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I. INTRODUCTION

We are concerned with the error bounds for the numerical
computation of the eigenvalues of differential or integral operators.
T denotes a linear operator on a Banach space X , and Tn its
approximation n = 1, 2,.... [l . |l is the norm on the algebra L' (X)
of bounded linear operators on X . I is the identity operator on X
There exists a wide variety of approximation methods, the most important
of which belong to one of the three following classes:

e Class 1 : uniform approximation.

Definition: T, Tn e£(X), 11 T - Tn | » 0O

Example: the Rayleigh-Ritz and Galerkin methods, where the differential
operator is approximated byrestrictionto a finite dimensional subspace.

They correspondto the uniform approximation of the inverse, [2], [4],

(6], (81 .

¢ Class 2 : collectively compact approximation.
Definition: T, T e£(X) , (T -T ) x— o for any x in X , and the
n N Noow

sets  { (T-T,) x; IlxllKk 1}, n=1, 2,..., are relatively compact.

Remark T - T is T -_compact, according to Kato ([5], p. 194).

Examples: (1) approximation of an integral operator by using approximate
quadrature formulas (Anselone [1]). Consider X = €(0,1) with the

uniform norm,

!

T : f(x) ¢ Xm K(x,y)f(y)dy , where K is continuous on [0,1]2 .
To



n
Tn : f(x) X Z W

K(x,yn.) f(yn ) , where 0 i Yn <1
S J J 3
\ |
.and the weights w . n
g n. such that : Z Wn.f(yn'%_::w f(X) dx
! J=1 J J 0

for any f in X (the rectangular, trapezoidal, Simpson, Weddle

and Gauss quadrature rules satisfy this condition ).

(2) approximation of a differential operator by finite

. . . -1
differences, when considering T (Vainikko [9])
e Class 3: neighboring approximation;
Definition: T, T are closed operators, with domain of definition

D(T) = . T - i -
(T) D(Tn) Tn is closed and ( T-T, )ﬁj 9 for

any x in D(T) .

=1
heT-1) T-21) ||=2 © for any z in C such that ( T—z?)_1e£(x)

= n e
Examples: approximation of a differential operator by a neighboring
differential operator (Pruess [7]) .
(1) Consider X = C (0,1) with the uniform norm,
D= { xeX @ x' X and x(o) =x(1) = o } ’

7"
T : xeDnp ~x + q.x ,

where q, qn are real-valued continuous functions on [0,1]

and max t) - t
Yodihy 1 ") aplt) ";’_,2

T-T, 1is the multiplication operator defined by a-q, -

L
L
L
[
|

mT-T = la-q JI_+0-



p——

(2) A less obvious example is given by tpe following:

Consider X = C (0,1) with the uniform norm ,
D = {xeX ; x"eX and x(0) = x(1) = 0},
T: xeDpmp pou" + p1u' + pzu ,

(n) (n)

n
()"‘|'p1 u' +p2u,

Tn: x€D po u

n) . . .
where p; » p(i): i =0,1,2, are real valued continuous functions

\n
on [0,1] and max | py - p_.l()l—g 0« We gupnose that po < 0 »
—_ —_— m =

n
p, <6< .

Hn =T - Tn is an unbounded operator, but it is T-bounded, according

to Kato ([5], p. 189).
Definition: An operator A , whose domain D(A) includes D(T) is

T-bounded if :

[l Axp<al]l x)] + bl x| , for x in D(T)

The proof that H =~ is T-bounded is in [5], p. 193. We get

Il 5 i <a |l x|l + b | Tx ||, for- xeD(T) , and a b 40,

Consider x = R(z)y , for z on F , enclosing an eigenvalue A of T .

|, B R(z)y 1, <& IR(z)y I + b I (T-21)R(z)y + zR(z)y |l

<Oay + 12 oI R() I+ b Ty

Thus B R(z) ||+ 0 .



Various convergence proofs are given in the literature, adapted to each
type of method under consideration: norm convergence for class 1[8],
compactness argument for class 2 [1], [9], norm convergence of the
inverse for class 3 [5],(see [7] for the Sturm-Liouville operator).

We present here these three classes of approximation as special cases of
a more general approximation. With this unifying treatment, we are able
to give the general type of error bounds that hold for eigenvalues and
the gap between invariant subspaces. It remains, however, for each
special case, to derive specific error bounds from the general ones
given here. It should be noted that the approximation theory proposed
here applies to unbounded closed operators as well.

The approximation will be defined so that the Newmann series of the

approximate resolvent is convergent. Then the approximate and exact

invariant subspaces have the same dimension for n large enough and the
approximate eigenvalues converge to the exact eigenvalue. The proofs
depend heavily on the perturbation theory developed by Kato in [5]. The
main results (theorems 1, 2, 3) are due to Jacques Lemordant (University
of Grenoble).

II. THE APPROXIMATION Tn OF T

Let X be a Banach space, T a closed linear operator from
x to x, with domain of definition D(T) ,
A is an isolated eigenvalue of T , with finite algebraic multiplicity m
I is a positively oriented rectifiable curve enclosing A , but excluding

any other point of the spectrum of T




P is the spectral projection associated with A :

-1
P = -1 Jf(T - z1) dz, PX is the invariant subspace
2im
associated with A . [‘
-1 _
R(z) = ( T-z1) is the resolvent of T,, for z in the resolvent
set of T.

We want to approximate A and PX.
Let Tn »h=1,2, .. . . be an approximation of T . The precise meaning

"

of "approximation of T " is stated below: (2.1) to(E.h).
It will be shown in Section III that the spectrum of Tn inside I' is
discrete and that there are exactly m approximate eigenvalues for n

large enough: A . ,i=1, .... m.
n” l

%1 is the spectral projection associated with all the eigenvalues of
Tn lying inside T

»

-1 ‘
Rn(z) = (Tn - 21) , for z in the resolvent set of T, -

In general, we consider the approximation of ) by the arithmetic mean:

n,i
i=t

ln is the weighted mean of the h-group, according to Kato [5] .

Definition of the approximation Tn .

Let Tn, n=1,2,. . . . be a sequence of closed linear operators from
x to X , with domain of definition D(Tn) , and such that:
(2.1) D(Tn) ODD(T) , N = 1,25000,

(2.2) T - Tn is closed , n = 1,2,...,



(2.3) TnX—b Tx for any x in D(T) ,
N0

(2.4)”[(T-—Tn)R(z)]2||_4 O , for any =z on T.
Moo

Then Tn is said to be an approximation of T

First we need the following:

Lemma 1 (T-THHKZ) is uniformly bounded in n , for any z on T ,
and ||(T-Tn)p”-.o
N9

Proof : Since T - Tn is closed, and R(z) is a bounded operator

(T - T )R(zis a closed operator with domain

on X with range D(T) , n

X , hence bounded for any n , by the closed graph theorem.

(T—Tn)R(z)x + 0 for any x in X , then (T - Tn)R(z) is uniformly
bounded in n by the principle of uniform boundedness. On the other
hand, (T - Tn)P , which converges pointwise to zero, converges uniformly

on the finite dimensional subspace PX .

Let S be the reduced resolvent in z =X, S =&ii R(z)(1-P)

Lemma 2 | [|((T - Tn)R(z)-)2 | + 0 implies JJ((T - Tn)S)2 Il » 0.

Proof : Let N H.T- Tn .
- HnR(z)(1 - P) HnR(z)(1 - P) = (HnR(z))2 - HnR(z)PHnR(z)
- HnR(z)HnR(z)P + HnR(z)PHnR(z)P .

Since T and P commute, R(z)P = PR(z) . Then:



2
N(ER(2)(1 - 2Dy < (_HnR(z))E I+ 11 BP 1 RE)Y IIER(2) [f(2 + ) 2 |))

— 0, for any z on TI'
1 <

. 2 N
Since (H R(z)(1 - P))" is holomorphic in z inside T, its norm at

Z = ) is less than or equal to its norm at any point z on I' . We

then have: Il (HnS)2 || »0

. 2
Remark: || (HnR(Z)) Il + 0 for z on I' jmplies that it tends to zero

for any z # A inside T, as it is easily shown:
2
(HnR(Z)) = (HnR(Z) (P + 1 - p) )2 can be expressed in terms of

HnR(Z)P = HnPR(Z) and HnR(Z)(1 = P) which is holomorphic inside T,

The desired result follows.

The definition of Tn includes the three classes defined above:

Class 1 : T, Tn bounded and lIT - Tn I + 0
Class 2 : T, Tn bounded and ((T - Tn)B} relatively compact where B

is the unit ball of X .

Then £ ={ T - Tn) R(z)B } is relatively compact for any z on € and
(T~ Tn)R(z) , which is bounded on X and converges pointwise to zero,
converges uniformly on £ , i.e. (2.4)

{
Class 3: T, T, T - T, closed and (T - Tn)R(z) Il + 0, for zon T

ITI. EXISTENCE OF THE SECOND NEUMANN SERIES OF Rn(z)

Let Hn denote T - Tn : Tn= T - Hrl and let z be any point

on I' .



The key point in the whole theory is the following:

Lemma3 Rn(z) can be represented by the second Neumann series:
o k
R(z) - R(z) £ (HR(z))
k=0

Proof: (3.1) T,- 2l = T -z - Ho = (1—HnR(z)) (T -21)

- ©
(1 - HR(z)) V' exists and is represented by % (H R(z))k , if this
n n
k=0
series is convergent.
(ee} k e} 2k
z (HR(z))" = (1 + HR(z) ) T (HR(z))" ,
k=0 k=0

oo
and by (2.4), k};',’OHnR(z))Qk is a convergent series for n large

enough. Then, from (3.1), we get the expansion of the lemma.

Ozo k
Remarks (1) Rn(z) - R(z) = R(z)k=1 (HnR(z))
@ ok
(3.2) = R(z)H R(d +R@ (1+HR(z)) &  (HR(z)) " .
k=1
Put e, = max |, (BR(2)° ), || ¥ (HR(z) )P || <_en
1 -C/

In general, Rn(Z) does not converge to R(z) in norm. But it does,
for example, for T in class 1 ( IIHnH # 0) or in class 3 (HHnR(z)N 4 0).

So,— if Tn is in class 3, (Tn-z1 )—1 is an approximation of (T-zl) which

belongs to class 1 .



(2) Lemma 3 would be still valid if the assumption (2.4)

1Y
was replaced by: 3 p>0 such that | (HﬁR(z)) I = 0 for z on T

Corollary | There are exactly m eigenvalues of Tn converging to

A when n tends to infinity.

Proof : Let n be fixed such that ”(HnR(z))£” < 1 . And consider
the perturbation of T defined by:
xe [0,1] @ T(x) =T - xH .

T(0) =T and T(l)= T, - The second Neumann series of

(T(x) - z1)"]

= R(x,z) exists for any x in [0,1].

When x 5 0 , || R(%x,2) - R(z) ||+ 0 and || P(x) =P || » O

For x small enough such that || P(x) =P [[<1 , dim P(x)X = m .
But P (x) is uniformly continuous in x on[0,11 , we then deduce
that dim P(1)x = n .

This means that there are exactly m eigenvalues of Tn inside T .
'

Since this 1is true for any curve T inside I' , arbitrarily close to

A (because (2.4) holds for any z # A inside I' ) , then:

'I‘n is said to be a strongly stable approximation of T (Chatelin [3]).

(Pn - P)x= -1 F(n(z) - R(z))x dz , for any xeX .
2im

From (3.2) we get readily that ||(Pn - P)x || —-n_.-»wO .

Since PX is m-dimensional, we even get |l (Pn-P) Pll 5 0




10

Following [1] and [8]
(p, - P)Px J R (z) - R(z))Pxdz ,for any x in X ,
r
f (z) (T - T) R(z)Px dz

R(z)P = R(z), then

(B, - P)P | < m(r) max(l| R (z) J) 1 R(z) [|) . )(T-T DB ;
i om zer( ) n
where m(r) is the length of r , and ng; ”Rn(z)ll is uniformly
z
bounded in n . Since the dimensions of PX and PnX are the same

for n large enough, it is not difficult to carry out a bound for the

gap between PX and PnX ( see definition in SectionV) in terms of”HnP[L

E'or the eigenvalues, a bound of type: |An -a | <X ”HnP || can be
derived, in this general setting, following the lines of the proof given

in [8] for a collectively compact approximation.

In order to get a more precise expression for the bound, we have to go

into a more detailed analysis of the perturbation of T by Tn - T =-H

Iv. THE OPERATOR Pn -P

Theorem 1 There exists a decomposition :nP -P =P + P ’

such that : a) P, e (X), P,, Xc PX,P P =0,

)Ry et (X) 5By Il SH|EP ||

for n large enough.

The proof of theorem 1 contains five intermediate steps.



—

Proof :

1. A , an eigenvalue of finite algebraic multiplicity m ,

is a pole
of order I (1 < £ <m) of R(2) | yhose Laurent expansion can be
written ([5], p. 180) :
©
k=-
with s (®)= _p
~k k
S F)o p s k>1, D=(T-21)pP
k k
S()= 7, k>1, S = 1im R(z) (1 - P)
Z+ )
Using the Neumann series of %Jz), we get:
s i
P -P= -1 fR(z) T (HR(z))" dz
2y i=]
© r
=3 P .
with: P ., = -1
n,i oy i
5in /R(z) (HR(z))} dz
n
r
-] .
= - R(z) (& £ (z-3)F S(kﬂ))1 dz
Sin P=—g
k k k, k
(4.1) . = 2 S(\”Hn s(2) i) g(fim)
= 1 J
k.] +k2+c . +ki+.l 1 N I 4
k.
ka_-£+1, J=1y..,1i+1 Ué J)

(cf Kato [5], p.76).

2. It is easy to show that a'theorem l-type decomposition P{n + P!
2n

holds with || B} |+ 0 :

Let us go back to the expansion (3.2). By integration on r :

M



2k] dz

2im 1

<}
Pn-p = - [J'R(Z)HnR(Z) dz + J‘R(Z) (1 + H R(2))[ =(HR(z))
r r
If we substitute in the first integrand the Laurent expansion of R(z) ,

only the coefficient of 1 contributes to the integral
Z=)

1 fR(z) H R(z) dz = s"HnD’z'1 T .

3 n
-~ TT
I_
_PHS -pHS-. . .-dust .
n n n

obviously : ||SHnD- t ... +SHPIT<KIIBP 1T,

and Pl = -PHnS - ... - D£-1HHSZ has its range included in

1 —_
PX,andeP— 0.

The second integral can be bounded in norm by

m(r) max || R(z) || - (0 + ]| HnR(z) ) e,
z€r 1-€&n

where m (r‘) is the length of T . Then : ”Pén || » 0

In order to bound || P2n || in terms of [ HP| , we have to go back to
the expansion of P - P in terms of Pn,i .
3. Consider (4.1).

Let N(i) be the number of terms in that sum. N(i) is also the

i, , ,
absolute value of the coefficient of 2z in the series expansion of

*® KT i+1
z z P)
k=-0+1
i +2-1

or else the coefficient of z in the expansion of

w 0 .
[ - Zk]1+l C (-
k=0



F

—— | coamat |

5 .
d- 1 =(-1D7r =at (1t g+ 24 )
i 0 ———
- 5,
The coefficient of z in I is then (i+s)(i+s-1y..(s+1) - C?
i+ ’ ) 1+s
(1-2) il
N(i) Cll""l-'l
(£+1)i+g-1

Making use of the Stirling formulae, we can easily show that there exists

a constant a (depending on £ only) such that:

.

N(i) < a ;, 1 =1, 2,

k.
b. P, will be the sum of all y (J)
n

(o) (-2).. &3
(such that S HnS ;S Hr? HnS , etc..).

whose norm is not going to zero

Such terms correspond to

sequences (k1}k2,oa,k%+1) i=1, 2, «., in which kj >1 for j>o2,
since a5 50 it
n - for any nonpositive k ,
+ ...t k. ] i =1 =
k, j49 2 1 implies k=i (k? +.. +-ki+1) < 0 . Then

each operator such that k15_0 ' kj > 1 for j > 2 is a bounded

operator with range in PX

We have to prove that P1n is bounded.

foa) ,
k
o B LE 0 o)y i
i=1 + n
l«:1 k2+.. k +1
sk <0
kj 2 1, j-‘-‘g,.. , i+
: - 2
Let us recall that 7 = ”(HHS) l= 0 . We shall prove that for i

Ny e

large enough, each Uﬁ 3) in the above sum contains enough factors of the

00

(Hns)g type, in order to ensure the absolute convergence of g% [Si]'
1=]



r-

—_— 7

1

Namely:

‘ (k5)
For 1>2f -1, each U with k. < 0,

1 kj > 1 for j > 2 ,contains

at least Pe ( i-21+3 ) times the factor

2
> )

» and at most ¢ -1

( HnS

; k
times the factor HS , k=1 ..,a, where Pe (x) is the integer

part of x.

This is . shown by @ close study of the sequence of exponents kj subjected

to the above constraints.

Then, for i>2¢ - 1:
i i~
sy g & Peli2bB) .
1
where = max su g g® = k
9 S TS T ) U
’ ko)-t)g—‘!

The series P1n will be absolutely convergent for n large enough so

1
that a%f < 1,

P P =10 follows from SP = 0

In
5 P. will be the sum of all (kj) . .
) 2n Uh for which there exists a
J€ { 2.0, 1t1 } such that kJ <_O . Let us then decompose P into:
P mz: T (k) -
= z U J o _
2n z = Zz .
p=1 1i=1 * n p )i: Op)l
k. + k.+ . . = 3
T2 ki 1
* kJ Z -0 +1, 1= 1, 2, eey 1 +1
there exist exactly p indices j , je {2,... .
» i+l }

such that kj <0



15

Consi ' i
ider gp,ifora given 1 and p
s ki < i+ (p+1) (R1)
IFT sk b= )

(k)

For 1 > (p+1) (24+1) , . J .
each U , with kj satisfying the

constraints * i
, contains at least pe é’ - CQT1)(2f+1) + 2

2

the factor 2
(%]S) s L WOST  (p49)y9 times the factor H gk
n !

times

kK =1,.., (p+1)(2£-1) 5 and p factors of the type HnDk,

- [ x = 0,1,..,0-1-

k -
) PHS < Hs iy s < s s g
k _
HD" = Hn(T-M)kP = HnP(T-M)kP , since P and T commute.
k
Then Il EHD™ <y HP 11 | ot >k =0,0..,0-1

. Weget , for i > (p+1)(22 +1)=1I(p):

ho .0 < |at P e(i-(p+1)(22+1) +2)
b1 - [& nn 2 . ] HnP” b KQP I HnS i (p+] )(21_-’)

’ I s ”(Pﬂ )2(21-1)1]

I, <t € N R R T

= T 1 .
p=K3 ._15‘ + i=}I: a” 2

1-7 , I-1

z al = a a -7 < &I .

= a-7 a - |

0

1
» for n such that ann§'< 7



> p
once 1By Il S T 87 IEPIP

< K NP I

which completes the proof of theorem 1 .

Corollary 2 For n large enough :

11 (B, - P) P <K Il H P>

| (B, - P)BJI < K| H PJ.
Proof : (Pr—i— P) P = P2n P,

2
(p, - P) B = (P-P)" + (P -P) P,
and (P -P)e _P P +P P, +P° , since P._ P=0
n 2n 1n n "2n en ' n

The results then follow.
For approximations of class | and 3, we have : || P - P, [P0,

V. CONVERGENCE IN GAP OF THE INVARIANT SUBSPACES
Let us borrow from Kato ([5], p.197), the definition of the

gap between two closed subspaces M and N , of a Banach space X

8§ (M,N) = sup dist (x,N) ,
xeM

15 =1

~

s (M,N) = max [ §(M,N), §(N,M) ] is the gap between M and N

The following property holds: §(M,N) < 1 implies dim M< dim N ,

and § (M,N) < 1 implies dim M=dim N.

16
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Theorem 2 For n large enough:

5 (PX , BX) < K| HP|

Proof : We have the inequalities

5 (PX, PX ) < |[(P-P)P ||,
and & (P X, PX ) < ||(P -P)P_|

Theorem 2 follows from Corollary 2.

Remark : If T 1is an approximation of T such that Rn(z)x + R(z)x
for any x¢X , and any z on T , then an -+ Px and, since PX is
finite-dimensional, H(Pn - P)P || 40 . This implies that dim PX <

dim PnX : there are at least m approximate eigenvalues lying inside T .

We need some additional assumption to show that ”(Pn- P)Pn |+ 0 and

dim PnX <_dim PX . This assumption is provided here by the hypothesis (2.4).

VI. CONVERGENCE OF THE EIGENVALUES

6.1 Series expansion of A _ - A

The trace of a linear operator A with finite rank is denoted by tr A.

If A is of finite rank and -B continuous, the identity tr AB = tr B A

holds, (Xato [5] p. 379).

For the following, refer to Kato [5], p. 77.

3

tr TnPn = .E A

1 !

(T - A1) R (2) = 1 + (z-2) R, (z)



18

(Tn - A1) P, = -_21_1” (Tn -A1)R (2) dz
J
r
oo
= 4 (z-A)ER(z)dz = -7 ((z-MR(z) I (HR(z))? dz
21m 2im p=o "
|
T r
= (T-A1) P -g@z_ [(z-M)R(z) T (H R(z2))P
2im p=1 n
r
A, A= L otr (T- AP = -1 tr (z-\)R(z) (HnR(z))sz ,
m 2imm p=1
I
r

since tr (T-11) P = 0 .

. 2
Using d R(z) = (R(2))° , we get
dz

a (1,R(z))" = d_d[ZH R(z) . ..HR(z)] = HnR(z)...HnRe.(z)+..,+HnR2(z) . HR(z).

dz
tr f(z—h) d (HR(2)P dz = p tr -/'(z-)\)(HnR(z))p dz
dz
r

r

This can be proved by using the Laurent expansion in ) of R(z),

integrating on I' , then using tr AB = tr BA , since each term contains

P at least once. Then :

0
Ag - A =-1 ¢ tr (1 (z2) _a (HR(=2)P az
2imm p=1 P dz
r
fo'e)
= | pX tr 1l (H R(z) )P dz (integration by parts)
2imm p=1 n
I
r
o (k1) (kp)
(6.1) A -a=_1T 1¢tr T HpS .. . HS
m p=1 p k1+k2+..kp=p—1

ka_-/zﬂ, j=l 2+45P



r—
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6.2. We prove the following:

Theorem 3 For n large enough:

|An-)\[§l1; tanP|+K||HnP Il -

Proof : All operators which appear in (6.1) contain at least one

operator with finite rank, so we can apply the bound :
Litra]<pag.
m

For p = 1 we get 1 tr H P+ which appears to be the principal

m
term in X - ) for most approximation methods.
n
@
o =1 % 7tr 3 u &) k) .
m p=2 p n o By®op can be easily bounded

in norm by K] HnP || by using the technique developed in Section

Corollary 3 | For n large enough:

® k k
Ihn-l | < 11rr |tr HnP + I tr Z HnS( 1) .. H S( p)|+1<,”
P2kt =p-T n '

]
I

n
ka 1, j=1,..,p-1
-4+1< k< 0

P f i
roof ; As previously, we can decompose the sum over the kj into the sum

h i it o
over the kj where one kj is nonpositive, then two y = sre nonpositive,

and so on. The result above is obtained by considering one k. < 0, and
j —_—

noticing that we have p gperators with the same trace.
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For example, if A 1is a semi-simple eigenvalue, ([=1, kp=0,
-]
k1 +..+kp_1 = p-1 implies kj=1, j=1,..5 p-1, so that the sum. T
2
reduces to: -tr(H SH P + (H S)2 ;(H s)P H P)
’ n n n n ' 'n
p=0
VII. APPLICATIONS

7.1. uniform approximation

1 Hn [+ 0 implies || Hn* [ + 0, where Hn* is the adjoint of Hn .

We can then bound ¢ more precisely.

Theorem L For n large enough:
| Apmh | <t | tr HP | F KN EP | H*P ]
K ok k-l
| A, | <1 | tr (8P - £ HS HD ) |+K|[HJ |l HP || [JEP*]
m k=1
Proof: Consider ¢ :
F =2 £ : -ltr (HSHP + HS HD rustaoty L F
or p = we get : L L N oo L 57 H ) . For

K-1 K-1
1<k<t, tr HnSanD = tr PHnSanPD , then :

L
k-1
| 1tr (): HnSanD ) | < X || H P I H *P* | |
m k=1 ’
For p = 3, the bound is given by : K2 1 HnP Il H *P¥ Il .
n
> e p-2
then: || o || < ( £ KT H )anPu || B ¥ || < K ||H || ||H *P* || |
p=2

The second bound then follows.
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For example, if £ =1 , we get the principal term :

1] tr (0 -HS)HP].
m 1

Remark : The first bound is the same as the one given by Osborn [8] :
m
tr HP = ¢ ((T-T) o

1 . ¥ where o). is a basis
-y - J’ mJ ) ) (wb)3=1,. 0

—_—

of PX and (qﬁ*) the adjoint basis of P¥X* . On the

J=1,..,m

~ other hand, ”(T-Tn)P <1 ?®?n.(r-

Dl px Il . See (81, (2]

for various examples.

Using the second bound we can derive the asymptotic equalities that
we get in [4] , for a Galerkin-type approximation of a normal operator
in a Hilbert space 1if Tn = nnTnn , where T is a sequence of

orthogonal projections such that mX 4 x, xeX , then:

m
7 tr (@D =3 5 (-1 )og; ) =2 (-1 )oll ©
m j=1

where cp belongs to PX

7.2. collectively compact approximation

Obviously the bound in theorem 3 holds. It has to be compared to

the bound : |A-A |< K I|(Hn)|PX|| given by Osborn [8] .
Theorem 5 For n large enough:
Lok kel
| A - A|<i| tr HP - tr § HS HD "~ |4 o IIHP |,
n . n o n n n'p

N ®
where dﬂ—+ 0



) k k
Proof: Consider g =1 % tr ;EZZ_ HnS( 1). .HnS( p) .
m p=3 k1 +..+kp=p-1

ka-l, j=1)")P'1

-1+1< k <0
= =
Since T, is collectively compact , || HnSanSt || 0 , for r, t >1
Let Eh = max || HnSanSt | , where V is the finite set of indices:

(r,t)eV

V = f (1:2) b}
(1,2-1) , (2,2-1) ,

.
.

(1,1) (2,1 ) eeue (2, 1) 1.

for n large enough.

p-1
Nell < $ a’ 6P€2) < Keg
T p=3 & - n

Theorem 5 follows from corollary 2, with oy = K 6n +{|HnPH .

1.3. Tn belongs to class 3

Since || H R(z) || + 0 , for ze , | HS| 40

Theorem 6 For n large enough

| A, - A | <

, | &r HnP;+a}n”‘HnP”

i
m

Proof ; This follows readily from theorem 5 and || H S || + 0

22
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If T and Tn are self- adjoint in a Hilbert space we get the bounds for

n large enough:

2
| A=A < Lt HP [ 4L K| HP),
m
_ £ k-1 2
RN N R L C AL R LY YRy

The proof is easily adapted from the proof of theoren 4 by using the fact

that || HS || + 0

7.4, T has a compact resolvent

. . k -
Since R(z) is compact, || HnS =1 HnS.Sk 1 |+ 0 for2<k<1{.
Theorem 7 For n large enough

| Ay M| <1 tr ((1 - HnS) an) | + o I HP ||

m
F. C. J. L.
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