OPT IMAL POLYPHASE SORTING

by
Derek A. Zave

STAN-CS-76-543
MARCH 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

g adt

Optimal Polyphase Sorting

by Derek A. Zave

Computer Science Department
Stanford University
Stanford, California 94305

Abstract

A read-forward polyphase merge algorithm is described which performs
the polyphase merge starting from an arbitrary string distribution. This
algorithm minimizes the volume of information moved. Since this volume
is easily computed, it is possible to construct dispersion algorithms
which anticipate the merge algorithm. Two such dispersion techniques
are described. The first algorithm requires that the number of strings
to be dispersed be known in advance; this algorithm is optimal. The
second algorithm makes no such requirement, but is not always optimal.
In addition, performance estimates are derived and both algorithms are

shown to be asymptotically optimal.

Keywords and Phrases: Sorting, tape sorting, merge sorting, polyphase

sorting, tape merging, optimal merging, optimal polyphase
dispersion, blind dispersion, polyphase dispersion, Fibonacci
numbers, generalized Fibonacci numbers, Zeckendorf Theorem,

generalized Zeckendorf Theorem.

CR Categories: 5.31, 5.30.

This research was supported in part by National Science Foundation grant
MCS 72-03752 A03, by the Office of Naval Research contract Nz Okk-Lo2,
and by IBM Corporation. Reproduction in whole or in part is permitted
for any purpose of the United States Government.

1. Introduction.

This paper presents a mathematical analysis of the structure of the
polyphase sort with special emphasis on those properties which are related
to the performance of the sort. This analysis will enable us to construct
a poly-phase sorting algorithm with optimal performance characteristics.

We will also construct a near-optimal polyphase sort which is more suitable
for applications. Finally, we will investigate the asymptotic performance
of both of these algorithms.

Although the polyphase sort has been in use for over a decade,
comparatively little work has been done in the direction of optimizing
its performance. 1In an early unpublished paper [7], Sackman and Singer
developed methods for predicting the performance of the polyphase merge
and showed empirically that in certain cases that the performance of the
usual method of implementing the polyphase sort could be greatly improved.
Independently, Shell [8] developed similar techniques and used them along
with some empirical observations to construct an optimal polyphase
sorting algorithm. D. E. Knuth [5] has also investigated the optimal

polyphase sort and several of his results have been incorporated into

this paper.

2. The Polyphase Merge.

We will begin with a brief discussion of the polyphase merge which
will serve primarily to introduce our terminology. Further details, as
well as information on internal sorting and string merging, which we will
not discuss, may be found in the books of Flores [2] and Knuth [5].

Let us suppose that we are given a collection of records containing
various kinds of information and let us further suppose that some linear
ordering has been defined on this collection. To sort the records is to
arrange them into a sequence which is increasing with respect to the
ordering relation. One method of accomplishing this is by means of merging.
First, the collection of records is partitioned into a number of small
groups of records which each sorted to form a "Strimg" of recordsn d ’
the sorted strings are merged to form larger sorted strings, and so on,
until a single sorted string containing all of the records is formed.

In practice, merge sorts are employed when there are more records
to be sorted than may be accommodated by a computer% main storage. Groups
of records are sorted into strings using the available main storage. The
strings are then "dispersed" to some secondary storage medium such as mass
storage or magnetic tape. The string merging operations are performed as
transfers of information from one part of secondary storage to another.

The poly-phase sort is a merge sort which is characterized by the
manner in which the dispersed strings are merged. Let us suppose that
there are T >3 tape units which are numbered from zero to t = T-1

We define the distribution numbers S? for i = 1,...,t and n > 1 by

=

Si=l for lsist
(2.1) Sg = Si_l for n >1, and
S? = S?-l + Sn-l for n>1 and 2<i<t
i i-1 t - T =

From this definition it is easily show that for n > 1 , we have

n n n
(2.2) S; <8, <. .. <8
Suppose that for some n > 1 that Sg + .. .+ SE strings have been

*dispersed to the tapes in the following fashion:

tape: o1 2 . . .t
. n n n
strings: O Sl Sg. .. St

We will call this configuration the perfect stage n distribution and the

sum

n n n
Sl+'°°+St

(2.3) S

will be called the stage n perfect number.

Example 2.1. The following table provides some values of the distribution

numbers and perfect numbers when T =5 (t = 4) :

n 5] S5 s’; 5), s
1 1 1 1 1 L
2 1 2 2 2 7
3 2 3 L L 13
L L 6 7 8 25
5 8 12 14 15 49
6 15 23 27 29 oL
7 29 L 52 56 181
8 56 85 100 108 3Lh9
9 108 164 193 208 673
10 208 316 372 401 1297

Suppose that we start with the perfect stage n distribution'. If
we merge together one string from each of the tapes 1,...,t , then we
will obtain a single string which may be written to unit zero. If n=1,
then this operation will merge all of the strings since each tape contains
exactly one string. If n >1, then, in view of (2.2), we may perform

this operation Si times after which we will arrive at the distribution.
tape: 0 1 2 Co t

. n n
strings: Sl 0] Se--Sl oo St -Sl

From the formulas (2.1) we see that this distribution is the same as

tape: 0 1 2 . . .t
, n-1 n-1 n-1
strings: St 0 Sl . Stsl

so that if we renumber the tapes t,0,1,2,...,t=1 , then we obtain the
perfect stage n-1 distribution.

By repeating this process, we obtain the perfect distributions for
stages n-2, n-3 , and so on, until we arrive at the perfect distribution
for stage one. A single merge will then produce the final sorted string.
This method of merging a perfect number of strings is called the_ polyphase
merge.

In practice, the distribution routine rarely produces a perfect
number of strings. In order to use the polyphase merge in this case it is
necessary to include a number of "dummy" (empty) strings in order to fill
out the-total number of strings to a perfect number. There are therefore
two choices which have to.be made before using the polyphase merge to sort
X strings. First we must choose a starting stage number n ; any n for

which x < st is eligible. Second, we must decide how the Sn-x dummy

strings are to be distributed among the x strings. Although many
methods have been proposed for distributing the dummy strings, most
authors recommend starting with the smallest possible stage number n ;
we will refer to these approaches collectively as the standard

polyphase sort.

Since the speed of a merge is usually limited by the transfer rate
of the tape units and the speed of the merge algorithm, we see that the
time required to perform the polyphase merge is approximately proportional
to the total volume of information that moves through the merge. In
order to make this idea precise, we assume that the dispersion routine
produces strings of approximately the same size; this size will be our
unit of information, the unit string. The size of a string formed by
merging several strings is the sum of the sizes of the input strings and
the size of a dummy string is zero. We say that a string is moved when
that string or any string formed from it by a sequence of one or more
merges becomes one of the inputs for a merge. The volume of information
moved by the polyphase merge is then equal to the sum of the products of
the size of each string of the starting distribution and the number of times
that string is moved. In this paper we will show how this volume may be

minimized.

3. The Movement Numbers.

In general, the polyphase merge does not move all of the st strings
of the stage n perfect distribution the same number of times. 71t ig
for this reason that the polyphase sort is much more difficult to analyze
than other merge sorting algorithms. However, much useful information is

supplied by the set of movement numbers M?(j) which are defined for

n>1, 1<ic<t, and all integers 3 by the relations

1
Mi(1) =1 for 1<i<t,
1. . .
M (3) = O for 3 #1 and 1 < i <%,
(3.1)
. -1,
MI?L(J) = Ml.; (3-1) for n >1, and
R -1, -1
M?(J) = M?_lCﬂ + ME (3-1) for n > 1 and 2 < i <t
We claim that M?(Jj) is precisely the number of strings on tape unit i

of-the stage n perfect distribution which will be moved exactly 7
times by the poly-phase merge. For this to make any sense it is necessary
that M?(j) be nonzero only if 1 < j < n and that Sg = M?(l)+ . ..+N§(n).
We will prove these assertions together by induction on n . When
n =1, everything is obvious since each of the tapes 1,...,% of the
perfect distribution contains exactly one string which will be moved by
the poly-phase merge exactly once. Now suppose that n >1 and that
everything has been proved for stage n-1 . For M?(j) to be nonzero we
must have, by (3.1), Mg-l(j-l) #0 or i > 2 and M?:i(j) # 0 . These
inequalities imply that 1 < j-1 < n-1 or 1 < j < n-1 which both imply
that 1 < j-< n . We may show that S? = M?(l)+ . ..+M?(n)knfsumming
the last two formulas of (3.1) over J and by applying the corresponding

equality for stage n-1 and the last two formulas of (2.1). We recall that

the stage n polyphase merge is performed by merging S; strings from
each of the tapes and then by applying the stage n-1 polyphase merge.

A string on unit one which will be moved j times will become part of a
string on the output tape which will be moved j-1 times. Since every
string on the output tape contains exactly one string from unit one and
since the output tape becomes unit t for the stage n-1 merge, we see
that unit one must contain exactly Mz-l(j-l) strings that will be moved
exactly Jj times. If 2 < i <t , then a j movement string on unit i
will either be moved to the output tape or will remain on the tape. From
similar considerations, we see that unit 1 must contain exactly

Mi-l(j-l) + M?:i(j) strings which will be moved exactly j times. This

completes the proof.

Example 3.1. Table 3.1 lists some of the movement numbers in the case

t =4 .

In this paper we will make use of quite a few sets of numbers which

are defined using the movement numbers M?(:ﬂ . We list the definitions:

M) = M) e+ M)
ST L M@ L)

(3.2) SU@) =w@W L L e @) =G ..+,
G;(3) =85+ . .. +S)
G(3) =s8'(1) + + 859 = 6 (9) + + Go(3)

In addition, we have already defined

n n
S; = Si(n)
s" =s%n) = 87 + + 8

In a number of the form %?(j) the superscript n is the associated
stage number, the subscript i is the number of a tape unit, and j is
some number of movements. A'(j) is formed from A?(j) by summing over
i=1...,t and Ag is formed from A?Qﬂ by setting 7 =n. 1In a
similar fashion we may form A" from A? or A%(3) .

Except for the numbers G?(j) and Gn(j) , which are used in ,
connection with the volume function, the various sets of numbers which

we have defined express some simple properties of the perfect stage n

distribution:

Mg(j) The number of strings on unit i which will be moved
exactly J times.

Mn(j) The number of strings which will be moved exactly j times.

S?(j) The number of strings on unit i which will be moved at
most J times.

Sn(j) The number of strings which will be moved at most j times.

S? The number of strings on unit i

Sn . The total number of strings.

A set of numbers A"(j) is said to be a t-array if the following

relation is satisfied for all integers n and 7j:

(3.3) A (g) = An'l(,j—l) + .. .+ An"t(,j-l) .

We will call a sum of this form a t-sum. When a t-array is represented
as a table of numbers, then we will let j index the rows and n index
the columns. It is clear that the't-array A'(j) is completely determined
by its values on the vertical strip 1-t < n <0 (or any other strip of

width t). We will call this strip the initialization region.

Most of the sets of numbers which we have defined can be expressed
as t-arrays. The t-array approach exposes many of the interesting properties
of these numbers which are obscured by the original definitions. Since all
of these numbers are defined in terms of the movement numbers, we will
begin by showing that the movement numbers may be defined as t-arrays.
For each 1 = 1,...,t we define the t-array A?Qﬂ by specifying
that Ai-t(o) = 1 is the only nonzero element of the initialization
region for A?(j) . We will show that for all n>1, 1< i <t and
~all j that Ag(j) = M?(j) . It is clear that the only nonzero values
in the columns n = -t are A;t(én = 1 and A;tﬂﬁ = -1 for 1 < i <t
If we let 8; denote the Kronecker Delta, then for -t < n < 0 we have
CAl(3) = 8% + 8783, and A5(3) = Sr.ihtbg-nﬁ:,lﬁafor 1< i <t

Therefore, for 1-t < n < 0 , we have

n-1, . _ an=1.J n .j _ an oj _ ,n,.
731 = syl + 8] 8] - 814% = 409

and for 2 < i<t

n-1,. n-1,. _on=l _j n-1_j n-1_j-1 n-1_j-1
Ay 1) + A T(-1) = By 1 485 - 5-tl5o * 8 150 + 5-1;15-1
_ n ,j _ n,.
=8 4% = 40 -

These relations correspond to the last two formulas of (3 .l) and since they
hold for n and j 1in the initialization region, they can be extended to
all values of n and j by a simple induction argument using the
-recurrence relation (3.3). Since the only nonzero values in the columns

n =1 are Ai(l) = 1 , we see that the numbers A?(j) also satisfy the
first two relations of (3.1). We therefore conclude that M?(j) = Ag(j)

for all n >1 .

10

Below we list the various t-arrays in which we will be interested

and specify the nonzero values in their respective initialization regions:

i-t
M3 (3) M;7(0) = 1,
M (5) MY (0) = 1 for -t <n <0,
n, . i-t, . .
§;(3) s; (3) =1 for j >0,
n,. n,. .
57(J) s (J) = 1 for -t <n <0 and j >0 ,
n, . i-t, .y _ .
Gi(;]) G; (3) =35+ for 3 >0,
n,. n,. . .
G (3) G (3) = J+1 for 1-t < n <0 and j >0

It is not difficult to show that these t-arrays satisfy the definitions

given in (3.2).

Example 3.2. Table 3.2 shows a portion of the t-array S?(j) when
i=2and t =% . 1In this case, the only nonzero elements of the

initialization region are Sg(j) =1 for jJ>O0.

L. Optimal Merging.

In this section we will examine some of the properties of the
poly-phase merge when it is implemented using read-forward tape units.

(Read-forward tape units can be thought of as queues in which strings

are written at the end of the tape and are read from the beginning.)

Of particular importance is the close relationship with generalized
Fibonacci numbers. These results will be used to construct an optimal
polyphase merge algorithm which has a number of desirable characteristics.

From (2.1) it is easily shown that

n n-1 + 1_

St = S‘b - '+St+l for 2 <n <t , and
n n-1 n-t

St_st +"'+St for‘n>t .

If we define F, = 0 for n< 0, F. =1, and F = Sn for n >1,
n 0 n t

then, from the above relations, we have

(4.1) Fo=F 1+ . . +F 4

for n >1 . Because of the similarity of (4.1) to the defining recurrence
relation for the Fibonacci numbers, we will call these numbers Fn the

t-Fibonacci numbers.

The t-Fibonacci numbers play a central role in the problem of analyzing
the motion of the strings for the read-forward poly-phase merge. Indeed,
suppose that the strings have been dispersed according to the perfect stage
n distribution and that the string positions on each tape are numbered
from zero starting at the front of the tape. If we perform the polyphase
merge starting with stage n , then the number of times m that a string
in position p on one of the tapes will be moved is computed by the

following algorithm;

Algorithm 4.1 Simulate String Motion.

Step 1. et m = 1, k = n-1, and g = p
Step 2. If k = 0 , then terminate.

Step 3. If q < Fk » then go to Step 5.
Step 4. Let q = q-F, and go to Step 6.
Step 5. ILet m = ml .

Step 6. Let k

k-1 and go to Step 2.

This algorithm simply follows the motion of the string as the polyphase

merge 1is performed. In particular, k+tl is the stage number of the

polyphase merge being performed. If g < Fk = ﬁ = s§+l, then the string

will be moved (and m incremented), but its position on the output tape

will be the same as its position on the input tape. 1If g > Fk , then

the string will not be moved but its position will be changed to q-Ek

since Fy strings will have been removed from the tape. Since we are
simulating the poly-phase merge, we always have g < Fk+l = st*l

may also be shown by induction) so that g = 0 when the algorithm

(this

terminates.
Let us define the sequence sl,sz,...,sn 1 as follows: we let

sj = 1 if, when performing Algorithm 4.1, we perform Step 4 with k = j ;

otherwise, we let sbv= 0 . Obviously, the number of times that the string

in position p is moved iS N-S, =S, = .ee =8 From the mechanics

1 "2 n-1 "'
of the algorithm and the fact that it terminates with g = 0 , we find that
n-1

s.F,
3=1 J J

P:
Since a string can not remain on a tape for t consecutive merges, we see

that the sequence s;,...,8 ; cannot contain more than t-1 consecutive

ones.

13

We have shown that p may be represented as a sum of distinct
t-Fibonacci numbers in such a way that at most t-1 consecutive
t-Fibonacci numbers appear in the sum. We will now study some properties
of this type of representation.

We define a t-sequence to be a sequence sl,se,... of zeros and ones
with the properties that only finitely many ones appear and that no t
consecutive ones appear. It will sometimes be convenient to assume that

sm =0 for m <0 . The length L(s) of a t-sequence s is defined to

be the largest m for which Sm = 1 or zero if sm = 0 for all m

If s and s' are t-sequences, then we say that s < s' if for some m
<l'.. — - = atf

we have s < g' (i.e., s =0 and s] =1) and s, = s, for all

n>m. It is clear that this defines a linear ordering of the set of

all t-sequences.

A t-sequence s represents a number F(s) in the sense that

F(s) = 2 s_F
n>1 nn

We have the following theorem concerning such representations:

Theoremé&l. For each p >0 , there exists a unique t-sequence R(p)

for which p = F(R(p)).Furthermore, if p < p', then R(p) < R(p') .

First we require some lemmas:

Lemma 4.1. If s is a t-sequence for which L(s) <n , then F(s) < Fn .

Proof. If L(s) = 0, then F(s) = 0 < F, for all n >0 . Now suppose
that s is a t-sequence of length m >0 and that the result has been
proved for all t-sequences of length less than m . Clearly there must

be a k >0 with m=t+1l < k <m for which S = 0 . We form the'

1k

t—-sequence s' by letting s'J = 3 for j < k and 33 =0 for j >k
If k=0, then F(s') = 0 <F. . If k >0, then L(s') <k <m so
that by our induction hypothesis we have F(s') < Fk . Consequently, if

m <n , then we have

= s! JF, + + . ..
F(s) F()+Z_)sFJEFk Fe +E
>k
+ e = . d
L T T T Sy

Lemma 4.2. If s and s' are t-sequences for which s < s', then
F(s) < F(s") .
Proof. Let m be the largest integer for which sm < sr;l . We then have

Sm = 0 and Sn = 81:1 for n >m . From Lemma 4.1 it follows that

m-1
F(s) = 20 s F,= 2 8,F + 2 5 F
k>l KE xa KE gopn KE
<F + 2 sF < 2 s'F._ . F(s') . a
m k>m Kk k>1 kk

Lemma L4.3. There are precisely Fn t-sequences for which L(s) < n

Proof. We will use induction on n . Clearly the result is true when
n=1. If n>1, then we may partition the set of all t-sequences s
for which L(s) <n into t classes as follows: for each k with

1 <k <t , we define the k-th class to be the set of all such t-sequences
s which have the property that Sy = 1 for n-k < j < n (this condition
is vacuous when k = 1) and Spx = 0 . Assuming that the lemma has been
proved for all n'" < n , we will show that for each k that the k-th
class contains Fn X elements. If n-k < 0 , then we must have 8y = 1

for any s in the k-th class and therefore the k-th class contains

15

Fox = 0 elements, If n-k >0, then for any t-sequence s in the

k-th class, we may construct a t-sequence 8' by letting %l= s. for
J

j <n-k and.ss% = 0 for j > n-k . It is easily seen that this

construction defines a bijection between the k-th class and the set of all

t-sequences s' for which L(s') < n-k . Since the latter set contains
Fly elements, so does the k-th class. Summing over k , we find that
there are exactly Fn_l-+ e Fndt = Fn t-sequences s for which

L(s) <n . 0O

Proof of Theorem U.l. It is clear that the numbers Fn are unbounded.

Therefore, if p > 0 1s given, then we can find an n for which p < Fn .
By Lemma 4.3, there are Fn t-sequences of length less than n which by
Lemma 4.1 are mapped by F into the nonnegative integers less than Fn .
By Lemma 4.2, this mapping is injective and therefore, by pigeonholing,

is surjective. Consequently, we can find a t-sequence R(p) for which

p = P(R(p)) . Uniqueness and the strict monotony of the mapping R both

follow from Lemma 4.2. O

Remarks. Theorem 4.1 1is an extension of a well known theorem of
Zeckendorf which concerns the representation of integers by sums of
Fibonacci numbers. The extension given here is due to Knuth ([SL
Exercise 5.4.2-10) although our proof is somewhat different. Lynch [6]
has generalized this result and has shown how generalized Fibonacci
numbers may be used to control dispersion and merging in the standard
polyphase sort. There is another extension of Zeckendorf's theorem
which contains the others as special cases. Let r(n) be a positive

integer-valued function of n > 1 which has the property that r(n) > 2

16

for infinitely many values of n . We define the r-Fibonacci numbers fn

4 f for n > 1

_b — - = . .
y £, =0 for n<O, £ 1, and £ =£ ,+ n-r(n)

0
Every positive integer is uniquely represented by a sum of r-Fibonccci
numbers fn with distinct subscripts n >1 which has the property that
if fﬁ-l?""fﬁ—r(m) all appear in the sum, then so does %n . A proof
may be constructed along the lines of our proof of Theorem 4.1 although
some care is required when r(n) =1 . When r(n) = n for all n >1
then the above result implies the existence and uniqueness of representations
in the binary number system.

Let D(p) be the number of ones in the t-sequence R(p) . In the
discussion following Algorithm 4.1 we showed that if a string appears in
position p on some tape of the perfect stage n distribution, then the
polyphase merge will move the string exactly n-D(p) times. Therefore,
it is of some interest to determine those values of p for which D(p)
takes a given value.

Let j be a nonnegative integer. We define E(j) to be the smallest

nonnegative integer p for which D(p) = j . The following theorem and

the corollary provide methods of computing E(3j)

Theorem 4.2. E(0) =0 . If j> 0 , then E(j) = E(j-1)+ F;j+k where

k= L(3=1)/(+-1)J .

Proof. We will prove the theorem together with the fact that L(R(E(J))) = J+k
for j >0 by induction on j . Clearly E(0) = 0 . Now suppose that

j > 0 and define s = R(E(j)) , m = L(s) , and p = E(J) -Fh . Clearly

D(P) = j-1 so that p > E(j-1) . If we let k = | (j-1)/(t-1)] , then

we must have m_> j+k for othrrwise s would contain t consecutive ones

or would have less than j ones. It follows that E(j) > E(j-1)+ Fﬁ+k

17

and to prove equality, it is sufficient to show that D(E(j-1)+ Fj+k) =3 .
We assume that everything has been proved for j'< j . If k =0 , then

we clearly have

E(j-1) = Fp+ .t Fj—l

(the sum being zero when j 1) and since j <t we have D(E(j-1)+ Fﬁ

+k) =]
j = Jj+k . If k >0 , then let j' = k(t-1)+1 .

We also observe that L(s)
Clearly J' < j and we have k = | (n-1)/(t-1) s for j' < n < j . From

our induction hypothesis we obtain

l.+
F'+

+
'+k jt+k .

E(-D)+ £y

= E(3'-1) + Ty

However, if we let k' = L (j'-2)/(t-1)], then L(R(E(j'-1))) = j'+k'-1 =
J'*k-2 . Since j-j' <t-1 , it follows that the t-sequence s' = R(E(j'-1))
remains a t-sequence if we let sﬁ = 1 for J'+k < n < j+k . It follows

at once that D(E(j-1)+ F and that L(s) = j+k .This completes

j+k) =]
the proof. C1l

Corollary L4.1. For j >0 and k defined as before we have

Jtk
E(j) = X2 Fo-1
m=kt

the sum having at most t terms.

Proof. The proof is by induction on j . When j = 1 we have k = 0
so the above expression is Fb+Fl-l =1 = E(1) . Now suppose that the

-corollary has been proved for all j' < j , in particular, for j'= k(t-1) .

Since [(n-1)/(%-1)) = k for j'< n < j we have from the theorem

E(j) = E(j') + F, "+l ... +F,j+k .

18

Applying the corollary with j' and k' = | (§'-1)/(t-1)] = k-1 , we

obtain
J '+k! kt-1
E(j') = E Fm-l = Z F—1
m=k't " m=kt-t
= Fkt -1

Since Jj'+k+tl = kt+l , it follows that

E(J)=Fkt+ Ce et Fcl

Finally, we observe that j+k-kt = 1+ (j-1) -k(t-1) < 1+ (t-1) =1t
so the sum contains at most t terms. U

If j >1, then there are infinitely many positive integers p for
which D(p) = j . We have just shown how to find the smallest such p so
now we will show how to find the others. pwe will do this by constructing
an algorithm which computes, given p > 0 , the smallest p' > p for
which D(p') = D(p)

Let s

R(p) and s' = R(p') . We already know that g < gt if

and only if we can find an m for which s =0, gt =3 , and s! = s
m

k k
fork >m . Consequently, to find the smallest p' > p for which

D(p') = D(p) , we must first find a suitable value of m . Clearly the
smaller the value of m that is chosen, the smaller the value of p' .

There are three conditions that m must satisfy: First there is the

condition s = 0 which was given above. Second, we must have s, =1

for some k <m for otherwise we would have D(p') > D(p) . Third, we
can not have Sl = ¢ ¢ Surbel = 1 for otherwise any sequence s'
with Sé =1 and Si _ 8 for k >m will not be a t-sequence.

19

Therefore, let us choose m to be the smallest integer for which
Sp =0, 8, 7=1, and sm+l+ Coeet Sy < t-1 . This choice can
always be made since m = L(s)+l satisfies the requirements. If we

define Pp' by

p' = E(s;+ . ..+8) +F + 2 8§F
m-2 m X >m k'k

then it is easily verified that p' > p and that D(p') = D(p) and that
it is the smallest integer to have these properties.

In order to use the formula above, it is necessary to know the
representation R(p) of p . The following algorithm computes p' by
combining the conversion of p to R(p) (using a technique similar to
Algorithm 4.1) and the search for m . The algorithm is easily implemented
on digital computers since it is fully arithmetic and does not involve

t-sequences.

Algorithm 4.2. Find the smallest p' >Pp for which D(p') = D(p)

Step 1. Let g = p and k = 0 and choose some m for which p < Fm
Step 2. If Fm < q , then go to Step 4.
Step 3. Let m = m-1 . If m = 0 , then go to Step 10; otherwise

go to Step 2.
Steplh. Let Q' = g, m'=m , and k' = k
Step 5. If m <t , then go to Step T.
Step 6. If q < Fm+l - Fm-t—l-l » then go to Step T3 otherwise, let

q =q - (Fm-l-l-Fm-t+l) , m=m-t , and k = ktt-1 and

go to Step 8.

Step 7. Let q = q- m’ mMm=m-1, and k= k+1l .

Step 8. If m = 0 , then go to Step 10.

20

Step 9. If Fm <4 , then go to Step 5; otherwise, *go to Step 3.

Step 10. Terminate with p' = p-q'+F , .+ E(k-k'-1) .

To understand this algorithm, let s = R(p) . If Fm < g in

Step 2, then Sp = 1 and the values of g , m , and k are saved. The

| check that g > Fm+l-Fm-t+l = Fm+ . eet Fm-t+2 determines whether or

not s =. . .= = 1 and s = 0 . Steps 6 and 7 decrement m

~t+1

in such a way as to bypass ineligible values of m , that is, those for

sm—t+2

=1 or s = 0 and s = . . . =28 = 1 . The variable

which s m+1 m2 mHt

mt+1
k contains the number of nonzero values of Sm which have been encountered.
At completion, the last values of g , m , and k saved by Step L enable

us to compute p' .

Example h.1. First we list some values of Fn and E(n) for the case

t =Lk :
n F, E(n) n F E(n)
1 1 9 188 1339
2 2 3 10 361 3921
3 L 11 693 8897
4 8 22 12 1340 18488
5 15 51 13 2582 54126
6 29 97 14 4976 122820
7 46 285 15 9591 255232
8 98 646 16 18489 747209

If we let p = 3913 and let s = R(p) , then it is easily shown that

S={O,l,l,l,o,l,l,o,l,l,l,o,l,o,o,...}
so the representation of p' has the form

s'" = {1,1,0,0,1,1,1,0,1,1,1,0,1,0,0, ...}

.

and it follows that p' = 3917 .

21

We are now in a position to examine the problem of optimizing the
polyphase merge for an arbitrary initial distribution. Suppose that the
dispersion routine writes XppeeerXy strings to units 1, ,t,
respectively, and that the choice is made to perform the polyphase merge
starting with stage n . The only requirement on n is that xi < S?
for each 1 . If this requirement is met, then it is only necessary to
include Sﬁf-}c:.L dummy strings on each tape i in order to obtain the
perfect stage n distribution. e have already observed that the number
of times that a string is moved depends upon its tape position. Therefore,
the manner of placement of the dummy strings has a direct influence on
the volume of information moved.

It is quite obvious how to arrange the dispersed strings and the
dummy strings so as to minimize the volume of information moved. On
each unit i , we place M?OJ of the dispersed strings in the M?OJ
string positions which will be moved once, MQ(Q) strings into the
positions which will be moved twice, and so on, until we exhaust the X
dispersed strings; we then place dummy strings in the remaining Sril-xi
string positions. In this way we insure that the dummy strings are in the
positions which will be moved the most.

One practical difficulty with the above approach is the problem of
placing the dummy strings if the dispersed strings ar; already on the
tapes. With read-forward tape units it is not permissable to write
randomly on a tape. For this reason, we will transform the above approach
into a practical algorithm in which dummy strings do not explicitly appear.

If S?(j-l) <x, < S?(j) , then, with the above scheme, there will
be some j movement string positions which contain dispersed strings and

others which contain dumy strings. We have not said how they are to be

22

arranged. We propose placing all of the j movement dispersed strings in
front of all of the j movement dummy strings on each tape. It does
however have the important property that the pattern is preserved as the
polyphase merge is performed. It is not difficult to see that any time
during the operation of the merge, any k movement strings of nonzero
length will be in front of any k movement dummy strings on the sdme tape.

Another important consequence of this choice is that we are able to
calculate the positions of the j movement dispersed strings. Since these

, positions p have the property that j = n-D(p) , we see that the first
of these positions is E(n-j) and that the remaining positions are
calculated by repeated application of Algorithm 4.2. Since the pattern
is preserved, the same observation holds throughout the polyphase merge.

The algorithm which we will present is controlled by the two arrays
C[i,j] and P[§] (0 < i <t , 1 < 3j <n) . c[i,j] will contain the
number of strings on tape i which will be moved j times and P[7j]
contains the next j movement position on the input tapes. It is also
convenient to have arrays for the numbers Fm and E(m) , but we will
not mention these explicitly.

The inputs to the algorithm are the numbers Xpp oo ¥y of dispersed
strings on tape units 1l,...,t and the starting stage number n of the
polyphase merge to be performed. (The next three sections of this paper
are devoted to the proper choice of these numbers.) 1In order to facilitate
implementation, we will explicitly mention the tape rewind operations

required.

2>

Algorithm 4.3

Step 1.

Step 2.

Step 3.

step L.

Step 5.

Step 6.

Step T.

Step 8.

Optimal Read-Forward Polyphase Merge.

[Initialization.] Let C[1,j].=M(§) for 1<J<n
and 1 <i<t . Let C[0,j] =0 for 1 <j<n . Let
m=n and u =0 . Rewind all of the tapes.

'"[Initialize C.] For each i = l,.ssyt find the smallest
j for which Xy <cC[i,1]+...+4C[1,j] ; let
C[1,3] = %, -C[4,1] . ..- C[4,3-1] and let C[i,k] = 0 for
J<k<n.

[Test for termination.] If m >0, then go to Step 4.
Otherwise, the sort is finished. Rewind all of the tapes.
The sorted records are on tape u' .

[Initialize for stage m.] For Jj = l,...,m let
P[j] = E(m-j) if C[i,j] > 0 for some i ; otherwise,
let P[j] = Fm-l'

[Test for the end of a merge,] Find the value of j
which minimizes P[j] (1 < j <m) . If P[j] > Foq 7
then go to Step 9.

[Merge some strings.] Merge one string from each unit
i # u for which C[4,J] >0 and write the resulting
string to unit u .

[Update C .] If m >1 , then increment C[uw,j~1] by one.
For each i # u for which C[4,j] >0, decrement C[4,]]
by one. If each of these decrements results in a value
of zero, then let P[j] = F1 and go to Step 5.

[Update Q .] Using Algorithm k.2, find the smallest

p > P[] for which D(p) = D(P[§]) . Let P[j]l=pand

go to Step 5.

2k

Step 9. [End of a merge.] Let m =m-1 , u'=1u , and
u=u+lmod T . Rewind tapes u and u' and go to

Step 3.

In view of the discussion, this algorithm is reasonably straightforward.
However, we will comment on a few points. The computations required in
Step 1 can be performed without any additional storage by careful use of
the recurrence relations (3.1). Our use of Fm-l in Steps 4, 5, and 7
is accounted for by the fact that Fh 1” éi_l = ST which is the number
of strings produced by the Stage m merge; consequently Fm—l is the first
position which will not be used for this merge.

Although the computations required by the algorithm are formidable,
they do not really require much time. The bulk of the computation is
performed in Steps 5, T, and 8 which are performed once for each string
that is output. Since a unit string will represent a large fraction of
the storage utilized by the sort, it is clear the time required will be
insignificant when compared with the time required for merging.

The storage requirements are not much larger than for other polyphase
merge algorithms. The only extra storage which is not required by other
algorithms is the storage for the arrays C and P and, possibly, the
arrays containing the numbers E (m) and Fh for a suitable range of m .
We remark that the additional storage required for these arrays when
merging 100000 strings, using ten tapes and the dispersion algorithm we

will describe, should be less than four hundred locations.

Remarks. Shell [8] has described an optimum polyphase sort which is
somewhat different from ours. He describes a method of generating the

D(0),D(1),D(2),.. . directly and uses an array based on this sequence

25

to control the placement of the strings and the assumed placement of the
dummy strings. Unfortunately, this array becomes prohibitively large
for large applications. An account of Shell's work also appears in [5]

(Section 5.k4.2).

26

5. The Volume Function.

Let us suppose that we have x < s® unit strings which we wish to

merge with the stage n polyphase merge. Obviously, in order to

minimize the volume, we should place the unit strings into the positions

which will be moved the least and the dummy strings into the positions

which will be moved the most. Thus, if Sn(j) < x < Sn(j+l) , then unit

strings should be placed in all of the s"(j) positions which will be

moved j or fewer times and ﬁi}(-SnCﬂ of the j+l movement positions
" When this is done, the volume of information which will be moved by the

merge is found to be

2% kM(K) + (3+1) (x - 87(3))

k=1

We will call the value of this expression the wolume function and denote

it by Vn(x) . The expression may be simplified by observing that

J J
(#1%G) - T xkMMk) = D (§-kr1)M(k)
k=1 k=1

We may now write

(5.1) VHx) = (31)x - 6°(3)

where S7(3) < x < SM(3+1) .

In Section 4, we looked at the similar problem of optimizing the

2 stage n polyphase merge when it is known that tapes 1,...,%t contain

Pyt Aus

JL_L,.,Q @’ dispersed strings, respectively. By similar reasoning, the

volume of information moved in this case 1is

Vo(xy) + een v;*(xt)

where each V“;(xi) represents the contribution of tape i to the volume.

This contribution is given by
s ol
(5:2) vi(x) = (3+D)x, -G5(3,)

where j, 1is chosen to satisfy S?(,ji) <x < Sl.ll(ji+l) .

Obviously we must have

V'n(xl+...+x) < v‘l’(xl)+ ‘ mmmmmmmm .

t

We are interested in those distributions XppeensXy for which we have

equality. Such a distribution is said to be optimal for stage n .

Theorem 5.1. A distribution X)yee0% 1s optimal for stage n if and

only if we can find a J such that Sxil(j) <% < S?(jﬂ) for each i

Proof. If the condition is satisfied, then optimality for stage n
follows at once from formulas (5.1) and (5.2) and the fact that
¢(3) = &5+ | 5 £

Conversely, suppose that %1, .+ w¥X, does not satisfy the condition.
We can then find a j and two indices a and b such that x, < sg(j)
and x> S{:(J) . If we define the distribution X}s+ees Xy DY x; = x+1,

vl
xp =x-l, and x} = x; for i # &b , then it is clear that

Va(xl) -Va(x) < § and

Vo(x) -Vp(x)) < g+l .

28

It follows that

V) V() < V() e V()
and therefore Xl’“. QI‘ can not be optimal for stage n . O

Example 5.1. We let t = % as in our other examples and x = 500

From the table in Example 2.1, we see that the smallest value of n for
which x < 8% is 9 . Let us evaluate vV}(x) for this value of n
Since Sn(S) = 338 <x < 534 = Sn(6), we may apply formula (5.1) with

j = 5 to obtain
Vi(x) = (3#+1)x-6"(3) = 6°500-L478= 2522.

This volume is the best possible volume obtainable with the stage 9 merge
no matter how the strings are dispersed. If we let n = 10 , then a
similar calculation shows that V-(x) = 2448 which illustrates how the
choice of a larger stage number than the minimum may improve the
performance of the polyphase sort. We will discuss this subject in
Section 6.

We will conclude this section with two theorems concerning the volume

function which will be required later.
Theorem 5.2. If x< 8%, then Vn+l(x) -Vn(x) < x

Proof. We may assume that x >0 . Let j and k be the unique integers
for which

s(5) < x < S™3*1) and S™HE) < x < s ()

ntl, .
From the recurrence relation for t-arrays, we see that Sn(jHD <S (j+2)

so that

29

4

) < x < 8% 1) < S H(a)
which implies that k < j#1 . From the recurrence relation, we also have
G (k-1) < Gml(k) . We may now write

vV (x) - (x)

(e 1)x - ™) - (3+L)x+ G(J)

(k-9 x+ a(3) -a™

k)
< (k-9)x+ G(J) -a"(k-1)

< (k=3) x+ (§-kr1)s7(3)

Theorem 3.3. Suppose that 0 <x <. . . <x and that x, < S;._l for

each i . If xi, o .,X1 1s a permutation of Xy Xy which has the

property that xi < S? for each i, then we have

V;i(xl) + et Vg(xt) < V‘?_(xi) + et V‘E(xé)

Proof. First we will prove the result for a simple interchange. Suppose
n n
that 1 < a <b <% and that x <8 , x <5, , and 0<x <x . If

X, SY<x%, then let j and j' be the unique integers for which
n,. . n,. .
S,3) < y < Sh(+1) and §(3") ¥ < Sp(3+D) .
Since S:(k) < S.I;(k) for all k , it is clear that j > j' and therefore

VO(y+l) - Vp(y) = 341 < #1 = V(D) -VR(y) -

"By summing over y , we obtain

V(%) = V(%) < Vo(x) - Vo(x,)
which may be rewritten as
(k) + Vp(x) S Valx) + V(%)

30

The general result is proved by permuting the numbers xi,..qx%

into Xl,. .qxt by a series of interchanges which successively place the

proper values into positions 1,...,t and by applying the above result

at each step. It is clear that we only change the numbers Vg, and T,
' t4 . n

. n
never place a number which exceeds Si into any position i . g

31

6.

Optimal Dispersion.

In much of the literature on polyphase sorting, it is assumed that
the best starting stage number when merging x strings is the smallest
n for which x < s® . This method generally gives nice looking results

when the usual polyphase merge algorithms are used. However, when an

algorithm such as Algorithm k4.3 or the optimum polyphase sort of Shell [8]

is employed, it is found that better results may be obtained by choosing

larger values of n . 1In this section we will investigate the problem

of finding the value of n which minimizes V(x) .

A good starting point is the following lemma on t-arrays:

Lemma 6.1. Let A denote one of the t-arrays M , S, or G . Let

j and d be positive integers and let n(j,d) denote the smallest
nd .

integer n >1 for which An(;j) >A" " (j) , then the following. are true:

(a) Tf n' > n(3,d) , then A" (3) > A" (y)
(b) If §'> 3, then n(3*,d) > n(3,d)
Proof. It is easily verified that
(6.1) &7%0) = ... = 420) > 0 = al(0) = A%(0) =

and that for j >1,
(6.2) 0 < A-(3 =... = A2(3) < &AT(Q)

Tt is clear that n(j,d) always exists since A%(j) is zero for n

sufficiently large. From (6.1) it follows that
A > 22 > £2) > 84) >

so that n(1,1) = 1 and (a) is true for n(1,1) .
We will now show that if (a) is true for n(J,1) , then it is true

for n(j,d) for j > 1 and for n(j+1,1) . Let d > 1 be given and

32

. m+d .
let m > 1-t be the smallest such integer for which A"(j) > A (J)
; . . . nt+d .
It is clear that m+d > n(Jj,1) . We will show that A’(j) > A (J)
for n >m . This is certainly true if n > n(j,1) . Also, if

m < n < n(j,1) , then we have
o L md, . nrd, .
AT(3) > A9 > A () > AT

Since n(j,d) >m , we see that (a) is true for n(j,d) . From the

recurrence relation for t-arrays, we have
ntl,. n,. 0, n-t, .
ATT(3L) -AT(3FL) = AT -ATT(D)

Consequently, if we let d = 1t in the above argument, we see that we may
choose n(j+l,1) = m+t and that (a) is true for this choice. The validity
of (a) now follows by induction.

To prove (b), let j >1 and let n = n(j+1l,d) . From the recurrence

relation for t-arrays, we have

t
0 > AT - A(p) = B @R LK)

-k, . ntd-k
(3) > A

so that A" (3) for some k with 1 <k <t . If

n-k > 1, then n-k > n(j,d) so that n > n(j,d) . If n-k < 0 , then
we must have mtd-k > n(j,1l) so that

ntd-k

AYEG5) > oA Fdi5)

At > (3) > A%

and therefore' n(j,d) = 1< n . We have therefore shown that

n(j+1,d) > n(j,d) and (b) follows. 0

" The lemma is particularly useful in the following form:

33

Corollary 6.1. Let A denote one of the t-arrays M, S, or G, then
the following are true:
(8) T A%(3) < A" (3) for some l1<n<n'and j>1, then
A3y <A™ (31) for all §' >3 .

]
(b) 1f An(J) > A" (3) for some 1 <n < n' and j >1, then
1
A%3t) > A" (') for all 3' with 1< 3' < 5.

Proof. Toprove (a) let d = n'-n . Certainly n < n(§,d) so it
follows that n < n(j',d) for all J'> j and the result follows from
the definition of n(j',d) . This also proves (b) since (b) is the

contrapositive of (a). O

]
Theorem 6.1. If n <n' and Vn(x) > v (x) for some x < gt , then
t
there exists a j <n for which G"(j) < G® (j) . Furthermore, if

x <y <s", then V(y) > () .

Proof. Clearly x >0 . Let j and k be the unique integers for

which

n' n'
$P(3) <x < s%(y+1) and 8" (W) < x < 8 (1)
We observe that j < mn . By assumption

(#1)x - PF) = V) > V (®) = (e)x -6 (k)
which reduces to

) < & B+ (-k)x

n' . .
In order to prove that G(j) < G (J) we will show that

n,.. n'
. - X . .
(J'k‘)XSG (3)-¢").If j = k, then there is nothing to prove.

If 7 >k, then we have

Me

(3-K)x < s (1) = & (1) - (x) .

i=ktl

3k

Similarly, if j < k , then

k
<

(-K)x = - (k=-9)x < - = s(@) = ¢ (G) -6" (x .
i=j+l

Now suppose that there is a smallest y with x <y < Sn for
1
which V- (y) g_Vn (y) . Let j' and k' be the unique integers for

which

1 t
s(3") <y < sP(3'+1) and S" (k') <y < 8% (k'+1)
L4
Since Vi(y-1) > e (y-1) , we find that

1 = Vi(y) - Vy-l) < N (y) - el (y-1) = k'+1

from which it follows that j' < k' . On the other hand, since
] . n nl
Gn(j) < g? (3) , we can find an m < j for which § (m) < 8" (m) .
1
By (a) of Corollary 6.1, we see that S (m') < §" (m') for all m' >m .

Since j'+1 > j > m , it follows that
1 t
y < 8731 < 8" (3+1) < s (R <

which is impossible. This completes the proof. O

corollary 6.2. Let N(x) be the smallest integer n which minimizes

Vn(X) , then N(x) is an increasing function of x

Proof. Suppose that N(x) > N(x+l) for some x and let a = N(x) and
b = N(x+1) . Since b <a, we must have Va(x) < Vb(x) . Also, since

b
x+l < P < & , it follows from Theorem 6.1 that V> (x+1) < V (x+1) which

implies that N(x+1) # b . O

Remarks. Most of-these results were first proved by Knuth ([5], Exercise
5.4.2-14), however, our proof of Theorem 6.1 is somewhat different. Shell

(8] has observed Corollary 6.2 empirically.

35

In the remainder of this section, we will solve the problem of
determining the range of values of x for which N(x) takes a given
value. We will begin by examining some of the more subtle properties

of the numbers Gn(;j) .

Lemma 6.2. For each t >2 , there exists a number n, with the property
n,. n+l, . A . . .
that G (j) < G~ "(3) for some j with 1< j <n , if and only if

n>n . Inparticular n_ = 8, n3=5,n,+=ll—, and nt=5 for t>5.

2

n,. . . .
Proof. If G (J) < Gml(j) for some j with 1 < j <n , then we can

find a J' < j for which Sn(,j') < Sm.l(j’) . By (a) of Corollary 6.1
we find that Sn(k) < Sn+l(k) for k > j > J' and consequently
Gn(n-l) < Gm-l(n-l) . It follows at once that such a j exists if and
only if G(n-1) < Gn+l(n-l) . Furthermore, if this inequality holds
for n , it holds for ntl since, by (a) of Lemma 6.1, we have

Gn-k (n-l) < Gn-k+1l.

(n-1) for k = 1,...,t and it follows from the
recurrence relation for t-arrays that

™ 2m) -™tm) = 1) - w1 > o

The following table will serve to verify the values given for n

t, .
— +
. oa (n,-2) Gnt(nt-z) Gnt(nt-l) Gntl(nt-l)
58 56 109 1L
3 20 20 48 56
4 11 1 32 40
>5 t-1 t-2 bt -5 5t=9

Lema 6.3 For each n > ng » let jn denote the smallest integer j

for which G"(j) < Gn+l(j) . We then have

in S 91 S 9gtt S dn

36

Proof. First we will show that ’jn < 'jn+l . Assume that for some

n+l n+2(k)

k < jn we have G k) <G . We may write

/

) -dPx) = Px-1) - Y (x-1)
= (@ (ee1) - @ (1))
£ (AP(x-1) - ¢ Hx-1))

. (@) - @ (x-1))

nt+2 n+l .
The first parenthesized term is equal to G (k) =G (k) and is therefore
positive. The second term is nonnegative since k < jn . Since

Gn+l(k) < Gn+2 (k) it follows from the recurrence relation for t-arrays

ntl-m

that G (k-1) < g*re™

(k-1) for some m with 1 < m <t . From (a)

-4+
o & l(k-l) so the last

n-t
of Lemma 6.1 it follows that G (k-1) <
parenthesized term is nonnegative. We have therefore shown that
n n+l : . S . .
¢ (k) < ¢ ~(x) which contradicts the minimality of 3, -

Since Gn(,jn) < GMl(Jn) , we may show as in the proof of Lemma 6.2

ml, . n2,
that G (Jn+l) <@ (Jn+l) and therefore Jpe1 < Jn+l . Finally,

n+t+l) . .
since Gn+t(jn+t) <G (Jn+t) , it follows that
mt-k . mtt+l-k .
G (Jn+t-l) <@ (’Jmt'l) for some k with 1<k <t
j j i - Thi 1 h £. J
Consequently, In < Intt-k < Ipet 1. is completes the proo

Lemma 6.4. Define the numbers Nt by N2 =19 , I\I5 = 6 , and N, =

for t > 4.If n >N, and j >0 , then

oy

2¢"(3) < ¢™(3+1) + T H(3-1)

Proof. We will show that the above inequality holds for all but finitely
many values of n >1 and j >0 . The condition on n is sufficient

to exclude these exceptions. We define the t-array D by

n,. n ntl, .
D(J) = G (J+1)+G (3-1) -267(3)
It is not difficult to verify that the nonzero elements of the

initialization region for D are
0 .
D (3) = (t-1)j -t for j >1 and
p?(-1) = 1 for 1-t <n <O .

We observe that Do(l) = -1 is the only negative element for the
initialization region. Tables 6.1(a), 6.1(b), and 6.1(¢) each display

a portion of the t-array D for t >4 , t =3, and t = 2 , respectively.
By inspecting these tables, it is clear that there are no negative values
of Dn(,j) with n >0 other than those displayed. Since the negative
entries only appear in the columns for which n < N it follows that

Dn(,j). > 0 when n>N_ . O

Theorem 6.2. If n >N, and if we define

c =&y -¢™)

then the following are true:

(8) 8%(3) < e, < s(30)

n

() 8™,

n+l, |
-l)scn<s (Jn) 14

() V) = Ve
(@) Vep) > Ve) ife <8t

(e) e, < 1

38

n ntl,
Proof. From the definition of j ~we know that G (jn-l) > G (Jn-l) .

We therefore have ’

s7(3n) =63, - €, < (5 - @™ g 1)

1,.
ey < G -6 A1) = sy

)

n

From Lemma 6.4

e, = @) - < G -dRy) = SR

Also from Lemma 6.4,
1,. nmrl, . ntl, . n, . n+l, .
ST = @™ - @) < o6 (3p) -6 (D =c .

This completes the proof of (a) and (b).

From (a) and (b) we have

Vi(e,) = (30, - 65,

3G (3g) = (3D (5 -1)

I S N DR i)

which is (c). To prove (d) we first observe that from (a) and (b) we
1 1 . . . n
have Vo (e ;1) - (c,) = 3, and Vn(cn+l) -v“(cn) > § 1l if e < 8
From (c) it follows that
1 1 —
Vn(cn+l) - (e 1) > 1+ Vn(cn) - (e¢p =1
- By Lemma 6.3 we have iy < jml so by (a) and (b)

n+l nml, .
ey < 8 73 <87 S ¢

n ntl
which is (e). This completes the proof. [
Corollary 6.2. c,v®asn - .
Proof. This follows from (e) and the fact that ¢, is an integer. O

39

For each t >2 , we define the sequence Ll,Lg,... as follows:

_— n _—
If t>3, then we let L =8 for n <N, and L, = ¢ for n >N;.

If t =2, then we let Ln = g% for n <15 ’Ll6 = 2573 , Ll"(= 395k ,

Lig = 6527 , and L =c, forn >N, =19 .

Theorem 6.3. The sequence LysLyy+.. 1is strictly increasing and has

the property that Vel (x) > V'(x) if and only if x < L -

Proof. First we will show that the sequence is strictly increasing. We

- already know that s < 8™ for all n >1 and that ¢ < ¢

n ntl for

all n >N, . These observations leave us with only a few special cases
to consider.
When t >3 , we must show that when n = N,-1 , we have

n .
s o= Ln < Lm-l =Cq - When t > 5 we may show from the appropriate
t-arrays that 82 = 2t-1 and c5 = 3t-2 so that Ln < 1'..1,1_‘_:L since

t
For t =3, wehaveNt=6andL =S5=51<52=c6=L6.Forthe

N =5.Whent=4,wehaveNt=hand L3=S3=13<22=ch'=1'h‘

5
remaining special case t = 2 , we have Ll5 = S15 = 1597 < 2573 = Ll6 s
Lig < L17 < L;g » and Lig = 6527 < 10488 = ¢ = ng .

To prove the second part of the theorem, it is sufficient, in view
of Theorem 6.1, to show that V’n+1(Ln) > Vn(Ln) for all n >1 and that
1 n
o (Ln+l) < V‘n(L-n+l) whenever L < § . If n <mn.,
a(3) > Gn+l(J) for all j with 0 < j <n , so by Theorem 6.1, we have

then

le(Ln) _>_Vn(Ln) - We also note that L = s® for n < n. . When

n>N, then everything follows from Theorem 6.2. Since n, = N, for

t
t > L4, this proves the result for t >4 . To extend the result to the
case t = 3, we observe that in this case we have L5 - 5 and
V5(L5) - 107 < 108 = v6(L5)

40

When t = 2 , there are a number of special cases to consider. First
we note that Ln = g" for 8 <n <_15 . By direct computation, we may

verify that

V8(L8) = 331 < 343 = V(ig),

V9(L9) 60 < 614 = Vlo(L9) ,

VlO(LlO) = 1075 < 1092 = Vu(Llo))

VL) = 1908 < 1935 = Vo(Lyg)
vR(L,,) - 3360 < 3396 — V(L)
v2(Ly5) = 5878 < 5901 = v”‘(LB) ,
voy) = 10225 < 10200 = V()
vlS(Lls) - 17700 < 17726 = Vl6(L15) ,
VoL,) - 303k < 30343 = V(1) ,
7Ly, - k9% = v,

V18(L18) = 85819 < 85820 = Vl9(Ll8) :

We also have
7oL 1) = 30357 > 30356 = vH(1, 1)
7 (1y+1)

vl8(L18+l)

1

48965 > 48963 = v18(1,17+1) ,

85835 > 85834 = Vl9(L18+l))

which completes the proof of the theorem. O

Two consequences of this theorem are easily proved.

Corollary 6.3. N(x) is the smallest integer n for which x < Ln .

41

Coronary 6.4. £ V(x) < V‘Ml(x) » then Vn'(x) < V‘n'+l(x) for all

n'Zn.

Remark. Corollary 6.4 answers in the affirmative a conjecture of Knuth

([5], Exercise 5.k.2-15).

Table 6.2 provides the values ofu L_ for t = 2,...,7 and
n=1...,19 . Since such a table is easily prepared, we are able to

provide a very simple dispersion algorithm.

Algorithm 6.1. Optimal Polyphase Sort for x Strings.

Step 1. Find the smallest n for which x <L .

Step 2. Choose a j for which 8§%(j) < x < sP(g+1) .

Step 3. Find integers XppeeesXy for which x = Xt ety and
S7(3) < x, < SY(g+1l) for i = 1,...,t .
i - "i-="1

Step 4. For each 1 = 1,...,t write X, strings to tape 1

Step 5. Use Algorithm 4.3 to perform the polyphase merge on the

distribution XppeeesXy starting at stage n .

Remarks. Since Steps 2 and 3 of the above algorithm and Steps 1 and 2 of
Algorithm 4.3 both require tables of the numbers Mx.;(j) » some of the operations
of these steps can be combined. The above algorithm should be compared with
Shell's optimum dispersion algorithm [8] which is directed by a table of
numbers closely related to the numbers L - The functions inl(x) share

many of the properties of the function vn(x) and most of the results of

this section can be carried over to these functions. Unfortunately, the
analogues of the numbers i, are in general different for each i ;

otherwise the next section would not have to have been written.

ko

7. Blind Dispersion.

In practice, it is very difficult to predict the number of strings
that a dispersion routine will provide. However, Algorithm 6 .1 requires
that this number be known before the strings are written to the tapes.

This brings us to the problem of blind dispersion, that is, dispersion

without knowing the number of strings in advance.
We begin by observing that no solution to the blind dispersion
problem will in general be optimal. Indeed, solutions which require
rearranging the contents of the tapes will require additional string
motion which will result in a solution which is at best optimal.
Therefore, let us consider a solution in which the strings stay on the
tapes once they are written. Let us suppose that t = 2 and that we have
dispersed st0 — strings optimally. Since N(14L4) = 10 and
Vlo(lhh) = 1075 <1088 = Vll(lhh) , it is clear that the only optimal
distribution is for stage 10 when there are S&p = 55 strings on tape
one and Séo = 89 strings on tape two. Let us see what happens when we
add another string. Since N(145) = 11 and Vll(145) = 1100 < 1143 = Vlz(lhs) ,
the best distribution of 145 strings is one which is optimal for stage 11.

i3 96 = 55 Zé)-l , wWe see

However, since éf > 52 = Sil(8)+l and Sél
that there is no way of arriving at a distribution which is optimal for
stage 11 by adding one string to our original distribution. This
pathology was first discovered by D. E. Knuth.

It is not difficult to see that any blind dispersion technique which
rearranges the contents of the tapes can be transformed into an equivalent

(or perhaps better) method in which the rearranging is performed after all

of the strings have been dispersed. The effectiveness of such a technique

43

depends on how close the distribution, prior to rearranging, is to an
optimal distribution. We remark that one kind of rearrangement which
incurs no extra cost is that of renumbering the tape units. Theorem %.3
shows that a monotone distribution provides the best renumbering possible.
However, since the distributions which we will consider will be monotone
or can be made monotone, we will have no use for this technique.

In the remainder of this section, we will construct a nearly optimal
blind dispersion technique which requires no tape rearrangement. This
dispersion technique can be used by itself or in conjunction with some
rearrangement algorithm.

Supposethat n‘zl% . We define m(n) to be the largest integer
m for which jm =jn . From Lemma 6.3 we see that m(n) < ntt and

that j = jn for n <m <m(n) . For i = 1,...,4 we define

B = min{sr;l(jn) | n < m < m(n)+1}

i <
and
B" =B;+. LB

Theorem 7.1. For n > N, we have

(a) B} < BTt for 1<i<t ;

(b) B] < By < < B ;

(c) Si(g -1) < B’.: < Sl;(Jn) for 1<i<t ;

(a) (a l)<Bi<s (J) for 1<1i<t ;

(e) B® < c < B
Remark. Statements (c) and (d) imply that the distribution Bj,. . B

is optimal for both stage n and stage ntl .

44

Before we prove the theorem we require a lemma:
Lemma 7.1. If n > Nt , then for i = 1,...,t we have
ST < STy
Proof. We will begin by showing that for n > 1 we have
(7.1) S2(3) =857(3-1) > ¢*(3-1) - ¢ (50

with only finitely many exceptions. We define the t-arrays A, for

i = l,..-,t al’ld D by

23 = S5 - ST
p(3) = G%(3-1) -G (3-1)

It is not difficult to verify that the nonzero elements of the initialization

regions for the t-arrays Ay - cohy are

A : = 1 for 1<i<t and J >0
) p
Ai-t-l() = -1 for 1< i<t and J>1 ,
Ag(j) = -1 for 1<i<t and J >2, and
0 _

AJ(0) =2;(1) =1 .

Also, the nonzero elements of the initialization region for the t-array D
are

p°(3) =t -(t-1)j for j >1

Tables 7.1(a) to 7.1(g) each display portions of the t-arrays A;-D for

various ranges of t and i . By inspection, we see that the only

negative entries outside of the initialization region are those displayed.

Except in the case t =i = 2 , we see that (7.1) holds for all n > Nt

45

and i = 1,...,t . From the definition of jn , we see that

ntl,,
(3

¢M(3,-1) > ¢™H(3_-1) and therefore by (7.1) we have Sj(j) > sf{*l(jn-l) .

In the exceptional case we have n = N = 15 so we may

4 J19
verify directly that §;(15) = 6050 > 5270 = 52(1) . This completes

= 19 and

the proof. O

Proof. of Theorem 7.1. If 3§

n = dp1 + then m(n) = m(n+l) so that (a)

is obvious. If this is not the case, then by Lemma 6.3, we must have

= Jj,+1 so that S (J) Also, since m(nl) <nm¥t ,

Inel (3peq) -

ntl, .
we see that §, l(a) < Sk(J) for m2 < k_ < m(n+l)+l ; this follows
i n i‘ntl
from the fact that S (j) is a term of the t-sum which computes
k, . n n+l nml .
Si(']n+1) . We have therefore shown that By < 8§ (Jn) < By =, which
is (a). Statement (b) follows at once from the fact that
S:(3) <. .. < 8(3) for all n >1 and j >1
To prove (¢) and (d) we first observe that the definition of Br.l1
implies that B < Si(;]) and B <S (j) It is also clear that
Slil(jn-l) < S?(,jn) and S (;] -1) < S (,j) From Lemma 7.1, we have
ml,. n,. . . .
(Jn-l) < si(gn) . Finally, by reasoning similar to that used in the
above paragraph, we have Sx;(:jn-l) < Sl;(,jn) for ml < k < m(ml) and
nl, . k, . .
s; T30 < Si(an) for m2 < k <m(n)+l if m(n) > n . From these
inequalities, it follows at once that Sx;(jn-l) < Bril and that
ntl, . n .
S, (Jn-l) < Bi which completes the proof of (c) and (d).

By (c) we have B < Sn(jn) < e, - If we let n' = m(n)+l , then it

is clear that jn, = ;Jn+1 , jn' 1= 'jn , and n' < mt . Therefore, by

46

(a) and (c) we have

1]
c. < ¢ n (jn,-l) < g" < Bn+t

n', .
n S %y <8 (Jn'-l) = 8

which establishes (e) and completes the proof of the theorem. g

From the theorem, two important properties of the distributions

Bi,. .qBE are apparent. First, we may arrive at the distribution
B§+l,,w.,B§+l by simply adding strings to the distribution Bg,. '"BE'

Second, if we are dispersing for stage n and we reach the distribution
Bg, . ..,Bz , then we may begin dispersing for stage m+l since the
distribution is optimal for both stages. Clearly we can base a blind
dispersion algorithm on these properties of the numbers B? . However,
since we will be making several refinements, it is of value to examine

the general structure of such an algorithm.

We define a quota scheme for polyphase dispersion to be a family of

nonnegative integers Qn,Qi,. .qQE, n=1,2,... which have the following

properties fom >1 and 1<i<t:

n n n ntl n ntl
Qn < Qg + . . .+ Qg , and Qn - ® as n = ®

Following is the dispersion algorithm which is directed by the quota
scheme. The counters Xy oo oy contain the numbers of strings which have
been'written to tapes 1l,...,4 . Upon completion, the values of

gl,,..,xt and n are the parameters for initializing Algorithm 4. 3.

47

e

Algorithm 7.1 Quota-Directed Polyphase Dispersion,

Step 1. Let n =1 and X =¥y = 0 for 1 = Lyeeeyt .

Step 2. If there are no more strings to disperse, then terminate
the algorithm.

Step 3. If Xy oot xy =Q,n » then let n = ntl and
Vi = v vt = 0 and repeat this step.

Step 4. Choose some i for which X <yi . If this choice can
not be made, then go to Step 6.

Step 9. Write a string to tape unit i , let X = xi+l , and go
to Step 2.

Step 6. Find the smallest j for which x; < S?(j) for some i

Let y, = min(Q],S;(J)) for i = 1, -.»t . Go to Step k.

n
Informally, this algorithm disperses for stage n keeping x, < Ql

for each i until Xt Lt x = Q" and then begins dispersing for

t
stage ml . When the algorithm is dispersing for stage n , the strings
are written in such a way as to minimize the growth of Vli(xl)+ .ot V:(xt) .

Since the choice of i made in Step 4 is arbitrary, the distribution
Xq5 0%, mMay be uncertain when the algorithm switches from stage n to
stage mtl . TFor this reason, the first value of j chosen for stage
ml by Step 6may vary thereby causing the volume of the sort to vary.
This uncertainty disappears if Qn = Q2+ . ..+<;),i_'1 or if it is known that
when we switch from stage n to stage ml , then the distribution is
optimal for stage mtl . Indeed, in the first case the distribution is
completely known and in the second case we know that j is the smallest
integer for which x,+ . ..+x < Sml(,j) . The quota scheme which we

1 t

will consider has one or the other of these properties for each n .

48

When the quota scheme has these properties, then Algorithm 7.1 may
be transformed into a simpler table-directed algorithm. The tables have
the entries r}f},{q ’é{l""’c}f’t for k > 1 and are constructed as follows:
We initialize the counter k to zero and perform Algorithm 7.1 with an

unlimited supply of strings; after each time that Step 6 is performed,

we increment k by one and let % =n, qk = Qn » and q? = yi for
each i . The simplified algorithm follows:
Algorithm 7.2 Simplified Quota-Directed Polyphase Dispersion.

Step 1. Let k =1 and R 0 .

Step 2. If there are no more strings to disperse, then terminate

the algorithm.
Step 3. If xl+ ...+x$ = qk, then let k = ktl
Step 4. Choose some i for which Xi < qf . If this choice can

not be made, then let k = ktl and go to Step 3.
Step 5. Write a string to unit i , let x5 = Xi+l , and go to

Step 2.

At termination, the parameters for the polyphase merge algorithm are
nk and Xpp Xy o Since the required tables may be prepared in advance,
this algorithm provides a very compact method of dispersing for the
polyphase sort. For most applications, the maximum value of k should

never exceed forty.

We will now present the rules for constructing the quota scheme for

the-blind polyphase dispersion algorithm.

k9

1. If n ZNt and if B;l < Sg(jn) for some i1 , then we let

Q = B and QI; = B? for die= 1,...,% .

. n
2. If n ->-Nt and if B:i. = Sg(jn) for each i , then we let

¢ S « DR ntl, . ntl
Q; = min(8;(3#1) , 8y (3,) , By)

for 1 = 1,...,% and we let

Q" = min(e , Q1+ . .-+Qp) .

3. Iftgﬁand15n<Nt,thenwe let

Qn = Sn al’ld Q? = Sr-; for i = l,o-o,t .
L. If t=2 and n <N =19 then we let
Q,n = g" and Q?_ = S? for n <15 and i = 1,...,%

and, in addition, we let

¥ _ng - o513, QT - ozes L @ - Ly - eser
6
a2® - 52%1s) = 986 , a2f - s2f(15) - 1596 ,

]

17 18 17 17
Qy 8] (13) 1385 ,Q, =S, (14) - 2462 |

a}® - 5816 _ 2567, o - sPa6) - mss .

. To show that these rules define a quota scheme, we will being by showing

that for n > N’c , we have

n nt+l

n n n'-l i S Bi for i = l,olo,t.

B" <" < B and By < Q

These relations are obvious when Rule 1 is applied. If Rule 2 is applied

instead, we have, from Theorems 6.2 and 7.1,

50

n _ n,. n n+l .

B, = Si(;)n) < Q < B for i = 1,...,% and
n _.n n n n n+l

B _S(jn)_<_Q SQt .. . +Q <B

For t >3, we must show that when n = N.-1, that we have s” < eri-l

n 1l . CL .
and Si SQi for i = 1l,...yt . Clearly, it is sufficient to show

that S?:S BI.; for each 1 . For t = 3 , we have N, = 6 and

6 6
S;j.': 7<12=Bl’sg=]l<l9=B2)Sg=13<27=B65

Similarly, for t = L4 we have N, = L and

3 L

§ =2<3 =By , SZ=5<‘5=Q;L ’
L

s§=1+<6=133 s si=h<7=qt

For t > 5, we have Nt = 3 and using the t-array representation, it
may be shown that G'(2) = 2t+ (n-1)(t-1-n/2) for 1 < n <t from which
it follows that G5(2) < .. <Gt_l(2) = Gt(2) so that m(3) = t-2 since

. . +U
Jz = 2 . Using t-arrays, we may also show that Si(?) <. .. < Si(E) for
3

. 2 .
each 1 so that Si(2) < S?_(E) = B; for each i . The proof that
Rule ltalso contributes to a quota scheme is straightforward once we
observe that when t = 2 we have

Sl5

;= 610 st - 987 , BYY - 3588 , BXY - 6050 .

2 1 2
n n n

We have already seen how the numbers B and Bl""’Bt can be
used to describe blind polyphase dispersion so Rule 1 requires no
explanation. Rule 2 represents a refinement in which Qn is pushed
to the largest value not exceeding cn for which we can switch from
stage n to stage mtl with a distribution which is optimal for both
stages. Rule 2 will be used for each n for which ‘jn+l = jn+l .

Rules 3 and b simply fill out the quota scheme for small values of n

51

The special assignments in Rule 4 were chosen subjectively to insure
reasonably good performance.

If we are dispersing using the quota scheme just described, it is
clear that when the number of strings x 1is large, then we will switch
stages with a distribution which is optimal for both stages. Consequently,

11 pe 0 . .
the volume of the sort will be (x) for some integer N'(x) when x
. - . n . .
is sufficiently large. Since Q@ < cn for n ZNt , 1t 1s clear that

Bmt Sth , we see that

N'(x) > .. . On the other hand, since cn <
N* (x) < N(x)+t .

The blind polyphase sort which we have described is almost as good
as the optimal polyphase sort of Algorithm 6.1, when the number of strings
is in the range of the size of most applications (say, less than a thousand),
the two sorts are almost always equivalent. When the number of strings
is large, it can be shown that the two algorithms are equivalent infintely
often. Indeed, this happens for Sn(jn) strings every time that
jn+l = 'jn+l . In the next section we will show that the two algorithms

are also asymptotically equivalent.

Example 7.1. Table 7.2 displays a portion of the simplified quota scheme

for the case t = 4 .

50

8. Asymptotic Performance.

In this section, we will study the performance of the algorithms
which we have described when the number of strings is large. There are
two volumes which we are interested in estimating. First there is the

volume of the optimal polyphase sort of Section 6,

v(x) = V& ()
and, second, there is the volume of the blind polyphase sort, when x is

large, this is

]
vix) . W
We will show that when x is large that both of these volumes are

asymptotically equal to
x1 X + = X lo 1 + (x)
o8 x+ 5 x logy logy x+ olx

The reader who is not familiar with asymptotic methods may find [1] or
the first chapter of [4] to be helpful.

Our startingpoint is an interesting connection between the movement
numbers and the theory of probability. Let ¥1s¥ps . .. be independent
random variables which each take on the values 1,2,...,t with equal
probability t_l . Simple calculations will show that each yi has an

2

expectation p = (t+1)/2 and a variance ¢ = (tg-l)/l2 . For positive

integers m and k we define

(8.1) p(m,k) = prob(y,+ . ..+y, =m)
Lemma 8.1. For n >1 and j >1 , we have M (J) = t'p(n,j) .

2
Proof. Let g(z) = z+z + . ..+zt for the real variable z . We will

begin by showing that

53

(8.2) T M) - a(z)?

n>1
Since the only nonzero values of M:g((ID are l@(l) = 1 when 1 <n <t ,
we see that (8.2) is true when j = 1 . Purthermore, given (8.2) and the

fact that M:‘g'k(,j) = 0 when n < k , we may write

t
Z " = T T)"
> =

n>1 n>1 k=1

t
e E Zk 2 =k j) zn"'k
k=1 n>l1 NQ (

[}

-t .
- T Fqoj = q(z)tt
k=1

so that (8.2) follows by induction. From the form of g(z) , we see that
the coefficient of z" in q(z)j is precisely the number of ways that n
may be written as the ordered sum of j integers, not necessarily distinct,
chosen from the set {1,2,...,£4} . Since this number is precisely
tjp(n,j) , the proof is complete.

Techniques for estimating probabilities of the form (8.1) are well
known. For our purposes, the best such approximation follows from a

theorem of C. G. Esseen which is given on page 24l of [3]:

s%/2 Q () Qo (s) Qi (s) Qy(s)
e 1 1 2 3 L 1
Pl - em \2 Ty ORTTE T’ O(ksje)

where we have written s = (m-pk)/o/k and where Ql(s) , Qg(s) , QB(S) s
QQ(S) are polynomials in which the coefficients depend only on the moments
of 2 which, in turn, depend only on t . It turns out that all of the

centralized moments of ¥y of odd order are zero. This leads to some

simplifications; ip particular Q,l(s) = Qi(s) = 0 and Qe(s) takes on

54

the simplified form c(sh- 632+ 3) in which c depends only on t .

Using the estimates
2
s /2

Qz(s) = 5c+0(52+ sh) ,

2
=72 q(s) = o))

we obtain the approximation

3¢ 1 sh 38

1 1 2
p(mk) = —a= (1-5%/2) + 355 | + 0 v S
ovzr | k72 /2 /2 M2 3R
which may be written in the form
2 8
p(m,k) = 1 :3'/2 + 51/2 3¢ - (m - k) % +0 -—£—7-p‘—2—l+ n;-gk))
oN2x k k 20 k

To simplify subsequent calculations, we will use the symbol Fh(z) to
represent generically an n-th degree polynomial in z in which the
coefficient of z" is positive and in which all of the coefficients
are functions only of t . Two distinct appearances of the symbol in
the text need not represent the same polynomial. With this convention,

we now have

8

1+ (m-pk
(8.3) p(mk) — —=— - —=p,(m - pk) + O —4—7-&—L
’ oomk k/2 2 x?/ @

Lemma 8.2. We have

- . 8
(8.L4) JTETIMNG) = —E— - T p (n-pg)+o| T (n-ud
over Y 2 j2

25

Proof. From the last, two formulas of (3 .l), we have
M) = D + e+ g
so that
w(3) = oG- G-+ L g

Therefore, by Lemma 8.1, (8.3), and the facts that

1 1 1 1
G-nYe :11/2+2J3/2+0(37§) ,

1 - 1 +0 1
>
-17/2 PR\ PR
we have

: t o
S 9) = D (e-r1)™ MTH(-D)
i=1

"

o+
AR

™

(t-i+1)p(n-i, j=-1)

t t

t . t-itl
= 2 (t-i+l) - Z -(—/—-)-p(n- j+i+y)
ovexj i=1 i-1 /% 2 " "

8
1+ (n-~
+Q—.J.7J'.‘J)_.
(5°/2)

which is easily reduced to the form (8.4). QO
Lemma 8.3. We have
s 2 Py(n - pd) 8
(8.5 V3 t79R(5) - —& L. -2 +of Tr(n-ud)
oven (t-1) J 3

56

Proof. From our definitions we have

N ES

MR(1)

Il
1M
1)

o)
¥
[
-

]

J
¢(3) >
= 1

1l k=1 i

1
i Me

j-1

(G-)MY(K) = T (erl)MP(5-k)
k=0

Using this formula and Lemma 8.2, we obtain

. =1 .
£t » = T 7 (e)MP(G-k)

k=0
" 1 Pe(n - |.Lj + |J»k)

o2x (3072 w2)

-1
- n 7E)
k=0

1+ (n-uj+uk)8
)2/2

il
+ 0 2 ot (k1)
k = 0 (3-k

In order to simplify the above approximation, we need to be able to

estimate sums of the form

J-1 a _
k=0 (Jj-k)

for. a = 0,1,...,9 and b = 1/2,3/2, 5/2 . Let us write m = |V/3]-1 .
If j is sufficiently large, then we will have ka<(5/2)k for all
k >m and a = 0,1,...,11 . From the binomial expansion, it is clear

that for k <m , we have

o
1 1 bk K
N N R

(3-k) J J Jj

It is also clear that

;% K3TE s(a) +0((3/2t)™)
k=0

where

o7

s(a) = 2 k%t
=0

We therefore have

-1 a
o) ~ B _H) B
k=0 \J J k=mtl (j-k)
m at+2
+0| 2 ——kb+2 £k
k=0 J

- 23 jﬁfil) * 0((3/2t>‘“ + ;?la)

b2
since the second sum is 0((3/2t)™) and the last sum is O(1/3° -) .
Since (5/2t)m is O(l/,jb+2) for each b , we may replace the above

error estimate by O(l/,jb+2) . The conclusion of this lemma now follows

from the facts that

s(0) = t/(t-1) and s(1) = t/(t-1)% . O

‘Corollary 8.1. If n-pj = 0(1) , then

. 3
3ot - et 0(1)
oVen (t-1) : .
Proof. This is a simple consequence of the lemma. a
Corollary 8.2. Let jn be defined as in Section 6, we then have
n- p,jn = 0(1)
Proof. We recall that ’jn is the smallest integer J for which
Gn(j) < Gn+l(j) . From the estimate (8.5), we obtain

3 2

. - b i
G543y - anigyy - 0(1+ (n’w-)—) :
J

58

With Pl understood to be the Pl appearing above, let a be the real
number which satisfies Pl(n-u.a) =0 . If j>Tlal+l , then clearly
Pl(n-p,j) is less than some negative quantity which is independent of

n and if j < {aj-1, then Pl(n - uj) is larger than some positive
quantity which is independent of n . For J 1in the range

La] -1 < j <lal+l , we have n-puj = o(l) and the error estimate above
becomes O(j_e) so the first term of the estimate dominates. It follows

that jn lies within this range for large n and the proof is complete.

Theorem 8.1. v(x) = x logtx + %’-x lOg“b logt X+ 0 (x)

Proof. Let cn = Gn(jn) -ij'(,j n—l) be defined as in Section 6. From

Corollarys 8.1 and 8.2 it is easily shown that

=J
— t -1
(8.6) gt Do = —F +0(37) .

0'02:(t-1

If x is sufficiently large, then for n = N(x) we have Ch-1 < x < c, -

Let j be the unique integer for which Sn(j) <x < Sn(j+l) . From

Theorem 6.2, it is clear that jn_l-l <3J< jn . Using the formula

V(x) = (§+1)x -G(J)

we may write
(8.7) V(x) -x log, x = x(j+1-log, x) -d(5) .
From (8.6) we have

log,G cn = 'jn - §1logt ‘jn + 0(1)

and therefore, since 0 < n9n-1 <1,

59

j+l-logt x < j+l—logt Che1

. 1 .
,J+l-,jn+ 5 logt dpo1 + 0(1)

. . 1 .
< Jn+l-3n+-2—logt Jn + 0(1)

1 .
5 logt b + 0(1)
Similarly
i - : - _ 1 .
Jj+1 logtx > j+1 logt c, Elogt Jn+o(1)
and we have shown that
. _ 1 i
(8 .8) J+l-logtx-210gt Jn+0(l)
comparing Corollary 8.1 and (8.6) we see that

¢(3) = o(e o(x) .

n-l) =

From (8.8) and the fact that ,jn-2 <3j < jn , we have

.1 =1 .
3y logt x = 1+ O(Jn 1ogb Jn)
so that

. -1 N
log, J, -log, log, X = O(Jn log, Jn) = 0(1)
Putting everything together, (8.7) becomes

V(x) -x log_b X = %1}: log,c jn + 0(x)

= %Xlogtlogt}(‘&-o(x)

and the proof is complete. [J

60

1 X logt logt X + 0o(x)

Corollary 8.3. Vi(x) = x logt X + 3

Proof. In Section 7 we showed that N(x) < N'(x) < N(x)+t . From

Theorem 5.3, it follows that
: Ay)
0 <V (x)- v(x) = (x) -V (x) < (N' (%) -N(x))x < (t-1)x
so that V'(x) -V(x) = 0(x) and the result follows from the theorem. O

It is well known (see Section 5.4.4 of [5]) that the best possible
volume for a merge sort which performs p-way merges is x logp x+0(x) .
For this reason, a tape sort with T tape units has an optimum volue of
X logT_l X + 0o(x) since such a sort can perform at most T-1 -way merges.
A tape sort with T tape units which has a volume asymptotic to

X logT_l X is said to be asymptotically optimal. Theorem 8.1 and

Corollary 8.3 imply that both the optimal polyphase sort and the blind

polyphase sort are asymptotically optimal.

Remarks. The optimal polyphase sort appears to be the first known example
of an asymptotically optimal read forward tape sort. Other examples will
appear in [9]. Several asymptotically optimal read backward sorts are
known (see, for example, Section 5.4.4 of [5]) but these sorts have volumes
of the form x log, ; x+0(x) which is smaller than the volume we have
derived for the optimal polyphase sort. One wonders if the volume

x‘logt X+ % x logt logt X + 0(x) can be improved upon for read forward
sorts or whether it represents some theoretical minimum. A simplified
self-contained analysis of the optimal polyphase sort, which is probably

suitable for students, appears in [10].

61

9. Concluding Remarks.

Two questions concerning the optimal polyphase sort remain open for
investigation. First there is the problem of estimating the amount of
time the algorithm spends waiting for tapes to rewind and second there
is the problem of optimizing the read backward polyphase sort.

The rewind time is significant since both the blind and the optimal
polyphase sorts perform large numbers of tape rewind operations. Of course
we may suppose that the total amount of rewinding corresponds to the volume
'of information moved. However, the polyphase merge rewinds two tapes
simultaneously so it is conceivable that a highly unbalanced situation
may arise in which one of the two tapes being rewound would be considerably
longer than the other. This might cause the total rewind wait time to
vary from the volume of the merge to twice that volume.

In the read backward polyphase sort, the tape units act as stacks
so the direction in which a string is written is reversed when the string
is moved. Therefore, strings which will be moved an odd number of times
must be written in the opposite direction from strings which will. be
written an even number of times. For this reason, strings are no longer
interchangasble so the dispersion routine must concern itself with the
details of placing the dummy strings.

In this paper, we have limited the discussion to the traditional
polyphase merge in which the appointment of the output tapes is cyclic.

The polyphase merge, however, is Jjust a special case of the class of
single-output read-forward merge algorithms. Some information about these
techniques can be found in the exercises for Sections 5.4.2 and 5.k.4 of [5].

It is known for example that in certain special cases, the optimal polyphase

62

sort can be beaten by other methods of merging. In [9] it is shown that
a large class of single-output read-forward merge algorithms also give

rise to asymptotically optimal sorting algorithms.

63

Acknowledgments

This paper would have been a pale shadow of itself had I not
encountered a preprint of the first half of [5]. Professor Kmnuthalso
read an early draft of the paper and made several valuable suggestions.
This research was conducted while I was employed at Sperry UNIVAC in
Roseville, Minnesota, and began as a study of possible sorting
procedures for the DMS 1100 Schema Description (DDL) translator which
I was then implementing. I am indebted to Mr. E. H. Moulton for many
valuable conversations and to Mr. A. G. Reiter, Dr. H. C. Gyllstrom, and

M. D. Thompson, for allowing me to pursue this subject when I should have

been doing something else.

64

References

The references given below consist of only those books and papers
which are referenced in the text. An extensive bibliography on computer
sorting has been prepared by R. L. Rivest and D. E. Knuth which appears
in Computing Reviews, vol. 13, no. 6 (June 1972), pp. 283-289.

[1] de Bruijn, N. G., Asymptotic Methods in Analysis, North-Holland,
Amsterdam, 1970, 200 pp.

[2] Flores, I., Computer Sorting, Prentice-Hall, Englewood Cliffs, N. J.,
1969, 237 Pp.

[3] Gnedenko, B. V., and Kolmogorov, A. N., Limi

Sums of Independent Random Variables, Addison-Wesley, Reading,
Mass., 1954, 264 pp,

[¥] Knuth, D. Em, Fundamental Algorithms, The Art of Computer Programming 1,
Addison-Wesley, Reading, Mass., 1968, 634 pp.

[5] Knuth, D. Em, Sorting and Searching, The Art of Computer Programming 3,

Addison-Wesley, Reading, Mass., 1973, 722 pp.

[6] Lynch, W. Cm, "The t-Fibonacci Numbers and Polyphase Sorting,"
Fibonacci Quarterly, 8 (1970), pp. 6-22.

[7] Sackman, B. S., and Singer, T., "A Vector Model for Merge Sort
Analysis, Fart I, Polyphase Merge Sort," unpublished paper presented

at the ACM Sort Symposium (November 1962), 28 pp.

[8] Shell, D. L., "Optimizing the Polyphase Sort," Comm. ACM, 1k, 11
(November 1971), pp. T13-719, Corrigendum, Comm. ACM 15, 1
(January 1972), p. 28.

[9] <Zave, D. A., "A Note on Merge Sort Analysis," (in preparation).

[10] Zave, D. A., "A Simplified Analysis of the Optimal Polyphase Sort,"

-(in preparation).

65

My (3) M3(3) M, (3)

M3 (3)

Movement Numbers for t = 4 .

Table 3.1.

66

12

23
57
43

17
22
23
23

Ly

(3j) for t = 4 .

n
So

Table 3.2.

67

Table 6.1(a).

0 t
-1 0 t
t-2 -1 -1 t-1

Proof of Lemma 6.4 (t > 4)

n= 0 1 2 3 4 5
j =0 0 3 2
1 -1 0 3 5
2 1 -1 -1 2 8
3 3 1 0 -1 0 y
4 4 o -1

Table 6.1(b).

Proof of Lemma 6.4 (t = 3)

" (Z =13 §°9 ®mRT JO Jooxd *(9)T°9 °TqeL
Ges Gh- 01¢
6¢g v- T¥- 1IG¢
LGL 78 98- G¥ 907
919 TFT 65— Lle- TL BEl
96y 09T 6T- Of= ¢ 65 GL
g0¢ GNT 2T 18- 6- Iz L g
69T 6TT 62 LI- bFI- ¢ LT 0T QT
FOT 68 ¥¢ G- - - L OT OT 8
o5 S T¢ ¢ 8- - 7z ¢ & ¢ ¢
oz o0 ¥ L ¥ ¥ O ¢ ¢ T ¢
9 T 9T 8 1I- €= 1I- T T ¢
T S6 L T - I- 0 1
oT % G ¢ 1I- 1- 0
0 0T € ¢ 0 1I-
0O 0 0 T ¢ 0
6T 8T LT 9T ST %I €T 2T Tr O K 8 L 9 & % ¢ 7 T o0
J J J J J J J J

o
—

OHNMWLD‘«D[\OOO\Sqﬂ

Il
=)

69

o © I3 o8 o W NN -

= e
= O

=
=~ w

=
oy O

—_ =
oo —J

[
O

oo o W DO

13
21
34
55
89
144
233
377
610
9877
1597
2573
3954

6527
10488

17

31

54

95
172
279
534
819
1634
2400
4958
7028
14952
20582
44898
60297

Table 6.2. L
n

108
243
358
455
1196
1562
4033
5378
6455
18560
22875
64188
80858

for 2<t <7 and 1 <n<19 .

7O

153
215
268
778
11033
1248
3909
k969
5840
19408
23917

27556
95802

282
385
480
554
1995
2485
2900
10577
13096
15335
17028
69843

147
167
639
791
92l
1016
4396
5250
5978
6498
30163
35027

J =0 0 1
1 -1 0 1 1
2 -1 t-2 -1 0 1

Table T.l(a). ProofofLemma7.1 (t >4, i=t)

Table 7.1(b). ProofoflLemma7.l (t >3 ,1i=1) .

n = i- i-t oo, 0 12 3
-0 -
i 10 0
1 r -1 1 0 .11 1
2 110 t-3 -1 20 21

Table 7.1(ec). Proof of Lemma 7.1 (t >4 ,1< i <t)

71

0 1 0
-1 1 -1
-1 1 0

Table 7.1(d). ProofofLema7.1 (t =3, i =2)
n = -1 0 1 2 3 b 5
=0 0 1

1 -1 0 1 1 1

2 -1 1 -1 0 2 3

3 -1 3 0 -1 0 1 5

L -1 5 2 2 2 -1

Table 7.1(e). Proofoflemma7.l (t =3, i = 3)

T2

(T =71 '¢=13) 7', euwel Jo jooxd *(F)T°L oTqel

68 99- TeT
0€T T¥- GZT- OHT
lzt ¢ br- 6t Let
g6 67 97— 8¢ LE 06
£9 ¢ 9- o2~ ¢ G¢ 69§
E 62 9 gl- 8- OT GZ O0¢f
61 6t or P¥- 8- 0 0T GT GT

G Oor 6 T G- ¢ € L 8 L
T P 9 € ¢- €-0 ¢ 4 4
0 T € € 0 ¢- TI-1I 4
0 0 T 4 T -1-
0 O o T T 0 T-
0 0 0 0TO0
o 0 0 o0 O

6T 8T LTI 91 GI ¥I ¢t 2t 1tT OT A @ (L 9 G ¥ ¢

T3

oﬁmmwmwl\ooowo:l‘c_\imw
— -

A A A A ~A A

(=71 “2=14) T-LewsTIOTOOIJd *(8)T°L °e1qRL

066 0L- 08
668 T# Trr- T6T
ShL PFT €01- g~ 66T
966 68T G¥- 8G- 0G 6FT
TLE €8T 9 G- L~ LS 26
€27 ghT GE 67— 2= ST 2f 06
6TT %0T %% 6= 07- - LT SC GZ

66 ®9 0F ¥ €1- L- G 21 €T et

12 ¥ 08 O 9- L- ©OF)
9 ¢TI 6T TT T- G- Z- 2 €
T G or 6 ¢ ¢ <¢- 0
0 %9 € I- z-

0 0T € ¢

Th

- o O 4 N Mm =
OH(\]("’)Q“LF)kOl\OO

I
‘M

o 6T 8T LI 91 ST ¥T €1 71 It O 6 § [9 G°p ¢

13
21

22
20

10
13

15

34

36

23
28

21

17

10
13
13
14
14
34

71

26

22
23
21

15
100
108
322

34

30

44
44
19
100

15

317

317

27

71

57

2kl
243
338
358
423

92
101

17
128

44
44

78

151
151
178
178
394

9k

50

128

9k
100
100
266

50

10
10

144
144
345

50

455
472
1156

50
151

11

10

13
14
15
16
17
18
19
20

21

22

Simplified Quota Scheme for t =4 .

Table 7.2.

15

