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INTRODUCTION

The {cllowing problem was raised by H.- J. Stoss [ 3 ]
in connec tion with certain questions releted to the
complexity of Booleun func Lions .  An acyclic directed graph
.G 1s said to have property ?(m,n) if for any set X of m
vertices of G, there 1s a directed path of length n in G which

does not intersect X. TLet f(m,n) denote the minimum number of

edges a grapn wi th property 6(m,n) can have. The problem is

to estimate f(m,n).

¥or the remalnder of the paper, we shall restrict

ourselves to 'l cose o= o, We shall prove
N .
(1) ¢y log Yo 1s o, < Tliyn) < esn log n
- s RS N “"F.) * &~
(where CysCps v, will heresfier denote suitable positive

constants). In fact, iLhe graph we construct in order to
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establish the upper bound on f(n,n) in (1) will have just

¢yn vertices. In this case the upper bound in (1)is

essentially best possible since it will also bé shown that for
¢, 'sufficiently large, every graph on Chn vertices having

property (?(n,n) must have at least cgn log n edges.

‘A PRELIMINARY LEMMA

In order to establish the upper bound in (1)
we Tirst need the following result.
Lemma. For all ® > O there exists ¢ = ¢(6) such that for
all t sufficiently large, there exists a bipartite graph
B = B(d3;t) with vertex sets A and A’ so that:
(1) [Aa] = [a7] = t3
(i1) B has at most c(6)t edges
(1i1) 1 xC a, x» C A’ with |X| > 8%, [X7| > bt
then (X,X’) = [{x,x’):xeX,x’eX’) contains an edge
of B,
Proof: We use a simple probabilistic argument to show the
existence of B. Form a bipartite graph B on the vertex
sets A and A’ with [A] = |A’] = t by selecting for each
acA a random subset B(a) C A’ of cardinality d = d(5)
(to be specified later). call B "bad" if there exists
xC A, x* C A%, with |X| > Bt, [X’| > 6t, so that (X,X’)
contains no edge of B. TFor fixed X and X’, the probability

that B is bad because of these two subsets is at most

<<12§)€>i;/<§>6t . <i;§§¥£>d6t‘



Hence,

the total probabiliiy that B is bad is at most

?/(1- 2 ant g?t( \dﬁt

(Et/ t~ad

A vaple comnutation shows that if d is chosen suitably

larze,

for example, so that

5 b

(1”6 ) < J—/M')

then for t sufficientiy large this

probability 1s less than 1, and so, a graph B = B(b;t)

>

must exist which satisfies the requirements of the lemma. [

CONSTRUCTION OF G

The next step in the proof of (1) is the construction

of the directed graph G. ppyp large n, G = G(n) will have as

its vertex set the set V = {o,1,...,2n-1}, If v and m are

positive integers, then Dv(m) will denote the set

(v, v+, ..o, v4m-11 NV, Similarly, D, (m) will denote the

set (v,v-1,...,v-m+1} N\ V. TIn general, €1,€p, ..., Will

denote suitably chosen fixed positive constants to be specified

later.

(1) For veV, the pairs (v,x), xeD

"The edge set E of G 1is formed as follows:

V+l(&n), are in Ej;

(ii) For cach t with n/2 < 2t< 2 and each i as specified

t
below, a copy of B(8§2 ) 1s formed between the
. t t
ets A = =
vertex s tﬁ Dp.ot(27) and A’ = D(m+i)-2@(2 )y
n- .
O0<{m<?2 » Where 1 = 1,2,...,10 (or if i cannot

assume the value 10 because (_m+lo)2t > 2%, ren it
n-t

ranges from 1 to 2 "-m). All edges are directed from

X to y with x <y.



r— r— r—

r

An elementary calculation shows that

- n
L] < cen2,

THE UPPER BOUND

Theorem 1. For a suitable ¢ > 0, G(n) has property
@(E-Qn,e-En) for all sufficiently large n.

Proof: The theorem will be proved by a sequence Of
claims. First we show that G(n) shares with the graphs
B(est) the following property..

Claim 1. If m > 2n and X C Dx(m),X' C Dx+rxr{1( ) satisfy
IXI >em, |X| > eom, then [X,X’] = C(x,x" ) txeX, x7ex’ )

contalns an edge of G(n).

Proof of Claim: TLet 2F < m/2 < 2t+1. Thus, m/4 < 2%so
at most five of the intervals D, gt(gt) intersect Dx(m)
Since [X] >

and at most five of them intersect D,  (m). e m

then some Dr,gt(-?t) and Dr/.gt(Qt) have

(3) 'Dr.gt(Qt) M X| ZEQm/S,IDr,.Qt(Qt) M X’ > € m/?

But we must have [r’-1 < 10 50 that by the construction of
G(n) there is a copy of B(gl;ét) between Dr.gt(et) and

D,., .gt(éb). Thus, ife, /5> €1 angm > 2° then the property
of B(gl;Qt) guaranteed by the Lemms implies that [X,X’]
contains an edge of G(n) provided that t is sufficiently

large (which is guaranteed Dy choosing n large enough).

This proves the claim. .
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Next,, let us chooto an arbitrary fixed set X

. . ; n
of vertices with [X| < €°2°. mpe vertices in X will be
referred t0 as the marked verticeg of G; the remaining

vez;tices of G will be called the unmarked vertices of g.

Let us call an unmarked vertex yeV bad if
for some m > 1 either at least eqm vertices in Do (m)
*
are marked or at least egm vertices in Dy(m)aremarked.

Otherwise, an unmarked vertex of G is called good.

Clcim 2. There are at most suzp bad vertices.

Proof of Claim: 1Tet y; denote the least unmarked Vertex

of G (if 1t exists) for which for some m > 1, at least
m i o 1 .
egMy vertices in Dyl(ml) are marked. 1In general, if

n, @ BA& e .. .,m_ have been defined, let yk | be the
-+

least unmarked vertex of G following Ve * M _ 4 (if it

exists) for which for some mk+l > 1 at least )
83mk+l vertices

in Dyk+1(mk+l) are marked. We continue this process until
it no longer can be applied, so that, sa
g p E y, yl, “. @&.

. *
and ml,..mmS have been defined. Similarly, let ¥y denote
the greatest unmarked vertex (if it exists) for which for

J
* 1 % «

* * * %
some ml _>_ l, at least 831’1’]1 vertices 1n Dv* (m_‘ ) are marked’
* :
ete. i i .. 3
C In this way, we define Yys .’y-,";* and m, .. T

It follows from the preceding construction and
the definition of a bad vertex that all bad vertices are

contained in the set
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Thus, there are at most
S S*
okt y My
k:l k=1

bad vertices. However, by our construction there are at

least (53/é)M marked vertices in Y. gince by hypothesis there

are at most s-2n marked vertices in V then we have

(83/é)M < e-2l,
M < (28/53)2n < 842n,

which proves the claim. [

For an unmarked vertex x, let P (m) denote the

set of all unmarked vertices in D, (m) which can be reached
from x by directed paths which contain only unmarked
vertices.

Claim 3. If x is a good vertex and }Dx(m)] = m then

(4) fPX(m) I > egm

Proof of Claim: 1If m < U4n then since x is good, at least

(1-83)m vertices in D (m) are unmarked and x has edges

directly to all of them. Suppose m > 4n. Tet m’ denote
[m/2]. Since D (m’)| - m’ then by induction

IPX(m’)l > 55m'- Since x is good then



at most g

m vertices in Dx(m) are marked. Hence, at most

3
€,m vert‘ices in Dx+m' (m;)g D, (m) are marked. Since
m’ 2 2n and €5 2€, then there are edges from P (m") to

). But at

at least (l-g,)m’ vertices in D nost

X+m’ (m?
, . ,
exm < 383m vertices in Dx+m' (m’) are marked. Hence,

P (m’) must have edges to at least (l-—g‘2—3s3)ml unmarked

vertices in D, ,(m’). Since 1‘52-363 >3eg then

5m .

The claim now follows by induction, []

lPx(m)} >385m! > g

) *
In exactly the same way it follows that if Px(m)
denotes the set of all unmarked vertices in D:(m) which are
connected to the unmarked vertex x by a directed path

containing only unmarked vertices, and x is a good vertex

*
and |D_(m)| = m, then-

(47) [Pe(m)| > egm.

Claim 4. Let x -and x’ be good vertices with x < x’. Then
n

x'eP (27).

Proof : If x’-x < 4n then the claim is immediate since by

construction there is an edge from x to x’. Assume

X'-x > 4n. Let y = [(x+x’)/2] and let m = y -~ x+ 1 -
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Consider the intervals D, (m) and Do (m). Either they are
adjacent or they have the single element y in common.

Since x and X’ are good then by (4) and (47 )

(5) e (m)] > egm, [Py, (m)| > egm.

Since €5 > €o then by Claim 1, there is an edge in G from
a vertex of P_(m) to a vertex of P;,(m). Thus, there is
a directed path from x to X’ containing no marked vertices
and the claim is proved. [

The proof of the theorem is now immediate. By
Claim 2 there are at least (1-54-5)2n good vertices in G.
By Claim 4 we can form a directed path which contains only
unmarked vertices and which contains all the good vertices
(since x’ can always bc chosen to be the next good vertex
following X). Since l-ey-e > € then the theorem follows
(where it is easily seen how the appropriate values of €k

and ¢, can be chosen). [}

THE LOWER BOUND

.The following result will establish the lower bound in (1).
Theorem 2. Let H be an acyclic directed graph with at
most c7n log n/log log n edges where n is a large fixed
integer. Then there is a set of at most n vertices of H
which hits every directed path of length n.
Proof: Let us denote the vertex set of H by V = (1,2,...,v].
We may assume that H has at least cg n log n/log log n edges.

We may also assume that all edges are of the form (i,j) with



1 <J. For an edge e = (i,,) of H, let length (e) be

defined to be J-1. partition the edges of H into classes

CO’ Cl’ . e "CI‘ where
c, = (e;guk log log n < length(e) < 24(k+1)log log ny
and r = [log Vv/41log log n].

Since H has at leastc8 n log n/log log n edges

i 1/2
then it follows that v > Cg D /S and r > e;y log n/log log n.
Hence some class €, with 0 { a2 < r has at most ¢,y P elements,
Let us delete all vertices in H incident to any of the edges
in Ca' Furthermore, we also delete those vertices x e V

which satisfy

0 < x-m.o*a log log D402 log log n) . ola log log n

for some integer m > 0. This latter step removes at most

(o’ -
o2 16§ Iog m _ 1 v = o(n)
vertices, since v ¢ 2 c7 n log n/log log n. Hence we

have deleted at most ¢, n vertices altogether. However,

any directed path remaining has at most

(2(4a+2) log log n _ 24& log log n>
= v

o4(a+l) Tog log n = o(n)
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edges, since we cannot go m¢ o than o(4a+2) log log n _
steps without using an edge whose length exceeds ola log log n,
and the length of such an edge actually exceeds o%(a+l) log log n

This proves the theorem. Iﬂ
By using a different partition of the edges of H,

’
namely, into the classes C ,...,C’, where
r

(k+1)

, c ok o
137 ¢ 1engtn(e) < 2 13 )

Ck = (912
for a suitable constant ¢35 we can establish the following
result.

Theorem 3. 1If Cqy is sufficiently large then any graph G
on cqyn vertices having property {(n,n) must have at least
c15n log n edges.

The graphs G(n) used in Theorem 1 show that the

result in Theorem 3 is best possible to within constant

factors.

SOME RELATED QUESTIONS

We now consider several problems for ordinary
(undirected) graphs. Let Fo(n,n) (resp., F (n,n)) denote
the smallest integer for which there is a graph with F_(n,n)
(resp., F,(n,n)) edges so that with the deletion of any n of its
vertices there still remaing a connected component of n
edges (resp., vertices). We shall prove by probabilistic methods
that

(6) F_ (n, n) < cigns F

o (n, n) < Cq 0.

v

The method we use is the same as that in the

“work of Erdsds and Rényi [1], [2]. It turns out that almost

! {
all graphs have the desired property.

oha log log r



Theorem 4. For every & > 0 there is a ¢ = c(g) so that

(o)
all but o 2 ) graphs G with (2+e)n vertices and cn
cn

edges have the property that after the omission of any n
of its vertices, a connected component of at least n vertices
remains.,
Proof: It suffices to show that if n vertices are omitted
and the remaining n(l+e) vertices are split into two
classes S, and S, with fSlf > sn,lsgl > en, then there
is at least one edge joining a vertex of S; to a vertex
of S,.

Consider a random graph G on (2+e)n vertices
?nd cn edges (where ¢ will be specified later). gTheye are
«2+i3n ) ways that n vertices of G can be deleted. Tpe
remaining n(l+e) points can then be split into two sets
S, and S, in at most 2n(1l+e) yays. Thus, the total number

of splittings is atmost

((2+g)n)2n(l+e) <2(2+s)n2n(1+s) ¢ 23(1+e)n_

Between Sl and 32 there are at least eﬁzpotential edges.

The probability that none of theag edges actually occurs

e TR VRV S

en
. . C
in G is less than (1 - T§I§ﬁ3> . Thus, if ¢ is chosen so
that

(7) o3(1+e)n (1 - = ) 50




as n - o then we easily sec that almost all graphs cannot
be split in such a way.

Since

en” - (£%n
1 - ¢ —ae§+5
2+¢e)n

then for ¢ large enough, e.g., ¢ > 18(€+e_l)

s

€C

e'(ﬁiE 2 o~3(1+e)n

‘and (7) holds. This proves the theorem. [J§

The other half of (6) is proved in a similar
way. It would be Interesting to determine the best possible
value of c¢ but this does not seem to be too easy.

We mention here the undirected analogue of (1). Let
g(n,n) denote the smallest integer for which there is an
undirected graph of g(n,n) edges so that if we omit any n
of its vertices then there always remains a path of length n.

We believe

&L%Lnlqm,

as n -» «» and hope to return to this question in finite time.

A related question is the following: Consider
random graphs on n vertices and Cn edges. 7Tg it true that
for large C almost all of these graphs have a path of length
n(l-g)? It is known [ 4] that almost all graphs on n vertices

.
and (§‘+ €) n log n edges are Hamiltonian.
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It is possible to introduce another parameter

into these questions. Tet Fv(t;n,n) denote the smallest

integer for which there is a graph with t vertices and
F,(tsn,n) edges having the property that if any n vertices
are deleted there stil1] remains a connected component with
at least n vertices. 1r t/n - ¢ > 2 then Fv(t;n,n)/n - A(c)
where A(C) - w as ¢ » 2. (The behavior of F,(tsn,n)/n is

similar). We could also omit edges instead of vertices

.but leave the formulation of these questions to the reader.
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