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Abstract

| Given an mxn zero-one matrix A we ask whether there is a

single linear inequality ax < b whose zero-one solutions are precisely

the zero-one solutims of AX < e | We develop an algorithm for answering

this question in 0(mn®) steps and investigate other related problems.
Our results may be interpreted in terms of graph theory and threshold

logic.
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1 1. Introduction.

g BN Given a set of linear equations
| 0 )

B 2 ays % = b; (1 = L,2,...,m) , (1.1)

one may ask whether there is a single linear equation

n

2 ax, =b
Tt 1.

jo1 dd (1.2)

such that (1.1) and (1.2) have precisely the same set of zero-one

solutions. As shown by Bradley [2], the answer is always affirmative.

(Actually, Bradley's results are more general. Some of them have been

_ generalized further by Rosenberg [10].) In this paper, we shall consider

a related question: given a set of linear inequalities

i :
| J=

~ we shall ask whether there 1s a single linear inequality

n

. 2. a.x, <b
4% S (1.1)

| such that (1.3) a&ad (1.4) have precisely the same set of zero-one
solutions. In a sense, which we are about to outline, this problem has

- been solved long ago.

First, a few definitions. A function

n

| £: {0,1} - {0,1}

1s called a switching function. If there are real numbers 8158s esa
and b such that a

n

F(x)5%55 00x) = ( 1f and only 1if 2, a.x. <b
j=1 J J —

then f£ 1s called a threshold function. If there are (not necessarily

distinct) zero-one vectors ATR/ SREP and 213805 ces 2y such that
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£(y,) = 0 , f(z) = 1 for all i = 1,2,...,k

and

k k

i=1 ~t =1 ~t

then, for each integer m with m > k , the function f is called
m-summable. Iff is not m-summable then f is called m—-assumable.

It is well-known [3], [6] that a switching function is threshold if and

only 1f it 1s m-assumable for every m . (The proof is quite easy:

denote by Ss the set of all the zero-one vectors x with f(x) = 1 .
By definition, f is threshold if and only if there-is a hyperplane

separating Ss from > . Such a hyperplane exists 1f and only if
“— the convex hulls-of So and 5, are disjoint. (jearly, these convex

hulls are disjoint if and only if f is m-assumable for every m .)

i Coming back to our problem, we may associate with (1.3) a switching
function f defined by

N £(x5%,.. 0 ZI) HO if and only if (1.3) holds.

- Then the desired inequality (1.4) exists if and only if f is m-assumable

for every m . However, such an answer to our question is unsatisfactory

on several counts. Above all, it does not provide an efficient algorithm

for deciding whether (1.4) exists. ye shall develop such an algorithm in

" the special case when all the coefficients 5 = and b, in (1.3) are
are zeroes and ones. - *

An m xn zero-one matrix A = (a;,) will be called threshold if, and
only 1f, there 1s a single linear inequality

n

2. a.x. <b

j=1 J J

whose zero-one solutions are precisely the zero-one solutions of the

system

n

2 245% < 1 (i= L,2,...,m) . (1.5)
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Note that the zero-one solutions of (1.5) are completely determined by

the set of those pairs of columns of A which have a positive dot

product. This information is conveniently described by means of a

graph; 1n order to make our paper self-contained, we shall now present

a few elementary definitions from graph theory.
A Graph 1s an ordered pair (V,E) such that V is a finite

set and E 1s some set of two-element subsets of V . The elements

of V are called the vertices of G , the elements of E are called

the edges of G . Two vertices u,veV are called adjacent if

{u,v}€e E and nonadjacent otherwise. For simplicity, we shall denote

each edge {u,v} by uv . A subset S of V is called stablein G !

if no two vertices from S are adjacent in G .

With each mxn zero-one matrix A , we shall associate its

intersection graph G(A) defined as follows. The vertices of G(A)
are 1n a one-to-one correspondence with the columns of A ; two such
vertices are adjacent 1f and only 1f the corresponding columns have
a positive dot product. The motivation for introducing the concept is

obvious: the zero-one solutions of (1.5) are precisely the characteristic

vectors of stable sets in G(A) . We shall call a graph G with vertices

UpslUns oop threshold if there are real numbers 8qr855 +e esd and b
such that the zero-one solutions of

n

2; a.x., <b
j=1 J J —

{ ) are precisely the characteristic vectors of stable sets in G . Clearly,

| G (A) 1s threshold if and only 1f A 1s threshold; let us also note that

i G(A)can be constructed from A in 0 (mn) steps. Thus the question
ITs A threshold?" reduces into the question"Is G(A) threshold?".

1

2. The Main Result.

= In this section, we develop an algorithm for deciding, within 0(n°)
steps, whether a graph G on n vertices 1s threshold. ye shall begin

~ by showing that certain small graphs are not threshold. These graphs

are called 2K, ’ Py, and C, ; they are shown in Figure 1.
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| Fact 1 . If G 1s 2K, Py or Cy, then G 1s not threshold.
Proof. Assume that one of the above graphs G 1s threshold. Then

there 1s a linear inequality N

a. Xx aX b

whose zero-one solutiong are precisely the characteristic vectors of

stable sets in G . In particular, we have

a; tay >Db , 8, + a >b , a) + 8, <b, a, + a; <b;

clearly, these four inequalities are inconsistent. 7]

~ In order td make our next observation about threshold graphs, we

need the notion of an "induced subgraph". 1ot ¢ = (V,E) be a graph

- and let S be a subset of V |The subgraph of G induced by S is

the graph H whose set of vertices 1s S ; two such vertices are adjacent

i in H if and only if they are adjacent in G .

t Fact 2. If G is a threshold graph then every induced subgraph of G
1s threshold.

{ Proof. Let the zero-one solutions of

. n

j=1 J Jd

Rk be precisely the characteristic vectors of stable sets in | et g

be a subgraph of G induced by S .  penote by 2 the summation

over all the subscripts Jj with u. ES . Then the zero-one solutions
J

of

*

2 a.x <b
Lb—-

are precisely the characteristic vectors of stable sets in H . m
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» Now, we have an easy way of showing that certain graphs are not
threshold (simply by pointing out an induced subgraph isomorphic to

°K, » By or Cy ). On the other hand, we are about ty develop a way
of showing that certain graphs are-threshold. .t+ g¢ be a graph with

vertices UpsUpsy eves G will be called strongly threshold if there

are positive integers 2128055 000s andb such that the zero-one
solutions of

n

2. a.x. <b
j=1 J J

are precisely the characteristic vectors of stable sets in G . (Tt
= will turn out later, and may be proved directly, that every threshold

graph 1s strongly threshold.) We shall show that the property of being

- strongly threshold is preserved under two simple operations. 1.+@

be a graph with vertices Uy5Uy5 0 ue . By G+ Ky , we shall denote
L the graph obtained from G by adding a new vertex ug and all the

edges usu with 1 <i<n. gy GUK, , we shall denote the graph
| obtained from G by adding a new vertex Wi and no edges at all.

| Fact 3. If G is strongly threshold then G+ Ky and GUK, are
strongly threshold.

" Proof. Let 81285 008 and b be positive integers such that the
zero-one solutions of

. n

2 a.x. <b
j=1 Jd J

are precisely the characteristic vectors of stable sets in G . Then

the zero-one solutions of

n [ :
-

Li a.x. + bx <b

are precisely the cnardetelistic vectors of stable sets 1n C+K
Similarly, the zero-one solutions of oo

I



n

2 SX. + :Z a 3, Xn 1 < 2bt+l
J=1

| are precisely the characteristic vectors of stable sets in GUK, C0

| E Now, we are ready for the theorem.
Theorem 1. For every graph G , the following three conditions are

equivalent:

(1) G is threshold,

(11) G has no induced subgraph 1somorphic to 2K, P), or Cy, ,
(111) there 1s an ordering NAM Wel of'the vertices of G and

and a partition of AOTNEYRRRPS A into disjoint subsets P
C and @ such that

(*) every vs €P 1s adjacent to all the vertices +i

‘ with 1 <j,

(*) every vs €Q is adjacent to none of the vertices
Vs with 1 < J .

-

Proof. The implication (i) = (ii) follows from Fact 1 and Fact 2.

- The implication (iii) = (1) may be deduced from Fact 3. Indeed, let

: G, denote the subgraph of G induced by (vs vps eves v,] . If
| Viel € P then Gioq = G+ Ky ; if Viel €Q then Ge p1 = Gy U K. Hence,

by induction on t , every Gy 1s strongly threshold.
) It remains to be proved that (ii) = (iii) . We shall accomplish

this by means of an algorithm which finds, for every graph G , either

one of the three forbidden induced subgraphs or the ordering and

partition described in (iii). If GG has n vertices then the algorithm

takes O(n steps.
Before the description of the algorithm, a few preliminary remarks

may be in order. It will be convenient to introduce the notion of the

degree dg, (u) of a vertex u in a graph g; this quantity is simply
the number of vertices of G which are adjacent to u . At each stage

of the algorithm, we shall deal with some sequence gq of k vertices

of' G ; the remaining vertices will already be enumerated as

8



| Vier] ? Vien? o NA vy and partitioned 1nto sets P and Q . Furthermore,
: each weS will be adjacent to all the vertices from P and to no

| vertices from Q , hence it will be adjacent to exactly a,(w) - |p|
vertices from S . The algorithm is fairly straightforward; only Step b

may require justification. Executing that step, we shall first find

vertices uys%,Uz€S such that a (u;) > dy (uy) and such that Uy
1s adjacent to u, but not to uo. It follows easily that there must

be a fourth vertex uy), ES which 1s adjacent to Ug but not to Uy -
Ce The algorithm goes as follows.

_ Step . For each vertex w of G , evaluate A (w) . (This may
take as many as 0(n%) steps—) Then arrange the vertices of G

| into a sequence LEY ¢ *,w, such that

da. (w

call this sequence S . (This can be done in O(n log n) steps;

| the rest of the algorithm takes only O(n) steps.) Set k =n
and P=Q =¢ .

| ftep . If k = 1 then S has only one term; call that vertex Vo
and stop. If k > 1 then let u be the first term of S and

let v be the last term of S ; note that

: |Pl+x-1 > dw) > a,(w) > d.(v) > |p|

o : for every WeS.If d., (u) = | P|+k~1 » 80 to Step 2. If a.(v) = | 7) ’
go to Step 3. 1f |P|< d,(v) < 4,(w) < |P|+k-1, go to Step 4.

Step 2. Set wv; =u, delete u from 8, replace P by PU {vy} )
. replace k by k—-1 and return to Step 1.

| Step 3. Let Vie = Vv , delete v from §S , replace Q by QU {iv} )
replace k by k-1 and return to Step 1.

Biep Let uw, = u. Find a vertex uz eS which is not adjacent
w Uy Find a vertex u, ES which 1s adjacent to uy Find
a vertex uy, ES which 1s adjacent to uy but not to a, - Then
stop (the vertices Uy 5 Up) Uz Uy, induce 2K, or Py or Cj in G ). O

9



| —
: In the rest of this section, we shall present several consequences

| -- of Theorem 1.

Remark 1. For every graph G = (V,E), we may define a binary relation <

on V by writing u < v 1f, and only 1if,

uweE , WE V = WweE

By this definition, < is reflexive and transitive but not necessarily

antisymmetric. From Theorem 1, we conclude the following.

Corollary lA. A graph G 1s threshold 1f and only if for every two

distinct verticesu, v ofG , at least one of u< v and v < u

holds.

| RemarkZ2. For every graph G = (V,E) and for every vertex u of G ,we define

| N(u) = {veV: v is adjacent to u} .
From Theorem 1, we conclude the following.

Corollary 1B. A graph G is threshold if and only if there is a

R partition of V into disjoint sets A , B and an ordering UpsUns «sly
of B such that

| © (*) every two vertices in A are adjacent,

(%) no two vertices in B are adjacent,

¥*

(*) N(u;) 2 N(u,) 2... 2 N(u,)

Let us sketch the proof. If G has the structure described by

Corollary 1B then G cannot possibly have an induced subgraph isomorphic

to 2K, , Py or Cy, ; hence G is threshold. On the other hand, if G
is threshold then G has the structure described by (iii) of Theorem 1.
In that case, we may set A = V-Q , B = Q and order B consistently

with VisVos ees Vo .

10



| Remark 3. For every graph G , we define the complement G of G

| | to be a graph with the same set of vertices as G ; two distinct vertices
| - are adjacent in G if and only 1f they are not adjacent in G , From
| .

| the equivalence of (i) and (ii) in-‘Theorem 1, we conclude the following-

Corollary IC. A graphif threshold if and only if its complement is

threshold.

Let us point out that this fact does not seem to follow directly

from the definition.

Remark Uk. In order to decide whether a graph G (with vertices

| 50y.. 0 4H ) 1s threshold, it suffices to know only the degrees
- do (uy) »45(uy)s -.. , dy (wu) of its vertices. Indeed, executing

Steps 1, 2 and 3 of the algorithm, we manipulate only these quantities.

t On the other hand, if we are about to execute Step 4 then we already

I know that G is not threshold.
Remark Theorem 1 implies that threshold graphs are very rare.

Indeed, from (i111) of Theorem 1, we conclude that the number of distinct

threshold graphs with vertices Upslpy eves does not exceed

nt 2°71

On the other hand, the number of all distinct graphs with the same set

of vertices 1s

-n(n-1)/2

He&e a randomly chosen graph will almost certainly be not threshold.

Remark 6. With each graph G on vertices Ups Lou we may
associate a switching function

n

by setting £(xy5%5, +0 05x) = 0 if and only if (x5 X55 ce esX) is the
characteristic vector of some stable set in G . A switching function

arising 1n this way will be called graphic. From Theorem 1, we conclude

the following.

11



| Corollary I.D. A graphic switching function is threshold if and only
Lo - if it is 2=-assumable.

| BN Let us point out that for switching functions that are not graphic,
| the "if" part of Corollary 1D is no longer true. Indeed, for every m

| with m > 2 , there are switching functions which are m-assumable but

not (m+l) -assumable. Ingenious examples of such functions have been

constructed by Winder [12].

Remark 7. When A = CP 1s an mxn zero-one matrix, we shall
. consider the following zero-one linear programming problem:

n

maximize 20 ¢.x. subject to the constraints
- SSJ

n

— Zags <1 (1<igm) (2.1)
J=1

_ Xx, =0,1 (1 <j <n) .

. Defining c (uy) = c. for every vertex u of G(A) , we reduce (2.1) to
the following problem:

i in G(A) , find a stable set S
2.2

maximizing c(S) = 2 c(u) . ( )
| ; ues

| In general, (2.2) 1s hard; one may ask whether it becomes any easierwhen A is threshold. The answer is affirmative. Indeed, if G(A) is

threshold then we can find the ordering VisVos e+ »V. and the partition
_ PUQ described in (iii), Theorem 1; this takes only 0(mn®) steps.

Then we define

_ @ if e(vy) <0
Sq o> |

{vis if e(vy) > 0

and, for each t with 2 <t <n ,

12



oo Si.1 if’ v, ¢Q, and (vy) <0

S¢-1 U lv, } if. vy €Q and cv) > 0
gs =

k S if v,_eP d c(v,) < c(S, ,)£-1 i t € an vy £1

vtv, if v, eP and c(v,) > c(8, 1) |

Clearly, S, is a solution of (2.2). |

5. Variations.

| Let A = (2, 5) be an mxn zero-one matrix. We shall denote by- ~ “ay

t (A) the smallest t for which there exists a system of linear

| inequalities
n

| = c;5%; Sa; (1 <i<t) (3.1)- J=

such that (3-1) and

- n

= a;4%; <1 (1 <i<m) (3.2)
have the same set of zero-one solutions. Theorem 1 characterizes

_ matrices A with t(A) = 1; in this section, we shall discuss the

problem of-finding +t (A) for every matrix A .

Again, the language of graph theory will be useful. For every graph

G = (V,E) , we shall denote by t(G) the smallest t such that there

are threshold graphs G; = (V,E,) , G,, = (V,E,) sees Gy = (V,E,) with
Ey UE, U ree UBL = E . Our next result may not sound too surprising.
Note, however, that Theorem 1 is used in its proof.

Theorem 2. Let A be a zero-one matrix and let G be G(A) Then
t(A) =t (G) :

15



: Proof. The inequality t(A) < t(G) 1s fairly routine. Indeed, there are

t threshold graphs Gy = (V,E;) with UE, = E and t = t(G) . For
each 1 , there is an inequality

2 CX. < d.
jo 133 1

whose zero-one solutions are precisely the characteristic vectors of

stable sets in G, . A subset of V is stable in G if and only if

it 1s stable in every G. .Hence the zero-one solutions of the system
n

Z ©5553 < ds (1 <i< (3.3)
j=1

are precisely the characteristic vectors of stable sets in G . gipce

G = G(A) , thecharacteristic vectors of stable sets in G are precisely

the zero-on solutions of (3.1). Hence t(A) <t = t(G) .

In order to prove the reversed inequality, we shall use Theorem 1.

— There is a system (3.2) with t = t (A) such that (3.1) and (3.2) have

the same set of zero-one solutions. "get V = usu, ul for each i ,
L define

. = : . tC, .BE, {uu r #s and cfc. > d, }

and Gs = (V,E,). Since (3.1) and (3 .2) have the same set of zero-one

| solutions, we have
t

— 0) + = es 0 .

| UE. {uu a;. ta; > 1 for some i 1,2, ...,m)i=1

Hence G = (V, UE;) is G(A) 5 it remains to be proved that each @,~ i

o 1s threshold. Assume the contrary. Then, by part (ii) of Theorem 1,

there are vertices u. , u , uu, u such that

~ uu e¢eE ., uu_ €E.
rq i SP i

uu £Ey , uu, £ Ey :

14



Hence by the definition of Es y we have

| c, tc >d, +
» . Ir iq i? 9sT Cp dy

c, +e, Cc. +

: ir Tip Sd, Cy “iq =d;
| clearly, these four inequalities zye inconsistent. []

Next, we shall establish an ypper bound on t(G) .In order to :
do that, we shall need a few more graph-theoretical concepts. A triangle

is a graph consisting of the pairwise adjacent vertices; a star (centered

at u ) is a graph all of whose edges contain the same vertex u . The

stability number @(G) of a graph G is the size of the largest stable

set in G .

Theorem 3. For every graph G on n vertices, we have t(G) < n-a(G) .

Furthermore, if G contains no triangle then t(G) = n-a(G) .

L ;Proof. Write G = (V,E) and k = n-a(G) , Let S be a largest stable

| set in G; enumerate the vertices in v-3 as UpsUpy even. For each
i with 1 <1i<k, let Bs consist of all the edges of G which

| contain u, .Then each G; = (V,E,) is a star and therefore a
- threshold graph. Since 5 is stable, we have UE, = E . Hence

t(G) <k .

Secondly, let us assume that G contains no triangle. There are t

threshold graphs G; = (V,E,) with 1 < i <t , t =t(G) and UE, = E .
It follows easily from Theorem 1 that each Gy , being threshold and

containing no triangle, must be a star. pence there are vertices

UpsUny. ely such that every edge of every Gs contains u, . Since
UE, = E , the set

V ~ tug, coo gl

is stable in G .Hence Q(G) > n-t(G) .

Let us note that we may have t(G) = n-a(G) syen when G does

contain a triangle. For example, see the graph in Figure 2.
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] When a(G) 1s very large, the upper bound on t(G) given by
| Theorem 3 is much smaller than n . On the other hand, if a(G) is

| very small then t(G) 1s often very small. (In particular, if

] @(G) = 1 then t(G) = 1.) Thus qQne might hope that, say,

| | t(G) < n/2 for every graph on n vertices. Our next result showssuch hopes to be very much unjustified.

Corollary JA. For every positive & there is a graph G on n

vertices such that t(G) > (l-g)n .

Proof. Erdos [7] has proved that for every positive integer k there

1s a graph G on n vertices such that G contains no triangle,

a(G) < k and, for some positive constant c (independent of k ),

n > c(k/log K)2 . Given a positive e¢ , choose k large enough, so
that rck > (log K)° , and consider the graph G with the above
properties. We have

a(G) < k < = (log kK) < en
L and so, by Theorem 3, t(G) = n-@(G) > (l-e)n . O

i Finally, we shall show that the problem of finding t(G) 1s very
hard; more precisely, we shall show that it is "NP-hard". Perhaps a |

i brief sketch of the meaning of this term is called for- There 1s a
certain wide class of problems; this class 1s called NP. Tt includes

J some very hard problems such as the problem of deciding whether the |
L vertices of a graph are colorable in k colors. An algorithm for

solving a problem is called good if it terminates within a number of

t steps not exceeding some (fixed) polynomial 1n the length of the input
[5].A few years ago, Cook [U4] proved that the existence of a good

| algorithm for finding the stability number of a graph would imply the

N existence ofa good algorithm for every problem in NP. Such a conclusion,
1f true, 1s very strong. (For example, it implies the existence of a |

~ good algorithm for the celebratedtraveling salesman problem.) A problem

| X 1s called NP-hard 1f the existence of a good algorithm for X would

, imply the existence of a good algorithm for every problem in NP. (For |
more information on the subject, the reader is referred to [1] and [8].)

17



| Corollary 3B. The problem of finding t(G) is NP-hard.

Proof. Poljak [9] proved that even for graphs G that contain no

| triangles, the problem of finding "a(G) 1s NP-hard. For such graphs,

| however, we have Q(G) = n-t(G) ; hence the existence of a good algorithm

for finding t(G) would imply the existence of a good algorithm for

Poljak's problem. Since Poljak's problem is NP-hard, our problem is

NP-hard. el

| We shall close this section with two remarks on t(G) .

Remark 1. First of all, we shall present a simple lower bound on t(G) .

For every graph G = (V,E) , let us define a new graph ¢* = (V4, EY)
— as follows. The vertices of G are the edges of G ; that is, V* = E

Two vertices of G' , say {u,v} eV" and {w,z} e V* are adjacent

| in G* 1f and only 1f the set {u, v,w, 2} induces 2K. , Py, orx 2 ly

I in G . Figure 3 shows an example of G and G .

-

b
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As usual, the chromatic number x (H) of a graph H = (V,E) is the
smallest k such that V can be partitioned into xk stable sets. We

claim that

60) > x(¢®) | (3.1)

Indeed, there are threshold graphs G; = (VsE;) with 1 <1i<t,
t =t (G) and UE, = BE . By (11) of Theorem 1 and by our definition

of G* , each Es 1s a stable set of vertices in G* . Hence x(G*) <t .
Note that the problem of finding the chromatic number of a graph is

NP-hard; hence for large graphs G , the right-hand side of(3.4) may be

very difficult to evaluate. For small graphs, however, (3.4) is quite

useful and often precise. In fact, we know of no instance where it

holds with the sharp inequality sign.

Problem. Is there a graph G such that t(G) > «(G) ?

Remark 2. We shall outline a heuristic for finding a "small" (although

not necessarily the smallest,) number of threshold graphs G; = (V,E,)
such that UE, = Ek , thereby providing an upper bound on t(G) . The
heuristic is based on a subroutine for finding a "large" threshold graph

&® = (,E°) with 2c.
The subroutine goes as follows. Given a graph G = (V,E) , find a

vertex v of the largest degree in G , let S be the set of all the

vertices adjacent to v and let H = (S,T) be the subgraph of G

induced by S . Applying the subroutine recursively to H , find a

"large" threshold graph 1° = (8,70) with 70 CT . Then define

| BX = 1°U {wv: wes)

and G0 = (VE) .
| The heuristic goes as follows. Given a graph G = (V,E) , use the

subroutine to find a large threshold graph & = (v,E)) with oe E .
- Applying the heuristic recursively to the graph (V, E-E0) , find

threshold graphs G; = (V,E;) with UE, = E and, say, 1 <1 <k .
Then define Grr 1 = cY .

Clearly, the running time for this heuristic is 0 (n°)
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| L. Pseudothreshold Graphs.
 * . . . nn

A switching function f: {0,1}  - {0,1} is called pseudothreshold

[11] 1f there are real numbers 838940458,b (not all of them zero) ,

such that, for every zero-one vector (X 9% 5 eens) , we have

n

oo j=1

n

; 2 a. X, >b = £(X15%p5 00 0x) = 1 .

By analogy, we shall call a graph pseudothreshold if there are real

numbers a(u),b (ueV) , not all of them zero, such that, for every

subset S of V , we have

| 2, au) <b = S is stable,
i ues (4.1)

2 a(y) > b = 8 is not stable.

| ues

| In this section, we shall investigate the pseudothreshold graphs. (We
do so at the suggestion of the referee of an earlier version of this

| paper,) In fact, we shall develop an algorithm for deciding whether a
- graph 1s pseudothreshold. WhenG has n vertices, the algorithm

Cl L C
terminates within O(n") steps; it is not unlikely that this bound

_ may be improved.

We shall begin by making our definition a little easier to work with.

»

Fact 1. A graph 1s pseudo-threshold if and only if there are real

| numbers af(u),b (ueV) such that b 1s positive and, for every subset
S of V, we have (4.1).

Proof. The "if" part is trivial; in order to prove the "only if" part,

we shall consider a pseudothreshold graph G = (V,E) . We may assume

E #¢ (otherwise a(ur=0 andb = 1 does the job). Since the empty
set is stable, (4.1) implies "b > 0 . In order to prove b > 0 , we

shall assume b = 0 and derive a contradiction. First of all, since
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| every one-point set 1s stable, we have a(u) <0 for every uc V .

| | Secondly, since not every a(u) is zero, there is a vertex w yith
a(w) <0 . Finally, since E # @ , there are adjacent vertices u

| and v . Setting S = {u, vyw} we contradict (4.1). OJ
From now on, we shall assume b > 0 . For every graph G = (V JE)

we shall define two subsets EF, / 2 of v . The set IN consists of
all the vertices u for which there are three other vertices uu, u2
such that >

uu

1 Wy, uuz EE Ug Uys UUs Uplly f E

The set 9 consists of all the vertices + for which there are three

. other vertices Vir Vr vs such that

| VV Ws VWs Vive £ EL V1VprVpvy € B
These definitions are illustrated in Figure L.

_

u

|
u j

3 Yo

u
eb, |

Vv |

® | V1
v |

3 Vo

v

€Q,

Figure 4
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Fact 2. Let G = (V,E) be a pseudothreshold graph. Then

| uep, = a(u) > 2b/3

Ve 9 =» au) < b/3 .

Proof. First of all, if uel, then

a(n) + aly) + aug) <b

a(u) + a(u,) > b

a(u) + au) > 0b

a(u) + a (us) > b

and so 3a(u) > 2b Secondly, if VeQy, then

a(v) + a(v,) + a(v5) <b ,

a(v) + a(vy,) < b ,

avy) + a(v,) > bo,

a(v,) + a(v;) > b

and so 3a(v) <b . [J

. Next, we shall define (by induction on t )

. Prop = BU {ueW:uv eg for some v €Qy ,

Qui = QU {vev: uv £E for some uel, } ,
- .and

(aa)

i * * ©

L t=0" t=0 “to

| | x xBact . If G is a pseudothreshold graph then P NQ = ¢ .
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}

Proof. It suffices to prove that

*

5 ueP = au >2b/3 |
»

| ve = a(v) <p/3 ,-
these implications follow easily (by induction on t ) from Fact 2.

*

From the definition of P and Q* , we readily conclude the

following.

Fact k *no¥ ntFact4. If P NQ =P then every two vertices in P are adjacent

and no two vertices in (gx gre adjacent. OJ

: Z

_ Our next observation 1nvolves the graph JK, shown in Figure §.

L

uw, Oo
| ' 1
-

u GR
TD ~~) Vs

[

u  —

5K,

Figure 5

{

24



| Fact No pseudothreshold graph contains an induced subgraph
A isomorphic to °K,

proof. Assume the contrary. Then

a(u,) + a(u,) + a (us) <b,

a(v)) + a(v,) + a(vy) <b,

a(u;) + a(vy)) > b ,

a(u,) + a(vy,) > b ,
au a .} (uz) + (v3) > b

Trivially, these inequalities are inconsistent with b > 0 . Ul

Theorem A. For every graph G = (V,E) , the following three properties
| are equivalent:

(i) G is pseudo-threshold,

(ii) P NQ =¢® and G has no induced subgraph lsomorphic

to 5K, )

(111) there 1s a partition of vy into pairwise disjoint subsets P ,

) Q and R such that
>

(¥) every vertex from P is adjacent to every vertex from PUR ,

(*) no vertex from Q is adjacent to another vertex from QUR ,

(*) there are no three pairwise nonadjacent vertices in R .

Proof. The implication (i) = (ii) follows from Fact 3 and Fact 4. |

To see that (111) = (1), simply set b = 2 sng

0 1f ueQ

a(u) = 1 1f ueR

2 1f ueP .

It remains to be proved that (11) = (i111). We shall do this by means of

a very simple algorithm which terminates in o(n steps either by



showing that (11) does not hold or by constructing the partition

described in (111). The algorithm goes as follows.

| First of all, find P and Q . (This can certainly be done in
om steps.) Then find out whether Png = @. (If not, stop:
(11) does not hold.) Then set S = V = (P ugk) ; note that by the

definition of p and Q* , every vertex from S is adjacent to all

the vertices from P and to no vertex from Q* . Tet SS consist
of all the vertices in S which are adjacent to no other vertex in S ;

define

* *

P =P » @=@ US, , R = 8-8, .

Find out whether there are three pairwise nonadjacent vertices in R .

If not, stop: "P , Q and R have all the properties described in

(111). If, on the other hand, there are three pairwise nonadjacent

vertices UpUy PB £R then each u, is adjacent to some v, €R . All
three vi 's are distinct and pairwise nonadjacent (otherwise, as the

. reader can easily verify, we would have RN (E, UQy) #¢ .) Hence G
has an induced subgraph isomorphic to OK, and so (11) does not hold. =

~ Remark. It may be worth pointing out the following corollary of

Theorem 1: If G is pseudothreshold then one can satisfy (4.1) with

= b =2 and each a(u) € {0,1,2} .

|

X
26



References

[1] ax V. Aho, J. E. Hoperoft and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Mass., 197k.

[2] G. H. Bradley, "Transformation of integer programs to knapsack

problems," Discrete Math. 1 (1971), 29-45.

[3] C. K. Chow, "Boolean functions realizable with single threshold

devices," Proc . IRE 49(1961), 370-371.

[4] 5S. A. Cook, "The complexity of theorem proving procedures,” proc .

Third Annual ACM Symposium on Theory of Computing, (1971),151-158.
[5] J. Edmonds, "Paths, trees, and flowers," Canad. J. Math. 17 (1965),

4hg-L6T

[6] C. Cc. Elgot, "Truth functions realizable by single threshold

organs," IEEE Symposium on Switching Circuit Theory and Logical

L Design (1961), 225-245,

[7] P. ErdSs, "Graph theory and probability, II," Canad.J. Math. 13

| (1961) , 346-352.
[8] R. M. Karp, “Reducibility among combinatorial problems," in

| Complexity of Computer Computations (R. E. Miller and J. W. Thatcher,
eds.), Plenum Press, New York, 1972.

[9] S. Poljak, "A note on stable sets and colorings of graphs," ta

- appear in Comm. Math. Univ. Carolinae.

) [10] I. G. Rosenberg, "Aggregation of equations in integer programming,"

. Discrete Math. 10 (197k), 325-341.

| [11] T. A. Slivinski, "An extension of threshold logic," IEEE TC C-19
(1970) , 319-3L1.

[12] R. 0. Winder, "Threshold Logic," (Ph.D. thesis), Mathematics Dept.,
Princeton University, 1962.

|

27


