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Abstract

Denote by G(p,q) a graph of p vertices and q edges.
r

K. = G(r, (5)) is the complete graph with r vertices and K, (t) is

the complete r chromatic (i.e., r-partite) graph with t vertices

in each color class. G, (n) denotes an r-chromatic graph, and 6 (G)

1s the minimal degree of a vertex of graph G . Furthermore denote

L
by f, (n) the smallest integer so that every G, (n) with

5(G,(n)) > £ .(n) contains a K It is easy to see that

lim £ (n)/n = c exists. We show that cy, > 2+ 5 and
. nN — co

Cc. > r-2+ = - 1 f SL h £ ++— 5" B(x) or r . We prove that i 5(C5(n)) > n

thenG contains at least 3 triangles but does not have to contain

more than lt; 3 of them.
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grant GJ 36473X and by the Office of Naval Research contract NROkLk-L02.
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On Complete Subgraphs of r-chromatic Graphs

B. Bollobas, P. ErdSs and E. Szemerédi

1. Introduction

Denote by G(p,q) a graph of p vertices and g edges.

K, = G(r, (5) is the complete graph with r vertices and K, (t)

1s the complete r-chromatic (i.e., r-partite) graph with t vertices.

in each color class. f(n; G(p,q)) is the smallest integer for which

every G(n ; f(n; G(p,q))) contains a G(p,q) as a subgraph. In 19L0,

Turdn [9] determined f (n ;K.) for every =r >3 and thus started the

theory of extremal problems on graphs. Recently many papers have been

: published in this area ([1],[21,[3],[4],[5],[6]).
In this paper we investigate r-chromatic graphs. We obtain some

results that seem interesting to us and get many unsolved problems

that we hope are both difficult and interesting.

G, (n) denotes an r-chromatic graph with color classes Ci ;

jc. | =n, 1=1,...,r . Here and in the sequel |X| denotes the
: number of elements in a set X . A g-set org-tuple is a set with g

elements. e(G) 1s the number of edges of a graph G and 6(G) 1s

the minimal degree of a vertex of G . As usual, [x] 1s the largest

integer not greater than x .

At the Oxford meeting on graph theory in 1972, P. ErdSs(T]

conjectured that if 8(G,(n)) > (r-2)n+1 then G (n) contains a

XK. . Graver found a simple and ingenious proof for r = 3 but for

r > kb counterexamples were found. This discouraged further

investigations but we hope to convince the reader that interesting and

fruitful problems remain.

1



We prove that if 8(G3(n)) > n+t then G contains at least 6
triangles but does not have to contain more than bt” of them. For

n > 5t probably It” is exact-but we prove this only for t= 1 .

It is probably true that if 5(G5(n)) > n+ nl/2 (Cis a

sufficiently large constant) then G contains a Ky (2) We can
prove only that 5(G5(n)) > nC n3/4 ensures the existence of a
K3(2) subgraph of Gz (n) + More generally we obtain fairly accurate

results on the magnitude of the largest Kx (s) which every Gz (n)

with 8(Ggq (n)) > mtt must contain, but many unsolved problems of a
technical nature remain.

~ Our results on G, (n) 's for r > 3are much more fragmentary.

| Denote by f, (n) the smallest integer so that every G, (n) with
5(G,.(n)) > f£, (n) contains a K . It 1s easy to see that

- Lim f.(n)/n = C, exists. We show that cy > 24+ andn - eo 9

c, > r-2 + = SE for r > 4 | We conjecture lim (c p42) = Lor-2 NI 2

It 1s surprising that this problem is difficult; perhaps we overlooked

; a simple approach. Je can not even disprove lim (e_-r+2) = 1 .
row T

Analogously to the results of [6], though we can not determine C..

we prove that every G, (n) with 8(G.(n)) > (c_*&)n contains at least
uk: K.'s. We do not obtain interesting results for 5(G,.(n)) > ntt ,
t = a(n) for r > 4 though we believe they exist. As a slight

extension of Turan's theorem, we determine the minimal number of edges

of a G..(n) that ensures the existence of a K, , 3 <i<r.
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2. 3-chromatic Graphs.

Recall that Gz (n) is a 3-chromatic graph with color classes C, ,
. +

ic. | =n, 1 €2q . For XeC, . let D (x) (resp. D—-(x) ) be the set
of vertices of C.. (resp. C, , ) that are joined to x . Puti+1 11
+ + ~

d (x) = |D (x), d=(x) =D (x)| - dx) = d+(x)+ d-(x) is the

degree of x in G5 (1) :
We shall frequently make use of the following trivial observation

that we state as a lemma.

Lemma 1. Suppose x eC, / yeC, 4 y and. Xy 1s an edge. Then there
are at least:

+ ~

d (x)+ d (y) -n

triangles containing the edge xy . There are at least

5 + -: (d (x)+ 4d (y) -n)
vy eD!?

triangles with vertex x , where D!' cD- .

- Theorem 1. LetG = G4 (n) have minimal degree at least n+l . Then
) G contains at least min(L,n) triangles and this result is best possible.

+ + - ~

Proof. Put d, = max{d (x): x eC, , 4, = max{d (x): xeC,} . We can— 1

+ + + +

. suppose without loss of generality that d, > d, and dy > do .
+ +

Let XC; , d(x) =4d . Note that d'(x)+ d-(x) > ntl for every
vertex x .

+ -

Suppose d; < n-1 and let z €D (x) . If d+(z) = n-1 then by
Lemma 1 there are at least 2 triangles with vertex z .If

d+ (z) < n-1 then again by Lemma 1 at least 2 triangles of G contain

the edge x,z . Thus at least 2 triangles contain each vertex of

D™ (x) so G has at least 2p=(x,) | > ti triangles.
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Suppose now that a = n and the theorem holds for smaller values

of n . Let us assume that G does not contain triangles Ty Is such

that a’ (x,) =n foravertexof I; , 1 =1,2 . Then Lemma 1 implies
that D(x) consists of a single vertex, say D(x) = {z,} and

a" (z,) =n, a (zq) = 1 . Let D(z) = {vy} . Then similarly
a" (v,) =n and D (y,) = {x} >» otherwise we have 2 triangles with

the forbidden properties. Let G' = Gz(n-1) - GQ - {x),7152,) Ip ar
every vertex has degree at least n , so G' ~ontains at least n-1

triangles and G contains at least n triangles. Thus, 1n proving

the theorem,we can suppose without loss of generality that G contains

triangles T,, 7, such that a (x) = n for a vertex X, of T.,
1 =1,2 . Analogously, we can assume that Gcontains triangles Ti ’

T, such that d (x1) = n for a vertex x of TL , i=1,2.
Let us show now that either these 4 triangles are all distinct

or G contains at least n triangles. This will complete the proof

" of the assertion that G has at least min(k,n) triangles.

Let Xp XX be a triangle of G , x; eC, ) a" (x) =n. If

d (x) = n then for every edge yz , yeC, s z BC. , Xyzis a
triangle. As there are at least n such edges, ¢ contains n

triangles. If d (x) = n then G contains at least n triangles

with vertex Xq Finally 1f a (x5) =n , G has n triangles

containing the edge SES This completes the proof of the fact
that Ghas at least min(4,n) triangles.

Let us prove now that the results are best possible. For n = 1

the triangle 1s the only graph satisfying the conditions. Suppose

Gy_1 = Gz (n=)) has minimal degree at least no ( >2) and contains
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exactly n-1 triangles. Let the color classes of G, 1 be ct,i

i € Z . Construct a graph G, = Gz (n) as follows. put C, = CU (x, }

and join x, to every vertex of Coen . Then G, has the required

| properties and contains exactly n triangles.

C!

N_C! JANN '1 OU (C4

Figure 1

To complete the proof of Theorem lwe show that for every ¢ 3

- and n > 5t there exists a tripartite graph H(n,t) = Gz (n) with

minimal degree n+t that contains exactly ht triangles. (For the

. proof of Theorem 1 the existence of the graphs H(n,1l) , n > 5 , is
) needed.)

We constructa graph H(n,t) as follows. Let the color classes

b . = ioe Cs P) lc, | n, leds

Let A, CC, , (7.1, = n-2k , B, = C =A, ) 1ez, , and
By= ByUB, 3.1 =k, Jj =2,3.

Join every vertex of A, to every vertex of Ay UA, , join every

vertex of B. to every vertex of C. , J = 2,3 , and Jolin everyJ

vertex of B. to every vertex of CC. for i = 2 , j = 3 and
J!

.=2%, J =2 . Finally, join every vertex of B, to k arbitrary

p)



i

t1 f > : _ s .

vertices © As for i=2, J =3% and i = 5 j=2. (In
Figure 2, a continuous line denotes that all the vertices of the

corresponding classes are joined, and a dotted line means that every

vertex of B, 1s joined to k vertices of the other class.)
It 1s easily checked that the only triangles contained in H(n,k)

f the £ LV. R , i

are of the OTM %:553, y Xs €B, > Vy €B, » 2 cA. , i=2, §=73
and 1 =5, J =2 . This shows that H(m,k) contains exactly hi”

triangles. The proof of Theorem 1 is complete.

~ B ~
B

QA <>\ LL)| ~
L —

~ _-~~ /
_— ~~

— rr te, ~~
— —_——

oa —_—

Figure 2

It is very likely that every graph G(n) , n > 5t , with minimal

degree nt+t contains at least Ig” triangles, i.e., that the graphs

H(n,t) have the minimal number of triangles with a given minimal

degree. Though we can not show this, we can prove that £0 is the

proper order of the minimal number of triangles.



Theorem 2. Suppose every vertex of G _ Gx (n) has degree at least
nt , t <n . Then there are at least £2 triangles in G .

Proof. We can suppose without loss of generality that for some subset

I of Cin Tq =t , we have

.- \ +

S= d(x)> I 4 (y)
xe, yeT

for all T = C, , 7) =t, diez, .

Note that d (x) > ntt —-d- (x) for every vertex x . For x EC
— 1

let I. Cc D-(x) , IT, | = T . Then by Lemma 1 the number of triangles

of G containing one vertex Of T; ig at least

2. 2 (d+ (x) +d (y)-n)
XeT, yell,

DY (t+a(x) - (4° y qt> . ol (x) d+(y)) > 2 (t+ td (x) - 2 4 (y))X € Y € X eT 3
1 % 1 y cl,

2 +

> I (8°+td (x) -8) > to+tS-t8 = to
XeT

| 1
Theorem 2 will be used to show the existence of large subgraphs

. Kz (s) in a G(n) , provided 8(G3(n)) > Ht. First we need a simple
lemma.

Lemma 2. Let X , {1 N} X i 3a 3 © eo 09 = - kJ j 1LeY = {1,...,p} [4 2s ]A | = PWN
1

and (1-0) wp >qg, 0 <a< 1, where N, p,q and r are natural

numbers. Then there are gq subsets A. NY such that
" lq

q

Nn Ay | > maw)?
t=1 7t
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Proof. For ieX let Xs = {J: 1 € 4s jey} , ¥y = ¥. | . We say
that a g-set © of Y belongs to ieX if ie nN A. Clearly

jen 1 I

g—sets belong to ieX. As 2. > PwN ,
q 1 tT

N y.

2 * > N "P ~ nf P WP P p q
1\Na/ a / = ( ) 2 ( ntew) :4 q q q

Thus at least one g-set of Y belongs to at least N{aw)<

elements of X and this 1s exactly the assertion of the lemma.

The following immediate corollary 1s essentially a theorem of

Kovéri, Sés and Turdn [ 8].

Corollary 1 1-1/sorollary I. Let n > SS . Then every graph G with n vertices

2-1

and at least n° YS edges contains a XK (s) .
|

Proof. Let X be the set of vertices of G , let aA. pe the set of
— i

vertices joined to the i-th vertex. put w = on L/S , a=1/2, q=s,
and apply the lemma.

Theorem J. Suppose 8(G5(n)) > ntt , and s 1s an integer and

s < ( log 2n 1/2= Tog n - log t + (1og2)/3 . Then G(n) contains a

Proof. Let Y = Cy = {1,...,n} and let X be the set of n° pairs

(x,y) , x «Cj, yeCy . Let A; be the set of Pairs (x,y) eX for

which (i,x,y) is a triangle of Gy(n) . As by Theorem 2 the graph

contains at least ¢” triangles, Lemma 2 implies that there exist s

vertices of C; , say L;2,...,s , such that



-

Bl = | na] > 0% /(en’))S > (en)?Ys
1

Thus, by Corollary 1, the graph with vertex set C, oe and edge set E
contains a K, (3) . This K,(s) and the vertices 1.2, .. 5 of c,

8 i

Corollary 2. Let n > 2 and suppose 5(G5(n)) > n+l? re
Then C5 (n) contains a K5(2) :

As we remarked 1n the introduction, it seems likely that already

1/25(G > n+ cn

(G5 (n)) ensures that G, (n) contains a (2)

Theorem kL. Suppose 8(G (n)) > nt . Tet S = I log 2n |5 5(log 2n - log t)
and

5 £2
. s < min { t_ 5-28 Es

hn” > bn

| Then G, (n) contains a K; (s) i

~ Proof. The graph Gy (n) contains at least 2 triangles. Thus there
5

are at least t
on edges Xy , XeCo y ely , such that each of them

£”
- 1s on at least — 5 triangles. Let H be the subgraph spanned by

2n

the set E of the edges. Then, by Corollary 1, H contains a
—_ * ¥

K = K,(s) , say with color classes C, cc, and Cs — C, , since
2-1 5

(en) 27/8 _
— 2n

Let us say that a vertex x eCy and an edge e of K correspond

to each other if a triangle of Gz (n) contains both of them. As by the
£7

construct 1on at least —5+ vertices correspond to an edge of K , there
2n

: * * £2
is a set Cy — c, , [oy > > q° edges of K .

hn
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Look at a vertex x €Cy and at the endvertices of the edges to

which 1t corresponds. The set of endvertices can be chosen in at most

28 *

2 ways so there 1s a set B, © Cq of at least

5

aa ped > S
4n

*

vertices which correspond to the same endvertex set B, UB, / B, — C, ,
*

B, C .
3 Cs Clearly

3 2
. t 2 -

min(|B,|5 |B;]) > == ss = X82. §3 Wo yD =n 41

and G, (n) --contains the complete tripartite graph with vertex classes

Corollary 3. Let 8(G(n)) >n+ C — , where ¢ >0 and @ >0
(log n)

are constants. Then there is a constant C = C(c,a) for which Gy (n)

| contains a K,(s) with s > C(log n) +=>¢3 2 g /log log n .

5.  r-chromatic Graphs.

. Let now G, (n) be an r-chromatic graph with color classes Cs ,

[oN =n, 1 =1,...,r . One could hope (see [7]) that if every vertex

~ of a G,(n) 1s of degree at least (r-2)ntl then the graph contains

a K. . However, this 1s not true forr > 4 and sufficiently large

values of n .

Let n = gk , k >1, and construct a graph F) (n) = G), (n) as

follows. Let C, = X, UX, UX, , pe, | =k, |X, | = |X; | = hk ,

C, = A; UB, , 4, | = 8k ,. 3; | =k, 1i=2,3, and C, = A, UB »
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4

Ay, = 2k |B, | = Tk « Join every vertex of xq to every vertex of

Ay UAL UC) ; join every vertex of X, to every vertex of C5 UA, U4, ,
1,J = 23, if Jj ; join every vertex of A) to every vertex of
A. UA, ; Jolin every vertex of B, to every vertex of

5 3 0 J y I Y Cs UC 5 and,
| finally join every vertex of A, to every vertex of B. , i,j = 2,3, |

J

i #3 . The obtained graph is F) (n) (see Figure 3).

(3)

OO!| hk

Lo
~ Tk (4)

WT
F),(n)

Figure 3
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Clearly every vertex of F), (n) has degree at least 19% = , 1
5 .

Furthermore, the triangles in F),(n)-C) are of the form xyz , where

x eX, 3 Yy €B, 5 ZEA, or X € Xz ’ Y €Ahz P Zz eB, . As no vertex

of C; 1s joined to all 3 vertices of such a triangle, Fy, (n) does
not contain a Ky, This example shows that if the minimal degree in a

1

Gy, (n) 1s at least 2 + g n then G),(n) does not necessarily
contain a Ky, .

Let now r >5, k > 1 and n = 2(r-2)k.Construct a graph

B = _

(1) G,.(n) as follows. Tet Cs; = A; UB, , A, | = 3, | = (r-2)k = n/2 ,
r-2 3 r—2 .

let C__ -. Aj, |a% = 2x,c =U Bj, |B] -ux,
1

. . r

1, = 1,...,r-2 . Join two vertices of | C. that are in different
3 1

classes unless one vertex 1s in a and the other in B at or
i itl ’

one vertex 1s 1n B. and the other in As 4 UB r 1 =1,...,r , where

Aq = Aq s Blq = By In the obtained graph F, (n) clearly every

1 1

vertex has degree at least 5° T= Furthermore, if

K = K. 5 C F, (n) Crue, then either each A; (1 =1,...,7r=2)

or each B. (1 =1....5r-2) contains a vertex of XK . As no vertex

of C1 1s joined to a vertex 1n each A, (1 =1,...5r-2) and no

vertex of C. 1s joined to a vertex 1n each B. (i =1,..r-2),

the graph F, (n) does not contain a XK. .

Denote by t, (n) the maximum number of edges of a k-chromatic

graph. Turdn's theorem [9] states that fn, K) = t 1(n) +1 . Thisp-

result has the following immediate extension to r-chromatic graphs.
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3

Theorem 5. max . = 2Theorem 5 (ele, (m): Gn) pK} = t ((r)n®

| enon» Suppose G = G, (n) does not contain a XK |. Tet H be a

subgraph of G spanned by r vertices of different classes. pap gf

contains at most r
ty-1(T) edges. Furthermore, there are n° such

subgraphs H and every edge of G is contained in nf—2 of them.

Thus G has at most t (z)n° edges.
P-1

The graph G, (n) obtained from a maximal (p-l1l) -chromatic graph

by replacing each vertex by a set of n vertices has exactly

© 1 (r)n® edges and does not contain a x .
b= b

Corollary Lk. Suppose 6(G.(n)) > 6 If t, (Tin < °° then

‘ G, (n) contains a KS .In particular, f,(n) < (r-2 + Zn SO
qs r-2

i C.. = lim f.(n)/n < r-2 + —Nn —w

Theorem 6. Let ¢ > 0 and 8(G.(n)) > (ec +e)n . Then there is a

constant 6, > 0 , depending only on ¢ , such that G.(n) contains

~ at least Bn" K 's.Tr ¥

Proof. Let m >m (e) be an integer. We shall prove that for all
n.\r Lo !

but ne, ) (NM >0 is independent of m ) choices of m-tuples from

© the sets C. the subgraph G.(m) of G, (n) spanned by the r

m-tuples contains a K, . (The total number of choices of the m-tuples

| 1s (1) N This assertion naturally implies that our graph contains
at least

n .\r n-l.r T
(T-m (V7 / (ZF) = (1+o(1))(2-Mn" / nu’ (*)
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K. 's since at least (L-T)( ON K. 's are obtained and each of them
-1 .

occurs (7) times. The relation (*) of course proves Theorem 6.

Let xX eC, . Suppose xX is joined to en vertices of “5 >
J # i. As cr > r—-2 , Cele > 0 for absolute constant c .
Call an m-tuple 1n Cs bad with respect to x 1f fewer than

a% ~ > )m of the vertices of our m-tuple are joined to x .
A simple and well known argument using inequalities of binomial

coefficients gives that the number of bad m-tuples with respect to x

m, n

is less than (1-7) () » where TM = N(e,c) > 0 is independent of m .

We call a vertex x and a bad m-tuple with respect to x a

Tr

bad pair. Observe that if UA, (A, cC.,, |A,| =m) does not
— 1 1 i ll i

r

contain a bad pair then the subgraph spanned by U Ag contains a
1

XK, since each of its vertices has degree greater than

(e+ e/2)m > f_(m) if m > m_(e) . We now estimate by an averaging
Tr

process the number of as without a bad pair.

If (%,4;) y X eC » 1s a bad pair there are clearly
n-1,,n,r-2 a

(100) sets (ash which contain the bad pair. Thus if

there are 7() families {A IN |A | =m A. CC 1 <j<r

which contain a bad pair then the number of bad pairs 1s at least

nr, n-l,,n,r=-2 n,n

(700) = 7 (,)

On the other hand to a given vertex x there are fewer than r(1-1)"( 1)
bad sets thus the number of bad pairs 1s less than

2 m,n

ar (1-0)

14



Thus

7 < rem (1-m)™ ’

| which proves our theorem.

|
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