given for nc:

n -1 n n n tl
t t t t

t G (n.-2) G (n.-2) G (n,-1) G (n, 1)

2 58 56 109 11h
5 20 20 48 56

lL 11 il 32 40

B >5 t-1 t-2 4t-5 5t-9

Lemma 6.3 For each n > n, , let Jp denote the smallest integer Jj
_— nl,

for which G"(j) < G “( j) . We then have

. —

in = Intl AS ptt = Init y
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Proof. First we will show that Jn < Intl . Assume that for some
1 n+ 2

k < Jn we have call k) < G “(k) . We may write
/

n+l n -tGT (k) -G(k) = ¢M(k-1) - a" (k-1)

+1 -t+1
= (67 (k-1) -@* T(k-1))

n n+l
+ (6 (k-1) -G  (k-1))

n-t+1 . n-t
+ (G (k-3) - 6 “(k-1)) .

n+2 ntl
The first parenthesized term is equal to G (kX) -G~ “(k) and is therefore

positive. The second term 1s nonnegative since k < In . Since

aL (x) < a2 (x) it follows from the recurrence relation for t-arrays
1l-m 2-that eal (k-1) < ad (x-1) for some m with 1 <m <t . From (a)

n-t n-t+1
of Lemma 6.1 it follows that G (k-1) < G (k-1) so the last

parenthesized term is nonnegative. We have therefore shown that

¢ (kx) < ¢ ~(k) which contradicts the minimality of Jy
n,. ntl, .

Since G (3) < G (3,) , we may show as in the proof of Lemma 6.2
ml, . m2, . :

that G Jr) <6 Jr) and therefore j ,; < j;fl . Finally,
t,. n+t+l,

since eal (3p) < G (344) , 1t follows that
nmt-k . nt+l-k

G Tt =) <G (7 pg ~ 1) for some k with 1 < k <t .
iL - Thi 1 : J

Consequently, dn < Int —k < Jt 1 1s completes the proof

. Lemma 6.4. Define the numbers Ne by N, = 19 , Na = 6 , and N, = n,

for t > 4. If n >N, and j >0 , then
n,. n,. n+l, .

2G (J) < ¢ (*1)+ Gc (3-1) .

Proof. We will show that the above inequality holds for all but finitely

many values of n >1 and j >0 . The condition on n is sufficient

to exclude these exceptions. We define the t-array 1D by
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n,. n ntl,

D (J) = a (HV) +6 (3-1) -26"(3) .

It 1s not difficult to verify that the nonzero elements of the

initialization region for D are

0,.
D(J) = (t-1)J -t for j >1 and

p(-1) = 1 for 1-t <n <0 .

We observe that D°(1) = -1 1s the only negative element for the

initialization region. Tables 6.1(a), 6.1(b), and 6.1(c) each display

a portion of the t-array D for t > 4% , t =3, and t = 2 , respectively.

By inspecting these tables, it is clear that there are no negative values

of D( 3) with n >0 other than those displayed. Since the negative

entries only appear in the columns for which n < N, » it follows that

D'(3) > 0 when n >N, . Cl

Theorem 6.2. If n >N and 1f we define

n,. ntl,

c. =6(Jy) -6¢ (J, ,

then the following are true:

n,. n

(a) 87(3,) < ey < S(I FL) ,
| nl, ntl, |

(0) 87 (3D) < op < SH 5)
1

(c) Vie) = V(e) ,

(d) P(e +1) > Vie +1) if c <§*,
n n n

(e) ec, < cq
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+1,

Proof. From the definition of Jn we know that G(J, -1) > G" (3,1) .
We therefore have d

n,.\ _ N/, n n,6 . ntl, |
5700p) = (0) -6 (GD <a (5) - 6" (3-1)

n+l, ntl, ntl,
=c, <6 "0, -¢ (3,1) = 8 (3) -

From Lemma 6.4

_ als y _amrlel n n,. n,.
c =G (3) G (J, 1) < G (3,1) - G (3,) = 8 (3,741) :

Also from Lemma 6.4,

ntl, . n+l, . ntl, . n,. n+l,
ST 7(3,70) = ¢ (37D) - 6 (3,2) <a (3) 6 (3D =c

This completes the proof of (a) and (b).

From (a) and (b) we have

. n,.

Vie) = (3)e, - G5)
. Jn, . ntl,

= 3,6 (3) - (Grue ~(3,-1)
n+l, 1,

= Je -GT (3-1) = V(e)

| which is (c). To prove (d) we first observe that from (a) and (b) we

1 1 . . n

have V© (e +1) - vr (e,) = J, and Vi(e +1) -Vi(e,) > J rl if c, <8 .
| From (c) it follows that

1 1 _
Vi(c +1) -v (e +1) > 1+ vie) Ve (c) = 1 .

| “By Lenmma6.3 we have Jj, < J 1 so by (a) and (b)
n+l, ntl, .

cp < 87 (3p) £8 (Gh) < epg

which is (e). This completes the proof. [J

Corollary 6.2. c, "®as n=.

| Proof. This follows from (e) and the fact that cy 1s an 1nteger. J
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| | For each t >2 , we define the sequence LisLys ee as follows:
3 J + _
- | If t >5, then we let L, = § for n < N, and L, = Cc for n >N,.

I «| _ _
| If t =2, then we let IL = 8 for n £15 ,Lig = 2573, Lj, = 3954,

Ig =6527, and L =c for n >N, =19 .

= - Theorem 06.3. The sequence LysDpy ee is strictly increasing and has

| the property that Va (x) > v(x) if and only 1f x < L .

| - Proof. First we will show that the sequence 1s strictly increasing. We

already know that gt < gtd for all n >1 and that ¢, <ec,, for
: | all n>N, . These observations leave us with only a few special cases

™ to consider.

| When t >3 , we must show that when n = N,-1 , we have

| ST = L < Lil =C.q When t > 5 we may show from the appropriate

~ t-arrays that g2 = 2t-1 and Cy = 3t=-2 so that L. < Lo since
| ) _ _ _ 3 — en =
| N, =3 . When t =4, we have N, = 4 and Ly = 8 = 13 < 22 = ¢ = L.

| For t = 3, we have Ny = 6 and I, = S” = 31 < 32 = ¢g = Lg . For the
. remaining special case t = 2 , we have Lis - gt - 1597 < 2575 = Lig »

| Lig <Iyp < Ig» and Lg = 6527 < 10488 = C19 = Lig -
| To prove the second part of the theorem, it 1s sufficient, in view

xe of Theorem 6.1, to show that Ph) > Vv (Ly) for all n >1 and that

HL +1) < Vv (L +1) whenever IL < st. If n < n, , then
G (3) > (3) for all j with 0 < j <n , so by Theorem 6.1, we have

= rH) > V(L,) . We also note that L = s" for n < n, . When
n >N, , then everything follows from Theorem 6.2. Since n, = N for

t >L, this proves the result for t > k . To extend the result to the

“ case t = 3, we observe that in this case we have Lg = 5? and
]

v(L,) = 107 < 108 = (5)

| 40
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When t = 2 , there are a number of special cases to consider. First

we note that L, = 8" for 8 <n <_15 . By direct computation, we may
| verify that

8

Vi(Lg) = 331 < 343 = (1g);

v(L,) = 600 < 614 = 71) )
| 0

v (L15) = 1075 < 1092 = vi (L,) ’
| 1

'a (L1) = 1908 < 1935 = vo (Ly,) ’
. _ ADVEL) = 3360 < 3396 = VO(L,,)

3 _ Ak
V2(Ly5) = 5878 < 5901 = V (Lis)

| L

v1) = 10225 < 10240 = V2(L,,)
5 _ 6vr (Ls) = 17700< 17726- vr (Lg)
6

v (Lig) = 303k2 < 30343 = v(L,) ,
7 8i _| Vn) = 4950 = vO(L)

| 8 _ _ 19VoL) = 85819 < 85820 = V(1,g)
We also have

: Co
VO(LygHl) = 30357 > 30356 = VHI(L 41)

: 7 _ 8
vr (Ly+1) = Lh8965 > L896? = v (Ly+1) ,

8 9,.
v (Lgtl) = 85835 > 85834 = vt (gt)

which completes the proof of the theorem. Od

Two consequences of this theorem are easily proved.

Corollary 6.3. N(x) is the smallest integer n for which x < L, .
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Coronary 6.4. If V(x) < v(x) » then (x) < v(x) for all

. n' >n .

Remark. Corollary 6.4 answers in the affirmative a conjecture of Knuth

([5], Exercise 5.k.2-15).

Table 6.2 provides the values of L_ for t =2,...,7 and

n = 1,...,19 . Since such a table is easily prepared, we are able to

provide a very simple dispersion algorithm.

Algorithm 6.1. Optimal Polyphase Sort for x Strings.

Step 1. Find the smallest n for which x < by .

Step 2. Choose a j for which §°(3) <x < sh(5+1) .

Step 3. Find integers XppeoosXy for which x = Xp. etx and

5 (3) < x < 5; (3+1) For i = Lyeeept .

Step 4. For each 1 = 1,...,% write X, strings to tape 1 .

Step 5. Use Algorithm 4.3 to perform the polyphase merge on the

distribution XppeeesXy starting at stage n .

Remarks. Since Steps 2 and 3 of the above algorithm and Steps 1 and 2 of

Algorithm 4.3 both require tables of the numbers M; (4) y some of the operations
of these steps can be combined. The above algorithm should be compared with

Shell's optimum dispersion algorithm [8] which is directed by a table of

numbers closely related to the numbers L . The functions v, (x) share
many of the properties of the function V(x) and most of the results of

this section can be carried over to these functions. Unfortunately, the

analogues of the numbers In are 1n general different for each 1 ;

otherwise the next section would not have to have been written.
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Te Blind Dispersion.

In practice, it is very difficult to predict the number of strings

that a dispersion routine will provide. However, Algorithm 6 .l requires

that this number be known before the strings are written to the tapes.

This brings us to the problem of blind dispersion, that 1s, dispersion

without knowing the number of strings in advance.

We begin by observing that no solution to the blind dispersion

problem will in general be optimal. Indeed, solutions which require

rearranging the contents of the tapes will require additional string

motion which will result in a solution which 1s at best optimal.

Therefore, let us consider a solution in which the strings stay on the

tapes once they are written. Let us suppose that t = 2 and that we have

dispersed st0 = strings optimally. Since N(144)= 10 and

vor = 1075 < 1088 = vl) , it is clear that the only optimal

distribution is for stage 10 when there are 5,0 = 55 strings on tape ra

one and 83° = 89 strings on tape two. Let us see what happens when we
add another string. Since N(145) = 11 and vr 145) = 1100 < 1143 = v2 (145) ,

the best distribution of 145 strings is one which is optimal for stage 11.

However, since 87 > 52 = 5,7 (8)+1 and Sa 96 = SA (8)-1 , We see
that there 1s no way of arriving at a distribution which 1s optimal for

stage 11 by adding one string to our original distribution. This

pathology was first discovered by D. E. Knuth.

It 1s not difficult to see that any blind dispersion technique which

rearranges the contents of the tapes can be transformed into an equivalent

(or perhaps better) method in which the rearranging is performed after all

of the strings have been dispersed. The effectiveness of such a technique
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depends on how close the distribution, prior to rearranging, 1s to an

~ optimal distribution. We remark that one kind of rearrangement which

incurs no extra cost is that of renumbering the tape units. Theorem %.5

shows that a monotone distribution provides the best renumbering possible.

~- However, since the distributions which we will consider will be monotone

or can be made monotone, we will have no use for this technique.

In the remainder of this section, we will construct a nearly optimal

blind dispersion technique which requires no tape rearrangement. This

dispersion technique can be used by itself or 1n conjunction with some

rearrangement algorithm.

- Supposethat n >No . We define m(n) to be the largest integer

m for which In = Jn . From Lemma 6.3 we see that m(n) < nt and

that j, = jn for n <m <m(n) . For i = 1,...,t we define

no. cdl,

B; = min{5,(J) | n < m < m(n)+1}
and

n n n
B =B +. ..+8 .

— 1 t

Theorem 7.1. For n > N, we have

(a) By < By" for 1<i<t ;
n n n

(b) By <B, <. . . <B;

n,. n n ]
(c) §;(3,-1) < B; < 5;(3,) for 1<i<t ;

ntl, . n ntl, .

(a) 85 (3,71) < By <8; (Jy) for 1<1i<t ;

- (e) B° <c < BM .

Remark. Statements (c) and (d) imply that the distribution Bl) . x
is optimal for both stage n and stage ntl .

44



I

Before we prove the theorem we require a lemma:

Lemma 7.1. If n > N. , then for i = l,...,t we have

ntl, . n,.

8; (3,71) < 8503p)

Proof. We will begin by showing that for n > 1 we have

n+l, n,. ntl,

(7-1) sz (3) -8, (3-1) > 6 (J-1) -G¢ (3-1)

with only finitely many exceptions. We define the t-arrays A; for

i =1,s..3t and D by

A2(5) = S53) -sT (3-1)i 1 1

n,. n,, ntl,
D (J) = (1) -¢ “(G-1)

It 1s not difficult to verify that the nonzero elements of the initialization

regions for the t-arrays Ay, .. of are

Ay = 1 for 1 <i<t and J >0,

i-t-1,. : Cs 1A (3) = -1 for L < i <t and J 2 ’

A2(3) = 1 for 1 <i<t and j >2 , and
O00) = = 1A (0) = A; (1) = .

Also, the nonzero elements of the initialization region for the t-array D

are

p°(3) = t -(t-1)3 for § >1 .

Tables T7.1l(a) to T7.1l(g) each display portions of the t-arrays A;-D for

various ranges of t and i . By inspection, we see that the only

negative entries outside of the initialization region are those displayed.

Except in the case t = 1 = 2 , we see that (7.1) holds for all n > N,
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| and 1 = 1l,...,t . From the definition of Jy , we see that

| GMI -1) > aL; -1) and therefore by (7.1) we have S:(i) > gL; -1) .
n — n itn’ = 71 n

In the exceptional case we have n = N, = 19 and J19 = 15 so we may

verify directly that 537(15) = 6050 > 5270 = 520 (14) . This completes
| the proof. O

| Proof. of Theorem 7.1. If Jy = Jpe1 , then m(n) = m(n+tl) so that (a)
1s obvious. If this is not the case, then by Lemma 6.3, we must have

Co n+l, n+1
| Jpe1 = dptL so that §; (3p) <8 (3,41) . Also, since m(ntl) < nt ,
| ntl, . k

we see that S; (j.) < 8;(J...) for m2 < k < m(n+tl)+l ; this follows1 n i‘ntl

| from the fact that S73) 1s a term of the t-sum which computes
k,. n n+l ntl

8:(3 41) + We have therefore shown that By < §; (3) < By 7, which

| 1s (a). Statement (b) follows at once from the fact that

| S:(3) < vv < 8p(3) for allmn >1 andj >1 .

| To prove (¢) and (d) we first observe that the definition of B,
n n n ntl,

implies that Bj < 8;(3,) and By <8, (3) . It is also clear that

| n,, n ntl, . ntl
| 5;(3,-1) < 5:3) and 8; (3, 1) < Sy (3) . From Lemma 7.1, we have

| Ss (3,-1) < 8;(3,) . Finally, by reasoning similar to that used in the

| above paragraph, we have 5, (3-1) < 5503.) for ml < k < m(ml) and
| ntl, k,.

i 85 (3,-1) < 8, (3,) for m2 < k <m(n)+l if m(n) > n . From these

; inequalities, it follows at once that 83(3,1) < B, and that

| S31 (3,1) < B; which completes the proof of (c¢) and (d).
| n _ .n,.

By (c) we have B <8 (3,) Se, . If we let n' = m(n)+l , then it

1s clear that Jp = J tl , Jr 1 = Jy , and n' < mt . Therefore, by
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(a) and (c) we have

on S Spy <8 (gig) = 87 (Gel) < 8 < BT

which establishes (e) and completes the proof of the theorem. CJ

From the theorem, two important properties of the distributions

Bs . By are apparent. First, we may arrive at the distribution

BLE by simply adding strings to the distribution By - a:
Second, 1f we are dispersing for stage n and we reach the distribution

By . . +B} , then we may begin dispersing for stage ntl since the
distribution is optimal for both stages. Clearly we can base a blind

dispersion algorithm on these properties of the numbers B; . However,
since we will be making several refinements, it 1s of value to examine

the general structure of such an algorithm.

We define a quota scheme for polyphase dispersion to be a family of

nonnegative integers Q",Qy - Col , n = 1,24... which have the following

properties fom >1 and 1<1i<t:

af < sf af cat, <d™

Q- < Qy + . . . + Q , and Q" —- ® 3s Nn =» ©

Following is the dispersion algorithm which 1s directed by the quota

scheme. The counters Xp oo - o%y contain the numbers of strings which have

been'written to tapes 1l,...,t . Upon completion, the values of

Kis. eerXy and n are the parameters for initializing Algorithm 4.3.
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Algorithm 7.1 Quota-Directed Polyphase Dispersion,

N Step 1. Let n = 1 and X, = Vy = 0 for 1 = lyeeeyt .
Step 2. If there are no more strings to disperse, then terminate

the algorithm.

“ Step 3. Tf Xp+ eeet Xx, =qQ" y then let n = ml and

Vy = cer vt = 0 and repeat this step.

Step 4. Choose some i for which x, <y; . If this choice can

not be made, then go to Step 6.

Step 9. Write a string to tape unit 1 , let x, = x+1 , and go

to Step 2.

Step 6. Find the smallest j for which X; < 5; (3) for some 1 .

Let yi = min(Q, , (3) for i = 1, ..+t . Go to Step hk.

Informally, this algorithm disperses for stage n keeping x, < Q;
for each 1 until Xt. eetx = Q" and then begins dispersing for
stage ml . When the algorithm 1s dispersing for stage n , the strings

are written in such a way as to minimize the growth of v(x) + —_— , (%,) :
~ Since the choice of 1 made in Step 4 is arbitrary, the distribution

Xyseee5X, May be uncertain when the algorithm switches from stage n to

| stage ntl . For this reason, the first value of j chosen for stage

~ ml by Step Omay vary thereby causing the volume of the sort to vary.

| This uncertainty disappears 1f q" = ay + . LQ or 1f 1t 1s known that
| when we switch from stage n to stage ml , then the distribution 1is

| N optimal for stage ml . Indeed, in the first case the distribution is

completely known and 1n the second case we know that J 1s the smallest

| integer for which Xt. oeetx < s™L(4) . The quota scheme which we
N will consider has one or the other of these properties for each n .



When the quota scheme has these properties, then Algorithm 7.1 may

be transformed into a simpler table-directed algorithm. The tables have

the entries 2 Eq y0ps vend for k > 1 and are constructed as follows:
We initialize the counter k to zero and perform Algorithm 7.1 with an

unlimited supply of strings; after each time that Step 6 1s performed,

we 1ncrement k by one and let £ =n , a= = Q" » and as = Ys for
each1 . The simplified algorithm follows:

Algorithm 7.2 Simplified Quota-Directed Polyphase Dispersion.

Step 1. Letk = 1 and xX, =... TRS 0 .

Step 2. If there are no more strings to disperse, then terminate

the algorithm.

Step 3. If Xpt ooo t x, = qk then let k = k+l .

Step 4. Choose some 1 for which Xs < a; . If this choice can
not be made, then let k = ktl and go to Step 3.

Step 5. Write a string to unit 1 , let Xs = X41 , and go to

Step 2.

At termination, the parameters for the polyphase merge algorithm are

nk and X15 0X Since the required tables may be prepared in advance,
this algorithm provides a very compact method of dispersing for the

polyphase sort. For most applications, the maximum value ofk should

never exceed forty.

We will now present the rules for constructing the quota scheme for

the-blind polyphase dispersion algorithm.
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1. If n>N and 1f BY < SH(3 ) for some i , then we let= t 1 i‘Yn

Q" = B" and Qy > B, for is= 1,..0,t .

: n n :

2. If n > Ny and 1f Bs = $503) for each i , then we let

n « fallfe on ntl, . ntl
Q; = min(s;(3,+1) , 8; 7(3,) , By 7)

for 1 = l,...,t and we let

n n PR

Q = min(e ,Qq+ e+ Q)

3. If t >3and1l<n<N,, then we let

L. If t= 2 and n<N. = 19 then we let

and, 1n addition, we let

16 B 17 18 oo
Q° _ Lye = 2573 , @ | = 3845 , @ = Lg = 657 ,
16 16 16 16

7 = Pm) = 1385, QT - sila) - 2u621 1 2 2

18 18 18 18 |
Q;” = 8] (16) _ 2567, Ay = 8; (16) = L163 .

. To show that these rules define a quota scheme, we will being by showing

that for n > N, , we have

n n nl n n n+l
B <Q <B and By; £Q; < By for i = 1l,..e,%.

These relations are obvious when Rule 1 1s applied. If Rule 2 1s applied

instead, we have, from Theorems 6.2 and T.1,
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nn, n n+l a
B, = 85 (3,) < Qy < Bs for i = 1,...,t and

n nn n n n ntl
B =5(3) <Q SQt. . + Q <B

_ n ntl
For t > 5, we must show that when n = N, -1 , that we have § <Q

and Ss <Qy for i = 1,...,t . Clearly, it is sufficient to show

that 5; < B; for each 1 . For t = 5 , we have N, = 6 and

5 _ _ Rb 45 _ gb 5 6
5] = 7 <1l2=B,8 =11<19 =B, , 83 = 13 < 27 = By .

Similarly, for t = 4 we have N, = L and

3 L > L

3 hcg ph 3 487 = <6=B; , 8, = 4 <T =¢q .

For t > 5 , we have N, = 3 and using the t-array representation, it

may be shown that G(2) = 2t+ (n-1)(t-1-n/2) for 1 < n <t from which

it follows that & (2) < veo <«c¥ 12) - at (2) so that m(3) = t-2 since
- ' to

Jz = 2 . Using t-arrays, we may also show that 55 (2) <...< 5. (2) for
2

each 1 so that s;(2) < 52 (2) = B for each 1 . The proof that
Rule kalso contributes to a quota scheme is straightforward once we

observe that when t = 2 we have

15 _ 15 _ 19 _ 19 _
Sq = 610 , 5S, = 987 , By = 3588 , B, = 6050 .

n n n

We have already seen how the numbers B and Bye. erBy can be

used to describe blind polyphase dispersion so Rule 1 requires no

explanation. Rule 2 represents a refinement in which Q" 1s pushed

to the largest value not exceeding c for which we can switch from

stage n to stage ntl with a distribution which is optimal for both

stages. Rule 2 will be used for each n for which Joa = A .

Rules 3 and 4 simply fill out the quota scheme for small values of n .
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The special assignments in Rule 4 were chosen subjectively to insure

nN reasonably good performance.

If we are dispersing using the quota scheme just described, it is

clear that when the number of strings x 1s large, then we will switch

“ stages with a distribution which 1s optimal for both stages. Consequently,

the volume of the sort will be A (x) (x) for some integer N'(x) when x

is sufficiently large. Since > < c, for n 2 Ny , 1t is clear that

N N' (x) >. . On the other hand, since Cc) gt < Qt , we see that
N' (x) < N(x)+t .

| The blind polyphase sort which we have described is almost as good

nN as the optimal polyphase sort of Algorithm 6.1, when the number of strings

1s 1n the range of the size of most applications (say, less than a thousand),

the two sorts are almost always equivalent. When the number of strings

is large, it can be shown that the two algorithms are equivalent infintely

| often. Indeed, this happens for 573) strings every time that

Jpr1 = Jr . In the next section we will show that the two algorithms

Ie are also asymptotically equivalent.

| Example 7.1. Table 7.2 displays a portion of the simplified quota scheme

| for the case t = 4

~

iN

-
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8. Asymptotic Performance.

In this section, we will study the performance of the algorithms

which we have described when the number of strings 1s large. There are

two volumes which we are interested in estimating. First there is the

volume of the optimal polyphase sort of Section 6,

vx) = PP),

and, second, there 1s the volume of the blind polyphase sort, when x is

large, this 1s

v(x) . A (®) :

We will show that when x is large that both of these volumes are

asymptotically equal to

x logy xX + Lx log log, x+ o(x) .2 t

The reader who 1s not familiar with asymptotic methods may find [1] or

the first chapter of [4] to be helpful.

Our startingpoint is an interesting connection between the movement

numbers and the theory of probability. Let Y1:Y0s . be independent

random variables which each take on the values 1,2,...,t with equal

probability gt . Simple calculations will show that each Ys has an
expectation p = (t+1)/2 and a variance © = (£°-1)/12 . For positive
integers m and k we define

(8.1) p(m,k) = prob (y, + ceety =m)

Lemma 8.1. For n >1 and j >1 , we have Me (3) = tIp(n, 3) :

Proof. Let qg(z) = z+ 2° + . tz for the real variable z . We will

begin by showing that
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(8.2) ZS M2" = a(x)?
n>l

Since the only nonzero values of M, (1) are M (1) = 1 when 1 <n <t ,
we see that (8.2) 1s true when J = 1 . Purthermore, given (8.2) and the

fact that MES) = 0 when n < k , we may write
t

2 Mc (3+1)z" = 2 2 Me (3) 2"
n>1 n>1 k=1

= T= 3 Ey)
k=1 n>l

L k j+1
= 2 7q(z)] = aq(z)
k=1

so that (8.2) follows by induction. From the form of q(z) , we see that

the coefficient of 2" in q(z)j is precisely the number of ways that n

may be written as the ordered sum of J integers, not necessarily distinct,

chosen from the set {1,2,...,t} . Since this number is precisely

tJp(n, 3) , the proof is complete.

Techniques for estimating probabilities of the form (8.1) are well

known. For our purposes, the best such approximation follows from a

theorem of C. G. Esseen which is given on page 241 of [3]:

-s°/2 a (s)  Qy(s) Qy(s) Qy(s)

over \k kk ik if 5/2

where we have written s = (m-upk)/o/k and where Q (8) , NE) ) Qz(s) ,

Qy (5) are polynomials in which the coefficients depend only on the moments

of Ys which, 1n turn, depend only on t . It turns out that all of the

centralized moments of Ys of odd order are zero. This leads to some

simplifications; ip particular Q(s) = Qz (8) = 0 and (8) takes on
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the simplified form e¢(s = 6s + 3)in which c¢ depends only on t .

| Using the estimates

52/2 1 2 l
© = 1 - 5 Ss + o(s )

2

Q,(s) = 3¢+0(s" + sh ,
o |

s /2

/2 qs) = 0)
we obtain the approximation

| | 4 8
1 1 2 ple 1 S S

p(m,k) = —— (L-s /2) + + 0 + +| oN2n (3 0/2 TCE TE
which may be written in the form

1 1 1 : (m - uk) = 1+ (m-pyk 8
pimk) = —=| apt 3m | 3 "oO 52 |oN 2n k kK’ 20 k

To simplify subsequent calculations, we will use the symbol RP, (2) to

represent generically an n-th degree polynomial in z in which the

coefficient of z° 1s positive and in which all of the coefficients

are functions only of t . Two distinct appearances of the symbol in

the text need not represent the same polynomial. With this convention,

we now have

(8.3)  plm,k) Ee - —y(m = uk) + 0 aes. 9 = ———- - .

on 2k K =" 2 Kk” 2

| Lemma 8.2. We have

) Vey “dy : 1 : 1+ (n-u))°(8.4) jtMA()) = —E=- 3 Pp(n-pg)+0 5 :
oN 2x J

D2



Proof. From the last, two formulas of (3 .l), we have

. -1,. -:

. Mp3) = Mg (3D) + eee + 107H(3-D)
so that

N M3) = tM (3-1) + (6-102(3-1) + : cot M51)
| Therefore, by Lemma 8.1, (8.3), and the facts that

| 1 I SENN SEN (|
| 1/2 1/2 3/3 572 EK
N (3-1) J 2J J

1 _ 1 +0 1
(5-1)°72 5372 IE ’ oo

IN we have

(3) = DT (e-1)tTY M31)
| i=1

Lo
RS = t 2 (t-i+1l)p(n-i,j-1)
| i=1

| -1 t t
t t-it+1

j = —— (t—-1+1) = 2. LBD 0 (a-py+ as )N on 2x] i=1 i=1 3° = 2 "

1+ (n~yi

| +0 Mri

N which 1s easily reduced to the form (8.4). O

| Lemma 8.3. We have

: . 2 RP, (n-pj) 8
NN (8.5) [3 t Ja(3) = ee Ler The 0 rnp) |ov2x  (t-1) - ©

’



Proof. From our definitions we have

n J J k
G3) = TL sHH) = TT Mi)

k=1 k=1 i=1

J j-1

= 2 (J-e1M(k) =  (eL)M(j-k)
k=1 k=0

| Using this formula and Lemma 8.2, we obtain

| _i on i-1
te» = Tt (er 1)M (Gk)

k=0

j-1 Po(n = pj + uk)-k 1 2
| TD te) —i SRLS

k=0 oor (3-072 2)

bo. 1+ (nui + uk)o
| + 0 ten) HB)Las :k =O (J-k)

| In order to simplify the above approximation, we need to be able to

estimate sums of the form

J—1 a _
S(a,b) = DL ——t78

| k=0 (j-k)

for. a = 0,1,...,9 and b = 1/2,3/2, 5/2 . Let us write m = V3] -1 .

If Jj 1s sufficiently large, then we will have k* < (3/2) © for all

k >m anda = 0,1,...,11 . From the binomial expansion, it 1s clear

that for k <m , we have

2

| (3-k) J J J

| It 1s also clear that

A a, ~k
2 kt = s(a)+0((3/2t)")
k=0

where

| of
|



©

s(a) = 2 iE .
k=0

We therefore have

m a atl j=1 a
- k -k

s(a,0) = Z| 55+ Saal fr Dtk=0 \ J J k=mtl (j-k)

m at2

+0 2 Lot"
k=0 J

_ s(a) | b s(atl) m 1
= =5 tf Tor tO (32) + wT
JJ J

m rt2
since the second sum is 0((3/2t) ) and the last sum is 0(1/3 °) .

Since (3/26)" is 0(1/357*%) for each b , we may replace the above

error estimate by 0(1/37+%) . The conclusion of this lemma now follows
from the facts that

2
s(0) = t/(t-1) and s(1) = t/(t-1)° O

Corollary 8.1. If n-puj = 0(1) , then

NE .
It) = RA———— o( )over (t-1) y

Proof. This 1s a simple consequence of the lemma. CO

Corollary 8.2. Let Jn be defined as in Section 6, we then have

n= pd, = 0(1) .

| Proof. We recall that Jn is the smallest integer j for which

G3) < (5) . From the estimate (8.5), we obtain

3479) - ang) = oof 2i2zud) |
J
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With 4 understood to be the 1 appearing above, let a be the real

number which satisfies Py (n= pa) =0 . If 3 > [al+l , then clearly

P, (n= ud) is less than some negative quantity which 1s independent of

n and if j < |aj-1, then Py (n - uj) is larger than some positive

quantity which is independent of n . For J in the range

La] -1 < j <lal+l , we have n-puj = o(l) and the error estimate above

becomes 0(3°5) so the first term of the estimate dominates. It follows

that In lies within this range for large n and the proof is complete. UO

Theorem 8.1 V(x) = x log, x + x log, log, x+ 0 (x)~heorem ©.2. €t 2 8 8

n,. ntl, :

Proof. Let c =G (3,) -G (3 1) be defined as in Section 6. From

Corollarys 8.1 and 8.2 it is easily shown that

~j " _
8.6) Wig t To = —h= ov 03hoN 2x

If x is sufficiently large, then for n = N(X) we have cp <x<ec

Let j be the unique integer for which 8 (j) <x < § (j+l) . From

Theorem 6.2, it 1s clear that Jp1-t <3j< Jy . Using the formula

. n,.

v(x) = (J+1)x -G (J)

we may write

. n,.

. (8.7) V(x) =X log, x = x(j+1-log, x) =G (3) .

From (8.6) we have

1 c. =J. - ~110 + O(16 Cn T dnp TZ 08 Ip (1)

and therefore, since 0 < =J,7 = 1,
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Ce C4

Jg+1 log, x < J+1 log, Chal

= j+1-j_+ = log J. + O(1)n 2 &, n-l

< Jo+1l-j_ +Zlog i + O(1)— n n 2 8¢ n

= L 16 ji. + O(1)= 2 “98 dy :

Similarly

‘ _ _ _ 1 :
jtl-logx > j+1l-log c 5 log, Jj, + 0(1)

and we have shown that

_ 1 :
(8 .8) j+l-log, x =3 log, J, + 0()

comparing Corollary 8.1 and (8.6) we see that

G'(3) = ofc, _,) = O(x) .n-1

From (8.8) and the fact that Jp=2 < Jj < Jy , we have

1 c=1 .

Jj, log, x = 1+ 0(3, log, Jy)

sO that

. .=1 .

log, Jj, -log, log, X = 0(3, log, Jn) = 0O(l) .

Putting everything together, (8.7) becomes

V(x) -x log, Xx = 5 x log, 3p + O (x)

= 1 x 1 lo += 5 og, & xX 0 (x)

and the proof is complete. [J
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1
. . ' — _~ |Corollary 8.3 V(x) = x log, x + 5X log, log, x + 0(x)

Proof. In Section 7 we showed that N(x) < N'(x) < N(x)+t . From

Theorem 5.3, 1t follows that

0 ' _ A(x) A(x)< V(x) - v(x) = (x) -V (x) < (N' (x) -N(x))x < (t-1)x

so that V'(x) -V(x) = 0(x) and the result follows from the theorem. [J

It is well known (see Section 5.4.4 of [5]) that the best possible

volume for a merge sort which performs p-way merges 1s Xx Log, x+0(x) .
For this reason, a tape sort with T tape units has an optimum volue of

X 1ogn 4 Xx + 0(X) since such a sort can perform at most T-1 -way merges.

A tape sort with T tape units which has a volume asymptotic to

X logn_q X is said to be asymptotically optimal. Theorem 8.1 and

Corollary 8.3 imply that both the optimal polyphase sort and the blind

polyphase sort are asymptotically optimal.

Remarks. The optimal polyphase sort appears to be the first known example

of an asymptotically optimal read forward tape sort. Other examples will

appear in [9]. Several asymptotically optimal read backward sorts are

known (see, for example, Section 5.4.4 of [5]) but these sorts have volumes

of the form x logo 1 x + 0(x) which 1s smaller than the volume we have

derived for the optimal polyphase sort. One wonders 1f the volume

1

x Log X + 5 X logt log, Xx + 0(x) can be improved upon for read forward

sorts or whether it represents some theoretical minimum. A simplified

self-contained analysis of the optimal polyphase sort, which 1s probably

suitable for students, appears in [10].
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9. Concluding Remarks.

| Two questions concerning the optimal polyphase sort remain open for
investigation. First there is the problem of estimating the amount of

time the algorithm spends waiting for tapes to rewind and second there

1s the problem of optimizing the read backward polyphase sort.

The rewind time is significant since both the blind and the optimal

polyphase sorts perform large numbers of tape rewind operations. Of course

| we may suppose that the total amount of rewinding corresponds to the volume
| 'of information moved. However, the polyphase merge rewinds two tapes

simultaneously so 1t 1s conceivable that a highly unbalanced situation

may arise 1n which one of the two tapes being rewound would be considerably

longer than the other. This might cause the total rewind wait time to

vary from the volume of the merge to twice that volume.

| In the read backward polyphase sort, the tape units act as stacks

so the direction in which a string is written 1s reversed when the string

1s moved. Therefore, strings which will be moved an odd number of times

| must be written in the opposite direction from strings which will. be

written an even number of times. For this reason, strings are no longer

| interchangable so the dispersion routine must concern itself with the

| details of placing the dummy strings.

| In this paper, we have limited the discussion to the traditional

| polyphase merge in which the appointment of the output tapes 1s cyclic.

The polyphase merge, however, is just a special case of the class of

| single-output read-forward merge algorithms. Some information about these

| techniques can be found in the exercises for Sections 5.4.2 and 5.4.4 of [5].

It 1s known for example that in certain special cases, the optimal polyphase
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sort can be beaten by other methods of merging. In [9] it is shown that

a large class of single-output read-forward merge algorithms also give

rise to asymptotically optimal sorting algorithms.
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;oMm@) mE MG) m0)

n =1 1 1 1 1 1

n =2 1 0 1 1 1

2. 1 1 1 1

n => 1 0 0 1 1

2 1 2 2 2

3 1 1 1 1

n=». 1 0 0 0 1

2 1 2 3 5

5 2 5. 3 3

L 1 1 1 1

n =>5 1 0 0 0 0)

2 1 2 3 it

3 5 5 6 6

L 3 L L L

5 1 1 1 1

Table 3.1. Movement Numbers for t = 4 .
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5 |.n= 3 2 -1 0 12 3 4 5 6 7

0 0 1 0 0 0 0 0 0 0 0 0

8 1 0 1 0 0 1 1 0 0 0 0 0

= ) 0 1 0 0 1 2 2 2 2 1 0

~ 3 0 1 0 0 1 2 3 5 T 8 T
| A 0 1 0 0 1 2 3 6 1 17 23

5 0 1 0 0 1 2 3 6 12 er) 37
6 0 10 0 1 2 3 6 12 23 43

| « 7 0 1 0 0 1 2 3 6 12 23 Lh

n,.

| ~ Table 3.2. 5,(3) for t = 4 .

[

|<
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n= 0 1 2 3

7 =0 0 t

1 -1 0 t

2 £2 -1 -1 t-1

EE Table 6.1(a). Proof of Lemma 6.4 (t > 4) .

n= 0 1 2 3 4 5 6

J =0 0 3 2

1 -1 0 3 5

2 1 -1 -1 2 8

3 3 1 0 -1 0 y

4 4 oO -1 8

Table 6.1(b). Proof of Lemma 6.4 (t = 3) .
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n t =2 t =3 t = Lh t =5 t = 6 t =17

1 2 3 4 5 6 7

2 3 5 7 9 11 13

b 5 9 13 13 16 19

L 8 17 22 28 19 23

5 13 31 34 Lo 59 2 6

6 21 54 75 60 72 87

7 34 95 108 153 97 11h

8 55 172 243 215 282 147

9 89 279 358 268 385 167

10 144 534 455 778 480 639

11 233 819 1196 1033 554 791

12 377 1634 1562 1248 1995 921

13 610 2400 4033 3909 2485 1016

14 987 4958 5378 4969 2900 L396

15 1597 7028 6455 5840 10577 5250

16 2573 14952 18560 19408 13096 5978

17 3954 20582 22875 23917 15335 6498

18 6527 44898 64188 27556 17028 30163

19 10488 60297 80858 95802 69843 35027

| Table 6.2. be for 2<t <7 and 1 <n<19.

|
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n = -1 0 1 2 3

| j =o 0 1

1 -1 0 1 1

i 2 “1 t-2 -1 0 1

Table T.1(a). ProofofLemma7.l (t >k, i=t) .

n= 1-t . . 0 1

| J =o 1 Co 0
| 1 1... S11

Table 7.1(b). ProofoflLemma7.l (t >3,1=1) .

| n = i- it om, 0 12 3

a E—| jo 10... 0

1 I -1 1 oO . . -1 1 1| 2 110 + t3 -1 20 21

Table T.1(e). Proof of Lemma 7.1 (t > 4 ,1< i <t) .
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n= -2 -1 0 1 2

j =0 0 1 0
1 -1 1 -1 1

2 -1 1 0 -1 1

Table 7.1(d). ProofofLema7.1 (t =3,1i=2) .

n= 1 0 1 2 3 bh 5 6

5 =0 0 1

1 -1 0 1 1 1

2 -1 1 -1 0 2 po,

5 -1 5 0 -1 0 1 5

b -1 5 2 2 2 -1 0 6

Table 7.1(e). ProofofLemma7.l1 (t =3, i = 3) .
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K nX nw a" a= na n1 2 3 i

1 1 4 1 1 1 1

. 2 2 7 1 2 2 2
3 3 9 1 2 2 2

4 3 13 2 3 4 4

5 4 21 3 5 0 7

0 4 22 4 0 7 8

7 5 30 4 7 9 10

8 5 34 4 8 11 13

9 0 36 4 8 11 15

C 10 0 71 10 17 21 23
11 0 75 13 22 26 28

12 7 100 13 23 50 34

13 7 108 14 27 37 44

« 14 8 322 14 277 37 44
15 8 24] 34 57 71 79

16 8 243 44 77 92 100

17 9 338 44 78 101 115

o 18 9 358 50 lL 128 151
19 10 423 50 Ok 128 151

20 10 455 50 100 144 178

21 11 479 50 100 144 178

C 22 11 1156 151 266 345 394

Table 7.2. Simplified Quota Scheme for t = 4 .
“
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