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Abstract

This paper considers path problems on directed graphs which are
solvable by a method similar to Gaussian elimination. The paper gives
an axiom system for such problems which is a weakening of Salomaa's
axioms for a regular algebra. The paper presents a general solution
method which-requires O(n3) time for dense graphs with n vertices
and considerably less time for sparse graphs.

The paper also presents a decomposition method which solves a
path problem by breaking it into subproblems, solving each sub-problem
by elimination, and combining the solutions. This method is a
generalization of the "reducibility" notion of data flow analysis,
and is a kind of single-element "tearing". Efficiently implemented, the
method requires O(m &(m,n)) time plus time to solve the subproblems,
for problem graphs with n vertices and m edges. Here Q(m,n) is
a very slowly growing function which is a functional inverse of
Ackermann's function.

The paper considers variants of the axiom system for which the
solution methods still work, and presents several applications,

including solving simultaneous linear equations and analyzing control

flow in computer programs. . o X .
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1. Introduction.

Consider a system of linear equations Ax == c , where A is an
n by n , real-valued, non-singular matrix, x is an n by one
vector of variables, and ¢ is an n by one vector of constants.
Mathematicians have developed many methods for solving such systems
[15,44], including Gaussian elimination and its variants and a host
of iterative methods.

Some of these linear algebra techniques apply in other settings.
Klenne [25] and others [6,36,37] have described the use of elimination
methods to compute regular expressions for finite automata. Floyd [13]
and others [2?20] have used similar methods to find certain kinds of
optimum paths in graphs. Not all of these researchers have realized
the connection of their ideas with Gaussian elimination.

Independently, many canputer scientists have developed methods
for collecting information about the flow of control in a computer
program [4,5,10,1k4,16,17,21,22,23,24,29,31,43,45]. Some of these
methods resemble iterative methods for solving systems of linear
equations; others resemble Gaussian elimination. Flow graphs of

computer programs often have a special property, called reducibility.

For such programs, especially-efficient information collection
algorithms exist [ 16,23,37,43].

In this paper we develop an elimination method for solving such
path problems. We use an axiomatic setting which covers most of the
problem domains described above. The axiom system is a weakening of
Salomaa's axioms for a regular algebra [36,37 ], with right distributivity
replaced by a monotonicity axiom suggested by Graham and Wegman [16]
and by Wegbriet [45]. We discuss variants of the axiom system for which

the method is also valid.



For convenience in presenting some of the results, we use a
graph-theoretic framework in place of a matrix-theoretic one. For
dense graphs with n vertices, the elimination method requires o(ng)
time; for sparse graphs, the running time depends in a complicated
way upon the sparsity.

We also describe two methods for solving a path problem by breaking it
into several path problems on smaller graphs. The first, well-knonwn
by numerical analysts, uses the strongly connected components of the
problem graph. For a graph with n vertices and m edges, the method
requires O(n+m) time plus the time to solve the subproblems. The
second method, which generalizes the reducibility notion of global
flow analysis, and which is a type of single-element "tearing", uses
the dominators of the problem graph. This method requires O(m 2(m,n))
time plus the time to solve the subproblems, where %(m,n) is a very
slowly growing function related to a functional inverse of Ackermann's
function. For reducible flow graphs, the total running time is
0(m x(m,n)) , better than the O(m log n) running time of the best
previous algorithms[1k,16,23,43].

The paper contains nine sections. Section 2 gives the necessary
definitions from graph theory. Section 3 gives the axiom system for
path problems and presents the elimination method. Section bk discusses
the effect of reversing the edges of the problem graph. Section §
gives the strong components decomposition method. Section 6 presents
the dominators decomposition method. Section 7 discusses changes to
the axiom system. Section 8 gives examples of path problems.

Section 9 contains further remarks and conclusions.



2. Directed Graphs.

A directed graph G = (V,E) is a finite set V of n = |

elements called vertices and a finite set E of m =\E\ elements
called edges. Associated with each edge e is a vertex h(e) called

the head of e and a vertex t(e) called the tail of e . Edge e

leaves t(e) and enters h(e) . This definition allows loops (edges
e with h(e) = t(e) ) and multiple edges (edges e with
h(el) = h(ee) 2 t(el) = t(eg))

A path p of length k from v to w is a sequence of edges

e

1’2

P = €€y .-e5ey such that h(ei) = t(ei+l) for 1 < i < k-1,
t(gﬂ = v , and h(%g = w . We extend h and t by defining
h(p) = h(ek), t(p) = t(el). The path p contains edges €1r€ps 08y
and vertices t(el), h(el), h(ee), cee ,h(ek) , and avoids all other
edges and vertices. By convention there is an empty path (containing
no edges) from every vertex to itself. A cycle is a path p ,
containing at least one edge, such that h(p) = t(p)

A graph G' = (V',E') is a subgraph of a graph G = (V,E)
if V' Vand B'c E . If E' =E(V') = {ecE \h(e),t(e) e€V'},
then G' is the subgraph of G induced by the set of vertices V' .
Similarly, if V' = V(E') = {v eV |Ze ¢E with h(e) = v or t(e) = v},
then G' 1is the subgraph of G induced by the set of edges E'

If there is a path from a vertex v to a vertex w inagraph G,

then w 1is reachable from v in G . A graph is strongly connected

if any vertex in it is reachable from any other vertex. The maximal
strongly connected subgraphs of a graph G are vertex-disjoint and

are called its strongly connected components.




A (directed, rooted) tree T is a graph with a distinguished
vertex r such that there is a unique path from r to any vertex
in T . If a vertex v 1is on the path from r to a vertex w ,
then v is an ancestor of w and_w 1s a descendant of v . We
denote this relation by v Zw . We denote the fact that (v,w) is

*
a tree edge by v - w , and the fact that v - w and v;éw by

+
Vv =W .



3. Path Problems.

Let R = (S,@,O,*,O_,}_.) be an algebra consisting of a domain S,
two binary operations ® and ® , a unary operation * , and two

constants 0,le¢ S , satisfying the following axioms.

Al: (x®y)®z = x®(yDz) —— BA5: x0(y2z) = (x2y) ez
A2: x®y = y&®x A6: 00x = x50 =0

A3: X®DX = x A7: x91 = 16x = X

Ad: 0®x = x®0 = x A8: xG(y®Pz) . X0y ® x0z

As a consequence of Al, A2, A3 we can define a partial order < on
S by: x <y ifandonlyif x®y =y .

A9: x <y implies x0z <yQ®z

For xXeS and 1 a non—-negative integer, let X" =1 if i = 0 ’

xt = xoxrt if 1 >0

i . . .
Al0: x° < x* for all non-negative integers i .

All: (zox) ®y < z implies yox <z

These axioms are a weakening of Salomaa's axioms for a regular
algebra (36,37 I, with right distributivity replaced by a monotonicity
axiom (A9) suggested by Graham and Wegman[16] and by Wegbreit [45].

Note that if S contains no zero element O but satisfies Al -A3, A5,
A7 -All we can always create a zero element O , defining 0®x = x®0 = x ,

*
O0'x =x:0=0, 0 =1. It is easy to verify that Al-All hold for Sy {0} .

Lemma 1. If x <y and w <z, then x3w <y®z and x0w<y0z .

Proof. By Al, A2, and the definition of <, x2w2y9z = x2yCwDz
=y®z . Thus x®w <y®z . ByA9, xOw <y®w . 3By A8 and the
definition of <, yOw®yQz = yO(w+z) = y®z . By the

transitivity of <, xOw <yow <yGz . 3



Let G = (V,E) be a graph. Let a: E - S , ¢: V - S . Then

(G,ayc) is a path problem. For any path p = €s€5-+-5€ 1in G
we extend a to p by defining a(p) = a(el)(:‘)a(e,a)O...C-)a(ey) .
If p is a path of no edges, we let a(p) = 1 . A solution to the

path problem (G,a,c) is a mapping x: V = S such that

Cl: c(t(p))@a(p) < x(h(p)) for all paths p ;
c2: x(v) < 2z(v) for all mappings z: V =8 satisfying the set

of inequalities

Q(E) = Z z(t(e)) @a(e) ®e(v) < z(v) | veV(E) .
eek .
h(e) =V
Lemma 2. Let 2z: V =8 satisfy the set of inequalities Q(E)

Then c¢(t(p)) @a(p) < z(h(p)) for all paths p

Proof. Let p = el, 632,...,ek be any path in G . We prove
c(t(p)) @a(p) < z(h(p)) by induction on k . If k = 0 , the result
is immediate. Suppose the result is true for k > 0 . Then

c(t(p) @a(p) - c(t(p) ola(e;)0...0a(e,)10a(e,,))

< x(t(ek_’_l)) Oa(ek+l) by the induction hypothesis and A9

IN

x(n( g,)) = x(a(p)) by Q(E) . -

If £ is any function, let f X denote the restriction of £

to the domain X .

Lemma 3. Let z: V- 35 satisfy the set of inequalities Q(E) . Let

E' CE . Then 3z .satisfies Q(E")

V(E')



Proof. Immediate. O

We shall present a two-step method for solving path problems.
The first step is analogous to finding the IJ decomposition of
a numeric matrix by Gaussian elimination [15]. The second step is
analogous to numeric backsolving [15] and is also related to
propagation methods for data flow analysis [ 17,21,23,2h4]. To

present the algorithm we need a few more definitions.

Let G = (V,E) be a graph and let (Gya,c) be a path problem.
Let v,w € V and let P be a set of paths from v to w in G

A value yeS 1is a tag for the triple (v,w,P) if

Tl: a(p) >y for all paths peP .

T2: z(w) > z(v)Oy for all mappings z: V -8 satisfying Q(E)

Suppose the vertices of a graph G = (V,E) are numbered from
one to n and identificd by number. A sequence of triples
(v(1),w(1),P(1)), - -« (v(k),w(k),P(k)) with v(i),w(i) cV , P(i)

a set of paths from v (i) to w(i) in G is a propagation sequence

for G 1if

Pl: v(i) =w(i) =1 for 1 < i <n and' v(i) £ w(i) for ml < i <k

P2: Each path p in G can be represented as

P P(ll)’P(le)""’p(iQHl) ! where 12 < ll;_ <. ..< iel ’

1< <nfor 0<j<?, nml<i,.<kforl<j<it,

toj+1
and p(ij) eP(iJ.) for 1 < j < 21-t-1.

2J



Given a propagation sequence {v{i),w.i),F{i)) 1or ¢ an.
a tag y(i) for each triple in the sequence, the following algorithm

computes a solution to the path problem (G,a,c)

SOLVE: begin

init: for i := 1 until n do x(i) := c(i)ey(i);
main: for i := n+l until k do

x(w( 1)) = x(w(i)) Dx(v(i)) ~y(i) ~yluli));
ggg SOLVE

Theorem 1. The mapping x: V - 3 computed by SCL/E is a solution

to (G,a,c) .

proof. Let p = P(il)’p(iz)""’p(iEHl) be a path in G , represented
as in P2. We prove by induction on ¢ that Cl holds for p after

iteration iE‘l of main . Suppose £ = C . Then

c(6(p)) 0a(p) = e(t(p(1;))) @a(p(iy))
< c(il) G;y(il) b 71 and Lemma 1,

and C1 holds after execution of init .

Suppose £ > 0 . By the induction hypothesis,
c(t(p)) @a(p(i,)) ©.ca(p(i )) < x(t(p(i ))) after iteration
1 20+1 24+2

i,, of main . Thus
e(t(0)) @a(p) < X(6(p(iy,,,))) Ba(p(iy,,))Ce(R(i,,,5)

- - 5y (w(i fore iteration i
SX(V(122+2)) Oy(12£+2) Oy(d(122+2)) before iteration

24+2
of main
_<_x(w(i2£+2) ) after iteration 121+2 of main .

Thus Cl holds for any path p .
To complete the proof, we show by induction on i +that x

satisfies C2 after iteration i of main . Let z satisfy Q(E)

10



Then, for 1 < i < n, 2(i) > =(i) , and z(i) > 2/i)eyli) by T2.
Hence z(i) > c¢(i)©y(i) , and x satisfies z(i) > x(i) for

1 < i < n after init . Suppose x satisfies z(v) > x(v) before
iteration i > m+l of main . The only value of x{v) which changes
during iteration i of main is x(w(i)) . By the induction
hypothesis and T2, x(v(i))©oy(i) < z(v(i))oy(i) < z(w(i)) before
iteration i . Also z(w(i))oy(w(i)) < z(w(i)) by T2. Hence
x(v(i)) oy(i) oy(w(i)) < z(w(i)) before iteration ‘i , and

x(w(i)) < z(w(i)) after iteration i . By induction, C2 holds for

the final wvalue of x .4

We note éeveral important facts abcout SCLVE. First, its running
time is O(k) , where k is the length of the propagation sequence
(if @ , ©, and * require constant time). Also, tags for a propagation
sequence depend only on a and not on ¢ . Thus we can solve a set
of path problems (G,a,cl), (G,a,ce) ,...,(G,a,cl) by finding a set of
tags for a single propagation sequence and then using SOLVE once for each c, -
SOLVE 1is a generalization of the backsolving step used to solve
simultaneous linear equations, and is also related to propagation
methods of global flow analysis.

In order to apply SOLVE, we must first compute a propagation
sequence and appropriate tags. The following lemmas lead to a way

to compute a propagation sequence.

Lemma 4. Let ecE . jiﬁfdffté%aﬁﬁgl {j‘Ehen a(e) 1is a tag for
(t(e),n(e), {e}) .

Proof. Immediate. ]

11



x
Lemma 5. Let x be a tag for some triple (v,v,F) . Then x
* *
is a tag for (v,v, P) , where P is the set of all paths formed by
*
concatenating zero or more paths in P . (P includes the empty

path from v to v.)

Proof. Let p be any path from v to v in G(E') . If p is
empty, a(p) = 1< x by Al0. If p is non-empty, p can be
represented as p = Pl’p2’ .. -,pk , wWhere each pi is a path in P .
By T1, a(pi) < x for all i . Thus a(p) < <5 < < by Al0. llence
Tl holds. ©Let z: V = 8 satisfy Q(E) . Then z(v)‘_> z(v) ©zDz(v)

*
by T2, and z(v) > z(v)@x Dby All. Hence T2 holds. J

Lemma 6. Let ¥, » ¥, be tags for (v,w,Pl) and (v,w,Pz) ,

respectively. Then yl’é)ye is a tag for (v,w, PlUP2) .

Proof. Let p be any path in PlL,IP2 . Then p is a
path in either Pl or P, , say P; . Hence a(p) < vy Sylgye »
and Tl holds for p . Let z: V - 3 satisfy Q(E) . Then

z (w) > z(v) Gyl®z(v) oy, = z(v) (yl@ye) by A8. Hence T2 holds. 3

Lemma /. Let ¥ » ¥, be tags for (u,V,Pl) and (v,w, P2) s
respectively. Then y,09¥, is a tag for (u,w,Pl-Pa) , where Pl-f,a

is the set of all paths formed by concatenating a path from Pl

with a path from P2 .

Proof. Let p be any path in Pl'P2 . Then p can be represented
as P =Py Py with P, € Pl r Do csP2 . Hence

alp) = a(Pl) @a(Pe) S Y,9¥, , and Tl holds. Let z satisfy o(E)

Then z(w) > z(v) oy, and z(v) > z(u)@yl . Hence

12



z(w) > z(u) @y,0y, by A9 and T2 holds. 4

The following algorithm, a version of Gaussian elimination,
computes tags for certain triples which form a propagation sequence.
The algorithm assumes that the vertices of the problem graph G are

numbered from one to n and identified by number.

ELTIMINATE: begin

for v := 1 until n do for w := 1 until n do y(v,w) := 0;

£or e do y(t(e),h(e)) := ¥(t(e),h(e)) Da(e);s

loop: for v :=1 until n do begin

ar y(v, v) = y(v,v);
b: for (u,v) , (v,w) with (w,w > v) and (y(u,v),y (v, w) £ 0)

do
yv(w,w) := y(u,w) ®y(w,v) ey(v,v) oy(v,w);
end end ELIMINATE;

For u,V,WeV 7 let PV(U.,W) = (p = el,ee’ ---,el ‘ t(P) = U,
h(pP) = W, and h(ei) < v, h(ei)ﬁ {u,w} for 1 < i <12-1} . Let
P(u,w) = P'min{u,w}(u,w) _ Notice that P(u,w) = Pmin{u,w}—l(u’ W),
*
and P(v,v) ={p = €128+ es€, | t(p) = v, h(p) = v, and h(ei) < v

for 1 <i<1-1} .

Theorem 2. For each final value of y(v,w) computed by ELIMINATE,
- y(v,w) is a tag for (v,w,P(v,w)).If v = w , y(v,w) is a tag

*
for (v,w,P(v,w) ) .

Proof. We prove by induction on v that after iteration v of

loop each value of y(u,w) so far computed is a tag for

. * .
(u,w, Pmin{u,v,w}(u’w)) > and. y(ww) 1is a tag for (u,w,P(u,w) ) if
U =w <v . The hypothesis is true after the first two for loops of

15



ELIMINATE by Lemma 4% and Lemma 6. Suppose the hypothesis is true
after iteration wv-1 of loop . Consider iteration v . Execution
*
of step a causes y(v,v) to become a tag for (v,v,P(v,v) ) by
Lemma 5. Consider any set of paths Pv(u,w) with u,w > v . This
set of paths can be represented as
*
P (uw,w) = P _(u,w) UP__(u,v)-P(v,v) -P(v,w) . Step b computes a
v v-1 v-1
tag for each such Pv(u,w) using Lemmas 6 and 7. By induction, the

hypothesis holds in general. The theorem follows. O

Theorem 3. The following is a propagation sequence for G .

(1) The elements of {(v,v,P(v,v)) | veV} in any order, followed by

(2) the elements of {(v,w, P(v,w) \ v,weV, v <w} 1in increasing
order on v (or on w ), followed by

(3) the elements of {(v,w,P(v,w)) | v,weV, v >w} in decreasing

order on v (or on w).

Proof. Let p be any path in G . Let vy =t(p) . For i >1,

let Vil be the first vertex u > Vi following v, onp . Let

v. be the last such ) definable (Vj is the largest vertex on p ).

Similarly let wl = h(p) . For i >1, let wi+l be the last vertex

u >w:.L preceding Wi on p . Let v, be the last such W definable.

- Then v.J= wl . We can represent p as

P =Pl)p2) . ’Jpzjipgj_*,l:.T')pgj_i_el_ﬁ ) where pgi € P(Vi’vi'l'l) for

P(w -i) for 1 <i <1#-1,

Pojroi-2 € F\WWp_4417%,

¢ P(vi,vi) for 1< i < 3j, and Ppispi-1 ¢ P(wz-i’wl-i> for

1 <ic< -1 . The theorem follows. ]

14



The complete algorithm for solving a path problem consists of
three steps:
S1: Apply ELIMINATE to compute tags.
s2: Form the propagation sequence given by Theorem 7, omitting
triples (v,wyP(v,w)) with tag O

s3: Apply SOLVE.

Steps S2 and S3 require O(k) time and space, where k is the
number of non-zero tags computed by ELIMINATE. The running time of
ELIMINATE depends in a complicated way upon the number of non-zero
tags. By rea;;anging the computations and using appropriate data

structures, we can implement ELIMIUATE to run in

n
0 B+E|l((u,v) { £(u,v) %Q,u>v}l . !{(v,w){f(v,w),i_(z,w>v} \
v=
time and O(k) storage space [7,40]. (By only storing values of
f(v,w) which eventually become non-zerc, we can avoid spending time
zeroing f(v,w). for all v and w .)
For dense graphs the storage bound is O(ng) and the time bound
is O(n5) For sparse graphs, the rescurce requirements depend upon
the vertex numbering chosen. Numerical analysts have devoted much

. effort to finding good numbering schemes, both for arbitrary sparse

graphs and for graphs with special structure. See [7,32,33,34,35,L%1.

15



. Graph Reversal.

.oz R .
If 1N is a set of edges, lcl B, the reverocal of &, be the

set of edges formed by switching the head and tail of each edge in & .
If G = (V,E) is a graph, &t - (V,ER) is the reversal of G .
(Reversing the edges of a graph corresponds to transposing the
corresponding adjacency matrix.) Suppose we have a method to solve
path problems on G . We would like to transform this method so

that it solves path problems on GR

Theorem 4.  Let (v,(1),w(1),P(1)), ..., (v(k),w(k),?(k)) be a
propagation sequence for G . Then
(v(1),%(1), P(D)F), ..., (v(n),w(n), P@)%) ,

(w(x), v(k),P(K)D), ., (w(mtl) , v(n+l) , P(+1)®) is a propagation

sequence for GR , where PR = {e};, eI;_l,..., e?_] el,e2 g ey ez c P}

Proof. Immediate. o

Thus any propagation sequence for a graph G can be easily
converted into a propagation sequence for its reversal. Furthermore,
any computation of tags based on Lemmas 4 -7 can be converted into
a computation of tags for the reversal graph by exchanging the
arguments of each © operation corresponding to an application of
Lemma 7. Hence our solution method for the path problem (G,a,c)

also gives a solution method for the path problem (GR,a,,c:) .

16



2. Decomposition by Strong Components.

The purpose of' ELIMINATE is to gather information about the
cycles of G . 1If G has no cycles, SOLVE can be used directly,
assuming that the vertex numbering satisfies t(e) < h(e) for each
edge e . A numbering which satisfies this property is called a

topological ordering [26]. We can find such a numbering in O (n+m)

time [26,38]. Thus, for acyclic graphs, there is a simple O(n+m)
solution algorithm.

We can generalize this idea. ©Let G be an arbitrary graph and
let G, = (Vl’El) v Gy = (VE:EQ) roee e G= (VoE ) be the strongly
connected components of G . Using depth-first search, we can compute
the components Gi and topologically order them; that is, arrange
them so that eeE with t (e) eV, and h(e) EV‘-_’ implies 1 <j .
This computation requires O(mn+m) time [38].

For 1 <i <k, let ((v(1,3),w(1,3),P(1,3)) » 1< 3 < 45 »
be a propagation sequence for Gi . For 1 < i<k, let n, = |Vi] '

The following algorithm computes a propagation sequence for G

STRONGSEQ: begin

SEQ := ¢;
for i := 1 until k do for j := 1 until n. do
A~~~ SRS P~ [ TN, V. W) NSNS~ R

add (v(i,3),w(i,3),P(i,3j)) to SEQ;
%i?l%k_dobegig
for 4 :=mgtl until k; do
add (V(i,j),W(i,j),P(i,j)) to SEQ;
fg’!; ecE with (t(e) e Vi E‘Ef.i, (h(e) € Vj > 3> 1) C,ii,
add (t(e),h(e), {e}) toSEQ;

end end STRONGSEQ;

AN s

17



Theorem 3. The sequence computed by STRONGSEQ is a propagation

sequence for G

Proof. Immediate. 0] ,

We can compute a propagation sequence with tags for each component
G; by using ELIMINATE. It follows from Lemma 3 that the computed
tags are also tags with respect to the graph G . Thus the time to
solve a path problem on G is O(ntm) plus the time to apply
ELIMINATE to each strong component of G

Henceforth, we shall assume that the problem graph G is strongly
connected; ifunot, we compute a propagation sequence with tags for
each strongly connected component and form a propagation sequence
for G using STRONGSEQ. This algorithm corresponds to solving a
system of linear equations by decomposing the matrix of coefficients

into "irreducible" blocks [15,44}. A "reducible" matrix should not

be confused with a "reducible" graph as defined in the next section.

18



6. Decomposition by Dominators.

The decomposition method presented in Section 5 is quite efficient.
ifowever, in most practical problems the problern graph G is strongly
connected and the JSecticn b method uccomplishes nothing.  1p thi o
section we present a more powerful decomposition methsod, based upon
the dominators of the problem graph, which is efficient and which
applies to a large collection of problem graphs which occur in
practice.

Let G = (V,E) be a strongly connected directed graph. T[et r
be a fixed, distinguished vertex of G . If v,w ¢ V and every

path p from r to w contains v , we say v dominates w in G

Lemma 8. There is a tree T , called the dominator tree of G , such

*
that v - w in T if and only if v dominates w . Vertex r is

the root of T and 'I' containg cvery vertex in ¢

Proof. See [4]. O

For any vertex W # r , the immediate dominator of w in G is

the vertex v such that v = w in the dominator tree T . We denote

this relationship by v = idom(w) . By convention idom(r) = 0

We can compute idom{w) for all vertices w in O(m %(m,n)) time by
- using depth-first search and a sophisticated data manipulation

algorithm [L2].

Zemna 9. If ecE , then idom(h(e)) h(e) in T

roof. Every path from r to h(e) contains idom(h(e)) . By

zdding edge e to any pzth from r to t(e) , we get a path from



r to h(e) . Thus any path from r to t(e) contains idom(h e)) .

and idom(h(e)) dominates t(e) . O

For any edge ecE , let v(e) be idom(h(e)) if t(e) = idom(h(e)) ,

¥
and let v(e) be the wvertex u such that idom(h(e)) - u - t(e) if

't (e) # idom(h(e)) . Let e* be an edge with h(e*)= h(e) ,
t(e*) = v(e) . For veV , let G(v) = (V(v),E*(v)) , where
v(v) = {w | idom(w) = v} , E*(v) = {e | ecE such that idom(h(e)) = v £ t(e)}.

We call the strongly connected components of the graphs G(v) the

dominator strong components of G . The dominator strong components

partition the vertices of G (excluding r ).

The idea\bf our algorithm is to compute a propagation sequence
with tags for G by using a method like ELIMINATE only within the
dominator strong components of G . For parts of the propagation
sequence connecting dominator strong components, we use the O(m a(m,n))
method described in [4¥2] for computing functions defined on a tree
(in this case, defined on the dominator tree T ). If the strong
dominator components are small, the resulting algorithm is very
efficient; if each strong dominator component contains a single
vertex, the entire solution process requires O(m a(m,n)) time and
space. Luckily, this special case occurs frequently in same of the
" application areas.

The first part of the algorithm analyzes the graph G . First,
we compute the dominator tree T of G using the O(m @(m,n))
algorithm of [W2]. Next, we compute v(e) for each edge e using
the O(m ®(m,n)) least common ancestors algorithm of [1], also

described in [42]}. Next, we find the strongly connected components
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of each graphr G(v) wusing the {Oim) alsoritim of [ <91,

Finally, we number the vertices of G from one to n so that

(1) if eeE has v(e) , h(e) in different dominator strong components
of G, then v(e) > h(e)

+
(2) v-w in T implies v >w

For any edge ecE with v(e) , h(e) 1in different dominator strong
components, either v{(e) = idom(h(e)) or idoa(v(e)) = idom(h(e))

If v(e) = idom(h(e)) , then v(e) > h(e) by both condition (1)

and condition (2). If idom(v(e)) = idom(h{e)) , then v(e) >h(e)
by condition Sl) and condition (2) does not apply. It follows that
there is a numbering satisfying both (1) and (2). We can find such
anumbering in O(m) time by using a topological sorting algorithm.
The entire graph analysis thus requires ¢{m x(m,n)) time (and
O(m) space).

The second part of the algorithm computes tags for various

triples associated with the graph. An outline appears below.
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DELIM: begin

for v := 1 until n do for w := 1 until n do y{v,w) := O3
for ecB do y(t(e),h(e)) = ¥(8(e),h(e)) Dale);
for v :=1until n do begin

TREE:  for ecE such that idom(h(e)) = v do
compute a tag y(v(e),h(e)) for (v(e),h(e),Pl(e));
CYCLE : for weV such that idom(w) = v do begin
compute a tag y (w,w) for (w, w, P(w, w) ) ;
Compute a tag y(v,w) for (v,w, P?(v,w));
2’13,(1 CYCLE; -

end;

*
y(n,n) := y(n,n) ;
end DELIM;

I

In this program Pl(e) - Pu(e) (v(e),h(e)) , where u(e) = min{u | idom(u)
idom(h(e))}-1 ; and P(vyw) = {p = es€ - - s | t(p) = v, hip) = w,
h(eJ.) <v for 1< 3j<k, and t(ej) =w = d3'> j with t(eé) >w} .

Step TREE in DELIM uses in its computations the tags computed
by previous iterations of CYCLE and TREE. The tags computed by TREL

correspond to the edges e* with idom(h(e)) = v . TREE uses a

functional procedure EVAL(v(e),t(e)) such that EVAL(v(e),t(e))
returns the value 1. if v(e) = t(e) and returns the value
y(vl,vz) @y(ve‘,vz) Oy(ve,vj) o . ..@y(vl_l,vl_l) Oy(vl_l,vl) if

~v(e) ;é t(e) , where v(e) = vl,ve,...,v = t(e) is the sequence of

!

vertices on the path from v(e) to t(e) in T . Here is a more

detailed implementation of TREE.

TREE : f,?ﬁ ecE such that idom(h(e)) = v El'ov

if v(e) # t(e) then
v(v(e)sh(e)) := y(v(e),h(e)) DEVAL(v(e),t(e)) @y(t(e),t(e))
oy(t(e),h(e));
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EVAL(v(e),t(e)) computes a tag for (v(e),’b(e),PE(v(e),t(e))
by using assigmments Of the form y(vi,vk) = y(vi,vj) Oy(vj,vj) Oy(vj,vk) ,

¥+ + * , , ,
where v(e) =~ v, = VitV t(e) in T , y(vi,vj) is a previously

computed tag for (v"Vj’Pé(vi’vj)) , y(vi,vj) is a previously computed
J
tag for (vi,vi,P(vj,vj)) , and y(véywb) is a previously computed tag
J J e

(vj’vk’Pé(Vj’vk)) . .. Lemma 7, each y(vi,vk) computed in this way

is a tag for (Vi’vk’P°(Vi’vk)) . After a sufficient number of such
assignments, EVAL has computed a tag y(vl,vl) for (vl,vz,Ea(vl,vz)).
Then, also by Lemma T, y(vl,vl)<Dy(vl,vl)<3y(vl,h(e)) is a tag for

(v(e),h(e),Pl(v(e),h(e))rW{p |p contains e}).By Lemma 6, each value

y(v(e);h(e)) computed by TREE is a tag for (v(e),h(e),Pi(v(e),h(e))).
The total number of EVAL operations carried out by DELIM is m .

These operations require O(m O(m,n)) time if EVAL is implemented

as described in [42]. The secrets of this implementation are to save

the computed intermediate values y(vi,vk) for use in later calls on

EVAL, and to order the computations in a clever fashion. Procedure

DELIM saves the intermediate wvalues y(vi,vk) not only for use in

Later calls on EVAL, but also for use as tags in the propagation

- sequence to be constructed.

Step CYCLE applies versions of STRONGSEQ, ELIMINATE, and SOLVE

to the tags computed by TREE. Here is an implementation of CYCLE.

ro
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CYCLE : begin

CE: I‘g}: weV such that idomgw) = v, in increasing order of w, do begin
*
y(w,w) = y(w,w)";
for (w,w), (w,x) with (u,x > W) and (y(w,w),y(w,x) £ 0)
and u,x in same dominator strong component as w dg,

y(u,x) := y(w,x) @y(u,w) Oy(w,w) Oy (¥,X);
d-

CsS: for Gi a dominator strong component of G(v), in topologically
increasing order, do begin

for w a vertex of G., 1in increasing order of w, do
lananard l - ~N

for x a vertex of G, with (x > w) and (y(w,x) £ 0) do
y(v,w) = y(v,w) y(v,w) Oy(w,w) 0y(w,x);

for w a vertex of G,, in decreasing order of w, do
o~~~ 1 A~

ffﬁ{, x a vertex with (idom(x) =v) a&i (x <w) and (y(w,x) )éQ) g_g
Cy(v,x) = ¥(vx) Dy(v,w) 0y(w,w) Oy(W,x);

In this implementation of CYCLE, CE applies the idea of ELIMINATE
to each strong component of G(v) , FEach value y(u,x) computed by

CE is a tag for (u,x,P(u,x)) , @assuming that the previous iteration

of TREE has correctly computed a tag y(v(e),h(e)) for each eeE such

that idom(h(e)) = v . This follows from a proof like that of

Theorem 2.

Step CS of CYCLE uses the ideas in Theorem 3, STRONGSEQ, and
SOLVE to compute, for each vertex w such that idom(w) = v , a tag
y(v,w) for (v,w,PQ(v,w)) . This follows easily from a proof using
Lemma 6, Lemma 7, and ideas in the proofs of Theorem 1, Theorem 3,

and Theorem b.

Summarizing the above observations, we have the following theorem.
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Theorem 6. The procedure DELIM, with TRZE and CYCLE implemented as
described, computes tags for the following triples.
TR1: (v,v,P(v,v)) for vaV.
TR2: (v,w,Pg(v,w)) for v -= w in T
TR>: (v(e),h(e),Pl(e)) for erE
TR4: (v,w,P(v,w)) for each pair of verticec v, w such that v , w
are in the same dominator strong component and there is a path
* % * , L *
P = epey-..e, in the component with u(el) =, h(el) =w,
*
h(ei) < min{v,w} for 1<1i<1f-1.
TR5: (v,W,Pg(v,w)) for a subset SB of the pairs of vertices v,w
+
such that v - w 1in T , where SB satisfies
(1) v(e) £ t(e) = (vle),t(e)) eSB
(ii) (v,w) € SB and —(v - w in T) = Zx such that
+ + , s
v-ox-w in T and (v,x), (#z,w) < SB . We assume that

an appropriate z for each (v,w) ¢ SB ic saved by

procedure EVAL.

The total amount of computation time required by DELIM is
proportionalto m Q(m, n) plus the time required to apply ELIMINATE
to each strong dominator component of G . The amount of storage
space required by DELIM is proportionalto =m@(m,n) (for triples
- of types TR1, TR2, TR3, TR5) plus k (for triples of type TRL),
where %k 1is the total number of non-zero tags resulting from applying
ZLIMINATE to each strong dominator component of 5 .

The third part of the algorithm arranges triples »f types TR1 -TRY

into a propagation sequence. Tirst, we construct a g st of list:: Ll ),



one for each vertex v . Each list contains a set of ordered pairs
. t . .
of vertices (v,w) such that v -w in T . We construct the lists

using the following algorithm.

LISTS: begin

for v :=1luntil n do L(v) = @;
for each triple (u,w,Pé(u,w))<3f type TRS do
if = (u ~w in T) then begin
let u % v 5w in T be such that (u,v), (v,w) €SB;
add (v,w) to L(u);
end end LISTS;

Next, we remove duplicates from each list L(u) and order the
pairs (v,w) “on each L(u) in decreasing order on w . A radix
sort [28] accomplishes this in O(m a(m,n)) time and space, since
the total length of the lists is O(m a(myn)) . Finally, we apply

the following algorithm to compute a propagation sequence.

26



PROP: beg:‘m

Ps := ¢;
Pl: for v := 1 until n do add (v,v,P(v,v)) to PS;
loop: for v := 1 until n do

for Gi a dominator strong component of G(v),
in topologically increasing order, 9‘&929,{13,
P2: for w a vertex of Gi do
for ecE such that h(e) = w do
if t(e) £ vle) then
add (h(e),t(e), {e]) to Ps;
P3: £2£w a vertex of C-i, in increasing order of w, 'c\i’g‘
for x a vertex of 3, with (x<w) and (y(w,x) £0) do
add (w,x,P(w,x)) to PS;
P4: £OVI;W a vertex of Gi in decreasing order of w, 919..
for x a vertex with (idom(x) = v) and
(x > w) and (y(w,x) # 0) do
add (w,x,P(w,x)) to PS;
P5: for w a vertex of Gy do for (uw,x) « L(w)

add {u,x,Pg(u,x)) to PS;

PoH: for v := n-1 step -1 untill do begin
~~— AV Y ) - ~r

let u - v in T;
add (u;V:Pg(u:V)) to S;
end end PROP;

Theorem 7. The sequence PS computed by PROP is a propagation sequence

for G

Proof. Let p be any path in G . Let v, =t(p) . For i > 1,

let Vitl be the first vertex u following v, on p such that
. .

u >v. and ﬂ(_i_do_m(vi) - idom(u) in T) . Let 7, be the last

such vy definable in this way. For 1< i <[f , let we be the

last vertex u between v, and v, on p such that
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idom(vi) = idom(u) in T /if +here is nc such w , let w, = - ).
Then we can represent v as p = p,,D
t(PEi-l) =V t(pEi) = W for 1 < i < P-1, 11(1322_2) - h(p),
Pos_1 contains only proper descendants of j_dom_(vi) , and Pos
contains only proper descendants of . (with the exception of
i

t(PEi) and h(ng_) ). Ilote that any path Py; 1 can be empty, as
can Poyo

Since every vertex u on P, satisfies

t
;o except (‘-P?.l-

o)
+

t(ng-g) -y in T , we can write as

P2g-2
Popo = Pop2,17 Pogp,27. 2 P2pp, 0 » VhETE
in

- - _ .
t(Pzz-e,egj-Jj h(p2!-2,23'-l> v (P2l-2,2j) h(Pzz.-z,eg) ?

: n i .
Poyop,p5-1 & & PAWR AN B(t(py, 5 55 10582y, 5 55 4)) 5 end

Pogop,pj IS @ Pathin P(t(py, 5 55)50(py, 5 55)) - The triples
(V:W,PE(V,W)) for v -»w in T are added to the end of PS ,
in decreasing order of w , by steo F5 of PROP.

For each 1 < 1 < z-2 , every yvertex u on Pos_; satisfies
idom(vy) Lau. Applying the ideas in Theorem 5 and Theorem 5, we
can represent in , @as a sequence of paths selected, in order,

from the path sets P(w,x) added to PS during steps P3 and Pk

- in iteration idom(vi) of loop , alternating with paths selected

from the path sets P(v,v) added to FS during step Pl.

What remains to be shown is that, for each 1 < i < L-2 ,

d

can be represented as 2 sequenze <f paths selected, in order,
from the path sets PQ(V:W) added tc PS during step P5 in iterations

idom(wi) to idem(v of loop , alternating with paths gelected

-]
i+l) -

o
o



from appropriate path sets F( v, v) , and ending with a path st ol

added to PS during iteration idom(vi+ ) of step B Phus, coneider

1
any path p,. . Let P,; 1 = e be the path consisting of the last
J

edge e on p2i . Then PEi = xl-., p21’2 ’ P2i,l » where xl is a path

in pe(t(xl),h(xl)) » Poyp is a path ip P(t(PEi,l)’t((P2i,l)) ,
and DELIM has computed a tag for (V(e),t(e),Pe(v(e),t(e)))-
Let j =1, =z, =v(e) . We repeat the following step until

J
reaching a value of j for which t(xj) = h(xj) . We have

Zj t‘t(Xj) -):' h(XJ) and (Zj,h(xJ)’PE(ZJ’t(xj))) €SB . If

+ o+
t(xj) # h(xj)%, there is some z such that z. = z - h(xj) and

J

*
If t(x.) - z , let

(zj,z,Pe(zj,z)) - (z,h(xJ.),Pa(zJ.,z)) €SB p

Zj+l = zJ. P x;i = xj+l’ p2:i.,2j+2’ p2i,2j+l s Where xj+l is a path

in P (t(x.),z i i
2( ( J), ) . p2i,23+2 is a path in P(2,z) , and Ppi, o541

, , +
is a path in P2(z,h(xj)) . If z —’t(x_.J) , let 2 =7

£ are

4 =X, s s R
g1 T %50 Pay,ogee’ Poi pgen 0 VRSTE Do ogyp 304 Do oo
empty paths. Since the distance between ;.  gpng h(x.) in T
J d
strictly decreases with increasing j , eventually we reach a value
f 3 k i =
of j , say , for which t(xk) h(xk) . Then x_ and P21,2k
- are empty paths, and we have decomposed Py as
Poi “Fei,ok-17Poi,ek-27n-Pas,2 2 Poy, 10 VTS gy, o, ds
th i , .
a path in Pe(t(pei,2,j+l)’h(p2i,2j+l)) ’ p2i,2j is a path in
P(t(py; »:)sh(p,. 25 and i
( (P21,23)’h‘P21,23)) ) (t(P21,23+l)’h(p21,23+1)) is on L(ZUI)
*.

if p2:i.,2j+l is not empty, for 1 < j < k-1 . Since either zj 5 z]'+l
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. F . .
or t(xj+l) —-»t(xj) in T , the triples corresponding to the non-empty

paths p?i,2j+l are added tv PE in the order

1 : P (t :
(g, o) s BRs oey) 5 BE ()5 Dy, Ck _))) s

(t(P2i’5) ’ h(PQi,i) , P2‘(t(P21',,j) ’ h(PZii,;') )) during step 55 in
iterations idom(wi) to idom(zri+2) -1 of 1loop . rripie

(t(e),nle),{e}) is added to PS during step S2 in iteration
. /~
1dom-\v-i+l)

Combining the decompositions ¢f the paths D D
2i-1 7 *2i
(1 <1< t-2), p2l 3 0 and p22_2 gives a decomposition of p

which satisfies the condition for a Propagation sequence. 0

Below is a summary of the decomposition algorithm for solving path

problers.

~

Step 1t Analyze the graph % tc find its dominator strong components
and number its vertices.
Time:  O(m &{m,n))
Space: 0O(m)
Step 2: Apply DELIM to compute tags.
Time: O(m a(m,n) + elimination time within dominator
strong compcnents)
Space:  O(m %(m,n) + X) , where k is fill-in within
dominator strong components.
Ssep 3:  Apply LISTS and PROP to compute a Propagation sequence.
Time: 0(m a{m,n) + %)

Space: O(m 2{m,n) + k) .



step ) ;' Apply SOLVE.
Time: O(m a(myn) + k)

Space: O(m Q@(m,n) +k) .

We see that the total running £ime of the algorithm is proportional
to ma(m,n) plus the elimination time within the dominator strong
components, and the storage requirements are proportional to m &(m, n)
plus the fill-in within the dominator strong components. In summary,
this algorithm allows us to trade a slightly non-linear overhead cost
for large savings in elimination time, if the graph G has more than
a few dominator strong components. Using Theorem 4, we can also
apply the algé;ithm profitably to graphs whose reversal has more than
a few dominator strong components.

The power of this algorithm lies in the fact that in several
important application areas, most of the graphs of interest readily
decompose into many dominator streng components. A graph such that
each of its dominator strong components has a single vertex we call
a reducible graph (relative to the fixed vertex r ). This definition
is not the standard one, but it is equivalent to many other
characterizations; see [18,19,41]. 0On reducible graphs, the

decomposition algorithm carries out no elimination; the total time

" and space requirements are O{(m Q(m,n)) . (In this case the algorithm
can also be simplified somewhat.)

Ullman [43], Kennedy [ 23 ], and Graham and Wegman [16] have
proposed O(m log n) time algorithms for solving global flow analysis
problems on directed graphs. Our algorithm constitutes a generalization

of the Graham-Wegman algorithm to arbitrary graphs, and to solving



arbitrary path problems. By using the improved data manipulation

algoritim of [42], we have reduced the time bound to C(m &(m,n)) for

reducible graphs. The extension to arbitrary graphs using dominator

strong components seems to be a natural idea, apparently overlooked

by previous researchers.



7. Variants of the Axiom System.

I

This section considers several ways in wihich the axioms can be

modified without affecting the validity of the algorithms presented.

Boundedness.
In some applications (especially in global flow analysis [14,10,21]),

the * operation is not present. Instead, an axiom of the fomm

aB: X1 < T x
i=0
. . . * k .
is assumed. In this case we can_define x = (l+x) . It is then

*
easy to prove AlO and All. To compute X , we apply the formula

logek
<5 = (19x)° - (.. (enB)PR.)?,

) ) *
which uses log2 k ® and © operations to compute x

Distributivity.

In applications to regular expressions [6,2%,%0,( |, We can
strengthen axioms A9, Al0, All to
A9D: (x@y)0z = (x0z2)2(yoz2)

A10D: (y@x*Ox) By = yOx*

A11D: ZOXBy = z implies y@x* <z

In this case the solution to a path problem (G,a,¢) is the minimum

solution to the set of equations

QE(E) = 2 z(t(e)) oa(e) ®e(v) = z(v) | vev

eck

h(e) =v
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Inverses.

Tn applications to numeric problems,axiomA‘docanothold.

instead of A), A9, ALO, All we attume

A3T1: For all x there is an element =:x S guch that
xD(Ax) = 6x3x = 0
A9I: (x®y)0%z =x0z2@0y%¢z -

Al0I: For all x # 0 there is an element X-l'eS such that

These are the axioms of a division ring. We define x* - (l@@x)-l
for x #1 . Then z = ywax* is the unique solution to the equation
(zox) 9y =2z . A solution to a numeric vath problem is a vector z
satisfying QE (E)

The definitions and procfs in Sections 7 -6 are not valid for
numeric path problems, because deletion of _,iom A3 means there is no
partial order defined on the set S . However, the solution algorithms
presented in Sections 3 -6 are still v-alsa. wor a development of the
ideas necessary for new proofs, see [15,4k]. gqo [40] for further
discussion of a numeric version of the decomposition algorithm in
Section 6.

An added difficulty in the numeric case is that 1* is undefined.
This means that not all path problems have solutions. Furthermore the
elimination methods in Sections 3-6 pay not find solutions even for
path problems which have them. Numerical analysts have developed
various pivoting schemes to overcome this problem [15]. It is interesting

to note that the existence of additive inverses allows the use of

1 s o - Alym . . P
independent permutations of rows and columns {p the matrix of coefficients



to rearranze the computations [15]. 1In the non-numeric applications

covered by tie Jection I axiom system, enly simuliancous permubation:

cf rows and columns are valid. Tn wddition, Lhe cxistence of

madtiplicative inversec wllowe cimplitfication of Lhe- trec muaniputalion

nethod underlying the algoritim of Section ¢ (see [L21).



8. Applications.

This section presents several of the more common types of path

problems. Many others undoubtedly exist.

Applications on Acyclic Graphs.

Suppose we wish to find the transitive closure of a graph
G = (V,E) . We can assume that G is acyclic (if not, we first
find its strongly connected components and reduce each to a single
vertex). Let S = {Y|Y<c V), c(v) ={v} for vev , a(e) = ¢
for eecE , Y®Z = YUZ , YOZ = YUZ . If x(v) is a solution
to (G,a,c) , then x(v) is the set of vertices from which v is
reachable in E . A solution x(v) can be computed in O(mtm) set
union operations using the method suggested in Section 4. For an
exposition of this well-known algorithm, see [12].

We can use the same idea to compute dominators in an acyclic
graph, Let G = (V,E) be acyclic and let r ve a fixed vertex.
Let S ={|vyc v}, c(v) ={v} for VeV , a(e) = {n(e)} for
ecE, YPZ = YNZ,YO0Z =YUZ . If x(v) is a solution to
(Gya,e) , then =x(v) Is the set of dominators of v . The Section 4
method computes the sets x(v) in O(n+m) set operations. This

algorithm is due to Hecht and Ullman [ 17]. Note that the dominators

" for an arbitrary graph can be computed in O(m a(mn)+ Z |x(v)])
veV

time without using set operations [L42].

As a last application of this kind, consider critical path
analysis. Let G = (V,E) be an acyclic directed graph with a source
vert ex s , a sinkvertex t , and length a(e) on each edge. We

desire the length and location of a longest path from s to t . Let
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c(s) =0, C(v) = == for veV-{s} , y9z = max{y,z} , yO0z = y+z
If x(v) is a solution to (G,a,c) , then x(t) is the length of a
longest path from s to t , and such a path can be constructed by
examining x(v) for appropriate vertices v . Computing x(v)

requires O(n+m) time. See [8]."

Simple Applications on Graphs with Cycles.

Let G be a graph, let ¥ be a finite set, and let 2* denote
the set of finite strings over T | Let A denote the empty string.
Let S denote the set of subsets of Z* . For eeE , let af(e) = [w(e)) ,
where each w(e) is some word in Z* . Let ® denote set -union, let

© denote set concatenation (Y®Z = {yz |yeY and zcZ)) , and let ¥

o * W4 0
denote transitive closure (Y =U Y™ , where Y = {A} and
i=0
i i
Y" =Y 0Y) . Let r be a fixed vertex in G and let c(r) = {p} .,
c(v) = ¢ if VeV—{r} . If x(v) is a solution to (G,a,c) , then

x (V) = {a(el)oa(e2)o -+ Oa(e) |p = e5€y ---,e is a path from r
to v in G} . Computing the reguler set recognized b-y a finite automaton
is thus a path problem. See [6,25,36,37].

Let G = (V,E) be a graph and let a(e) for ecE denote the

length of the edge e . ILet r be a fixed vertex of G . We desire
the length of the shortest path from r to every other vertex.

- Alternately, we desire the length of the shortest paths between all

pairs of vertices. We allow negative edge lengths. Let c(r) =0,

c(v) =« for veV-{r}, y®z = minfy,z} , y0z = y+z ,

* 0 if y >0

vy = . Then a solution x(v) to (G,a,c) gives
- if y <O



the length of a shortest path from r to v . By computing a
propagation sequence and applying SOLVE n times, we can find
shortest paths for all vertex pairs. The time required by this method
for either the single source or the all pairs problem is O(n3) for

a dense graph and less for a sparse graph. See [9,13,20] for shortest

path algorithms which use elimination methods.
2 . .
Dijkstra [11] has #iven an 0(n”) algorithm for the sin@ source
problem with non-negative edge lengths. This algorithm runs in

. 2 .
O(min{n~ , m log n}) time if the proper data structures are used [20].

Global Flow Analysis.

The following application is an abstraction of a problem which
arises often when doing global flow analysis of computer programs.
Let L be a set with an operation ® and a zero element 0
satisfying Al, A2, A3, Alk. Let S be a set of functions f: L - L

satisfying the following axioms.

#l: 8§ 1is closed under composition and @ ( where f ®¢ ic the

function h defined by h(x) = f(x)®g(x) ).

¥2: S contains an identity function 1 such that 1(x) = x
¥%: Each function in S is monotonic; that is, if feS , x,y EL ,

and x <y , then f(x) < f(y)

If f,g8e¢S , let f@g be the function h such that h(x) = g(f(x)) .
If feS , xeL , let fOx denote f(x) .With this definition,

241 -A9 hold on S

#
7L: For all fe¢S , there is an f 8 saticfying 216 and 711.



The idea of these definitions is the following. Let G = (V,E)
be a directed graph with a fixed vertex r . Let a(e) €S for all ecE .
Let c(r) =L .Let ¢(v) = 0 for veV-{r} . The graph G represents
a computer program; each vertex of G represents a basic block of code
(a block with only a single entry and a single exit point). The set L
represents a set of properties which can hold in various blocks of the
program. The vertex r 1is the start of the program. For each edge e ,
a(e) (z) is the property which holds at t(e) if the property z holds
at h(e) and the program takes the branch corresponding to edge e

Assume that the property c(r) EeL holds at the start of the

program. We desire, for each veV , a property x(v) L such that

Pl: x(v) holds at block v , independent of the execution sequence

which causes control to reach block v

In theory, we would like the "best" such set of properties x(v)
("best" means "smallest relative to < "). 1In general there may not
be such a "best" set, and even if there is, the set may not be
effectively computable [22]. We will settle for a set of properties
x(v) satisfying Cl and C2. We can construct such a set of properties
by using the algorithms in Sections 3 -6. First we compute tags fora
propagation sequence by using function addition, composition, and
" transitive closure. Next we apply SOLVE, which finds a solution by
using function application and addition of elements in L .

Many authors have studied algorithms for this data flow problem
and discussed concrete examples of it (see [3,4,5,10,1k4,16,17,21,22,
23,24,29,31,43,45]). For most applications, @, @ , and * can be

computed efficiently (i.e. in constant time; see [14]).
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For arbitrary graphs the worst-case running times ofallkncwn
algorithms are O(nm) or worse; the running time of the elimination
algorithm of Section 31is O(ns) (faster if G is sparse). For some
restricted classes of graphs, such as reducible graphs, there are
faster algorithms. Cocke and Allen“[s,lo] introduced reducible grapns,
but their global flow algorithms were O(mm) . Ullman [L43] devised an
O(m log n) algorithm for eliminating common subexpressions in computer
programs with reducible flow graphs; Fong, Kem, and Ullman [14] later
extended this algorithm to an abstract setting. Kennedy [23] devised
an algorithm for all graphs which uses node listings. For reducible
graphs, the algorithm is O(m log n) by a result of Aho and Ullman(3];
this bound is\-tight [ 30]. Graham and Wegman [16] devised another
O(m log n) algorithm, which Reif [31] simplified and extended. The
Graham-Wegman algorithm served as the starting point for the faster
and more general algorithm of Section 6.

The node listing method of Kennedy is a propagation method; it
uses only function application and addition of elements in L
References [17,21,2L4] describe less efficient propagation algorithms.

In order for these propagation methods to work, the boundedness
axiom AB described in Section 7must hold. Otherwise, x* cannot
be computed from x . The methods of Ullman, Graham and Wegmen, and
our methods do not require the boundedness condition.

We make the following conjectures. Consider a global flow problem
on a graph G such that the underlying algebra satisfies the boundedness
condition AB for k = 1 and the right distributivity axioms ASD - AllD

(see Section 7). Suppose G is reducible, with O(n) edges. Then

(1) any propegation method (i.e., a method which uses only functicn



application and addition of elements in 1 ) requires at least

C nlog n operations to solve the global flow problem (in the worst
case), where C is some positive constant. Furthermore (2) any
method which uses function application, function composition, and
addition of either elements of L or functions requires at least

C na(n,n) operations to solve the global flow problem (in the worst
case) .

The ideas in [30] and [39,42] may lead to proofs of (1) and (2).

Numeric Applications.

As discussed in Section 7,the algorithms of Sections 3 -6 can
be used to soi&e systems of linear equations with pumeric coefficients.
For any system whose underlying graph is reducible or almost-reducible,
the algorithm of Section 6will be very efficient. Two related examples
of cases in which this may happen are when computing steady-state
probabilities for a Markov chain (especially if the chain represents
an operating system or other computer program) and when using
Kirkoff's laws to compute the number of times each step in a computer

program is executed [27].

41



9. Remarks and Conclusions.

This paper has given an axiomatic framework for path problems
on directed graphs, described a method similar to Gaussian elimination
for solving them, and presented two decomposition schemes for speeding
up the elimination method. The first decomposition scheme uses the
strongly connected components of the problem graph G ; the scheme
is well-known to numerical analysts. The second method, more powerful
than the first,. uses the dominators of G .

The second method reduces the time to solve path problems on
reducible graphs from O(m log n) to O(m ®(m,n)) , where G has n
vertices and m edges. The method improves and generalizes an
algorithm of Graham and Wegman for solving global flow problems on
reducible graphs. We conjecture that the method is optimum to within
a constant factor for solving path problems on reducible graphs. The
method is likely to be not only theoretically efficient but practically
efficient as well.

By combining the dominators decomposition me?hod and the
corresponding method for the reversal of 3 graph, we get an even more
powerful decomposition method. It may be possible to define the
"strongly biconnected components" of a directed graph and to extend

the dominators decomposition idea to these components. Doling this

remains an open problem.
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