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Abstract

A survey of algorithms for solving the eigenproblem for a class of
matrices of nearly tridiagonal form is given. These matrices arise
from eigenvalue problem for differential equations where the solution
is subject to periodic boundary conditions. Algorithms both for
computing selected eigenvalues and eigenvectors and for solving

the complete eigenvalue problem are discussed.
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1. Introduction

Eigenvalue problems of the form

%};(p(x)g‘x‘c)+ a(x)y + Aar(x)y = 0, p(x) > 0, (1.1)
with periodic coefficients
p(xta) = p(x), a(x+a) = q(x), r(x+ta) = r(x),

and where y(x) 1s subject to periodic boundary conditions, arise in
many practical application (see e.g. [10] ). Using a second order

difference approximation to (1.1), we are led to a matrix eigenvalue

problem (see Evans [1])
Ax = xx, (1.2)

where A is a real, symmetric matrix of nearly tridiagonal form

1 n
by &, by,
A= RN (1.3)
by ‘b
o ° n-1,
\.bn bn—1 'ah,/

In this paper we will give a survey of algorithms for solving a
linear system of equations AX = c, for comuting selected eigen—
values and eigenvectors of A and for solving the complete eigen-

problem (1.2). The algorithms can in general also be applied when

A is a Hermitian matrix of the same structure as A in (1.3). Some

of the methods presented are believed to be new.

We remark that differential equations in two space dimensions with
periodic boundary conditions give rise to similar eigenvalue prob-
lems, where the matrix A now is nearly bloak-tridiagonal, i.e. a.1
and bi in (1.3) are replaced by square matrices Ai and Bi (see [3]).

Many of the methods proposed will be relevant also to this more

general problem.
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2.
2. Basic transformations
We first remark that we can always assume in the following that
b, #0, k =1,2...,0. (2.1)

Otherwise if bk = 0, then, by a cyclic permutation of rows and
columns these two elements can be brought to positions (1,n) and

(n,1), and the matrix degenerates into a tridiagonal matrix.

The matrix (1.3) has no useful bandstructure at all. We note that

the graph associated with A is a polygon:

2 ‘.

n ) -2
From this graph it is quite easy to see, Martin[l4], that the
minimum bandwidth which can be obtained by permuting rows and
columns of A is realized by ordering the nodes (n even)

1, I'l, 2, I’l-l, 3, n—2,...,l1‘+2, g‘, %1-

(For n odd, the last three nodes are (n-1)/2, (n+3)/2, (n+1)/2.)

The permuted matrix then has the form (after renumbering the elements)

a1 b1 b2 )
b1 a2 0 b3
_ . by, 0 8y 0 by \
A = PAP” =| by o | (2.2)
. 0 b
n—l}
' |
0 , 0 & bn /

bn—l bn n /
ie. X is symmetric and five-diagonal, with twolinner diagonals almost
zero. Rutishauser [5] has shown that A can be transformed further
into tridiagonal form, using orthogonal similarity transformations.
This can be accomplished with approximately n?/h plane rotations
which corresponds to ™ 6n2 multiplications (see Wilkinson [T]
pp. 567-8). Unfortunately it is not possible to take advantage of
the zerces within the band of A, since these will rapidly fill up

during the initial transformations.



3.
Another useful observation is that A can be written as a rank
one pertubation of a symmetric tridiagonal matrix
A=T + cuuT 0 = b
? - = n' (2-3)
where
&1;bn b1 /1 \
b !
1 % b [0
- _ M
T by . su= (2.4)
. ) b
1 -, n-1 0 f
\ bn—l an;bn ! 11/

(Note that the first and last diagonal elements ha .
been modified.)
This splitting of A enables us to use some of the Me 41 0ds given by

Golub [2].

Using perturbation theory the eigenvalues of A can be related to
those of T in (2.4). If we denote these eigenvalues Ak and

dk’ k = 1,2...,n in decreasing order, then they satisfy the
relations (Wilkinson [7] p. 98)

kT % = 2om, (2.5)

where

' m
- 0 < < 1 q =
el SR T (2.6)
Thus the eigenvalues Ak separate the dk at least in the weak

sense, and if ¢ < 0 then

d; > A, > > Ay eea. >
1"1-d2"'2 —dnzln'
Now from (2.1) it follows that the eigenvalues dk are simple
14

and thus, the eigenvalues Ak have at most multiplicity 2. Also

if an eigenvalue Ak has multiplicity 2, then QK is also an eigen-

value of T. This differs from the tridiagonal case where if A
k

has multiplicity 2 at least one bi = 0,



We remark that a simple example of a matrix A with eigenvalues of
multiplicity 2 is the matrix A = A(a,b) where

a = a, b.1 = Db, 1i=1,2,....,n.
This matrix is a special case of a circulant and has the eigenvalues

Ay =a+2b cos(2mk/n), k = 0,1,...,n~-1.

All the eigenvalues of this matrix has multiplicity 2 except the

eigenvalue (a+2b) (and if n is even (a-2b)).

The special unsymmetric matrix

a, b1 °h \

- c; & b2 0 r
A= cy ’ '.‘ f , bici >0, (2.6)

o ° _bn_”

can often be reduced by a diagonal similarity to a symmetric matrix.
If we take

A=DAD', D= dieg(d.),

then A is symmetric if

(d /a4, )b, = (4 1/ )e,, k = 1,2,...,n.

where we have put dn+1' Multiplying these relations together

we find
n n
Mo, _ Te
k=1® = k=1¥

If this relation is satisfied then dk are determined by

dy =1, &, = idk(bk/ck)1/2, k = 13000001, (2.7)
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3. Linear system of equations

We first compare some different methods for solving Ax = ¢ yhen

A is positive-definite.

3a) Gaussian elimination

When A is positive definite Gaussian elimination can be performed
without pivoting. Hence symmetry is preserved with consequent savings
in storage and operations. To avoid square roots we write the result-

ing factorization A = LDLT where

/s \
'y, 1 \,
|
!
{

s D= diag(ai)-

The elements in L and D are computed by the recursion formulas

[0 1 —_
1= %0 Y1 = P/ s oy = B " Yk—1%-1

k =2,....,n~1

By = DPpaBy = Y 4B s K= 2,000,072 (3.1)
Bn—l= bn--1 - n—28n~2'
°‘r(11)°1 =y Spq = By g b= o) S 1By
a = aén), k =2,...,n0.

Thus, the complete decomposition requires 3n multiplications and
" 2n divisions. To solve the system Ax = ¢, we then have to solve the

two triangular systems
Ly = ¢, LTx = D-'y,

which requires another 5mn multiplicative operations. This algorithm

uses a total of 10n operations and n extra storage locations.

Gaussian elimination can also be applied to the reordered. matrix (2.2).
It is easy to verify that this requires the same number of operations

and amount of storage as the algorithm above.



3b) Odd-even reduction

Assume first that n is even =
, and rearrange the rows and colums

of A =
A, through permutation matrix

[ a
( 2 . b1 b2
L b
. 3 by,
. b
T alp =
P.a 0
11P1 N“ﬂ-**“_bn;l
1 a1
b
2 b3 a
) b, 3
L.
.
H‘Ebn—1

a 1
We now eliminate all even variablLs from all odd Aﬂ%bered»equations

by Gaussian elimination

"IN (Note tnat p g oT
. A P . T _ s
If we introduce the nobats 1%4F; also is positive-definite).

eSS e x=x ang T
D T
P1A1PT - [T B a, .
’ Pec = 1
P = .
B1 E1 171 o t] 1X1 H (3 2)
then we get for X, after this elimination step’ the reduced &ystem
of order n/2
A2X2 = CZ
where (3.3)

. T = -BDa
If X, 1S known, then we get y , T (3.4)
1 by backsubstitution
= n— 1
y1 —D"‘ dr —DT B4i(2
(3.5)



We note that this elimination step can be performed without using extra

storage, since we can let

1 A
BDy o A Dy dps 5

overwrite
By» Dyend E,, 1?

Taking symmetry into account, this first step requires ®™ 5n/2 opera-

d1, e

. . -1
tions for computing B1D1 and A2 and a further 2n operations for

-1
D1 d,c2 and y1.

The important thing to note is that A2 is again a symmetric tri-
diagonal matrix, with elements added in the lower left and upper

right hand corners. Thus, if n is a power of two, then we can use

the same decomposition repeatedly. Then we will obtain x in
n(9/2 + 9/k +9/8 + . . ...) 8 0n

operations.

The odd-even method can in fact be applied without restriction on

n, since if n is odd, then we get after the first reordering

\
(/ag b1 b2
*n-1 | bn-2 bn—1
T - a -
PAP, = 1 1 n
™11 b. b
2 °3 83
%0 b '
b b “a
n-1 n n
L J
and obviously the reduced matrix A2 will be of the same form also

in this case. Perhaps the main advantage with the odd-even reduction
is that it does not require extra storage. The operation count is
also slightly lower than for Gaussian elimination, but this might

be upset by the need for ﬁore orgenisational instructions. It should
be pointed out that if & = a and bk = b for all k there is a con-

siderable simplification in the algorithm.
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3¢) Rank—one _madification

By (2.3) and the Sherman-Morrison formula the solution to Ax = c
can be written as a linear combination of the solution to two
tridiagonal systems of equations,

-1 1

x =17 '¢c - BT 'u, B = 0u¢T-1c/(1+ouTT~1u). (3.6)

Since T is symmetric we have
wT(r7 ey = (17w,

and therefore we can also write (3.6) as
T-x = c - Bu, B = vie/( 1+ vy ), (3.7)

where we solve for v from

Tv = gu. (3.8)

(Note that in (3.7) the right hand side of the system of equations
is modified only in the first and last component).

From the relations (2.5) and (2.6) it follows that if ¢ < 0, then

AL A{T) > a .
min —~ “min

(4),

When T is positive definite the two systems of equations in (3.7)
and (3.8) can be solved without pivoting, and we can compute c with
a total of 9n multiplications . As in Gaussian elimination we need

one extra temporary storage vector.

An important case when the algorithms given above are not directly
applicable is in inverse iteration for computing eigenvectors of A.

Then we want typically, to solve, the system of equations

(b =gy = %

where A approximates an eigenvalue of A. Here the matrix (A - AI) is

not in general positive-definite, and in Gaussian elimination pivoting

must be used to preserve stability. Symmetry will then be destroyed,

and therefore the algorithms given below for this case also apply when

A is unsymmetric.



3d) Gaussian elimination with pivoting

This algorithm has been described in detail by Evans [1]. Here we prefer
a slightly different approach. In [8 3, contribution I/6, it has been
described how partial pivoting can be performed so that we get as a by-
product the leading principal minors of A. This can be an advantage if
selected eigenvalues of A are to be determined, and involves no more
arithmetic than the more usual algorithm. The first (n-1) elimination
steps will then require 3n multiplications, and the last between 3n and
4n multiplications (depending on the number of interchanges). The for-
ward- and backsubstitution part will take between 5n and 6n, giving a

total of less than 1in multiplications.

We note th;£ Gaussian elimination with pivoting can also be applied to
the five-diagonal matrix in (2.2). If we don't try to keep track of the
zeroes within the band, then a standard procedure for general band-

matrices (I/6 in [8]) can be used. This will however require 1Tn multi-

plications for the solution, and also more indexing operations.

- 3e) Rank-one modification, unsymmetrie Case

The formulas (3.7) and (3.8) apply also in this case, but we must now

use pivoting when solving for v and x. This will increase the operation
count to 12n multiplications. We point out, that this method cannot now
be expected always to work. Irrespective of the sign of o, T can now be
much worse conditioned than A. We return to this question when discussing

inverse iteration in section 5.
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4. The complete eigenvalue problem

We now consider algorithms for computing the complete set of eigen-
values and possibly also the corresponding eigenvectors. We first

note that unfortunately-the QR-algorithm cannot efficiently be applied
directly to A. If we determine an orthogonal transformation QT such

that QTA = R is upper triangular, then R has the form:

ﬁcx X\

| X X X

!

| X x X (n = 5)
| X X

|

. ),

It is easily seen that A'= RQ = RAR_1 1s a full matrix.

s —— — ——

One approach is to reduce A by permutations and plane rotations to
tridiagonal form as desribed in section 2. Then the efficient QR-
algorithm (see [8] contribution II/3 and II/L4) can be applied. The
amount of work in the reduction (6n? multiplications) is less than
that required by the &R-algorithm, which is = 12n2 if only eigen-

values are computed and ® Un3 if also eigenvectors are needed.

If we assume that the eigenvalue problem for the tridiagonal matrix

. T in (2.3) has been solved, then

T=A~ cruu‘Il =Q0D QT, D = diag(di) (k. 1)
and thus
QTA Q =D + cva, v = QTu. (L.2)

We now have to solve the eigenproblem for a diagonal matrix modified
by a matrix of rank one, This problem has been discussed in [2]. We

have for X # d;» i =1,2,.,.sn

det (D + o - AI) = det (D = AI)(1 + ov (D - AI)"v)
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Thus, the characteristic polynomial is

(A) = M(a-2) + ozy2 T
p (A) =m(d.- 2) + oZv2  T(d. - a) L,
n j=1 1 j=ql jmq 9 (L4.3)
J#i
if A # di’ i=1,2,...,n, and
n
pn(dk) =0v§jzgdj -d)s k=1,2,...,n. (4.h)

Since from the assumption (2.1) it follows that the eigenvalues di

of T are distinct, (4.4) implies that dk is an eigenvalue of A if

and only iﬁ_vk = 0. The corresponding eigenvector of A is then

Xk = Qek = qk >
i.e. it equals the eigenvector of T. In practical computation if we

find that v. = ¢, then with A = =
k dk and xk Qek we have

f]Axk - Axk]’2 = ||(p + cva)ek - dkekflg = VZ|oe].

Thus, when ¢ is of the same order of magnitude as the uncertainties
in the elements of A we can accept dk and qk as an eigenvector-

eigenvalue pair of A.

The remaining eigenvalues of A can be computed by finding the roots

of the equation
n
o(A) =1 + 0% v?/(g;-2) = 0. (4.5)
i=1
The equation (4.5) can easily be solved, since we have precise bounds
on each of the roots (from (2.5) and (2.6)). It is also easy to compute
derivatives of w(h), so e.g. Newton's method may be used. When an eigen-

value Ak of A is known, we have for the corresponding eigenvector the
explicite expression
= - -1
=Q (D Ak ) v, (4.6)
The eigenvalues dk of T can be efficiently computed by the QR-method.
Note that when all the eigenvectors of A are not wanted, then it 1is

not necessary to compute the whole matrix Q, but only the vector

v = C}u.
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The two methods described in this section requires about the same

amount of work. However, an exapple where the last method is ad-

vantageous to use has been given in [10]. There the matrix T is

real symmetric, but A has complex elements

* .
A=T+ guyt , u = (1,0,.. . .,0&1%
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5. Computing selected eigenvalues and eigenvectors

If only a few eigenvalues and eigenvectors are required, then unless
n is very small transformation to tridiagonal form or solution of the
complete eigenproblem for T becomes to expensive. We consider here
algorithms for computing selected eigenvalues based on the Sturm
property of the sequence of leading minors p, (3), pE(A),“.,in(A)

of (A - AI). The corresponding eigenvectors can then be obtained by

inverse iteration.
determinants
Pi(A) = det (T[1,i]), ri(l) = det (T[n-i,n-1]) (5.1)

where T = T(A) is the tridiagonal matrix

Expanding the determinant Pn(A)= det (A-AI) by the last column we get

BV =B () =02 x () + 2(-1)" T D (5.2)

Then, the number of disagreements in sign between consecutive numbers

in the sequence PO’H-,Pn_1(A),pn(A) is equal to the number of eigen~

. values smaller than A, To avoid difficulties with underflow and over-

flow one usually instead computes the ratios of succesive numbers in
this sequence. If we divide (5.2) by p__.(A)then since p  (A) = r (1)
n-1 n-1 n-1

we get

2 .
qn(x) - bn/sn-1(x) * 2bntn (5.3)

a_(3)

where

25 (0 = 5, (/B4 (0) 4 s0) = 5y (W/r,_,(0),
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-1 o) n-1 n-1
ty= p_1(A) T (b T (b, /q. (1))
n - : /.
L T
To compute (5.3) we use the recursions

a; =a~h, q.; = ai—k —b§_1/qi_1 » 1=2,...,n,

= - = - -2 2
S;=a, q7A s s = a o) bn—i/si—1’ i=2,...,n~-1, (5.4)
t1 = bn, ‘ti = —t.i_1 . bi—T/qi—T’ i=2,...,n.

As in contribution II/5 in [8] we merely replace a zero g (1) or
i-1

s (x) by a suitable small positive quantity. The number of negative

i1
elements ik the sequence qi(A)’”"qn~1(A)’qn(A) is now equal to the
number of eigenvalues smaller than A. The computation of this sequence

using (5.3) and (5.4) takes 2n divisions and 2n multiplications if
b? are computed once and for all. This is more than for the tridiagonal

case but much less than for the similar algorithm by Evans [1].

The formulas (5.1) and (5.3) are not always suitable when det (A-XI)

has a double zero A*, Then A* is also a simple zero of sn_1(A) and
qn_ﬁk) and we will get cancellation of high order in (5.3). We now

derive an algorithm which although not unconditionally stable, performs

well also for double roots.

If we apply Gaussian elimination without pivoting to the matrix (A- I),

then before the (i-1) :st step we have the reduced matrix

%G1 By im1 \I
b,
-1 (e=2) v, !
o ‘
. b
t,
i-1 Pp-1 Ci-

Here for i=1,2,...,n-1, Nl t; and ¢; are determined by the recursion

formulas (5.4) and

= - = - ¢2
cy = a -2, ¢ = ¢y ti—1/qi—1' (5.5)
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After (n-2) elimination steps, we end up with the 2x2 matrix

[0 Pp-1*5n-1 )

. (5.6)

L\ on-1 Sp-1 °n-1

1
and thus

= - 2
q,(A) = c (1) = (b 4+ _,(A)2%/q_,(0) . (5.7)

Here, in case A* is a double zero, all elements in the matrix (5.6)
also equals zero for X=X* , and thus no cancellation occurs in (5.7)

Unfortunately (5.5) is not a stable way of computing Copn

When qi_1(ij is small, then|ci(A)|>>|ci1(AH and severe can-—
cellation which causes instability will take place in the later

2 - .
steps. However, unless bi—1/(ai A) also is small, we have Ici+1l << Fﬁ|

and we can avoid the cancellation by taking a double step

- - 32 -
fia1 T e T P (e (g g ) (5.8)

whenever [qi(A)l>>|ai-A[. Similarly if qn_z(A) is close to zero

we have to modify (5.7). By combining the last two steps we get

U= o Tbg/a g+ 2t by /e e ), (5.9)
with Cn defined by (5.8). As before we can replace the zero
qi_1(l) by a small positive quantity e!bi_1l, where ¢ is the rela-
tive precision of the arithmetic which is used. The operation count

for this algorithm is the same as for the first one, but the over-
) .

" head is slightly larger.

Recursion formulas similar to these above can also be developed for
the five-diagonal form (2.2). However, the formulas corresponding to
(5.3) and (5.4) become more complicated, and they retain the same

shortcomings.

Neither of the algorithm given above is without objections. To compute
the ratios of successive minors of (A-AI) incompletely satisfactory
way, it seems that we have to use the elimination algorithm mentioned
under 3d. This algorithm requires however Tn multiplicative operations
and thus is not quite as efficient as the other two. If gra~ -

vectors are needed #w--'" -



algorithm can be used in the inverse iterations for the eigenvectors.

An alternative to the methods described so far, is reordering to five-
diagonal form and using the &R-algorithm for band symmetric matrices
(seel8] , contribution II/7). Note that this procedure is recommended

only for computing selected eigenvalues and not for solving the complete

eigenproblem.

We finally discuss methods based on the rank one modification (2.3)

of A. We have

det (A - AI) = det(T - XI) aet(I + o(T - AT) hub) =

1

- det (T - AI)(1 + ou (T - A1) Tw).

Here, we cannot as in section b exclude the case when X} is an eigen-
value of both A and T. Thus we cannot divide out det (T - XI) and the

characteristic equation becomes

A

py(2) = det (T - AT)(1 + ou'v(x)) = p_(A) w(a) . (5.10)
where v(}) is the solution to the tridiagonal system

(T - AI)v(A) = u . (5.11)
To solve (5.11) for v(h) and compute w(}) requires 8n operations,
and since pn(A) is the determinant of a tridiagonal matrix it can be

computed from the usual recursion formula in 2n operations. Note that

since
w (1) = chv s

Newton's method can be applied with little extra work.

We now turn to the computation of selected eigenvectors, assuming
that accurate approximations for the corresponding eigenvalues have
been computed by one of the algorithms outlined above. This is usually

best done by inverse iteration

(A - AI)Zr-H = X Xo zr+1/”zr+1i [2 ,r =0,1,...(5.12)

The choice of X, here requires some care. A very complete discussion

of this choice and the other properties of this process has been given

by Wilkinson[9] . To solve (5.12) we can use one of the methods for



indefinite systems given in section 3. Gaussian elimination with pivo-

ting is straighforward to use, and is recommended when the eigenvalues

have been found by the &R-algorithm or the Sturm sequence methods.

When the eigenvalues have been found by solving (SJO), then the rank
one modification technique can be used also in the inverse iterations,

Using (3.6) the solution to (5.12) can be written

T
Zebt = Yy BV, B =ouy JeD)
where v = v(A) is defined by (5.11) and Y

T - =
(T =My g = x - (5.13)
Since w(A) may be close to zero, we get a more appropriate scaling

by instead considering the vector

A

241 = w(}) Yp1 ™ uTyI_'_1 v . (5.13)
Now, assume that A is a very good approximation to an eigenvalue of

A, which is not an eigenvalue of T. Then, it follows that p (i) # 0

and w(A) ~ 0, and that v(X) will be a good approximation tonthe corre-
sponding eigenvector. Thus, the eigenvector is obtained already from
(5.11) when solving for the eigenvalue, and no inverse iteration has

to be done.

In the case when A is an eigenvalue of both A and T, then we have seen
in section 3 that &also the corresponding eigenvectors must coincide.
Then we must have uTq = 0, where g is this eigenvector, and A/q will
-be an eigenvalue/eigenvector pair of the matrix (T + cuuis for arbitrary
values of . It follows that in this case w(A) will remain bounded,
but in general not equal to zero. We can obtain the eigenvector by
applying inverse iteration to T, i.e. compute the sequence of vectors
)—1

Yy = (T - AI

r+1 x

r’ +1
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6. Conclusions

We have surveyed methods for solving the eigenvalue problem for nearly
tridiagonal matrices of the form (1.3), which arise from periodic
boundary problems. Although many of the standard methods can be made
to work efficiently, it is surprising how much trouble the extra two
non-zero elements generates. Two examples of this are that this matrix
structure is not invariant under m-iterations, and that it requires
much more work to generate the Sturm sequence than in the tridiagonal
case. One should also point out that the simple backward analysis of
rounding errors in the tridiagonal case does not generally carry over

to matrices'of the form (1.3).
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