Stanford Atrtificial Intelligence Laboratory August 1975
Memo AIM-265

Computer. Science Department
Report No. STAN-CS-75-507

TOWARDS A SEMANTIC THEORY
of

DYNAMIC BINDING

by

Michael Gordon

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

T T

TOWARDS A SEMANTIC THEORY

OF
DYNAMIC BINDING

by
Michael Gordon
Department of Computer Science,
James Clerk Maxwell Building,
The King’s Buildings,
Mayfield Road,
Edinburgh EH93JZ.

Abstract

The results in this paper contribute to the formulation of a semantic theory of dynamic
binding (fluid variables). The axioms and theorems are language independent in that
they don’t talk about programs -i.e. syntactic objects = but just about elements in
certain domains., Firstly the equivalence (in the circumstances where it’s true) of "tying
a knot” through the environment (elaborated in the paper) and taking a least fixed point
is shown. This is central in proving the correctness of LISP“eval" type interpreters,
Secondly the relation which must hold between two environments if a program is to

have the same meaning in both is established. It is shown how the theory can be

applied to LISP to yield previously known facts,

ACKNOWILEDGEMENTS

Thanks to John Allen, Rod Burstall, Friedrich von Henke, Robert Miine, Gordon
Plot kin, Bob Tennent and Chris Wadsworth for helpful discussions and
correspondence. John Allen, Dana Scott and Akinori Yonezawa suggested

improvements and pointed out errors in preliminary drafts of this report,

This research was supported in part by the Advanced Research Projects Agency of the

Office of the Secretary of Defense under contract DAHC 15-73-C-0435, ARPA order
no. 2494,

The views and conclusions in this document are those pf the author and should not be
interpreted as necessarily representing the official policies, either expressed or implied,

of the Advanced Research Projects Agency or the US Government.

CONTENTS

SECTION

1. Introduction,

3. Formalisation

4. Proofs

5. Application to LISP

7. Concluding Remarks

PAGE

1

2. Informal Discussion of Resuits..... 2
3

3.1. Knots and Fixed Points 3

3.2. Equivalent Environments 7

8

11

5.1. Syntax 12

5.2. Some Notation..... 12.

5.3. Semantics 13
5.3.1. Denétation Domains. 13

8.3.2. Environment Domain.. 13

5.3.3. Semantic Functions 13

5.3.4. Semantic Equations. 13

6. Existence of Predicates..... 18
24

25

8. References

l.Introduction

The art of semantics is now sufficiently developed that most computer languages can be
given concise, elegant and intuitive formal descriptions. The theory of these
descriptions is well enough understood that useful facts = such as the correctness of
implementation8 --are fairly straightforward to prove. Unfortunately proofs tend to be
very long and the results obtained rather lacking in generality. For example the proof of
correctness of an implementation for one language has to be. redone for a similar
implementation of another., Of course once -the proof idea is known no real creative
acts are needed in applying it and thus a certain amount of generality is. obtained.
However this generality isn’t of a type that’s easy to use (except, pehaps, by people
with considerable knowledge of the underlying theory). A more direct way of being
general is to isolate explicitly the assumptions used and then to prove the results from
these, Then to apply such a result ‘one just needs to check the language satisfies the
appropriate “axioms” = and this will normally be much less demanding than redoing a

whole proof by analogy with an existing one.

In this note |’ve formulated abstract versions of two results about languages which use
dynamic binding of free variables. Initially these were proved for LISP (they were
needed in proving the correctness of an implementation). The abstract versions
described below can be instantiated to yield the LISP ones. At hough the two results
proven are completely language-independent (in that they don’t talk about programs -
i.e. synt actic object8 = but just about elements in certain domains) they aren‘tas
general as one might hope. Some situations in which dynamic binding is used and which
intuitively should fall under their compass don’t. This is a defect of the present work -|

don’t think it’s a necessary difficulty.

2 Informal Discussion of Results

When reasoning about programs it’s often useful to be able to exhibit the denotation of
a recursive procedure as the least fixed point of some functional. Doing this enables,
for example, computation-induction to be used. The first result to be discussed helps
with this as it concerns the equivalence (in certain circumstances) of “tying a knot”
through the environment (elaborated below) with taking a least fixed point. Besides
being of interest in its own right, this result is at the heart of the correctness of LISP
eval type interpreters. ‘Hopefully the abstract version wiill assist in proving the

correctness of similar interpreters for other languages.

The way recursive definitions are handled by many LISP implementations is to bind the
body of the function to its own name on the alist. This creates a circularity or “knot” in
~which places inside the function body (namely recursive calls) point back to the
beginning of the function, Now the standard analysis of recursion is via the Y-operator
(i.e. in terms of least fixed points) and consequently in proving the correctness of
“knotting” interpreters with respect to standard semantics it’s necessary to ascertain
the conditions under which “knotting” and fixedpointing are equivalent. Contrary to what

one might expect they aren’t always the same. This is shown below,

The second result concerns what relation needs to hold between two environments a,a’

(alists in the case of LISP) for a form e to evaluate to the same values in both a and g¢,

Call this condition "a=*a‘".

3

A first guess might be that the two environments must agree on the free variables of e
(as is the case for terms in predicate-calculus or the h-calculus). This won‘t do
however for although a and @’ might agree on @'s free variables the things they bind to
these might depend on other variables not free in @ and on which a and a’ differ (e.g. if
e=x, a and &’ both bind x to y but a binds y to 1 whilst @ binds it to 2). What is
clearly needed is that a and @' agree on @’s free variables and on the variables free in
the things bound to these variables etc.

To formulate this for LISP one just needs a recursive definition like:

a=*a’ <=> \x. [x free in e =>a(x)=a"(x) and a=*™a’]

Now given a syntax for e’s its easy to formalise "x free in @" - the difficulty arises if
one wants a syntax independent definition. What’s needed is an abstract notion of
free-ness applicable to elements of the type denoted by e (and ‘hopefully denoted also

by programs from languages other than LISP). | describe such a notion below.

3. Formalization

8.1. Knots and =D

Before proceding with abstract formulations of the above it's necessary to describe the
environments needed to handle dynamic binding. Let D be an arbitrary domain of

expression values and let Env=Id=V be the associated domain of environments,
Elements of Vp are = in the case of dynamic binding = denotations of objects which may
contain free variables and so might still depend on the environment. Hence Vp=Env=D

and thus Env must satisfy Env=Id={ Env=D).

4

It turns out to be necessary (see lemma 8 below) to require in addition that if
p¢Env then p is strict i.e. p(L)=L thus if {D;D,/ is the domain, of strict

continuous functions from D; to D, then Env must have type satisfying:

Env=Id=>[Env=D).

From this one can immediately formulate what it means for “knotting” and fixedpointing

to be the same viz. we require for v€Vp and p€Enu:

vip[v/x]D=Y(F Av)p where F{v)=av.2p".v(p’[v'/x])
T L

knot fixedpoint
here p[v/x]is p updated to bind v to X. Unfortunately this equality isn*t true in

general.

For example if:

v=Ap’.p(y)p’ (where yé€Id)
p=L[(Ap*.d)/x][(Ap*.0°(x)p) /Y] (where L#deD)

Then it turns out that v{p[v/x])=d#L=Y(F (v))p.

For we have: W(p[v/xD=(p[v/x]{y)p[v/x]) (by definition of v)
=p(y)(p[v/x])
=(Ap*.p*(x)pNp[v/x]) (by definition of p)
=(p[v/x])(x)p
=v(p)
=p(y)p _ (by definition of v)
=(Ap’.p(X)p)p (by definition of p)
=p(x)p
=§>\p *.d)p (by definition of p)

And-as Y(F {v)p=UF (v)NL)p and

r

FvNL)p=L implies

FAv)™i(L)p=F (v)(F (v)(L))p

=v(p[F(V)"L)/xD

=(p[F (W)L} /XDy LF {v)NL)/x] (by definition of v)
=(Ap*.0*(x)p)(p[F ()L} /x]) (by definition of p)
=FAv"L)p=L

It follows by induction on n that: Vn. F,(v)"(.x.)pau. and so Y(F,(v))p=_l_.

In [1] and [2] it is shown that for ¥’8 and §’s which are the denotations of LISP

functions and alists respectively the equation v(p[v/x])=Y(F (v))p does in fact hold.
The proof used was very specific to LISP (being essentially an induction on the size of
computations on a certain abstract interpreter). Now hopefully the result should hold
for dynamic binding in general rather than just for LISP. Thus the problem arises of
isolating and stating those properties of dynamic binding which, when possesed by v
and p, entail v(p[v/x]=Y(F (v))p. To do this we need to introduce recursively
defined (but not necessarily monotonic) relations of the type first studied by Miine [5]
and Reynolds [7] Using these we can then provide a (partial) abstract characterisation

of dynamic binding by defining a notion of “regular” for which:

v, p regular => v(p[v/xD=Y(F (v}}p

From now on %,%X*,X** ,..., ¥,y",¥** etc. will range over Id. X,Y will range over subsets of
Id. pp’,p*’will range over Env. v,v',v** will range over Vp=Env=~D and d,d’,d** will

range over D.

r

— r—

A\

-

6

Using techniques developed by Robert Milne of Oxford [5] one can show that there
exist predicates of types:

ocEnv x Enu
a*clVp x Vp (one for each x€ld)

<«cEnv x Enu
<clp x VD

which are directed-complete (i.e. if they hold of each member of ‘a directed set then
they hold of the union) and satisfy:

pap’ <=> yx. p(x)<*p’x)

vatvr <=>Vp,p*. [p o p ' => v(p[v/x] = vi(p‘[v'/x])]

pep’ <=> yx. p{x)ep’(x)

vev? <=>Vp,p’. [pap®=> v (p) =v(p)]

One can then show that:

vev’ => varY (F (v9))

veey => Y(F (v*))<*v
And as it also turns out that p€p’=>p<9p’ we have:

vev,0<p => v(p[v/xD=v{p[Y(F (v))/x]=Y(F (v})

Thus a definition of “regular” which works is given by;

efinition 1|

viEnv=D and p:Env are regular <=>vev and p<p

To apply this to LISP one just shows that the denotations of forms and alists are

regular, this is done in section 5.

In the next section proofs of the above assertions will be given relative to the

existence of the predicates. This existence (which can’t be shown with the Y-operator,

as the necessary functionals aren’t continuous) will be proved in section 6.

2. Fauivalent Environmen

The formulation of the result about free variables also requires the use of Milne style

recursive predicates viz.:

®cVp x {XIXcld}
=X¢c Enu x Enu (one for each Xcld)

Where intuitively @(v,X) means the free variables of v are included in X and p=*p*
means P and P’ “strongly” agree for all x€X. Formally we require that:

&(v,X) <=> YY,p,p". [XY => [p="p* => v(p)=v(p*)]]
p=rp’ <=>V¥xeX. p(x)=p*(x) and &(p(x),X)

In section 5 below Il show that if e is a LISP form which denotes G[[e] and if
vs(e)={x|x is free in e} then &(G[e]l,vs(e)). From this it follows (via the definition of
p="*®p7) that:

Voo [p="*p* =>G[e]l(p)=C[e]l(p") 1
In particular if e has no free variables then vs(@)={} and (since it’s clear that for any p

and p*: p=Up")we have G[[e](p)=C[e](p").

Somewhat less trivially: if Yxévs(e). p(x)=p*(x) and also p(x) is @ constant function (i.e.
is an environment independent quantity) then again p=*®ps and 5o

Glelp)=G[eIl(p*). This last example corresponds to the case for static binding - i.e.

when objects have all their free variables bound by the time they themselves are

bound. The existence of ® and =* will be discussed in section 6.

4. P r 0o o f s

Readers from now on are assumed to be familiar with notations commonly employed in

the literature on Mathematical Semantics.

A “domain” is a partially ordered set in which each directed subset has a least upper
bound. This notion of domain is used (rat her than complete lattices) for minor and

nonessential technical reasons (see [1] for a discussion).

The domain intended by Env=Id=*{ Env=D]is the minimal solution of the equation i.e. if
id,d are retracts of a universal domain (88 Scott’s By) which represent Id and D
respectively (in t h esencet h a tld={x|x=id(x)} and D={x|x=d(x)}) then
Y () e.id>»(e=d)) represents Enu. (here a=b=Au.Ax.b(u(a(x))) and

.a=*b=Au.Ax.b(str(u)(a(x))) where str{u)=Ax.(x=L->L,u(x))). From this minimality it
follows that there are mappings Ap.pEnv=Env such that:

(P1) L=pp EP; E werreer E Pp E v Ep -

(P2) p=Lp,

(P3) (Pn)m=Pmin{n,m}

(P4) poi(X)p"=p(x)p*y
In fact if Enu is represented as above then p,=(Ae.id=*{e~d))L){(p). For vé¢/Env=D)
v, is defined by vy(p)=v(p,). (P4) can thus be written as: p,.{X)=p(x),anditis easy

to show (see [1]for details) that: p[V/X]ni1=Pnei[Val/ %]

| shall prove [vev’ => varY(F (v))] by showing (by induction on n) that [vev’ =>
v,@Y(F(v))] and then take a limit. Similarly [vev’ => Y(F (v))<*v*] will be

proved by showing that for all n: [vev? =>F (v)NL){v)a*v*],

9

The following rat her ad-hoc looking definition enables the clean statement of some of

the lemmas below:

Definition 2

Filp=Vp is “invarient at x" <=>Yp,v. F(v/p[F(v)/x]=v(p[F(v)/x])
The useful applications of this definition are given in the next lemma.

Lemma 1

For all x (Av.v) and (AV.Y(F,(V))) are both-invarient at x.

Proof’

Trivial for (Av.v), for (Av.Y(F (v)) use the fixed-point property of Y.

QED.

Lemma 2

If Fis invarient at x and v<v’ then Vn. v,a*F(v’).

Proof

n=0: Must show Vu<*F(v*)
i.e. pap’ => vo(p[ve/x]) = F(v)(p[F(v’)/x])
i.e. pap’ => v(L) = v/(p[F(v’) /x])
OK as v*V¥* and L9p[F(v’)/x]

n>0: Assume true for n-I. Let p9p’. Must show V{p[Vv,/X]) & F(v)(p[F(v*)/x])
i.8.V(p,[vn1/x]) & v(p[F(v’)/x])
need p,[v,; /x]Jep[F(v*)/x]
need Va.;9*F(v*) = OK by induction.

QED.

— o

R |

Lemma 3

If Fis invariant at X and v<v’ then v<*F(v’)

Proof

Trivial from lemma 2 as V-U,,v,, and @* is directed-complete.

QED.
Lemma 4

Vx, [vev’ => varv’]

vx. [vevr => va'¥(F (v9))]
Proof

Trivial consequence of lemmas 1 and 3 ,

QED.
Lemma S

If Fis invarient at x and vev’ then ¥Yn, F (v)"1)<*F(v*),"

Proof

n=0; Trivial

10

n>0; Assume true for n-1. Need p<p’=> F,(v)"(-L)(p[F,(v)"() /x])EF(v')(p[F(vt) /%]

ie. pop* => v(p[F (V)™!(L}/x]) & V(P[F(v)/x])
OK if F,(v)”"(J.)a"F(v')- true by induction

QED.
Lemma 6

If F is invarient at X and vev’ then Y(F,(v))c"F(v').

Proof

Trivial from lemma 5 as Y{(F (v))=U,F (v)"(1) and <* is directed-complete,

QED.

r

— r—

11

Lemma 7

vx. [vevs => Y(F (v))o*v*]
VX. [veve => Y(F (v)<*Y(F (v))]

Proof

Trivial application of lemma 1 and lemma 6.

QED.

Theorem 1

If v and @ are regular then v(p[v/x])-Y(F,(v))p

Proof

By lemma 5 and lemma 7 we have:
Y(F (v))<*v
va ¥ (F(v)

hence from the definition of <*

Y(F (XY (F () /x) & Wolv/x]
vip[v/x] & YF ALY (F (v))/x]

hence
Y (F ALY (F (v /xD=v(p[v/x])

Finally, using the fixed-point property of Y on the left hand side of this, we get:

Y(F (v)p=v(p[v/x])
QED.

5. Application to LISP

In this section D will be specialized to a domain appropriate for pure LISP and then the

abstract results described above Wwill be shown to hold of the denotations of LISP

programs.

The semantics of LISP used here will only be described in barest outline, For furthur

details, motivation and justification see [1] and [2].

12
i_l_s—mm

The syntax of LISP (as described in the manual [4] and in the notation of [9]) is given
by the equations:

- e = A |x]|fn[e;..;e,] | [e; 2€)2..;8q>€p2]
fn = F | f | A[[X5-i%nJi@] | label[f;fn]
F := car | cdr | cons | atom | eq

where the ranges of the variables €,A%,fn,F,f are as follows:

A ranges over <S-expression> (as in page 9 of [4))
x,f,2 range over <identifier> _ (as in page 9 of [4))
e ranges over <form> (as defined above)
fn ranges over <function> (as defined above)
F ranges over <standard function> (as defined above)

| use meta-variables x,f,2 to range over <identifier>: x is used in contexts where the

identifier is a form, f where it’s a function and z where it could be either.

In the semantics below:
flat(S)=S U {1} ordered by Ys¢S.Les.
A8 |08 B (8,0.48,) =288, (8;=L Or 8p=L or...ors=L~>L E(s,,.,s,))

car,cdr,cons,atom,eq are the appropriate functions on S=flat(<S-expression>).

Whenever an expression v of type S, [Env=S] o r [Env>Funval] occurs
in -a context requiring something of type [Env=D) then v means (i.e should be

“coerced” into) (Ap.vinD),(Ap.v(p)inD) and (Ap.v(p)inD) respectively.

S.3, Semantics
5.3.1. Denotation Domains

D=S+Funval
S=flat(<S-expression>)
Funval=[S*2§)

5.8.2. Environment Domain

Env=ld=*{Env>D/
5.3.3. Semantio Functions
&:Form=[Env=S)

§:Function={ Env>Funval]

B5.8.4. Semantic Fauatfons

(S1) G[Alp= A
(S2) ¢[xJe = px)pls
(S3) G[tn[e;;..;e,) 1o = ¥[nTp(ELe, Ip,.,CLe,]p)

(54) G[[e, ~e z.i0n0n]up = (G[e; Jp~C[e,.]p,..E[e, Jp-CLe,.p)

(S5) Fcarlp = car
Flecdr]p = cdr

B[cons]lp = cans

F[atom]lp = stom

¥leqlle = ea
W) ¥[t]e = p(Np|Funval
(S7) SIALLX 5%, o1 Tp = 28ypun8,:S.CLeTpls1/x, 1. [80/%,]

(S8) SLiabelftn]Tp = Y(F(S[tnI)o

13

Theorem 2 below shows that the denotations of LISP, forms and functions are regular

and so Theorem 1 can be applied to them.

Theorem 2

Glell<G[e]] and F[tn]«SF[tn]

Proof

A straightforward induction works, The details are as follows:
Assume p<p”.| must show G[e o= G[elp’ and F[tnlloc Efn]p".

(1): G[Allp=A=A=G[e]p’

(2): G[xJp=p(x)p|S
GIxTp=p*(x)p’IS
Now pap’ => p(x)<*p*(x) => p(x)}{p[p(x)/x]) = p*(x){p’[p*(x)/x])
=>p(x)(p) = p’(x)p* by lemma 8 below

- (3): €[tn[e;.;e,]0p=8tn]p(C[e, Jo,..C e, lp)

¥ tnlo«(C[Le, Jo’,..C e, Jo")
=G[tn[e;;...;e,] o’

4): G[[e, ,-»e,2;...;3,,1-'6,.2]]]#'-'((5“:811]ﬂ"&[[élz:ﬂﬁym.@ﬂ:em:ﬂp"(ﬁl[enz]]P)
=(G[e;; Jo*~C[e,,]p",..C e, Jo*-G [en2]0%
=(ﬂ[[e; 12@)2i.i0,%€,2] JIp*

(5): S[FIlp=F = F=8[F]p*

6): SLtp=p(f)p|Fun
S t]e=p"(Np’|Fun
and p(f)p= p’(f)p’ as in (2) above,

(7): & [[A[[x,;...;xn];e]:[]p =Aslr"lsn'(ﬁ[[e:up[sl/xl]'"[sn/xn]
& II;\[[xli---ixn33e]]]p "’.)lsli-"ssm(iu:e:up'[sl /%1)...[80/%,]
so it suffices to show p[8;/%;]..[8,/X,J9p [8;/X,]...[8,/X,]
and for this it suffices to show Ap.(s;inD)<*Ap.(s; inD)
i.e. pap’ => (Ap.s)p[(Ap.8)/x]) = (Ap.s)(p’[(Ap.8)/x])
i.e. pap’=>g,c8,~ which is true,

f

— r—

——y

15

(8): E[[Iabel[fitn]To=Y(F(FLtnI)p
F[abel[f;tn] Jp =Y (F (F[tn o

hence result by lemma 7,

QED.

Lemma §

Yox. p=pp(x)/x]

Proof

Follows trivially from definition of "p[p(x)/x]" and strictness of p.

QED.

Theorem 3 below shows that if vs(e) is the set of free variables ine then in the

abstract sense discussed above the free variables of (i[[e:ﬂ "are included in” vs(e).

. The following lemma is needed for the proof. The definitions of & and =*are on page7.

L e m m a9

(1) Yv,XY. [(v, X), XY => &(v,Y)]

(2) Vd. ®{((7p.d),{})

(3) Vv, X. [(v,X) => &(Y(F (v)),X\{x} 1
Proof

(1): Trivial,

(2): Trivial.

(3): | show &(v,X) => &(F (v)™L),XU{x}) by induction on n. Assume &(v,X).

n=0: §(L,X\{x}) is clearly true.

n>0: Assume true for n=1.
B(F AL, X\{x}) <=> p=R\pr => F (v)"(L)p=F (v)"(L)p’

16

<=> p=X\ps => v(p[F(v)"'(L)/xD=v(p’[F L{v)™{L)/x]).

<= p="\p* => p[F (V)™ (L) /x]=*p*[F (V)™ (1) /x])
which is true by induction and (1) above.

QED.

Theorem 8

Vee<form>. &(G[[e],vs(e)
Vee<funct ion>. &(F[n]),vs(fn))

Proof

A straight forward structural induct ion works. Let vs(e)eX.

e=x:
Must show p=*p* =>p(x)p=p"(x)p’. Now vs(e)={x}cX so if p=*p*:
p(x)=p*(x) and #(p(x),X) hence p(x)p=p(x)p'=p"(x)p".

e=A:
Must show p=*p* => G[AJlo=G[[A J]o* - which is clearly true.

e=f n[e jj..;i@n):
we have by induction that #(Z[fnJ,vs(fn)) and &(G[e],vs(e)).

Hence by lemma 9 &(F[n],X) and #(G[e,],X) as vs(tn),vs(e)cvs(e)cX.

so it p=*p* then F[tnllp=FLtn]e* and GLeJp=G[eTp"
and hence GeJp=GLe]p".

e={e 1 l-’e 1 2;...;3,, L"’enz]:
Argument as above.

Now let vs(fn)cX.

fn=f:
Simi tar to "e=x" case above. ,

fn=F:
Similar to "e=A" case above,

ro--

17

fn=A[[x ;...ix,Jie]:

& [[A[[x Ii-'-xnliel]]p = Ls,,...,s,,:s.(ﬂ[e]]p[s,/x,]...[s,,/x,,]
vs(fn)=vs(e)\{x;,.,X,} s0 vs(e)cXU{x,, ,X,}.
Now by lemma 8(1,2) if Y=XU{x,...,X,} then

p="p* => p[s,/x,]..[8n/%,10"p"[8,/%,]..[8,/%,]
SO as :b((ﬁ[[e]],vs(e)): (ﬁl[e]]p[s,/x,]...[s,,/x,,]=(i|[e]]p'[sllx1]...[sn/x,,].

fn=label[f;fn,]:

We have by induction @(%[[fn;]],vs(fn,)) where vs(fn;)\{f}=vs(fn)cX.
So by lemma 9(3) and induction $([fn]],vs(fn)\{f})

hence #(F[fn1,X).

QED.

Asan application one can show that adding new definitions to an environment doesn’t
change the values of the old ones as long &8 previously used variables aren’t
overwritten. This is an important lemma needed in proving the correctness of eval.
Here it’s a trivial consequence of Theorem 3 but originally (see [1]) it needed a long
ad-hoc proof which confused general arguments with LISP specific ones. To see how it
follows consider an environment @ whibh defines a set of functions all of whose free
variables are included in Xcld. Suppose x is a new function not included in X, We wish
to show that if e is a form (or function) then as long as vs{e)cX(i.e.e only uses the
old functions) we have for any v: (Ytﬂ:e]]p=(£ﬂ:e]]p[v/x]. But this is now trivial for
&(E[[e],X) and p=*p[v/x]. Saying this formally yields the following theorem (in which

"p[v/x]" above is replaced by "p*").

r

18

Theorem 4

suppose p,p‘€Env, eé<form> are such that for some XcJd we have:

(1) ¥xeX.3tne<function% p{x)=p(x)=F[fn,] and vs(tn)cX.
(2) vs{e)eX

then GLeJo=G[elp".

Proof
By theorem 343((5[[3],)() and p=%p*. The result follows from the definition of @,

QED.
6. Existence of Predicates

In all the above the existence of the predicates 9,9% <,®,=* has been assumed,
However this existence cannot be deduced immedeately from the recursive definitions
8s the predicates being defined arn’t necessarily monotonic . The existence proofs to
be described are directly based on techniques developed by Robert Miine [5]. Similar
methods have recently been independently discovered by Reynolds [7] For the current
purposes it’s only necessary to know that the required predicates exist, however

Milne’s work shows one can expect them to be unique also. | havn’t checked this for

the predicates used here.

We define by induction on n predicates:

2, € EnvxEnv
%, ¢ Vpxlp

19
and then set:

pap’ <=>\n. pap’
vary’ <=> Vn, va* v’

it follows (details below) that 99" satisfy the desired equations and are

directed-complete.

Definition 3

pap’ <=> Vx. p(x)<*p*(x)
varovs <=> v(L[vp/x]) & vi{(i[v'/x])
v, V' <=>Yp,pt. [pap’ => vy, (p[v/X]) = v'(p’[v'/x])]

The following two lemmas are needed to prove Theorem 5 below,

Lemma 10

(1) Yoo’ [ponip® => payp’]

(20 Yp,p’'. [pop” => P 19niP”]

(3,) Vv,vo. [va¥,, v/ => va* v’]

(4,) Vv,vo. [va* v/ => v, <" v ']

Proof

| show that (3p),(4g), (BY=>(1,), (4)=>(2,),(2,.))=>(3,), (1,.)=>(4,)

(3,): Must show va*; v’ =>va*;v’, Clearly L9l and we have:
va*, V', Lapl => v (L[v/x]) = v(L[Vv*/x])
=> v(L[vo/x]) = v (L[v'/x])
<=> vq"ev'

(4p): Must show va¥yv’ => y,a* v7,
Assume Vv<*3¥* and pa,p’.
Must show VYoi(P[Ve/X]) & v*(p’[v’/x])
i.e. v{1) = v{(p’[v'/x)
but v(1L) = v(L[ve/x]) = v/(L[v/x]) = v{p’[v’/x)).

(3)=>(1,): Assume (3,). Toshow (1) let pa,,;p".
Must show pa,0” |.€. Yx.p{(x)<* p“(x).

But if pa,, ;0 then ¥x.p(x)<*,,p%(x) s0 Vx.p(x)<* p*(x) by (3,).

(4)=>(2,): p,p* <=> ¥Vx.p(x)<*p*(x)
=> ¥x.p(x),9*,.,0"(x) by (4,
=> VX.pp, ()%, p(x)
=> vx'Pnclqnolp'

(2,.1)=>(3,): Assume (2,.;). To show (3,) let v<*,,;v* and ps,_p".
Then p,9,p° from (2,._).
So Vo i{pa[v/x]) & vip’lv'/x])
i.e. v(po[va/x]) = v (p’[v*/x])
hence vo(p[v/x]=v(p,[v,./x])
= V(P o[Va/x])
s v(p’[v'/ x]).

(1,.,)=>(4,): Assume (1,;). Toshow (4,) let va*,v* and p<,p”.
Then p<,_;p* so v,(p[v/x]) & v'(p[v'/x])
hence (Vohp, (P [Va/XD=V(p [Vy.1/X])
=v(p[v/x])
sv(p[v'/x)

QED.

20

r—

Lemma 11
If {v.} is directed then [[Vec. v a*,v]=> [(L v <% ve]]
Proof

Cases on n:

n=0: v % v’ <=> v _(L[vo/x] € v*(p [v'/X])

s0 U v (LU, vo/xD = vi(p[v'/x].

n>0: Let s, 1p° then Yeu.VX. Vo (p[ve/x] = v'(p’[v'/x))
so (L. v el Uove/xD & v(p[v'/x)

X
hence U“V“C v

- QED.

Theorem §

.9 and <* are directed-complete and satisfy:

pap’ <=> vx. p(x)a*p’(x)
varve <m> Vp ot [pap’ => v(p [v/x]) = v'(p'[v'/x])]

Proof
To show <* directed-complete we have:

Voc.v o'V’ <=> Yo Vn. v <" v’
<=> Yn.V. v i v .]
=> ¥n. U v " v by, lemma 11
<=> v av*

Showing [[Vec.va*v? J=>[vaX v)]] is trivial.

The difected-completeness of @ follows directly from its definition and the
directed-completeness of <* for all x.

21

o

22

o prove the rest of the theorem we have:

Ppap’ <=> Vn.Vx. p{x)<* p’(x)
<=> \/x.Vn. p (X)a*,p*(x)
<=> vx. p(x)<*p*(x)

To show va*vs =>Vp,p*. [pap’ => v(p[v/x]) = v'(p’[v*/x])] assume v<*v* and p<p”.
Then Vn. ve* , ,v’,pap’

so v, (p[v/x]) = v{p’[v’/x]
hence unioning over n: v(p[v/x]) s v/(p’[v*/x]).

To show Yp,p’. [pap’ =>v(p[v/x]) = v (p‘[v'/x])] => va*v* ‘assume
pap’ =>v(p[v/x]) = v(p’[v’/x]). | show Yn.v<* v’ by induction on n.

n=0: Lol so v(L[v/x]) = vi(L[v'/x])so v(L[ve/x]) = v(L[v/x]) v/ (L[Vv*/x])
SO vV,

n>0: By lemma 10: pap® => pa,_;p* => p,a.0* =>Vm. p,a,p".
0 p,ap°.
Hence v{p,[v/x] = vi{p’[v//x] so vup[va/x]) = v(p,[v/x]) = v (p*[v*/x]).
Thus va*,v*.

So Vn. v<* v’ and hence va*v’,

QED.

The construction of € and =* is very similar to the construction above. As before we

start by defining “finite” approximations to the relations viz.

Definition 4

(v, X) <=> V¥Y,p,0°. [XY => [p=an. => v,,(p)==v,,(p')]]

p=’_‘gp' =true
p=%n 1" <=>VxeX. p(x)=p*(x) and &,(p(x),X)

We then prove a lemma similar to lemma 10 viz.

23

Lemma 12

(1,) YV X[@(V,X) => &,(v,X) |
(2,) Vv, X. [&,(v,X) => &,,,(v,X)]
(3,) Yo,p" X. [p=% 10 => p=X 0" |

(4,) Yp,p*' X. [P=an' => Pn=xnolp' 1

Proof
Same as lemma 10 (mutatis mutandis).

QED.

From this it follows that if we define ® and =X by:

&(v,X) <=> vn. &,(v,X)
p:XPI <=> vn' p:anl

then @ and =* have the desired properties.

7. Concluding_Remarks

We have presented above a partial axiomatization of dynamic binding. What has been
shown is that if v€/Env=D) satisfies vev(i.e. is regular) and &(v,X) for some Xcid
then useful theorems follow. What is left open is just how many other axioms will
eventually be required. To answer this we need first to know which theorems we want
and to answer this we must attack “real” problems such as the correctness of compilers
and interpreters. Doing this should reveal the general theorems about dynamic bindin'g

that must follow from any adequate theory.

24
The theorems proved here are not yet general enough. For example if we consider

the obvious extension of the semantics to handle funargs (see [1]) then the proofs
that G[e] and ¥[fn] are regular fail. in fact by replacing the occurences of " "

in the definitions of 9,9* and < by another predicate (which needs to be defined

recursively) it’s easy to cover this case. Unfortunately |don't at present see a

uniform way of defining <9,9* and < to cover ail useful D.

Having to separately prove the existence of all predicates is a big nuisance, One
step toward a general justification of -recursive predicate definitions has been
provided by Milne and Reynolds. Both give uniform accounts of how to construct
recursive predicates from their defining equations. In fact the constructions given
above are (more or less) instances of Milnes techniques. It would help a lot if
syntactic criteria on definitions could be developed to decide if the things purported
to be defined actually exist. Milne [private communication] has made progress toward
this by anaiysing the structure of some of the expressions which occur in definitions

and showing that these legitimate instances of his general construction.

It’s clear that many of the above proofs can’t be done in existing fomalisms (eg LCF)
- the required predicates can’t be defined in them. One way to fix this would be
to develop extensions, another would -be to develop a translater from proofs using
predicat es to proofs which don’t. The latter probably won’t be adequate because
theorems. may require the use of predicates in their statement at the general level

(even if ail their useful instances don't). :

25

8. References

[1] Gordon, MJ.C. (1973) Models of pure LISP. Experimental Programming
Report $:No.31. Department of Machine Int elligence, School of Artificial Intelligence,
University of Edinburgh.

[2] Gordon, MJ.C. (1975) Operational Reasoning and Denotational
Semantios. Presented at the International Symposium on Proving and Improving
Programs, Arc-et-Senans, France (proceedings available from IRIA). Revised as
Memo AIM 264, Computer Science Department, Stanford University.

[3] Gordon, MJ.C. (1975) Towards a Semantic Theory of Dynamiec
Binding. Memo AIM 265 , Computer Science Department, Stanford University,

(4] McCarthy, J. et.al. (1969) LISP 1.6 Programmer’s Manual, MT Press.

[5]Milne, R. (1974) The formal semantics of oomputer languages and
their implementations. Oxford University Computing Laboratory,
Programming Research Group, Technical Monograph PRG-13 (available on
microfiche).

[6] Reynolds, J.C. (1972) Notes on a Lattice-Theoretic Approach to
the Theory of Computation. Systems and information Science, Syracuse
University.

[7] Reynolds, J.C. (1974) On the Relation between Direct and
Continuation Semantios. Second colloquium on Automata, Languages, and
Programming. Saarbrucken.

[8] Scott, D. (1974) Data Types as Lattices. To appear as Springer Lecture
Not es.

[9] Scott, D. and Strachey, C. (1 972) Towards a Mathematical Semantics
for Computer Languages. Proc. Symposium on Computers and Automata,
Microwave Research. Institute Symposia Series, Vol.21,Polyt echnic Instit ut e of
Brooklyn.

