SOFTWARE IMPLEMENTAT ION OF A NEW METHOD
OF COMBINATOR AL HASHING

by

P. Dubost
J. -M. Trousse

STAN-CS-75-5ll
SEPTEMBER 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

P T

vt Mld

F

Software Implementation of a New Method of Combinatorial Hashing

Pierre Dubost and Jean—-Michel Trousse

Stanford University

Abstract

= This is a study of the software implementation of a new method of
searching with retrieval on secondary keys.

— A new family of partial match file designs is presented, the
'worst case' 1is determined, a detailed algorithm and program are

given and the average execution time is studied.

This research was supported in part by National Science Foundation grant
DCR72-03752 A02 and by the Office of Naval Research contract Nr ObL-Lo2.
Reproduction in whole or in part is permitted for any purpose of the

- United States Government.

1. Retrieval on Secondary Key [2]

Common searching techniques use 'primary keys' which uniquely define
a record. But, it is sometimes necessary to make a search on other fields
of a record, called 'secondary keys': We might want to retrieve some
records from a file, given the values of some of these secondary keys.
These values may define zero, one, or several records. A set of values
is called a 'query'.

For example, if we considered an hypothetical CIA file containing
information about all the American people, we might be interested in
knowing which men are married, own two cars, and have been to-France
last year. We do not specify their age, residence, etc.

We now may assume that each secondary key is mapped by a common
hashing technique into a short bit string. We then need a fast method
of retrieval on a reasonably short binary key with some unspecified bits
(noted *). This technique must map any specified value of this binary
key into a shorter address. This address will correspond to a group of
records called a 'bucket'. This technique must differ from a common
hashing technique in that it allows some of the bits of the key to remain
unspecified. In this case, it is clear that a query may lead to different
buckets and the better the method is, the fewer buckets there will be for

a given query.

Example: American People File
Record ‘ Name Sex Age Married | ====-
Mapping 4L——__‘\ l)] l
Binary Key ————

The previous query might be represented, for example, by: sxQ¥%111---

!

2. A New Family of Partial Match File Designs and its Binary Tree

Representation.

W. A. Burkhard has recently presented a new family of partial match
file designs [1]. The interesting aspect of these designs is that they
can be represented by a binary tree. The binary tree leads directly to
a simple software implementation. To obtain an even simpler implementation,
we have slightly modified the Burkhard partial match file (PMF) and
introduced a new family of IMF which has, as we show in the next section,
the same worst case.

The mapping of binary keys into the bucket addresses is described by
a table. Each bucket corresponds to a given value of some of the bits,
the others remaining unspecified. Each entry in the tables gives a
description of-the keys which might be in the corresponding bucket. For
example, the bucket corresponding to the entry *10¥1 might contain the

following keys:
01001 , 01011 , 11001 , 11011 .

Any specified key must be mapped into one, and only one, bucket. This
technique works for any query with an odd number of bits. The tables Tn

are constructed by induction.

0
TO corresponds to a one bit key and two buckets: 0 0
1 c~1
Tn+l is deduced from Tn by the following method:
0 %
. T
; n
0 *
1%
*
Tn
1%

*
Tn being Tn circularly shifted by one position (instead of the

symmetric image of Tn with columns in the reversing order, 3s in

the Burkhard technique). It is clear that T will have 2n+l columns

and 271 lines. It then maps (2n+1) -bit Eeys into 21 buckets.
The representation of each table Tn by a tree Sn is then very

simple. A node of the tree S, contains the position of a bit in the

query to be checked and a leaf contains the address of a bucket.

Let us consider the trees for n = 0 and 1

The table T. is

0 which means, if the bit is 0 , the

o ©

0

1
c |

corresponding bucket address is (0 and if the bit is 1 , the corres-

ponding bucket address is 1 | e can represent this procedure by a

very simple tree SO

with the convention that -- if the bit checked at a node is 0 , we go
to the left subtree (here the leaf {:]) and to the right sub-tree for
1 (here the leaf). If the bit is a * , we go down in both

subtrees.

a2l
o1 2
Tl is o 0O 0 = the corresponding tree § is
1o 1 » L
211 % 0
311 % 1

r— r— I

We have seen the passage from Tn to T | 1 Similarly, we can
n-i-

define a transformation on the corresponding trees between § snq4 g
n

nt+l
Let us suppose that we have our tree Sn corresponding to the table 'I'
n
The first bit separates Tn+l into two halves. 7If the first bit
is 0 , the corresponding bucket address is going to be contained in the
root of Sn+l (node (:)) separates Sn+l into a left and right

subtree.

In the first-half of T T is directly inserted, which means

ntl " n
if a query leads to the bucket ! in T , the query constructed with
n

the preceding query (shifted by 1 position) with a 0 leading bit,

is going to lead. to the same bucket ! in 1 L1 - So, the left subtree
n

of Sn+ s but with the content oq each node increased by one.

1

In the second-half of Tn+l ' Tn is inserted after a circular

shift of one position. In the same way, the right subtree of Si1
is Sn but with the content of each node increased by one, except the

root (:) changed into (::::) and the content of each leaf increased

by ﬁﬁl.

|
'E
;
5
i

Let us represent on the same figure, the ipnduction on T
n

and S
n
0 k
T
S
n Node n
k
Leaf
4
nt+1l
Ol - * Sn+l
0 % .
1 * Node Node
. k ~ ktl k - k+l
Dol 5 Root
; g . Leaf
. L .

It is easy to check the transformation between

SO and Sl
Let us now determine the various properties of the tree S :
see
Th and the corresponding tree Sh on the next page)

A T Sn is perfectly balanced.
B —— At level 1 (0 < 1 <_n) , the content of' the nodes is eilher

i (denoted by mini) or 2n+l-i (denoted by max)

min, is always a left son and max, a right son.
C -- The content of a leaf can be computed directly by the path

used from the root adding at each level i , 0 if we go

n-i
to the left and 2 , 1f we go to the right.

O O~ OV WD O

012345678
00000y yx x
00001 ***
000 1*0%**
000 11 %¥
00 LX¥O*O**
001X 1%0%*
001%¥0 1+
001¥%11%x*
O1*Q0*¥0*
O1*0Q1¥*0%
OL1*1*¥0*0%*
01%1¥*1*O*
OL¥*O*01x
OL¥*1¥Q1*
O1¥*%011¥
O1%¥*111%
1*000*%¥0
1%00 1%%*0
1*01%0**0
1%0Q 1% 1x%0
1*1¥0*0*0
1*1%1%0%0
1% 1¥%01%0

1%1%%11%0
1¥%00%*01
1% 1%%01
1¥¥1%0%01
1¥%1%1%01
1¥¥*0%011
Tex1%0 11
H*x.**o 0-I-1
1x%%%1111

r

-

Properties A , B , C hold for SO 5 Sl . Suppose that A, B, C
hold for Sn :

Obviously, A holds for Sn+l

The level 1 of Sn corresponds to the level i+l of Sn+l . Tor
i >0, the node i of Sn gives itl and the node 2nt+l-i gives
ent2-i = 2(m+1)+1-(i+l) . For i = 0 , the node 0 of 5 gives 1 in
the left subtree and 2n+2 = 2(n+1)+1-1 in the right subtree. So, the
property B holds for Sn+1

The increase at level i+l in Sn+l is either 0 or 2n+l-(1+l)
exactly the same as in level i in Sn . If we follow the same path
in the left subtree of S as in Sn , we find g as in Sn . If we

n+l
nt+1l

follow the same path in the right subtree of Sn+ we find 42

l 14
+
since we had to go right in Sn+ at level 0 and add 2n l. L

1
C holds for Sn+l

The representation of this family of partial match file designs, by
so simple a binary tree, leads to an easier proof of the worst case and

a very simple search algorithm.

D. Worst Case.

The worst case is expressed in terms of the number of buckets wn(k)
found when k bits are unspecified. W. A. Burkhard has shown that the
worst case for his PMF family can be expressed in terms of the Fibonacci

number in the following way:

w, (k) = 2k for 0 <k < n+l<rg-l
_ onrl-k n

wn(k) =2 For il for n+l-l.§-| <k < ntl
_ pk-(nt1)

wn(k) = 2 LN for ntl < k< 2n+l

Using the tree, we can prove those same results for our new IMF family.

Let us set the notation: If the position i < n (or i > n) of the

query contains a * , all the nodes which are left sons (or right sons)

L. be unspecified,

recult in a ¥

in the level i (or onty-i) of ©
we are going to say that the level i ha:; onc stur.

all the nodes at a level i arc *.g, we arc going to
i has two stars.

Finally, we represent Sn in the following way;
by a *

corresponds to a specified bit.

As an example, we can have the following tree:

O\
AN N

] ANANVANVAN

if it corresponds to an unspecified bit and by a e

In such a cacc,

Consequently, 1if
say that the Lc,vel

a node is dencoted

if it

Since in our study of the worst case ywe considered first the left son to

a dot corresponds, in fact,

We can now study three different facts:

- Fact 1.

o]

Such a tree with ml levels is denoted S; .

/\

2 buckets = F

*
- For n = 0 , we havesO

2

*
For n = 1 , we have Sl

A\,
I\

% buckets = F)

to a bit 0 .

Let us see how the Fibonacci number arises in the worst case

in studying the special case where all the levels contained one star.

Let us assume that the formula for the number of buckets found,

Fn+3 holds for n and n-1, and let us study the case for n+l .

r— r— r— r

r—-

(o}

o+l * /*\. which can be jxpressed by:
2 NVAN ="\
ANNNA

n-1

* *
So, # of buckets for S,41 = # of buckets for Sm+# of buckets

*
for Sn 1

n+3 + F(n-1)+5 = s+ Foeo

= Py T Py

and the number of buckets for §¥ —F
n n+>

. *
Fact 2. Suppose a level 1 in 8, contains two stars, let us see at

which level i the number of buckets is maximum. Such a tree can be

represented by the following figure:

*
F, trees S |, are explored and we have
i+2 o n-i p i+2 Eh~i+5

buckets.

10

—

Now we have:

s AF =
+2 ' n-i+3 Fn+§ﬁ,FiFn+1_i.

Then it can be easily shown that this product is maximum for i
i+l

=1

(or i =l) since F.F varies like (-1)

Lon+l=d (Fyes + ZFnopiry) -

. *
50, in a tree Sn a level i1 with two *gs gives the worst case for
i=1 or mi1 .

We can now claim that if we have j levels with two stars
, the

worst 1 i . .
case 1s obtained when those jJ levels are assembled either at
the top of the tree or at the bottom.

Let us consider the case where j = 2 . We can represent the tree

*
Sn in the following way:

- v *
(4) For any i. , the tree §. .
2 i -1 9ives

the maximum of entries at level 12

i
1 ; .
" if the level i is equal to 1 ,
Sig-l then we obtained the following
i, = — representation: see (B).
* (B) * . .
Now Sn 1 gives the maximum of

*
//// buckets if i, in S
\\\\ v % . ot n-1 equals 1 ,

SO 1n Sn) 12 = 2 ., This procedure

\
igi can be clearly extended to any
' number j .
%n-1 Sp-1

11

r— c— r— [

Fact 3. The # of paths generated by the respective positions of

two stars, is the following:

SN N N E A
A A AN AN ARVA VANPAN

Y, e, AVVAV

1. On the same level, does not affect each other.

2. On two consecutive levels, the second * affects one of the
paths generated by the other.

3. At least one level apart, each of the paths generated by the
first ¥ is affected by the second one.

L. We can also remark that any level without *s can be removed

from the tree without changing the final number of buckets.

The analysis of the worst case for any k follows easily.

For 0 < k < n+l{-g-] , the number of stars in this range allows

us to place all the *s one level apart so, going down the tree, each

new * affects every path generated by the others. So

Wn(k) = of I (equals the upper bound).

We can remark, also, that if we cancel all the levels without *s, we

get a tree with only *s and k levels.

For ml-rg] <k <ntl , the number of ¥s is such that ntl-k

levels have no *s since no levels have two *s for the worst case (see
Fact 3). Thus, we can cancel those n+l-k levels and we are left with
a tree with n-(n+l-k) levels in which n+l-k levels have two stars.
By Fact 2, these n+l-k levels with two *s have to be at the top of

the tree for the worst case.' We can then represent the tree in the

following way:

12

r

— r— r—

/// \\\ S0 we gel:

ntl-k levels * % w (k) = 2n+l—k F
/\ / n n-2[n+1-k]+3
* Xk X %
and finally,
X
“n-2[n+1-k] R
_ 2n+l-k
2 5 (k) 2k-n+1
e ¥
n+l-k *
2
treesn-E[n#l-k]

For mtl < k < 2n+l , the number of *s is such that k-(n+l) levels

*
have two stars and the others have one . By Fact 2, the levels with
two *g have to be at the top for the worst case. So, the tree can be

represented in the following way:

*
k(1) SN e

levels _ ok=(n+1)
N\ /\ i) = 2 Tn-lk-(n+1) 43
* o x % %
S:-—[k (- - . Hk=(n+1)
-(nt+1)] wn(k) 2 F2n+h-k

n-[k~(n+1)]

13

r

r— r— r

L. Searching Algorithm.

As we have previously seen, it is not necessary to keep the tree in
memory because the value of the nodes may be computed when going down this

tree.

We will use the following variables:

L = the level in the tree, beginning at zero.
B = the bucket address which is computed during the search.

QUERY (i) = the i-th bit of the query (starting at zero).

The algorithm is similar to a binary search. When getting to a
node, the bit of the query specified in this node is tested. If it ic
zero, the left subtree is explored and if it is one, the right subtree
is explored. In the case of an unspecified bit, the current level and
bucket address at this node are saved on a stack, then the left subtree
is explored. When getting to a leaf, the bucket address is stored in a
table. If the stack is empty, the search is completed; otherwise, the
level and bucket address of a node are popped from the stack and the

right subtree of this node is explored.

Algorithm S [Searching all the bucket addresses corresponding to a

given query.]

1. [INITIALIZE .] Set 1«0, B«0, L 0.

2. [TEST BIT OF QUERY.] set L « I+l , set B« 2B . If query(i) ="'1"
go to 7.

D. [UNSPECIFIED BiT.] If query(i) = '¥', push (L,B) on the stack.

L. [MOVE LEFT.] Set i «&

5. [TEST FOR LEAF.] If LN, go to 2; otherwise, store B in the

bucket table.

6. [TEST FOR DONE.) If stack empty, the algorithm terminates;

otherwise, pop (L,B) from the stack.

7. [MOVE RIGHT.] Set i « 2N+1-L , set B « B+l , go to 5.

14

r

— r

Algorithm S has been implemented in LTIN. We give tho MIN prograe

and, 1in particular, the inner loop corresponding to Algorithm & in

Appendix 1.

5. Detailed Study of the Average Search Time.

We will now study the average execution time Hn(k) Lfor compubing
all the bucket addresses corresponding to aquery with k unspecified
bits for a given n.

We will consider, in the following argument, two time costs:

CD is the time cost for testing a node and getting to the

next node or leaf (left or right son).
C is the additive cost when encountering a "*" for saving

the parameters in the stack and then restoring them.

From the MIX program, we can see that CD has a value of 8 when
the son is not a leaf, and 9 when the son is a leaf. We can also see
that CS is equal to 10

By considering that any time we get to the leaf, except the last
time, we have {0 pop new parameters from the stack, we may take ¢ ‘

D
and add the extra cost when getting to a leaf, to ¢, . 'Then, wc will

]

take in the following study:

CS = 11
Units of MIX time
CD =8
. Let us now try to express U, (k) as a function of k and n . TFor

a given n , k can take all the values between 0 and 2n+l . We have
seen the direct representation of Algorithm S by the tree S and the
relation of the trees for n and ntl | Those preceding obgervations
lead us to express the average time for ntl in terms of the average
time for n . We can remark that if the key 0 is not specified, the
average time spent in the left and right sub-tree cannot be considered

equal since the root of each of those subtrees are different.

15

In respect of this last remark, we have isolated two types of

averapge time:

An(k) = Average time for n jif k keys are unspecified, the

first key being specified.

Bn(k) = Average time for n if k keys are unspecified, the

first key being unspecified.

Seven different cases, regarding the diverse combinations of the two

first keys and the last one, are going to be considered:

r /** Case @

Case 0 2 * Case 0 or 1
A O 7

Case 0 1 * o

/\

*

or

ANVAN

Case O) X Case) or L
/\ C A A

Case O 4 0 or 1

Case @
Q

B = - —_

m1(8) = A (k=2)+B (k-1)+ 2 +C,

since we have to explore both subtrees, tne average time in one is

An(k—E) and Bn(k’l) in the other one. e have also to follow the

two edges corresponding to the time ¢ and to pop in and out the
D

stack corresponding to CS . In the same way we can compute the

16

@

An-l'-]_(k) (OI‘

®

Bn+l(k)) in cach case

B .1(k) = 2B (k=2) +ec + ¢

A (k) = A, (k-1) + ¢

S

O -

By ()

A

t

0

(k)

2/ - o !
Hl(! 1) ¢,

We have now to compute the probability for each case to occur.

[Remark:

Case 1

SO

Number of

for ntl we have 2(n+l1)+1 = 2n+3 bits |

Number of possibilities

to have

k stars with

one star in 0O and one

star in 1

symmetrical

cases

)

2

]
[N

X

(

2n
k-2

Number of ways to select M

(k-2)

(2n+3) -5 =

items O

are already chosen

1

2n

14

2n (since the

1 and

/k=2)

)22n+5-k

17

items out of

2n+2

> ¢

9]

r]mmmer of ways
to fill the
ont5-k left
bits with 1

r—

In the same way we obtain:

@ _ 2n \ ,.2nt%-k
1\[n+l N (k_§)2

@ _ (2n)22n+j-k

Nn+l B \ k-2

The total number of ways g

B

n+1

given by:

”n+%

(ont+2) 5203 -k

The total number. of ways y

nt+l

Ziven by

Nn+l k

We can easily verify thal

® -0

nt1l . Nh+l

NI\

=
i
ja

and finally that

(%)

when the first bit is unspecified is

when the first pbit is specified is

@ _ (2n+2)22n+j__k

N, o= I\I + N@ - (21’;:5)22#5-1{

n+l n+l n+1

We can derive Ah+l

(k) and p

Ay (B = ﬁ@lj . S?l n®+l(k)
Nn+l

n41()

’ B

18

total number of

queries having k

bits unspecified

for nt+l
2
1 b
—

“n
k-1

(v)

) ent

J=k

and finally y

n+l(k)

s - e [0

N L1 B (0 + Ny }%&l(k)

If 't = 2n+l ,
we write Wh(k) (k ')I%IUQ > we get after computation the following
recurrence formula:

1 (6) = Gugy * A (k-2) + 30 (k-1) W_(k) 1
with:

2n
a =
w () (2,

and tﬁe initial condition:

(1)
w,(0) = ¢y, Wy (1) =2 + ¢

Assuming
wn(l) =0 Vi <O or yi s oniy
5 1
Let us now define the generating function G (z
I'l() - Z Wn(k)zk

k>0
From (1) we directly deduce that:

k)

G (z) = 2 « Z =
n + (227+ 3z+1 z
k>O nk)Gn l<)

Using the formula (l+z)T . 51 (r),k -
: 2. N we can simplify the sum

in 4 -We get:

b3 k \ 2 .
k_;ooznkz = (Oéz+B)(l+z) T with o =20, tC, and ¢ - ¢

When we express g i y
n_l(z) in terms of G _,(2) and Gn_z(z) in terms

of Gn_3(Z) » etc., we finally obtain:

19

r

e

n-1
-(n-i 2
G (z) = (z+ p) 2 (0274 “u+ 1)*(1+)<(0-1) (22" + vz +)™ 5 (2
n - 0
1=0
but
Go(z) =L+ g
S0
n I | 2(n-q
Gn(z) = (zrp) 2 (227 +ont 1) (1rg) (n-i
1=0

272 + Jz+1 = (l+z)(1+2z)

50 we have

Gn(z) = (CZZ+B)(l+z)2n E Lrez)l

. 1+z
1=0
| \ ko 1M
Now using the formula 2 L - T1-, We obtain after computation:
O<k<n T

- 3 neooankl o
(‘h(/‘) = (uc + %)[(Hz) (Lrovg) = (1) MR

Fl =
We can remark that (1+2z)n+l = [(J+z)+zjn'-1 _ (nil) ;0]] J .
J >0

Then the product (l+z)n(1+gz)n+l is:

(l+z)n(l+22)n+l - Z : n+l)(pnﬂ‘l-J)]Zk
0] J >O

and finally

6, (2) - (OH B kg,() [;O (n;l)(enﬂﬂ) (eml)]

20
I

We get aftep Computation a direct formuls for

- - - i i - - 1
Un<k) “ntl) Wn(-“)
(k
.. A Y L entl-k { , ,
a0 - Uy = 1) 4 k1 P ((‘n, k1~)
with (2)
’ o - 1 5 1\ ent1-
nk 2t 1 L J 2nt+1l-k
k lJ ;”O
We can remark that this fomula gives for k = 0 and 2nt+]
results that we could have expected .
= 3 Iﬁ'l
! U (0) =p (n+1)
3
A0t
L Up(Bnt1) = a(2™+)
L Asymptot ic Behavior
L Using the big- 0 notation we have:
J 1+o-1...-’:2 .
r -+ -
(rl.l) = PT 1+ _——Ai—)_—{- O(n g)))
- dJ Je n
- ; 1
J 1 -5 (3-1)(5-2)
. = —?,— 1+ 2 - + O(n-g)
Similarly
- k 1+0-1 - (k-2)
en+l _ (2n -2
(57) - (o, 2o - ofa™)
and
Pt (2n) ¥~ 5 (k-1) (k-p) - 5 (3-1)(3-2) -
(k-3) B k-jt L+ io) +0(n %)

21

ot N oy vl E o Al »
w0 we got for ¢ K after computation

n
w e (), ()

Using the first and second derivatives of the generating function

()() () we can give a direct formula for the sum
J >O -

SO

3 \k k k-2 -

and we finally get for y (k)
n

U (k) = A(K)n + B(k) + 0(n™h)

with A(k) = i—s% ((%)k+l -1)

and B(k) = oz((g)k _1) + Jl-_—;% B((g_)lﬁl _1) (6-—k)(g-) -1

We can verify that for k = 0 , we get A(0) = B(0) =8

A program has been written to compute the values of Un(k) The

recurrence (1) has been used instead of the final formula (2) for an

easier and more efficient implementation. The results for n < 20
and graphs showing the variation of Un(k) for a given k or & piven n
are shown in Appendix 2.

The method is very efficient when the number of *g stays within a

reasonable limit. Assuming a 1 s cycle time, the algorithm for
n = 15 (31 bits), will take only 65 ms with 20 *s but will take

1.77 s for k = 30

22

-

—

In any case, the searching time will be negligible compared to tne
time spent for retrieving the records themselves from secondary stora.e.

As we have already seen in the asymptotic behavior of U, (k) , the graphs

show the almost linearity in p for U, (k) , k being fixed.

Conclusions

The study of this new technique of retrieval on secondary keys chows

two different aspects:

- A very 'good' worst case.

- A very simple and efficient software implementation.

Acknowledgment

The authors would like to thank D. E. Knuth for his advice and

encouragement in this work.

References

[1] W. A. Burkhard, "partial Match Retrieval File Designs," Computer

Science Division, University of California, San Diego.January, 1975.

(2] D. E. Knuth, The Art of Computer Programming, vol. 3,Sorting and

Searching (Addison-Wesley, 1973), Section 6.5.

25

Appendix 1

MIX Program and in particular

the inner loop for Algorithm S.

2L

gz

Ml X ASSEMBLER PRUGFAM

GCGC300I)4
€0CCo0Cos™?
€Cecacccos
cCccoccule
cccoocculs
18243519253

C2241)312)15

2300010404
190522225
2200540000
uCol 170 16
-CC(s GC ©2
000G 00 02
0161 J0 1o
CCCLl 01 o5
/-CCCL 0Q 04
CCCO 90 22
0GCO 00 18
CCCO 00 02
0201 00 02
(C4¢ CC C1
0171 03 J1
€017 Cco 00
:€0C1 20 01
0153 3 05
CCCl €0 GO
/-00CLl CQ Q4
€001 00 00
gCCl 01 25
ulée CO 00
~C0C4 J0 V2

¢
51
49
34
15
47
35
37
48
26
“8
40

48
24
51
a7
49
15
43
51

seesss s |LOCATICHN
[

0163

ol74

1T 12
(4

PR AR L IN
I SUTRLF
[QJcPy
{STACK
INEWONE

1P
EQy
EQU
equ
26U
QU
ALF
RIG
aLF
ALF
ALF
ALF
"o mﬁ
oR1G
R 16
URIG
I
ENT3
ENTL
JBuS
LoXx
JXNL
HLY
QuY
ENTA
3LAX
DECA
JAz
INCa
0ECA
37a
INC3
JXNZ
INCL
Lox
43N
ENT3

{ADDRESS seeceeesnsnvee o STANFORD 360 VERSIGN le4 svveos 0055 0353)L
4 .

GG

NeN+]

ie

18

CUERY 8
*+lb
agrke

T ADO
RE3SF

£t

Y424
*+3JTS12
=451
=4Ne 1
INBUF(RZADER)
~1%S 12

[
»(READER)
INBUF,1
1F

QUE (PRINTER)
2

1

46

L)

17

1
CUERY+517Z,3
1

3F

1

INPUF,1

2t

=1l%n

9¢

e
~-Q004
ccoo
ccoo
0000
/=CC(1
0ocl
0153
gl1¢2
cccl
~-C00f
/-0001
Geccl
u0G0
Clas
C1€e8
/-CCOol
g1€3
0l1¢3
€ccl
C004
clel
000V
GCGo
0046
aocl
0l¢€5

ocC
30
00
ac
00
cC
ac
Q6
ce
ce
a3
00
co
J1
Cca
ols)
00
0é
[}].3
cc
03
[o]4]
01
0o
s
vo
20

2
32
2
02
2
0
ol
01
37
Cco
23
02
[*]¢]
00
5
0?2
0l

37
co
G2
05
02
01
25
00

49
51
52
53
54
29
54
11
Qs
49

43
51
49
15
47
47
217
25
54
€2
43
43
05

46

1119
Jl179
2173
179
Q173
0179
ALT7s
19
J177
Q179
o179
0179
1173
0179
173
0179
0179
018)
J1E1
gl82
J183
0léeq
Cles
0136
3187
0183
J1e9
0190
0191
ol1s2
J165
J1Se
Q129
V1%
Ji97
0168
a1¢9
820)
281
0202
J293
0204
0215
N2v6
0285
c2ce
0206
0276
020¢
Q2¢6
y2z2%
9206
3206
7206
J246
1208
0200
22 Go
J206
0206

0184

0195

<18y

{=

)=
[
|~
[
|
|
| =
f=
| =
| =
| =
| »
1=

|*

+ oH

04H

94

ENT L
ENT2
ENT 4
ENTS
ENTE
JME
DECeo
LO3
Lnl
INCH
ENNG
J3e
INC3
INC1
LDX
JxP
IXe
ST3
ST1
INCE
ENT4
J3rP
EnTA
CHAK
STx
INCS
Jerz

2F
1

STACK, 6(0:1)
STACK,6(4:5)

1

BUCKET ADDRESS ©

LEeVEL
LANDEX
{MDEX
STACK

M=-S12,3

SF

STACK,6(0:1)
STACK,6(4:5)

1
N3
28
0,1

CLTBUF+1,5(3:5)

1
ce

IN THE TRFE | MINUS N
QUERY
(UTPUT QIYFFER

POP PREVIOUS CONTEXT FROM STACK

MOVE RIGHT : B:=B¢1]
2E2RN+L-L

Li=L+1

Bei=2¢«R

TEST NEw BIT

'1' MCVF RICHT

*QY ANVE LSFT

%' SAVE CONTEXT THEN MOVE LEFTY

MOVE LEFT : o=
TEET FOR LEAF

IF STACK EMPTY TERMINATE

CC4c IO C2
0001 00 00
/-CCCL QC 3o
CCC0 J1 18
€G24 00 01
€Cz4 C2 0)
020¢ 00 V2
(Czl CC 18
0045 00 (2
-Ccct 01 00
3158 292 0u
0158

PR T 10l [P

QUERY*11110¢10
013 014

QUERY4(02(0»
0Co

QUERY 23433 54w
0CO0 00l
023 024 Q25

QUERYR*¥410]111
9C1 002

QUERYH]#] %] *]=x
012 013

004

092
225

09¢

ate

co
o

8

v wCc
[SSENN B VY VY

-4

<
o O
o

€20y

005

003
327

Ole

uls

305

304
)28

030

329

|
|

005
J2¢

-
=
Ps N

17

000
032

0249

0C7
231

023

0cs

02¢

CUT3LUF

i

FLTI(424)

Oy 1IPRINTEK)
24

24

gb

BLANKL IN(PRINTER)
OuTB UF
-1.14¢(3)
NEWGNE
NEWIMZ

cecccsecricesaae - . go

® .0

zJCK T ACDReSSeS

BUCKET ADDRESSES

022 0324 902¢

BJCKET ADDRESSES

003 010 011 012 013 014 015 0Ol6

017 018

BUCKET ADDRESSES

BUCK ET ADDRESSES

031

deesscssssccccnces

01 920 0221 2322

Appendix 2

Results and Graphs for U, (k)

the average execution time.

28

€926
1561y
eelle
Cees?
15241
el ¢l

Tere

Ci

12542
SLlne
63661
10311
S198
€LE9
L69%
159¢
6262
EvEl
(311
€86

S1L

o]

LsLet
8L€01
69LL
88LS
b 6l%
2Lt
heed
2UL1
2521
b16
999
S8y
ESE

Ls2

6889
8LIS
€L3E
288¢
bele
ELST
6611
Y48

919

9%

€21
68

59

86¢

N

1041

9421

6%6

10L

»1e

blE

1L

551

¢

(84

A

0000011

C

[}

"

(%]

2

()

2

W

6131

u
B
—

~

il

(o]

e
e

~
s

QCLl00*s

o

C

—

W

51

El

21

11

01

29

0¢

le
17
18
15
2u
21

e

24

25

1119
1538

2114

24361
464170
€22173
£3139

110556%

8.309C00
12

340
463
631
355
1167
1631
2244

3C89

W
3
n

13

-
-
-~
n

"

—
o
—
[¥)
~

>
—
—
a
m

102723
133434

184052

in

SChT
12497
17223

23E44

132169
2C5¢€l5

77003

11.03329

545
742

1713

-
w
o
O

2207

2047¢7

¢

2001
2715%
809

267

L7

b
o3
Eel

~N
+
D]

w
=]
~

140333
152520
26251

386585

18

2185
3013
4164
5755
7692
11086
15334
21345
29602
41023
55794
78529
108427
14544
2056056
262463

387149

160

206

364
487
656
388
1210
1657
2277
31490
4340

¢C13

158300

\

218707
3912564

414221

2)

1¢8

287
38l
508
683
325
1260
1724

2368

6683
12374
1679)
23356
32488
451 T+
62775
R7159

1223885
167452
231631
319913

441104

4692
5505

903%

31415
127328
176325
244447
233417

+57%)3

NOILND3IX 3 N1 SONLD3S EE°CCC

B219%211 ¢ b} c 0 0 [¢ S & G 134
%945¢CN 5k 4 o C 4 [¢] o S bl C ¢ A4
Nm,obnsmo $SCEZ99S 0 c o] 0 ¢ [+ bl 0 0 T+
€CQZes9Lly 3811€5¢2% 0 C 0 C C c 3 & 3 0%
%299%55¢ 9L10L81¢ 0ceilese & ° 0 ¢ ¢ ° C 0 £
00995%99¢ GELyz8ee 912zi9212 ¢ 0 0 ¢ ¢ 3 o J , 3¢
91264%5¢€1 82189LLT 218 6E651 6%L5S8TH1T 0 0 & o c & o LS
6CECSSH1 656612¢1 (AL AR IR0 6CSHYCoUl Q < C ¢ C c 0 Qg
€0209L01 56 62186 »1e1e88 CeE895L 1984104 0 o C 2 c c SE
LeETlEbL LLotL9eeL € LLS099 0125¢6¢ 8%LLTEC c] c bj o 0 Ye
6¢c02%86 SECE9€ES s1e106% 9816EYy SHHhEoC LI53€E5¢ [y c c 0 [¢] |31
€9L062% 8L 18606¢ 068129¢ 6x9CCee EHveLlel Y%1669¢2 < C bJ Y 7 43
Yyolyy1e 8Lel162 P£68L32 Lo819%%2 L03812¢ €9£2661 SYH69L1 C S ¢ 0 1¢
6%100¢€¢ »2L9e 12 0LSELol CE60TET L115%91 SE5d8%1 £1L52¢€1 0 2 < n (A3
€6€E6L9T 4284961 1650591 L1y9€€l Lyz2z21 £8680T1 092955 €CLY33 ¢ G 3 62
g6lezel 66 6E% 11 108901 C38e86 LGBECSE 215ed¢ 56 194%L LEsn 33 o o 0 304
569663 LI0%¢8 ZY498LL $C2eZL 3566933 H9%219 $32955 1i135% irechs : ¢ L?
509539 %21.09 H2989¢ 9056 2% 0606 % 59015% 80G1TH L55dtle L262¢¢ ¢ 0 37
b
12 e 61 el I8 F1 sl %1 21 <1 11 N

cooen o 1T « SO . 00000C* ¢ = J)

51

1500000

1000000

500000

100000

0

)
\J1

N

¢¢

time

7000

6000

5000

4000 1

3000

2000

1000

500

15

\ i Soo0
N,

N\

\ i

Bli2)= 1646.5

—
11(0:-
o f
. 957\":*\4’; Be)+ w Q(é) i
1!00:‘

‘\\\\ Slope A(8)= 36.34 !

—— - L

—_—

B(6): 138,63
N

20 14 it 3 o 13 9 14 3 ' ' b 3 2 Y

00

%

&g

20

P —

15

ot et
-

-

—— e b

10

e s e b b

o N W E W

10000

