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1. Introduction: Two Examples

In 1928, Sperner [33] answered the following question Let F be
a family of distinct subsets of {1,2,...,n} such that

S;TeF = SET ; (1.1)

how large can IFl be? Sperner proved that

7l < (Ln;lzJ) . (1.2)

(To see that this is the best possible result, consider all the subsets
s of {1,2,...,n} with |s| = Ln/2; @ ) In 1966, Iubell[28] gave a
very elegant proof of this result; slightly recast, Lubell's argument
goes as follows. TLet us denote by A the family of all 2% subsets

of {1,2,~..,n} 5 let us call a family § feasible if it satisfies

(1.1). With each family F , feasible or not, associate the vector

(%5: SeA) defined by

1 if SeF ,

o
]

0 if SEF
Thus obviously
IFl = 2 x, .
Sep 8 (1.3)

A family of sets Ib’Tl’“. @$l with

¢ = TO < TlC.— C TH = {1,2,...,1'1}



will be called a chain. c(Clearly, there are n! distinct chains, each
SeA is included in |S|!(n - |S|)! of them. Furthermore, F is
feasible if and only if

SEE% XS <1 for every chain C . (1.4)

The sum of all these n! inequalities (1.4) reads

Z |s[t(n- [s])txgy < n!
SeA

or, equivalently,
y oL _x <2
SeA ( ISI )
Since every Xq 1s nonnegative and every (‘gl) < (LH?E_I) , we have

1

SEA(LnI;Z_]) S g ( |§| ) 5

Thus (1.4) implies

n
2% < (LH/QJ )

which, by virtue of (1.3), is the desired result.

Our second example goes back to the thirties when Erdds, Ko, and
Rado [15] answered the following question. Let F be a family of
k-element subsets of {1,2,...,n} such that

S;TeF = SNT 4 ¢ ; (1.5)

how large can |F| be? ErdSs, Ko and Rado proved that (in.the

nontrivial case n > 2k)

n-1
le] < (kl)
(To see that this is the best possible result, consider all the
k-element subsets S of {1,2,...,n} with 1leS .) In 1972, Katona
[25] gave a very elegant proof of this result; slightly recast,

Katonats argument goes as follows. Let us denote by A the family

n
of all (k) subsets of {1,2,...,n) having k elements; let us



call a family F feasible if it satisfies (1.5). For simplicity,

let us assume (unlike Katona) that k divides n and let us set
m= n/k . A family of pairwise disjoint sets Tl’TZ’_”,TmEA will

be called a partition. (learly, there are exactly

BCHEY. (). =

ordered partitions; every geA is included in
- (n—k)i
(k)™
of them. Furthermore, F is feasible if and only if

2 Xy < 1 for every partition P .

The sum of all these inequalities reads

S ¢ S ) Xq <

()™t

or, equivalently,
Zs s a(y) - ()
S > =
SeA m\ k k-1
which is the desired result.

In each of our two examples, the proof came out rather effort-
lessly. Was it just plain luck, one may wonder, or are we actually
onto something? The answer to this ill-posed question is ambiguous.
We were lucky indeed: proofs like that are not to be found for every

combinatorial theorem. At the same time, however, we zre onto

something. We are onto the duality theorem of linear programming.

2. The Duality Theorem of Linear Programming

In each of the two introductory examples, we have argued that a
~ertain set of linear inequalities (corresponding to the assumptions
~f our theorem) implies another linear inequality (corresponding to

the desired conclusion). 1p general, we shall say that a set



< b -
= 01 (I <ic<m (2.1)

if, and only if,

(1) there is at least one solution of (2.1) and

(ii) every solution of (2.1) satisfies (2.2).

When yl’yE""’ym are nonnegative reals, we call the inequality

» (3 m
2 v.a.. )Jx. <
j=1 \i=2 * 1/ 3 - ? Yiby

1=

a linear combination of (2.1) with multipliers

Furthermore, an inequality Y12 Ipr sy

n
a.x.
dJ

<b
j=1 79~

is called a combination of (3.1) if, for some b* iy ¥ «p
’

; ; *
the inequality 2 8,%. <Db" is a linear combination of (2.1).
Clearly, if (2.1) has at least one solution then it implies each

of its combinations.

THE DUALITY THEOREM (first wversion). If (2.1) implies (2.2) then
(2.2) is a combination of (2.X).

Customarily, the duality theorem is stated in a slightly different

form. This form arises in the study of linear programming problems

(or LP problems for short) such as

n
maximize 25 CJXJ subject to the constraints
Jj=1

Mo
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With (2.3) one associates another LP problem, called the dual of
(2.3):

m
minimize 25 b-iy. subject to the constraints )
i=1 %
m
2 : 2.4
' ai_,._>cj (1<3<n) > (2.4)
i=1

A solution to the constraints in (2.3), resp. (2.4), is called a

feasible solution of (2.3), resp. (2.4). A feasible solution which

maximizes  cc jxj , resp. minimizes Ebiyi , is called an optimal

feasible solution of (2.3), resp. (2.4). Note that for every feasible

. * ¥ * . .
solution X)sKpseeepx  Of (2.3) and for every feasible solution

* % *
Y12¥ps +++5¥, of (2.4), we have

Texi < D a..xy < & byt (

+ C.X. < s XLy, < .Y . 2.

j J J i,,j 1 J°vL | ivi 5)
THE DUALITY THEOREM (second version). If (2.3) has an optimal
feasible solution xi,x;,...,x:: then (2.4) has an optimal
feasible solution y'J)_e,y;, o .,y:; and

n m

*
2 oex, = 2 b.ya,e
=1 Jd Jd i=1 171

It is easy to see that the first version implies the second.

% % %
Indeed, let Xl’XE"”’Xn be an optimal feasible solution of (2.3);

* *
set d =2 CJ.XJ. . Then the inequalities
n
2 a }3 < b,

1

X, < O (l<j<_n)

<
|
I

imply the inequality



-

n
Zoex, < q
-1 =

By the first version of the duality theorem, there are nonnegative

* *
reals ¥y, ¥ps ¢ W such that

z *
vyia,, - = c, 3
301 1743 ym+j J (1 <j<n)

and

2%
L yh,< dr
i=1 * 17

Thus Y}_e:yg, ) M@zx:l is a feasible solution of (2.4)

with
m % n
*
2 bi:y'. < 2 e.x.
i=l 1 j:l J J

BY (2.5), the last inequality p.ct hold with sign of equality and
-V?E’Yg’ ---:Y:; is an optimal feasible solution of (2.4).

To deduce the first version from the second, let us assume that
(2.1) implies (2.2) and let us consider the following LP problem:

n
maximize 2 ¢ (u, -v.
jo1 4 d 5
n
subject to 2J a..(u, - ) < b
1 j’ -

j=1 d J 1 (lS i<m)

For every real x ., we may write x = U;Vs o with w,v. > o
7

Therefore our problem has an optimum feasible solution u,, v

J
: . 3 * _ %
(1 <3 <n);in fact, X Cj(\gj—v:j)/id . By the second version
of the duality theoremg there are nonnegative reals

y.l)y2, .. o’ym
with



2 oa..y

Iy > ¢, ,
i=1

12 %

m
'§l (—aij)yi > —%- b

m n

* *
2 by, = 4 c.(u,-v)
i=1 =1 J9 0 J d

Hence (2.2) is a combination of (2.1).
Finally, we shall restate the duality theorem in yet another form.

The set (2.1) of linear inequalities is called inconsistent if

there are nonnegative reals ¥; (1 <i<m) such that

m
12_1 23593 = O (1<i<n) ,

m
Z b.y. < 0
i=1 t

Trivially, an inconsistent set (2.1) is unsolvable; again, +tpe converse

is given by the duality theorem.

THE DUALITY THEOREM (third version). The set (2.1) is unsolvable if

and only if it is inconsistent.

This version follows easily from the first version. Indeed,
assume that (2.1) is unsolvable and let k be the largest subscript
such that the set

n

-

j%l a;5%; _<by (1 <i<k) (2.6)

is solvable. The set of all the solutions of (2.6) is a closed convex,

and possibly unbounded, subset of R® ; the assignment
(xl’er e ')xn) P Z @ijj

maps this set onto a closed interval I with



2 < b = zfI

k
Hence there is some d with d >bk such that (2.6) implies
n
2 (-a,)x. < -d

By the first version of the duality theorem, there are nonnegative
reals y; (1 <i<kx) such that
k-1

Z 8,V = 8.

(L<3j <n) ,
i=1 M J -7

k-1

;Ei .

Setting yk = 1 (and yi =0 for 1 > k ) we conclude that (2.1) is
inconsistent.

Particular cases of the duality theorem may be traced back to
Gordan [23] and Farkas [16]. The notion of a dual LP problem was
<introduced by John von Neumann in conversations with George B. Dantzig
in October 1947; it appears implicitly in his working paper [36].
Gale, Kuhn and Tucker [19] formulated, and proved, an explicit version
of the duality theorem (our "second version"). OQur "third version"
comes from Kuhn [27]. For a wealth of information on the subject, the
reader is referred to Dantzig's book [9].

The duality theorem is a very natural principle, pervading a
large area of mathematics. For instance, the necessary and sufficient
conditions for solvability of systems of linear equations are just a
very special case of the duality theorem. Averaging arguments,
counting of pairs in two different ways, and "Lubell's method"
illustrated in Section 1, are rudimentary applications
of the duality theorem. Like M. Jourdain who, for more than forty
years, had been talking prose without any idea of it, we may often

be unaware that our arguments rest, in fact, on the duality theorem.
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3. Linear Programming as a Methodological Tool

Linear programming problems may come up in various guises.
Sometimes their constraints are only implicit in the problem
formulation and it may take considerable effort to uncover them.
However, once we recognize the linear programming nature of a
problem, we gain a valuable guiding principle: the duality
theorem. The following case story of a geometrical problem with
an underlying LP structure will illustrate the point.

We shall consider the infinite square grid in the ordinary
plane; by definition, each cell in this grid has eight neighbors.

A coloring of the cells red and blue will be called feasible if

(1) there is at least one blue cell,

(ii) every blue cell has at least six blue neighbors.

Trivially, coloring all the cells blue we obtain a feasible
coloring. A nontrivial feasible coloring, constructed by Fejes Tdth

[18], is shown in Figure 1. (The cells marked by crosses are red,

- the unmarked ones are blue.) In this coloring, "four out of every

fifteen" cells are red. Introducing the notion of density (as in
[17], pp- 161-162), one can make the last statement more precise.
To do so, begin with an arbitrary cell; let its Cartesian coordinates
be a,b . For every nonnegative integer k , define g to be the

k
set of all those (2k+l)2 cells with coordinates i, j that satisfy

li-a] < x , |3-v] <_x

If X is a set of cells then the lower and the upper limit of the
sequence

lxns,| lxns, | [xns, |
s L R

5, |s

IS

ol i

do not depend on our choice of a and b . These two limits are

called the lower and the upper density of X ; if they coincide then

their common value is called the density of X . The set of the red

cells in Figure lhas density 4/15; Fejes Téth conjectured that the

red upper density of a feasible coloring never exceeds L/15 |
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Figure 1
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Familiarizing ourselves with feasible colorings, we find that

they cannot contain various clusters of red cells. For instance, if
we begin with three red cells in a row (as in Figure 2) then the
feasibility constraint (ii) forces us to paint the entire plane red,

thereby violating the constraint (i).

Figure 2

Similarly, we find that no red cell may have more than three red
neighbors. In fact, the red cells with exactly three red neighbors
come in two by two quadruples flanked by layers of blue cells as

in Figure 3. (The cells marked by a questionmark may be red or blue.)

Figure 3
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If r (resp. b ) is the red upper (resp. blue lower) density of

some feasible coloring then trivially
rb =1

Given a positive € , we may choose an arbitrarily large nyxn square
. 2
with at least (r-€)n red cells. Let N be the number of

(unordered) pairs of neighboring cells colored by different colors
and coming from our square. Since each red cell has at least five

blue neighbors, we have

2
N > 5(r-e)n” - 4(n+l) , (3.1)
the negative term discounting the blue cells that fall just outside

of our square. Since each blue cell has at most two red neighbors,

we have
N < 2(b+e)n2 . (3.2)

Since €& may be chosen arbitrarily small and n may be chosen

arbitrarily large, we conclude that

50 < 2b . (3.3)

Thus we are led to the following LP problem:
maximize r subject to the constraints )
r>0 , b >0

b = 1

? (3.4)

r_
5r —2b < 0 )

Trivially, the solution to this problem is 2/7 and so every feasible
coloring has density at most 2/7 ; unfortunately, 2/7 is just a
tiny bit bigger than 4/15. Nevertheless, we may hope that the LP
problem (BJO is, in fact, a poor model of the geometrical problem.

To begin with, we may try to prove that there is no feasible coloring
with red upper density 2/7 . For this purpose, let us investigate

the properties of such a hypothetical coloring.

12
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Since r = 2/7 and b = 5/7 satisfy (3.3) with the sign of
equality, it appears that the bounds (3.1) and (3.2) must be, in some
sense, tight. Pursuing this line further we find arbitrarily large
squares (100 x 100 will do nicely) where every red cell has exactly
three red neighbors and every blue cell has exactly two red neighbors.
Close to the middle of such a square, we shall find the configuration
of Figure 3. ©Next, each of the four cells marked by a questionmark
must actually be red (otherwise we would have a blue cell with seven
blue neighbors). That is, each of these cells must come from another
red quadruple. The blue layers surrounding these quadruples will
create blue cells with eight blue neighbors: a contradiction.

The crucial point in our argument was that in the vicinity of
each red quadruple, there must be either a red cell with fewer than
three red neighbors or a blue cell with more than six blue neighbors.
Now that we have established the existence of such defects, we may
try to estimate their frequency. For this purpose, we define the

order of a red (resp. blue) cell to be the number of its red (resp.

- blue) neighbors. In a big nxn square with at least(r-eﬁﬁ

2
red cells, let rin (resp. bin2 ) be the number of red (resp. blue)
cells of order i . A careful analysis of the above argument leads

to the conclusion that, with only a negligible error,

bro+ 2r;+ 2b + Wby > r

7 3

(The proof of this inequality is not instant; for details, the reader
is referred to [7].) In addition, the constraints of (3.4) find their
natural counterparts in terms of the new variables. Thus we are led

to a new LP problem:

13
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maximize r0+f érr+r 3 subject to

r, + r» + b6 + b, + b8 =1,

o+ T1 t %o 3 7
8rog + 7r., + 6r. + 5r3 - 2b, - b? = 0
1 2 6 !
r
—hro - 2rl + 3 - 2b7 - hb8 < 0

I‘O, rl’ I'2, rﬁ) b6’ b7} b8 2 0

Multiplying the first constraing by four, the second by two, the

third by one, and summing up the lot, we arrive at the inequality

161‘0 + 161'_.L + l6r2 + 151.5 <l

Hence To¥rytrptr, < 4/15 which is the desired result.

4, The Importance of Being Discrete

Reviewing the two examples of Section 1, we find that in the

proofs, no use has been made of the fact that our variables X

time we solve a combinatorial problem by LP techniques. Consider,
instance, the problem of finding the largest size of a stable

(independent) set of vertices in the graph G = OLE) of Figure 4

(A set of vertices is called stable if no two of them are joined by an

edge.)
8 1
7 \ 2
6 3
5 Y
Figure kL

14
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integral. Unfortunately, we cannot expect to get away with that every
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In the straightforward LP formulation of this problem, we have to

8
maximize z? X subject to the constraints
= 7
Xy 20 for every vertex i , (k.1)
Xi4-xj S_]_ for every edge 1ij
and
X, = integer for every vertex i . (k.2)

Disregarding the integrality constraint (4.2), we may obtain a

solution of (4.1) such that

However, it is not difficult to see that the size of the largest

stable set in G is only three. (opnclusion: in the present

context, the integrality constraint (4.2) must be taken into account.
In the field of discrete mathematics, we deal with discrete

variables; whenever their discreteness is relevant, it must find its

way into our arqguments. It often does so via the pigeon-hole

principle: if mntl objects are distributed among n boxes then

some box contains at least mtl objects. Dpescribing this principle
in LP terms, we denote the number of objects in box i by x. 3

i b
since the boxes are unlabelled, we may assume that

X, > X

1 2Z.,.>X

=~ n
Now, let us
minimize Xy subject to the constraints 3
X %, > 0
X

2 - ¥ 20

Xl +>§ +...+xn = mn+l1

15



and the constraint

X, = integer (L <i<n)

The linear combination of (4.3) with multipliers

-

-
=i
Sl
SR

reads

>m+ 2. (4.1)

At this moment, let the discreteness come into the play: ;¥ %,
is an integer satisfying (4.4) then, in fact, X, > m+l .

Proving, as we have just done, the pigeon-hole principle by
LP techniques may be reminiscent of the use of a sledge-hammer to
crack the proverbial walnut. We have done so, however,
to illustrate a point. The point is that the integrality
constraint, together with our linear constraints, may imply
inequalities which are not implied by the linear constraints alone.
This important idea seems to have appeared for the first time in the
work of Dantzig, Fulkerson and Johnson [10]. 1ater it was
developed by Gomory [20],[21],[22] into an algorithm for solving LP
problems in integers. Gomory's algorithm provides a systematic way
of generating the new "implied" constraints (commonly called

cutting planes) until the integrality constraint becomes superfluous.

(For an excellent coverage of the ILP techniques, the reader is

referred to [30].)

We shall use the idea of implied constraints to formulate a
theorem which, in the context of integer LP problems, parallels the

duality theorem. To begin with, let

n
j?l 8;-% 5 < b (1<1i<m) (k.5)

be a set of inequalities whose solution set is nonempty and bounded.

We shall say that (4.5) implies some inequality

16



_Z c.x, < d (L4.6)

over the integers if every integer solution of (4.5) satisfies (4.6)

For instance, the inequalities (4.1) imply
8

IR (5.7)

over the integers. When .S is a set of linear inequalities, gycp
as (4.5), we define the elementary closure e(S) of S to be the

set of all the inequalities
n

m
J'El ( i§1 M%) ) R
such that

(1) Hﬂyn. ﬁjﬁ&ﬂ] are nonnegative reals,

(ii) each 2 Kiaij is an integer,

(iii) d 1is at least the integer part LZ} kibi_] of 2 ?\.ibi

For instance, the inequality

D
Z ox, <2
j=1
belongs to the elementary closure of (4.1); indeed, the inequality
2
2 x. Sg
j=1 ¢
is a linear combination of (4.1). (learly, if an inequality belongs

to e(S) then S implies this inequality over the integers . However,

the converse is not true: for example, it can be shown that the

inequality (4.7) does not belong to the elementary closure of (4.1).
. 0

We shall define e°(8) = s and, for every positive integer k ,

k k-1

e (8) = e(sue 7(s))
The set

@© .

U el(s)

i=0

17



will be called the closure of S . Again, it is easy to see that

every inequality belonging to the closure of S is, in fact, implied
by S over the integers. This time, as asserted by our next theorem,
the converse is true. The theorem may be deduced from the finiteness
of Gomory's algorithm; a direct proof is given in [5]. (For a thorough
analysis of the relationship between Gomory's "fundamental cuts" and

our implied constraints, the reader is referred to [32].)

THEOREM. Let S be a set of linear inequalities whose solution is
nonempty and bounded. If some linear inequality is implied by S over

the integers then this inequality belongs to the closure of S.

For example, if S is the set (4.1) then (4.7) belongs to eg(S)

To see this, consider the inequalites

+X8 < l b

x7 + Xg < 1,
x,+ %+ x4+ x+ x < 2

All of them belong to el(S) 5 taking their linear combination with

multipliers
/3, 1/3, 1/3, 1/3, 2/3, 1/3, 2/3

we—-obtain

Zince the integer part of 11/5 is 3, we see that the implied constraint

4.7) indeed belongs to eQ(S).

18
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The concept of elementary closure is motivated by the work of

Edmonds [12] on the interplay of linear programming and matching theory.

When G = (V,E) 1is a graph, we associate a variable x. with each
J
edge J€E ; a set of edges with a common endpoint is called a

star. Let S denote the set of inequalities

X, >0 for every edge jeE ,
(4.8)
Z x, <1 for every star T

Clearly, a zero-one vector (?.: jeE) satisfies S if and only if it
is the characteristic vector of some matching in G . In particular,

if m is the size of the largest matching in G then the inequality

2 x, <m (4.9)
JeE J
is implied over the integers by S . Hence, by the above theorem,

(4.9) belongs to the closure of S. In this case, however, 3 much
stronger statement can be made. 1Indeed, it follows at once from
Berge's generalization [3] of Tutte's perfect matching theorem [35]
that (4.9) is a linear combination of inequalities from the elementary
closure of S . This fact has been pointed out and generalized by
Edmonds who proved that the closure of § consists of combinations
of e(9)

One may interpret Edmonds' theorem by saying that in matching
problems, the integrality constraint is important (it cannot be dropped)
but not all that important (unlike (4.2), it may be done away with in
just one '*generation" of cutting planes). This interpretation leads to
ranking all the integer LP problems according to the "importance" of
their integrality constraint. More precisely, when g is a set of

linear constraints, we define the rank of S to be the smallest k

such that the closure of S consists of combinations of ek(S).
Let us see how this notion of rank applies to the problem of

finding the largest size a(G) of a stable set in a graph G = (V,E) ;
“his problem is sometimes called the vertex packing problem. e shall

write V = {1,2,.-.,1'1} 5 with each vertex j , we shall associate a

19



variable xj . Clearly, a zero-one vector (x.: jeV) satisfies the
J

constraints
0< x5 <1 for every vertex j
(4.10)

Xx.+x, <1 for every edge 1ij

if and only if it is the characteristic vector of some stable set

in G . The rank of (4.10) is zero if and only if G is bipartite.
It is not difficult to find graphs for which (4.10) has arbitrarily
high rank. 1Indeed, if G i8 a complete graph with n vertices then
(4.10) has rank 1+ Llogg(n-E)J . (The upper bound is not difficult
to establish; the lower one follows fram Lemma 7.1 of [ 5].) However,
the vertex packing problem is trivial for complete graphs and so (4.10)
does not seem to be a well-chosen constraint set. Furthermore, the
matching problem for G is the vertex packing problem for the
line-graph of G ; however, the constraints (4.8) for G do not
reduce into (4.10) for the line graph of G . For these reasons,

the stronger set of constraints

0 SXJ. <1 for every vertex j ,
(4.11)

2 x. <1 for every clique C

jec 97

may be preferred to (4.10). Since (4.10) and (4.11) have the same set
of integer solutions, the rank of (4.11) does not exceed that of (4.10);
in some cases, it is considerably smaller. For instance, if G is
complete then the rank of (4.11) is zero. More generally, (4.11) has
rank zero if and only if G is perfect. (This is Theorem 3.1 of [6].
An alternative proof, due to Fulkerson, may be found in [34].) It is
not entirely trivial to find graphs with high rank of (4.11) but they

do exist.

THEOREM. For arbitrarily large n , there are graphs with n vertices
such that the rank of (4.11) is greater than c¢ log n

20



For a proof, the reader is referred to [5]. The theorem puts

vertex packing problems in a sharp contrast with matching problems:
while the latter have rank of most one, there is po upper bound on

the rank of the former. 1In the next section, we shall allude to a

theorem which suggests that the vertex packing problems are very

hard to solve.

5. Good Algorithms and Good Characterizations

Finally, we turn our attention tomeasuring the difficulty of
solving combinatorial problems. 1In this context, a problem consists

of an input together with a "yes or no" question. For example,

Input: a graph G and an integer k
(5.1)

Question: is a(G) >k ?
is a problem. Customarily, the size of the input is measured, roughly
speaking, by the number of times we must hit the keys of our typewriter in
order to describe the input. For instance, a graph G with n
vertices may be described by a binary sequence of length at most n2 ;
similarly, the ordinary decimal expansion of a positive integer k
has 1+ Lloglo k| digits. It has become a common practice to
consider a problem solved if there is an efficient algorithm for
solving it. In particular, Edmonds [13] pioneered the distinction
between "finite" and "better-than-finite" algorithms; he proposed to
call an algorithm_gggg if there is a polynomial p such that, given
any input of size m , the algorithm terminates within p(m) steps.

For instance, Edmonds' algorithm [13] for solving the problem

Input: a graph G and an integer k

Question: is there a matching of size k ?

is good: indeed, if G has n vertices then the algorithm terminates
within O(n4) steps. On the other hand, no good algorithm for solving
"he problem (5.1) is known.

Another important concept, also introduced by Edmonds [11l] is that

of a good characterization. If we manage to find, by accident or
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perseverance, a stable set S in G such that iS|> k then we know
that the answer to the question in (5.1) is "yes". More importantly,

we can use the set S to convince others, in O(nQ)stepm that the

answer 1is "yes". 1Indeed, therc is a good algorithm (or solving the
problem
Input: a graph G = (V,E) , a subset S of V and an
integer k
Question: is S a stable set of size greater than k ?

This fact makes us say that (5.1) has a good characterization. The

difference between good algorithms and good characterizations reflects

the contrast between the difficulty of-finding a solution to a problem

and the ease of checking that a proposed solution to a problem is correct.

It may be worthwhile to point out that there is no known good

characterization of the problem

Input: a graph G and an integer k . } (5.2)

Question: is a(G) < k ?

Indeed, if the answer to this question turns out to be affirmative,
we have no easy way of convincing others that this is so. 1n other
words, no efficient way of proving (not to mention finding the proof)
that ®(G) < k is known.

How does linear programming fit in this framework? «begin with,

no good algorithm for the problem

Input: a set S of linear inequalities. } (5.%)

Question: is S solvable?

is known. Indeed, the simplex method (with its standard criteria for
column selection), although extremely useful and efficient in practice,
takes super-polynomial time on certain artificially constructed examples
[26],[37]. Nevertheless, (5.3) does have a good characterization. That
is rather obvious: in order to prove that S is solvable, it suffices
to exhibit some solution to § . Then it does not take long to verify
that the numbers we pulled out of a hat do indeed constitute a solution
to s . (To be a little more honest, we should admit that there is a

slight catch here. For example, one might proudly present
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x = 3.14159 26535 89793 23846 26433 83279 50288

in order to prove that the inequalities

2x =~ 7 < O

-8x +25 < 0

are solvable. That would be not only silly, it would also be quite
inefficient. Fortunately, whenever S is solvable, at least one of
its solutions can be described by a number of digits which does not
exceed a certain polynomial in the size of the input.) Less trivially,

the, "opposite" of (5.3), that is, the problem

Input: a set S of linear inequalities.

Question: is S unsolvable?

has a good characterization. This fact is just a corollary-to the
duality theorem. Indeed, S is unsolvable if and only if it is
inconsistent; the inconsistency of S may be proved simply by
exhibiting the appropriate multipliers of reasonably small size.

'Let us summarize: (5.3) has a good characterization, its opposite
has a good characterization and yet we don't know any good algorithm
for solving (5.3). This seems to be a rather rare phenomenon; the

only other instance known to the author is the problem

Input: a positive integer n .
(5.1)

Question: is n composite?

Trivially, this problem has a good characterization; a good characteri-
zation of its opposite (is n 3 prime?), based on the Lucas-Lehmer
heuristic, has been developed by Pratt [31]. Thus we have good characteri-
zations for both (5.4) and its opposite and yet we don't know any good
algorithm for solving (5.4). However, there is a reasonable chance that
such an-algorithm exists. Quite recently, Miller [29] proved the follcwing:
if the Extended Riemann Hypothesis is correct, then there is a good
algorithm for testing primality.

Concurrently with finding good algorithms for various combinatorial

problems, Edmonds [14],[4],[13] conjectured the nonexistence of good

algorithms for other combinatorial problems. (These include the traveling
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salesman problem, testing graph isomorphism and finding, in a family of
triples, the largest subfamily of pairwise disjoint triples.) A few
years ago, Cook [8] proved a remarkable theorem whose immediate corollary
goes as follows: if there is a good algorithm for (5.1) then there is a
good algorithm for gvery problem that has a good characterization. e
conclusion of his corollary is stunningly strong. o appreciate its
strength, we may recall that there are problems with a finite characteri-
zation but without a finite algorithm.  (In other words, there are
recursively enumerable sets which are not recursive. The proof may be
found in [2], Chapter 4.) By analogy, one may be tempted to conjecture
that the same statement holds with "finite" replaced by "good". 1f this
is the case then, by Cook's theorem, there is no good algorithm for (5.1)
(At this point, a word of warning may be in order: ,yap though Cook's
theorem may be interpreted as evidence that there is no good algorithm

for (5.1), it by no means constitutes a proof of the nonexistence of such

an algorithm. Edmonds' original conjecture to that effect still remains
open. In passing, we may also point out that there is nothing exclusive
about (5.1) in Cook's theorem: it may be replaced by many other "difficult"

combinatorial problems, such as "Is G hamiltonian?'. For an impressive
list of such problems, see [1] or [2hk].)

Another corollary to Cook's theorem states the following: if there

is a good characterization for (5.2) then there is a good characterization
for every problem whose "opposite" has a good characterization. This
conclusion, although not quite as strong as the previous one, may be still
found hard to accept; in the rest of this section, we shall speculate
about the assumption. 1In the spirit of integer linear programming, we
shall propose a system of inference rules which are strong enough to prove
a(G) < k whenever true. TLet G = (V,E) be a graphwith V = {1,2,...,n} .
With each vertex i of G , we shall associate a variable Xs ,with

the graph itself, we shall associate the system of inequalities

0 < Xy <1 for every vertex 1

(5.5)

xi+ xJ, <1 for every edge ij

A system of linear inequalities (in the xi's) will be called an

ILP proof of a(G) < k if
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(i) each of these inequalities belongs either to (5.5) or to

the elementary closure of previous inequalities in the

sequence,
n
(ii) the last inequality reads Z;xi < k
i=1

For example, if G is as in Figure 4, then

>
+
el
\N
IN
'_l

Xl + x2 + x5 + Xh + x5 + x6 + x7 + X8 <3

is an ILP proof of &(G) < 3 . In this case, it can be shown that every

ILP proof of &(G) < 3 takes at least twelve lines. In general, when G
is a graph with a(G) = k | ywe shall mean by the complexity c(G) of G
the smallest number of inequalities in an ILP proof of a(G) < k . This
notion of complexity is somewhat related to that of rank introduced in
the last section.

Indeed, an ILP proof may be arranged into an n-ary tree (rather than
a line& sequence) of inequalities = .jop inequality being in the elementary
closure of its immediate descendants. qyq depth of this tree is at most

the rank of (5.9 plus one. Conclusion: if the rank of (5.5) is r then

1
c(G)< Z n*
i=0

25



-

r—

This bound may be far from best possible. For instance, if G is

complete then r = 1+ Llogg(n-l)J whereas
c(6) < (3)+ (n-2) . (5.6)

Fron1(5.6), we easily conclude the following: if the rank of (4.11)
is s then

S+;L
(@) < ((5)+ (n-2)) Z n
i==0

: (5.7)

Unfortunately, s may grow beyond every bound and so 5.7) does not.

provide a polynomial upper bound on c(G) .

CONJECTURE. For every polynomial p there is a graph G with n

vertices such that c(G) > p(n)

This conjecture is somewhat related to the conjecture that there 1is
no good characterization for (5.2); the differences between the two go

as follows.

1. It is conceivable that the above conjecture is true and yet
there is a good characterization for (5.2). (Necessarily, such a
characterization would have to use more powerful inference rules than

those based on our cutting planes.)

2. It is conceivable that the above conjecture is false and yet
the shortest ILP proofs of a(G) < k do not provide a good characteri-
zation for (5.2). (Necessarily, these shortest ILP proofs would have

to involve excessively large coefficients.)
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