A MICROPROGRAM CONTROL UNIT
BASED ON A TREE MEMORY
by
N. Tokura

STAN-CS-75-514
AUGUST 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERSITY

-

—

A Microprogram Control. Unit Based on a Tree Memory

Nobuki Tokura

Department of Enformation and Computer Sciences
Faculty of Engineering Science

Osaka University

, Toyonaka, Japan

Abstract

A modularized control unit for microprocessors is proposed that
implements ancestor tree programs. This leads to a reduction of
storage required for address information. The basic architecture is
extended to paged tree memory to enhance the memory space usage.
Finally, the concept of an ancestor tree with shared subtrees is
introduced, and the existence of an efficient algorithm to find

sharable subtrees is shown.

The printing of this research was supported by IBM Corporation.
Reproduction in whole or in part is permitted for any purpose of
the United States Govenment.’

1. Introduction.

The limitation of pin count makes the architectural design of

— microprocessors difficult [6]. It leads to a somewhat restricted

instruction and system capability. The bit-sliced modularization
has been successfully used to make high performance modules. This
method is good for regularly structured units such as ALRU (Arithmetic -
Logic -Register unit), stacks, and others. However, modularization of
control units with less reqgularity has not yet been achieved.

The modularization of control units is the principal theme of
this paper, and structured programming the subordinate one. There have
been several attempts to realize some control primitives, e.g. DO WHILE ,
— IF THEN ELSE , on conventional machines. This is done not by changing
the machine itself, but by limiting the usage of the machine. The
efficiency of this restricted code is one of the important problems
to be solved. 1In this paper we take an opposite approach by examining
a machine oriented to structured programming. However, there seems to
be no general agreement on what structured programming is [9]. Also,
structured programming has been the subject of criticism, especially
for its inefficiency [5]. As one proposal, we choose the ancestor tree

; program to be the basis of structured programming. This selection

-
{

leads to an efficient instruction set and a simply modularized control

unit. Section 2 presents the basic notion and a possible implementation.

| !
In Section 3y a paged tree memory system is proposed to answer the

problem of memory chip efficiency. Also, a new paged memory system is

described which has a distributed address table entry on bit-sliced

-

pagedmemory. In Section 4, the problem of the coding efficiency of
an ancestor tree program is examined. The result is a broader type
of structured programming, allowing ancestor tree programs with shared

sub-trees. The implementation and the existence of an efficient

—

algorithm to find sharable subtrees are briefly described.

P

2. Tree Memory.

Let us first recall some definitions relating to binary trees [L].
In Figure 1, an example of a binary tree is shown. Each node has an
alphabetical label for reference. Node A is called the root of the
tree. The root is the unique node to which no edge enters. A node Y
connected by an edge from a node X and placed on the left side of X
is called a_left son of X and the edge (X,Y) is called a left edge.
Right sons and right edges are defined similarly. In Figure 1, node C
is the left son of node B and node G is the right son of node E
If Y is a left son or a right son of X , then X is called the father
of Y . A node with no sons is called a _leaf; e.g. nodes D , F, G,
I, K, M and N are leaves in Figure 1. If there is a path from X
to Y, then Y is called a descendant of X and X is called an
ancestor of Y . A node X is considered to be an ancestor and a
descendant of itself.

For a binary tree T and a node X in T , a subgraph with the
root X consists of all the descendants of X in T and edges (Y,2)
in T with both Y and Z descendants of X

The depth of a node in a tree is the length of the path from the
root to the node. The height of a tree is the length of a longest path
from the root to a leaf. In Figure 1, node D is of depth 3 and
the root A is of depth 0 . The height of the tree is L .

An ancestor tree is a binary tree with a (possibly empty) set of

back edges. Each back edge connects a leaf to one of its ancestors,
and each leaf has at most one back edge leaving it. Figure 2 shows
an example of an ancestor tree. Edges (D,C) , (G,A) , (KH) , (M,J)
and (N,H) are back edges. For any ancestor tree T , the binary
tree T' obtained from T by removing all the back edges is called
the basis tree of T . The tree of Figure 1 is the basis tree of the
ancestor tree of Figure 2.

A flowchart is a labeled directed graph with the following

properties:
(1) There is exactly one node with label START which no edges enter.

(2) There aye nodes w#th label STOP from which no edges leave.

Figure 1.

Figure 2.

A binary tree

An ancestor tree.

(o

— M

(38) The other nodes are divided into two classes: one class is the

set of nodes with functional labels and having only one outgoing
edge, and the other class is the set of nodes labeled with test

predicates and having two outgoing edges labeled 0 and 1

If a flowchart of a program is a labeled tree (or a labeled

ancestor tree), then the program is called a tree program (or an

ancestor tree program, respectively).

A random access memory of size gnxn consists of 2" registers
each of which is capable of holding a binary word of length n . gsch
register is associated with a distinct binary word of length m which
is called the address of the register. Usually, the addresses are
treated as binary numbers ranging from 0 to 2m-l . This leads
naturally to the concept of linear memory. However, there are other
concepts. Fgr example, two (or more) dimensional memory can be
conceived [11]. Another idea is that of a tree memory [2].

In [2], Berkling considered the register with address (0 ...01)
as the root in a memory of size #nxn and the register
a; 1)) as the

a a
m-l1 m-2 -1
left son (or right son, respectively) of the register

(am_l 8o trr 8 0) (or the register (

a Figure 3 shows a tree memory of size m = 3

(0 -1 Fp-2 - - l)
The register (0 . . . 0) is left unused. Berkling has shown that a
simple shift register suffices to traverse the tree (Figure 4). By
shifting the register SR left one place supplying 0 (or 1) to
the right end, we can visit the left son (or right son, respectively)
of the node currently pointed to by the register SR . Conversely,
by shifting SR right one place supplying 0 to the left end, we can
-visit the father of the current node. The one-bit register v can
'be used as an overflow indicator which is 1 when the register SR
points outside of the tree.

Berkling discussed several aspects of a tree memory, but apparently
did not intend to apply his scheme to instruction sequencing. This is
quite natural because the basic scheme doesn't have enough sequence
control capability for the task. This paper, however, will show that

by adding several features, his scheme becomes applicable.

r—— r— r—

o h—

010

100 101

Figure 3.

001

011

\

110 111

A tree memory.

SR]<_.~__ 0 or 1
] J

Figure 4.

A shift register.

——

Engeler Normal Form.

Itis known that every flowchart program can be transformed to

an equivalent Engeler normal form [3]. The transformation is very
simple:

Try to make an equivalent tree program, but if a node

already occurs in the path from the root to the

currently scanned node, then make a back edge.'a
This is demonstrated by example in Figure 5. The normal form construction
process must always terminate because the height of the tree obtained by
removing the back edges cannot exceed the number of nodes in the original
flowchart. Note that this transformation retains the equivalence of
programs, but introduces some duplicated nodes, such as nodes G and
STOP in our example. More precisely, this transformation preserves not
only equivalence but also isomorphism, that is, the possible sequences
of actions are identical. The ancestor tree defined here is slightly
different from an Engeller normal form in that the latter may have a back
edge from a non-leaf node. But this difference is not essential. We
can easily obtain an equivalent ancestor tree program from an Engeler
normal form by introducing a leaf for each back edge (if necessary). 1In

Figure 5,G" 1is obtained from G' by introducing a new (no-operation)

node A'

Two Primitives.

Hence, we can concentrate on ancestor tree programs. To implement
ancestor tree programs, the two sequence control operations GO DOWN

and GO UP are sufficient.
The operation GO DOWN replaces a test instruction of a flowchart

program. It has a selector field end is executed as follows:
(1) select a signal specified by the selector field.

(2) If the signal is 0 (or 1), then visit the left son (or right

son, respectively).

The operation GO UP is used to transfer the control along a

back edge. It has a displacement field and is executed as follows:

(1) Set the number specified in the displacement field into a counter.
(2) wWhile the counter is not zero, decrease the counter by 1 and

visit the father of the current node.

Fig. 5

a) A flowchart ,
b)) its equivalent Engeler normail form
¢) its equivalent ancester tree form

—

Microprogrammed Control Unit.

The microprogrammed control unit (for short, micro-control unit)
is already modularized in comparison with its hard-wired random logic
counterpart. The microprogram is stored in a microprogram memory.
The form of micro-instruction is"of broad range from vertical (highly
encoded) instruction to horizontal (completely decoded) instruction.
In the context of micro-processors, a medially encoded micro-instruction
seems to be convenient. Highly integrated f'unction units such as ALRU
will accept an encoded micro-order instead of a decoded micro-order.
Because of the pin count limitation, communication between modules
favors highly encoded information. Modularized function units can work
in parallel. The sequence control of micro-instructions can be done by
some modules. With this background, the micro-instruction is considered
here to con§ist of one field for sequence control micro-order and several

fields for f'unction micro-orders.

An Implementation.

A possible implementation is shown in Figure 6. The micro-
instruction register (MIR) holds one micro-instruction. Each micro-
instruction consists of two parts: one part is a sequential control
part which has a 2 bit field for sequence control micro-order codes and
a k-bit selector/displacement (S/D) field and the other part is a
function part which has micro-orders for the f'unction units. The
program control register (FCR) is a shift register which holds the
address of the next micro--instruction. This register can be implemented
as bit-sliced modules, The IR receives orders from the sequence

control block (SCB) such as shift right, shift left, and clear. The

SCB executes sequence control micro-orders. There are four kinds of

micro-orders. Each micro-order is executed as follows:

Pre-test GO DOWN

(1) Shift the FCR left one place with the output of the multiplexer
shifted in. The multiplexer selects one signal from the function

units and other external sources according to the g/p field.

O

g%%t#ERNCE FUNCTION UNITS “
oL MICRODRDERS

PCR * PCR

CONTROL

A

E= S DATA/MICROORDER

i CONTR
OL/STATU
S B
o S!GNALS
v N
. Mic 1
scg . roinstruction reqg;
PCR ieq""“ control ueg‘ﬁer
MPVX roegram con-hbj ,_‘;?:;._
e er

MUTiplexe

Fig. 6 An implementation of microprogram contrp] Unit

10

—

(2) Start the execution of function micro-orders.

(3) After the comletion of all the function micro-orders,

instruction pointed to by the KR is fetched.

Post-test GO DOWN

(1) Start the execution of function micro-orders.

(2) After the completion of all the function micro-orders, shift
the FCR left one place with the output of the multiplexer
shifted in.

(3) Fetch the next instruction.
Go UP

(1) Start the execution of function micro-orders.

(2) If the RS/D field is zero, then go to 3 ; otherwise set the
value of the S/D field in the counter of SCB. While the

counter is not zero, decrease the count by 1 and shift the

KR right one place. After completing the shifts, fetch the

next instruction.

(3) The case with zero displacement is interpreted as a return to
the root. So the KR is cleared and a "1" is shifted into

from the right. This is easily done by selecting a signal " 1"
with selector (0 . . . 0)

STOP I ’
|
(1) Clear the IR and others.

By a START/RESTART/SINGLE STEP, the KR will be set to

-0 . . .01 and the execubion will resume.

The following control capabilities of the SCB will be minimally

required to implement this system.

A. Control.
(1) Start the execution of function micro-orders.

(2) Shift left/right and clear.

11

the micro -

B. Status monitoring.

(1) Detect the completion of the function micro-orders.

(2) Detect the overflow and zero of the shift register.

The readers can convince themselves of the realizability of thesc
modules by current technology if they compare the modules with chips

currently available.

Remark 1. Another type of GO UP operation can also be used. It
requires a counter (D-counter) which keeps the depth of the current
node. The operation is executed as follows:

While the D-counter is larger than the displacement field,

decrease the counter by 1 and visit the father of the

current node.
The displacement field in this case specifies the depth of destination,
while the displacement field in the GO UP explained above specifies
the relative difference of the depth to the destination. These two
operations may be distinguished by calling the former a Go UP
operation with absolute displacement (for short, aboslute GO UP)
and by calling the latter a GO UP operation with relative
displacement (for short, relative GO UP). The discussion with them
are parallel. Therefore, in what follows, we consider only (relative)

GO UP operations.

Amounts of Address Information.

The most prominent feature of the proposed system is that the
address information for sequence control is reduced greatly. The
displacement field of length [log m] f/ is sufficient for the tree
memory of height m . ©ILet us compare the amount of address information

necessary to implement an ancestor tree program under this system with

the amount required using the conventional linear memory. Iet b and p

* . .
—/The base of logarithm is 2. [x] stands for the least integer
not less than x

-

o

be the number of test nodes and back edges respectively. Then, in

conventional method using conditional branches and/or Jjumps, (b+p)m
bits are used to specify the destination address, while only pl[log m]
bits are necessary in the present method.

The experience of trying to emulate the PDP-1l using a currently
available high speed microprocessor has shown that the design of the
instruction decoding section is tedious and the resulting emulator
requires a great deal of time for decoding (7]. This inefficiency
was attributed to the limited branch/jump capabilities of the micro-
processor, although admittedly the decoder of a PDP-11 should be rather
complex. This decoding problem may be easily solved in the proposed
system. It is even possible to implement a multiple branch by shifting

several bits into the ICR.

The Problem of Tree Height.

The problem in this method is the limit of the height of trees
implementable in a limited memory. The rest of this paper is mostly
devoted to this problem.

The first effective method to reduce tree height is to reduce the
straight line parts of an ancestor tree program. One general method is
to utilize parallel execution as much as possible. After that there
will remain some straight line parts which should be done sequentially
but have neither branches nor loops. These sections can be implemented
by a programmable sequencer on a chip. Figure 7 shows one possible
realization. This is essentially a microprogram controller without any
branches. Several straight line programs can be stored. The end of
each program is designated by a "1 " in the end bit position
(Figure 7 (b)). The entry points to the program can be set by setting
the counter value with the START signal. Therefore, a straight line
program can be entered at arbitrary points. This allows a program or
its parts to be shared. Each word in ROM has the function part which
is used to control the function units. The event selection bits select
one signal from the function units which signals the completion of an
operation. Counting clo?k pulses, the control waits for the selected

signal to become asserted within a time period « specified by the

13

b)

|
, ,
i - ~ — M
COUNTER |= CONTROL P 7
! (B
1 ' END BIT i !
: PERIOD 7S i
, ' EVE NT "SELECT
''| RrRewm D N
: FUNCTION i
I Mi C ROORER !
| 4
" B |
______________________ f
1 MDR : memory data register
| |

-~ LFuNnCTION PARTS
EVENT SELECTION

END BIT

Fig.. 7 a) a programmable sequencer
b) its word format

14

period-select bits. In most cases, no wait will be selected. If the
control gets the response in T , then it directs the next instruction
fetch and initializes its inner timer unless the end bit is 1 . If
there is no response in time 1t , then it responds to the master with
the abnormal end signal AE on-; If the end bit is 1 and the last
response 1s received in time 1t , then the control responds with the
normal end signal NE on, and returns to its initial state.

This sequencer replaces "loops for wait" in a program by "waits"
in the control. The time-out check also serves to detect hardware
malfunctions. It is possible to use these chips in a hierarchical
way, in analogy to a nested macro.

This sequencer can be used in several places. For example,
micro-instruction fetch , read-in of a page on a missing-page fault
(ef. Section 3), and register-saving in case of micro-level error are
possible applications.

The proposed system with this sequencer seems to be sufficient
to implement ancestor tree programs with many branches but of rather
limited height, such as microprograms of minicomputer emulation.

But for broader applications, other modifications are necessary and

are discussed in the following sections.

15

3.

important problem.

memory areato actually implemented memory area.

Paged Tree Memory.

For a larger program,

the memory space efficiency will become an

This efficiency is defined as a ratio of the used

The mapping used in

the last section is best for complete trees, where a tree of height m

is called a complete tree if every leaf is of depth m

however,

worst case 1s a straight-line program.

The mapping’

leaves much unused memory area for incomplete trees. The

If the length of it is m ,

then the mapping will leave 2"-m unused words. A missing subtree

with the root of depth d
m-d

to 2

words loss.

in a complete tree of height m amounts

Our problem is to find a good mapping for incomplete trees which

preserves the simple sequencing capability of the proposed system,

while it reduces the unused memory area. The following method is

proposed.

store an ancestor tree program of height 2p-l1 .

Assume that we have memory chips with 2P words and we want to

Each memory chip

can store an ancestor tree of height p-1 and this is considered a

16

page. The following mapping will be used.
program address page address line address
P p+l D
! AR = T = T ~
0. 0 0 0 0 o 00 . ..o . 01
0. 0 0 O 1 a
1 00 . ..0 A a,
\ .
* o. 0 0 1 a . a 00 . ..0 1a a
: 1 p-1 1 p-1
¥ 0... 01 'a’ la ... 2 01
b2 D 1@, oo...
O«... 1 a, a,a e
) 1) 5 . api-l 1 a-l aP 00. .. lap'_l
la . a a
bl p-1 %p . Gop-1 18 S S L |

o

This is equivalent to considering 3241 trees of height p—1

instead of a single tree of height 2p-1 . Each small tree ic
implemented on a memory chip and is identified by its page address.
If a page is never used, then the corresponding chip need not be
equipped.

By the new mapping, a missing subtree with the root of depth
p-i (0 < i <p) amounts to 2i-l words loss, ywhile it amounts

to 2P-1 words loss by the original mapping.

An Implementation.

The implementation of the FCR will change slightly as suggested
in Figure 8. 1In the mapping shown above, the transition between the
state ¥ and the state *¥* should be treated differently from other
transitions? There are several methods of accomplishing this, but it
may be simplest to use a counter in the SCB which maintains the current
depth. The counter will be incremented by 1 for each GO DOWN and
decremented by 1 for each step of GO UP , and changes from p-1
to p (and vice versa) are detected.

This is but one possible implementation. More sophisticated

schemes for the total system are conceivable.

Page address (1+p) line address (p)
— e N

Is —1 L

Figure 8

17

Paged Memory System.

The mapping defined above maps all the nodes in a subtree with
the root of depth p-1 into a consecutive memory area with the same
prefix (page address). This paged tree memory is similar in many
respects to the usual paged memory. It is possible to place some of
the pages in the secondary storage, to read pages into a rewritable
memory (RAM) and to execute the instructions from that memory instead
of implementing all the pages as ROMs. It seems convenient to specify
important and frequently used pages as ROMs, and store others in the
secondary storage. This approach provides us flexibility to change
dynamically microporograms not in ROMs. To implement this paging
system, a new simple method may be more effective than the sophisticated
paging systems used in current machines. Most of the conventional
paging systems use a page table in an associative memory and an address
set-up mechanism. The method proposed here will use a different
approach.

The simplest idea is as follows: for simplicity, each RAM chip
is assumed to hold a page (later, this assumption is removed). Each
ROM and RAM chip contains chip select logic. Each ROM has a fixed
chip number (page number). But each RAM must change its page number
according to its current contents. Each page has afone word with
address (0 . . . 0) left unused. This word can be used to store the
page address (or part of this address, as explained later in conjunction
with Figure 9). The page address on the page address bus is checked
against the content of'the word. If they coincide, the chip responds.
If there are no responses from any memory chips -- this is detectable
by time-out logic -- then the missing page fault procedure will be
started, and a new page will be brought into a RAM chip. This can be
done by a programmable sequencer described in an earlier section.

In this method, the page table is distributed among the chips and
the associative search is replaced by a coincidence check against the
content of the address 0 in each RAM. This idea can be used in
systems other than tree memory system by adding an extra word to

hold the page address.

18

PAGE ADDRESS LINE “’,,(Sks)

T 1
’ .’ ! | f
| \‘I A ‘~t£, ‘ y - ‘l/——t L) 5 \l{
'O'—fr>{ compParaTeR] >| COMPARATOR —i— - - - >|coMPARATCR F——t
F % F & 5 K L
~ PAR PAR PAR 2
‘ | °
o
RAM RAM RAM Q
4 =
o
O
?\ H [,\ 2 ’} \ k
! T ——— i{

— . o
LINE L | R/w
ADDRESS V/ ' /

L f
DATA WORD (ks)
Fig. 9 A possible chip design and arrangement

19

r-

r——

To realize this system, the current decign of memory chips must

be slightly changed. The problem is the appropriate selection of
parameters such as page address bits, line address bits, and word
length under limited pin count.-. To fit a broad range of applications,
the chip is desired to be adaptable to various parameter selection.
Figure 9 shows a solution to this problem.

Let s be the word length of RAM words. Assume that the length
of micro-instruction is ks and that page address is of g bits
width with g < ks . Then k chips are used as a page and the
coincidence signal will be obtained through k serially connected
comparators which compare the s bit page address with the page
address register (PAP). The PAR may be the word of address 0 or an
extra register. The read/write control signal is applied to each
chip ANDed with the coincidence signal. In a sense, this is a bit-
sliced page memory.

We note, finally, that a secondary storage device which transfers
a page selected by a page address to a suitably selected RAM chip
should be available; e.g. an electronic disc with key-retrieval and
block transfer capability.

What replacement algorithm is suitable in the paged tree memory
system? One principle may be to replace the farthest page in terms
of kinship to the current page. The dynamic behavior of a structured
program reflects its structure (or should). This will make it easier

to devise a replacement algorithm.

20

4, Ancestor Tree with Shared Sub-trees.

Now let us consider another possible objection. as mentioncd
earlier, every flowchart can be transformed into an ancestor treecup
to isomorphism. But this transformation requires node-splitiing,
that is, some parts of the program must be copied. It does not change
the execution time of the program but it may require greatly increased
space. As an example, let us consider an acyclic graph isomorphic to
Pascal's triangle truncated to height n . Let us call this graph Tn

(Figure 10). The graph T _ has (ngg)

nodes and the transfqQrmed
binary tree has 2"-1 nodes. This is an example of exponential

space explosion in the structured counterpart of an unstructured or
go-to program. This example is an extreme one. But the feature that

a lower node is shared by many ancestor nodes is not rare. [Here is
another example [10]. A very short module in PDP-11 DOS Monitor,
containing 67 instructions, expands to an equivalent ancestor tree
program of 212 instructions. One common design goal is to minimize
program size -- especially in the monitors of minicomputers. Therefore
GO TO's (jumps/branches in this case) are used freely in real programming
despite Dijkstra's warning [5].

As a compromise, yet another instruction called SHARE 1is
introduced. This is essentially GO TO but it is used with clear
awareness that a sub-tree is shared with other control paths. Thys,
the usage is limited. 1In this sense, we may be said to be yet in the
realm of structured programming. For example, T, (Figure 10) can
be realized as a program of Figure 11. The label/' X' means an

instruction " SHARE X ". This program has % more nodes than the

original program. In general, a triangle program Tn of height n

ntl

5)
. nt2 . .

Tn with (9) nodes. Thus, the exponential explode is excluded

is realized as a binary tree program with (more nodes than
with the cost of speed (that is, the extra instruction SHARE must be
executed). This instruction can be used with ancestor trees also.

In this case, we must be careful due to possible back edges returning

to ancestor nodes over the root of the shared subtree.

21

Fig. 11 T3 realized by using SHARE

22

An Implementation.

The instruction SHARE requires a full address as an operand
(page address and line address, in case of paged. tree memory). kach

instruction es executed as follows (see Figure 12):

SHARE (address)

(1) Push down the KR into the address stack and transfer
the address part to the KR.

(2) Push down the counter II into the counter stack and clear
the counter II.

(3) Fetch the instruction.

GO DOWN (selector)

Same as the explanation in Section 2 except that counter II

will be incremented by 1 at the same time the KR is shifted

left one place.

GO UP (displacement)

(1) Start the execution of function micro-orders.
(2) If displacement field is zero, then go to 3 ; otherwise

set the value in the counter I.

While counter I is not zero, do the following:

(2.1) Decrement counter I by 1.

(2.2) If counter II is not zero, then decrement it by 1
and shift the KR right one place; otherwise pop-up
both the stacks to counter II and KR and go to
(2.2) again.

If counter I is zero, fetch the next instruction.

(3) (Return to the root.) Clear counter II, counter stack,
address stack, and FCR, then shift in a " 1" from the

right and fetch the instruction.

Remark. The use of instruction SHARE is not limited to sharing a
subtree. When storing tall tree programs in the memory, SHAREs are

I
used to join the sectioned trunks, This usage is nothing other than

GO TO (jump).

25

———

MIR
[[S/D] . -]
| | — __U__;,
{ I |
COUNT.
I i)
COUNT, E]*I[T — MPX
1L
@ y
COUNT T _ I’ ADDR. ADDR
. STACK STACK - STACK
v
CONTROL
K | r 7
Y Y Y
SCB
Fig. 12 An implementation of SHARE

(Partial structure)

2k

Search for Sharable Subtrees.

The last problem in this paper is how we can find such sharable
subtrees in an ancestor tree. If this is too hard, then we can not
utilize the capability of SHARE sufficiently. Fortunately, we have a
good algorithm to find all the sharable subtrees in an ancestor tree
in time nearly proportional to the number of nodes in the tree.

There will be no loss of necessary information if a given
ancestor tree T is replaced by a labeled tree with all back edges
removed because the displacement field of the instruction retained as
a label will enable us to recover back edges. Then the problem can
be restated as finding all the identical subtrees up to their labels.
The subtrees in the ancestor tree which correspond to the identical
subtrees up to label in the corresponding labled tree can be shared.
Here, an implicit assumption should be explained. That is, every
instruction is treated as one label even if it contains the
displacement field which is of order log log n , where n is the
number of nodes in the free. In the usual situation, this factor
may be considered not to contribute to the efficiency measure. gyt
if the asymptotical efficiency is of concern, the present algorithm
can be safely said to be an O(n log log n) algorithm where

0(f(n)) stands for " order of f(n) ".

Lemma. The list of identical subtrees up to labels in a labeled

tree can be obtained in linear time.

See the Appendix for a sketch of the proof.
Thus the existence of an almost linear algorithm to find
sharable sub-trees is shown, though the actual algorithm should be

simplified further.

25

Conclusion.

The concept of tree memory is re-examined and applied to micro-
program memory. It leads to a program with the address information
greatly reduced, and a simple modularized control unit. With the
programmable sequencer, ancestor tree programs of low height but with
many branches seem to be realizable effectively; e.g. an emulator of
minicomputers and possibly a core part of small monitor programs could
be implemented. If the program is far from the complete tree, then
the paged memory system will save the unused memory chips. A simple
paged memory system is also proposed in which ROMs and RAMs can co-exist.
This technique will be useful for broader applications such as micro-
code replacement of some software routines and interpreters of high
level languages.

Lastly-we have reached a new class of structured programming by
examining the efficiency issue. It was easy to implement a CO TO in
the proposed system, but we stop at SHARE. This compromise to introduce
SHARE does not harm the merits of structured programming, because an
ancestor tree program with SHAREs can be directly expandable to an
equivalent ancestor tree program.

Each user wants a structured programming system most similar to
his problem structure [9]. The ancestor tree programs (with shared
sub-trees) seem to be very near to many problems which people want to
implement by microprogram, although it might be too early to say so
when there is little data on this issue. What can be said at present
is that users have obtained more freedom of choice. The presentation
is intended to be suggestive and the readers are invited to develop

their own ideas on this proposal.

26

r—-

Acknowledgment.

The author would like to thank Prof. I. Lee of' the University
of California at Berkeley for his talk which inspired the present
work. Thanks also go to Prof. I. Shirakawa of Osake University for
his help. This work was done when the author stayed at the Department
of Information and Computer Sciences at the University of Hawaii and
at the Computer Science Department at Stanford University. po would
like to thank all the people at the departments, Professor W. W.

Peterson and Professor D. E. Knuth, especially.

27

References

+ [1} A. V. Ano, J. E. Hopcroft and J. D. Ullmen, The Design and
iqu%ySis of Computer Algorithms. Reading: Addison-Wesley,
974 .

[2] K. J. Berkling, "A Computing Machine Based on Tree Structurcs, "
IEEE Transactions on Computers, C-20 (), 40L-418, April 1971.

[3] E. Engeler, "Structure and meanings of elementary programs,"
Symposium on Semantics of Algorithmic Languages, 1971.

[4] D. E. Knuth, Fundamental Algorithms: The Art of Computer
Programming, voI. I, Reading: addison-Wesley, 1968.

[5] D.E. Knuth, "Structured Prog amming with GO TO Statements,"
Comput. Surveys, Dec. 1974, 261-301.

[6] 1. Lee, "SI Microprocessors and Microprograms for User-
Oriented Machines," Proceedings of ACM Micro-7, sl-s13, Sept. 197k.

[7] I. Lee, private communication, 1975.

(81 R.J. Lipton, 8. C. Eisenstat, and R. A. DeMilla,,"Thge Complexity
of Control Structures and Data Structures," Proceedings Of
Seventh Annual ACM Symp. on Theory of Computing, May 1975,
186-19%.

[9] C. McFarland, "Structured Microprogramming," Proceedings of
ACM Micro-7, s28-s32, Sept. 197hk. . .

[10] J. Oku:i., N. Tokura, and T. K&S&m:i., "Ana,ly'sj_s of a Disk Operating
System, " Kyoto University, Institute of Math. Analysis, 189,
oct. 1973, 101-116. e

[11] N. Tokura, "A Multi-dimensional Addressing System," Trans. IKCE
Japan, 53.-0’ Nov. 1970, 855-862, in Japanese. (English
Egagglatloni Systems, Computers, Controls 1, Nov.-Dec. 1970,

[12] P. Weiner, "Linear Pattern Matching Algorithms " Proceedings of
14th Annual Symposium on Switching and Automat: Theory;

Oct. 1973, I-1L.

28

Appendix

A Sketch of Proof of Lemma.

The form of the algorithm claimed in the Lemma is briefly
described.

For a labeled tree T , let P(T) be a string of tree labels
spelled out when T 1is traversed in preorder [4]. For example, the

preorder traversal trace P(T) of a tree in Figure 11 is

ABDGHEHICE''FIUJ

For a given tree T , P(T) can be obtained in linear time simply by
traversing the tree. The length of P(T) equals the number of nodes

in T

Pl. If subtrees Tl and T2
there are two identical substrings IKTl) and I(Te) in P(T)

are isomorphic in a tree T , then

Conversely, 1if there are identical substrings wl and w, in P(T)
1 =W, =PI,
then there are isomorphic subtrees T; and T, with w; =]%Tl)

and w, = P(T2).

for a tree T and if there is a tree T' such that w

P2. It is decidable at most in time proportionalto the length of
P(T) whether a substring w of P(T) is a preorder traversal trace

of a subtree of T or not.
Proof. Simply by traversing.

The problem to find all the repeated substrings in a string is
shown by Weiner [12,1] to be solvable in linear time. Therefore,
with P1 and P2, we can conclude that the problem to list the root

nodes of isomorphic subtrees in a tree is solvable in linear time.]

