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Abstract

Denote by G(p,q) a graph of p vertices and g edges.
K. = G(r, (g)) is the complete graph with r vertices and K, (t) is
the complete r chromatic (i.e., r-partite) graph with t vertices
in each color class. G, (n) denotes an r-chromatic graph, and 6(G)

is the minimal degree of a vertex of graph G . Furthermore denote

by f, (n) the smallest integer so that every G, (n) with

6(Gr(n)) > fr(n) contains a K. It is easy to see that

lim £ (n)/n = c_ exists. We show that ¢y > o+t and

how T T 9

c > or-pt i - = f L i

r = 5" Blr-ay or r >4 . We prove that if 6(G5OQ) > ntt

‘then G contains at least 13 triangles but does not have to contain

more than hts of them.
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On Complete Subgraphs of r-chromatic Graphs

B. Bollobds, P. Erdds and E. Szemerédi

1. Introduction

Denote by G(p,q) a graph of p vertices and g edges.
K, = G(r,(;)) is the complete graph with r vertices and K, (t)
is the complete r-chromatic (i.e., r-partite) graph with t vertices.
in each color class.  f(n; G(p,q)) is the smallest integer for which
every G(n; f(n; G(p,q))) contains a G(p,q) as a subgraph. In 1940,
Turdn [9] determined f(n ;Kr) for every » >3 and thus started the
theory of extremal problems on graphs. Recently many papers have been
published in this area ([1],{2],(3],[%4],(5],(6]).

In this paper we investigate r-chromatic graphs. We obtain some
results that seem interesting to us and get many unsolved problems
that we hope are both difficult and interesting.

G, (n) denotes an r-chromatic graph with color classes Ci ,
|Ci| =n, 1=1,...,r . Here and in the sequellXI denotes the
number of elements in a set X . A g-set org-tuple is a set with g
elements. e(G) is the number of edges of a graph G and 6(G) is
the minimal degree of a vertex of G . As usual, [x] is the largest
integer not greater than x

At the Oxford meeting on graph theory in 1972, P. Erdds([T7]
conjectured that if S(Grhﬂ) > (r-2)n+ 1 then G (n) contains a

Ki . Graver found a simple and ingenious proof for r = 3 but for
r Z_h counterexamples were found. This discouraged further

investigations but we hope to convince the reader that interesting and

fruitful problems remain.



We prove that if 5(G§Uﬂ) > ntt then G contains at least £

triangles but does not have to contain more than ht5 of them. For
.

n > 5t probably 4° is exact-but we prove this only for ¢ = 1

It is probably true that if S(GBQQ) > n+C nl/2 (¢ is a
sufficiently large constant) then G contains a K, (2) We can

3 .

prove only that 5<G5hﬂ) > n+c n3/k ensures the existence of a
Kj(g) subgraph of G5(n)- More generally we obtain fairly accurate
results on the magnitude of the largest Kihﬂ which every Gihﬂ

with 6(G3(n))_2 n+t must contain, but many unsolved problems of a

technical nature remain.

- Our results on G, (n) 's for r > 3 are much more fragmentary.
L Denote by f, (n) the smallest integer so that every G, (n) with
B(Grhﬂ) > f, (n) contains a K . It is easy to see that
r
- Lim fr(n)/n = c. exists. We show that ) > 2+:1- and
n-wo - 9
c. > r-2 + L 1 ' 1
r > 2 " B for r > k4 | We conjecture 1ﬁn(cr_r+2) =3

I —w®

It is surprising that this problem is difficult; perhaps we overlooked

a simple approach. We can not even disprove 1im (c r+2) = 1
r

r -
Analogously to the results of [6], though we can not determine C.
we prove that every G, (n) with S(Gr(n)) > (cr+€)n contains at least
r L .
Nn K.'s . TWe do not obtain interesting results for S(Grhﬂ) > ntt
t = a(n) for r > L4 though we believe they exist. As a slight

extension of Turdn's theorem, we determine the minimal number of edges

of a Grhﬂ that ensures the existence of a Kl P 3<2<r .



2. 3-chromatic Graphs.

Recall that G5Q0 is a 3-chromatic graph with color classes C, ,
=n, i.eZ3 . For xeC, . let D+(x) (resp. D—(x) ) be the set
of vertices of C, . (resp.C:LJJ) that are joined to x . Put
a*(x) = |D+(x)| , d=(x) = |D(x)] -  d(x) = d+(x)+ d-(x) 1is the
degree of x in GBQQ

We shall frequently make use of the following trivial observation

that we state as a lemma.

Lemma 1. Suppose x eCi ' y'eCi_l s and. Xy 1s an edge. Then there
are at least-
+ -
d (x)+d (y) -n
triangles containing the edge xy . There are at least
— + -
2 (4 (x)+ a (y) -n)
v eD!

triangles with vertex x , where D' cD-

Theorem 1. Let G = Gaﬁﬂ have minimal degree at least n+l . Then

G contains at least min(k,n) triangles and this result is best possible.

+ + - -
Proof. Put d, = max{d (x): xeC.}, d; = max{d (x): xeC,} . We can
— 1

. . + + + +
suppose without loss of generality that d‘l > d? and dl > dq3 .
+ +

Let )ﬁ_eCl > d (Xl) = dl - Note that d'(x)+ d-(x) > ntl for every
vertex x

+ -

Suppose d; < n-1 and let z €D (Xl) . If d+(z) = n-1 then by

Lemma 1 there are at least 2 triangles with vertex z .If

d+(z) < n-1 then again by Lemma 1 at least 2 triangles of G contain
the edge %2 - Thus at least 2 triangles contain each vertex of

D™ (x;) so G has at least 2[D'@%)| > 4 triangles.

3



+

Suppose now that d; = n and the theorem holds for smaller values

of n . Let us assume that G does not contain triangles Tl’ T2 such
+
that 4 (xi) =n foravertexof T, , i=1,2 . Then Lemma 1 implies
that D (xl) consists of a single vertex, say D (xl)=={zl} . and
g - -
(Zl) =n, d—(Zl) =1 . Let D (Zl) = {yl} . Then similarly

+ -
d (Yl) =n and D (Yl) = {Xl} » otherwise we have 2 triangles with
the forbidden properties. Let G' = G5ﬁp1) =G - &ﬁfyi’zl} . In @'
every vertex has degree at least n , so G' ~ontains at least n-1

triangles and G contains at least n triangles. Thus, in proving

the theorem, we can suppose without loss of generality that G contains

triangles Tl;Te such that d_+(xl) = n for a vertex Xi of Ti,

i =12 . Analogously, we can assume that Gcontains triangles T! ,

Té such that d-(xi) = n for a vertex xi of T& , i=1,2.

Let us show now that either these U4 triangles are all distinct

or G contains at least n triangles. This will complete the proof
of the assertion that G has at least min(4,n) triangles.

Let x.x be a triangle of G , Xy €Ci , d (Xl) =n. If

1%0%2

d (xl) = n then for every edge yz , ye( 7 EC3 , Xxyzisa

2 2
triangle. As there are at least n such edges, ¢ contains n
triangles. If d-(x2) = n then G contains at least n triangles
with vertex Xq .Finally if d-(xi) =n, G has n triangles
containing the edge =x.x, . This completes the proof of the fact

13
that Ghas at least min(k,n) triangles.

Let us prove now that the results are best possible. For n =1

the triangle is the only graph satisfying the conditions. Suppose

G, = Gé(nfl) has minimal degree at least n ((>2) and contains



exactly n-1 triangles. Let the color classes of Gn 1 be (' ,

i
i.625 . Construct a graph G = G50ﬂ as follows. put c, = CiLJ{Xi}
and join X; to every vertex gﬁ Ci+l . Then Gn has the required

properties and contains exactly n triangles.

Figure 1

To complete the proof of Theorem lwe show that for every 4 > 1
and n > 5t there exists a tripartite graph H(n,t) = GB(n) with
minimal degree n+t that contains exactly bt triangles.  (por the
proof of Theorem 1 the existence of the graphs H(m,1) , n > 5, is
needed.)

We construct a graph H(n,t) as follows. Let the color classes
be Ci ) 'Cil =n, ieZ3

Let A, C Ci s (A.ll== n-2k , B, = Ci—Ai s i 525 » and

Join every vertex of Al to every vertex of A.QUA5 , join every

vertex of ﬁj to every vertexof C. , j = 2,3 , and join every

J
vertex of Bi to every vertex of C. for i = 2 , j = 3 and
I J
=2, J=2. Finally, join every vertex of ﬁi to k arbitrary



vertices of Aj for i=2, j =3 and i =3 j =2 . (In
Figure 2, a continuous line denotes that all the vertices of the

corresponding classes are joined, and a dotted line means that every

vertex of ﬁi is Jjoined to k vertices of the other class.)

It is easily checked that the only triangles contained in H(n,k)

are of the form x.v. B . .
iy&zj ’ Xi eBi > Yy eBi » Zj eAj y 1i=2, 3=23

and 1 =53, J =2 . This shows that H(n,k) contains exactly j;J

triangles. The proof of Theorem 1 is complete.

Figure 2

It is very likely that every graph GB(n), n > 5t , with minimal
degree mn+t contains at least Lt triangles, i.e., that the graphs
H(n,t) have the minimal number of triangles with a given minimal

degree. Though we can not show this, we can prove that t5 is the

proper order of the minimal number of triangles.



Theorem 2. Suppose every vertex of G _ G5(n) has degree at least
ntt , ¢ <n . Then there are at least t5 triangles in G
Proof. We can suppose without loss of generality that for some subset
Tl of S frl[ =t , we have
% <\ +
S = 2d((x) > 2 d(y)
chl yeT

for all T < C, , IT| =t , iez,

Note that d (x) > nmtt -d-(x) for every vertex x . For x EC
1

let Tx c D-(x) , ITX| =t . Then by Lemma 1 the number of triangles

of G containing one vertex of Tl is at least

2 2 (d+(x) + d (y)-n)
xeTl yeTX
+ o
> 2 2 (b+ d(x) - d+(y)) > D (t°+ td (x) - 2 d (y))
XeTl ycTX XeT1 y({TX
> (t2+td+(x)-s) > t2+t8-18 = t°
XGTl

Theorem 2 will be used to show the existence of large subgraphs

KZ‘(S) in a GB(H) , provided 6(G5(n)) >+t . First we need a simple
lemma.
Lemma 2 Let X . {1 i 3
| S e, ter=fen) s Bl - pa
- T

and (1-®)wp > g , 0 < a <1 , where N, p,q and r are natural

numbers. Then there are g subsets A. Y such that
lll lq

|

t

A, | > Naw)®
i b=

I .Q

1
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Proof. For ieX let Yi = {i: i eAj, Jeyl , ¥ o= lY;ll - we say
that a g-set © of Y belongs to ieX if ie N A, Clearly
j€T 3 .
g-sets belong to ieX. As Ziy. > pwN
q 1t

L) 2T T = (e

Thus at least one g-set of Y belongs to at least N(Oéw)q
elements of X and this is exactly the assertion of the lemma.
The following immediate corollary is essentially a theorem of

KSvéri, SSs and Turdn [ 8].

1-1/s

Corollary 1. Let n > s . Then every graph G with n vertices

2-1/s

and at least n edges contains a Kg(s) .

Proof. Let X be the set of vertices of G, let A, pe the set of
—_— i
1/s

vertices joined to the i-th vertex. put w = 2n , a=1/2, a=s,
and apply the lemma.
Theorem 3. Suppose 6<G5(n)) >ntt , and s is an integer and
s < [( log 2n 1/2 )
S Tog n - log t + (1og2)/3 . Then G3(n) contains a

:Kz(s)

Proof. Let Y = Cl = {l,---,n} and let X be the set of n2 pairs
(x,y) , x €C, ! yeC5 - Let A, be the set of pairs |y y) ¢x for
which (i,x,y) is a triangle of G%(n) - As by Theorem 2 the graph

contains at least t5 triangles, Lemma 2 implies that there exist s

vertices of Cl , say 1,2,...,s , such that



1

S
R N e D

Th -

us, by Corollary 1, the graph with vertex set 02 UC.5 and edge set E
contains a KE(S) . This Kg(s) and the vertices 1.5 ., o of c,
form aK5(s) of GB(H) , as claimed.

8
Corollary 2. Let n >2 and suppose 5(G5(n)) > n+2—l/2 n§/h )

Then Gi(n) contains a K5(2) .

As we remarked in the introduction, it seems likely that already

1/2
8(G5(n)) > n+ cn/ ensures that G, (n) contains a K5(2) .

3
Theorem k. Suppose 8(G,(n)) >_n+t L 109 2n
B — . et S =
- 3 ) 5(log 2n - log t)
and
3
t5 28 _t.__ 3

S < min { —=— p~
hn® o

Then G, (n) contains a Kﬁ(s) .

Proof.  The graph G;(n) contains at least t” triangles. Thus there

3

t
are at least 5n edges Xy , xeC2 *yeC such that each of them

5 2
. t5
is on at least ;‘E triangles. Let H be the subgraph spanned by
the set E of the edges. Then, by Corollary 1, H contains a

< - , * % )
] Kg(s) , say with color classes ¢, cc, and 05 ©C, , since

2-1 5
(211) /S < E_.
— 2n
Let us say that a vertex x €C; and an edge e of K correspond

to each other if a triangle of G5(n) contains both of them. As by the

tj
2n2

construct ion at least vertices correspond to an edge of K , there

. * * 3
is a set Clcc s lc | > ~t——32 edges of X .
n



[

*
Look at a vertex x ECl and at the endvertices of the edges to

which it corresponds. The set of endvertices can be chosen in at most

28 .
2 ways so there is a set Blc C; of at least

tS
v 2 2
4n

CCIN s

: ; *
vertices which correspond to the same endvertex set B2UB5 ’ B2 - 02 s

*
B, cC, . Clearly

3 3
3 2
. t 2 -
min(|B,| , |B]) > 25 s%/s = 1°—§‘__> S ,
4n ah
and G3 (n) --contains the complete tripartite graph with vertex classes
Bys By By
Corollary 3.  Let §(G,(n)) >_n+ c ——— , where ¢ >0 and >0
(log n)

are constants. Then there is a constant C = C(ec,a) for which G5(n)

contains a KB(S) with s > C(log n) 1-30 /log log n .

5.  r-chromatic Graphs.

Let now G, (n) be an r-chromatic graph with color classes Ci ’

ici[ =n, i=1,...,r . One could hope (see [7]) that if every vertex

+of a G,(n) is of degree at least (r-2)m+l then the graph contains

a Kr . However, this is not true forr > 4 and sufficiently large

values of n

Let n = gk , k >1, and construct a graph Fu(n) = Gu(n) as

follows. Let €, =X UX, UX; , [| =%, |x,|= |x5| = bk,

C; = A UB; ,  |a] =8k, IB_’i =k, 1=23, and ¢, =4 UB ,

10



IAuI =2k , IBb,‘ = Tk . Join every vertex of Xl to every vertex o f

AQ{JABlJCh 5 join every vertex of Xi to every vertex of CilJAj UAh ,

i, =25, 1i#35 ; join every vertex of B, to every vertex of

A2 UA5 ; join every vertex of Bh to every vertex of

finally join every vertex of Ai to every vertex of B. , i,j = 2,3,

C2 UC5 ; and,

i #3J . The obtained graph is Fhﬁﬂ (see Figure J).

8k g . \ o
AN >@D/\ N

Fh(n)
Figure 3

11



not contain a

Clearly every vertex of thn has degree at least 19k =

Furthermore, the triangles in Fhﬁﬂ-ch

are of the form xyz , where

or x eX As no vertex

VAN

is joined to all 3

Ky

Gh(n) is at least

contain a

r>5,

one vertex 1s in

vertex has degree

or each B,
1

vertex of C
r

Fr(n) = Gr(n) as follows.

vertices of such a triangle, Fh(n) does

This example shows that if the minimal degree in a

2 + g n then  G)(n) does not necessarily

k > 1 and n = 2(r-2)k.Construct a graph

Let C; = A, UB, , |a,] =8,

r-2 .
U By , |BY

Uaj o, Al = 2, ¢
1

r
l,...,r-2 . Join two vertices of U C, that are in different
i
1

classes unless one vertex 1is in

B,
1

il

. 1
and the other in BiHLUA , Oor

. 1. :
and the other in Ai+lLJB rlo=1,..

In the obtained graph F, (n) clearly every

at least

Kp@ C F, (n) _Cr-lUCr then either each Ai (i

Furthermore, if
= l,..-,r-2)

contains a vertex of X As no vertex

1..

is joined to a vertex in each p,
1
is joined to a vertex in each B,
1

the graph F, (n) does not contain a Kr .

Denote by t, (n)

Turan's theorem [9] states that f(n,KP) =

l,...,r—g) ,

the maximum number of edges of a k-chromatic

t
p_l(n)+l

result has the following immediate extension to r-chromatic graphs.



R |

Theorem 5. max{e(Gr(n)); G,.(n) b Kﬁ} = tp l(r)nE

R Suppose G = G, (n) does not contain a KP . Let H be a
subgraph of G spanned by r vertices of different classes. Then H
contains at most tp_l(r) edges., Furthermore, there are n’ such
subgraphs H and every edge of G is contained in nIf~2 of them.
Thus G has at most tP l(r)n2 edges.

The graph G, (n) obtained from a maximal (p-1) -chromatic graph

by replacing each vertex by a set of n vertices has exactly

t l(r)n2 edges and does not contain a g .
b= D

Corollary L.  Suppose S(Gr(n))lz 6 CIf tP l(r)n < 25 then

G, (n) contains a KP .In particular, £, (n) < (r-2 + E-;—g)n SO

C_ = 1lim fr(n)/n < r-2 + E%a

r
n —-w

Theorem 6. Let ¢ > 0 and 6(Grhﬂ) > Qaje)n . Then there is a

constant 6, > 0 , depending only on ¢ , such that Gf(n) contains

at least & nr K 's.
€ T

Proof. Let m >*mo(e) be an integer. We shall prove that for all
but ﬂ(g)l‘ (M >0 1is independent of m ) choices of m-tuples from
the sets C, the subgraph G.(m) of G, (n) spanned by the r
m-tuples contains a Kr . (The total number of choices of the m-tuples
is (;j-j This assertion naturally implies that our graph contains

at least

(1) (307 (257 = (1+ (1) (1-Dn" /u® (%)

15



Kr's since at least (1-m)( 2)1' Kr's are obtained and each of them

n-1 . .
occurs ( ) times. The relation (¥) of course proves Theorem 6.

m-1
Let xeC, . Suppose X 1is joined to c(x)n vertices of C, ,
1 J J
. . b
J % i. As cr > r-2 ,50\ > ¢ > 0 for absolute constant c

Call an m-tuple in Cj bad with respect to x if fewer than

£ . .
- 5=)m of the vertices of our m-tuple are joined to x
A simple and well known argument using inequalities of binomial

coefficients gives that the number of bad m-tuples with respect to x

. m, n
is less than (1-7) (m) s where M = N(e,¢) > 0 is independent of m
We call a vertex X and a bad m-tuple with respect to x a

T
bad pair. Observe that if U A. (A, ccC., |A.| = m) does not
—_— ;1 i i i

r
contain a bad pair then the subgraph spanned by U Ai contains a
1

Kr since each of its vertices has degree greater than

(cr+ e/2)m > fr(m) if m > mo(e) . We now estimate by an averaging

r
process the number of {Ai]l without a bad pair.
If (X;Ai) » X €Cn » 1s a bad pair there are clearly

n-1,,n,r-2 r , . . .
(m-l)(ln) sets {Aj}l which contain the bad pair. Thus if

n r
there are families {A. Al =m, A.CC. 1<j<
7(m) {J_,}l ’ |JI m 3 J], — J_I‘,

which contain a bad pair then the number of bad pairs is at least

() -

SO N D TGO LI

=gt

n
m

On the other hand to a given vertex x there are fewer than r(l-nfn(z)

bad sets thus the number of bad pairs is less than

nr® (1-1)™(2)

14



P

Thus

y < rm(1-m®

which proves our theorem.
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