
ALGORITHMIC ASPECTS-OF VERTEX ELIMINATION
ON DIRECTED GRAPHS

by

Donald J. Rose

Robert E. Tar jan

STAN-CS-75-531

NOVEMBER [975

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

ALGORITHMIC ASPECTS OF VERTEX ELIMINATION ON DIRECTED GRAPHS

*

Donald J. Rose wl
g Applied Mathematics, Aiken Computation Laboratory

Harvard University, Harvard, Massachusetts 02138

HK

Robert Endre Tarjan **/
Computer Scierice Department

Stanford University, Stanford, California 94305

“

Abstract

We consider a graph-theoretic elimination process which is related

~ to performing Gaussian elimination on sparse systems of linear equations.

We give efficient algorithms to:

(1) calculate the fill-in produced by any elimination ordering;

(2) find a perfect elimination ordering if one exists; and

(3) find a minimal elimination ordering.

We also show that problems (1) and (2) are at least as time-consuming
LN

as testing whether a directed graph is transitive, and that the problem

of finding a minimum ordering is NP-complete.

Keywords: directed graph, elimination ordering, fill-in, Gaussian

elimination, NP-complete problem, perfect elimination graph,

sparse linear system.

w

. */ Research partially supported by the Office of Naval Research under

contract NOOOlL-67-A-0298-003L4 at Harvard University.
3

*/ Research partially supported by a Miller Research Fellowship at
University of California, Berkeley; by National Science

. Foundation, grant DCR72-05752 AO2 and by the Office of Naval
Research contract NR OLL-402. Reproduction in whole or in part
is permitted for any purpose of the United States Government.

1

.

1. Introduction and Notation.

A directed graph (digraph) is a pair G = (V,E) where V is a

~ finite set of n = |v| elements called vertices and E c {(v,w) | v,w eV,
v # w} is a set of e = |E| ordered vertex pairs called edges.

Given veV , the set A(v) = {wev | (v,w) €¢E} is the set of vertices

= adjacent out from v ; the set B(v) = {uev (u,v) €¢E} is the set

of vertices adjacent into v . A(v) and B(v) are called the

adjacency sets for vertex v . |A(v) | = dr (7) is the out-degree

Ny of v 3; |B(v) | = dr (v) is the in-degree of v . The notation v -w
means weA(v) ; v Aw means wgA(v) . If W © V , the induced

subgraph G(W) of G is the subgraph G(W) = (W,E(W)) where
L. =

EW) , {(w,y) € E| xy eW}

For distinct vertices v,weV , a V,w_path of length k is a

sequence of distinct vertices pu =1[v = VisVps se eaViyq = w] such that

Ve 2 Veg for i = 1,2,...,k . A graph is strongly connected if there

is a path from every vertex to every other. A cycle of length k is

a sequence of distinct vertices wu =[vy,v,-. .»V,] such that v, =v,

for 1,2,...,k and Vie © Vp oe A graph is acyclic if it has no cycles.

. The transitive closure of graph G = (V,E) is the graph ol = (V,E) ’

where (v,w) cE if and only if v # w and there is a path from v

to w in G . A graph G is transitive if it is equal to jtsg

transitive closure. Equivalently, G is transitive if and only if

for all w,vyw , u-v and v -w together imply uw -w or u=w .

A clique is a graph G = (V,E) with E = {(v,w) | v,weV, v #£ w} .

For a graph G = (V,E) with |v =n , an ordering of V is a

bijection a: {1,2,...,n} « Vv . GG, = (V,E,a) is an ordered graph.
C

2

.

For a vertex v , the deficiency D(v) is the set of edges

defined by

~ D(v) , {xy |x-v, voy, xhby, x ty).

The graph G_ = (v-{v} , E(V-{v}) UD(v)) is called the v-elimination

| graph of G . For an ordered graph G, = (V,E,a) , the elimination
} Process

P(G,) =[G=G, Gq sGps-- 5G 1]

3 is the sequence of elimination graphs defined recursively by Gq = G ,

Gy = (G_7) ai) for i = 1,2,...,n-1 . If G,; = (V;5E;) for
i=0,1,...,n=1, the fill-in F(G,) is defined by

- PG) = ita D, ,(a(i))
x io i-1

where D, (oA i)) is the deficiency of «a(i) in G;_y » and the

' elimination graph ¢ is defined by
*

G, = (V, EUF(G,)) -

C The notion of vertex elimination arises in the solution of sparse
systems of linear equations by Gaussian elimination. Given any nxn

; matrix M = (m; 5) which represents the coefficients of a set of linear

equat ions, we can construct an ordered graph Go = (V,E,a) , where

vertex Ve corresponds to row i , and (vis) cE if and only if

ms #0 and i # J . The unordered graph G = (V,E) corresponds to
the equivalence class of matrices PMP , Where P is any permutation

matrix.

If we solve the system with coefficients M using Gaussian

elimination, eliminating variables in the order 1,2,...,n , then the

edges D; _;(v;) correspond exactly to the new non-zero elements

created when row i is eliminated (assuming no lucky cancellation

~ of non-zero elements). For further discussion of this correspondence,
see [10,11]. To make the elimination process efficient, we might, for

example, like to create no more non-zero elements than necessary,

= that is, to find an elimination ordering which minimizes the fill-in.
Given a graph G = (V,E) , an ordering a of V is a perfect

elimination ordering of ¢ if F(G,) = @ . Thus o is a perfect
~ -1 -1 -1

ordering if u » v, v » w, a ~(u) < min(a “(v) ,a (w)) together

imply u=w or u -w . A graph which has a perfect elimination

ordering is_called a perfect elimination graph. An ordering a is
“

a minimal elimination ordering of G if no other ordering Bg satisfies

F(Gg) - F(G,) where the containment is proper. An ordering a is a

) minimum elimination ordering of G if no other ordering B satisfies

N F(a) < F(a.) . Any elimination graph c is a perfect elimination
graph, since « is a perfect ordering of this graph. Any perfect

C ordering of a graph is minimum, and any minimum ordering is minimal.
| If a graph is a perfect elimination graph, any minimal ordering is

. perfect.

A problem important in practice is that of finding a minimum

elimination ordering for any graph G . We shall show that this

problem is NP-complete. To balance this negative result, we give

polynomial-time algorithms for some simpler problems. We present
w.

X/ The so-called NP-complete problems are the hardest problems solvable
by non-deterministic Turing machines in polynomial time. Either all

the NP-complete problems have polynomial-time algorithms, or none of
them do. Such famous hard problems as the traveling salesman

. problem, the satisfiability problem of propositional calculus, and
the maximum clique problem are NP-complete. See [2,6].

L

-

methods for

_ (1) computing the fill-in produced by any ordering @ , in O(ne)
time;

(2) generating a perfect ordering, if one exists, in O(ne) time;

< (3) generating a minimal ordering, in on™) time.

(For all time bounds we assume n < etl , which holds for all graphs

that are at least weakly connected.)

. We shall also show that any method for either (1) or (2) can be

used to test whether an arbitrary directed graph is transitive. Thus,

achieving a time bound of better than O(min(ne, n2-81y, for either of

~ these probléms would improve on the best bound known for Boolean matrix

multiplication [5]. The restrictions to undirected graphs of problems

(1), (2), (3) have been considered in [12], which presents an

\& O(n+ e') algorithm for (1) (where e' is the number of edges in .,)s
an O(n+ e) algorithm for (2), and an O(ne) algorithm for (3)

(Ohtsuki [9] has also devised an O(ne) algorithm for (3)).

\ This paper is divided into several sections. Section 2 contains

some properties of fill-in and elimination orderings which provide a

| basis for the algorithms. Section 2 also informally describes the

. algorithms. Section 5 contains implementations of the algorithms and

analyses of their running times. Section 4 describes relationships

among problems (1), (2), and the transitive closure problem, and between

.~ the minimum ordering problem and the NP-complete problems.

“

2. Properties of Fill-in and Elimination Orderings.

Our first result characterizes the fill-in produced by any

~ elimination ordering.

Lemma 1. Let G = (V,E,a) be an ordered digraph. Then (v,w) is

_ an edge of c = (Vv, EUF(G,)) if and only if there exists a path
w= [v= VisVos esi = w] in G, such that

(1) ov.) < min(e(v),a”(w)) for 2<ic<k.
a“

Proof. We show by induction on {f = min(Q™(v), 0 (w)) that, given

any edge (v,w) in c, , there exists a path from v to w with
7 the required property (1). If 2 = 1 , (v,w) is in G¢ and (1)

holds vacuously. Suppose the result holds for all 1 < £2 < L, and

let 1 = {tl . If v -vw in G then (1) again holds vacuously.

_ Otherwise (v,w) ¢ F(G,) and we have by the definition of F(a) an

xeV with a(x) < min(o(v) a" (w)) and v =X , X - Ww in Gc
The induction hypothesis implies the existence of v,x and xX, Ww

. paths in G, satisfying (1) and combining these paths gives the

required v,w path.

) The converse is established by induction on k , the length of | .

. If k=1, v -w in c trivially. Suppose the converse holds for

all k <k, and let k = k+l . Let y = [v = VisVpsees Vy, g = Ww]

be a path in G, satisfying (1) and choose x = Vey such that

“ ov,) = max{a (v) | 2 < j <k}. The induction hypothesis implies
thatv -— x and x -» w in G. hence v -w in c ve

“

6

|

We can use this lemma as the basis of an O(ne) time algorithm

for computing the fill-in produced by any ordering « . It is

- sometimes more efficient, however, to compute the fill-in directly.

If v and w are any vertices, (v,w) eEUF if and only if either

(vow) €eE or there is a u such that atu) < min{o™ (wv), Hw) } ,
— (vou) eEUF , and (w,w) eEUF. We can compute the fill-in edges

(vow) , in increasing order on the value of av) , by using this

observation. This method of computation is called row elimination

- or Doolittle elimination [4] when it is used to carry out numeric,

rather than symbolic, Gaussian elimination. Section? discusses two

algorithms for computing fill-in, one based on this direct method and

N one based on Lemma 1.

Lemma 2. Let G = (V,E) be a perfect elimination graph, with perfect

C ordering «a . Let xeV and let G' = (V, EUD(x)) . Then a is a
perfect elimination ordering of G' .

Proof. We must show that given w » y , y —-2z in G' with vw # z

L and ay) < min(a™T(w),a (2) , it follows that w -» z in G' .

We must consider three cases. If (w,y),(y,z) ¢eE , (w,2) e¢E since

a is perfect. If (w,y),(y,z) eD(x) , then w =» x , x =» z in G

L and (w,z) ¢eEUD(x) . The last case is (w,y) ¢E , (y,2) eD(x)

(or equivalently (w,y) eD(x) , (y,z) €¢E). In this case y -» x ,

x -2 in G and y Az in G. If Ww =x, then (w,z) cE .

L Otherwise (i.e., if w # x), atx) > at (y) since «a is perfect,

and w - x in G , also since a is perfect. But w -x , XxX - 2

in G imply (w,z) €E UD(x) .

C

7

C

Corollary 1. If G = (V,E) is a perfect elimination graph and x

is any vertex, the x-elimination grath G_ = {v-{x}, E(v-{x]}) UD(x)}

is also a perfect elimination graph.

Corollary 2. If G = (V,E) is a perfect elimination graph and x

2 is any vertex with D(x) = @ , there is a perfect elimination ordering

a with a(l) =x .

Corollary 2 implies the correctness of the following algorithm

for finding a perfect ordering if one exists.

algorithm PERFECT (G): begin
i :=0;

while G has some vertex v with D(v) = ¢ do begin

1 := it+1;

a(i) := v3

delete v and all incident edges from Gj;

~ end end PERFECT;

If this algorithm succeeds in ordering all the vertices, GG is

perfect; if not, G is not perfect. Section 3 gives an O(ne) time

implementation of this algorithm.

Our next results give properties of minimal orderings. Let

G = (V,E) be a graph. A set F of edges is a fill-in for G if

ENF =¢ and G' = (V,EUF) is a perfect elimination graph.

F is a minimal fill-in if no set Fj C F is such that Gy = (v, EUF,)
“ is a perfect elimination graph.

C

.

Lemma 3. Let G = (V,E) be a perfect elimination graph. Suppose

F#@ dis a fill-in for G . Let G' = (V,EUF) . Then HfeF such
-

that G'-f = (V, EUF-{f}) is perfect elimination (i.e., F-{f} is

a fill-in). |

— Proof. We prove the lemma by induction on n = |v] - If n < 2,

the result is obvious since any graph with one or two vertices is

perfect elimination. Suppose the result is true for all n < n, and

\“ let n = ntl . Let R = {x | D(x) = ¢} where D(x) is the deficiency

in G and let § = {x | D'(x) = #} where D'(x) is the definiciency

in G' . We know R # ¢ and S # ¢§ . We must consider two cases.

~ (1) For some xeS there exists an edge feF of the form f = (u,x)

or f = (x,u) . By Corollary 2 there is a perfect elimination

order Bg for G' with B(l) = x . Then RB is also a perfect

- order for G'-f .

(ii) Case (i) does not hold. We prove Ex eS with F ¢ D(x) . Pick

any zeS . If FE D(z) , let x = z . Otherwise, since
\ .

D(z) € F , F = D(z) . In this case, let x be any vertex in R .

By Corollary 2, there is a perfect ordering « of G such that

a(l) = x , and by Lemma 2, « is a perfect ordering of G' .
a

Thus xeS . Since D(x) =¢, F & D(x) .

Now G = (V-{x}, E(V-{x}) UD(x)) and G; = (V-{x}, E(V-{x}) UFUD(x))

are perfect elimination by Corollary 1. By the induction hypothesis
(

df e F-D(x) such that Gy =f is perfect elimination. But then G'-f

is perfect elimination since ffD(x) . O

8 Lemma3 gives the following theorem.

9

Theorem 1. Let G = (V,E,a) be an ordered graph. Then a is a

. minimal elimination ordering if and only if for each fe F(G,) ,
x-

Gf = (Vv, EUF(G,)-{f}) is not perfect elimination.

Suppose G = (V,E) is a graph and F is a fill-in for G .

Lemmas 2 and 5 lead to the following recursive procedure for finding

a minimal fill-in Fy CF.

A. procedure MINFILL (V,E, FF) ; begin
declare Fs Fy set variables local to procedure MINFILL;
if G = (V,E) has no vertex x with D(x) C F then ¥ mT

else begin

L letx be a vertex with D(x) c F;

call 1: MINFILL (V-{x},E(V-{x}) UD(x),F(V-1x}) -D(x),F,) ;
if D(x) = ¢ then Fy i= F;
else begin

“ call 2: MINFILL (V, EUF;,D(x),F,);
Fy := Fo URS;

end end end MINFILL;

It is not hard to see that this procedure works correctly: If

every vertex x has D(x) = F then F is clearly minimal. If some

vertex x has D(x) © F , then the first recursive call on MINFILL

produces a fill-in F, c F minimal for G, - If D(x) = ¢ , F, is
minimal for G by Corollary 2. If D(x) # ¢ , then for all proper

subsets F] C F; and all subsets F, <D(x) , g" = (v, EUF! UF,)
1s not a perfect elimination graph by Lemma 2 and Corollary 2. hus ,

if F, ©D(x) is a minimal fill-in for G" = (V, EUF,) , then

Fy UF, is a minimal fill-in for G .
“

10

\

Combining MIN IILL, with the algorithms for computing fill-in

and finding a perfect ordering, it is easy to build an algorithm to
—

find a minimal ordering. Section 5 contains such an algorithm,

MD

implemented so that it runs in 0(n'e') time, where e' = |EUF| .

g We conclude this section with a lemma proved in [5] giving a
necessary condition for a graph to be perfect elimination. We shall

use the lemma in Section L.

~ Lemma4 (Haskins and Rose [5]). Let G be a perfect elimination

graph. Then for every set X of k > 2 vertices there is a subset

Y of k-1 vertices such that any cycle on X has a subsequence which

~ is a cycle on Y -

i

.

.

11

.

3. Implementation and Complexity of the Algorithms.

~~ Fill-in.

To calculate the fill-in produced by an ordering & using Lemma 1

we must find the vertices w reachable from each vertex v by a path

whose intermediate vertices satisfy (1). To find paths which start at

a fixed vertex v and have this property, we conduct a search starting

from v . First we allow the search to pass through only the vertex

A of lowest elimination number. Then we extend the search through

vertices of second lowest number, third lowest number, and so on.

In this way we can find appropriate paths efficiently. A program to

~ implement this method appears below in Algol-like notation. given an

ordered digraph G, = (V,E,a) with adjacency list A(v) for each veV ,

it calculates the edges in 6 .
~

.

\—

_

12

“

Algorithm FILL1 (G,): begin
for i := 1 until n do begin

v = ai);

for j := 1 until n dobegin

reach(j) := @; y

| mark(j) := false;
Bor

end;

mark(i) := true;

for w eA(v) do begin

C mark (ot (w)) := true;
add w to reach (oT (w));

*

mark (v,w) as an edge of G3
end;

C search: for J := 1 until i-1 do
while reach(j) # § dobegin

delete a vertex w from reach(j);

for z e A(w) doif- mark(a T(z) then begin
mark (a t(z2)) := true;
if az) > ; then begin

add z to reach(a (z));
*

mark (v,z) as an edge of G3

C end else add z to reach(]);
end end end FILL;

It is easy to show, using Lemma 1, that this algorithm correctly

calculates the fill-in produced by « . The time required per execution

of statement search is 0O(e) since each vertex v can only have

mark(v) set true once and thus each edge can only be examined once.

The total time for algorithm FILL1l is thus O(ne) . FILL1l requires

O(e) storage space, plus space for the output.

For graphs with a small number of edges but a large fill-in,

FILL]1 is an efficient way to compute the fill-in. For graphs with

15

“

smaller fill-in, it 1s more efficient to use a direct method based

on the observation following Lemma l. The only tricky part of such
-

an algorithm is avoiding adding edges to the fill-in twice. 175 handle

this difficulty,we use a bit vector fill(j) which records, for some

current value of i , whether (o(i),x(j)) has been added as a fill-in
-

edge.

algorithm FILL2 (G,) begin
C for j := 1 until n dofill(j) := false;

for 1 := 2 until n do begin
list := OF

for (a(i),w)¢E dobegin
£311 (aL(w)) := true;

if at (w) < 1 then add w to list;
end;

while list # ¢§ do begin

delete some w from list;
- =

for (w,y) eE UF with a (w) < a (y) do
if fille (y)) then begin

add (a(i),y) to F;

if a” H(y) < i then add y to list;
end end

for (a(i),w) eEUF do begin fill(a ~(w)) := false;
end end FILL2;

It is immediate that this algorithm correctly computes the fill-in

F produced by an ordering & . FILL requires (e') storage space,

where e' = |E UF] . To estimate the time requirements of FILL2, let
-1 -1

dy (v) = {(v,w) eBEUF | @"(v) > @~(w)} and let

d,(v) = {(v,w) eEUF | av) < ote) y Then FILL2 requires

oe + 2. d.(v)-d 0) time.1 2
veV / ‘

1h

C

Algorithm FILL2 has the advantage that its computation time is

| proportional to the number of arithmetic operations necessary to do
-

numeric Gaussian elimination. Thus FILL2 can be used to precompute

the fill-in for a numeric equation solver at a cost of only a constant

| factor in the running time. (See [16].) This is not necessarily true

of FILL1l. However, for sparse graphs or graphs with large fill-in

algorithm FILLL is more efficient.

C

Perfect Orderings.

To implement the perfect ordering algorithm so that it is

C efficient, we need lists to keep track of the deficiencies of each

vertex. We use the following lists. For each veV , D(v) is a

list of triples (x,v,y) such that (x,y) is in the deficiency

of v . For each xeV , L(x) contains one pointer to each occurrence

of a triple of the form (x,v,y) in some D(v) , and one pointer to

each occurrence of a triple of the form (y,v,x) in some D(v) .

When a vertex x is deleted from the graph, we use L(x) to update

the deficiency lists of the vertices. We need two other variables:

. a(v) is a Boolean array used to help initialize the D and I lists,

and N is a list of the vertices v with D(v) = ¢ .

Until N = ¢ , the algorithm must carry out the following steps:

find a vertex in N ; delete it and its incident edges from the graph;

and update the D lists appropriately. An implementation is presented

below.

..

15

“

|

algorithm PERFECT(G); begin

for veV do begin D(v) := L(v) := @; a(v) := false end;
N := @3

comment compute initial deficiencies;

g forw e A(u) do a(w) := true;

for v eA(u) do

forwe A(v) do if — a(w) and (w # u) then begin
add triple (u,v,w) to D(v);

~ add to lists L(u) and L(w) pointers to this triple (u,v,w);

end;

for w eA(u) do a(w) := false

end;

g comment initialize list of deletable vertices;

for veV do if D(v) := ¢ then add v to N;
comment delete as many vertices as possible;

i := 03

delete: whileN # § do begin
delete some vertex u from N;

at) i= 1 := i+1;
a(i) := ug

update: for p e L(u) do begin
delete from D(v) the triple (x,v,y) at which p points,

if this triple has not been deleted already:

if D(v) = ¢ then add v to N;

comment if i := n then G is a perfect elimination graph;

otherwise G is not a perfect elimination graph;

end PERFECT;

This program clearly implements algorithm PERFECT correctly. We

analyze the running time of the program. For each edge (u,v) , the

“ program spends O(1l+ d(v)) time in the initialization loop init .

16

\

The total time spent in init is thus o(nt e+ 2 a (v) 41)) .veV

Since all the entries in the D and IL lists are created in init,

and each vertex is added to N at most once, the total storage

requirements of PERFECT are one e+ 2 dL (v) 2%) . The timeveV

.~ spent executing statement delete is O(n e+ 2 a (v) (1))veV

since the amount of time spent in update is proportional to the

number of entries in the D and IL lists, and the amount of time

" spent in delete outside of update is O(n) . Thus PERFECT requires

o(n+ e+ 2 a (v) (1) time total. Since dn (Vv) <n for all vveV

q and 2 d_{v) = e , the running time is O(ne) . If da(v)+ d4,(v) < a
veV

for all vertices, the bound is 0(nd”) . If storage space is at a

premium, PERFECT can be implemented to run in O(nte) space and 0(ne)

- time.

| Minimal Orderings.

We can use procedure MINFILL in combination with FILL and PERFECT

] to compute a minimal ordering for any graph. Given a graph G = (V,E)

| we choose any ordering « and calculate its fill-in F = F(G,) using

) FILL. Next, we compute certain sets which MINFILL needs for its

calculations. These include the deficiency D(x) in c for each
vertex x , the set DF(x) = {(u,v) | u = x,x = v in G2» u # v, and

(uy v) is a fill-in edge} for each x , and certain lists necessary

for updating the graph and the sets D(x) and DF(x) . Then we apply

MINFILL(F) . MINFILL(F) is coded as a recursive procedure which,

17

-

given a graph G = (V,E) and a fill-in F , finds a minimal fill-in

Fy C F and updates G to include the edges in Fy . Once a minimal

“ fill-in Fy is found, we apply PERFECT to find a perfect ordering pB

of G' = (V,E UF,) . This ordering is a minimal ordering of the
original graph G . An outline of the algorithm appears below.

~

algorithm MINIMAL(V,E); begin

procedure MINFILL(F); begin

delete: while some undeleted vertex x has D(x) = ¢ and d an edge

. (u,x) or (%x,u) in F do
delete all edges (u,x) or (x,u) from F, updating

lists representing graph accordingly;

split: if some undeleted vertex x has (D(x) = ¢) and (DF(x) C F)

C ~then begin
delete edges in DF(x) from fill-in and add to graph

temporarily;

delete x and incident edges from graph;

C F := F-DF(X);
call 1: MINFILL(F);

add x and incident edges to graph;

if DF(x) # ¢ then begin

C delete edges in DF(x) from graph and add to fill-in;
F := DF(x);

call 2: MINFILL(F);

end end else add all edges in F to Fy and to graph, and
set F := @;

end MINFILL;

: find any ordering a of vertices V;

compute fill-in F = F(G,) using FILL(G,) ;
N compute initial deficiencies;

Fy i= oF
MINFILL(F);

“

18

C

comment as MINFILL executes, it adds to Fy and to the graph
edges which are found to be in a minimal fill-in;

9 find a perfect ordering p of graph Gj = (Vv, EUF,) using
PERFECT (Gy) ;

comment B is a minimal ordering of Gj;

end MINIMAL;
[NS

We still need to fill in the details of this algorithm and to

estimate its time and space requirements. The tricky part of the

implementation is representing the deficiencies so that they are easy

to update. We use various lists similar to those used in PERFECT; we

need extra lists here since we must keep track of the fill-in edges.

« For each weV , A(v) and B(v) are adjacency lists for v in G ,

and A'(v) and B'(v) are adjacency lists for v in G' = (V,EUF) .

M(v,w) is an n xn matrix such that M(v,w) = 0 if (v,w) fEUF ,

“ M(v,w) = 1 if (v,w) e¢F , and M(v,w) =2 if (v,w) €¢E . For each

vertex v , D(v) is a list of edges (u,w) such that u - v, v -w

in EUF, u # w , and u Aw in EUF . DF(v) is a list of edges

« (u,w) such thatu » v, v-w in EUF, u # w , and (uw) ¢F.

P(u,v,w) is an array of pointers such that P(u,v,w) = 0 if

: (u,w) £D(v) UDF(v) otherwise. For each veV , g(v) = true if v has

~ not been deleted from the graph; g(v) = false if v has been deleted.

Below is an implementation of MINIMAL which uses these data

structures.

~

“

19

“

algorithm MINIMAL(G): begin

procedure MINFTLL(F); begin

_ delete: while some vertex x has g(x) and (D(x) = @) and
((&* (x) -4(x))U (B'(x)-B(x)) £ ¢) do begin

comment delete edges in fill-in which are incident

to x from graph 3

g for (u,v) € (A'(x)-A(x)) U (8 (x)-B(x)) do begin
F:=F-{(u,v)};

M(u,v) = 0;

. if P(u,v,w) £0 then begin
delete corresponding entry in D(v) UDF(v);

P(u,v,w) := 0;

end;

N if P(w,u,v) # 0 then begin
delete corresponding entry in D(u) UDF(u);

P(w,u,v) := 0;

for (u,v) € (A (x)-A(x)) U (B' (x) -B(x)) do
for wev do if (M(u,w) > 0) and (M(w,v) > 0)

delete entry (u,v) from DF(w) using pointer

~ Plu, wy, v) ;
add entry (u,v) to D(w) and put a pointer to

this entry in P(u,w,v);

delete (u,v) from A'(u) and B'(v);

N end;
| end delete;

split: if some vertex x has g(x) and (D(x) = @¢) and (|DF(x)| < 17)

N comment delete edges in DF(x) from fill-in and add to

graph temporarily;

comment also delete x and incident edges;

for (u,v) eA(x) UB(x) do M(u,v) := 0;

for (u,v) ¢DF(x) do M(u,v) := 2;

20

for distinct u,v,w eV such that (gun) = g(v) = gw) =

true) and x ¢ {u,w] do
- if P(u,v,w) £ O then begin

delete corresponding entry from D(v) UDF(v);

P(u,v,w) := 03

end;

- g(x) := false;

for (u,v) eDF(x) do

for wev do

if (P(u,w,v) £0) and (wv # x) and g(w) then begin
“ delete corresponding entry from DF(w) ; RE

P(u,v,w) := 0;

end;

F := F-DF(X);

“ call 1: MINFILL(F);

comment restore x and incident edges to graph;

comment delete edges in DF(x) from graph and add

to fill-in;

C g(x) := true;
for (u,v) e A(x) UB(x) do M(u,v) := 2;

for (u,v) eDF(x) do M(u,v) i= 1;
for distinct u,v,w ¢V such that x {u,w)} or (u,w) €DF (x)

- and (x #v)) do
if M(u,v) > 0 and M(v,w) > 0 then begin

if M(u,w) = 0 then add (u,w) to D(v) and
put a pointer to this entry in P(u,v,w);

\ if M(u,w) = 1 then add (u,w) to DF(v) and put
a pointer to this entry in P(u,v,w);

end;

call 2: if DF(x) # § then begin F := DF(x); MINFILL(F) end;

- end else for (u,v) ¢ F do begin
comment F is a minimal fill-in;

comment add edges in F to Fy and to graph;
comment delete all edges from fill-in;

|

J

21

\

M(u,v) := 2;

for weV do if P(u,w,v) # O then begin
delete corresponding entry from DF(v);

P(u,w,v) := 0;

add (u,v) to Fy and to Ej
L add v to A(u);

add u to B(v);

F:=0;

- end MINFILL;
find any ordering a of vertices V;

compute fill-in F = F(G,) using FILL(G,);
comment initialization;

b compute matrix M(v,w);

for veV do D(v) := DF(v):= @;

for u,v, w eV do

if (M(u,v) >0) and (M(v,w) > 0) and (u £ Ww) then begin

o if M(u,w) = 0 then add (u,w)to D(v) and put a pointer
to this entry in P(u,v,w)

elseif M(u,w) = 1 then add(u,w)to DF(v) and put a
pointer to this entry in P(u,v,w)

. else P(u,v,w) := 0;

end elseP(u,v,w) := 0;

Fy i= ds
for veV do g(v) := true;

. MINFILL(F);

find a perfect ordering p of G, = (V, E UF) using PERFECT (G,) 5
comment B is a minimal ordering of G;

end MINIMAL;
.

A few observations help in seeing that this program correctly

implements MINFILL. Matrix M and Boolean array g always encode

“ the current graph, with deleted vertices excluded. Every deleted

22

\.

r

vertex has all its incident edges in E (not in F) when it is deleted.

When a vertex is deleted, the value of DF(x) is left intact, as are

all pointers of the form P(v,x,w) . This gives us a place to save

DF(x) , and makes updating the graph after call 1 easier. The graph

updating throughout the program is straightforward.

- It is an Interesting exercise to figure out the resource requirements

of the algorithm. Let e' be the number of edges in the graph c where
Q@ 1s the arbitrary ordering selected initially. We shall show that the

L total number of calls on MINFILL is O(e') , the maximum depth of nested

calls on MINFILL is O(n) , and MINIMAL uses 0(n”) space and 0(n°e')

time. We make several observations which lead to these bounds. First,

the time spent in MINIMAL outside of MINFILL is clearly on’) . Also,

the storage required, not counting storage for the procedure parameter

: F in MINFILL, is clearly 0(n’) :

- Now consider the nested recursive calls on procedure MINFILL.

Either a procedure call MINFILL(F) is a bottom-level call on MINFIL or

it leads to two nested calls MINFILL(F') and MINFILL(F'"), where

F' = F-DF(x) # ¢ and F" = DF(x) # ¢§ . Thus the nested calls on

MINFILL may be represented as a binary tree. The topmost vertex of

the tree corresponds to the outer call MINFILL(F(G,)) . Each leaf

of the tree corresponds to an innermost call on MINFILL. If FisFos .«. Fy

are the values of the parameters in these innermost calls, then

FOF, = ¢ and F, c F(G,) for all i, j . Since [F(c) | <e',
k < e' , and the total number of calls on MINFILL is O(e') .

Consider the depth of nested calls on MINFILL. Suppose the call

MINFILL(F) leads to a call MINFILL(F') with F' = F-DF(xXx) by

22

statement call 1 with F' = F-DF(x) and to a call MINFILL(F")

with F" = DF(x) by statement call 2 . Suppose we name x the

splitting vertex for the call MINFILL(F). Vertex x is absent from

all graphs considered during the execution of MINFILL(F'). The

fill-in is always contained within DF(x) for all graphs G'

considered during the execution of MINFILL(F"). Thus x cannot

be a splitting vertex for the calls MINFILL(F'), MINFILL(F"), or any

calls nested within them. It follows that each nested call on MINFILL

has a different splitting vertex (unless it is an innermost call with

no splitting vertex) and the maximum depth of nested calls on MINFILL

is O(n) . _

Since parameter storage space for one call on MINFILL is 0(n°) ’

the total parameter storage requirements for nested calls on MINFILL

are 0 (n°) , and the total storage required by MINIMAL is 0(n”) :
Consider the time used during one call on MINFILL, not counting

time spent in nested calls. Time spent testing the condition in while

loop delete is O(n) if we keep track of the sizes of all A(x) ,

A(x) , B(x) , B'(x) as the graph changes. Time spent executing

; while loop delete is O(n) per edge deleted from the fill-in. |

Once an edge is deleted in step delete , it never reappears. Thus

the total time spent in delete over all calls on MINFILL is O(ne')

to test the condition plus O(ne') to delete edges from F and update

the graph.

Time spent testing the if condition in statement split is O(n)

if we keep track of the size of each DF(x) and the size of F as

the graph changes. Time spent executing the then branch of split

2k

is 0(n°) to update the graph by deleting and later adding x ,

C O(n) time per edge in DF(x) to update the graph, and 0(e') time
generating each nested call on MINFILL (since the sets F-DF(x) and

DF(x) together have at most 0(e') elements). Thus the total time

« spent in the then branch of split over all calls on MINFILL is

0(ne") plus O(n) time per edge in DF(x) .

The time spent in the else branch of split is O(n) per edge

< added to F | An edge added to Fy is added to the graph and never

deleted. Thus the total time spent in the else branch of split

over all calls on MINFILL is O(ne') .

“ In summary the total time required by MINFILL is 0(n°e") plus
O(n) time for each edge in each set DF(x) where x is a splitting

vertex. If x is the splitting vertex for the call MINFILL(F), each

« edge in DF(x) must be in F . The two nested calls MINFILL(F')

with F' = F-DF(x) and MINFILL(F") with F" = DF(x) produced by

MINFILL(F) have parameters which are disjoint sets. Thus each edge

« can only occur in O(n) parameters, since the maximum depth of nested

calls on MINFILL is O(n) . Thus the O(n) time per edge in each set

. DF(x) , when summed over all splitting vertices, is 0(nZe") . The

. total time required by MINFILL is thus 0(n“e') , and MINIMAL requires
0(ne") time, 0(n”) space, O(e') calls on MINFILL, and an O(n)

maximum depth of nested calls on MINFILL. If storage space is costly,

. we can implement MINIMAL to run in the same time using only O(ne')

storage space, or to run in 0(ne')°) time using only 0(e') storage

space.

.

25

“

L. Computational Relationships with Other Problems.

5 In this section we show that algorithms FILL and PERFECT cannot

- be improved too much without finding a new and better transitivity-
testing algorithm, and that the minimum fill-in problem 1s very hard.

In particular, we show that (1) any algorithm which computes an

- ordering's fill-in can be used to compute the transitive closure of
a graph; (2) any algorithm which tests whether a graph has a perfect

elimination order can be used to test a graph for transitivity; and

- (3) any algorithm which determines whether a graph has a fill-in of

some size e' or less can be used to test a propositional formula for

satisfiability.

Fill-in, Perfect Orderings, and Transitivity.

Given any acyclic graph G = (V,E) , consider the graph

) G, = (VysE,) , where V, = {v(i) | vev, ie {1,2}} and
Es ={(v(2),w(2)) | (v,w) eE} U {(v(1),v(2)) | veV} . Let a be an

ordering on V such that (v,w) ¢E implies av) < aw) . (Such

an ordering is called a topological sorting of G [7].) Let a, be

) the ordering on V, defined by oS (v(1)) = n(2-1) + a" (v) .

. Applying Lemma 1, it is clear that the fill-in F((G,),,) is
defined by °

PG)) = {(v(1),w(2)) | 2 a path from v to w in G} .

Given G , it is easy to construct G, in O(nte) time. Thus we have

26

“

\.

Theorem 2. Given an acyclic graph G , we can construct in O(nte)

time a graph Go with 2n vertices and nte edges, and an ordering

N a, , such that the edges in F(8)g,) correspond one-to-one with the
edges in the transitive closure of G .

Thus any algorithm for computing fill-in can be converted into an

algorithm (with the same time and space requirements, to within a

a constant factor) for computing the transitive closure of an acyclic

graph. (The requirement that the graph be acyclic is not a significant

restriction; see[3,8].) Thus the fill-in problem is at least as hard

as the transitive closure problem.

| Given any acyclic graph G = (V,E) , consider the graph

G3 = (V3, Ez) , Where Vs = {v(i) | veV, ie {1,2,3}}U {s} , and

Es = {(u(i),v(3)) | (u,v) eE, i <j} U {(s,v(1)) | vev)

. U{(v(3),s)| veviU{(s,v(3)) | vev} . Given G , it is easy to
construct Gs in O(mte) time.

Lemma 5. G 1s transitive if and only if G5 is perfect elimination.

| Proof. Suppose G is transitive. Then for all distinct u, v, w ,
. u-v and v -w in G imply u - w . Let & be any ordering of

. the vertices of G such that

aHv(2)) € {1,2,...,n) for vev ,

atv(1) e {m+l,...,2n} for wvev ,

. aL (v(3)) ¢ {2m+1,...,3n} for veV , and

a s) = n+l

If G is transitive, elimination of the vertices {v(2)} causes

no fill-in, since (u(1),v(2)) , (v(2),w(3)) cE, imply (u(1),w(3)) € Ey

g

.

|

|

C

Then elimination of the vertices {v(1)} causes no fill-in, since

(s,v(1)) , (v(1),w(3)) € Ex imply (s,w(3)) cB, . Then elimination of
the vertices {v(3)} causes no fill-in, since s is the only remaining

vertex adjacent to any v(3) . Thus, if G is transitive, Gy 1s

perfect elimination.)

at For the converse, suppose u —- v and v —-w in G . Consider

the cycle py =[u(l),v(2),w(3),s] in Gy - It follows from Lemma U4

that if Gz is perfect elimination, there must be an edge in Go
\ joining wu(l) and w(3) or joining v(2) and s . The only such

edge possible is (u(l),w(3)) . Thus u -» w in G , and G is

transitive. [OO

Summarizing we have

Theorem 3. Given an acyclic digraph G , we can construct in O(nte)

time a graph G with 2nt+l vertices and Je+ ?n edges such that

G is transitive if and only if Go is perfect elimination.

. Thus any algorithm for testing whether a graph is perfect
| elimination can be used to test a graph for transitivity, at a cost

. of only a constant factor in the running time. Munro[8] has shown

. that the transitive closure of a graph can be computed in 0(n2 81
time using Strassen's fast matrix multiplication method [13]. Various

problems, including transitive reduction [1] and Boolean matrix

multiplication [3] are known to be computationally equivalent to

transitive closure. There may be a way to solve the fill-in and

perfect ordering problems in o(n? 81 time, by reducing them to

transitive closure problems, but any improvement beyond 0(n?5% would

improve the best bound known for Boolean matrix multiplication.

28

Minimum Orderings and the Satisfiability Problem.

Now we show that the problem of finding a minimum elimination

ordering for a graph is NP-complete. For this purpose, we formulate

the problem in the following way: given any graph G = (V,E) and a

size e' , does G have an ordering which produces a fill-in of e'

. edges or less? To show that this problem is NP-complete, we must

demonstrate that (1) there is a non-deterministic polynomial-time

algorithm for solving the problem; and (2) given any instance P

“ of a known NP-complete problem { , there is a polynomial-time trans-

formation which converts ©P into a graph G and a size e' , such

that the answer to P is "yes" if and only if G has an ordering

“ with a fill-in of e' edges or less. (For those not familiar with

the notion of an NP-complete problem, references [2,6] provide an

extensive discussion.)

“ | Part (1) is easy: to discover whether G has an ordering which
produces a fill-in of size e' or less, we guess an ordering and

calculate its fill-in using FILL. Guessing an ordering and checking

“ its fill-in clearly require polynomial time. This algorithm is

non-deterministic; it can guess all possible orderings. If one of

: them produces fill-in e' or less, the algorithm answers "yes".

“ Part (2) is quite a bit harder. For © we choose the satisfiability

problem of propositional calculus, which is known to be NP-complete [2].

Let P be any propositional formula with m variables. We may assume

i that P is in conjunctive normal form with three literals per clause [2].

Let P have k clauses. We shall construct a digraph G(P) and a

size e'(P) such that G(P) has an ordering with fill-in of size

- e'(P) or less if and only if there is a truth assignment to the

variables which makes- P true.

29

“

&

We use letters x, y, z to denote variables and p, q , r to

denote literals (variables or their negations). We use x to denote

the negation of x ; we regard X as another notation for x .

G(P) will contain some individual vertices and some cliques of

various sizes. If X and Y are cliques, we use a single "edge"

N (X,Y) as shorthand to denote all possible edges from vertices in X
to vertices in Y . Similarly, the "edge" (v, X) will denote all

possible edges from vertex v to vertices in clique X .

- The basic building block in the construction is the "ground"
configuration illustrated in Figure 1, consisting of a vertex v and

C three cliques xy 3 Xx and X3 . Observe that vertex v must be
eliminated first and vertices in xq second in any perfect ordering

of this grahh. (Any other ordering produces fill-in at least

R min{|X,| p x, 1x | 1%] ; 1%} 1x51] .) This construction also works
if all the edges are reversed.

Without loss of generality we may assume that for each variable x ,

x and x occur the same number of times in the clauses of P .

(Otherwise, we can add a suitable number of dummy clauses of the form

. XXX Or XxX .) We may also assume that no occurrence of any variable

x follows an occurrence of x .in a clause.

For each variable x in P , G(P) contains two vertices, one

corresponding to x and one to Xx . We shall use x and xX to

. denote these vertices. For each clause (pvp vr) in P , G(P)
contains three vertices and three cliques, denoted by pqr(i) for

i=1,2,3, and X34 (par(i)) for i = 1,2,3 . Thus each literal
occurring in a clause has one vertex and one clique corresponding to

“

30

.

it (i.e., par(2) » X3, (par (2)) correspond to the literal q in
(pvavr)). G(P) contains nineteen other cliques, denoted by

he

X00 X507 X30 X33 , and X, ; for i =1,2,4,5,6 and j = 1,2,3 .
The cliques are arranged into six grounds.

Table 1 gives all the adjacencies in G(P) and the sizes of all
“

the cliques appear in Table 2. The sizes of the cliques are chosen to

make the calculations simple, not to be as small as possible. Figure 2

illustrates G(P) for P = (xvyvz)A(xvyvz).
“

It is clear that the size of G(P) is polynomial in the length

of P, and that G(P) can be constructed in polynomial time given P .

G(P) is designed so that producing a small fill-in requires that

vertices corresponding to the false literals for some truth assignment

of P must be eliminated before any vertices in cliques X99 Xoq 2

. Xeq ’ Xe y OT X)q . If some truth assignment satisfies P , there is
a corresponding elimination order which produces a small fill-in. If

no truth assignment satisfies P , there is no elimination order with

small fill-in. The next result formalizes this idea, and finishes
-

the proof that the minimum fill-in problem is NP-complete.

) Theorem Lk. G(P) has an ordering with fill-in € + oF + 1-1
. or less if and only if P is satisfiable.

Proof. First we show that if F is not satisfiable, every ordering

of G(F) produces fill-in (m + By 1) or greater. Suppose F.

is not satisfiable. Let a be any elimination ordering. We must

consider several cases.

Lo

31

-

o

(i) Some vertex pqr(i) representing a literal is eliminated after

some vertex in X3 (par (i)) . Then depending on whether a
—

vertex in X34 (par(i)) » Xzp 5 OT Xzq is eliminated first,
the fill-in is at least c? ’ 4 , Or ne . Examining Table 2,

we see that b < (2m+ 7k+ 1)c and (ne xy 1) <C |

(n+ Ee 1) (m+ i+ 1c < ce |
(ii) Case (i) does not hold and some vertex pqr(i) representing a

literal is eliminated before the corresponding variable vertex
.

(p if i = 1 , q if i = 2 , r if i =3). Then the

fill-in is at least eZ > (m + La 1) .
. (iii) Cases (i) and (ii) do not hold and some vertex Vv not a variable

vertex, not a literal vertex, not in X20 or X33 , and not in

any X54 (par(i)) is eliminated before any vertex in X;, is
“ eliminated. The first such vertex v eliminated causes a

fill-in of at least ec? > (m + La 1) .
(iv) Cases (i), (ii), and (iii) do not hold and at most m + R - 1

~ vertices among the x , x , and pqr(i) are eliminated before

any vertex in X11 Then the first elimination of a vertex in

X17 causes a fill-in of at least (= + he + 1) .
(v) Cases (i), (ii), (iii), and (iv) do not hold. Then before any

vertex in Xpq UX UXey UX), is eliminated, either two vertices
x and x or three vertices par(l) , par(2) , and pgr(3) must

“

have been eliminated (since F is not satisfiable). Either case

produces a fill-in of at least ec? > € + bi + 1) .

32

“

Now suppose that P is satisfiable. Choose a truth assignment

for the variables which satisfies P . Consider the elimination order
hk

given in Table 5. A careful examination of the adjacencies given in

Table 1 reveals that the fill-in listed in Table’ is correct. The

size of the fill-in is bounded by (m+ bk)c+ (m + Z orm 2k <—

(m+ as 1)b-1 . 0
The graph G(P) used in this construction is not strongly

“ connected, but it can be made strongly connected by adding a new

vertex s and edges (s,x) and (x,s) for all vertices x in the

original graph. Such an addition does not affect the minimum fill-in.

~ Tt seems likely that there is a similar construction which shows

that the minimum fill-in problem for undirected graphs is NP-complete,

but such a construction is still undiscovered. (See[l2] for a

. discussion of elimination orderings on undirected graphs.)

~

“

-

| -

55

\

o

5. Remarks.

This paper has given an O(ne) algorithm for computing the

> fill-in of any elimination ordering on a graph, an O(ne) algorithm

for finding a perfect ordering, and an 0(n°e") algorithm for finding

a minimal ordering. There may be a way to solve the fill-in and

~ perfect ordering problems in o(n2 "81 time, but any improvement

beyond this would improve upon the best algorithm known for transitive

closure. The minimal ordering algorithm may be improvable to O(n e)

= or even to 0(n”) .

The construction in Section 4 shows that the problem of finding

a minimum ordering is NP-complete. Since this probably implies that

~ exponential time is required to find a minimum ordering, any practical

method for getting a small fill-in must be based on a heuristic.

Two heuristics, the minimum degree heuristic and the minimum fill-in

~ heuristic [11], seem to work well in practice, but there are no
theoretical results to support this assertion. The theoretical study

of such heuristics seems to be a good area for future research. Jee

~ [12,13,16] for further comments regarding related issues.

5h

References

[1] A. Aho, M. Garey, and J. Ullman, "The transitive reduction of a
- directed graph," SIAM J. Comput « , Vol. 1 (1972), 131-137.

[2] 8S. Cook, "The complexity of theorem-proving procedures,"
Proceedings Third Annual ACM Symposium on Theory of Computing
(1971), 151-158. -

[3] M. Fischer and A. Meyer, "Boolean matrix multiplication and
he transitive closure,’ Twelfth Annual Symposium on Switching and

Automata Theory (1971), 129-131.

[4] G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic
Equations, Prentice-Hall, Englewood Cliffs, N. J.(1967).

[5] L. Haskins and D. Rose, "Toward characterization of perfect
~ elimination digraphs," SIAM J. Comput., Vol. 2 (1973), 217-22L.

[6] R. Karp, "Reducibility among combinatorial problems," Complexity
of Computer Computations, R. E. Miller and J. W. Thatcher, eds.,
Plenum Press, N. Y. (1972), 85-104.

[7] D. Knuth, The Art of Computer Programming,Vol. 1: Fundamental
Algorithms, Addison-Wesley, Reading, Mass., (1968), 258-265.

[8] I. Munro, "Efficient determination of the transitive closure of

a directed graph," Info. Proc. Letters, Vol.1 (1971), 56-58.

[9] T. Ohtsuki, "A fast algorithm for finding an optimal ordering in
C the vertex elimination on a graph," SIAM J. Comput., to appear.

[10] D. J. Rose, "Triangulated graphs and the elimination process,"
Journal of Mathematical Analysis and Applications, Vol. 32 (1970),
597-609.

[11] D. J. Rose, "A graph-theoretic study of the numerical solution of

C sparse positive definite systems of linear equations," Graph
Theory and Computing, R. Read, ed., Academic Press, N. Y., (1973),
183-217.

[12] D. Rose, R. Tarjan, and G. Lueker, "Algorithmic aspects of vertex
) elimination on graphs,’ SIAM J. Comput., to appear.

[13] D. Rose and R. Tarjan, "Algorithmic aspects of vertex elimination,"
- Proceedings Seventh Annual ACM Symposium on Theory of Computing

(1975), 2b5-25L,

[14] V. Strassen, "Gaussian elimination is not optimal," Numer. Math.,
Vol. 13, (1969), 354-356.

[15] R. Tarjan, "Depth-first search and linear graph algorithms,"
SIAM J. Comput., Vol. 1, (1972), 146-160.

[16] R. Tarjan, "Graph theory and Gaussian elimination," Sparse Matrix
Computations, J. R. Bunch and D. J. Rose, eds., Academic Press,
New York,to appear.

55

é

Vertex or

Clique Size Adjacencies In Adjacencies Out

I = .

X 1 X00? Xo9 X,X110%,410 all par (i)
containing x or x, all

X43, (Par (i)) with pqr
containing x or X

“ —

excéptr (1))s

Xs, (pxr(2)), X41 (Pax (3)).

. X 1 X, Xh9 X11 861 X41 ar (1) for
| i=1,2,3, pxr(i) for

i=2,3, pax(3), X,,(pqr(1))
with pqr containing x

or x except X,,(xqr(l)),
. — "31

X3;(xar{l)), X31 (pxr(2)),

X31 (Pax(3)).

- (1 1 XX... XX r(2), X..(pqr(1l)) ,X
P,P,9,49,r,r corresponding

to variables, DP

corresponding to negation
“

of variables

pqr(2) 1 Par (1),X5),Xy5:%)5 pqr(3) X44 (Par (2)) X14
P»P,q,4q,r,r corresponding

LN — -—

to variables, p,p,q,q

corresponding to negation

of variables

Table 1: Clique sizes and adjacencies in G(P)

Values of constants appear in Table 2.

“

36

C

C

Vertex or

Clique Size Adjacencies In Adjacencies Out

-

pqr(3) 1 PAr(2),X5y:X50:X505 PsP, X, 1 X31 (Par (3)), X11
q,4,Tr,T

X41 ¢ Par (3), Xgp:Xp0sX9psXp1s %4
“ X,3:%,X

X c? X X X
42 41°43 43

C 2

X43 c X42 X41°%42

Xe c Xcq pqr (1), X171°%192%57(Par(1))

L X 1 X XensXensXaq (Par(i))51 52 53750’ 731

X c? X Xoq5Xonspqr(i) ,X _,X
52 53 51°53? >41°711°

C

X c? X X X
53 51°7°52 52

(pqr(l) c° (1),q,9,r,r,X..,X XX3pqr(l)) c pqr(l),q,q,r,r,X 4X, 32
if

X50:X90:%912% 550X335
p is the negation of a

variable

- (par?) c° r(2),p,p,r,r,X.,X XXy,(par PAr{2),P,P,T,T,Xc05Xo 05 32
X50:%502%91:%99:%33090 if 4
is the negation of a

variable

O Table 1 (cont.)

57

|

Vertex or

Clique Size Adjacencies In Adjacencies Out

2 - =

“ X3,(pqr(3)) c pqr(3) sPsP3059,Xg4,X, 5 X19
X5p08502%91:%999%345 T
if r is the negation

of a variable

“

2

X39 c X3,(Par(1)), Xj, X33

X33 1 X39 Xg1(par(1)), Xg,
C

X c? XX Xen XX. X X
11 »%5890°%22°%50°%52° 12

pqr(i), X, 3

- X12 b X90°%22:%50°%505%175X13 %g3

X13 1 X12 X11°%12

. _
X61 c XsX632%22 X62

X 2 X ..X X
62 ¢ 61°63 63

. X c? X X ..X
63 62 61°°62

X10 c X91 5X;10X155%,5X5, (Par (1),
par (i)

“

X21 1 X92 X93:%50:X412%31(Par (1)

X 2 X Xoo Xo nu XX. ..X X
| 22 ¢ 23 21°723° "11° 712° %612 0%

X,1%41 (Par (1)),pqr (4)

X 2 X...X X
23 ¢ 21°%92 29

~ Table 1 (cont.)

38

\

C

c= (m+3X+1)(2m+ 7k +1) +1
- 2

b=(m+4k)c +m + 3k + 1

C x5] = xy1 = xg5l = x51 = 2

1X10] = b

- |X,] = | Xs, = 1%, 4 = pom - Cc

All other cliques have size 2.

.

: Table 2: Constants for clique sizes in G(P).
“

“

“

29

|

Elimination Order Fill-in Size

Vertices corresponding to X50 > X, X + Xe1 mc
~ false variables and negations

of true variables

Vertices pqr(i) corres- Xeg > Par(2), Xg, pqr(3) <4ke

> ponding to false literals, pqr (1) + Xp1° pqr(2) ~ X11
in order pqr(l) ,pqr(2) ,pqr(3)

| X X > X Xx > X pqr(i) ~» (m + 3ky« 11 12° 12° 2

X12

X13 0

~ X 012 -

X X., > x,X + X,X > m + 3k
20 21 * 721 >721 2

pqr(i)

X51 0

X23 - 0

X09 - 0

| Rest of vertices corresponding - 0
\—

to variables

; 3k
X50 X5) > par(i) 2

X51 - 0

Table 3: Elimination order for G(P) if P is satisfiable.

40

Elimination Order Fill-in Size

- Xe 0

Xg0 0

rest of vertices pqr(i) in 0

order pqr(l), pqr(2), pqr(3)

X43, (pqr(1)) 0
\

X34 0

X32 0

X41 0

X43 - 0
i.

X42 - 0

X61 - 0
.

Xea , = 0

X62 0
L-.

“

Table 3 (cont.)

. Total fill-in is < (m + 4k) + (m + 39b + m + 3k

41

“

|.

“

. \

.

SN
“-

Figure 1: A "ground" configuration used as building block

in NP-completeness construction. Point v is

- a single vertex; circles denote cliques.

“

ho

“

SL
¥ AN NNN A Fue

NN— 17 50

ZAPSN

3

