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Abstract

This paper considers path problems on directed graphs which are

solvable by a method similar to Gaussian elimination. The paper gives

an axiom system for such problems which 1s a weakening of Salomaa's

axioms for a regular algebra. The paper presents a general solution

method which-requires 0 (n°) time for dense graphs with n vertices

and considerably less time for sparse graphs.

The paper also presents a decomposition method which solves a

path problem by breaking 1t into subproblems, solving each sub-problem

by elimination, and combining the solutions. This method 1s a

generalization of the "reducibility" notion of data flow analysis,

and is a kind of single-element "tearing". Efficiently implemented, the

method requires O(m Q(m,n)) time plus time to solve the subproblems,

for problem graphs with n vertices and m edges. Here (m,n) is

a very slowly growing function which 1s a functional inverse of

Ackermann's function.

The paper considers variants of the axiom system for which the

solution methods still work, and presents several applications,

including solving simultaneous linear equations and analyzing control

rlow in computer programs. . ro .

This research was supported by Natiemed-ScienceFoundation -grent © «=
IOCR72-0 2752. Reproduction in whale or in part is permittedfor } Co.
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1. Introduction.

Consider a system of linear equations Ax = Cc , where A is an

n by n , real-valued, non-singular matrix, xXx is ann by one

vector of variables, and c¢ 1s an n by one vector of constants.

Mathematicians have developed many methods for solving such systems

[15,44], including Gaussian elimination and its variants and a host

of iterative methods.

Some of these linear algebra techniques apply in other settings.

Klenne [25] and others [6,36,37] have described the use of elimination

methods to compute regular expressions for finite automata. Floyd [13]

and others [9,20] have used similar methods to find certain kinds of

optimum paths in graphs. Not all of these researchers have realized

the connection of their ideas with Gaussian elimination.

Independently, many canputer scientists have developed methods

for collecting information about the flow of control in a computer

program [4,5,10,14,16,17,21,22,23,24,29,31,43,45]. Some of these

methods resemble iterative methods for solving systems of linear

equations; others resemble Gaussian elimination. Flow graphs of

. computer programs often have a special property, called reducibility.

For such programs, especially-efficient information collection

algorithms exist [ 16,23,37,43].

In this paper we develop an elimination method for solving such

path problems. We use an axiomatic setting which covers most of the

problem domains described above. The axiom system is a weakening of

Salomaa's axioms for a regular algebra [36,37 ], with right distributivity

replaced by a monotonicity axiom suggested by Graham and Wegman [16]

and by Wegbriet [45]. We discuss variants of the axiom system for which

the method 1s also valid.



|

For convenience in presenting some of the results, we use a

oT graph-theoretic framework in place of a matrix-theoretic one. For

dense graphs withn vertices, the elimination method requires 0(n’)

time; for sparse graphs, the running time depends in a complicated

way upon the sparsity.

We also describe two methods for solving a path problem by breaking it

into several path problems on smaller graphs. The first, well-knonwn

by numerical analysts, uses the strongly connected components of the

problem graph. For a graph with n vertices and m edges, the method

requires O(n+m) time plus the time to solve the subproblems. The

second method, which generalizes the reducibility notion of global

flow analysis, and which is a type of single-element "tearing", uses

the dominators of the problem graph. This method requires O(m %(m,n))

time plus the time to solve the subproblems, where (m,n) is a very

slowly growing function relatedto a functional inverse of Ackermann's

function. For reducible flow graphs, the total running time is

O(m %(myn)) , better than the 0(m log n) running time of the best

previous algorithms[1lh,16,23,43].

- The paper contains nine sections. Section 2 gives the necessary

definitions from graph theory. Section 3 gives the axiom system for

path problems and presents the elimination method. Section 4 discusses

the effect of reversing the edges of the problem graph. Section §

gives the strong components decomposition method. Section & presents

the dominators decomposition method. Section 7 discusses changes to

the axiom system. Section 3 gives examples of path problems.

Section 9 contains further remarks and conclusions.
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2. Directed Graphs.

NB A directed graph G = (V,E) is a finite set V of n = v|

elements called vertices and a finite set E of m = |E| elements

called edges. Associated with each edge e is a vertex h(e) called

the head of e and a vertex t(e) called the tail of e . Edge e

leaves t(e) and enters h(e) . This definition allows loops (edges

e with h(e) = t(e) ) and multiple edges (edges e;,e, with

n(e;) = hey) , (ey) = (ey).

A path p of length k from vv to w is a sequence of edges

P = e;,€y...,e Such that h(e,) - tes, q) for 1 < i <k-1,

t(e;) = v , and h(e,) = Ww . We extend h and t by defining

hip) = h(e,) , t(p) = t(eq) + The path p contains edges ej,e,;-..;€.

and vertices t(e,) ; h(e,) ) h(e,) ye ee h(e,) , and avoids all other

edges and vertices. By convention there is an empty path (containing

no edges) from every vertex to itself. A cycle is a path p ,

containing at least one edge, such that h(p) = t(p) .

A graph G' = (V',E') is a subgraph of a graph G = (V,E)

if Vc Vand BPC E . If E' =E(V') ={ecE \h(e),t(e) ev}, .

) then G' is the subgraph of G induced by the set of vertices V' .

Similarly, if V' = V(E') = {v eV | Ze €¢E with h(e) = v or t(e) =v},

~ then G' is the subgraph of G induced by the set of edges EY .

If there 1s a path from a vertex v to a vertex w inagraph G,

then w 1s reachable from v 1n G . A graph 1s strongly connected

if any vertex in it 1s reachable from any other vertex. The maximal

strongly connected subgraphs of a graph G are vertex-disjoint and

are called its strongly connected components.
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A (directed, rooted) tree T is a graph with a distinguished

- vertex r such that there 1s a unique path from r to any vertex

in T . If a vertex v 1s on the path from r to a vertex w ,

then v 1s an ancestor of w and w 1s a descendant of v . We

»*

denote this relation by v -— w . We denote the fact that (v,w) is
*

a tree edge by v = w , and the fact that v -w and v #w by
+

Vv ow.



3. Path Problems.

Let R = (8,8 0,%,0,1) be an algebra consisting of a domain § ,

- two binary operations ® and © , a unary operation ¥ , and two

constants O0,le¢ S , satisfying the following axioms.

Al: (x®y)®z = x2(y Dz) —— A5: x0 (y%z) = (xvy) Cz

A2: X®@y = y&®X AG: 06Gx = x50 = 0

A3: XPX = X A7: x91 = 16x = Xx

Ad: O0®x = x20 = x AS: xG(y®Pz) . X0y®x0z .

As a consequence of Al, A2, A> we can define a partial order< on

S by: x <y ifandonlyif x®y =Yy .

A9: x <vy implies x0z <yQ®z .

For xeS and 1 a non-negative integer, let x" =1if 1 = 0 /

x’ = xox> tif i>0 .

Al0: x" < x* for all non-negative integers i .

All: (zOx) @y < z implies yOx < z .

These axioms are a weakening of Salomaa's axioms for a regular

algebra [36,37 ], with right distributivity replaced by a monotonicity

axiom (A9) suggested by Graham and Wegman[l6] and by Wegbreit [45].

Note that if S contains no zero element O but satisfies Al -A3,A5,

A7 -All we can always create a zero element 0 , defining 03x = x33 = x ,
*

Ox =x:0=0, 0 =1. It is easy to verify that Al-All hold for SU {0} .

Lemma, 1. If x<y and w<z, then x3w <y®z and xO0w <y0oz .

Proof. By Al, A2, and the definition of < ) XBDWIDYDzZ = XDYEwWRz

= y®z . Thus x2@w <y®z . ByA9, x0Ow <y%Sw . By A8 and the

definition of <, yOow@y0Qz = yo(w+z) = y@z . By the

transitivity of <, xXOw <yow <yGz . 3
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Let G = (VLE) be a graph. Let a: E - S , c: V = § . Then

~~ (G,a,c) is a path problem. For any path p = €5€y -+0s€, in G

we extend a to p by defining a(p) = a(e;) ®a(e,) ©@...0a(e,) :
If p 1s a path of no edges, we let a(p) = 1 . A solution to the

path problem (G,a,c) is a mapping x: V = S such that

Cl: c(t(p))@a(p) < x(h(p)) for all paths p ;

c2: x(v) < z(v) for all mappings =z: V -=38 satisfying the set

of 1nequalities

Q(E) = 2 z(t(e)) @a(e) dc(v) < z(v) | veV(E) .
eck |

| h(e) =v

Lemma 2. Let z: V —» 35 satisfy the set of inequalities Q(E) .

Then ¢(t(p)) @a(p) < z(h(p)) for all paths p .

Proof. Let p = €45 REET be any path in G . We prove

c(t(p)) ©a(p) < z(h(p)) by induction on k . If k = 0 , the result

1s immediate. Suppose the result 1s true for k > 0 . Then

c(t(p)) oa(p) = c(t(p))ola(e;)0...0a(e )]0ale,,,)

< x(t(ey, 1) oa(e,,,) by the induction hypothesis and A9

<x(n(e,,) = x(a(r) by QE). i

If £ is any function, let fl, denote the restriction of f
to the domain X .

Lemma 3. Let z: V = 3 satisfy the set of inequalities Q(E) . Let

E' CE . Then 2] (gr) .satisfies Q(E') .
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Proof. Immediate. OJ

We shall present a two-step method for solving path problems.

The first step 1s analogous to finding the IJJ decomposition of

a numeric matrix by Gaussian elimination [15]. The second step is

analogous to numeric backsolving [15] and is also related to

propagation methods for data flow analysis [ 17,21,23,24]. To

present the algorithm we need a few more definitions.

Let G = (V,E) be a graph and let (G,a,c) be a path problem.

Let v,w € V and let P be a set of paths from v to w 1n G .

A value yeS is a tag for the triple (v,w,P) if

Tl: a(p) >y for all paths peP .

T2: z(w) > z(v)Oy for all mappings z: V -3 satisfying Q(E) .

Suppose the vertices of a graph G = (V,E) are numbered from

one to n and identificd by number. A sequence of triples

(v(1),w(1),P(1)), cos (V(k),w(k),P(k)) with v(i),w(i) c¢V , P (1)

a set of paths from wv (i) to w(i) in G 1s a propagation sequence

for G if

Pl: v(i) =w(i) =1 for 1 <i <n and v(i) # w(i) for ml < i <k .

P2: Each path p 1n G can be represented as

p = p(11)5p(35)5 ++ -5p(i,,, 1) , where i, <i) < . . . <i,
i | + 1. 1 ] < f

1<ipysnfor 03st, mld, <k for JE,

and p(i,) e P(1,) for 1 < j < 21-t-1.
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Given a propagation sequence {v{i),w.i),F{i)) or ¢ anu

- a tag y(i) for each triple in the sequence, the following algorithm

computes a solution to the path problem (G,a,c) .

SOLVE : begin

init: for i := 1 until n do x(i) := c(i) ey(i);

main: for i := ntl until k do

x(w( 1) ) == x(w(i)) Dx(v(i)) »y(i) »yluli));

end SOLVE;

Theorem 1. The mapping x: V - 3 computed by SCLVE is a solution

to (G,a,c) .

proof. Let p = p(1,),0(1,)5 +5 0(1,,, 4) be a path in G , represented
as in P2. We prove by induction on { that Cl holds for p after

iteration i, of main . Suppose £ = 0 . Then

c(t(p)) @a(p) = c(t(p(i;))) 2a(p(i,))

<e(iy) oy(iy) br T1 and Lemma 1,

and C1 holds after execution of init .

Suppose £ > 0 . By the induction hypothesis,

c(t(p)) oa(p(iy)) ©.0ca(p(i,,, ;)) < x(t(p(iy, 2) after iteration

1s, of main . Thus

e(t(p)) @a(p) < x(5(p(1,,,,))) 2a(P(iy,,)) oa,5)

. : Svl{wil i before iteration 1

of main

<x(w(is,, ») ) after iteration 140 of main .

Thus Cl holds for any path p .

To complete the proof, we show by induction on i that x

satisfies C2 after iteration 1 of main . Let z satisfy Q(E) .
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Then, for 1 <i <n, (i) > (i), and z(i) > z2fi)eyli) by Te.

Hence z (i) > c(i) oy(i) , and x satisfies z{i) > x(i) for

1 < i < n after init . Suppose x satisfies z(v) > x(v) before

iteration i > ntl of main . The only value of x{v) which changes

during iteration 1 of main 1s x(w(i)) . By the induction

hypothesis and T2, x(v(i))oy(i) < z(v(i))oy(i) < z(w(i)) before

iteration i . Also z(w(i))oy(w(i)) < z(w(i)) by T2. Hence

x(v(i)) oy(i) oy(w(i)) < z(w(i)) before iteration i , and

x(w(i)) < z(w(i)) after iteration i . By induction, C2 holds for

the final value of x .d

We note several important facts abcut SOLVE. First, its running

time 1s O(k) , where k is the length of the propagation sequence

(if €@ , © , and * require constant time). Also, tags for a propagation

sequence depend only on a and not on ¢ . Thus we can solve a set

of path problems (G,a;c,) , (G,a,c,) geen (Gsasc)) by finding a set of

tags for a single propagation sequence and taen using SCLVE once for each c,

SOLVE 1s a generalization of the backsolving step used to solve

simultaneous linear equations, and is also related to propagation

methods of global flow analysis.

In order to apply SOLVE, we must first compute a propagation

sequence and appropriate tags. The following lemmas lead to a way

to compute a propagation sequence.

Lemma 4. Let eck . azteteb AWE) 3 hen a(e) 1s a tag for
(t(e),n(e), {e}) -

Proof. Immediate. _]

11
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Lemma 5. Let x be a tag for some triple (v,v,P) . Then x
* *

ht is a tag for (v,v, P) , where P 1s the set of all paths formed by
*

concatenating zero or more paths in P . (P includes the empty

path from v to wv.) .

Proof. Let p be any path from v to v in G(E') . If p is
x*

empty, a(p) = 1< x by Al0O. If p is non-empty, p can be

represented as p = PysPys . Py , where each 1 1s a path in P .

By T1, a(p;) < x for all 1 . Thus a(p) < Vd < x by Al0. llencc
Tl holds. Let z: V - 8 satisfy Q(E) . Then z(v)>z(v)oz3z(v)

¥%

by T2, and z(v) > z(v)@x by All. Hence T2 holds. J

respectively. Then ¥1 99, is a tag for (v,w, P, UP,) i

~ Proof. Let p be any path in P, UP, . Then p 1s a

path in either Py or Pp, , Say Py . Hence a(p) < Yq <¥,3Y, 3

and Tl holds for p . Let z: V - 3 satisfy Q(E) . Then

z (w) > z(v) Oy, ®z(v) Oy, = z(v) (v1 25) by A8. Hence T2 holds. 3

; Lemma 7/. Let Y; + ¥, be tags for (u,v, P,) and (v,w, P,) ,

respectively. Then y,0¥, is a tag for (u,w, P, -P,) , where P,P,

1s the set of all paths formed by concatenating a path from Py

with a path from P, .

Proof. Let p be any path in P,P, . Then p can be represented

as p =P; Dy with Pp, € Py r Py € Fy . Hence

alp) = a(p,) @a(p,) < ¥10¥, , and Tl holds. Let z satisfy o(e) .

Then z(w) > z(v) Oy, and z(v) > z(u) Oy, . Hence

12



z(w) > z(u) Qy,09y, by A9 and TZ holds.

The following algorithm, a version of Gaussian elimination,

computes tags for certain triples which form a propagation sequence.

The algorithm assumes that the vertices of the problem graph G are

numbered from one to n and identified by number.

ELIMINATE: begin

for v := 1 until n do for w := 1 until n do y(v,w) := 0;

for eck do y(t(e),h(e)) := y(t(e),h(e)) Dale);
loop: for v := 1 until n do begin
—— ~~ a aaa — ~ —_

a: y(v, v) = y(v,v) ;

b: for (wv) , (v,w) with (w,w > v) and (y(u,v),y(v,w) #0)
do,

y(u,w) := y(u,w) ®y(u,v) @y(v,v) 0y(v,w);

end end ELIMINATE;

For u,v,weV , let P(ww) = (p = e),¢e,; ETLY | t(p) = wu,

h(p) = W, and h(e,) < v, h(e;) {u,w} for 1 < i < 1-1} . Let

P(u,w) = Pin {u,w}(®¥) Notice that P(u,w) = Prin{u,w}-1(% W) ,
*

and P(v,v) ={p = EAN EERILS | t(p) = v, h(p) = v, and h(e,) < v
- for 1 <i <1-1}.

Theorem 2. For each final value of y(v,w) computed by ELIMINATE,

- y(v,w) is a tag for (v,w,P(v,w)).If v = w , y(v,w) is a tag
*

for (v,w,P(v,w) ) .

Proof. We prove by induction on v that after iteration v of

loop each value of y(u,w) so far computed is a tag for

1 * []

(u,w, Pinu, v,w}(®¥) >» and. y(w,w) is a tag for (u,w,P(u,w) ) if

U =w <v . The hypothesis 1s true after the first two for loops of

15



ELIMINATE by Lemma 4 and Lemma 6. Suppose the hypothesis is true

after iteration v-1 of loop . Consider iteration v . Execution

of step a causes y(v,v) to become a tag for (vv, P(v,v)) by

Lemma 5. Consider any set of paths P_(u,w) with u,w > v . This

set of paths can be represented as

P_(u,w) = P__(u,w) UP (wv) -P(v,v)" -B(v,W) . Step b computes a
tag for each such P_ (u,v) using Lemmas 6 and 7. By induction, the

hypothesis holds in general. The theorem follows. [J

Theorem 3. The following 1s a propagation sequence for G .

(1) The elements of {(v,v,P(v,v)) | vev} in any order, followed by

(2) the elements of {(v,w, P(v,w)|v,weV, v <w} in increasing

order on v (or on w ), followed by

(3) the elements of {(v,w,P(v,w)) | v,weV, v >w} in decreasing

order on v (or on w).

Proof. Let p be any path in G . Let vy =t(p) . For i > 1,

let Vil be the first vertex u > vs following v, on po. Let

V4 be the last such vs definable vy is the largest vertex on p ).

. Similarly let Wy = h(p) . For i >1 , let Wei be the last vertex

u > Ws preceding we on p . Let w, be the last such we definable.

~ Then Ves Ww, We can represent p as

P=PyPpr tt PoyPogii0Ppsepg3 where py; € P(v.,v,,) for
1<i<j-1, Posipi-0 © P(W, _s410%, 3) for 1 <i <£-1,

Doig © P(v,,v,) for 1 <i < 3, and Poirpi-1 © Pw, 5%, ;) for

1 <i<({-1. The theorem follows. U

14



The complete algorithm for solving a path problem consists of

three steps:

Sl: Apply ELIMINATE to compute tags.

s2: Form the propagation sequence given by Theorem 3%, omitting

triples (v,wyP(v,w)) with tag O .

Ss3: Apply SOLVE.

Steps S2 and $3 require O(k) time and space, where k is the

number of non-zero lags computed by ELIMINATE. The running time of

ELIMINATE depends 1n a complicated way upon the number of non-zero

tags. By rearranging the computations and using appropriate data

structures, we can implement ELIMINATE to run in

n

0 (+ 2 ((u,v) { f(u,v) # 0, u> v} | . | {(v,w) { £(v,w) #£ C,w>v]} )v=1

time and O(k) storage space [7,40]. (By only storing values of

f(v,w) which eventually become non-zero, we can avoid spending time

zeroing f(v,w). for all v and w .)

For dense graphs the storage bound 1is 0(n°) and the time bound

- is o(n”) . For sparse graphs, the rescurce requirements depend upon

the vertex numbering chosen. Numerical analysts have devoted much

. effort to finding good numbering schemes, both for arbitrary sparse

graphs and for graphs with special structure. See [7,32,33,3k,35,L7%7.
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i. Giraph Reversal.

- If IF is a cet of edges, let 1h , the reversal Lf + , be the

set of edges formed by switching the head and tail of each edge in bk .

If G = (V,E) is a graph, gt = (% ED) is the reversal of G .

(Reversing the edges of a graph corresponds to transposing the

corresponding adjacency matrix.) Suppose we have a method to solve

path problems on G . We would like to transform this method so

that 1t solves path problems on GR

Theorem4. Let (v,(1),w(1),P(1)), ...,(v{k),w(k),2(k)) be a

propagation sequence for G . Then |

\R R
(v(1),w(1),P(1)7);...,(v(n),w(n),P(n)") ,

(w(x), v(x), P(k)Y),  , (w(n+l) , v(n+l) , p(n+1) B) is a propagation |
R R R R

sequence for GG , where po le, SIRRREY el | ©1585 5 v ees e, <P} i

Proof. Immediate. J

Thus any propagation sequence for a graph G can be easily

converted into a propagation sequence for its reversal. Furthermore,

any computation of tags based on Lemmas 4 -7 can be converted into

a computation of tags for the reversal graph by exchanging the

arguments of each © operation corresponding to an application of

Lemma 7. Hence our solution method for the path problem (G,a,c)

also gives a solution method for the path problem (Qt, a,c) .

16



pr Decomposition by Strong Components.

The purpose of' ELIMINATE 1s to gather information about the

cycles of G . If G has no cycles, SOLVE can be used directly,

assuming that the vertex numbering satisfies +(e) < h(e) for each

edge e . A numbering which satisfies this property is called a

topological ordering [26]. We can find such a numbering in O(n+m)

time [26,38]. Thus, for acyclic graphs, there is a simple O (n+m)

solution algorithm.

We can generalize this idea. 1et G be an arbitrary graph and

let Gp = (VB), Gy = (VyBy) , . . . 4 G = (V,E| be the strongly
connected components of G . Using depth-first search, we can compute

the components Gy and topologically order them; that is, arrange

them so that eeE with t (e) eV, and h (e) “V implies i <j -
_ This computation requires O(mtm) time [38].

For 1 <i<k, let ((v(i,3),w(1,3),P(1i,3)) » 1 < J < I; >»

be a propagation sequence for Gs . For 1 <1 < k , let n= |v
The following algorithm computes a propagation sequence for G .

STRONGSEQ © begin

SEQ := uF

for i := 1 until k do for j := 1 until n. do

add (v(i,3),w(i,3),P(i,3)) to SE];

for 1 := 1 until k do begin

for j := n+l until ks do
add (v(1,3),w(i,3),P(i,3)) to SEQ;

for eck with (t(e) € vs and (h(e) «¢ Ys > J] > 1) do
add (t(e),h(e), {e}) to SER;

end end STRONGSEQ;

17



Theorem 5. The sequence computed by STRONGSEQ 1s a propagation

— sequence for G .

Proof. Immediate. OJ ,

We can compute a propagation sequence with tags for each component

G; by using ELIMINATE. It follows from Lemma 5 that the computed

tags are also tags with respect to the graph G . Thus the time to |

solve a path problem on G is O(mtm) plus the time to apply

ELIMINATE to each strong component of G .

Henceforth, we shall assume that the problem graph G is strongly

connected; if not, we compute a propagation sequence with tags for

each strongly connected component and form a propagation sequence

for G using STRONGSEQ. This algorithm corresponds to solving a

system of linear equations by decomposing the matrix of coefficients

into "irreducible" blocks [1544]. A "reducible" matrix should not

be confused with a "reducible" graph as defined in the next section.
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6. Decomposition by Dominators.

= The decomposition method presented 1n Section 5 is quite efficient.

ifowever, 1n most practical problems the problern grapa G is strongly

connected and the Sectiond method accomplishes nothing. 1p tng o

section we present a more powerful decomposition methsd, based upon

the dominators of the problem graph, which 1s efficient ani which
i

applies to a large collection of problem graphs which occur in

practice.

Let G = (V,E) be a strongly connected directed graph. Tet =r

be a fixed, distinguished vertex of G . Tf VyW € V and every

path p from. r to w contains v , we say Vv dominates w in G .

Lemma 8. There 1s a tree T , called the dominator tree of G , such

x

that v -w in T if and only if v dominates w . Vertex r is

the root of T and 'I' contains every vertex in  .

Proof. See [4].

For any vertex Ww # r , the immediate dominator of w in G is

the vertex v such that v =» Ww in the dominator tree T . We denote

this relationship by v = idom(w) . By convention idom(r) = 0 .

We can compute idom{w) for all vertices w in O(m 2(m,n)) time by

- using depth-first search and a sophisticated data manipulation

algorithm [L2].

“emma 9. If e€E , then idom(h(e)) h(e) in T .

roof. Every path from r to h(e) contains idom(h{e}) . By

zdding edge e to any path from r to t(e) , we get a path Trim
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r to h(e) . Thus any path from r to t(e) contains idom(h e)) .

- and idom(h(e)) dominates t(e) . UO

For any edge eeE , let v(e) be idom(h(e)) if t(e) = idom(h(e)) ,

and let v(e) be the vertex u such that idom(h(e))=u 5 t(e) 1f

't (e) #idom(h(e)) . Let e* be an edge with h(e') = h(e) ,

t(e*) = v(e) . For veV , let G(v) = (V(v),E (v)) , where

v(v) = {w|idom(w) = v} , Ex (v) = le" | ecE such that idom(h(e)) = v # t(e)}.

We call the strongly connected components of the graphs G(v) the

dominator strong components of G . The dominator strong components

partition the vertices of G (excluding r ).

The idea of our algorithm 1s to compute a propagation sequence

with tags for G by using a method like ELIMINATE only within the

dominator strong components of G . For parts of the propagation

ha sequence connecting dominator strong components, we use the O(m (m,n))

method described in [42] for computing functions defined on a tree

(in this case, defined on the dominator tree T ). If the strong

dominator components are small, the resulting algorithm 1s very

efficient; if each strong dominator component contains a single

vertex, the entire solution process requires O(m @(m,n)) time and

space. Luckily, this special case occurs frequently in same of the

" application areas.

The first part of the algorithm analyzes the graph G . First,

we compute the dominator tree T ofG using the O(m @(m,n))

algorithmof [42]. Next, we compute v(e) for each edge e using

the O(m a{m,n)) least common ancestors algorithm of [1], also

described in [42]. Next, we find the strongly connected components
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of each grapa G(v) using the Cm) alzoritinm of [01.

Finally, we number the vertices of G from one to n so that

(1) if ecE has v(e) , h(e) in different dominator strong components

of G, then v(e) > h(e) .

(2) v ow in T 1mplies Vv > Ww .

Jor any edge ec¢E with v(e) , h(e) in different dominator strong

components, either v(e) = idom(h(e)) or 1idoa(v(e)) = 1dom(h(e)) .

If v(e) = idom(h(e)) , then v(e) > h(e) by both condition (1)

and condition (2). If idom(v(e)) = idom(h{e)) , then v(e) >h(e)

by condition (1) and condition (2) does not apply. It follows that

there 1s a numbering satisfying both (1) and (2). We can find such

anumbering in O(m) time by using a topological sorting algorithm.

The entire graph analysis thus requires ¢{(m %(m,n)) time (and

BN O(m) space).

The second part of the algorithm computes tags for various

triples associated with the graph. An outline appears below.
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DELIM: oegin

for v. := 1 until n do for w := 1 until n do y{v,w) := 0;

for ecEdo y(t(e),h(e)) := y(t(e),h(e)) Dae);
for v := 1 until n do begin

TREE: for eeE such that idom(h(e)) = v do |

compute a tag y(v(e),h(e)) for (v(e),h(e),P,(e));
CYCLE : for weV such that idom(w) = v do begin

compute a tag y (w,w) for (w, w, P(w, w) ) ;

Compute a tag y(v,w) for (v,w, I,(v,w)) ;

end CYCLE;

end;
*

y(n,n) := y(n,n) ;

end DELIM;

In this program P(e) — Pace) (v(e)sh(e)) » where wu(e) = min{u | idom(u) =
idom(h(e))}-1 ; and Py(v,w) = {p = ej,e,, . . we | t(D) =v, hip) = w,

h(e;) <v for 1 <j <k, and t(e;) = w = Jj'> J with t(el) > Ww}.
Step TREE in DELIM uses in 1ts computations the tags computed

by previous iterations of CYCLE and TREE. The tags computed by TREL

correspond to the edges e* with idom(h(e)) = v . TREE uses a

functional procedure EVAL(v(e),t(e)) such that EVAL (v(e),t (e))

. returns the value 1 1f v(e) = t(e) and returns the value

y(vyo vy) Oy (vp v,) Oy (vy Vs) ©. .. oy(v, 15,7) Oy(v,_12V,) if

ve) # t (e) , where v(e) = UTACTEREAS = t(e) 1s the sequence of

vertices on the path from v(e) to t(e) in T . Here is a more

detalled implementation of TREE.

TREE : for eeE such that idom(h(e)) = v do

if Vv (e) £ t (e) then
y(v(e),h(e)) := y(v(e),h(e)) DEVAL(v(e),t(e)) @y(t(e),t(e))

oy(t(e),n(e));
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EVAL(v(e),t(e)) computes a tag for (v(e),t(e),P,(v(e),t(e))

- by using assignments Of the form (viv) = y(visvs) Oy(vssvs) Oy (viv) ’
* + + *

where v(e) =v, = Vy Vy t(e) in T , y(virv,) is a previously

computed tag for (ves vs Pp (v5 vy) , y(vssv,) is a previously computeduJ

tag for (Vis vs P(vy5v,)) » and y(veov) is a previously computed tagJ J J a

: (Visi Bpvys vy) . .o Lemma (, each y(vi5vy) computed in this way

is a tag for (V5 Vis Po(vi5vy)) . After a sufficient number of such

assignments, EVAL has computed a tag y(vy,v,) for (v3 vg Ep(vysvy)) :

Then, also by Lemma 7, y(vy,v,) ©y(v,,v,) oy(v,,h(e)) is a tag for

(v(e),h(e),P;(v(e),h(e)) N{p |p contains e}).By Lemma 6, each value

y(v(e);h(e)) computed by TREE is a tag for (v(e),h(e),P;(v(e),h(e))) :

The total number of EVAL operations carried out by DELIM is m .

These operations require O(m @{myn)) time if EVAL is implemented

as described in [42]. The secrets of this implementation are to save

the computed intermediate values y(visv) for use 1n later calls on

EVAL, and to order the computations 1n a clever fashion. Procedure

- DELIM saves the 1ntermediate values y(vevy) not only for use 1n
Later calls on EVAL, but also for use as tags in the propagation

- sequence to be constructed.

Step CYCLE applies versions of STRONGSEQ, ELIMINATE, and SOLVE

to the tags computed by TREE. Here 1s an implementation of CYCLE.
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CYCLE : begin | |
CE: for weV such that idom(w) = v, in increasing order of w, do begin

¥

y(w,w) = y(w,w) ;

for (w,w),(w,x) with (u,x > w) and (y(uw,w),y(w,x) £ 0)
and u,x 1n same dominator strong component as w do,

y(u,x) := y(u,x) ®y(w,w) Oy(w,w) Oy(w,x);

end;

CS: for Gs a dominator strong component of G(v), in topologically
increasing order, do begin

for w a vertex of Gs» in increasing order of w, do
for x a vertex of G; with (x > w) and (y(w,x) £ 0) do

y(v,w) := y(v,w) Dy(v,w) 0y(w,w) Oy(w,x);

for w a vertex of Gy 5 in decreasing order of w, do
for x a vertex with (idom(x) =v) and (x <w) and (y(w,x) £0) do

y(v,x) = ¥y(v,x) Dy(v,w) oy(w,w) oy(w,x);

end;

end;

In this implementation of CYCLE, CE applies the idea of ELIMINATE

to each strong component of G(v) , Each value y(u,x) computed by

CE is a tag for (u,x,P(u,x)) , assuming that the previous iteration

of TREE has correctly computed a tag y(v(e),h(e)) for each eeE such

that idom(h(e)) = v . This follows from a proof like that of

Theorem 2.

Step CS of CYCLE uses the ideas in Theorem 3, STRONGSEQ, and

SOLVE to compute, for each vertex w such that idom(w) = v , a tag

y(v,w) for (vow, By (v,¥)) This follows easily from a proof using

Lemma 6, Lemma 7, and ideas in the proofs of Theorem 1, Theorem 3,

and Theorem 9.

Summarizing the above observations, we have the following theorem.
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Theorem 6. The procedure DELIM, with TREE and CYCLE implemented as

~/ described, computes tags for the following triples.

TR1: (v,v,P(v,v)) for vsV.

TR2: (vsw, Py (v,w)) for v » w in T .

TRS: (v(e),h(e),P,(e)) for ecE .

TR4: (v,w,P(v,w)) for each pair of vertices +, w such that v , w

are 1n the same dominator strong component and there is a path

*  * * * *

P= e565 58, in the component with tle) =v , h(e,) = w ,

n(e,) < min{v,w} for 1<i<f-1.

TRS: (v,w, BP (v,w)) for a subset SB of the pairs of vertices v,w

such that v J. in T , where SB satisfies

(1) v(e) #£ t(e) = (vie),t(e)) eSB .

(ii) (vy,w) € SB and = (v - w in T) = Zx such that

y v x Sw in T and (v,x), {#z,#) + SB . We assume that
| an appropriate z for each (v,w) « SB ic saved by

procedure EVAL.

The total amount of computation time required by DELIM 1S

proportionalto m @(m, n) plus the time required to apply ELIMINATE

to each strong dominator component of G . The amount of storage

space required by DELIM is proportionalto ma(m,n) (for triples

- of types TR1l, TR2, TR3, TR5) plus k (for triples of type TRL),

where k 1s the total number of non-zero tags resulting from applying

=LIMINATE to each strong dominator component of 3 .

The third part of the algorithm arranges triples of types TR1 -TRY

into a propagation sequence. First, we construct a gat of list: Lf vv),
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one for each vertex v . Each list contains a set of ordered pairs

+
of vertices (v,w) such that v -w in T . We construct the lists

using the following algorithm.

LISTS: begin

for v := 1 untiln do L(v) = @;

for each triple (u,w, P,(u,w)) of type TR) do
if = (u » w in T) then begin

let u »v=w in T be such that (u,v), (v,w) SB;

add (v,w) to L(u);

end end LISTS;

Next, we remove duplicates from each list L(u) and order the

pairs (v,Ww) ‘on each L(u) in decreasing order on w . A radix

sort [28] accomplishes this in O(m a(m,n)) time and space, since

the total length of the lists is O(m a(m,n)) . Finally, we apply

oe the following algorithm to compute a propagation sequence.

26



PROP: begin

Pl: for v := 1 until n do add (v,v,P(v,v)) to PS;

loop: for v := 1 until n do

for Gs a dominator strong component of G(v),

in topologically increasing order, do begin

Pa: for w a vertex of Gy do_
for ecE such that h(e) = wv do

if t(e) # vle) then

add (h(e),t(e),{e}) to PS;

P3: forw a vertex of Gs in increasing order of w, do
for x a vertex of Z, with (x<w) and (y(w,x) £0) do

add (w,x,P(w,x)) to PS;

] P4: forw a vertex of G, in decreasing order of w, do

for x a vertex with (idom(x) = v) and

(x > w) and {y(w,x) £0) do

add (w,x,P(w,x)) to PS;

P5: for w a vertex of G; do for (u,%) r L(w)
add {u,x,P,(u,x)) to PS;

end;

Po: for v := n-1 step -1 untill do begin
~ RV PA WW PEWW

let u =» v in T;

add (uw, v5 By (u,v) to PS;
end end PROP;

Theorem 7. The sequence PS computed by PROP 1s a propagation sequence

for G .

Proof. Let p be any path in G . Let wv, =t(p) . For i>1,

let Vil be the first vertex u following Vv, on p such that
X i

u >v. and — (idou(v,) —- idom(u) in T) . Let 7, be the last

. such vy definable in this way. For 1 <1 <1, let we be the

last vertex u between Vv. and Virq on p such that
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| |

idom(v, ) = idom(u) in T [if there is nc such u , let woos ov, VY.

~ Then we can represent v as p = T4504, re03Poy 2005, 5 ys —wnere
t (Po; 1) =v t(p,.) = w,for 1 < i < P-1, h{p,, ,) — h(p),

Pos 1 contains only proper descendants of idom(v,) , and Pos

contains only proper descendants of W. (with the exception of

t(py;) and h(p,;) ). llote that any path Py; 7 can be empty, as

can Pogo

Since every vertex u on 1 5 except tr, 1) satisfies

t(py, 0) A u in T , we can write Py, @S1-2

Popo = Poyo,12 Popp. .07P25 0 pp » Where

t(Pay0,05-1) = PPayp,p5.1) BT 5 BP p05) = BlRay p05)

Pyop,05.1 15 @ PER In By(t(py,, oo 1)sh(D,, 5 50) , end

) Ppp-2,2; is a path in P(E(Poy 5 03)92(Poy p 05)) . The triples

(vsw, Py (v,W)) for v =»w In T are added to the end of PS ,

in decreasing order of w , by step F5 of PROP.

For each 1 <1 < ¢-2 , every vertex u on Pos_7 satisfies

idom(v;) pa u . Applying the 1deas in Theorem 5 and Theorem 5, we

i can represent P,: ; as a sequence of paths selected, in order,

from the path sets P(w,x) added to PS during steps P3 and Ph

in iteration idom(v, ) of loop , alternating with paths selected
from the path sets P(v,v) added to PS during step Pl.

What remains to be shown is that, for each 1 <1 < L-2 /

Dy; can be represented as a sequence cf paths selected, in order,

Zrom the path sets P,(v,w) added tc FS during step P5 in iterations

idom(w, ) to idom(v, 5) -1 of loop , alternating with paths gelected



from appropriate path sets F( v, v) , and endings with a path sod ton

added to PS during iteration idom(v,  ,) of step BY. Thus. considerA ————— 1 -

any path p,.. Let P,; 1 = e be the path consisting of the lastJ

edge e€ on Pos . Then Po; = Xv Poy 0 ’ Poi,a >» where xy 1s a path

in Po (t(x%;),h(x;)) » Poyp is a path in P(t(pyy,1) (pp; 1) ,
and DELIM has computed a tag for (v(e)st(e), PB (v(e),t(e)))-

Let J =1, 2, = v(e) . We repeat the following step until

reaching a value of J for which t(x,) . h(x) . We have
L(x) 5 n(x.) h | SB . Ifz. =» t(x.) » h(x. € :5 j j/ and (255 (x,)5 Py (z5,8(x,)))

| + +

t(x,) # h(x) , there is some z such that z. = z - h(x) and- J

If t(x.) = z , let. (z,h(x.),P.(z. € SB . Xx.) *2, Le(24,2, Py(25,2)) (2, (x5), 2(2552)) ] ’
= = «Ae . is a path

2541 T By 0 X35 = Xin Poyoogens Pojogen 0 VRETS Xg o

= P t X. 4 y . p Z 4 din Al ( 522) Poi, p42 is a path in P(z,z) an Poi, 2441
+

is a path in P,(z,h(x.)) . If z -t(x,), let , _ ,
2 J J jl '

“341 7 %50 Pai,egee Pog oge1 2 VHETE Pps nip 80d Dy; 50g ATE

empty paths. Since the distance between Zz. and h(x.) in T
J J

| strictly decreases with increasing J , eventually we reach a value

of Jj, say k , f hich t = h . Then andJ + say x, for which (x) = Bg) . Then x and p

are empty paths, and we have decomposed Dy as
= . . . where :

Poi “Poi 0k-17Poj,0k-07 "7 P2i,2 > Poy, 1 7 Poi p41 1S

a path in Po(8(Pp; 0gs1)sB(Pp 55,1) ’ Pos, 2; 1s a path in
P(t(p,. ~.)sh(p,. 2- and :( (Poy,04)> Poi 23) > (4(Pps p30) B(Pp3 5141)) is on Lz.)

: : ] bo
if Poy, 0441 1s not empty, for 1 < j < k-1 . Since either 2, » Zi
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or tx.) =~ B(x) in T , the %Friples corresponding to the non-empty

paths Poi oie are added tuo PE in the order

(Llp; k-1) 7 np, ox-1) 2 Plt SONTRIIRY ’ hip; 2k0) sees

(try; 2) ) B(py; ) Polt(py 2) ’ hp; .) )) during step $5 in

iterations idom(w,) to idom(v. ,) -1 of loop . 7rinle

(t(e),nle), {e}) 1s added to PS during step S2 in iteration
. { ~

idom! Vir)

Combining the decompositions ¢f the paths D D
2i-1 7 “21

(1 <i1<t-2) , Ps, 3 7 and Poy» gives a decomposition of p

which satisfies the condition for a Propagation sequence. 7

Below 1s a summary of the decomposition algorithm for solving path

problens.

Step 1: Analyze the graph % tc find its dominator strong components

and number 1ts vertices.

Time:  O(m Q{m,n))

Space: O(m) .

Step 2: Apply DELIM to compute tags.

Time: O{m a(m,n) + elimination time within dominator

strong compcnents)

Space:  O(m (m,n) + %) , where k is fill-in within

dominator strong components.

Sep J: Apply LISTS and PROP to compute a Propagation sequence.

Time: Om a{m,n) + ¥)

Space: O(m 2(m,n) + Xk) .
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step hh: Apply SOLVI.

Time: O(m (myn) + k)

Space: O(m (m,n) +k) .

We see that the total running time of the algorithm 1s proportional

to ma(m,n) plus the elimination time within the dominator strong

components, and the storage requirements are proportional to m a(m, n)

plus the fill-in within the dominator strong components. In summary,

this algorithm allows us to trade a slightly non-linear overhead cost ’

for large savings in elimination time, if the graph G has more than

a few dominator strong components. Using Theorem4, we can also

apply the 2lgorithm profitably to graphs whose reversal has more than

a few dominator strong components.

The power of this algorithm lies in the fact that in several

important application areas, most of the graphs of interest readily

decompose into many dominator strcng components. A graph such that

each of its dominator strong components has a single vertex we call

a reducible graph (relative to the fixed vertex r ). This definition
|

1s not the standard one, but it 1s equivalent to many other

characterizations; see [18,19,41]. On reducible graphs, the

decomposition algorithm carries out noelimination; the total time

"and space requirements are O(m Q(m,n)) . (In this case the algorithm

can also be simplified somewhat.)

Ullman { 43], Kennedy [ 23 ], and Graham and Wegman [16] have

proposed O(m log n) time algorithms for solving global flow analysis

problems on directed graphs. Our algorithm constitutes a generalization

of the Graham-Wegman algorithm to arbitrary graphs, and to solving
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arbitrary path problems. By using the improved data manipulation

hs algorithm of [42], we have reduced the time bound to C(m a(m,n)) for

reducible graphs. The extension to arbitrary graphs using dominator

strong components seems to be a natural idea, apparently overlooked

by previous researchers.
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7. Variants of the Axiom System.

— This section considers several ways 1n wiich the axioms can be

modified without affecting the validity of the algorithms presented.

Boundedness. i

In some applications (especially in global flow analysis [14,10,21]),

the * operation is not present. Instead, an axiom of the form

k .

AB: xd < 2 x"
1=0

* k
is assumed. In this case we can define x = {1+x) . It is then

*

easy to prove AlQ and All. To compute x , we apply the formula

log, k
* 2 242 2

x" = (19x) = (.. (18097 ...)7,

*

which uses log, k @ and © operations to compute x .

Distributivity.

In applications to regular expressions [6,2%,%0,5( |, We can

strengthen axioms A9, Al0, All to

A9D: (x@y)0z = (x02)2(y0o2z2)

AlOD: (yox 0x) ®y = yOx
*

Al1D: ZOXDY = Z implies yox <z .

In this case the solution to a path problem (Gsa,¢) is the minimum

solution to the set of equations

QE(E) = 2 z(t(e))oa(e) de(v) = z(v) | vev :
eck

h(e) =v

33



Inverses.

Tn applications to numeric problemz,axiomA docanothold.

Instead of AS, AQ, ALO, All we autumoe

A321: For all x there is an element =x «8S Such that

xD(Ax) = 6x3x = 0 .

AQT: (x®y)0z =x0zQ07y0z.

A10I: For all x # 0 there is an element xt eg such that

x0x1 = x tox = 1.

These are the axioms of a division ring. We define < = (1@0x) +

for x #1 . Then z = yox is the unique solution to the equation

(z ox) Py =2 . A solution to a numeric vath problem is a vector z

satisfying QE (E) .

The definitions and procfs in Sections J -6 are not valid for

numeric path problems, because deletion of _,iom A3 means there is no

partial order defined on the set S . However, the solution algorithms

presented in Sections 3 -6 are still v-alsa. sor a development of the

ideas necessary for new proofs, see [15,4L]. gee [40] for further

discussion of a numeric version of the decomposition algorithm in

. Section 6.

| An added difficulty 1n the numeric case 1s that 1" 1s undefined.

. This means that not all path problems have solutions. Furthermore the

elimination methods in Sections 3-6 may not find solutions even for

path problems which have them. Numerical analysts have developed

various pivoting schemes to overcome this problem [15]. It is interesting

to note that the existence of additive inverses allows the use of

independent permutations of rows and columns |p the matrix of coefficients
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vo rearrange the computations [15]. Tn the non-numeric applications

covered by tie Section © axiom system, only sihmultancous permulations

oi rows and columns are valid. Tn addition, Lhe cxislence of

madtiplicative inversec wllowe cimplificaticon of Lh tree monipuii icon

method underlying the algorithm of Section fF (see (421) .
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3d. Applications.

This section presents several of the more common types of path

problems. Many others undoubtedly exist.

Applications on Acyclic Graphs.

Suppose we wish to find the transitive closure of a graph

G = (V,E). We can assume that G is acyclic (if not, we first

find its strongly connected components and reduce each to a single

vertex). Let S = Y|Yc Vv}, c(v) ={v} for veV , a(e) = §

for eeE , Y®Z = YUZ , YOZ = YUZ . If x(v) 1s a solution

to (G,a,c) , then x(v) is the set of vertices from which v is

reachable in G . A solution x(v) can be computed in O(ntm) set

union operations using the method suggested in Section 4. For an

exposition of this well-known algorithm, see [12].

” We can use the same idea to compute dominators in an acyclic

graph, Let G = (V,E) be acyclic and let r ve a fixed vertex.

Let S={|yYycvVv}, cv) ={v} for V&V , a(e) = {h(e)} for

eck, Y®Z2 = YNZ ,YO0Z =YUZ . If x(v) is a solution to

(G,a,c) , then x(v) Is the set of dominators of v . The Section 4

method computes the sets x(v) 1n O(n+m) set operations. This

algorithm is due to Hecht and Ullman [ 17]. Note that the dominators

" for an arbitrary graph can be computed in O(m mm) + Z [x(v)])Ve

time without using set operations [42].

As a last application of this kind, consider critical path

analysis. LetG = (V,E) be an acyclic directed graph with a source

vertex s , a sinkvertex t , and length a(e) on each edge. We

desire the length and location of a longest path from s To t . Let
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c(s) = 0, C(v) = -=» for veV-{s} , y9z = max{y,z} , y0z = y+z .

If x(v) 1s a solution to (G,a,c) , then x(t) 1s the length of a

longest path from s to t , and such a path can be constructed by

examining x(v) for appropriate vertices v . Computing x(v)

requires O(n+m) time. See [8]. °

Simple Applications on Graphs with Cycles.

Let G be a graph, let ¥ be a finite set, and let 5 denote

the set of finite strings over I | Let A denote the empty string.

Let S denote the set of subsets of ol . For eeE , let a(e) = [w(e)) ,

where each w(e) 1s some word in 5 . Let ® denote set -union, let

© denote set concatenation (Y®Zz = {yz |yeY and zcZ)) , and let * y

denote transitive closure (y ay yt , where yO = {A} and
i=0

yt - vl ov) . Let r be a fixed vertex in G and let c(r) = {A} ,

c(v) = ¢ if vev-{r} . If x(v) is a solution to (G,a,c) , then

x (Vv) = {a(e)) @a(e)) © ‘ce. Oa(e,) |p = €5€y +-+,€ is a path from r
to v in G} . Computing the regular set recognized b-y a finite automaton

is thus a path problem. gee [6,25,36,37].

Let G = (V,E) be a graph and let a(e) for eeE denote the

length of the edge e . 1ILet r be a fixed vertex of G . We desire

the length of the shortest path from r to every other vertex.

* Alternately, we desire the length of the shortest paths between all

pairs of vertices. We allow negative edge lengths. Let clr) = 0,

c(v) == for veV-{r}, y2z = min{y,z} , y9z = y+z ,

* $ if y >0vy = Then a solution x(v) to (G,a,c) gives
-o Jf y <O
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the length of a shortest path from r to v . By computing a

propagation sequence and applying SOLVE n times, we can find

shortest paths for all vertex pairs. The time required by this method

for either the single source or the all palrs problem 1is (n°) for

a dense graph and less for a sparse graph. See [9,13,20] for shortest

path algorithms which use elimination methods.

Dijkstra [11] has iziven an 0(n") algorithm for the sin@ source

problem with non-negative edge lengths. This algorithm runs in

0(min{n®, m log n}) time if the proper data structures are used [20].

Global Flow Analysis.

The following application 1s an abstraction of a problem which

arises often when doing global flow analysis of computer programs. |

Let L be a set with an operation ® and a zero element 0

satisfying Al, A2, A3, Ak. Let S be a set of functions f: IL = L

satisfying the following axioms.

I'l: S§ is closed under composition and @ ( where ff @¢ ic the

function h defined by h(x) = f(x) ®g(x) ).

_ ¥2: S contains an identity function 1 such that 1(x) = x .

F535: Each function in S is monotonic; that is, if f<S , x,v EL ,

and x <y , then f(x) < f(y) .

If f,geS , let fog be the function h such that h(x) = g{(f(x)) .

If feS , xeL , let fox denote f(x) .With this definition,

Al -A9 hold on S .

“Lk: For all feS , there is an “ cS saticfying ALO and £11.
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The idea of these definitions is the following. Let G = (V,E)

be a directed graph with a fixed vertex r . Let a(e) e€S for all ecE .

Let c(r)eL .Let ¢(v)= 0 for veV-{r} . The graph G represents

a computer program; each vertex of G represents a basic block of code

(a block with only a single entry and a single exit point). The set L

represents a set of properties which can hold in various blocks of the

program. The vertex r 1s the start of the program. For each edge e ,

a(e) (z) is the property which holds at t(e) if the property z holds

at h(e) and the program takes the branch corresponding to edge e .

Assume that the property c(r) EL holds at the start of the

program. We desire, for each veV , a property x(v) EL such that

Pl: x(v) holds at block v , independent of the execution sequence

which causes control to reach block v .

In theory, we would like the "best" such set of properties x (v)

("best" means "smallest relative to < "). In general there may not

be such a "best" set, and even if thereis, the set may not be

effectively computable [22]. We will settle for a set of properties

x(v) satisfying Cl and C2. We can construct such a set of properties

by using the algorithms 1n Sections 3 -6. First we compute tags fora

propagation sequence by using function addition, composition, and

~ transitive closure. Next we apply SOLVE, which finds a solution by

using function application and addition of elements in L .

Many authors have studied algorithms for this data flow problem

and discussed concrete examples of it (see [3,4,5,10,1k4,16,17,21,22,

23,2k4,29,31,43,45]). For most applications, ®, © , and * can be

computed efficiently (i.e. in constant time; see [14]).
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For arbitrary graphs the worst-case running times ofallkncwn

algorithms are O(nm) or worse; the running time of the elimination

: algorithm of Section 3 is 0 (nd) (faster 1fG 1s sparse). For some

restricted classes of graphs, such as reducible graphs, there are

faster algorithms. Cocke and Allen [5,10] introduced reducible graphs,

but their global flow algorithms were O(nm) . Ullman [43] devised an

O(m log n) algorithm for eliminating common subexpressions 1n computer

| programs with reducible flow graphs; Fong, Kam, and Ullman [14] later

extended this algorithm to an abstract setting. Kennedy [23] devised

an algorithm for all graphs which uses node listings. For reducible

graphs, the algorithm is O(m log n) by a result of Aho and Ullman([3];

this bound is tight [ 30]. Graham and Wegman [16] devised another

O(m log n) algorithm, which Reif [31] simplified and extended. The

Graham-Wegman algorithm served as the starting point for the faster

and more general algorithm of Section 6.

The node listing method of Kennedy 1s a propagation method; it

uses only function application and addition of elements in L .

References [17,21,24] describe less efficient propagation algorithms.

In order for these propagation methods to work, the boundedness

axiom AB described in Section 7must hold. Otherwise, x cannot

be computed from x . The methods of Ullman, Graham and Wegman, and

. our methods do not require the boundedness condition.

We make the followlng conjectures. Consider a global flow problem

on a graph G such that the underlying algebra satisfies the boundedness

conditionAB fork = 1 and the right distributivity axioms A9D -AllD

(see Section7). Suppose G is reducible, with O(n) edges. Then

(1) any propagation method (i.e., a method which uses only function

Lo



application and addition of elements in [ ) requires at least

C nlog n operations to solve the global flow problem (in the worst

case), where C is some positive constant. Furthermore (2) any

method which uses function application, function composition, and

addition of either elements of L or functions requires at least

C na(n,n) operations to solve the global flow problem (in the worst

case).

The ideas in [30] and [39,42] may lead to proofs of (1) and (2).

Numeric Applications.

As discussed in Section 7, the algorithms of Sections 3-6 can

be used to solve systems of linear equations with numeric coefficients.

For any system whose underlying graph 1s reducible or almost-reducible,

the algorithm of Section 6willbe very efficient. Two related examples

of cases 1n which this may happen are when computing steady-state

probabilities for a Markov chain (especially 1f the chain represents

an operating system or other computer program) and when using

Kirkoff's laws to compute the number of times each step 1n a computer

program is executed [27].
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J. Remarks and Conclusions.

This paper has given an axiomatic framework for path problems

on directed graphs, described a method similar to Gaussian elimination

for solving them, and presented two decomposition schemes for speeding

up the elimination method. The first decomposition scheme uses the

strongly connected components of the problem graph G ; the scheme

is well-known to numerical analysts. The second method, more powerful

than the first,. uses the dominators of G .

The second method reduces the time to solve path problems on

reducible graphs from O(m log n) to O0(m ®(m,n)) , where G has n

vertices andm edges. The method improves and generalizes an

algorithm of Graham and Wegman for solving global flow problems on

reducible graphs. We conjecture that the method is optimum to within

a constant factor for solving path problems on reducible graphs. The

method 1s likely to be not only theoretically efficient but practically

efficient as well.

By combining the dominators decomposition method and the

corresponding method for the reversal of 3 graph, we get an even more

. powerful decomposition method. It may be possible to define the

"strongly biconnected components" of a directed graph and to extend

the dominators decomposition idea to these components. Doling this

remalns an open problem.
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