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ABSTRACT

The use of lower order approximations in the neighborhood of

boundaries coupled with higher order interior approximations 1s

L examined for the mixed initial boundary-value problem for hyperbolic

| partial differential equations. Uniform error can be maintained using

= smaller grid intervals with the lower order approximations near the

boundaries. Stability results are presented for approximations to the

initial boundary-value problem for the model equation u, + cu, = 0

which are fourth order in space and second order 1n time in the interior

.and second order in both space and time near the boundaries. These

results are generalized to a class of methods of this type for hyperbolic

systems . Computational results are presented and comparisons are made

with'other methods.
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l. Introduction. It has been established that fourth order methods are

much more efficient than those of first and second order for hyperbolic

partial differential equations (5,9,11}]. When such methods are used for

the initial boundary-value problem, awkward situations arise in the

neighborhood of the boundaries since the interior approximations cannot

be used there 1n a straightforward manner. It is attractive to consider

matching lower order approximations in the neighborhood of the boundaries

to higher order interior approximations. However, 1t has been established

by Gustafsson[6] that more than one order of accuracy cannot be dropped

near the boundaries without sacrificing the rate of convergence over the \

entire region. Computational examples [6,11] illustrate this fact. (on-

“ sequently, a denser net must be used with the lower order approximation

i 1f the overall accuracy 1s to be maintained.
There are many applications where this approach 1s quite natural

| for other reasons. For example, oceanographic problems often have
boundaries and associated boundary layer phenomena which are quite

- complex compared to the solution in the interior. A very fine grid may

. be necessary to adequately represent these boundaries and lower order

approximations may be appropriate in the boundary layer since the boundary

influence is often of a forced rather than a transient nature (see [5,9]

for details of the error as a function of time for approximations of

different orders of accuracy).

In Section 2 we begin by examining methods for the model problem
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(1.1) u, + cu, = 0, ¢c <0, a<x<b,t>0

(1.2)  ulx,0) = fx, a<x<Dbs

| (1.3) up,t) = gt), t > 0;

with compatibility condition f(b) = g(0). We first consider a centered

difference approximation to (1.1)-(1.3) which is fourth order in space

and second order 1n time in the interior coupled with the second

order leap-frog method near the boundaries. This method 1s found to be

unstable unless the same grid interval 1s used with both the leap-frog

and more accurate interior approximations. Consequently, this method

has limited usefulness. We also consider using the Lax-Wendroff approxi-

. mation near the boundaries. This combined method is found to be stable.

We conclude Section 2 with general results for methods of this type for

\ hyperbolic systems.

| In Section 3 we present numerical results obtained using the
methods presented in Section 2 and compare these results with those

obtained in [11] where uncentered approximations of third order were used

in the neighborhood of the boundaries.

. We will use the theory of Gustafsson, Kreiss and Sundstrom [7]

and assume that the reader is familiar with the results of that paper.

The stability results presented.here for constant coefficients can be

extended to the variable coefficient case in the same manner as those

of [T].
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| 2. The Methods and Stability Results

We begin by examining an approximation to (1.1), (1.2) and (1.3).

We can take a = 0 and b = 1 |ithout loss of generality. ret k > 0,

| h, = 1/N and ha = h /M where N and M are natural numbers Let

ID AL = k/h, and Ag = k/h,. Define grid functions v,, (t) _— viva ,t)
. for Vv = O,1,...,N; £,(t) = (vat) for Vv = 0,1,...,2M and

. r,(t) = r(1-h +vh_,t) tor v =0,1,...,M where t = 0,k,2k,..., see

Figure 1. For 2 < Vv < N-2 we approximate (1.1) by the 6 (Kk + K°)
. approximation

~ Figure 1
“

; ILP Lp
Vv v

0 1 ZC VN-1 N
| x=0 x=1

) Jf ) =v, (t-k) - c2k [5D4h,) - 5 Dy(2h)] v(t)
where D t) = (enn VL -| o (nh, Jv ( ) = (enh) von(8) =v(8) 4.

On the interval [0,20] we approximate(l. 1 by the 6(n + 1°)
approximation

2.238 Z = - -( ) L(t + k) = ¢ (t = k) c2kDohp)e (t) for v=1,2,...,2M-1,
and at x = 0 by the S(h, + k°) approximation

(2.20 L(t + = - k) -
) olt +k) = £5(t - k) = ch [ g(t) - 0.5(2p(t-k) + g5(t + k))1
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On the interval [1 - h_, 1] we approximate (1.1) by the similar

O(n? + K°) and Sh, + 1) formulae|

2. r (t +k) =rr (t-k)- c2kD Jr (t) for = 1,2,..., M-1(2.38) z(t + 0 = x (6-1) - 2D (0) x(t) for v = 1,2,
and

(2.3Db) ro(t +k) = ro(t - k) - C2\ 4 [r, (t) = 0.5(r (t+ Xk) + rot - k))1.
Corresponding to the initial condition (1.2) we use

(2.1b) v (0) = £(vh,) for v = 0,1,...,N
2

. (2.20) £ (0) — £(vh,) for v = 0,1,...,2M>

| and

(2.3¢) r (0) = f(1 - h,+ vb, ) for y = 0,1,...,M.

Corresponding to the boundary condition (1.3) __ .

(2.24) £(t)= g(t) for t = 0 k 2k,, |

- We then link the grid functions (t),v (t£) and op (t) |
Vv \ V |

by |

[0 Yt) = k(t),

Cg) = a(n), |
!

((2.1¢) v(t) = Lot)
v1 (t)= ro(t), and

v(t) =r (8) |
for t = 0,k, Kyou . I



We complete the specification by giving

(v,&) = w(vh_) , v= 0,1,...,N

(2.14) | = wivh,) , Vv = 0,1,...,2Mr,(k) = w(l-n +h.) ,v = 0,1,...,M

where w 1s a sufficiently accurate approximation to the solution

u(x,t) at t = k.

It is clear that the equations (2.1), (2.2) and (2.3) determine

a unique approxifiation which is consistent with the problem (1.1),

(1.2) and (1.3).

L The one-sided formulae (2.2b) and (2.3b) are due to A. Sundstrom

| and it has been shown in Elvius and Sundstrom [4] that they yield stable
- approximations for the related initial boundary-value problems when used

i with the formulae (2.22) and (2.3a). It is well-known that (2 la) is

a stable approximation for the related Cauchy problem [5,9].

Note that the approximations (2.2b) and (2.3b) are only

6 (hn +5°) accurate. However, it follows from the results of Gustafsson
[6] that overall convergence behavior is not adversely affected.

Assumption. We assume that A, and Ap satisfy stability |
criteria which guarantee that our interior approximations are stable

for the related Cauchy problems.

(2.1a), (2.2a) and (2.3a) are stable for the related Cauchy

problems 1f els < 1 and | cI, < 6/\9 + oh \/6 = 0.7287 . ...
p)
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We now investigate the stability of the method defined by(2.1), (2.2)

and (2.3). We use the stability Definition 3.3 of Gustafsson et al. [ 7].

In [7], it is established (Theorem 5.4) that the stability of two related

quarter-plane problems 1s equivalent to stability for the two-boundary

problem in the sense of Definition 3.3. These two problems are simply

obtained by removing one or the other of the boundaries and extending the

domainto + ® , as is appropriate. We will refer to these as the right

and left quarter-plane problems.

It 1s immediate that the associated left quarter-plane problem,

-o<x<1, t>0, (we extend v over the negative integers in (2.la))

is stable by Definition 3.3 of [7]. This follows from the fact that (2.1a)

is stable for the related Cauchy problem and that (2.3a) and (2.3b) are stable

on the interval [1 - nh, 1] and provide a Vi L(t) which is bounded on every
_ finite t-interval in terms of the data g(t) . It 1s the 1ndependence of

| the calculation of the r from the v, that makes this trivial.
X The situation 1s more complicated for the associated right quarter-

| - plane problem, 0 < x <® , tt > 0 . First we must examine the stability of
| the approximation for the Cauchy problem given by (2.1a) with y extended

over all natural numbers and (2.22) with v extended over the negative

i integers. This is the problem of matching schemes investigated by

Ciment[ 3 ] for dissipative approximations. This can also be analyzed

in terms of the theory of [7] since we can think of folding the x-axis

at zero and investigating the initial boundary-value problem for a

vector (v, I, )

The new net structure 1s shown in Figure 2.
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I'igure 2

0... > ~ ~
2M MCC by oo £ 3

: 0 -M ou . * .

v \s
0 1 Vs co.

x=0

SY 1s an approximation to the solution of the differential
equation

u -¢ 0 u

a — y O0< x« 0, t > 0
W Oc Ww — —

t X

L with boundary condition

w(0,t) a u(0,t) .

This technique has been used in [1], [2] and [3] where more detailed

descriptions of this process can be found. Under this transformation

the conditions v.(t) = ¢

2 ont)s vit) = 2,(6) and vy (t) = 2,(t) |
_become

v, (t) = Loy (8) |
(2.1c1) N

| v(t) = T(t)
~J

volt) = £,(t)

and (2.2a) becomes

v = £,(t-k) + c 2kp_ (0) 7 (bt)
OC" f "v

Y = 2M-1, 2M-2, « mo 0, -1, -2, CL
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It is shown in [7] that stability according to their Definition 2.3is

| equivalent to the fact that a determinantal equation (equation (10.3)

of [71) not vanish for complex Zz such that |z| > 1. This determinantal

equation can be derived formally by seeking the general solutions of

(2.1a) and (2.2a') of the form v, (t) = RAE 2nd 7,(t) _ pV, tlk
which belong to 4, (h,) and t, (nn) for t+ > 0 and all complex z
such that 1z71> 1, i.e.,

Iv, WIZ (=n = |v |?
and vo £, (n) © v=0 hos

~00

I 17,60, yy =h ZIT,0)% <w .2 V=2M

|
{ When this general solution 1s substituted into the boundary conditions

(2.1c1), a homogeneous system of linear equations for the arbitrary

constants in the general solution 1s obtained. 1ot C be the matrix of

this system. The determinant condition (10.3) of [7]ig det C 40

for f I> 1. This 1s the requirement that there exist no non-trivial

solutions of the assumed form for |z|> 1 which satisfy the boundary

conditions. Our determinantal condition is equivalent to

1 1 1

(2.4a) det STS eM £0 if i, y. ,

< < aa



and to

1 oO 1

2. ps(2.4b) det wk, 1 tM Vio if k=
1 2

2 -2M
Ky 2K, ¢

Ky and kK, are the roots of the characteristic equation

(2.5) SVE RC2.5 KT - 8c” lz” =~ 3) »
CAZ K + 8k - 1 —- 0

corresponding to_(2.1a) such that | «
Ny <1. § is the root of the

characteristic equation

2 (g° _(2.6) lz- 1)

|_-

corresponding to (2.23!) such that le] <1 The fact that .* K

. - 1' 2

and { are uniquely defined as the continuous functions of z

| satisfying these criteria is established in [7]. It is also shown in

[7] that ic, | <1, i =,1 2 and [¢| < 1 for 2] > 1 so the
conditions (2.ka) and (2.4b) are satisfied for Iz| > 1 since these
determinants only vanish if «k tM op -M

1 Ky _ § 7. In order to
complete our analysis we must examine the roots

P y tS Kes Kn 0) (2.5)
_1s6

and { of (2.6) for z= ee, To do this we need the following lemma.
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Lemma 2.1. Let z = et and Ky (6) and K, (0) be the roots of (2.5)

which satisfy <1 <1, J =1, 2, when lz] > 1. If we number properly

then [| < 1 and |x| < 1 for all 8. Let c¢ < 0. Define iN
to be the smallest positive value of # such that

_12 sin 8

plo) === = V36+ 96 VB =-1646
C

then 0 < 6, < 7/2. Set 6, = T- 6, then (9) = p(e,). Define 0,
6, < 6; < T, by B63) = -16. Define 6, T < 6 <3m/2, by

CH = 16. Let Or be the smallest value of 6 such that
8(6) = 36 + 96 & = 16.46 . . . , then 3T/2<6 < or

o Ql¢

%% = 27 - O55 then ple.) = ple). The 0 so defined satisfy

0 <8) £9 <0 <TH <0 <G <2. 6, = 6, and 05 = 6, if and
. only 1f en] = 12/ V36 + 96/6. The following properties of K, (6) hold:

“3 for 6 = 0
|

| Re k, < 0, lk, | =1 for 0<6<86,
K |] <1Ie. | for 6) <6 <6, if 6) <6

Re kK, <0, lk, = 1 for 9 <0 < 04
K

: 2 = 3 for 6 = 68
1 3

} Re k, > 0, |x, | = 1 for 6, < 6 <

Koy = 1 for 6 = 1

Re Ky > 0, lk, |= 1 for mT <6 <8),

10



K -i
Dp = for 6 = 6

ly

Re k, <0, lx}=1 for 8, <6 <0,
k.| <1 foro. < 8 o i

| 5 5 < 6 if 2- <8

Re «, <0, lk, | =1 for 6, < 6 < aT

If ¢ > 0 then Koy (0) = 1 and the above properties hold 1f we replace

Proof: The properties of the 6 follow easily from the assumption that
(2.13) is stable for the related Cauchy problem, 1i.e.,

| en | <12//36 + 96 V6 >» and the properties of cos 6. 1t was shown
in Lemma 2.1 of [11] that ky [<1 and IN < 1 if 82 (5) S 36 + 9%

- and that one of the oF satisfied Ik] =1 and the other |< | <1J

for each value of 6 such that 6% (8) < 36 +96 Vo. From our
. CL 2

definition of the 0.5 B (6) >36 + 96\E ror 6, <0 <6, if 8, 4 6, and for
Bs < 0 < 6g if 6, # Os and 8° (6) < 36 + 96 V6 otherwise. For
B # 0, +8, + 16 the number of roots of (2.5) with positive real part,

P, and the number with negative real part, gq, are given by

2 2

» = V(L, -8, & - 6%, 85°, g2(s° - 256))
and

2

a = V(1,8,6h - g°,-88%, p2(g° - 256))

11



where Via), Coe ey a) denotes the number of changes of sign in the

real sequence aq 5 oN coe ay (Theorem (Lho,1) of [10]). We
calculate:

P=3% and qg = 1 for 0 < |g] < 8,

P=23 and g = 1 for 8 < |p| < 16,

p = 2 and q = 2 for 16 < |g] .

Examining the roots of (2.5) at z = 1 and at z = 1 +38, 8 > 0,

we find that Ki = 0.127, ... |, Ky = -1 and p =3, g=1 at 6 = 0.

By continuity, since p = 3, g = 1 for 0 < 6] < 8 and since kk = + 3

are roots of (2.5) if and only if Bp = +16; we can conclude that <
remains in the left half-plane for the e-neighborhood of ( such that

0 <|pl<8. Since + 1 are not roots of (2.5) for p = + 8 and

v | = 1, we can conclude that Ky remains in the left half-plane for

the larger 6-neighborhood of 0 such that 0 < 8] <16. Examination
L 10, 16,

of the roots of (2.5) at zz =e and z = (1 + Be shows
i6

ks (6) = (-0.2247...) + i(-0.974k...).so, again by continuity, (6)
must remain in the left half-plane for 8] >16 since p =2, q = 2 for

io

all such B. Examination of the roots of (2.5) at z = e 5 ylelds

(0) = i and at 2 = ok we find k.(6,) = -1 so it is « that23 2h 2

moves 1nto the right half-plane as we enlarge the B-neighborhood of 0

beyond 93 and O), « We can conclude that |x | < 1 and that Re Ky <0

for 0<6 < 63 and 64 <6< 2T and Re K, > 0 for 9, <6 < 9.

12



This concludes the proof for c¢c < 0. The proof for c¢ > 0 proceeds

similarly.

It follows from Lemma (6.2) of [7] and the formulae immediately

| preceding it that: (1) Id = 1 and sign(Re {) = —sign(c Re z) when
Z pe and 6 satisfies (sin 8 | < eral, (2) |] < 1 when
sin 6] > Agel, and (3) § = -1 when z = -1 and { = 1 when z = 1.

We now return to the examination of the determinant condition.

We saw that it was satisfied for 2] > 1 and now consider z = et?
It follows easily from Lemma 2.1 and the preceding paragraph that

Ky # ¢™ since ry < 1 and le ™) > 1. Now we only have the
) condition Kn # gM remaining to examine. We consider three cases.

CaseI, M=1. If M = 1, then A, = Ap and

sin el if and only if ig (0) ] = 12 nt < 12.CA & ICA -

If |sin o/h] < 1 then Lemma 2.1 implies that sign (Rek, ) = - sign (Re -
| since. Re { = Re t™% and [gl < 12. If [sin alrJ, > 1 then

Ie] < 1 so ad > 1 and |x, | < 1. We can conclude that 3 4 gL
and that the combined method 1s stable for the Cauchy problem if

M = 1.

Case II, M even. If M is even then eM = k, at 6 = m since { = -1 and
Ko —-1 at © =m. The determinant condition is violated and the combined

method unstable for the Cauchy problem for any even M.

13



Case IIT, M23 and odd. (Consider 6 on the interval 6, <6 < 0
where 7, and Oz are defined as in Lemma 2.1. <, (8) is a continuous
function of ¢ and |, | = 1 on this interval. From Lemma 2.1 we have

arg(iy (6,)) = 1.797... ana arglk, (0,)) = 1/2 so arglk,(0,)) arg (Ko) ).
It is easily seen [7] that

¢ =i sin/ch, + sign (cos 6)(1 - 5n6/c?2) 1/2.

When 8, <0 < 0 then | ¢ | = land Im { = sin 0/ch.. satisfies

1.372... 36 + 96 sin 9, oi sin 6—edlceee _ __Y JB _ in © 3
M 12M CT Toh, = ch, = cA

. £ f £

1 = - ES = - 1.333...3M M :

¢ and ¢ are also continuous functions on this interval.

. ~1 -

arg(f) = sin "(sin O/ch.) and arg({ My = um arg (t) so

arg (£7M(0_)) = au s: “Lr. -M) 5/7 = =M sin [ (- V36 + 96 J6)/12M] and arg (¢ (6,)) =
. -M sin 1 ( n M) -1 |- 3 MJ. We consider values of gin ~ (8) on [0,27). It

: -M ~M

is clear that arg(¢ (6,)) < arg(¢ (65)) and eosily sesn Chal
-M

arg (Ky (6, )) > arg(t (6,)) for all M>3. Thus, we have two

continuous functions, 0 (6) and tM), whose ranges coincide for
some interval [6,,8,] where ©, < 6 <9 so they must take on the

same value for some 6 ¢ [6,46] and the determinant condition is

14



violated there. By a similar argument we can see that there is another

value of © between 6, and 7. where the determinant condition is
violated. Therefore, the combined-method is unstable for the Cauchy

problem for all odd M> 3.

| The stability of the right quarter-plane problem now follows

easily for M = 1 since (2.2) is stable with (2.2a). This results

from the fact that we can represent the vy in terms of { 4nd the

determinantal condition to be verified 1s just that for (2.23) with

(2.2b) which has already been verified [4]. jie have

) Theorem 2.1. The approximation (2.1)-(2.3) 1s stable for M = 1 and

unstable for all M > 2.
.

Before commenting on this result we will first present a modified

I version of this method.
It 1s of interest to consider handling the right boundary with

~ the r, mesh extending from x = 1 - 2h, to x = 1 (over two h,
intevals as we have done with the left boundary). This 1s natural to

consider for vector equations where there are both inflow and outflow

quantities on both boundaries, and for equations with coefficients

which are functions of t so that the artificial internal boundary

at x = 1 - bh may be at times an inflow and at times an outflow

boundary. We can accomplish this by redefining the grid function

r,t) for v-0, 1, . . . , 2M as r, (t) = r(1 - 2h + Vh, t) and
using the equations

15
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r

Toy t) = g(t)
(2.1e) _

ry, (t) Typ (8)
t) =

r, ) Vp (8)

instead of those involving the r, of (2.1¢)

Let us consider the stability of this method. The associated

right quarter-plane problem 1s the same as before and therefore stable

if and only 1f M = 1. We now consider the associated left quarter-

- plane problem. Since (2.3%a) is stable with (2.3b) as previously remarked

| we need only consider the stability of (2.1a) coupled with (2.3a) by
the conditions (2.le) for the related Cauehy problem. If we fold the

| x-axis at x = 1 and renumber the v, andr_ we again obtain theV

conditions (2.4) which we have already examined. {je have

Theorem 2.2. The approximation (2.1)-(2.3) with the r, approximation

extended over [1 - 2h ,1] and the r,t) equations of (2.1lc) replaced

by those of (2.1e) is stable for M = 1 and unstable for all M > 2.

The methods found to be unstable in Theorems 2.1 and 2.2 have

only violated the determinant condition for values of z which lie

on the unit circle, i.e., they satisfy the Godunov-Ryabenkii condition

[7].It is easily seen that the roots k, (z) and ¢(z) are simple
roots of the characteristic equations for those z which violate the

determinant condition. Such instabilities have been discussed by

16



Kreiss [8]. Approximations of this type for problems on bounded x-intervals

: have solutions which grow like not « >» 0. Further, the extension

| of any estimates obtainable for problems with constant coefficients

to problems with variable coefficients 1s, 1n general, impossible.

Computational experiments with M > 1 for the model problem

(1.1)-(2.3) have indicated that these methods can be used successfully

for limited times to approximate smooth solutions. However, experiments

with the equation uo - uo = u =0, 0<x<1, 0<y< 1, have shown
disastrous growth when M is even while behaving reasonably for

i limited times with M odd.
Theorems 2.1 and 2.2 are disappointing. If we couple leap-frog

| with the centered 6h’ + x“) interior approximation we obviously
} have no opportunity to refine the mesh to achieve uniform accuracy.

. Computational results with M = 1 are given in Section 3. They

illustrate the fact that we really need M > 1 to achieve overall

| on? + 5°) accuracy when compared with results obtained in [11].
However, there are situations where these techniques with M = 1 can

be useful, If the boundary data 1s rather inaccurate then nothing could

be gained by a refinement, M > 1. If this is the case and the boundary

1s sufficiently removed from an interior portion of the domain where

the approximation 1s desired, then these techniques with M = 1 can

be useful. Of course, the area of integration must be so large that

the boundary errors will not propagate into the region of interest

during the duration of the computation.

We next consider replacing the approximations (2.2) and (2.3)

by the dissipative Lax-Wendroff -method. We replace (2.2a) by

17



k
1

(2.7a) 0. (t , k) _ Ap
vt — 2, (t) - keDy (h_.) Ly(t) +5 Kk 2D,D ¢ (t)

) for Vv =1, 2, .,., 2M-1

where D,D 2 (t) = (2, (8) - 21,,(t) + L, L(8)nE. We replace
(2.2b) by

(2.7b) tt +k) =2.(%)-of ) of ) keD 2, (t)

where

_ D J _ _ -1Wo (8) = (ey (2) LE)n=

L Similarly, we replace (2.3%a) by

.

(2.8a) r,t + k) =r (t)- keD (hn) r, (t) + > k°c®D,D_r, (t)

for v=1,2, . . . , M-1

and (2.3b) by

(2.8b) r (t =ot + k) ryt) - keD, xr (t)

The approximations (2.72) and (2.84) have local truncation error
2 2

on + kX“) and the boundary approximations (2.7b) and (2.8) have

local truncation error 6h, + k). The approximations (2.7) and

(2.8) have been shown to be stable for the related quarter~-plane

problems in [7] and the convergence results of Gustafsson [6] apply

18
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in this case as before to tell us that the overall convergence will

not be adversely affected if the method 1s stable. When we apply the

same techniques to this method we again obtain the determinantal

conditions (2.4), In this case { is the root of

AC AC a2

(2.9) (2 -V-2=(F-1) - I= - 12-0

such that [¢] <1 for |z] > 1. It was shown in [7] that this condition

uniquely defines €, that Id < 1 if lz | > 1 and c¢ > 0, and

tl <1 if lz] > 1, z £1 and ¢ <0. If ¢c < 0 andz = 1 then

(= 1. Therefore , the determinantal conditions (2.4) are satisfied

for allM since |e, | < 1, 1 =1, 2, and [tM > 1. If we consider
the refinement over two intervals on the right hand end of the interval

I stability is again equivalent to the conditions (2.4) which we have
already verified. We have established

Theorem 2.3. The method given by (0.1), (2.7) and (2.8 ) with the matching

conditions (2.1c) is stable for all M. The analogous method resulting

" from the extension of r, over [1 -2n , 1] and the replacement of

the r, equations of (21c)by those of (2.1e) is also stable for

all M.

We present results for this method in Section 3.

It 1s now easy to see how these results generalize to systems

of equations and that the form of the results 1s independent of the

approximations used to a great extent.
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Consider the strictly hyperbolic system

u, = Au, a <x<b, t > 0

S

where u € BR” and A is a constant s X s matrix of the form

at 0

— TI
A >» AT <0, AII > 0 .

0 All

To simplify matters we assume that A has already been transformed

to diagonal form-.

Let us prescribe initial conditions

C

u(x,0) = f(x)

and boundary conditions

~ I _ IT I
u = Su +g, (t) at X =a

-7-t | IT
Su 4 &, (t) at x=Db |

|

LA 5 and Sh are
B "le assume

yoo [oo “os «A



|

with their boundary approximations, are stable for the related quarter-

plane and Cauchy problems and that A, 1s stable for the related

Cauchy problem for the given AL and Ag defined as before.

In this situation it 1s more natural to consider the second

method of linking the net functions together. That is, we link the

grid functions at both ends of the interval requiring equality at some

number of points on the v(t) grid. Under the assumption that the

methods Ay and A, are stable for the related quarter-plane problems
we need only look at the stability of the related Cauchy problems for

the combined 4 - A, and A, - A, methods and we can do this
separately. We only consider one case-—-the other is similar. Tf ye

L look at the related folded problem for Ay = Ay for a < x < ®

i 1t 1s an approximation for the modified equation

| .
N Att
We = : Cu, a<x<® ts Q

- —A X Bh -

a

with

~~ ~T ~T ~ "
a= J IL SH IV)

and boundary conditions

~T ~MIIT SIV ~TT
4 =u 5 uw =u a tX =a.

We then write out the appropriate modified approximation using method

~T ~T

Ag for the vector (u , U )! and A, for the vector (oILil ZV)b [J
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The characteristic equations K (6,2) and K(K,z) related to the
approximations A, and A,, respectively, are polynomials in K

and C, say, with coefficients which are polynomials 1n =z. Since
A

1 and A, are stable for the Cauchy problem the roots of K and
split into two groups as before

K, / "1.x, and Mk , with thei

property that ke, | <1 and [¢. |< 1 for lz] > 1 if E eM
- 1 = — 1 1,Ky

and kK. € M

5 1K,’ and Ix, | > 1 and €. | > 1 for lz | > 1 if
9 S "2.x, and K€ Ye. This is shown in [7] and simply follows

- from stability for the related Cauchy problems, Let M, . contain
m, roots and M tain m 1contain

\ 1 “1K, ) roots.
Then the my, + m, conditions

. (2.10) v(t) = 2), v=0,1,.. (my+m -1)

for the original problem uniquely determine the solutions in ly. We obtain

the determinental condition det C £ 0 as before.
In this case C

1s equivalent to a block Vandermonde or block confluent Vandermonde

matrix. In fact, if D is the matrix we would obtain using the

1

approximations Ay and A, for u € R© and D = a...) then we can
represent C as

Cc = (a,.1)
iJ s

and det C = 0 if and only if K, = eM
ics orf EM x and £, € M1 :2

Thus we see that analogs of Theorems 2.1, 2.2 and 2.3 hold in these Ei

more general circumstances. 1p particular, the matching theorem of
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Ciment [3] holds if only one of the stable matched schemes is dissipative.

Details on the derivation of the form of C are given in [3]. We

summarize 1n )

Theorem 2.4. The method given by the combination of A, A, and A,

through conditions of the form (2.10) is stable if - FC for
|Z | > 1 where the 65's are roots of the characteristic equations

corresponding to the boundary methods Ay and A, such that
¢ < 1 and the K's are the roots of the characteristic equation

corresponding te the interior approximation A, such that |<. | <1,

for |z| > l. In particular, if A, 1s dissipative or both A and
. A; are dissipative and the root condition dN holds for z = +1,

. then the combined method 1s stable.

Proof:

To complete the proof we only need to remark that the roots

of the characteristic equation for a dissipative approximation [7]

satisfy lkl<1 for lz | > 1 and z 4 + 1.

The paper of Gustafsson et al, [7] presents several stable

boundary approximations which can be used for Ay and 2,
Theorem 2.4 shows that dissipative modifications of the leap-

frog method could be used with the ola’ + 5) centered approximation
treated in Theorems 2.1 and 2.2 to yield stable method with M > 3

and odd.
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So far our discussion has always assumed that we use the same

time step, k > 0, for both the interior and boundary approximations.

The stability restriction on A places a restrictionon M since

Ap < Aa ard Aa is an increasing function of M. For the on’ » k= )
2 2

and 6 (nj + k°) methods this usually does not cause any real problem.

It 1s natural to choose hc and k so that the truncation errors

arising from the spacial and temporal discretizations are of roughly

the same size. This leads us to the condition

hy 2 2
h, = k or h, =~ k .

It 1s reasonable to choose M so that

2 L 2
h, = ~~
r h or h, bh

L

I so that the spacial truncation error is of roughly the same size for the
interior and boundary approximations. This leads us to

oe.

he = k
or

Ap = k/h., ~ 1

which indicates that the usual stability restrictions for explicit

methods will not create a problem. This also agrees with the condition

we obtain if we ask that the spacial and temporal truncation errors be

of the same size in the boundary approximation, 1i.e.,

2 2
‘hy ~ kK.

The computational results in Section3 bear this out.
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If a situation arises where the previous estimates are not

valid due to the behavior of the solution a smaller time step can be

used on the refined grid by interpolating in time on the Vy net

| where intermediate values are needed after first computing the new

values on the v, net. This is always possible with an explicit

method. The previous analysis does not hold in this case but we have

performed several computations in this manner ypich indicate the

success of this procedure. Some calculations of this type are presented

in Section 3.

L 3. Computational Results

Our first set of computations are approximations to (1.1), (1.2)

> and (1.3) with c=1, a=0, b=1, f(x) = sin 4mx and

g(t) = f(-t) which has the solution u(x,t)= f(x~-t). This could be

stated as a periodic boundary problem but we treat 1t as an initial

boundary-value problem. This is useful since it allows direct com-

parisons with periodic computations as done in[11]. It was somewhat

more convenient to discuss our theoretical results with c¢ < 0 but

we have chosen to use ¢ =1 > (0 here so that the computations will

be immediately comparable with those of [11].The theoretical results

are, of course, unchanged and the difference approximations are just

the reflections of those already introduced.

We define the error in the vth grid point to be e,, (t)

= ulx,,t) - v,, (t) and compute error norms over the v, (t) grid.
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We use the previously defined £,(n ) norm and the ? norm defined
5 TET, = maxl|e |.

In Table 3.1 we give the results of the method analogous to

| that defined by equations (2.1)-(2.3). We include results obtained
using smaller time steps on the refined grid and use | _ k/k, to
denote this ratio in the table. We append the letters gq or £ to

the numbers in the L-column to indicate whether quadratic or linear

interpolation was used. We have used A, = 1/4 with N = 20 for
these calculations. We have used the solution at t = k for w

in (2.1dWe use the notation a - b to represent 5 x 1070 in

i our tables. Recall that these methods are not stable according to
the Definition 3.3 of [7] for M > 1.

_ In Table 3.2 we report the results of the same computation

using Lax-Wendroff in the refined regions, 1i.e., the reflections of

" equations (2.1), (2.2a'), (2.2b'), (2.3a') and (2.3b'),

These results can be compared with those given in [11]. We

include some results obtained 1n that paper using uncentered on)
© approximations in the neighborhood of the boundaries for purposes of

comparison, The problem and all other parameters are the same as

those used here. These results are in Table 3.3.

It is clear that we only need M = 3 and L = 1 in this

case to achieve the same accuracy. Interpolation in time is not

necessary to obtain this accuracy. If greater accuracy is required

interpolation may become necessary.
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TABIE 3.1

SE APR leJl, vl, lel, leJl,2 i. 2 2 co

t = 0.5 t = 1.0

1 6.54-1 1.14-1 2.23-1 5.71-1 1.85-1 4.16-1

1 7.02-1  1.76-2  3.63-2 6.99-1  2.69-2 4.972

3 1 7.04-1 6.16-3 1.19-2 7.00-1 9,08-3 1.78-2

4 1 7.07-1  3.02-3  5.55-3 7.07-1 4,38-3 9,06-3

Y 2,0 7.06-1  5.99-3 1.14-2 7.05-1 9,48-3 1.95-0

hooo2,4 0 7.06-1  5.99-3  L.ak-2 7.05-1  9.48-3  1.95-2

5 2,0 7.061 4.13-3 8.00-3 7.04-1 5.98-3 1.20-2

5 2,0  T7.06-1  k.hp-3  8.59-3 7.0h-1 6.18-3 1.38-2

t = 2.0 t = 4.0

" 1 1 5.35-1 2.21-1 4.07-1 5.37-1 2.03-1 3.76-1

2 1 T.02-1 2.39-2 5.81-2 6.941 T.45-2 1.60-1

3 1 6.98-1 9,67-3 1.76-2 6.99-1 9, 63-3 1.75-2

4 1 7.07-1 443-3 9, 65-3 7.07-1 4,76-3 9,99-3

] 2,0  7.06-1 8.85-3 2.20-2 7.06-1 8.,95-3 2.21-2
_ 4 2,4 T7.06-1  8.85-3 2.20-2 7.06-1 8.95-3 2.21-2

5 2,9 7.03-1 5.51-3 1.05-2 7.03-1 5.54-3 1.05-2

5 2,0 T.04-1  4.83-3 9,74-3 7.04-1 490-3 1.01-2

27



TABLE 3.2

2 2 © 2 2

1 1 6.52-1 9.972 1.97-1 5.75-1 1.60-1 3.407
2 1 6.96-1 1.66-2 3.32-2 6.84 -1 2.52-2 3.86-2

3 1 7.04-1 5.97-3 1.09-2 7.00-1 9.02-3 1.39.2
4 1 7.07-1 3.02-3 5.55-3 7.07-1 4,38-3 9.26-3

4 2,9 7.04-1 5.51-3 9.04-3 7.01-1 8.44-3 1.39-2
4 2,2 7.04-1 5.56-3 9.27-3 7.01-1 8.32-3 1.43.2
d 2,9 7.05-1 4,11-3 6.32-3 7.04-1 0.21-3 1.17-2

5 2,4 7.05-1 4.18-3 6.67-3 T.04-1 6.14-3 1.21-2

| _t=20 _ t=ko
L 1 1 5.48-1  1.88-T  3.32-] 5.52-1  1.77-1  3.14-1

a, 1 6.83-1 2.69-2 3.982 6.83-1  2.70-2 4.05.2
I 3 1 6.99-1  9.41-3 1.52-2 6.99-1  9.k2-3  1.53.p

I 1 7.07-1 4,43-3 9.66-3 7.07-1 4,73-3 9.91-3

) 4 2,q 7.01-1  g7g3  1.h9-p 7.01-1  8.79-3  1.50-2
I 2, 7.01-1 8.20-4 1.45-2 7.01-r 8.233 1.48-2
5 2,a  T.03-l. (33.3 1.16.0 7.03-1  6.34-3  1.17-2

-5 2,1 1.04-1 5.76-3 1.13-2 7.04-1 5.79-3 1.15-2

TABIE 3.3

OWL le IR wnIl, ley I, 0, | uly, A le, I]

7.12-1 9.69-3 2.34.2 7.08-1 1.34 2.51-2

t = 2.0 t 4.09 — tt=.r

1.30-2 2.04-p 0.96-1 1.25-2 2.282
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