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1. Introduction.

Given a set of linear equations

n
J'El a‘ij Xj = bi (i = l,2,..-,m) 7 (1_1)

one may ask whether there is a single linear equation

n
2 ax, =b
Z e (1.2)

such that (1.1) and (1.2) have precisely the same set of zero-one
solutions. As shown by Bradley [2], the answer is always affirmative.

(Actually, Bradley's results are more general. Some of them have been

generalized further by Rosenberg [10].) In this paper, we shall consider

a related question: given a set of linear inequalities

n

5oyt S P (i =12 m (1.3)

we shall ask whether there is a single linear inequality

n
2 ax,<b
,j=l J J - (l‘h)
such that (1.3) @d (1.4) have precisely the same set of zero-one
solutions. In a sense, which we are about to outline, this problem has

- been solved long ago.

First, a few definitions. A function

£: {0,1}" - {o0,1}

iS Called a SWitChing MCtion- If there are real numbers al,ae’ ceesa
n

and b such that

n
f(xl,xe,...,ng =0 if and only if 2, a.x. <b
j=l Jd Jd -

then f is called a threshold function. If there are (not necessarily

distinct) =zero-one vectors Xi,ge,.“,yk and ByoZor ey such that



£(y;) = 05 £(2;) = 1 for all i =1,2,...,k

and

k
Iy =
i=] ~*

e
N

24
15

then, for each integer m with m > k , the function f is called
m-summable. If £ is not m—-summable then f is called m-assumable.

It is well-known [3], [6] that a switching function is threshold if and

only if it is m-assumable for every m . (The proof is quite easy:

denote by Si the set of all the zero-one vectors x with f(x) = i

By definition, f is threshold if and only if there-is a hyperplane

separating SO from Sl . Such a hyperplane exists if and only if

the convex hulls-of SO and Sl are disjoint. Clearly, these convex

hulls are disjoint if and only if f is m-assumable for every m .)
Coming back to our problem, we may associate with (1.3) a switching

function f defined by

f(xp%y..@ @@ ) @0 if and only if (1.3) holds.

Then the desired inequality (1.4) exists if and only if f is m-assumable
for every m . However, such an answer to our question is unsatisfactory
on several counts. Above all, it does not provide an efficient algorithm
for deciding whether (1.4) exists. e shall develop such an algorithm in
* the special case when all the coefficients aij and bi in (1.3) are
are zeroes and ones.

An mxn zero-one matrix A = (aij) will be called threshold if, and

only if, there is a single linear inequality

<b

il =}
. ™

%.%,

J
whose zero-one solutions are precisely the zero-one solutions of the
system

n
;Eiaijxj < .o (1= L,2,.00m) . (1.5)



Note that the zero-one solutions of (1.5) are completely determined by
the set of those pairs of columns of A which have a positive dot
product. This information is conveniently described by means of a
graph; in order to make our paper self-contained, we shall now present
a few elementary definitions from éraph theory.

A Graph is an ordered pair (V,E) such that V is a finite
set and E is some set of two-element subsets of V . The elements
of V are called the vertices of G , the elements of E are called
the edges of G . Two vertices u,veV are called adjacent if
{u,v} ¢ E and nonadjacent otherwise. For simplicity, we shall denote
each edge {u,v} by uv . A subset S of V is called stable in G )
if no two vertices from S are adjacent in G .

With each mxn zero-one matrix A , we shall associate its

intersection graph G(A) defined as follows. The vertices of G(A)

~

are in a one-to-one correspondence with the columns of A ; two such
vertices are adjacent if and only if the corresponding c;hmms have

a positive dot product. The motivation for introducing the concept is
obvious: the zero-one solutions of (1.5) are precisely the characteristic
vectors of stable sets in G(A) . We shall call a graph G with vertices
UpslUns Loy threshold if tﬁgre are real numbers 815855 +++58 and b

such that the zero-one solutions of

n
; a.X. <b
ie1 9 J

J

are precisely the characteristic vectors of stable sets in G . Clearly,
G(A) is threshold if and only if A is threshold; let us also note that
G(K)can be constructed from A in O(mne) steps. Thus the question
@I; A threshold?" reduces ingg the question "Is G(A) threshold?".

~

2. The Main Result.

In this section, we develop an algorithm for deciding, within O(n2)
steps, whether a graph G on n vertices is threshold. we shall begin
by showing that certain §ma%l graphs are not threshold. These graphs
are called 2K2, Ph and Ch~; they are shown thigure 1.
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Fact 1 . If G 1is 2Ké ) Ph or Ch then (¢ is not threshold.

Proof. Assume that one of the above graphs G is threshold. Then

there is a linear inequality

alxl 4 a2x2 N a5x3 N a’hxh < b

whose zero-one solutiong are precisely the

stable sets in G . In particular, we hav

3y +ah, >b , a2 + a3 >b ,

clearly, these four inequalities are incon

In order 10 make our next observation

need the notion of an "induced subgraph'.

characteristic vectors of

e

a; + 35 <b, a, + a, < b

sistent.

about threshold graphs, we
Let G = (V,E) be a graph

and let S be a subset of V .The subgraph of G induced by S is

the graph H whose set of vertices is S ;

in H if and only if they are adjacent in

two such vertices are adjacent
G

Fact 2. If G is a threshold graph then every induced subgraph of G

is threshold.
Proof. Let the zero-one solutions of

a.x.
J Jd

1Mo
R
A
o

J

be precisely the characteristic vectors of

stable sets in G . Let H

. ' K
be a subgraph of G induced by S .  penote by 2. the summation

over all the subscripts j with u. ES
J

of

Then the zero-one solutions

*
2 a.x <b
Lb—-
are precisely the characteristic vectors of stable sets in H . 0



Now, we have an easy way of showing that certain graphs are not

threshold (simply by pointing out an induced subgraph isomorphic to

2K, » By or C) ).On the other hand, we are about t, gevelop a way

of showing that certain graphs are-threshold. 1.t @ be a graph with

vertices UpsUpse«-5u G will be called strongly threshold if there

are positive integers 812855 - s s and b such that the zero-one

solutions of

n
a.x. <b
g=1 J J
are precisely the characteristic vectors of stable sets in G . (Tt

will turn out later, and may be proved directly, that every threshold
graph is strongly threshold.) We shall show that the property of being
strongly threshold is preserved under two simple operations. (.t ¢

be a graph with vertices Upslss .0 @’n . By G+K, , we shall denote
the graph obtained from G by adding a new vertex W.1 and all the

edges ustg with 1 <i<n . Gy GLJKl » we shall denote the graph

obtained from G by adding a new vertex L) and no edges at all.

Fact 3. If G is strongly threshold then G*-Kl and GLJKl are
strongly threshold.

Proof. Let 81s8p5 - es8 and b be positive integers such that the

zero-one solutions of

2z a.x. <b
J__

are precisely the characteristic vectors of stable sets in G . Then
the zero-one solutions of
n |

b wal
L a.x. + bxn+l

b
Z ey s

are precisely the charactelistic vectors of stable sets in G+ K

Similarly, the zero-one solutions of



%
|
i

n

2 v
;E=la.§.3+ X4 S 2bl

are precisely the characteristic vectors of stable sets in GlJKi .0
Now, we are ready for the theorem. !

Theorem 1. For every graph G , the following three conditions are

equivalent:

(1) G is threshold,
(ii) G has no induced subgraph isomorphic to 2K, Py, or Cy ,
(iii) there is an ordering Hﬂ?”. Wel of'the vertices of G and
and a partition of {vz,v5, -++5v_ 3 into disjoint subsets P
and Q such that
(%) every v, eP is adjacent to all the vertices v,
i
with i <j,
(*)  every vy €Q 1is adjacent to none of the vertices
vy with i < j
Proof.  The implication (i) = (ii) follows from Fact 1 and Fact 2.

The implication (iii) = (1) may be deduced from Fact 3. Indeed, let

G denote the subgraph of G induced by [Vly%y...,vt} . If
Vipp € P then %ﬁl = G+Ki ; if Viep €9 then Geq = GtUKl, Hence,

by induction on t , every G% is strongly threshold.
It remains to be proved that (ii) = (iii) . We shall accomplish
this by means of an algorithm which finds, for every graph G , either

one of the three forbidden induced subgraphs or the ordering and

partition described in (iii). If G has n vertices then the algorithm

takes O(n2) steps.

Before the description of the algorithm, a few preliminary remarks
may be in order. It will be convenient to introduce the notion of the
degree dG(u) of a vertex u in a graph g ; this quantity is simply
the number of vertices of G which are adjacent to u . At each stage
of the algorithm, we shall deal with some sequence g of k vertices

of' G ; the remaining vertices Wwill already be enumerated as



Vk+1 ,Vk+2: o X% Vn and partitioned into sets P and Q . Furthermore,

each weS will be adjacent to all the vertices from P and to no

vertices from Q , hence it will be adjacent to exactly d.G(W) - |P|

vertices from S . The algorithm is fairly straightforward; only Step b

may require justification. Executing that step, we shall first find
vertices ul,ug,u3es such that dG(ul) > dG(uE) and such that Uz
is adjacent to U, but not to wu, . It follows easily that there must

1
be a fourth vertex u), ES which is adjacent to u, but not to u, .

1
C— The algorithm goes as follows.

_ Step . For each vertex w of G , evaluate dG(w) - (This may
take as many as O(ne) steps—) Then arrange the vertices of G

into a sequence wl,wz, [ *,w, such that

4, 00p) 2 d,(w,) > . >a,(w)

call this sequence S . (This can be done in O(n log n) steps;

the rest of the algorithm takes only O(n) steps.) Set k =n
- and P=Q =¢ .

Step . If k = 1 then S has only one term; call that vertex Vo

- and stop. If k >1 then let u be the first term of S and

let v be the last term of S ; note that
-

+Xk-
|Pj+x-1 > d,(w) > dG(w) > dG(v) > |7

. ’ for every WweS.If d.(u) = |P|+k-1 , go to Step 2. If a.,(v) = 7,

go to Step 3. If |P| < dG(v) < dG(u) < |P|+k-1 s go to Step 4.
Step 2. Set vi =u, delete u from 8§, replace P by PU {vk} 5
replace k by k-1 and return to Step 1.
Step 3. Let vy = v , delete v from §$ , replace Q by QU {Vk} ,
replace k by k-1 and return to Step 1.
Biep Let u; = u. Find a vertex u 55 which is not adjacent
“ ul . Find a vertex u2 S which is adjacent to u5 . Find
a vertex Uy, ES which is adjacent to u, but not to wu. . Then

1 2
stop (the vertices ul’u2’u5’uh induce 2K2 or P or C, in G ). O



—

[S—

In the rest of this section, we shall present several consequences

of Theorem 1.

Remark 1. For every graph G = (V,E) , we may define a binary relation <

on V by writing u < v if, and only if,
uweE , WtV = wreE .

By this definition, < is reflexive and transitive but not necessarily

antisymmetric. From Theorem 1, we conclude the following.

Corollary lA. A graph G is threshold if and only if for every two

distinct vertices u, v of G , at least one of u< v and v < u

holds.

Remark?2. For every graph G = (V,E) and for every vertex u of G ,

we define

N(u) = {veV: v is adjacent to u} .
From Theorem 1, we conclude the following.

Corollary 1B. A graph G is threshold if and only if there is a

partition of V into disjoint sets A , B and an ordering ul’u2’°"’uk

of B such that

(*) every two vertices in A are adjacent,
(%) no two vertices in B are adjacent,
(*) N(u) 2 N(up) 2 ..o 2 N(w) .

Let us sketch the proof. If G has the structure described by
Corollary 1B then G cannot possibly have an induced subgraph isomorphic
to ZKé , Ph or Ch ; hence G is threshold. On the other hand, if G
is threshold then G has the structure described by (iii) of Theorem 1.
In that case, we may set A‘= V-Q , B = Q and order B consistently

with VisVs e TR

10



Remark 3. For every graph G , we define the complement G of G

to be a graph with the same set of vertices as G ; two distinct vertices
are adjacent in G if and only if they are not adjacent in G . From

the equivalence of (i) and (ii) in-‘Theorem 1, we conclude the following-

Corollary IC. A graph if threshold if and only if its complement is
threshold. J

Let us point out that this fact does not seem to follow directly

from the definition.

Remark k. In order to decide whether a graph G (with vertices
ul,ug,,,. @‘l ) is threshold, it suffices to know only the degrees
dG(ul) ’dG(uE):°' . dG(un) of its vertices. 1Indeed, executing

Steps 1, 2 and 3 of the algorithm, we manipulate only these quantities.
On the other hand, if we are about to execute Step 4 then we already

know that G is not threshold.

Remark Theorem 1 implies that threshold graphs are very rare.

Indeed, from (iii) of Theorem 1, we conclude that the number of distinct

threshold graphs with vertices u.l,ug,...,u_n does not exceed

nt 2"71
On the other hand, the number of all distinct graphs with the same set

of vertices is
on(n-1)/2

He&e a randomly chosen graph will almost certainly be not threshold.

Remark 6. With each graph G on vertices Upslys .-,un , we may

associate a switching function
n
f: {0,1}" - {0,1}

by setting f(xl’XQ"‘”xh) = 0 if and only if (Xl’x2""’xn) is the
characteristic vector of some stable set in G . A switching function
arising in this way will be called graphic. From Theorem 1, we conclude

the following.
1



Corollary I.D. A graphic switching function is threshold if and only

if it is 2-assumable.

Let us point out that for switching functions that are not graphic,
the "if" part of Corollary ID is no longer true. Indeed, for every m
with m > 2 , there are switching functions which are m-assumable but
not (m+l) -assumable. Ingenious examples of such functions have been

constructed by Winder [12].

Remark 7. When A = (aij) is an mxn zero-one matrix, we shall

consider the following zero-one linear programming problem:

n
maximize 2 ¢.xX. subject to the constraints )
~521
n
.Z a5 51 (L <i<m) , } (2.1)
J=1
X. =0,1 (1<j<n) .
J B y

Defining C(uj) = c.J for every vertex uj of G(A) , we reduce (2.1) to

the following problem:

in G(A) , find a stable set S
2.2
maximizing c(S) = 2, c(u) . s ( )
ues
In general, (2.2) is hard; one may ask whether it becomes any easier
when A is threshold. The answer is affirmative. Indeed, if G(A) is

threshold then we can find the ordering vl’vé""’vn and the Iargition

PUQ described in (iii), Theorem 1; this takes only O(mn2) steps.

Then we define
¢ if e(vy) < 0
{vlg if c(vl) >0

and, for each t with 2 <t < n ,




-

rSt_l if’ v, ¢ Q, and c(vt) <0
8,y Ulv} ir v, €Q and c(v,) > 0
5, = ¢
St_1 if v, eP and C(Vt) < C(St l)
g {vt} if v, eP and c(v) > c(St 1)

Clearly, Sn is a solution of (2.2).

5. Variations.

Let A = (_a_'].) be an mxn zero-one matrix. We shall denote by
~ J‘"Ld

t (A) the smallest t for which there exists a system of linear

inequalities

n
2 c..x. <d

o ot s 5 (1 <i<t) (%.1)
such that (3-1) and

n

:E:L %155 =1 (1<1i<n) (5.2)

have the same set of zero-one solutions. Theorem 1 characterizes

. matrices A with t(A) = 13 in this section, we shall discuss the

problem of-finding +t(A) for every matrix A

Again, the language of graph theory will be useful. For every graph
G = (V,E) , we shall denote by t(G) the smallest t such that there
are threshold graphs Gl = (V,El) ' G2 = (V’EE) 3 eees Gt = (V’Et) with

Eq UE,U ... UE, = E .  Our next result may not sound too surprising.
Note, however, that Theorem 1 is used in its proof.

Theorem 2. Let A be a zero-one matrix and let G be G(A) . Then
t(A) =t (G)

13
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Proof. The inequality t(A) < t(G) is fairly routine. Indeed, there are
t threshold graphs Gy = ﬁbEi) with UE, = E and t = t(G) . For

each i , there is an inequality

n

Z c..x. < d,

j=1 J J 1
whose zero-one solutions are precisely the characteristic vectors of
stable sets in G.l . A subset of V is stable in G if and only if

it is stable in every G.l .Hence the zero-one solutions of the system

n
Zeyxs <dy 1 <is<? (3.3)
j=1

are precisely the characteristic vectors of stable sets in G . gince

G = G(A) , thecharacteristic vectors of stable sets in G are precisely

the zero-on solutions of (3.1). Hence t(A) <t = t(G)

In order to prove the reversed inequality, we shall use Theorem 1.

There is a system (3.2) with t = t(A) such that (3.1) and (3.2) have

the same set of zero-one solutions. "get VvV = {ul’uE""’u } for each i ,
n
define
s, = : . tc, .
B, {uruS r #sand cfcig > dl}
and G, = (V’Ei)' Since (3.1) and (3 .2) have the same set of zero-one

solutions, we have

t

= . + i = .o .
i:&E.l {urus. ag.tas . > 1 for some i L2,...,m}

Hence G = (v, LJEi) is G(A) ; it remains to be proved that each @,
~ i
is threshold. Assume the contrary. Then, by part (ii) of Theorem 1,

there are vertices u. , u , u, u such that
r S P q

uu . .
o ek i ugp eEl

U, £ B, gy, £ E;

14



Hence by the definition of Ei ; we have

c. +c >d, +
T ig i ? Ss cip>d‘i ?

c, +tec. < d c, +c
ir ip —dl ’ is iq —<di 4

clearly, these four inequalities zre inconsistent. [

Next, we shall establish an upper bound on t(G) .In order to
do that, we shall need a few more graph-theoretical concepts. A triangle

is a graph consisting of the pairwise adjacent vertices; a star (centered

at u ) is a graph all of whose edges contain the same vertex u . The

stability number Q(G) of a graph G is the size of the largest stable

set in G

Theorem 3. For every graph G on n vertices, we have t(G) < n-a(G)

Furthermore, if G contains no triangle then t(G) = n-a(G)

Proof. Write G = (V,E) and k = n-a(G) . Let S be a largest stable
set in G; enumerate the vertices in vy-35 as ul’uE""’uk . For each
i with 1 <1<k, let 'Ei consist of all the edges of G which
contain U, .Then each G; = (V’E'l) is a star and therefore a
threshold graph. Since S‘ is stable, we have UE, = E . Hence

i
t(G) < k .

Secondly, let us assume that G contains no triangle. There are t
threshold graphs G; = (V:ﬁi) with 1 < i <t , t =t(G) and UE; = E .
It follows easily from Theorem 1 that each Gi , being threshold and
containing no triangle, must be a star. yepce there are vertices
ul’u2""’ut such that every edge of every Gi contains u, . Since
UEi= E , the set

V- {ul,ug) eeoeyl .

is stable in G .Hence @(G) > n-t(G) . O

Let us note that we may have t(G) = n-a(G) gyen when G does

contain a triangle. For example, see the graph in Figure 2.

15
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When a(G) is very large, the upper bound on t(G) given by

Theorem 3 is much smaller than n . On the other hand, if a(G) is
very small then t(G) is often very small. (In particular, if
(@) = 1 then t(G) = 1 .) Thus aene might hope that, say,

t(G) < n/2 for every graph on n vertices. Our next result shows

such hopes to be very much unjustified.

Corollary 3A. For every positive € there is a graph G on n
vertices such that t(G) > (l-g)n .

Proof. Erdos [7] has proved that for every positive integer k there
is a graph G on n vertices such that G contains no triangle,

a(G) < k and, for some positive constant ¢ (independent of k ),

n > c(k/log k)g . Given a positive ¢ , choose k large enough, so
that rck > (log k)e ; and consider the graph G with the above

properties. We have

n 2
a(G) < k < g (log k)~ < en

and so, by Theorem 3, t(G) = n-a(G) > (l-¢)n . O

Finally, we shall show that the problem of finding t(G) is very
hard; more precisely, we shall show that it is "NP-hard". Perhaps a
brief sketch of the meaning of this term is called for- There is a
certain wide class of problems; this class is called NP. It includes
some very hard problems such as the problem of deciding whether the
vertices of a graph are colorable in k colors. An algorithm for
solving a problem is called good if it terminates within a number of
steps not exceeding some (fixed) polynomial in the length of the input
[5]. A few years ago, Cook [4] proved that the existence of a good
algorithm for finding the stability number of a graph would imply the
existence of a good algorithm for every problem in NP. Such a conclusion,
if true, is very strong. (For example, it implies the existence of a
good algorithm for the celebrated traveling salesman problem.) A problem
X is called NP-hard if the existence of a good algorithm for X would
imply the existence of a good algorithm for every problem in NP. (For

more information on the subject, the reader is referred to [1] and [8].)

17




Corollary 3B. The problem of finding t(G) is NP-hard.

Proof. Poljak [9] proved that even for graphs G that contain no
triangles, the problem of finding "a(G) is NP-hard. For such graphs,
however, we have @(G) = n-t(G) ; hence the existence of a good algorithm
for finding t(G) would imply the existence of a good algorithm for

Poljak's problem. Since Poljak's problem is NP-hard, our problem is
NP-hard. el

We shall close this section with two remarks on t (G)

Remark 1. First of all, we shall present a simple lower bound on t(G)
For every graph G = (V,E) , let us define a new graph G* = (v%,5%)
as follows. TI;e vertices of G* are the edges of G ; that is, V¥ = E
Two vertices of G , say {uv, v} eV and {wz} e V¥ 4re adjacent
in G* if and only if the set {u,v,w,z} induces 2[{2 , P, or Cy,

in G . Figure 3 shows an example of G and G

18
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As usual, the chromatic number yx(H) of a graph H = (V,E) 15 the
smallest k such that V can be partitioned into ¥k stable sets. We

claim that

t(6) > x(6%) . “ (3.4)

Indeed, there are threshold graphs G; = ﬂbEi) with 1 < i <t ,

t =t (G) and.UEi = E . By (ii) of Theorem 1 and by our definition

of G* , each E; is a stable set of vertices in G* . Hence X(G*)fit .
Note that the problem of finding the chromatic number of a graph is

NP-hard; hence for large graphs G , the right-hand side of (3.4) may be

very difficult to evaluate. For small graphs, however, (3.4) is quite

useful and often precise. 1In fact, we know of no instance where it

holds with the sharp inequality sign.

*
Problem. Is there a graph G such that t(G) > x(G) ?

Remark 2. We shall outline a heuristic for finding a "small" (although
not necessarily the smallest,) number of threshold graphs Gi =(V}Ei)
such that UEi = E , thereby providing an upper bound on t(G) . The
heuristic is based on a subroutine for finding a "large" threshold graph
P - (V,Eo) with E'CE .

The subroutine goes as follows. Given a graph G = (V,E) , find a
vertex v of the largest degree in G , let S be the set of all the
vertices adjacent to v and let H = (S,T) be the subgraph of G
induced by S . Applying the subroutine recursively to H , find a
"large" threshold graph 1 = G%TO) with T C T . Then define

B = TOlJ{wv: weS}
and ¢° - (V,EO) .

The heuristic goes as follows. Given a graph G = (V,E) , use the
subroutine to find a large threshold graph GQ = (V}EO) with EO Cc E
Applying the heuristic recursively to the graph (V, E-EO) , find
threshold graphs G; = UhEi) with UE; = E and, say, 1< i <k
Then define G o

1 - C
Clearly, the running time for this heuristic is 0O{(n

)

20
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. Pseudothreshold Graphs.

. . . n
A switching function f: {0,1}" - {0,1} is called pseudothreshold

[11] if there are real numbers a;,a,,...,a _,b (not all of them zero)

such that, for every zero-one vector (x1,xo,...,x ) , we have
-t . 1

1

2 a.Xy <b = f(xl’XQ’“"xn) = 0 ,

n
2 oa.x, >b = f(X,X ,...,x ) = 1
j=1 J J e n

By analogy, we shall call a graph pseudothreshold if there are real

numbers a(u),b (ueV) , not all of them zero, such that, for every
subset S of V, we have

-~

Z a(u) <b = S is stable,
ues

(4.1)

2 a(u) >b =8 is not stable.
ues

In this section, we shall investigate the pseudothreshold graphs. (We
do so at the suggestion of the referee of an earlier version of this
paper,) In fact, we shall develop an algorithm for deciding whether a
graph is pseudothreshold. When G has n vertices, the algorithm
terminates within O(nh) steps; it is not unlikely that this bound
may be improved.

We shall begin by making our definition a little easier to work with.

Féet 1. A graph is pseudo-threshold if and only if there are real
numbers a(u),b (ueV) such that b is positive and, for every subset

S of V, we have (4.1).

Proof. The "if" part is trivial; in order to prove the "only if" part,
we shall consider a pseudothreshold graph G = (V,E) . We may assume
E # ¢ (otherwise a(ur=0 and b = 1 does the job) . Since the empty
set is stable, (4.1) implies "b > 0 . In order to prove b > 0 , we

shall assume b = 0 and derive a contradiction. First of all, since



r——

every one-point set is stable, we have g(y) <0 for every wc V

Secondly, since not every ga(u) is zero, there is a vertex W ywith

a(w) <0 . Finally, since E # ¢ , there are adjacent vertices u
and v . Setting S = {u,v,w} we contradict (4.1). O
From now on, we shall assume b > 0 . For every graph G = (V ,E)

we shall define two subsets By s QO of v . The set F, consists of

all the vertices u for which there are three other vertices w. ., u
17 "2 Pz
such that
U, Uy, uus € E ulug,ulu5,u2u5,éE

The set QO consists of all the vertices v for which there are three

other vertices "'Vl , v2, V5 such that

V'V'l, VV2J W5’ VlV§ ; E > V1V2, V2V5 e E

These definitions are illustrated in Figure k.

1
P

Uy u,

ue€ PO
v

0 o V1

Vs v,
v eQO

Figure 4

33



Fact 2. Let G = (V,E) be a pseudothreshold graph.
uep = a(u) > 2b/3
vey =a(u) < b/3
Proof. First of all, if uer then
a(u) + a(uy) + aluy) < b
a(u) + a.(ul) > b
a(u) + a.(ug) > Db
a(u) + a,{ui) > b
and so 3a(u) > 2b . Secondly, if veQ,O then
a(v) + a(vl) + a(v5) < b,
a(v) + a(Vé) < b ,
a(Vj) + a(vE) > b,
a(ve) + a(v5) > b
and so3a(v) <b . (O

Next, we shall define (by induction on t )

.and

Bact

Piyy = P U {uel: uv ek for some v eq.},
Queq = QtU{V€V; uv £E for some uePt} ,
* t * @
P = U P ’ Q :U Q

t=0"~ U t=0

*
If G is a pseudothreshold graph then P ﬂQ*

25
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Proof. It suffices to prove that

*
uerP = a(u >2b/3
*
veQ = a(v) <p/3 ,-
these implications follow easily (by induction on t ) from Fact 2.

*
From the definition of P and Q* , we readily conclude the

following.

* % *
Fact & If P NQ =@ then every two vertices in P are adjacent

and no two vertices in Q* are adjacent. O

Our next observation involves the graph 5K2 shown in Figure §

Uy O O vy
u, O— O v,
u;  Os 0 vy
5K2
Figure 5
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Fact

No pseudothreshold graph contains an induced subgraph

isomorphic to 5Ké ‘

proof. A

Trivially,

Theorem 4.

are equiva

ssume the contrary. Then

IA

a(ul) + a(uz) + a(uB) b,

IN

a(vy) + alw) + a(ry) < b
aa) + a(vy) > b
a(ue) + a<v2) > b,

a(uj) + a(v5) > b

these inequalities are inconsistent with b >0 . U

For every graph G = (V;E) , the following three properties
lent:

(i) G is pseudo-threshold,

.. *
(ii1) PN

*
Q = and G has no induced subgraph isomorphic

to 5K2 >

(1ii) there is a partition of vy jnto pairwise disjoint subsets P ,

Q0 and R such that

(*)
(%)
(*)

every vertex from P is adjacent to every vertex from PUR ,
no vertex from Q is adjacent to another vertex from QUR ,

there are no three pairwise nonadjacent vertices in R

Proof.  The implication (i) = (ii) follows from Fact 3 and Fact 4.

To see that (iii) = (i), simply set b = 5 gpng

0 if ueQ
a(u) = 1 if ueR
2 if ueP

It remains to be proved that (ii) = (iii). We shall do this by means of

a very simple algorithm which terminates in 001% steps either by



o

r—

r—

showing that (ii) does not hold or by constructing the partition

described in (iii). The algorithm goes as follows.

First of all, find P and Qf - (This can certainly be done in
O(n% steps.) Then find out whether P*ﬂQ* = ¢.(If not, stop:
(1ii) does not hold.) Then set S = V —(P*UQ*) ; note that by the
definition of P* and Q* , every vertex from S is adjacent to all
the vertices from P and to no vertex from Q* . TLet SO consist
of all the vertices in S which are adjacent to no other vertex in S ;

define

*

*
P="P ,Q:QUSO, R=S-SO

Find out whether there are three pairwise nonadjacent vertices in R

If not, stop: " P , Q and R have all the properties described in
(iii). If, on the other hand, there are three pairwise nonadjacent
vertices ul,uzpBeR then each u, is adjacent to some VieR . A1l
three v&.'s are distinct and pairwise nonadjacent (otherwise, as the
reader can easily verify, we would have Rﬂ(IleQO)% ¢ .) Hence G

has an induced subgraph isomorphic to 5K2 and so (ii) does not hold.
Remark. It may be worth pointing out the following corollary of

Theorem 1: If G is pseudothreshold then one can satisfy (4.1) with
b =2 and each a(u) € {0,1,2} .
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