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ABSTRACT
The use of lower order approximations in the neighborhood of

boundaries coupled with higher order interior approximations is

examined for the mixed initial boundary-value problem for hyperbolic
partial differential equations. Uniform error can be maintained using
smaller grid intervals with the lower order approximations near the
boundaries. Stability results are presented for approximations to the
initial boundary-value problem for the model equation u + cu =0
which are fourth order in space and second order in time in the interior
.and second order in both space and time near the boundaries. These
results are generalized to a class of methods of this type for hyperbolic

systems . Computational results are presented and comparisons are made

with‘other methods.
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1. Introduction. It has been established that fourth order methods are

much more efficient than those of first and second order for hyperbolic
partial differential equations [5,9,11]. When such methods are used for
the initial boundary-value problem, awkward situations arise in the
neighborhood of the boundaries since the interior approximations cannot
be used there in a straightforward manner. It is attractive to consider
matching lower order approximations in the neighborhood of the boundaries
to higher order interior approximations. However, it has been established
by Gustafsson [6] that more than one order of accuracy cannot be dropped
near the boundaries without sacrificing the rate of convergence over the
entire region. Computational examples [6,11] illustrate this fact. con-
sequently, a denser net must be used with the lower order approximation
if the overall accuracy is to be maintained.

There are many applications where this approach is quite natural
for other reasons. For example, oceanographic problems often have
boundaries and associated boundary layer phenomena which are quite
complex compared to the solution in the interior. A very fine grid may

. be necessary to adequately represent these boundaries and lower order
approximations may be appropriate in the boundary layer since the boundary
influence is often of a forced rather than a transient nature (see [5,9]
for details of the error as a function of time for approximations of
different orders of accuracy).

In Section 2 we begin by examining methods for the model problem



(1.1) Uy + cu, = o, e <0, a<x<b, t> 0

(1.2) u(x,0) = fx, a<x<b
(1.3)  u,t) =gt), t > 0;

with compatibility condition f(b) = g(O). We first consider a centered
difference approximation to (1.1)-(1.3) which is fourth order in space
and second order in time in the interior coupled with the second

order leap-frog method near the boundaries. This method is found to be
unstable unless the same grid interval is used with both the leap-frog
and more accurate interior approximations. Consequently, this method
has limited usefulness. We also consider using the Lax-Wendroff approxi-
mation near the boundaries. This combined method is found to be stable.
We conclude Section 2 with general results for methods of this type for
hyperbolic systems.

In Section 3 we present numerical results obtained using the
methods presented in Section 2 and compare these results with those
obtained in [11] where uncentered approximations of third order were used
in the neighborhood of the boundaries.

We will use the theory of Gustafsson, Kreiss and Sundstr&n[7]
and assume that the reader is familiar with the results of that paper.
The stability results presented .here for constant coefficients can be

extended to the variable coefficient case in the same manner as those

of [T].
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2. The Methods and Stability Results

We begin by examining an approximation to (l.l), (1.2) and (1.3),

We can take a = 0 and b = 1 |ithout loss of generality. ret k > 0,

h, = 1/N and he = hc/M where N and M are natural numbers Let

?\c = k/hc and Af = k/hf. Define grid functions v,, (t) - V(th,t)

for v =0,1,...,N; £ (t) = l(vhf,t) for v = 0,1,...,2M and

ZV
r,(t) = I‘(l-hc+Vhf,t) for v =0,1,...,M where t = 0,k,2k,..., see

Figure 1. For 2 < ¥ < N-2 we approximate (1.1) by the (9(}-1"; + ke)

approximation
- Figure 1
M 2M rO . . iy
| | rof "
| | | J J 1
v V.
E> 1 v, "N-1 N
=0 x=1

(2.1a) vv(t + k) = v, (t-k) - c2k [%Do(hc) -%DO(EhC)] V\)(t)

h _ -1
where Do(nhC )VV (t) (thc) [v\,+n(t) - vv—n(t) J
On the interval [O,th!] we approximate(l. 1 by the @(hi + kg)

approximation

2.2a £ = - -
( ) v(t + k) ) \</t k) c2kDO(hf)£v(t) for v=1,2,...,2M1,

_ 2
and at x = 0 by the @(hf + k) approximation

(2.2p) 2o(t + k) = 2o(t - X) - c2ro [ £7(t) - 0.5(2p(t-x) + Lot + k)1



On the interval [31 - hc’ 1] we approximate (1, 71) by the similar

2 2 '
G(hf + kX ) and G(hf + k2) formulae

(2.3a) r\)(t +k) = r (t-k) - CQkDO(hf? r\)(t) for v = 1,2,..

A

and

(2.30)  r (t+ k)

Corresponding to the initial condition (1.2) . ..o

(2-1b) v\)(o)u': f(\)hc) for v = O,l,icc,N.

>

(2.2¢0) !\)(O) - f(vhf) for v = 0,1,...,2M,

and

(2.3¢) r\)(O) = f(1 - h+ vhg ) for y=0,1,...,M.

Corresponding to the boundary condition (1,3) we use

(2.2d4) = (t)= g(t) for t = 0 k 2k

Jeoo o

We then link the grid functions (t),v (t) and (t)
v v v

by

1

(%)
‘( Vl(t)

8 (%),
1,(t),

C o vp(t) = Lop(t)

((2.1¢)
vN—l(t)= I‘O(t), and
ve(t) = x,(6)

for t = O,k, 2k,on. .

ro(t - k) - c2)\f [rl(t) - O.5(ro(t + k) + r,

«+, M-1

((t - k))I.



We complete the specification by giving

(vv(k) = w(vhc) ) V= 0,1,...,N
(2.1d) 2, (k) = W(Vhf) , V = 0,1,...,2M
r, (k) = w(l-n *Vho) ,v = 0,1,...,M

where w is a sufficiently accurate approximation to the solution
ulx,t) at t = k.

It is clear that the equations (2.1), (2.2) and (2.3) determine
a unique approximation which is consistent with the problem (l.l),

(1.2) and (1.3).

The one-sided formulae (2.2b) and (E.Bb) are due to A. Sundstrom
and it has been shown in Elvius and Sundstrom [4] that they yield stable
approximations for the related initial boundary-value problems when used
with the formulae (2.2a) and (2.3a). It is well-known that (2 la) is
a stable approximation for the related Cauchy problem [5,9].

Note that the approximations (2.2b) and (2.5b) are only

2
'G(hf*k ) accurate. However, it follows from the results of Gustafsson

[6] that overall convergence behavior is not adversely affected.

Assumption. We assume that ?\C and )‘f satisfy stability
criteria which guarantee that our interior approximations are stable

for the related Cauchy problems.

(2.1a), (2.2a) and (2.3a) are stable for the related Cauchy

problems if |cl7\f <1 and | ctl)\c < 6/N9 + 24 \JB = 0.7287 . ...
5



We now investigate the stability of the method defined by (2.1), (2.2)
and (2.3). We use the stability Definition 3.3 of Gustafsson et al. [ 7 ].
In [7], it is established (Theorem 5.4) that the stability of two related
quarter-plane problems is equivalent to stability for the two-boundary
problem in the sense of Definition 3.3. These two problems are simply
obtained by removing one or the other of the boundaries and extending the
domain to + ® , as 1s appropriate. We will refer to these as the right
and left quarter-plane problems.

It is immediate that the associated left quarter-plane problem,

~-o<x<1, t >0, (we extend v over the negative integers in (2.la))
is stable by Definition 3.3 of [7]. This follows from the fact that (2.la)
is stable for the related Cauchy problem and that (2.3a) and (2.3b) are stable

on the interval [1 =- hc,]J and provide a l(t) which is bounded on every

Y
finite t-interval in terms of the data g(t) . It is the independence of
the calculation of the rv from the v, that makes this trivial.

The situation is more complicated for the associated right quarter-
plane problem, 0 < x <® , t > 0 . First we must examine the stability of

the approximation for the Cauchy problem given by (2.la) with y extended

over all natural numbers and (2.,2a) with v extended over the negative
integers. This is the problem of matching schemes investigated by
Ciment [ 3 ] for dissipative approximations. This can also be analyzed
in terms of the theory of [7 ] since we can think of folding the x-axis
at zero and investigating the initial boundary-value problem for a

)

vector v oLl
(v, Ay

The new net structure is shown in Figure 2.

6
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(VV’!MV)' 1s an approximation to the solution of the differential

equation

0 < t
w 0 c w ’ S X< zo

with boundary condition

w(0,t) . u(o,t) .

This technique has been used in [1], [2] and [3] where more detailed
descriptions of this process can be found. Under this transformation

the conditions v.(t) = £
2 ou(®)s Vi (6) = 2y(6) ana v (t) = £,(t)
_become |

~

v, (t) = ZEM(t)
(2.1e1) ~ |
. Vl(t) = EM(t)

~

vo(t) = zo(t)

and (2.2&) becomes

(2.2a') 2 (t+ ] ~
k) = ¢ t-k) + 2xD_ (h t
Y 1,( ) C O‘(-f) [ ( )

v = QM-l, 2M_2’
7

¢ B g O: 'l; —2,
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It is shown in [7] that stability according to their Definition 3%.3is
equivalent to the fact that a determinantal equation (equation (10.3)

of [7]) not vanish for complex z such that,|zi > 1. This determinantal
equation can be derived formally by seeking the general solutions of
(2.1a) and (2.2a') of the form v, (t) = szt/k and ;;(t) _ §Vzt/k

which belong to 32 (hc) and l2(hf) for t > 0 and all complex z

such that 71z1> 1, i.e.,

foe]

2 _ 2
”v'V(t)”E2 (hc) = hc VE:O IVVI < o,
and
~ e ~ 2
IUV(t)’IEQ(hf) = B, VZZQMlzv(t)l <

When this general solution is substituted into the boundary conditions
(2.10'), a homogeneous system of linear equations for the arbitrary
constants in the general solution is obtained. 1[ot ¢ be the matrix of
this system. The determinant condition (10.3) of [7] is det C 4 O
for 4 t>_l. This is the requirement that there exist no non-trivial

solutions of the assumed form for |Z[> 1 which satisfy the boundary

conditions. OQur determinantal condition is equivalent to
1 1 1
-M .
(2.h4a) det Ky Ky ¢ £ 0 if Ky # K,



and to

1 0 1
(2.0 P =M .
) det| x; 1 ¢ Fo i K -k, .
2 -2M
Kl 2Ké €

K, and « are the roots of the characteristic equation

1 2

(2.5) Klt - 8K3 - 6{22 - 1)

C?\Z K2+'8K_l__o

corresponding to_(2.15) such that B ,
il < 1. § is the root of the

characteristic equation

2
2 ( -
(2.6) _ 27 - 1)
¢ chz 6 -1=0
corresponding to (2.2a') such that
P g ) ’gl < 1. The fact that Ky K
and § are uniquely defined as the continuous functions of z

satisfying these criteria is established in [7]. It is also shown in

'[7] that lKil <1, i =,1 2 and [¢] < 1 for lz] > 1 so the

conditions (2.4a) and (2.4p) are satisfied for .
Izl > 1 since these

determinants only vanish if « =§-Mor -M
1 Ky _ € 7. In order to
complete our analysis we must examine the roots
1’ Kg 0 f(Q.S)
ie

and £ of (2.6) for z= e To do this we need the following lemma.



i6
Lemma 2.1. Let z = e and Kl(G) and K2(9) be the roots of (2.5)
which satisfy IKJ-| <1, =1, 2, when |z] > 1. If we numper properly
then 'Kll < 1 and |K2| < 1l for all 8. Let e < 0. Define 6

1
to be the smallest positive value of # such that

plo) =222 0 \fg s o6 B —-1646
c
then 0 < 6, < m/2. Set 9, =T - 6y, then p(e,) = p(6,). Define 0,5

6, < 65 < T, by 6(93) = -16. Define 6, T < 6 < 3m/2, by

B(%) = 16. Let 95 be the smallest value of 6 such that

B(6) = V36 + 96 \J6 = 16.46 . . . , then 3m/2<6 . of
[

an ¢
96 = 2T - 95, then 6(66) = 6(95). The QJ_ so defined satisfy

O<91_<_92<65<7r<9u<65596<21r. 6, = 6, and 95=96

only if IC)\c' = 12/ V36 + 96\/6. The following properties of K2(6) hold:

if and

2 = 1 for 6 =0
Re K2<O, ,K2| =1 for 0<6£91
bl <1 for 6, <6 <6, if 6, <O
Re K, < 0, IKEI =1 for 0, <6< 0,
KE =i for 9=63
Re k, > 0, |k | =1 for 65 < 6 < T
K2 =1 for 6 =1
Re Ky > 0, IKE' =1 for wT <96 <9,+

10




K -1
D = for 6 =26
L
Re £, < 0, IK2l=1 for@h<6§05
|K|<l for6. < 6 0 i
5 5 <61f 95~<96
Re K, < 0, |k | =1 for 6, < 6 < am

If ¢ > 0 then Ky (0) = 1 and the above properties hold if we replace

& by 6' = 0-T.

Proof: = The properties of the QJ- follow easily from the assumption that

(2.1a) is stable for the related Cauchy problem, i.e.,

’07\01 512/\/36 + 96 ;Z > and the properties of cos 6. 71t was shown
in Lemma 2.1 of [1l1] that ,Klf<l and IKQI < 1 if 52(9) > 36 + 96\/6

and that one of the K satisfied |KJ,‘ =1 and the other |«.| <1

J
for each value of 6 such that ag(e) <36 +96 V6. From our
N 2

definition of the ej, B (6) >36+ 96\6 rfor 91 <0< 92 if 91 4 82 and for

O, <6 < 66 if 95 # 96; and 62(9)556 + 96 V6 otherwise. For

>
B 7{ 0, j8, * 16 the number of roots of (2.5) with positive real part,

P, and the number with negative real part, g, are given by

e =V, -8, & - p°, 86°, g% (e2 - 256))
and

a = V(1,8,6k - g°,-88%, g2 (R - 256))

11
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where V(a .y an)denotesthenumber of changes of sign in the

l) .
real sequence 2y Bns .. B (Theorem (40,1) of [10]1). We
calculate:
P=3 and q=1 for 0 < |g] < 8,
P=3 and q =1 for 8<|pl<16,
p=2 and q =2 for 16 < |gl

Examining the roots of (2.5) at z =1 and at z =1 +8,8 > 0,

we find that Kl = 0.127, ... , K2 = -1 and p =3, g=1 at 6 = 0.
By continuity, since p = 3, g = 1 for 0 < “3! < 8 and since « = F 1
are roots of (2.5) if and only if g = ¥16; we can conclude that K

remains in the left half-plane for the e-neighborhood of ( such that

0§_|B!<8. Since + i are not roots of (2.5) for g = + 8 and

|K2| = 1, we can conclude that Ke remains in the left half-plane for
the larger 6-neighborhood of 0 such that 0 < IBI <16. Examination
i6 i6
of the roots of (2.5) at z=e 1 and z = (1 + B)e 1 shows
i6

Ky (0)) = (-0.2247...) + 1(0.974k...). Similarly, at z = e 6 e find

K2(96) = (-0.22)-1-7...) + i(—0.97}+)4...).80, again by continuity, (6)

2
must remain in the left half-plane for |5I >16 since p =2, q =2 for
i6
all such B. Examination of the roots of (2.5) at z = e yields
io

: L
k. (6,) = nd at z = e ‘ = —] ‘ i
2( 3 i a we find Ke(sh) i so it 1is Kg that

moves into the right half-plane as we enlarge the B-neighborhood of 0

beyond 95 and Gll_. We can conclude that IKli < 1 and that Re K2<o

for 0< 6 <63 and 64 <6 < 2T and Re k, > 0 for 85 <9< 6.

12
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This concludes the proof for ¢ < 0. The proof for c > 0 proceeds

similarly.

It follows from Lemma (6.2) of[7] and the formulae immediately

preceding it that: (1) [¢| = 1 and sign(Re {) = -sign(c Re z) when
io L

z=e and 6 satisfies (sin @] < [c?\fl, (2) [t] < 1 when

'Sﬂlel > ‘%fC‘, and (3) ¢ = 1 when z = -1 and { = 1 when z = 1.

We now return to the examination of the determinant condition.
, . . if
We saw that it was satisfied for |zl > 1 and now consider z = e

It follows easily from Lemma 2.1 and the preceding paragraph that

Ao M
Ky since _|k,{ < 1 and |t ] > 1. DNow we only have the

1

Ly -M L \
condition Ky # ¢ remaining to examine. e consider three cases.

Case I, M=1. If M = 1, then ?\c = ?\f and

A
S

-Sill—g‘< 1 if and only if |g(s)] = 12 8in 8

- sign(Re t7Y)

If lsin 9/c7\f| < 1 then Lemma 2.1 implies that Sign(ReK2 )
since Re { = Re §'l and IB_[ < 12, If lsin 9/0)#.5 1 then

el < 1 so l{;_ll > 1 and |k.| < 1. We can conclude that -1
ol < 1 Ky 8

and that the combined method is stable for the Cauchy problem if

M = 1.

§M=K2 at @ = 7T since { = -1 and
K2 -1 at 6 =7. The determinant condition is violated and the combined

method unstable for the Cauchy problem for any even M.

Case II, M even. If M is even then

13



Case III, M23 and odd. (Consider 6 on the interval 62 <8 @5)

where 6, and 9; are defined as in Lemma 2.1. KE(Q) is a continuous

function of ¢ and |K2 { = 1 on this interval. From Lemma 2.1 we have

arg(Kg(Gg)) = 1.797... and arg(K2 (()5” = /2 so arg(Kg(F)g)) - arg(Kg(O_j) ).

It is easily seen [7] that

i sirle/c?\f + sign(cos €)(1 - sinee/chi)l/g.

e
1l

When 6, <6 <0, then [{[ =1 and In¢ = sin 8/ch, satisfies

L3Tece: | Y36+ %68 % ginp o0

M M - < <
12 chp CAp CAp
-k 1.333...
3M M .

_M ) ) . .
£ and ¢ are also continuous functions on this interval.

arg(t) = sin"T(sin 9/c?\f) and arg(t™) = —u arg(t) so

arg(C-M(GQ)) = -M sin-l[(- V36 + 96 J6)/12M] and arg(Q-M(GB)) =

M osin Yok - -1
M sin (-EM)' We consider values of sin ~(9) on [0,27). It

- -M M
is clear that arg(¢ (62)) < arg(t (95)) and easily seen that

- -M
arg (ky (6,)) > arg(¢7(6,)) for all M> 3. s, we have two
continuous functions, 2K (6) and {',—M(G), whose ranges coincide for

some interval [6,,6 ] wheref, < A 595 so they must take on the

same value for some 6 ¢ [92,901 and the determinant condition is

14



violated there. By a similar argument we can see that there is another

value of 6 between 6, and 95 where the determinant condition is
violated. Therefore, the combined-method is unstable for the Cauchy
problem for all odd M> 3.

The stability of the right quarter-plane problem now follows
easily for M = 1 since (2.2b) is stable with (2.2a). This results
from the fact that we can represent the v, in terms of § and the
determinantal condition to be verified is just that for (2.2a) with

(2.2v) which has already been verified [4]. We have

Theorem 2.1. The approximation (2.1)-(2.3) is stable for M = 1 and
unstable for all M > 2.

Before commenting on this result we will first present a modified
version of this method.

It is of interest to consider handling the right boundary with

the r, mesh extending from x =1 - 2hc to x = 1 (over two hC

intevals as we have done with the left boundary). This is natural to
consider for vector equations where there are both inflow and outflow
quantities on both boundaries, and for equations with coefficients
which are functions of t so that the artificial internal boundary
at ' x =1 - hC may be at times an inflow and at times an outflow
boundary. We can accomplish this by redefining the grid function

r. (t) for v=0, 1, . . . , 2M as rv(t) =r(1 - ghc + vhf, t) and

v

using the equations

15



(2.16) T (t) = v

instead of those involving the r, of (2.1c)

Let us consider the stability of this method. The associated

right quarter-plane problem is the same as before and therefore stable

if and only if M = 1. We now consider the associated left quarter-
plane problem. éince (2.3a) is stable with (2.3b) as previously remarked
we need only consider the stability of @.la)coupled with @.Ba)by

the conditions (2.1e) for the related Cauehy problem. 1f we fold the

v

conditions (2.4) which we have already examined. [e have

Theorem 2.2. The approximation (2.1)-(2.3) with the r, approximation
extended over (1 - 2hc,l] and the rv(t) equations of (2.1c) replaced

by those of (2.1e) is stable for M = 1 and unstable for all M > 2,

The methods found to be unstable in Theorems 2.1 and 2.2 have
only violated the determinant condition for values of z which lie
on the unit circle, 1i.e., they satisfy the Godunov-Ryabenkii condition

[7T]. It is easily seen that the roots QQ(Z) and £(z) are simple

roots of the characteristic equations for those z which violate the

determinant condition. Such instabilities have been discussed by

16
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Kreiss [8]. Approximations of this type for problems on bounded x-intervals

have solutions which grow like Nﬂﬁ @ > 0. Further, the extension
of any estimates obtainable for problems with constant coefficients
to problems with variable coefficients is, in general, impossible.

Computational experiments with M > 1 for the model problem
(1.1)-(1.3) have indicated that these methods can be used successfully
for limited times to approximate smooth solutions. However, experiments
with the equation uo-ou - uy =0, 0<x<1, 0<y< 1, have shown
disastrous growth when M is even while behaving reasonably for
limited times @}th M odd.

Theorems 2.1 and 2.2 are disappointing. If we couple leap-frog
with the centered @(hi + kg) interior approximation we obviously
have no opportunity to refine the mesh to achieve uniform accuracy.
Computational results with M = 1 are given in Section 3. They
illustrate the fact that we really need M > 1 to achieve overall
@Qﬁ§+ ke) accuracy when compared with results obtained in [11].
However, there are situations where these techniques with M = 1 can
be useful., If the boundary data is rather inaccurate then nothing could
be gained by a refinement, M > 1. 1If this is the case and the boundary
is sufficiently removed from an interior portion of the domain where
the approximation is desired, then these techniques with M = 1 can
be useful. Of course, the area of integration must be so large that
the boundary errors will not propagate into the region of interest
during the duration of the computation.

We next consider replacing the approximations (2.2) and (2.3)

by the dissipative Lax-Wendroff -method. We replace (2.2a) by

17



(2.7a)

2, 4 k) — g (t) - keDy (n ) £y(t) +3 Ra@DD g (1)

for V=1,2,.,., 2M-1

where DD g, (6) = (1, (¢) - 20,(6) + 2, ()P,

We replace
(2.2b) by

(2.7p) fo(t + k) = zo(t) - ch+£O(t)

where

Dty (6] = (23 (6) - 2 ()7t .

Similarly, we replace (2.3a) by

(2.8a) rv(t + k) = rv(t) - chO(hf) rv(t) + % k2c2D+D_rv(t)

for v=1, 2, , M-1

and (2.3p) by

(2.8b) ro(t + k) =ry(t) - ch+ro(t)
The approximations (2.7&) and (2-8&) have local truncation error

2 2
(‘)(hf + X°) and the boundary approximations (2.7b) and (2.8p) have

local truncation error @(hf + k). The approximations (2.7) and

(2.8) have been shown to be stable for the related quarter-plane

problems in [7] and the convergence results of Gustafsson [6) apply

18



in this case as before to tell us that the overall convergence will

not be adversely affected if the method is stable. When we apply the
same techniques to this method we égain obtain the determinantal

conditions (2.4)., In this case ¢ is the root of

A e AQCQ
(2.9) (2 - 16-2= (1) - L= - 12 -0

such that [¢] <1 for |z] > 1. It was shown in [7] that this condition

uniquely defines ¢, that |t] < 1 if |z] > 1 and c¢> 0, and

ltl <1 if lz] >1, 241 and ¢<0. If ¢ < 0 and z = 1 then

{ =1. Therefore , the determinantal conditions (2.4) are satisfied
for all M since 'Kil <1, i=1, 2, and IC-MI > 1. 1If we consider
the refinement over two intervals on the right hand end of the interval

stability is again equivalent to the conditions (2.4) which we have

already verified. We have established

Theorem 2.3. The method given by (2.1), (2.7) and (2.8 ) with the matching

conditions (2.10) is stable for all M. The analogous method resulting

" from the extension of r, over [l-EhC,JJ and the replacement of

the r, equations of (21c) by those of (2.1e) is also stable for

all M.

We present results for this method in Section 3.
It is now easy to see how these results generalize to systems

of equations and that the form of the results is independent of the

approximations used to a great extent.
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Consider the strictly hyperbolic system

Y =Au,  a<x<b, t>0

s
where u € R” 3nd A is a constant s X s matrix of the form

- I
A > AT <O, AII > 0

0 AII

To simplify matters we assume that A has already been transformeq
to diagonal form-.

Let us prescribe initial conditions

L
L u(x,0) = f(x)
and boundary conditions
- I
u = 8 u + gi:(t) at X =a
=7-r I I
S.u +gb(t) at =x=b

AR and S
p are

"o assume



r-

| G "

with their boundary approximations, are stable for the related quarter-

plane and Cauchy problems and that A,2 is stable for the related
Cauchy problem for the given %c and Kf defined as before.

In this situation it is more natural to consider the second
method of linking the net functions together. That is, we link the
grid functions at both ends of the interval requiring equality at some

number of points on the v, (t) grid. Under the assumption that the

v

methods Al and A3 are stable for the related quarter-plane problems

we need only look at the stability of the related Cauchy problems for

the combined Ai - A2 and A2 —-53 methods and we can do this
separately. We only consider one case--the other is similar. If we
look at the related folded problem for Al-A2 for a < x < o

it is an approximation for the modified equation

with

~ ~I ~ ~ w
3. GL, T SITT NIV,

and boundary conditions

~T ~IT ~ ~
u = 1u I, uIV = uII

a tX

n
o

We then write out the appropriate modified approximation using method

for the vector ﬁl, w o) and A for the vector (GIEE E;V)

2 1
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The characteristic equations Ki(g,z) and K}K,z) related tp the

approximations A and AQ, respectively, are polynomials in K

1
and §, say, with coefficients which are polynomials in z. Since

Al and A2 are stable for the Cauchy problem the roots of Kl and

split into two groups as before, -
Ké Ml,Ki and N%’Ki, with the
property that [k, | <1 and |t |<1 for lz| > 1 if £ ewm
1= - 1 1,k

and Ky € N&,Ké’ and lKi1 > 1 and_'gi‘ > 1 for lzl > 1 if
Ci € Mé’Kl and K. € N%,Ké' This is shown in [7] and simply follows

from stability for the related Cauchy problems, .
Let M
K contain

1,
m, roots and M contain m roots 1
1 zl:Ké 2 '
Then the m * HE conditions
(2.10) VV(t) = IMV(t) , v=20,1, ... ,(m14-m -l)
2
for the original problem uniquely determine the solutions in EQ‘ We obtain
the determinental condition det C % 0 as before. .
In this case C

is equivalent to a block Vandermonde or block confluent Vandermonde

matrix. In fact, if D is the matrix we would obtain using the

approximations Ay and A, for u € gt and D = (d..) then we can
1

represent C as

¢ ={(a 1)
ij s

-M
= ¢

J
Thus we see that analogs of Theorems 2.1,

and det C = 0 if and only if Ki for Ki € Ml and QJ € Ml
)

2.2 and 2.3 hold in these

more general circumstances. In particular, the matching theorem of

22
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Ciment [3] holds if only one of the stable matched schemes is dissipative.

Details on the derivation of the form of C are given in [3]. We

summarize in

Theorem 2.4. The method given by the combination of Al' AQ’ and A3
through conditions of the form (2.10) is stable if Q:M #K. for
J i

IZI > 1 where the Qj's are roots of the characteristic equations
corresponding to the boundary methods A, and A3 such that

lQJ < 1 and the Ki's are the roots of the characteristic equation

corresponding te the interior approximation A, such that |«.| < 1,
l _—
for |z[ > 1. In particular, if A2 is dissipative or both Al and
A3 are dissipative and the root condition Ki¥§:M holds for z = +1,
J -—

then the combined method is stable.

Proof:

To complete the proof we only need to remark that the roots
of the characteristic equation for a dissipative approximation [7]

_satisfy fKt<l for ]z[> 1 and =z ¥jll'
The paper of Gustafsson et g;.[?] presents several stable

boundary approximations which can be used for Al and A
3!
Theorem 2.4 shows that dissipative modifications of the leap-

hz)

frog method could be used with the @(hc + k centered approximation

treated in Theorems 2.1 and 2.2 to yield stable method with M > 3

and odd.
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So far our discussion has always assumed that we use the same

time step, k > 0, for both the interior and boundary approximations.
The stability restriction on Ac places a restriction on M since

Ap < %c and kc is an increasing function of M. For the @(hh + kE)
e

2 2
and G(hf + k%) methods this usually does not cause any real problem.

It is natural to choose hc and k so that the truncation errors

arising from the spacial and temporal discretizations are of roughly

the same size. This leads us to the condition

h =k or h

Q
o

=~ h or h- = h

so that the spacial truncation error is of roughly the same size for the

interior and boundary approximations. This leads us to

or

which indicates that the usual stability restrictions for explicit
methods will not create a problem. This also agrees with the condition
we obtain if we ask that the spacial and temporal truncation errors be

of the same size in the boundary approximation, i.e.,

2 2
hL K

The computational results in Section 3 bear this out.

2k
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If a situation arises where the previous estimates are not

valid due to the behavior of the solution a smaller time step can be
used on the refined grid by interpolating in time on the Yy net
where intermediate values are needed after first computing the new

values on the v, net. This is always possible with an explicit

v

method. The previous analysis does not hold in this case but we have
performed several computations in this manner ynhich indicate the
success of this procedure. Some calculations of this type are presented

in Section 3.

3. Computational Results

our first set of computations are approximations to (1.1), (1.2)
and (1.3) with ¢ =1, a =0, b =1, f(x) = sin bmx and
g{t) = £(-t) which has the solution u(x,t) = £(x-t). This could be
stated as a periodic boundary problem but we treat it as an initial
boundary-value problem. This is useful since it allows direct com-
_parisons with periodic computations as done in [11]. It was somewhat
more convenient to discuss our theoretical results with ¢ < 0 but
we have chosen to use ¢ =1> 0 here so that the computations will
be immediately comparable with those of [1l]. The theoretical results
are, of course, unchanged and the difference approximations are just
the reflections of those already introduced.
We define the error in the ¥th grid point to be e (t)

)

= u(xv,t) - Vv(t) and compute error norms over the vv(t) grid.
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We use the previously defined Ig(hc) norm and the [m norm defined

as 1_'e\;1£m =maxlevl. |

In Table 3.1 we give the results of the method analogous to
that defined by equations @.l)—@.5k We include results obtained
using smaller time steps on the refined grid and use 1 _ kc/kf to
denote this ratio in the table. We append the letters g or £ to
the numbers in the L-column to indicate whether quadratic or linear
interpolation was used. We have used Kc = 1/4 with N = 20 for
these calculations. We have used the solution at t = k for w
in (2.1dWe use the notation a - b to represent aX 107°P in
our tables. Recall that these methods are not stable according to
the Definition 3.3 of [7] for M > 1.

In Table 3.2 we report the results of the same computation
using Lax-Wendroff in the refined regions, i.e., the reflections of
equations (2.1),(2.2&'),(2.2b'),(2.3a') and (2.3b'),

These results can be compared with those given in [11]. We
include some results obtained in that paper using uncentered @KhB)

c
approximations in the neighborhood of the boundaries for purposes of
comparison, The problem and all other parameters are the same as

those used here. These results are in Table 3.3.

It is clear that we only need M = 3 and L = 1 in this
case to achieve the same accuracy. Interpolation in time is not
necessary to obtain this accuracy. If greater accuracy is required

interpolation may become necessary.
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TABIE 3.1

M L I'V\,'I,l2 H%‘\JI,Z2 leJl,. VI, leJl, el ,

o 2 2 w
t = 0.5 t =1.0
1 6.54-1 1.14-1 2.23-1 5.71-1 1.85-1 4,16-1
2 1 7.02-1  1.76-2  3.63-2 6.99-1  2.69-2  4.97-2
3 1 7.04-1 6.16-3 1.19-2 7.00-1 9.28-3 1.78-2
by 7.07-1  3.02-3  5.55-3 7.07-1  4.38-3  9.26-3
L 2, 7.06-1  5.99-3 1.14-2 7.05-1 9.48-3 1.95-2
b 2,4 7.06-1 5.99-3 1.1h-2 7.05-1 9.48-3 1.95-2
> 2,4 7.06-<1 4.13-3 8.00-3 7.04-1 5.98-3 1.20-2
> 2,4  T.06-1  Lk.he-3 8.59-3 T.0k-1 6.18-3 1.38-2
t = 2.0 t = 4.0

1 1 5.35-1 2.21-1 4.07-1 5.37-1 2.03-1 3.76-1
2 1 T.02-1  2.39-2 5.81-2 6.94-1 7.45-2 1.60-1
3 1 6.98-1 9.67-3 1.76-2 6.99-1 9.63-3 1.75-2
4 1 7.07-1 4,43-3 9.65-3 7.07-1 4,76-3 9.99-3
4 2,qa 1.06-1 §.85-3 2.20-2 7.06-1 8.95-3 2.21-2
4 2,4 T7.06-1 8.85-3 2.20-2 7.06-1 8.95-3 2.21-2
5 2,9  7.03-1 5.51-3 1.05-2 7.03-1 5.54-3 1.05-2
5 2,2 T.04-1 4.83-3 9.74-3 7.04-1 4.90-3 1.01-2
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TABLE 3.2
oL ”Vv”zz 18,1, 18,1, el lej1, legl,
2 © 2 2 ©
t = 0.5 t = 1.0
1 1 6.52-1 9.97-2 1.97-1 5.75-1 1.60-1 3,hh1
2 1 6.96-1 1.66-2 3,32-2 6.84h-1 2.52-2 3.86-2
3 1 7.04-1 5.97-3 1.09-2 7.00-1 9.02-3 1.39-2
4 1 7.07-1 3.02-3 5.55-3 7.07-1 4.38-3 9.26-3
4 2,9 7.04-1 5.51-3 9.64-3 7.01-1 8.44-3 1.39-»
4 2,2 7.04-1 5.56-3 9.27-3 7.01-1 8.32-3 1.43.0
5 2,9 7.05-1 4,11-3 6.32-3 7.04-1 6.21-3 1.17-2
5 2,2 T7.05-1 4.18-3 6.67-3 T7.04-1 6.14-3 l.21-2
t = 2.0 t =k.0
1 1 5.48-1 1.88-T 3.32-1 5.52-1 1.77-1 3.14-1
1 6.83-1 2.69-2 3.98-2 6.83-1 2.70-2 h.05-2
1 6.99-1 9.41-3 1.52-2 6.99-1 9.42-3 1.53-p
1 7.07-1 4,43-3 9.66-3 7.07-1 4,73-3 9.91-3
4 2,9 7.01-1  g78-3  1.49-p 7.01-1  8,79-3  1.50-2
4 2,1 7.01-1 8.20-4 1.45-2 7.01-r 8.23-3 1.48-2
5 2,¢ 103l 3303 1.16-p 7.03-1  6.34-3  1.17-
-5 2,1 7.04-1 5.76-3 1.13-2 7.04-1 5.79-3 1.15-2
TABIE 3.3
IMIZZ le, II,Z2 |évﬁ£w Hr\JI,Z2 ”evllz2 le, Il L
t = 0.5 t = 1.0
7.12-1 9.69-3 2.34-p 7.08-1 1.3h-2 2.51-2
. t=2.0 t=4.0
0.J0-1
1.30-2 2.0h-p 6.96-1 1.25-2 2.28-2
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