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Abstract

A survey of algorithms for solving the eigenproblem for a class of

matrices of nearly tridiagonal form 1s given. These matrices arise

from eigenvalue problem for differential equations where the solution

1s subject to periodic boundary conditions. Algorithms both for

computing selected eigenvalues and eigenvectors and for solving

the complete eigenvalue problem are discussed.
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1.

ro 1. Introduction

Eigenvalue problems of the form

Spx) E+ q(x) = 0, p(ax Plx)2+alx)y + Ar(x)y = 0, p(x)> 0, (1.1)

with periodic coefficients

p(xta) = p(x), a(x+ta) = q(x), r(x+ta) = r(x),

and where y (x) 1s subject to periodic boundary conditions, arise 1n

many practical application (see e.g. [10] ). Using a second order

difference approximation to (1.1), we are led to a matrix eigenvalue

problem (see Evans [1])

where A 1s a real, symmetric matrix of nearly tridiagonal form

| 21 by ob
b

1 2% Pg
A= LT | (1.3)Db . . : .

2 bv |
o +. ~~. al

\ Pn Pp 8 .
In this paper we will give a survey of algorithms for solving a

- linear system of equations Ax = c, for computing selected eigen-

values and eigenvectors of A and for solving the complete eigen-

problem (1.2). The algorithms can in general also be applied when

A 1s a Hermitian matrix of the same structure as A in (1.3). Some

of the methods presented are believed to be new.

We remark that differential equations 1n two space dimensions with

periodic boundary conditions give rise to similar eigenvalue prob-

lems, where the matrix A now 1s nearly bloak-tridiagonal, 1.e. a.

and b. in (1.3) are replaced by square matrices A, and B. (see [3]).
Many of the methods proposed will be relevant also to this more

general problem.



2. Basic transformations

We first remark that we can always assume in the following that

b, #0, k =1,2...,n. (2.1)

Otherwise if by = 0, then, by a cyclic permutation of rows and
columns these two elements can be brought to positions (1,n) and

(n,1), and the matrix degenerates into a tridiagonal matrix.

The matrix (1.3) has no useful bandstructure at all. We note that

the graph associated with A 1s a polygon:

3

BRE ne
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From this graph it is quite easy to see, Martin[l], that the

| minimum bandwidth which can be obtained by permuting rows and
columns of A 1s realized by ordering the nodes (n even)

n n n

1, n, 2, n-1, 3, N=25 0.05542, 5s 11

(For n odd, the last three nodes are (n-1)/2, (n+3)/2, (n+1)/2.)

The permuted matrix then has the form (after renumbering the elements)

a, ob, Db, : \b, 8, 0 bg

3 i b, 0 a; 0 by |
A = PAP™ =| boo (2.2)

CL 0 db
: ot n-1

0 . 0 a b |
b b a
n-1 n n

l1.e. A 1s symmetric and five-diagonal, with two inner diagonals almost

zero. Rutishauser[5] has shown that A can be transformed further

into tridiagonal form, using orthogonal similarity transformations.

This can be accomplished with approximately n?/h plane rotations

which corresponds to ™ én? pultiplications (see Wilkinson [7]

pp. 567-8). Unfortunately it is not possible to take advantage of

the zeroes within the band of A, since these will rapidly fill up

during the initial transformations.



Another useful observation 1s that A can be written as a rank

one pertubation of a symmetric tridiagonal matrix

A=T + Ps oc = +b
L) = n' (2.3)

where

b, a, by / 0 |
= ‘ ’ _o.

' by sus) (2.4)
. on

{ +, n-l | 0 |b —

\ n-1 on \

(Note that the first and last diagonal elements have been modified.)

This splitting of A enables us to use some of the Me +1 ods given by

| Golub [2].
Using perturbation theory the eigenvalues of A can be related to

those of T in (2.4). If we denote these eigenvalues Ae and

4 k = 1,2...,n in decreasing order, then they satisfy the
relations (Wilkinson[7] p. 98)

YT & = 20m, (2.5)
where

- < < 1 T =
EE" Te Ta (2.6)

Thus the eigenvalues Me separate the a at least in the weak
. sense, and 1f ¢ < 0 then

d, > A, > 4d. > ) eel >

Now from (2.1) it follows that the eigenvalues 4 are simple,
and thus, the eigenvalues Me have at most multiplicity 2. Also

if an eigenvalue A, has multiplicity 2, then d is also an eigen-
value of T. This differs from the tridiagonal case where 1f A

has multiplicity 2 at least one b. = 0. K



5 4,

We remark that a simple example of a matrix A with eigenvalues of

multiplicity 2 is the matrix A = A{a,b) where

a, = ay b. = b, 1 = 1,2,....,0.

This matrix 1s a special case of a circulant and has the eigenvalues

A, = a+ 2b cos(2mk/n), k = 0,1,...,n~1.

All the eigenvalues of this matrix has multiplicity 2 except the

eigenvalue (a+2b) (and if n is even (a-2b)).

The special unsymmetric matrix

a, b, cy)
- Cc, a, b, 0

A= Cp . | , b.c. > 0, (2.6)
0°.  .

" Poe
‘Db .

n a-1%
h1

can often be reduced by a diagonal similarity to a symmetric matrix.

| If we take -1 .

A=DAD ,D= diag(d,),
then A 1s symmetric if

(4 /d, 170, = (4, 1/8 )c, kK = 1,2,...,n.

_ where we have put d .. Multiplying these relations together
we find

g : n n

Mo, _ Te
k=15  ke=1¥

If this relation 1s satisfied then d are determined by
= _ 1/2
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3. Linear system of equations

We first compare some different methods for solving AX = ¢ when

A 1s positive-definite.

3a) Gaussian elimination

When A 1s positive definite Gaussian elimination can be performed

without pivoting. Hence symmetry is preserved with consequent savings

in storage and operations. To avoid square roots we write the result-

ing factorization A = LoL” where

/,
Fy,
| - |

iER CE |» D = aisg(a,).
| BET. J

\ o) §.... § 1 f
1 -

L \ 2 n~1

The elements in L and D are computed by the recursion formulas

_ Qa a —

k = Lyeeeegn=1

(1) Bp ™ Pp-1 Yn-oBp-pe1 _ _ k)= (k-1)
Oh C1 Tay Sq F Brg oy bl = ak) Og-1P-1

_ (n)
«, =, 9 k = 2504.,0,

Thus, the complete decomposition requires 3n multiplications and

 2n divisions. To solve the system Ax = ¢, we then have to solve the

two triangular systems

Ly = c, x = D-'vy,

which requires another 5n multiplicative operations. This algorithm

uses a total of 10n operations and n extra storage locations.

Gaussian elimination can also be applied to the reordered matrix (2.2).

It 1s easy to verify that this requires the same number of operations

and amount of storage as the algorithm above.
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3b) Qdd-even reduction

Assume first that n is even

of A = , and rearrange the rows and columns
A, through a permutation matrix

[a

| 2 . b, b, |b b

3 Py

. Cp
n-2

LI I 2 n-1
1 b| a

b. b
2 73 a

- bo. 3
4

n—2 n-1 a ~1 |

| We now eliminate all even variables from all odd Ldbered equations
by Gaussian elimination ( T~--v«e (Note that P 7 iniIf we ; APT also is positive-definite).

€ introduce the notation ¢ = PT =~
. 1° X= Xx, and

D T

PAP = [71 By a, ,
B E 171 s P.x = ’ (3.2)

X

then we get for X, after this elimination step’ the reduced system
of order n/2

where (3.3)

A = E _ ~-1.T2 B,D. 'B _

I x, 15 known, then we get vy | | (3.4)
by backsubstitution

~~] ~1

(3.5)
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We note that this elimination step can be performed without using extra

storage, since we can let .

Bp. A, DI a,c
m1 22 71 71° 72

overwrite

Bs D, and Es d,s €,>

Taking symmetry into account, this first step requires ®5n/2 opera-
~1

tions for computing B.D, and A, and a further 2n operations for
p.! a,c. and

1 5 Iq

The important thing to note 1s that A, 1s again a symmetric tri-
: diagonal matrix, with elements added in the lower left and upper

right hand corners. Thus, if n is a power of two, then we can use

| the same decomposition repeatedly. Then we will obtain x in
n(9/2 + 9/4 + 9/8 +. . ...) ~ On

operations.

The odd-even method can in fact be applied without restriction on

n, since if n is odd, then we get after the first reordering

a

> Py by |a b

h 3 Py |
*n-1 | Ppp Pp-y

m —_— TT

PAP. =| "1 ol 5,
711 bb

2 °3 3

UI I Co |
b b a

n-1 n n J
and obviously the reduced matrix A, will be of the same form also
in this case. Perhaps the main advantage with the odd-even reduction

1s that it does not require extra storage. The operation count 1s

also slightly lower than for Gaussian elimination, but this might
!

be upset by the need for more organisational instructions. It should

be pointed out that if 8 = a and b =b for all k there is a con-
siderable simplification in the algorithm.
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3c) Rank=one _modification

: By (2.3) and the Sherman-Morrison formula the solution to Ax = C

can be written as a linear combination of the solution to two

tridiagonal systems of equations,

-1 -1 T — -
x =T 'c =~ Br 'u, 8 = ou'T 'o/(1HouiT lu). (3.6)

Since T 1s symmetric we have

T,..~1 ~
w (re) = (17 we,

and therefore we can also write (3.6)as

T-x = c= Bu, B= ve/( 1+ viv), (3.7)
where we solve for v from

L Tv = ou. (3.8)
(Note that in (3.7) the right hand side of the system of equations

1s modified only in the first and last component).

From the relations (2.5) and (2.6) it follows that if ¢ < 0, then

A. .mintT) > Ain (A)
When T 1s positive definite the two systems of equations in (3.7)

and (3.8) can be solved without pivoting, and we can compute c¢ with

] a total of 9n multiplications , As in Gaussian elimination we need

one extra temporary storage vector.

An important case when the algorithms given above are not directly

applicable 1s in inverse iteration for computing eigenvectors of A.

Then we want typically, to solve, the system of equations

(A - Ax, = Xx, R

where A approximates an eigenvalue of A. Here the matrix (A - AI) 1s

not in general positive-definite, and in Gaussian elimination pivoting

must be used to preserve stability. Symmetry will then be destroyed,

and therefore the algorithms given below for this case also apply when

A 1s unsymmetric.
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| 3d) Gaussian elimination with pivoting

This algorithm has been described in detail by Evans [1]. Here we prefer

a slightly different approach. In[8 3, contributionI/6, it has been

described how partial pivoting can be performed so that we get as a by-

product the leading principal minors of A. This can be an advantage 1f

selected eigenvalues of A are to be determined, and involves no more

arithmetic than the more usual algorithm. The first (n-1) elimination

steps will then require 3n multiplications, and the last between 3n and

hn multiplications (depending on the number of interchanges). The for-

ward- and backsubstitution part will take between 5n and 6n, giving a

total of less than 14n multiplications.

We note that Gaussian elimination with pivoting can also be applied to

the five-diagonal matrix in (2.2). If we don't try to keep track of the

zeroes within the band, then a standard procedure for general band-

matrices (I/6in [8]) can be used. This will however require 17n multi-

plications for the solution, and also more indexing operations.

| ~ 3e) Renk-one modification, unsymmetrie Case
The formulas (3.7) and (3.8) apply also in this case, but we must now

use pivoting when solving for v and x. This will increase the operation

~ countto 12n multiplications. We point out, that this method cannot now

) be expected always to work. Irrespective of the sign of o,T can now be

. much worse conditioned than A. We return to this question when discussing

inverse 1teration in section 5.



4. The complete eigenvalue problem

We now consider algorithms for computing the complete set of eigen-

values and possibly also the corresponding eigenvectors. We first

note that unfortunately-the QR-algorithm cannot efficiently be applied

directly to A. If we determine an orthogonal transformation QF such
that QA = R 1s upper triangular, then R has the form:

[x X Xx
| X X xX
[

| X xX Xx (n = 5)
- xX X |
| *y“

| It 1s easily seen that A'= RQ = RAR | 1s a full matrix.
“a) Reduction totridiagonal FOrm

- One approach 1s to reduce A by permutations and plane rotations to

tridiagonal form as desribed in section 2. Then the efficient QR-

algorithm (see [8] contribution II/3 and II/L4) can be applied. The

amount of work in the reduction (én? multiplications) is less than

that required by the &R-algorithm, which is »12n% if only eigen-

values are computed and® Und if also eigenvectors are needed.

4b) Rank-onesmadification

If we assume that the eigenvalue problem for the tridiagonal matrix

. T in (2.3) has been solved, then

= T _ T
I=A~ocuuw =QDQ,D= diag(d,) (L.1)

and thus

T T T
QA Q=D + ovv, Vv = Qu. (4.2)

We now have to solve the eigenproblem for a diagonal matrix modified

by a matrix of rank one, This problem has been discussed in [2]. We

have for A # d:, 1 =1,2,.,.,n
T _ T ~1

det(D + ovv™ = AI) = det (D = AL)(1 + ov (D = AI) 'v)
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Thus, the characteristic polynomial 1s

n n n

p,(A) =Ta- 2) + oTvE n(a, ~ 2) (4.3)
1=1 1=1 J=1

si
|

if A # d;, 1 =1,2,...,n, and

n

J=

Since from the assumption (2.1) it follows that the eigenvalues d.

and only if v = 0. The corresponding eigenvector of A is then

Ke T 98 Tq

| i.e. it equals the eigenvector of T. In practical computation if we
find that v= 6 then with A = d, and x, = Qe, we have

- - T

X [ax =x], = 110+ owle, = ge|], = v2]oe].
Thus, when g¢ 1s of the same order of magnitude as the uncertainties

in the elements of A we can accept ad and I as an eigenvector-
eigenvalue pair of A.

The remaining eigenvalues ofA can be computed by finding the roots

) of the equation
n

w( 2) = 1 + 0x v?/(d-2)=0. (4.5)
i=1

. The equation (4.5) can easily be solved, since we have precise bounds

on each of the roots (from (2.5) and (2.6)). It 1s also easy to compute

derivatives of w(h), so e.g. Newton's method may be used. When an eigen-

value Ae of A 1s known, we have for the corresponding eigenvector the
explicite expression

= -1

x. =Q (0-21) v. (4.6)

The eigenvalues a of T can be efficiently computed by the QR-method.
Note that when all the eigenvectors of A are not wanted, then it 1s

not necessary to compute the whole matrix Q, but only the vector

v= au.



The two methods described in this section requires about the same

amount of work. However, an example where the last method is ad-
vantageous to use has been given in [10]. There the matrix T is

real symmetric, but A has complex elements

-~ * * 1¢A=T+ guu ’ u = (1,0,. c+ ,0,6 ).

q
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5. Computing selected eigenvalues and eigenvectors

If only a few eigenvalues and eigenvectors are required, then unless

n is very small transformation to tridiagonal form or solution of the

complete eigenproblem for T becomes to expensive. We consider here

algorithms for computing selected eigenvalues based on the Sturm

property of the sequence of leading minors p, (A), Py(A)senisp (A)
of (A - AI). The corresponding eigenvectors can then be obtained by

inverse iteration.

Following Evans [1] we define p. (A) and r. (2) as principal sub-
determinants

p; (A) = det (P[1,i]), r. (A) = det (TIn-i,n-1]) (5.1)
L where T = T(A) is the tridiagonal matrix

&,=A b, 0

T = b, a,~A 5

| Pay
/

Expanding the determinant p, (A) = det (A-AI) by the last column we get
= -— 2 f n—1 . ss

B, (A) =p(A) = p< r(1) + 2(-1) boop "Th (5.2)

Then, the number of disagreements 1n sign between consecutive numbers

in the sequence Poser+sPy 4 (XN) ,p (A) is equal to the number of eigen~-
. values smaller than A, To avoid difficulties with underflow and over-

flow one usually instead computes the ratios of succesive numbers 1n

this sequence. If we divide (5.2) by Pq (A)then since p (0) = p (0)n- n-

we get

A 2 ,
A) = A) — b/s A) + 2b t

where

q; (1) = p; (A) /ps_, (3) > s:(2) = ry (A) /r._, (0),
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ip n-1 n-1
ty = Boy) (bd TW (n/a, (0)

1=1 N 1=1

To compute (5.3) we use the recursions

= —_— — -— — 2 hp
or F~1 As S53 %n-1 A br i/85 4s 1=25...501, (5.4)

by = Pp» ET TF Rr

As in contribution II/5in [8] we merely replace azero q (1) or
1-1

s. (3) by a suitable small positive quantity. The number of negative

elements if the sequence 4M seesg (0), q (1) is now equal to the
number of eigenvalues smaller than A. The computation of this sequence

using (5.3) and (5.4) takes 2n divisions and 2n multiplications if

b? are computed once and for all. This is more than for the tridiagonal

case but much less than for the similar algorithm by Evans [1].

The formulas (5.1) and (5.3) are not always suitable when det (A-XI)

| has a double zero A*, Then A* is also a simple zero of 5 (2) andho -

4,_,(X) and we will get cancellation of high order in (5.3). We now
derive an algorithm which although not unconditionally stable, performs

well also for double roots.

- If we apply Gaussian elimination without pivoting to the matrix (A- I),

then before the (i-1) :st step we have the reduced matrix

Yor Pig Pio }- 1 c=)

0
. b

t, .i-1 | i

Here for i=1,2,...,n-1, Ter t. andc, are determined by the recursion
formulas (5.4) and

— — — — 2

Cy = a =A, c Ci tr 4/95 (5.5)
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After (n-2) elimination steps, we end up with the 2x2 matrix

fa, Pn-1*Sn-1
Ly + (5-6)
\ n-1 Sn—1 “h-1
3

and thus

a(A) = c(A) = (b _, +s _,(0))%/q(1) . (5.7)

Here, in case A* 1s a double zero, 311 elements in the matrix (5.6)

also equals zero for X=X* , and thus no cancellation occurs in (5.7)

Unfortunately (5.5) is not a stable way of computing C1

When a; _, (3) 1s small, then |e, (A)] >> |e; ,(1)] and severe can-—
cellation which causes instability will take place in the later

2 _ .

L steps. However, unless br_,/(a;=1) also is small, we have le. pq] << C. |
and we can avoid the cancellation by taking a double step

= - +2 ~

§ Cie1 = Coq ~ BE (a0) (ayogy q) (5.8)

. we have to modify (5.7). By combining the last two steps we get

A _ _ 5
4h 7 4h Pa + 2 tp-2 Pp-2 ENRTAC NIST NPY (5.9)

with c defined by (5.8). As before we can replace the zero

; a; _4(2) by a small positive quantity e|b;_,| » where ¢ 1s the rela-
tive precision of the arithmetic which 1s used. The operation count

for this algorithm 1s the same as for the first one, but the over-
: | f

~ head 1s slightly larger.

Recursion formulas similar to these above can also be developed for

the five-diagonal form (2.2). However, the formulas corresponding to

(5.3) and (5.4) become more complicated, and they retain the same

shortcomings.

Neither of the algorithm given above 1s without objections. To compute

the ratios of successive minors of (A-AI) incompletely satisfactory

way, 1t seems that we have to use the elimination algorithm mentioned

under 3d. This algorithm requires however Tn multiplicative operations

and thus 1s not quite as efficient as the other two. If g1a~ --

vectors are needed #®-~-'" =



algorithm can be used in the inverse iterations for the eigenvectors.

| An alternative to the methods described so far, is reordering to five-
diagonal form and using the &R-algorithm for band symmetric matrices

(seel8] , contribution II/7). Note that this procedure 1s recommended

only for computing selected eigenvalues and not for solving the complete

eligenproblem.

We finally discuss methods based on the rank one modification (2.3)

of A. We have

det (A = AL) = det(T - XI) det(I + o(T - AI) tun?) =

- det(T = AI)(1 + oul(T - a1) hu).

Here, we cannot as in section 4 exclude the case when A is an eigen-

L value of both A and T. Thus we cannot divide out det(T - XI) and the

characteristic equation becomes

| N 7i p(A) = det (T = AI)(1 + ow v(A)) = p(A) wl) , (5.10)
where v(1)is the solution to the tridiagonal system

~ (T - AI)v(A) = u (5.11)

To solve (5.11) for v(h) and compute w(A) requires 8n operations,

i and since p(X) is the determinant of a tridiagonal matrix 1t can be
- computed from the usual recursion formula in 2n operations. Note that

since

Ww(2) = oviv

Newton's method can be applied with little extra work.

We now turn to the computation of selected eigenvectors, assuming

that accurate approximations for the corresponding eigenvalues have

been computed by one of the algorithms outlined above. This 1s usually

best done by inverse iteration

(A= Mz q=%, x, _z /k ll, r=0,1,...(512)

The choice of X, here requires some care. A very complete discussion
of this choice and the other properties of this process has been given

by Wilkinson[9] . To solve (5.12) we can use one of the methods for
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indefinite systems given 1n section 3. Gaussian elimination with pivo-

ting is straighforward to use, and is recommended when the eigenvalues

have been found by the &R-algorithm or the Sturm sequence methods.

When the eigenvalues have been found by solving (5.10), then the rank

one modification technique can be used also in the inverse iterations,

Using (3.6) the solution to (5.12) can be written

241 = Yoe1 = BV, B = ou'y Jw(A) ,r+1

where v = v(}1) is defined by (5.11) and LY

(T AY =X (5.13)

R Since w(A) may be close to zero, we get a more appropriate scaling

by instead considering the vector

2 oA) y_, - uy. v . (5.13)
r+ = +1 +1

Now, assume that A 1s a very good approximation to an eigenvalue of

- A, which 1s not an eigenvalue of T. Then, it follows that p (A) # 0

and w(A) ~ 0, and that v(X) will be a good approximation to the corre-
sponding eigenvector. Thus, the eigenvector is obtained already from

(5.11) when solving for the eigenvalue, and no inverse iteration has

to be done.

_ In the case when A 1s an eigenvalue of both A and T, then we have seen

in section 3 that &lso the corresponding eigenvectors must coincide.

Then we must have ulq = 0, where gq is this eigenvector, and A/q will

-be an eigenvalue/eigenvector pair of the matrix (T + oun J) for arbitrary
values of o. It follows that in this case w{A) will remain bounded,

but in general not equal to zero. We can obtain the eigenvector by

applying inverse iteration to T, 1.e. compute the sequence of vectors

Yop = (T= A) x, Xp1 = Vg Myp ills.
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6. Conclusions

We have surveyed methods for solving the eigenvalue problem for nearly

| tridiagonal matrices of the form (1.3), which arise from periodic
boundary problems. Although many of the standard methods can be made

to work efficiently, it 1s surprising how much trouble the extra two

non-zero elements generates. Two examples of this are that this matrix

structure 1s not invariant under m-iterations, and that it requires

much more work to generate the Sturm sequence than in the tridiagonal

case. One should also point out that the simple backward analysis of

rounding errors 1n the tridiagonal case does not generally carry over

to matrices'of the form (1.3).
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