ALGORITHMIC ASPECTS-OF VERTEX ELIMINATION
ON DIRECTED GRAPHS
by
Donald J. Rose
Robert E. Tar jan

STAN-CS-75-53I
NOVEMBER 1975

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

ALGORITHMIC ASPECTS OF VERTEX ELIMINATION ON DIRECTED GRAPHS

¥/
Donald J. Rose
Applied Mathematics, Aiken Computation Laboratory
Harvard University, Harvard, Massachusetts 02138
*%
Robert Endre Tarjan-——/

Computer Scierice Department
Stanford University, Stanford, California 94305

Abstract
We consider a graph-theoretic elimination process which is related
to performing Gaussian elimination on sparse systems of linear equations.

We give efficient algorithms to:

(1) calculate the fill-in produced by any elimination ordering;

(2) find a perfect elimination ordering if one exists; and

(3) find a minimal elimination ordering.

We also show that problems (1) and (2) are at least as time-consuming
as testing whether a directed graph is transitive, and that the problem

of finding a minimum ordering is NP-complete.

Keywords: directed graph, elimination ordering, fill-in, Gaussian
elimination, NP-complete problem, perfect elimination graph,

sparse linear system.

*
—/ Research partially supported by the Office of Naval Research under
contract NOOO1L-67-A-0298-003L4 at Harvard University.

ff/ Research partially supported by a Miller Research Fellowship at
University of California, Berkeley; by National Science
Foundation, grant DCR72-03752 AO2 and by the Office of Naval
Research contract NR Oh4L-L02. Reproduction in whole or in part
is permitted for any purpose of the United States Govermment.

1

1. Introduction and Notation.

A directed graph (digraph) is a pair G = (V,E) where V is a

finite set of n = |V| elements called vertices and E c {(v,w) | v,w eV,
v # w} is a set of e = |E| ordered vertex pairs called edges.
Given veV , the set A(v) = {wev | (v,w) €E} is the set of vertices

adjacent out from v ; the set B(v) = {uev | (w,v) €E} is the set

of vertices adjacent into v . A(v) and B(v) are called the
adjacency sets for vertex v . |a(v) | = do(v) is the out-degree

of v ; |B(v)]|= dI(V) is the in-degree of v . The notation v -w
means WeA(v) ; v A w means wfA(v) . If W < V , the induced
subgraph q‘(w) of G is the subgraph G(W) = (W,E(W)) where

E(W) . {(w,y) e E \ X,y €W} |

For distinct vertices v,weV , a V,w path of length k is a

sequence of distinct vertices p =[v = LEACYRE = w] such that

.,Vk+l

Vi - V:'|_+,']_ for i = 1,2,...,k . A graph is strongly connected if there

is a path from every vertex to every other. A cycle of length k is

a sequence of distinct vertices p =[vy,Vp, ...,V] such that v, - v, ,
for 1,2,...,k and Vi TV o- A graph is acyclic if it has no cycles.
The transitive closure of graph G = (V,E) is the graph ¢ - (V,E+) ’

where (v,w) ¢E if and only if v # w and there is a path from v
to w in @G . A graph G is transitive if it is equal to its
transitive closure. Equivalently, G is transitive if and only if
for all w,vy,w , u-v and v - w together imply u-w or u=w .
A clique is a graph G = (V,E) with E = {(v,w) | v,weV, v # w} .

For a graph G = (V,E) with |V| = n , an ordering of V is a

bijection a: {1,2,...,n} = v . G, = (V,;E,@) is an ordered graph.

-~

For a vertex v , the deficiency D(v) is the set of edges
defined by

D(V)n{(X:Y)‘X"V:V'*Y:X/’Y:XrL-Y}.

The graph G = (V-{v}, E(V-{v}) UD(v)) is called the v-elimination

graph of G . For an ordered graph Ga = (V,E,Q) , the elimination
process

P(Ga) =[G = Gop GpoGos =« .,Gn_l}

is the sequence of elimination graphs defined recursively by GO =G ,
Gy = ((;'L;l) a(i)
i=0,1,...,n-1, the fill-in F(G,) is defined by

for i = 1,2,...n-1 . If Gi = (Vi,Ei) for

n-1
F(Ga) = .Ul Di_l(a(i))

where Di_l(Ot(i)) is the deficiency of a(i) in @, and the

i-1"7

*
elimination graph Ga is defined by

Gy = (Vs BUF(G)) -

The notion of vertex elimination arises in the solution of sparse
systems of linear equations by Gaussian elimination. Given any nyxn
matrix M = (mij) which represents the coefficients of a set of linear
equat ions, we can construct an ordered graph Goc = (V,E,x) , where
vertex A corresponds to row i , and (vi,vj) €eE if and only if
m, s £0 and i #£ j . The unordered graph G = (V,E) corresponds to
the equivalence class of matrices HVIPT , Where P is any permutation
matrix.

If we solve the system with coefficients M using Gaussian

elimination, eliminating variables in the order 1,2,...,n , then the

edges Di—l(vi) correspond exactly to the new non-zero elements

created when row i 1is eliminated (assuming no lucky cancellation

of non-zero elements). For further discussion of this correspondence,

see [10,11]. To make the elimination process efficient, we might, for

example, like to create no more non-zero elements than necessary,

that is, to find an elimination ordering which minimizes the fill-in.
Given a graph G = (V,E) , an ordering a of V is a perfect

elimination ordering of G if F(Ga) = ¢ . Thus o is a perfect

ordering if u - v, v = w, Oc_l(u) < min((x-l(v) ’ a-l(w)) together
imply uw=w or u-w . A graph which has a perfect elimination

ordering is called a perfect elimination graph. An ordering o is

a minimal elimination ordering of G if no other ordering B satisfies

F(GB) c F(G,) where the containment is proper. An ordering a is a

minimum elimination ordering of G if no other ordering B satisfies

|F(GB) | < |F(Ga) | . Any elimination graph G; is a perfect elimination
graph, since « is a perfect ordering of this graph. Any perfect
ordering of a graph is minimum, and any minimum ordering is minimal.
If a graph is a perfect elimination graph, any minimal ordering is
perfect.

A problem important in practice is that of finding a minimum
elimination ordering for any graph G . We shall show that this
problem is NP-complete.ﬂ To balance this negative result, we give

polynomial-time algorithms for some simpler problems. We present

Y The so-called NP-complete problems are the hardest problems solvable
by non-deterministic Turing machines in polynomial time. Either all
the NP-complete problems have polynomial-time algorithms, or none of
them do. Such famous hard problems as the traveling salesman
problem, the satisfiability problem of propositional calculus, and
the maximum clique problem are NP-complete. See [2,6].

methods for

(1) computing the fill-in produced by any ordering & , in O(ne)
time;
(2) generating a perfect ordering, if one exists, in O(ne) time;

(3) generating a minimal ordering, in O(nh) time.

(For all time bounds we assume n < e+l , which holds for all graphs
that are at least weakly connected.)

We shall also show that any method for either (1) or (2) can be
used to test whether an arbitrary directed graph is transitive. Thus,
achieving a time bound of better than O(min(ne, n2°8l)) for either of
these probléms would improve on the best bound known for Boolean matrix
multiplication [3]. The restrictions to undirected graphs of problems
(1), (2),(3) have been considered in [12], which presents an
O(n+ e') algorithm for (1) (where e' is the number of edges in Gj;)»
an O(n+ e) algorithm for (2), and an O(ne) algorithm for (3)
(Ohtsuki [9] has also devised an O(ne) algorithm for (3)).

This paper is divided into several sections. Section 2 contains
some properties of fill-in and elimination orderings which provide a
basis for the algorithms. Section 2 also informally describes the
algorithms. Section 3 contains implementations of the algorithms and
analyses of their running times. Section L describes relationships
among problems (1), (2), and the transitive closure problem, and between

the minimum ordering problem and the NP-complete problems.

2. Properties of Fill-in and Elimination Orderings.

Our first result characterizes the fill-in produced by any

elimination ordering.

Lemma 1. Let G = (V,E,x) be an ordered digraph. Then (v,w) is
*
an edge of G, = (V,EUF(G,)) if and only if there exists a path

w=I[v= VisVps .03V, = W] in G, such that

(1) oMv,) < min(@™(v),aM(w)) for 2<ic<k.

Proof. We show by induction on f = min(a-l(v),(x—l(w)) that, given
*

any edge (v,w) in Ga » there exists a path from v to w with

the required property (1). If 2 = 1 , (v,w) is in G and (1)

holds vacuously. Suppose the result holds for all 1 < ¢ < tO and

let ¢ = ft1 . If v -w in G then (1) again holds vacuously.

Otherwise (v,w) e F(G,) and we have by the definition of F(G,) an

- - - *
xeV with « l(x) < min(c l(v),oz l(w)) and v =X , X - W in G.

The induction hypothesis implies the existence of v, x and x,w
paths in G, satisfying (1) and combining these paths gives the
required v, w path.

The converse is established by induction on k , the length of .
If k=1, v-w in G; trivially. Suppose the converse holds for

all k <k, a.ndletk=ko+l. Let p = [v = v,V sees,V = W]

1’72 k+1
be a path in G, satisfying (1) and choose x = v, such that
a-l(vi) = ma.x{a-l(vj) | 2 < j < k}. The induction hypothesis implies

* *
that v -~ x and x -» w in Ga,hencev-awinG -

r

We can use this lemma as the basis of an O(ne) time algorithm
for computing the fill-in produced by any ordering & . It is
sometimes more efficient, however, to compute the fill-in directly.
If v and w are any vertices, (v,w) eEUF if and only if either

w7y,

(vou) €eEUF , and (w,w) eEUF. We can compute the fill-in edges

(vsw) ¢eE or there is a u such that o:-l(u) < min{ofl(v),oz-

(v,w) , in increasing order on the value of Ot-i(v) » by using this
observation. This method of computation is called row elimination
or Doolittle elimination [4] when it is used to carry out numeric,
rather than symbolic, Gaussian elimination. Section? discusses two
algorithms for computing fill-in, one based on this direct method and

one based onzlLemma 1.

Lemma 2. Let G = (V,E) be a perfect elimination graph, with perfect
ordering o . Let xeV and let G' = (V, EUD(x)) . Then a is a

perfect elimination ordering of G' .

Proof. We must show that given w -y , ¥y -2 in G' with w # z
and Ot-l(y) < min(a-l(w),a-l(z)) , it follows that w - z in G'

We must consider three cases. If (w,y),(y,z) €eE , (w,2) ¢E since
a is perfect. If (w,y),(y,2z) eD(x) , then w - x , x - z in G
and (w,z) ¢eEUD(x) . The last case is (w,y) ¢E , (y,2) eD(x)

(or equivalently (w,y) eD(x) , (y,2) ¢E). In this case y - x ,

x -2z in G and y A,z in G . If w=2x, then (w,z)cE .

Otherwise (i.e., if w # x), oz-l(x) >Ot-l(y) since « is perfect,
and w - x in G , also since & is perfect. But w -x , x - z

in G imply (w,z) e€E UD(x) . O

Corollary 1. If G = (V,E) 1is a perfect elimination graph and x
is any vertex, the x-elimination graph G = {v-{x}, E(v-{x}) UD(x)}

is also a perfect elimination graph.

Corollary 2. If ¢ = (V,E) is =& perfect elimination graph and x
is any vertex with D(x) = @ , there is a perfect elimination ordering

a with o(l) =x .

Corollary 2 implies the correctness of the following algorithm

for finding a perfect ordering if one exists.

algorithm PERFECT(G): begin

i 1= 0;

while G has some vertex v with D(v) = § do begin
i:= i+l;
a(i) := v3

delete v and all incident edges from G;

end end PERFECT;

If this algorithm succeeds in ordering all the vertices, G is
perfect; if not, G is not perfect. Section 3 gives an O(ne) time
implementation of this algorithm.

Our next results give properties of minimal orderings. Let
G = (VL,E) be a graph. A set F of edges is a fill-in for G if
ENF =¢ and G' = (V,EUF) is a perfect elimination graph.

F is a minimal fill-in if no set F, < F is such that G. = (V, EUFO)

0 0

is a perfect elimination graph.

Lemma 3. Let G = (V,E) be a perfect elimination graph. Suppose

F#@ is a fill-in for G . Let G' = (V,EUF) . Then HfeF such

that G'-f = (V, EUF-{f}) is perfect elimination (i.e., F-{f} is
a fill-in).
Proof. We prove the lemma by induction on n = |V| . If n < 2,

the result is obvious since any graph with one or two vertices is
perfect elimination. Suppose the result is true for all n < ny and
let n = n+l . Let R = {x | D(x) = @} where D(x) is the deficiency
in G and let § = {x | D'(x) = ¢} where D'(x) is the definiciency

in G' . We know R # ¢ and S # ¢ . We must consider two cases.

(i) For Ssome xeS there exists an edge feF of the form f = (u,x)
or £ = (x,u) . By Corollary 2 there is a perfect elimination
order g for G' with B(1) = x . Then B is also a perfect

order for G'-f .

(ii) case (i) does not hold. We prove HxeS with F £ D(x) . Pick
any zeS . If FE D(z) , let x = z . Otherwise, since
D(z) € F , F = D(z) . In this case, let x be any vertex in R .
By Corollary 2, there is a perfect ordering o of G such that
a(l) = x , and by Lemma 2, «a is a perfect ordering of G' .

Thus xeS . Since D(x) =¢ , F ¢& D(x) .

Now G = (V-{x}, E(V-{x}) UD(x)) and Gy = (v-{x}, E(V-{x}) UFUD(x%))
are perfect elimination by Corollary 1. By the induction hypothesis
4f e F-D(x) such that G}'{-f is perfect elimination. But then G'-f

is perfect elimination since f/D(x) . O

Lemma 3 gives the following theorem.

Theorem 1. Let G = (V,E,a) be an ordered graph. Then a is a
minimal elimination ordering if and only if for each feF(Ga) P

*
Gy,-f = (V, EUF(Ga)-{f}) is not perfect elimination.

Suppose G = (V,E) is a graph and F is a fill-in for G .
Lemmas 2 and 3 lead to the following recursive procedure for finding

a minimal fill-in FO C F.

procedure MINFILL (V,E, F,b:?); begin

declare Fl’ F2 set variables local to procedure MINFILL;
if G = (V,E) has no vertex x with D(x) C F th@n"F‘O -

else begin

let x be a vertex with D(x) C F;
call 1: MINFILL (V-{x},E(V-{x}) UD(x),F(V—{x})—D(x),Fl);
if D(x) = @ then Fo i= Fy
else begin
call 2: MINFILL (V, EUFl,D(x),FQ);
FO 1= FlUFQ;
end end end MINFILL;

It is not hard to see that this procedure works correctly: If
every vertex x has D(x) = F then F is clearly minimal. If some
vertex x has D(x) € F , then the first recursive call on MINFILL
produces a fill-in F; c F minimal for G, - If D(x) = ¢, F, is
minimal for G by Corollary 2. If D(x) # ¢ , then for all proper
subsets F; < F; and all subsets F, D(x) , g" = (v, EUFiUFE)
is not a perfect elimination graph by Lemma 2 and Corollary 2. Thus,
if F, €D(x) is a minimal fill-in for G" = (V, EUFl) » then
FlUF2 is a minimal fill-in for G .

10

Combining MIN M1LL with the algorithms for computing fill-in
and finding a perfect ordering, it is easy to build an algorithm to
find a minimal ordering. Section 3 contains such an algorithm,
implemented so that it runs in O(n{o'e') time, where e' = |EUF| .
We conclude this section with a lemma proved in [5] giving a
necessary condition for a graph to be perfect elimination. We shall

use the lemma in Section L.

Lemma 4 (Haskins and Rose [5]). Let G be a perfect elimination
graph, Then for every set X of k > 2 vertices there is a subset

Y of k-1 vertices such that any cycle on X has a subsequence which

is a cycle on Y .

11

3. Implementation and Complexity of the Algorithms.

Fill-in.

To calculate the fill-in produced by an ordering & using Lemma 1
we must find the vertices w reachable from each vertex v by a path
whose intermediate vertices satisfy (1). To find paths which start at
a fixed vertex v and have this property, we conduct a search starting
from v . First we allow the search to pass through only the vertex
of lowest elimination number. Then we extend the search through
vertices of second lowest number, third lowest number, and so on.

In this way we can find appropriate paths efficiently. A program to
implement this method appears below in Algol-like notation. @iven an
ordered digraph G, = (V,E,0) with adjacency list A(v) for each veV ,

it calculates the edges in G; .

12

Algorithm FILLL (Ga): begin
for i := 1 until n gg}begin
v = a(i);
for j :=1 until n do begin

reach(j) := @;

mark(j) := false;
end;

mark(i) := frue;
for w ¢A(v) o, begin
mark(Q (W) := true;
add w to reach (a_l(w));
mark (v,w) as an edge of G;;
end;

e ad

search: for j := 1 until i-1 do

while reach(j) # ¢ do begin
delete a vertex w from reach(j);
for = cA(w) do if ~ mark(a™(2)) then begin
mark (o7(2)) :- true;
i{}a-l(z) > j then begin
add z to reach (o (z));
mark (v,z) as an edge of G;;
end else add z to reach(j);

AL

end end end FILL1;

It is easy to show, using Lemma 1, that this algorithm correctly
calculates the fill-in produced by « . The time required per execution
of statement search is O(e) since each vertex v can only have

mark(v) set true once and thus each edge can only be examined once.

The total time for algorithm FILL1 is thus O(ne) . FILL1l requires
0(e) storage space, plus space for the output.
For graphs with a small number of edges but a large fill-in,

FILL1l is an efficient way to compute the fill-in. For graphs with

13

smaller fill-in, it is more efficient to use a direct method based

on the observation following Lemma 1. The only tricky part of such
an algorithm is avoiding adding edges to the fill-in twice. g handle

this difficulty, we use a bit vector fill(j) which records, for some
current value of i , whether (oz(i),oz(j)) has been added as a fill-in

edge.

algorithm FILL2 (Ga): begin
for 5 = 1umeiln do £A11(3) := false;
list := @;
for (a(i),w) ¢E do begin
fill(oz_l(w)) - true;
if a (w) < i then add w to list;

end;
wnile 1ist £ ¢ do begin
delete some w from list;
for (w,y) ¢E UF with o () < o™ (y) do
if -7 (y) then begin
add (a(i),y) to F;
}Ea-l(y) < i then add y to list;

end end

I A

for (a(i),w) eEUF do begin g}((x-l(w)) := false;
end end FILL2;

It is immediate that this algorithm correctly computes the fill-in
F produced by an ordering & . FILL requires (e') storage space,

where e' = |[EUF| . To estimate the time requirements of FILL2, let
-1 -1
dl(v) = {(v,w) €EUF | « (v) > a (w)} and let

d (V) = {(v,w) eEUF | o V) <a (w)} Then FILL2 requires

O(e' v T a(va (v))
veV

14

Algorithm FILL2 has the advantage that its computation time is
proportional to the number of arithmetic operations necessary to do
numeric Gaussian elimination. Thus FILL2 can be used to precompute
the fill-in for a numeric equation solver at a cost of only a constant
factor in the running time. (See [16].) This is not necessarily true
of FILLl. However, for sparse graphs or graphs with large fill-in

algorithm FILL1l is more efficient.

Perfect Orderings.

To implement the perfect ordering algorithm so that it is
efficient, we need lists to keep track of the deficiencies of each
vertex. We use the following lists. For each veV , D(v) is a
list of triples (x,v,y) such that (x,y) is in the deficiency
of v . For each xeV , L(x) contains one pointer to each occurrence
of a triple of the form (x,v,y) in some D(v) , and one pointer to
each occurrence of a triple of the form (y,v,x) in some D(v) .

When a vertex x is deleted from the graph, we use L(x) to update
the deficiency lists of the vertices. We need two other variables:
a(v) 1is a Boolean array used to help initialize the D and L 1lists,
and N is a list of the vertices v with D(v) = ¢ .

Until N = ¢ , the algorithm must carry out the following steps:
find a vertex in N ; delete it and its incident edges from the graph;
and update the D lists appropriately. An implementation is presented

below.

15

algorithm PERFECT(G); begin
for veV do begin D(v) := L(v) := @; a(v) := false end;
N := ¢;
comment compute initial deficiencies;
init: for ueV do begin)

for w € A(u) do a(w) := true;

for v eA(u) do
for weA(v) do if — a(w) and (w # u) then begin
add triple (u,v,w) to D(v);
add to lists L(u) and L(w) pointers to this triple (u,v,w);

end;
for w eA(u) do a(w) := false

end;
comment initialize list of deletable vertices;
for veV do if D(v) := ¢ then add v to N;
comment delete as many vertices as possible;
i:=0;
delete: while N # @ do begin
delete some vertex u from N;
a-l(u) := 1 := i+l
a(i) := us
undate: for p eL(u) do begin
delete from D(v) the triple (x,v,y) at which p points,
if this triple has not been deleted already;
if D(v) = ¢ then add v to N;

end end;

NN AP

comment if i := n then G is a perfect elimination graph;
otherwise G is not a perfect elimination graph;

end PERFECT;

This program clearly implements algorithm PERFECT correctly. We
analyze the running time of the program. For each edge (u,v) , the

program spends O(1l+ do(v)) time in the initialization loop init .

16

-

The total time spent in init is thus Of n+ e+ 2 dI(v) do(v)) .
eV

Since all the entries in the D and L lists are created in init ,

and each vertex is added to N at most once, the total storage

requirements of PERFECT are O(r_l_+ e+ L dI(v) do(v)) . The time
veV

spent executing statement delete is O<n+ e+ 2 dI(v) do(v)
veV

since the amount of time spent in update is proportional to the
number of entries in the D and I lists, and the amount of time
spent in delete outside of wupdate is O(n) . Thus PERFECT requires

O(n+ e+ 2 a (v) do(v)) time total. Since 4,(v) <n for all v
veV

and 2. dI‘(‘v) = e , the ruming time is O(ne) . If d (v)+ d (v) < d
veV
for all vertices, the bound is O(ndg) . If storage space is at a
. 2
premium, PERFECT can be implemented to run in O(nte) space and O(n"e)

time.

Minimal Orderings.

We can use procedure MINFILL in combination with FILL and PERFECT
to compute a minimal ordering for any graph. Given a graph G = (V,E)
we choose any ordering « and calculate its fill-in F = F(Ga) using
FILL. Next, we compute certain sets which MINFILL needs for its
calculations. These include the deficiency D(x) in G; for each
vertex x , the set DF(x) = {(wv) | u » x,x = v in Gg!, u #£ v, and
(wy v) is a fill-in edge} for each x , and certain lists necessary
for updating the graph and the sets D(x) and DF(x) . Then we apply

MINFILL(F) . MINFILL(F) is coded as a recursive procedure which,

17

given a graph G = (V,E) and a fill-in F , finds a minimal fill-in

FO C F and updates G to include the edges in FO . Once a minimal
£ill-in FO is found, we apply PERFECT to find a perfect ordering B
of G' = (V,E UFO) . This ordering is a minimal ordering of the

original graph G . An outline of the algorithm appears below.

algorithm MINIMAL(V,E); begin
procedure MINFILL(F); begin
delete: while some undeleted vertex x has D(x) = ¢ and @ an edge
(u,x) or (x,u) in F do
delete all edges (u,x) or (x,u) from F, updating
lists representing graph accordingly;
split: if some undeleted vertex x has (D(x) = ¢) and (DF(x) C F)

delete edges in DF(x) from fill-in and add to graph
temporarily;

delete x and incident edges from graph;

F := F-DF(x);

call 1: MINFILL(F);

add x and incident edges to graph;
if DP(x) £ § then begin
delete edges in DF(x) from graph and add to fill-in;
F := DF(x);
call 2: MINFILL(F);
end end %add all edges in F to FO and to graph, and
set F :=§;
end MINFILL;
find any ordering & of vertices V;
compute fill-in F = F(Ga) using FILL(Ga);
compute initial deficiencies;
Fy i= @
MINFILL(F) 3

18

comment as MINFILL executes, it adds to FO and to the graph

edges which are found to be in a minimal fill-in;

find a perfect ordering p of graph G, = (v, EUFO) using

PERFECT(GO);
comment B 1is a minimal ordering of Gj;
end MINIMAL; "

We still need to fill in the details of this algorithm and to
estimate its time and space reguirements. The tricky part of the
implementation is representing the deficiencies so that they are easy
to update. We use various lists similar to those used in PERFECT; we
need extra lists here since we must keep track of the fill-in edges.
For each weV , A(v) and B(v) are adjacency lists for v in G ,
and A'(v) and B'(v) are adjacency lists for v in G' = (V, EUF)
M(v,w) is an n xn matrix such that M(v,w) = 0 if (v,w) fEUF ,
M(v,w) = 1 if (v,w) e¢F , and M(v,w) =2 if (v,w) ¢E . For each
vertex v , D(v) is a list of edges (u,w) such that u - v, v ow
in EUF, u # w , and u Aw in EUF . DF(v) is a list of edges
(u,w) such that u » v, v-ow in EUF, u # w, and (u,w) eF .
P(u,v,w) is an array of pointers such that P(u,v,w) = 0 if
(u,w) £D(v) UDF(v) otherwise. For each veV , g(v) = true if v has
not been deleted from the graph; g(v) = filis if v has been deleted.

Below is an implementation of MINIMAL which uses these data

structures.

19

algorithm MINIMAL(G): begin
procedure MINFILL(F); begin

delete: while some vertex x has g(x) and (D(x) = @) and_
((ar(x)-A(x))U (B'(x)-B(x)) # @) do begin
comment delete edges in fill-in which are incident
to x from gra:i)h H
for (u,v) ¢ (A" (1)-A(x)) U (8" (x)-B(x)) do vegin
F = F-{(u,v)};
M(u,v) = 03
for eT do 3£ e(v) then begln
if P(u,v,w) £ 0 then begin
delete corresponding entry in D(v) UDF(v);
P(u,v,w) := 03
end;
AL P(wyu,v) £ 0 then begin
delete corresponding entry in D(u) UDF(u);
P(w,u,v) := 03
for (u,v) € (A'(x)-A(x)) U (B' (x)-B(x)) do
for wev do if (M(u,w) > 0) and (M(w,v) > 0)
then begin

delete entry (u,v) from DF(w) using pointer
P(u, w, v) ;
add entry (u,v) to D(w) and put a pointer to
this entry in P(u,w,v);
delete (u,v) from A'(u) and B'(v);
end;
E,rfi delete;
split: if some vertex x has g(x) and (D(x) = @) and (|DP(x)| < IF‘)
then begin o
comment delete edges in DF(x) from fill-in and add to
graph temporarily;
comment also delete x and incident edges;

for (u,v) eA(x) UB(x) do M(u,v) := 0;

for (u,v) ¢DF(x) do M(u,v) := 2;

20

for distinet u,v,w eV such that (g(u) = g(v) = g(w) =
true) and x ¢ {u,w} do
1L P(w,v;w) £ 0 then beglin
| delete corresponding entry from D(v) UDF(v);
P(u,v,w) := O3
end;
g(x) := false;
for (u,v) eDF(x) do
fg’x;wev 99‘,
if (P(w,w,v) #0) and (v # x) and g(w) then begin_
delete corresponding entry from DF(w); |
P(u,v,w) := 03
end;
F := F-DF(x);
call 1: MINFILL(F);
comment restore x and incident edges to graph;

comment delete edges in DF(x) from graph and add

to fill-in;
g(x) := true;
fg{ (u,v) e A(x) UB(x) ggM(u,v) = 23

for (u,v) eDF(x) do M(u,v) := 13
for distinet u,v,w eV such that x ¢ {u,w} or (u,w) eDF(x)
and (x £ v)) do
if M(u,v) > 0 and M(v,w) > O then begin
if M(u,w) = O then add (u,w) to D(v) and
put a pointer to this entry in P(u,v,w);
if M(u,w) = 1 then add (u,w) to DF(v) and put
a pointer to this entry in P(u,v,w);
end;
call 2: if DF(x) # ¢ then begin F := DF(x); MINFILL(F) end;
%%m(u,v)eFﬁ%
comment F is a minimal fill-in;

comment add edges in F to F_. and to graph;

0
comment delete all edges from fill-in;

21

M(u,v) := 23

for weV do if P(u,w,v) # O then begin
delete corresponding entry from DF(v);
P(u,w,v) := 0;

end ;

AR

add (u,v) to F, and to E;
add v to A(u);

add u to B(v);
F o=@
EBE}MINFILL;
find any ordering & of vertices V;
compute fill-in F = F(Ga) using FILL(GQ);
comment initialization;
compute matrix M(v,w);
for veV do D(v) := DF(v) := §;
,f;czz;u,v,w eV do
if (M(u,v) >0) and (M(v,w) > 0) and (u £ w) then begin
if M(u,w) = 0 then add (u,w) to D(v) and put a pointer
to this entry in P(u,v,w)
else if M(u,w) = 1 then add (u,w) to DF(v) and put a
pointer to this entry in P(u,v,w)

else P(u,v,w) := 03
end else P(u,v,w) := O;
F, i= @3
for veV do g(v) := true;

MINFILL(F);
find a perfect ordering g of Gy = (V, E UFO) using PERFECT(GO);
comment 8 is a minimal ordering of Gj;

end MINIMAL;

A few observations help in seeing that this program correctly
implements MINFILL. Matrix M and Boolean array g always encode

the current graph, with deleted vertices excluded. Every deleted

e2

vertex has all its incident edges in E (not in F) when it is deleted.
When a vertex is deleted, the value of DF(x) is left intact, as are
all pointers of the form P(v,x,w) . This gives us a place to save
DF(x) , and makes updating the graph after call 1 easier. The graph
updating throughout the program is straightforward.

It is an interesting exercise to figure out the resource requirements
of the algorithm. Let e' be the number of edges in the graph G; where
Q is the arbitrary ordering selected initially. We shall show that the
total number of calls on MINFILL is O(e') , the maximum depth of nested
calls on MINFILL is O(n) , and MINIMAL uses O(nB) space and O(nge')
time. We make several observations which lead to these bounds. First,
the time sp;ht in MINIMAL outside of MINFILL is clearly O(n5) . Also,
the storage required, not counting storage for the procedure parameter
F in MINFILL, is clearly O(nB) .

Now consider the nested recursive calls on procedure MINFILL.

Either a procedure call MINFILL(F) is a bottom-level call on MINFIL or

it leads to two nested calls MINFILL(F') and MINFILL(F'"), where

F' = F-DF(x) # ¢ and F" = DF(x) # ¢ . Thus the nested calls on
MINFILL may be represented as a binary tree. The topmost vertex of

the tree corresponds to the outer call MINFILL(F(G,)) - Each leaf

of the tree corresponds to an innermost call on MINFILL. If F]_’Fg’ .. .,Fk
are the values of the parameters in these innermost calls, then

FiﬁFj = ¢ and F, < F(G,) for all i, j . Since |F(Ga) | < e,

k < e' , and the total number of calls on MINFILL is O(e') .

Consider the depth of nested calls on MINFILL. Suppose the call

MINFILL(F) leads to a call MINFILL(F') with F' = F-DF(x) by

25

statement call 1 with F' = F-DF(x) and to a call MINFILL(F")
with F" = DF(x) by statement call 2 . Suppose we name x the

splitting vertex for the call MINFILL(F). Vertex x is absent from

all graphs considered during the execution of MINFILL(F'). The
fill-in is always contained within DF(x) for all graphs G'
considered during the execution of MINFILL(F"). Thus x cannot

be a splitting vertex for the calls MINFILL(F'), MINFILL(F"), or any
calls nested within them. It follows that each nested call on MINFILL
has a different splitting vertex (unless it is an innermost call with
no splitting vertex) and the maximum depth of nested calls on MINFILL
is 0(n)

Since parameter storage space for one call on MINFILL is O(n2) s
the total parameter storage requirements for nested calls on MINFILL
are O(nB) , and the total storage required by MINIMAL is O(n5) .

Consider the time used during one call on MINFILL, not counting

time spent in nested calls. Time spent testing the condition in while

loop delete is 0O(n) if we keep track of the sizes of all A(x) ,
A'(x) , B(x) , B'(x) as the graph changes. Time spent executing
while loop delete is 0(n) per edge deleted from the fill-in.
Once an edge 1s deleted in step delete , it never reappears. Thus
the total time spent in delete over all calls on MINFILL is O(ne')
to test the condition plus O(ne') to delete edges from F and update
the graph.

Time spent testing the 1{ condition in statement split is 0(n)
if we keep track of the size of each DF(x) and the size of F as

the graph changes. Time spent executing the then branch of split

AN~~~

2k

is O(n2) to update the graph by deleting and later adding x ,
O(n) time per edge in DF(x) to update the graph, and O(e') time
generating each nested call on MINFILL (since the sets F-DF(x) and
DF(x) together have at most O(e') elements). Thus the total time
spent in the then branch of split over all calls on MINFILL is
O(nee') plus O(n) time per edge in DF(x)

The time spent in the else branch of split is O(n) per edge
added to Fa ‘ An edge added to Fb is added to the graph and never
deleted. Thus the total time spent in the else branch of split
over all calls on MINFILL is O(ne') .

In summary the total time required by MINFILL is O(n2e') plus
O(n) time for each edge in each set DF(x) where x is a splitting
vertex. If x is the splitting vertex for the call MINFILL(F), each
edge in DF(x) must be in F . The two nested calls MINFILL(F')
with F' = F-DF(x) and MINFILL(F") with F" = DF(x) produced by
MINFILL(F) have parameters which are disjoint sets. Thus each edge
can only occur in 0O(n) parameters, since the maximum depth of nested
calls on MINFILL is O(n) . Thus the O(n) time per edge in each set
DF(x) , when summed over all splitting vertices, is O(nge') . The
total time required by MINFILL is thus O(n“e') , and MINIMAL requires
O(n2e') time, O(nB) space, O(e') calls on MINFILL, and an O(n)
maximum depth of nested calls on MINFILL. If storage space is costly,
we can implement MINIMAL to run in the same time using only O(ne')
storage space, or to run in O(ne')g) time using only 0O(e') storage

space.

25

L. Computational Relationships with Other Problems.

In this section we show that algorithms FILL and PERFECT cannot
be improved too much without finding a new and better transitivity-
testing algorithm, and that the minimum fill-in problem is very hard.
In particular, we show that (1) any algorithm which computes an
ordering's fill-in can be used to compute the transitive closure of
a graph; (2) any algorithm which tests whether a graph has a perfect
elimination order can be used to test a graph for transitivity; and
(3) any algorithm which determines whether a graph has a fill-in of
some size e' or less can be used to test a propositional formula for
satisfiability.

Fill-in, Perfect Orderings, and Transitivity.

Given any acyclic graph G = (V,E) , consider the graph
G, = (Vo»E,) » where V, = {v(i) | vev, i€ {1,2}} and

E, ={(v(2),w(2)) | (v,w) eE} U {(v(1),v(2)) | veV} . Let a be an

ordering on V such that (v,w) ¢E implies oc-l(v) <o¢-l(w) . (Such

an ordering is called a topological sorting of G [7].) Let a, be

the ordering on YV, defined by ozél(v(i)) = n(2-i)+Ot-l(v) .

Applying Lemma 1, it is clear that the fill-in F((Gg) o) is
2
defined by

F((GE)GE) = {(v(1),w(2)) | ¥ a path from v to w in G} .

Given G , it is easy to construct G, in O(mt+e) time. Thus we have

26

Theorem 2. Given an acyclic graph G , we can construct in O(nte)

time a graph G2 with 2n vertices and nte edges, and an ordering

@, , such that the edges in F((Gg)a) correspond one-to-one with the
2

edges in the transitive closure of G .

Thus any algorithm for computing fill-in can be converted into an
algorithm (with the same time and space requirements, to within a
constant factor) for computing the transitive closure of an acyclic
graph. (The requirement that the graph be acyclic is not a significant
restriction; see[3,8].) Thus the fill-in problem is at least as hard
as the transitive closure problem.

Given any acyclic graph G = (V,E) , consider the graph
Gy = (v ’EB) » where Vs = {v(i) | vev, i€ {1,2,3}}U {s} , and
Ey = {(w(1),v(3)) | (w,v) €B, 1 < 33U {(s,v(1)) | vev)
U{(v(3),s)| vev}U{(s,v(3)) | veV} . Given G , it is easy to

construct G, in O(mte) time.

5

Lemma 5. G is transitive if and only if G, is perfect elimination.

3

Proof. Suppose G is transitive. Then for all distinct u, v, w,
u—-v and v -w in G imply uv - w . Let o be any ordering of

the vertices of G5 such that

oc'l(v(z)) e {1,2,...,n} for vevV ,
Ot-l(v(l)) e {n+l,...,2n} for wvev ,
ofl(v(B)) e {2m+1,...,3n} for veV , and

oz-l(s) = 3n+l

If G is transitive, elimination of the vertices {v(2)} causes

no fill-in, since (u(l),v(E)) s (v(2),w(3)) €E5 imply (El(l):w(a)) €E5

27

Then elimination of the vertices ({v(1)} causes no fill-in, since
(s,v(1)) , (v(1),w(3)) eE5 imply (s,w(3)) eE5 . Then elimination of
the vertices {v(3)} causes no fill-in, since s is the only remaining
vertex adjacent to any v(3) ., Thus, if G is transitive, G 1is
perfect elimination.

For the converse, suppose u - v and v - w in G . Consider
the cycle p =[u(l),v(2),w(3),s] in GB.It follows from Lemma 4

that if G5 is perfect elimination, there must be an edge in G5

joining u(l) and w(3) or joining v(2) and s . The only such
edge possible is (u(l),w(3)) . Thus u - w in G , and G is

transitive. O

Summarizing we have

Theorem 3. Given an acyclic digraph G , we can construct in O(nte)

time a graph G, with 2n+l vertices and %e+ 3n edges such that

3

G 1is transitive if and only if G, is perfect elimination.

3

Thus any algorithm for testing whether a graph is perfect
elimination can be used to test a graph for transitivity, at a cost
of only a constant factor in the running time. Munro[8] has shown
that the transitive closure of a graph can be computed in O(n2'81)
time using Strassen's fast matrix multiplication method [13]. Various
problems, including transitive reduction [1] and Boolean matrix
multiplication [3] are known to be computationally equivalent to
transitive closure. There may be a way to solve the fill-in and

2'81) time, by reducing them to

2.81

perfect ordering problems in 0O(n
transitive closure problems, but any improvement beyond O(n) would

improve the best bound known for Boolean matrix multipl:fcation.

28

Minimum Orderings and the Satisfiability Problem.

Now we show that the problem of finding a minimum elimination
ordering for a graph is NP-complete. For this purpose, we formulate
the problem in the following way: given any graph G = (V,E) and a
size e' , does G have an ordering which produces a fill-in of e'
edges or less? To show that this problem is NP-complete, we must
demonstrate that (1) there is a non-deterministic polynomial-time
algorithm for solving the problem; and (2) given any instance P
of a known NP-complete problem § , there is a polynomial-time trans-
formation which converts P into a graph G and a size e' , such
that the answer to P is "yes" if and only if G has an ordering
with a fill-in of e' edges or less. (For those not familiar with
the notion of an NP-complete problem, references [2,6] provide an
extensive discussion.)

Part (1) is easy: to discover whether G has an ordering which
produces a fill-in of size e' or less, we guess an ordering and
calculate its fill-in using FILL. Guessing an ordering and checking
its fill-in clearly require polynomial time. This algorithm is
non-deterministic; it can guess all possible orderings. If one of
them produces fill-in e' or less, the algorithm answers "yes".

Part (2) is quite a bit harder. For P we choose the satisfiability
problem of propositional calculus, which is known to be NP-complete [2].
Let P be any propositional formula with m variables. We may assume
that P is in conjunctive normal form with three literals per clause [2].
Let P have k clauses. We shall construct a digraph G(P) and a
size e'(P) such that G(P) has an ordering with fill-in of size
e'(P) or less if and only if there is a truth assignment to the

variables which makes- P true.

29

We use letters x, y, z to denote variables and p, 9 , r to
denote literals (variables or their negations). We use x to denote
the negation of x ; we regard X as another notation for x .

G(P) will contain some individual vertices and some cliques of
various sizes. If X and Y are cliques, we use a single "edge"
(X,Y) as shorthand to denote all possible edges from vertices in X
to vertices in Y . Similarly, the "edge" (v, X) will denote all
possible edges from vertex v to vertices in clique X .

The basic building block in the construction is the "ground"
configuration illustrated in Figure 1, consisting of a vertex v and

X, and X, . Observe that vertex v must be

three cllqlies Xl » X5 3

eliminated first and vertices in Xl second in any perfect ordering
of this grahh. (Any other ordering produces fill-in at least
min{\Xel s ‘Xl\'\xll'lxi] s |Xl|o\X2\} .) This construction also works
if all the edges are reversed.

Without loss of generality we may assume that for each variable x ,
x and X occur the same number of times in the clauses of P .
(Otherwise, we can add a suitable number of dummy clauses of the form
XXX Or XXX .) We may also assume that no occurrence of any variable
x follows an occurrence of X .n a clause.

For each variable x in P , G(P) contains two vertices, one
corresponding to x and one to x . We shall use x and X to
denote these vertices. For each clause (pvp vVvr) in P , G(P)
contains three vertices and three cliques, denoted by pqr(i) for
i=1,2,3, and X51<qu(i)) for i = 1,2,3 . Thus each literal

occurring in a clause has one vertex and one clique corresponding to

30

it (i.e., par(2) ,XBl(pqr(E‘)) correspond to the literal q in
(pvavr)). G(P) contains nineteen other cliques, denoted by

X and Xij for i =1,2,4,5,6 and j = 1,2,3

20" %50 %527%53 -
The cliques are arranged into sixh grounds.

Table 1 gives all the adjacencies in G(P) and the sizes of all
the cliques appear in Table 2. The sizes of the cliques are chosen to
make the calculations simple, not to be as small as possible. Figure 2
illustrates G(P) for P = (xvyvz)A(xvyvaz).

It is clear that the size of G(P) is polynomial in the length
of P, and that G(P) can be constructed in polynomial time given P .
G(P) 1is designed so that producing & small fill-in requires that
vertices corresponding to the false literals for some truth assignment
of P must be eliminated before any vertices in cliques Xll s XEO s
X61 B XSO s or Xhl . If some truth assignment satisfies P , there is
a corresponding elimination order which produces a small fill-in. If
no truth assignment satisfies P , there is no elimination order with

small fill-in. The next result formalizes this idea, and finishes

the proof that the minimum fill-in problem is NP-complete.

Theorem 4. G(P) has an ordering with fill-in (m + %{ + 1)‘0-1

or less 1f and only if P is satisfiable.

Proof. First we show that if F is not satisfiable, every ordering

of G(F) produces fill-in (m + %+ l)b or greater. Suppose F

is not satisfiable. Let a be any elimination ordering. We must

consider several cases.

31

Some vertex pqr(i) representing a literal is eliminated after
some vertex in X51(pqr(i)) . Then depending on whether a
vertex in X5l(pqr(i)) » Xz 5 OT Xgg is eliminated first,
the fill-in is at least 02 s % ; or clL . Examining Table 2,
we see that b < (2m+7k+1)c and (m+ —52—k+ l)b <

(m+ Z—k+ l)(2m+7k+l)c < c?

Case (i) does not hold and some vertex pgr(i) representing a
literal is eliminated before the corresponding variable vertex

(p if 4 =1 , qif 1 = 2 , r if 4 =3). Then the

£ill-in is at least c= > (m + -525+ l)b :

(iii) Cases (i) and (ii) do not hold and some vertex v not a variable

(iv)

(v)

vertex, not a literal vertex, not in X or X55 » and not in

32

any X51(pqr(i)) is eliminated before any vertex in X, is

eliminated. The first such vertex v eliminated causes a

fill-in of at least c2 > (m + 221-{-+ 1)b .

Cases (i), (ii), and (iii) do not hold and at most m + 52_k -1

vertices among the x , X , and par(i) are eliminated before
any vertex in X4 Then the first elimination of a vertex in

Xll causes a fill-in of at least (m + %{ + l)b .
Cases (i), (ii), (iii), and (iv) do not hold. Then before any

vertex in X61UX20 ux OUXhl is eliminated, either two vertices

5
x and x or three vertices pqr(l) , par(2) , and pqr(3) must
have been eliminated (since F is not satisfiable). Either case

produces a fill-in of at least c2 > (m + % + 1)b .

32

Now suppose that P 1is satisfiable. Choose a truth assignment
for the variables which satisfies P . Consider the elimination order
given in Table 3. A careful examination of the adjacencies given in
Table 1 reveals that the fill-in listed in Table? is correct. The

size of the fill-in is bounded by (m+ kk)c+ (m + %ls)b+m+ >k <

(m+-5—2}5+ l)b-l. a

The graph G(P) used in this construction is not strongly
connected, but it can be made strongly connected by adding a new
vertex s and edges (s,x) and (x,s) for all vertices x in the
original graph. Such an addition does not affect the minimum fill-in.

It seems likely that there is a similar construction which shows
that the minimum fill-in problem for undirected graphs is NP-complete,
but such a construction is still undiscovered. (See[l2] for a

discussion of elimination orderings on undirected graphs.)

33

5. Remarks.

This paper has given an O(ne) algorithm for computing the
fill-in of any elimination ordering on a graph, an O(ne) algorithm
for finding a perfect ordering, and an O(nee') algorithm for finding
a minimal ordering. There may be a way to solve the fill-in and
perfect ordering problems in O(n2'8l) time, but any improvement
beyond this would improve upon the best algorithm known for transitive
closure. The minimal ordering algorithm may be improvable to O(nee)
or even to O(nB).

The construction in Section 4 shows that the problem of finding
a minimum ordering is NP-complete. Since this probably implies that
exponential\time is required to find a minimum ordering, any practical
method for getting a small fill-in must be based on a heuristic.

Two heuristics, the minimum degree heuristic and the minimum fill-in
heuristic [11], seem to work well in practice, but there are no
theoretical results to support this assertion. The theoretical study

of such heuristics seems to be a good area for future research. gee

(12,13,16] for further comments regarding related issues.

3k

References

[1] A. Aho, M. Garey, and J. Ullman, "The transitive reduction of a
directed graph," SIAM J. Comput « , Vol. 1 (1972), 131-137.

[2] 8. Cook, "The complexity of theorem-proving procedures, "
Proceedings Third Annual ACM Symposium on Theory of Computing
(1971y, 151-158.

[3] M. Fischer and A. Meyer, "Boolean matrix multiplication and
transitive closure," Twelfth Annual Symposium on Switching and
Automata Theory (1971), 129-131.

(4] G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic
Equations, Prentice-Hall, Englewood Cliffs, N. J.(1967).

[5] L. Haskins and D. Rose, "Toward characterization of perfect
elimination digraphs," SIAM J. Comput., Vol. 2 (1973), 217-22k.

[6] R. Karp, "Reducibility among combinatorial problems, " Complexity
of Computer Computations, R. E. Miller and J. W. Thatcher, eds.,
Plenum Press, N. Y. (1972),85-10k.

[7] D. Knuth, The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Addison-Wesley, Reading, Mass., (1968), 258-265.

(8] I. Munro, "Efficient determination of the transitive closure of
a directed graph," Info. Proc. Letters, Vol. 1 (1971), 56-58.

(9] T. Ohtsuki, "A fast algorithm for finding an optimal ordering in
the vertex elimination on a graph," SIAM J. Comput., to appear.

[10] D. J. Rose, "Triangulated graphs and the elimination process,"
Journal of Mathematical Analysis and Applications, Vol. 32 (1970),
597-609.

(11] D. J. Rose, "A graph-theoretic study of the numerical solution of
sparse positive definite systems of linear equations,” Graph
Theory and Computing, R. Read, ed., Academic Press, N. Y., (1973),
183-217.

[12] D. Rose, R. Tarjan, and G. Lueker, "Algorithmic aspects of vertex
elimination on graphs," SIAM J. Comput., to appear.

[13] D. Rose and R. Tarjan, "Algorithmic aspects of vertex elimination,"
Proceedings Seventh Annual ACM Symposium on Theory of Computing
(1975), 2hks5-254,

[14] V. Strassen, "Gaussian elimination is not optimal," Numer. Math.,
Vol. 13, (1969), 354-356.

[15] R. Tarjan, "Depth-first search and linear graph algorithms,"

[16] R. Tarjan, "Graph theory and Gaussian elimination," Sparse Matrix
Computations, J. R. Bunch and D. J. Rose, eds., Academic Press,
New York, to appear.

55

Vertex or

Clique Size Adjacencies In Adjacencies Out
X 1 XZO’ X22 x’Xll’Xél’ all p?f(i)
containing x or x, all
x31(pqr(i)) with pqr
containing x or X
e§fep§r(1)),
X3, (Pxr(2)), X5, (pax(3)).
X 1 X, X22 X11’X61’X41’fqr(1) for
i=1,2,3, pxr(i) for
i=2,3, pgx(3), X, (par(i))
with pqr containing x
or x exXcept X31(xqr(l)),
X31(X?F(l)), X5, (pxr(2)),
X3l(px5(2)), X4, (Pgx(3)),
X31(qu(3)).
P>P,49,49,r,r corresponding
to variables, p,E
corresponding to negation
of variables
pqr(2) 1 qu(l):X52:X20’X22’ par(3) ,X5, (par(2)) X 4
P»P,q,q9,r,r corresponding
to variables, p,E,q,a
corresponding to negation
of variables
Table 1: Clique sizes and adjacencies in G(P)

Values of constants appear in Table 2.

56

Vertex or

Clique Size Adjacencies In Adjacencies Out
pqr(3) 1 qu(Z):st,Xzo,XZZ, PP, X905 X31(pqr(3)), X1
q,q,T,T
AT PAr(3), Xy5p:Xp00Xp2 %1 Xyp
X43,x,x
X 2 X,.,X X
42 41°%43 43
X 2 X X,.,X
43 42 41°°42
Xs, c Xgy par(1), X;,,X,,,X,, (pqr(i))
Xs51 1 X529 X53:X50:X5, (Par(i))
X ¢ X X_.,,X r(i),X, ,X
52 53 51°%53°P4 24170110
X) 9 X31(pqr(i))‘
X 2 X..,X X
53 51°%52 52
2 - -
X (par(1) ¢ par(1),4,q,7,1,X50,X0, Xy,
if
X52:X900X910%550%555P
P is the negation of a
variable
(pqr(2) e? pqr(2),p,p,r,r,X..,X X
X3 sPsP,T,T,Xg5,Xg 5 32

X52:X09%51:%55:%55,0 1f ¢
is the negation of a

variable

Table 1 (cont.)

57

Vertex or

Clique Size Adjacencies In Adjacencies Out
(pqr(3) c? par(3),p,p,q,q,Xe,X X
) PoPr 0 Qs 85058515 X3y
X520%90°%91:%990%345 T
if r 1is the negation
of a variable
X 2 X,.(pqr (1)), X X
32 31 > 33 33
Xqq 1 X3, X31(pqr(i)), X4,
X c2 X,%X,X X X X X
11 2 X3890°%22°%502 %52 12
pqr(i), X3
X192 b X90°%22:%50:%520%17:%13 Xy3
%13 1 X192 X11°%12
X1 c X,Xg3:%9y Xe2
X 2 X, .,X X
62 ¢ 61°%63 63
X 2 X X . ,X
63 ¢ 62 61°°62
%50 ¢ X1 %,X) 19X 90X 0%5; (Par (1)),
pqr (1)
X1 1 X2 Xy3:Xp09%,15%31 (Par (1))
X 2 X Xeo s Xons XX, .,X X
22 Cc 23 21°%23°%11°%12° 613an,
X41,X31(pqr(i)),pqr(1)
X 2 X..,X X
23 ¢ 21°%22 22

Table 1 (cont.)

38

(m + 3k D@2m + 7k + 1) +1

2
b=(m+4k)c+m+ 3k + 1

%51 = 1%y 1 = [x%g5] =[x = 1
%y, = b

Xyl = Xgol = 1%yq) = Ixg | = e

All other cliques have size cz.

Table 2: Constants for clique sizes in G(P).

39

Elimination Order Fill-in Size
Vertices corresponding to XZO > X, X + X61 me
false variables and negations
of true variables
Vertices pqr(i) corres- Xeg * pqr(2), Xeo ™ pqr(3) < 4ke
ponding to false literals, pqr (1) -+ x41, pqr(2) » X41
in order pqr(1l) ,pqr(2) ,pqr(3)
X x + X X > X r(i) » (m + ék?b
11 12° 12° P4 2
X2
%13 0
X12 - 0
3k
%20 Xy1 7 XXy > XXy 2 m+ 5
pqr(i)

%1 0
X3 - 0
X22 - 0
Rest of vertices corresponding - 0
to variables

3k
Xg) X5y > par(d) 5
X51 - 0

Table 3:

Lo

Elimination order for G(P) if P is satisfiable.

Elimination Order Fill-in Size

X53 0
X52 0
rest of vertices pqr(i) in 0

order pqr(l) , pqr(2), pqr(3)

X5, (par(1)) 0
Xss 0
X32 0
X,, \ 0
%43 - 0
X42 ~ 0
X, - 0
X, 5 - 0
X62 0

Table 3 (cont.)

Total fill-in is < (m + 4k)c + (m + %;)b + m + 3k

L1

Figure 1: A 'ground" configuration used as building block
in NP-completeness construction. Point v is

a single vertex; circles denote cliques.

Lo

]
O\
\

G

SN X
NEEEA

£

X
2l X
20 y
O
X22 2
xyz(1)
52 *
v xyz(1
*
4
*
Figure 2(b). Elimination of starred vertices gives the rest of the

edges in G(P)

Ly

