ADA002261
OO0 OO

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY OCTOBER 1974

MEMO AIM 249
COMPUTER SCIENCE DEPARTMENT REPORT NO. CS-463

GEOMETRIC MODELING FOR COMPUTER VISION.

Bruce Guenther Baumgart

ABSTRACT:

The main contribution of this thesis is the development of a three dimensional geometric modeling
system for application to computer vision. In computer vision geometric models provide a goal for
descriptive image analysis, an origin for verification image synthesis, and a context for spatial problem
solving. Some of the design ideas presented have been implemented in two programs named GEOMED
and CRE; the programs are demonsirated in situations involving camera motion relative to a static

world.

This research was supported in part by the Advanced Research Projects Agency of the
Office of the Secretary of Defense under Contract No. DAHC 15-73-C-0435 The views and
conelusions contained in this document are those of the author and should not be interpreted as
necessarily representing the official policies, ecither expressed or implied, of the Advanced
Research Project Agency or the United States Government.

Ve

Page Intentionally Left Blank

SECTION

SECTION

——— i —
PWd~O

SECTION

20
2.1
2.2
23
2.4
2.5
26

SECTION

3.0
3.1
32
33
34
35

SECTION

4.0
4.1
42
43
4.4
45
46

» SECTION

50
5.1
5.2
53
5.4
55
56

TABLE OF CONTENTS.

0. INTRODUCTION. PAGE 1

1. GEOMETRIC MODELING THEORY. PAGE 6
Introduction to Geometric MOdeliNg ..., 6
Kinds of Geometric Models 7
Polyhedron Definitions and Properties 12
Camera, Light and Image Modeling 13
Related Modeling Work 14

2. THE WINGED EDGE POLYHEDRON REPRESENTATION. PAGE 15.
Introduction to the Winged Edge....iirnniione: 15
Winged Edge Link Fields ... 17
Sequential ACCESSING . 19
Porimeter ACCOSSING .o .19
Basic Polyhedron Synthesis 21
Edge and Face Splitting 23
Coordinate Free Polyhedron Representation 26

3. A GEOMETRIC MODELING SYSTEM. PAGE 27.
Introduction 10 GEOMED ... 27
Euler Primitives............ 30
Routines using Euler Primitives 34
Euclidean Routines. 37
Image Synthesis: Perspective Projection and Clipping 43
image Analysis: Interface to CRE 44

4, HIDDEN LINE ELIMINATION FOR COMPUTER VISION. PAGE 46.
Introduction to Hidden Line Elimination 46
Initialization and Cullingccoccrnnnne. A8
Hide Marking a Coherent ObjJect ..o 51
Edge-Edge and Face-Vertex Comparing 52
Recursive Windowing : 55
Photometric Modeling and Video Generation.............nnnnenen. 58
Performance of QCCULT and Related Work 59

5. A POLYHEDRON INTERSECTION ALGORITHM. PAGE 60.
Introduction to Polyhedron Intersection........mnnninessnsnemss 60
INtersection GOOMBLIY ... s s 62
INt@rS@CHION TOPOIOZY wvorervvrcrrrersmnns s st ssassessess 63
Spacial Cases of INtersection......mmnmo———————| 65
Face Convexity Coercion 66
Body Cutting.......... 66
Performance and Related Work 67

'i'b

SECTION

SECTION

8.0
8.1
8.2
83
8.4

SECTION

9.0
9.1
9.2
9.3
9.4
95

SECTION 10.

TABLE OF CONTENTS.

6. COMPUTER VISION THEORY. PAGE 68.
introduction to Computer Vision Theory 68
A Geometric Feedback Vision System 68
Vision Tasks 71
Vision System Design Arguments 74
Mobile Robot Vision 77
Summary and Related Vision Work 79
7. VIDEO IMAGE CONTOURING. PAGE 82.
Introduction to Image Analysis 82
CRE - An Image Processing System 84
Thresholding 86
Contouring 88
Polygon Nesting 89
Contour Segmentation 92
Related and Future Image Analysis 94
8. IMAGE COMPARING. PAGE 95.
Introduction to Image Comparing 95
A Polygon Matching Method 97
Geometric Normalization of Polygons 98
Compare by Recursive Windowing 100
Related Work and Work Yet To Be Done 100
9. CAMERA AND FEATURE LOCUS SOLVING. PAGE 101.
Introduction to Locus Solving ‘ 101
Parallax and the Camera Model 102
Camera Locus Solving: One View of Three Points 104
Object Locus Solving: Silhouette Cone intersection 109
Sun Locus Solving: A Simple Solar Ephemeris 114
Related and Future Locus Solving Work 115
RESULTS AND CONCLUSIONS. PAGE 116.
10.1 Results: Accomplishments and Original Contributions 116
10.2 Critique: Errors and Ommissions 118
10.3 Suggestions for Future Work I19
10.4 Conclusion 122
SECTION 11. ADDENDA. PAGE 124.
11.1 References 124
11.2 GEOMED Node Formats 131

SECTION 0.

SECTION 1.

SECTION 2.

SECTION 3.

SECTION 4.

SECTION 5.

SECTION 6.

SECTION 7.

SECTION &

SECTION 9.

SECTION 10.

LIST OF BOXES.

INTRODUCTION.

GEOMETRIC MODELING THEORY.

1.1 Ten Kinds of Geomstric Models 7
1.2 Desirable Propertics for a G tric Model 11
1.3 Properties of Polyhedra 12
THE WINGED EDGE POLYHEDRON REPRESENTATION.

2.1 Winged Edge Structures and Links 17
22 Lowest Levei Winged Edge Routines 21
A GEOMETRIC MODELING SYSTEM.

3.1 . The Euler Primitives 31
32 Routines Using the Euler Primitives 34
33 ' Euclidean Transformations 38
34 * Tram Routines 39
35 . Metric Routines 42
36 Simple Space Routines a2
HIDDEN LINE ELIMINATION FOR COMPUTER VISION.

4.1 : Five Hidden Line Elimination Techniques 48
42 Status Bits for Occult Marking 49
43 Normalized Face and Edge Coefficients 50
44 Edge-Edge Compare Steps 53
45 Recursive Windowing routines 56
A POLYHEDRON INTERSECTION ALGORITHM.

COMPUTER VISION THEORY.

6.1 Vision System Hierarchy 69
6.2 Three Basic Modes of Vision. 69
6.3 Basic Feedback Vision System Design 70
6.4 Processors of a 3-D Vision System 71
6.5 Six Examples of Computer Vision Tasks 72
6.6 Aiternatives to 3-D Geometric Modeling 75
6.7 Cart Vision Mandala 77
6.8 A Possible Cart Task Solution 78
VIDEQ IMAGE CONTOURING.

7.1 CRE Design Choices 84
7.2 CRE Data Transformations 26
IMAGE COMPARING.

CAMERA AND FEATURE LOCUS SOLVING.

RESULTS AND CONCLUSIONS.

10.1 Accomplishments and Original Contributions 116
10.2 Suggestions for Future Work i19

Page Intentionally Left Blank

SECTION

SECTION

SECTION

‘SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

LIST OF FIGURES.

INTRODUCTION.

0.1 Horse Shaped Polyhedra Derived from Video Images 2
0.2 Model of Water Pump 3
03 Example of Predicted Video and Percaived Video 4
04 Example of Predicted and Perceived Contour images 5
GEOMETRIC MODELING THEORY.

THE WINGED EDGE POLYHEDRON REPRESENTATION.

2.1 Winged Edge Topology 16
22 Three Kinds of Perimeters 20
23 ESPLIT and KLEV 24
2.4 MKFE and KLFE 25
A GEOMETRIC MODELING SYSTEM.

3.1 The 24 Displays of Example =1 28
32 The 24 Displays of Example #2 29
33 Five Kinds of Non-Solid Polyhedra 32
34 Examples of MKCUBE, MKCYLN and MKBALL 34
35 Creation of a Solid of Rotation by Sweeping a Wire 35
3.6 Sweep and Glue 35
37 lcosahedron by Prismoid sweep and pyramid sweep 36
38 Three Cut Torus Dissection into Thirteen Parts 36
HIDDEN LINE ELIMINATION FOR COMPUTER VISION.

4.1 Example of Hidden Line Elimination 47
4.2 Front Faces and Foided Edges 50
43 Front Faces and Folds of a Concave Corner 51
44 T-Joint Diagram 52
45 EE and FV Undetected Hidden Object Cases 55
46 Example of Video Synthesis 58
A POLYHEDRON INTERSECTION ALGORITHM.

5.1 Polyhedron Intersection, Union and Subtraction 61
52 Face Piercing Geometry 62
53 Surface Edpes and Interior Edges of Intersection 63
5.4 Fetch Other Piercing Vertex of a Face 64
55 Example of a Face Hole Fixup 65
56 Examples of Face Convexity Coercion 66
COMPUTER VISION THEORY.

VIDEO IMAGE CONTOURING.

7.1 Video Image and Contour Image 87
7.2 Saw Tooth Dekinking lllustrated 90
73 Contour Segmentation a3
IMAGE COMPARING.

81 Example of Polygon Fusion Compare 96
8.2 Example of Vertex Matching 98
CAMERA AND FEATURE LOCUS SOLVING.

9.1 The lron Triangie and Tripod 104
9.2 Five Iron Trianle Diagrams 105
93 Four Views of a Baby Doll 110
94 Four Turntable Sithouette Cones 11
85 Results of Silhouette Cone Intersection 112
9.6 High Horse Silhouette Cone Intersection 113

RESULTS AND CONCLUSIONS.

-jy =

Page Intentionally Left Blank

ACKNOWLEDGEMENTS.

The following people personally contributed to this work:

Thesis Adviser: John McCarthy .
Readers: Donald E. Knuth, Alan C. Kay, Ken Colby.

Jerry Agin, Leona Baumgart, Tom Binford, Jack Buchanan, Whitfield Diffie, Les Earnest,
Jerome Faldman, Tom Gafford, Steve Gibson, Ralph Gorin, Carl Hewitt, Jack Holloway, Tovar Mock,
Andy Moorer, Hans Moravec, Richard Orban, Ted Panofsky, Lou Paul, Phil Petit, Dave Poole,
Lynn Quam, Jeff Raskin, Ron Rivest, Rod Schmidt, Clem Smith, Irwin Sobel, Robert Sproull,
Dan Swinehart, Russell Taylor, Marty Tenenbaum, Larry Tesler, Arthur Thomas, Fred Wright.

TYPOGRAPHY

The orginal copy of this document was produced on a Xerox Graphics Printer with a resolution of
two hundred points per inch. The principal font is News Gothic Boldface, 25 units high, which
originated at Carnegie Mellon University. The page layout, text justification, boxes, halftones and line
drawings were done using the author's document-formating program, XIP. The source files were

prepared using the text editor, E, created by Dan Swinehart and Fred Wright.

Page Intentionally Left Blank

INTRODUCTION.

SECTION 0.

INTROBUCTION.

"For the purposc of presenting my argument I must first explain the basic premise of sorcery as
don Juan prescnted it to me. He said that for a sorcerer, the world of everyday life is not real, or out
there, as we believe it is. For a sorcerer, reality or the world we all know, is only a description. For
the sake of validating this premise don Juan concentrated the best of his efforts into leading me to a
genuine conviction that what I held in mind as the world at hand was merely a description of the world;
a description that had been pounded into me from the moment T was born."

- Carlos Castancda. Journcy to Ixtlan,

This thesis is about computer techniques for handling 3=D geometric descriptions of the world;
the world that can be visually perceived with a television camera. The overall design idea may be
characterized as an inverse computer graphics approach to computer vision. In computer graphics, the
world is represented in sufficient detail so that the image forming process can be numerically simulated
to generate synthetic telavision images; in the inverse, perceived television pictures (from a real TV
camera) are analysed to compute detailed geometric models. For example, the polyhadra in Figure 0.1
on page two were computed from views of a plastic horse on a turntable. It is hoped, that visually
acquired 3-D geomelric models can be of use to other robotic processes such as manipulation,

navigation or recognition.

INTRODUCTION.

FIGURE 0.1 - HORSE SHAPED POLYHEDRA DERIVED FROM VIDEO IMAGES.

INTRODUCTION.

Once acquired, a 3-D model can be used to
anticipate the appearance of an object in a scene,
making feasible a quantitative form of visual feedback.

For example, the appearance of the two machine parts FIGURE 0.2

depicted in Figure 0.2 can be computed and analyzed

{top halves of Figures 0.3 and 0.4) and compared with b

an anaylsis of an actual video image of the parts \ j‘ﬂl

4 il
(bottom halves of Figures 0.3 and 0.4). By comparing I
the predicted image with a perceived image, the H

correspondence between features of the internal model

and features of the external reality can be established

and a corrected location of the parts and the camera

can be measured.

Finally by way of introduction, | wish to emphasive that the kind of vision being attempted is
metric rather than linguistic and that the results achieved to date are modest. Feature classification
and racognition in terms of English words is not being attempted, rather a system of prediction and
corraction between a 3-D world model and a sequence of images is contemplated. The chapters of
this thesis proceed twice from theory through an implementation, with the first five chapters dealing
with modeling and the last five chapters dealing with vision. Theory on geometric modeling is in
Chapter 1 and theory on computer vision in Chapter 6. The implementation consists of two main
programs named GEOMED and CRE. GEOMED is a system of 3-D modeling routines with which
arbitrary polyhedra may be constructed, altered, or viewed in perspective with hidden lines
eliminated; and CRE is a solution to the problem of finding intensity contours in a sequence of
television pictures and of linking corresponding contours between pictures. Auxiliary programs

perform top level task control, comparing and locus solving.

INTRODUCTION.

:

|
I

I
Ii

|
|

14.“‘

i

i
iy

HI

I
|
|

i’

|

- PREDICTED V

FIGURE 0.3

INTRODUCTION.

FIGURE 0.4 - PREDICTED IMAGE t AND PERCEIVED IMAGE {.

Page Intentionally Left Blank

1.0 Introduction to Geometric Modeling, GEOMETRIC MODELING THEQRY.

SECTION 1.
GEOMETRIC MODELING THEORY.

1.0 Introduction to Geometric Modeling.
1.l Kinds of Geometric Models.

1.2 Polyhedron Definitions and Properties.
1.3 Camera, Light and Image Modeling.
1.4 Relatad Modaling Work,

1.0 Introduction to Geometric Modeling.

In the specific context of computer vision and graphics, geometric modeling reters to the
construction of computer representations of physical objects, cameras, images and light for the sake of
simulating their behavior. in Artificial Intelligence, a geometric model is a kind of world model;
ignoring subtleties, geometric world modeling is distinguished from semantic and logical world modeling
in that it is quantitative and numerical rather than qualitative and symbolic. The notion of a world model
requires an external world environment to be modeled, an internal computer environment to hold the
model, and a task-performing entity to use the model. In Geomelry, modeling is a synthetic problem,
like a construction with ruler and straight edge; modeling problems require an algorithmic solution
rather than a proof. The word geometric is an appropriate adjeclive to this kind of modeling in that it
is a combination of the Greek words yno (world) and perpia (measuring) which is exactly the activity to

be automated.

[.1 Kinds of Geometric Models. GEOMETRIC MODELING THEORY.

1.1 Kinds of Geometric Models.

The main problem of geometric modeling is to invent methods for representing arbitrary
physical objects in a computer. For the present discussion, the class of physical objects is restricted to
objects that are solid, rigid, opaque, and macroscopic with a mathematically well behaved surface. Such
objects include: the earth, chairs, roads, and plastic toy horées; other objects, for which models will not
be attempted, include glass, fog, hair, Jello, liquids and cloth. Physical objects can move about in space
with the restriction that two objects can not occupy the same space at the same lime. The scope of the

modeling problem can be appreciated by examining the modsls listed in Box 1.1.

/ BOX 1.1 ’ TEN KINDS OF GEOMETRIC MODELS. i \

Space Oriented: Object Oriented:
1. 3-D Space Array. 6. Manifolds.
2. Recursive Cells, 7. Polyhedra.
3. 3-D Density Function. . 8. Volume Elements.
4. 2-D Surface Functions. 8. Cross Sections.

\ 5. Parametric Surface Functions. 10. Skeletons. J

For a naive start, first consider a 3-D array in which each element indicates the presence or

absence of solid matter in a cube of space. Such a 3-D space array has the very desirable properties
of spatial addressing and spatial uniqueness in their most direct and natural form. Spatial addressing
refers to finding out what the model contains within a distance R of a locus X,Y,Z; spatial uniqueness
refers to the property that physical solids can not occupy the same space simultaneously. A first
drawback of the space array idea is illustrated by the apparently legal FORTRAN statement:
DIMENSION SPACE(100000,100000,100000)

The problem with such a dimension statement is that no present day computer memory is large enough
to contain a 10'° element array. Smaller space arrays can be useful but necessarily can not model
large volumes with high resolution. A further drawback of space arrays is that objects and surfaces
are not readily accessible as entities; that is a space array lacks the property of object coherence. In
computer graphics, the term coherent denotes both the quality of hoiding together as parts of the same
mass and the quality of not changing too drastically from one point to the next. The meaning of
coherent approachs the mathematical notion of topologically connected and locally continuous. The word

is used to refer to the frame coherence of a film as well as to the object coherence of a model.

1.1 Kinds of Geometric Modaels. GEOMETRIC MODELING THEORY.

The space array idea can be salvaged by grouping blocks of elements with the same value
togethér; the addressing process becomes more complicated but the overall memory required is
reduced and the two desired properties can ba maintained. One way of doing this (which has been
discovered in several applications) is recursive cells; the whole space is considered to be a cell; if the
space is not homogeneous then the first cell is divided into two (or four or eight) sub cells and the
criterion is applied again. This technique allows the spatial sorting of objects when the object models

can be subdivided at each recursion without losing their properties as objects.

Another salvageable naive modeling idea is that arbitrary objects can be expressed as algebraic
functions. In physics, physical objects are frequently referred to as three dimensional density functions
W=p(X,Y,2). Unforfunately such density functions can not be written out for objects such as a typing
chair or a plastic horse without resorting to a programming language or an éxtansive table (which is
equivalent to the space array modal). Objects that are essentially 2=D can be approximated by a
surface function Z = F(X,Y). For example landscape may be represented by geodetic maps in such a

2+-D fashion.

By definition, a function is single valued; consequently the description of even modestly
complicated objects cannot be expressed by giving one coordinate, e.g. Z, as a function of the other
two, e.g. X and Y. It is necessary either to adopt parametric functions or to subdivide the object into
portions that can be described by simple functions of Cartesian variables. The former course involves
establishing a system of surface coordinates (U,V), latitudes and longitudes, on the object in which
functions for the X,Y,Z locus of the object’s surface are expressed. The advantage of parametric
functions is that extended arbitrary curve surfaces can be expressed; some of the disadvantages are
that parametric curves may be self intersecting, they are not easy to modified locally, and the functions
become impractical before the shapes of mundane artifacts can be achieved. Consequently parametric
representations are combined with objecf subdivision, which is called segmentation. The process of
usefully segmenting an object without destroying its coherence is a major problem requiring the

combination of spatial, functional and objective representations.

1.1 Kinds of Geometric Models. GEOMETRIC MODELING THEORY.

In passing from space oriented models to object oriented models, | wish to note that
sophisticated representation of time is beyond the scope of this work, Although an advanced problem
solving robot will need to run world simulations along multiple time paths, the discussion will

concentrate on representing the geometry of the world at a single moment in time.

After existence in space and time, another general property of physical objects is that they can
be enclosed by an unbroken two dimensional surface with an unambiguous inside and outside; which
touchs upon the mathematical topic (celebrated in song by Tom Lehrer) of the algebraic topology of
locally Euclidean transitions of infinitely differentiable oriented Riemann manifolds. A manifold is the
mathematical abstraction of a surface; a Ricmd;m manifold has a metric function; an oriented manifold
has a unambiguous inside and an outside; the phrase infinitely differentiable can be taken to mean
that the surface is smooth; and the phrase locally Euclidean transitions refers to the process of
segmenting the object into pc;rtions that can be approximated by relatively simple functions. In
particular, the 2-D Riemann submanifold embedded in 3-D Euclidean space is the mathematical object
that comes closest to representing the shape and extent of the surface of a physical object; such
manifolds are conveniently approached through the topology of surfaces which in turn is

computationally approached by means of polyhedra.

One way to describe the topology of a 2=D Riemann submanifold embedded in a 3=D Euclidean
space is in terms of three kinds of simplex‘: the O-Simplex (or vertex), the 1-Simplex {or edge), and
the 2-Simplex (or triangle). In topological analysis 2-D Riemann submanifolds may be divided into
taces, edges and vertices such that Euler's equation F-E+V=2-2%H is satisfied (where F is the number
of faces, E is the number of edges, V is the number of vertices and H is the genus or number of
handles of the manifold); and such that the surface of the manifold can be approximated by local
functions over each face which are Euclidean and which fit together smoothly at all the e‘dges. By
introducing a sufficient (but finite) number of triangles the manifold can be approximated to within any

epsilon by constant functions, yielding the geometric object called the polyhedron.

One advantage of a polyhedral model is its connected surface topology of faces, edges and

vertices. Such a surface can be subdivided without losing its coherence or the coherence of the object.

1.1 Kinds of Geometric Models. GEOMETRIC MODELING THEORY.

The disadvantages of polyhedra include the lack of spatial uniqueness and spatial addressing which
necessitates computation to be done to detect and prevent spatial conflict and to find the portions of an
entily occupying a given volume. Another feature of polyhedra (which can be an advantage or
disadvantage) is that all the (Gaussian) curvature happens suddenly at the vertices; however by
associating highar order approximation functions with each face the model of a continuous 2-D manifold
can be made which is a more conventional curved object representation. Nevertheless, polyhedra are

intrinsically a general curved object representation.

Returning to the survey, arbitrary objects can also be described by listing a set of cross
sections taken at a sufficient number of cutting planes; this is how the shape of a ship’s hull or an
airpiane’s wing is specified. Cross sections have the interesting feature of good space modeling on one
axis. Forsaking arbitrary shaped objects, large classes of things can be described in terms of a small
set of basic volume elements. For example, Roberts (63)% and others have built models of familiar
objects using only rectangular and triangular right prisms. Arbitrary solid polyhedra can be
constructed out of tetrahedra (the 3-simplex); however no significant general modeling system exists

using this potentially interesting approach.

Skeletal models are based on abstracting an object into a stick figure and by associating a
diameter or set of cross sections with the sticks. In particular, spine cross section models have been
pursued at Stanford by Agin (72) and Nevatia (74). Spine cross section models have the advantage of
being able to express many objects in a concise form suitable for recognition, but they cannot be used

directly for arbitrary shapes.

Finally, it is often useful to represent physical objects by weak geometric modeis such as by
sots of spheres or by sets of unconnacted surface points. It is interesting to note that the reality that
the robot in Winograd's thesis (Winograd 71) could talk about, was a blocks world based on a geometric

model consisting only of points, size of block, and a two page LISP subroutine named FINDSPACE,

% Parenthesized names and numerals are references listed in Section 11.1

-10 -

1.1 Kinds of Geomelric Models. GEOMETRIC MODELING THEORY.

Beyond the particular kinds of geometric models, four general purpose modeling techniques
deserve special mention and isolation: prototype instance structure, parts tree structure, resoiution
limited structure, and procedure generated structure. Superficially, the prototype instance structure is
a memory efficiency technique based on storing generalizations (protolypes) which can be bound to
specific cases (instances) as the occasion demands. Parts tree structure is a memory management
technique of organizing the whole universe of discourse as a tree data structure, where objects are
composed of subobjects. Resolution limited structure is a memory accessing technique, where
depending on a specified scale of interest different models are reirieved or even generated. Finally,
procedure generated siructure concerns the trade-off between storing and recomputing a model;
namely recomputing the details of a model as they are needed is a good idea for extending

computational resources.

The danger to be avoided is to mistake the general modeling techniques for the geometric mode!
itself. Given a modeling regime it can be improved by protolyping, parts-treeing, resolution=limiting
and procedural-generating; without 2 good basic geometric model the general techniques amplify the

background noise.

/ BOX 1.2 DESIRABLE PROPERTIES FOR A GEOMETRIC MODEL. \
1. Spatial addressing. 6. Large extent with high resolution.
2. Spatial uniqueness. 7. Easy modifiablity.
3. Object coherence. 8. Suitability for physical simulation,
4. Surface coherence. 9. Efficiancy of memory and computation use,

\ 5. Shape generality. 10. Suitability for automatic model acquisition, J

To the best of my knowledge, this survey is complete. As of this year, 1974, there are no

other significantly different kinds of simple geometric models. The desirable properties that have
turned up in this survey are listed in Box 1.2, The final desirable property is that there be some hope
that the computer can derive the model by measurements it can make itself, although it is quite likely

that one model will be best for input and another model will be best for simulation.

-11 -

1.2 Polyhedron Definitions and Properties. GEOMETRIC MODELING THEORY.

1.2 Polyhedron Definitions and Properties.

in computational modeling, definitions are not used formally, but are rather employed piecemeal
in terms of individual properties which may or may not be present as polyhedra are generated and
processed. In particular, the properties listed in Box 1.3 (given in order of relevance) can be taken as

a working definition of a polyhedron for modeling a physical object.

ﬁox 1.3 PROPERTIES OF POLYHEDRA. \

1. EUlrian ... ssasessssscssonens Satisfies the Euler equation: F=E+V=2-2%H.

2. Surface Homogeneity ... The polyhedron does not intersect itself.

3. Trivalente. ., All vertices and faces have three or more edges.
4, Faco Planarity ..o All vertices of a face are coplanar.

5. SOHAItY oo enenmner e rertnines The volume measure is nonzero, finite and positive.
6. Simply Connected Faces......mne. Face perimeters have one loop of edges.

7. Face Convexity........ All the faces are convex.

8. Edge Aplanarity

Faces which share an edge are not coplanar,)

_

F=E+V=2~2%H equation; where as before F, E and V are the number of faces, edges and vertices of the

Topologically, the surface elements of a polyhedron form a graph that satisties Euler's

polyhedron; and where H is the number of holes in (or genus of) the polyhedron. However, not all
Eulerian graphs of faces, edges and vertices correspond to the usual notion of a solid polyhedron
without the surface homogeneity and trivalence restrictions. Surface homogeneity is the property that
for any point on the polyhedron a small enough sphere will cut from the surface a region
homeomorphic to a disk; this restriction implies that the surface cannot intersect itself and that an edge
can belong to only two different faces. The trivalence restriction insures that there are no degenerate
two edged faces or one edged vertices; although a two edged vertex has a reasonable interpretation it
is excluded by trivalence for the sake of face~vertex duality and canonical form. The last property, of
aplanarity of faces with a common edge, is also for the sake of canonical form and is sacrificed to face

convexity when necessary.

Geometrically, the faces of a polyhedron are planar, that is lie in a plane. It is also frequently
relevant to further restrict the faces of a polyhedron to be convex, that is to require that every
possible line segment between points of a face is contained within the face. To assure solidity, the

volume measure must be restrictad to be finite and positive; this restriction orients the surface to have

“-]2 -

1.3 Camera, Light and image Modeling. GEOMETRIC MODELING THEORY.

an exterior and an interior in the expected fashion. This restriction excludes non-orientable structures
such as Mobius bands and Klein bottles for which the volume measure is undefined; however the

restriction will be relaxed in Chapter 5 in order to exploit the concept of negative volumes.

The working definition was derived from more formal definitions such the following which defines

a polyhedron as a spaecial kind of a two dimensional manifold:

"A polyhedron is a connected, unbounded two-dimensional manifold formed by a finite
set of non-re-entrant, simply-connected plane polygons."
- Coxeter, Regular Polytopes (Coxeter 1963).

in a connected manifold there exists a path between any two points that does not leave the manifold.
An unbounded manifold is one with no cuts or gaps in its surface, that is no boundaries. A polyhedral
manifold is composed of planar, simply=connected, non=re=entrant polygons; that is flat polygons with a
perimeter of edges that form one loop that doesn't intersect itself. The polyhedron restrictions and
properties are directed towards modeling physical objects and are maintained by computational
mechanisms; consequently the word polyhedron comes to represent an intent, rather than the

fulfillment of any particular set of defining properties.
1.3 Camera, Light and Image Modeling.
Common to both computer graphics and vision is the necessity to model cameras, light and

images so that pictures may be synthasized or analyzed. The basic camera modal has eight degrees of

freedom, three in location, three in orientation and two in projection:

Location: CX, cv, CZ Vactor to camera lens center.
Orientation: WX, WY, WZ Orientation vector.
Projection: AR, FR Aspect Ratio and Focal Ratio.

The orientation vector is explained in Section 3.3, the perspective projection is defined in Section 3.4,
and the derivation of the camera parameters is the main topic of Chapler 9. In modeling light and
physical objects, the most important and difficult property to simulate is opacily. Techniques for

modeling opaque objects are presented in Chapter 4.

-13-

1.4 Related Modeling Work. GEOMETRIC MODELING THEOQRY.

Finally, an image is a 2-D geometric object representing the content of a rectangle from the
pattarn of light of light formed by a thin lens on a television vidicon. The video image is the interface
to the external reality. Image modeling is analogous to 3-D geometric modeling, since the same
tradeoffs between spatial structure and object structure arise. A 2-D image may be represented as a
video raster, which is a 2-D space array; or as a set of feature loci, which is an object oriented
description. Image structures and processors for generating and comparing image representations are
discussed in Chapters 7 and 8. Together camera, light and image modeling are the essential elements

required to apply a geometric modea! to computer vision.
1.4 Related Modeling Work.

Although geometric modeling per se has a long history and a rich literature in mathematics,
physics and engineering, very little such modeling has been done using a 'computer at the level of
detail required for visual perceplion. This level falls between the generality typical in physics and
mathematics and the specificity typical of engineering. Computer science research in geometric
modeling has already been cited in Section 1.2; similar ideas are available from computer graphics
sources (Newman and Sproull 73). In computer graphics, the typical modeling paper invariably has a
long discussion about the implementation of a node/link modeling language (CORAL, LEAP, ASP, and
others) and very little discussion on how the actual geometric modeling is to be done in the given
Janguage. In mathematics, | have found the work of the Canadian geometer Coxeter, (Coxeter 61) and
(Coxeter 63) .to be my baest source of ideas relevant to modeling; along with the observations from
racreational mathematicians (Gardner 59), (Gardner 61) and (Stewart 70); and geometry textbook
authors (Eves 65), (Snyder 14) and (Graustein 35). The translation of Hilbert's book (Hilbert 52)
presenting Geometry for the non-mathematician is also a good source of ideas. From Physics, material
on classical mechanics is useful in modeling rotation and inertia tensors (Goldstein 50), (Feynman et al
63) and (Symon 53). In engineering, books on geodetic surveying, mechanical drawing and
architectural drawing contain ideas relevant 1o modeling particular classes of objects; | have selected

(Luzadder 71) and (Muller 67) almost at random, as introductions to engineering and architectural

drawing, respectively.

“14 -

Page Intentionally Left Blank

2.0 Introduction to the Winged Edge. WINGED EDGE.

SECTION 2.

THE WINGED EDGE POLYHEDRON REPRESENTATION.

2.0 Introduction to the Winged Edge.

2.1 Winged Edge Link Fields.

2.2 Sequential Accessing,

2.3 Perimeter Accessing.

2.4 Basic Polyhedron Synthesis.

25 Edge and Face Splitting.

26 Coordinate Free Polyhedron Representation.

2.0 Introduction to the Winged Edge.

In this chapter, a particular computer representation for polyhedra is presented and some of its
virtues and faults are explained. The representation is implemented as a data structure composed of
small blocks of words containing pointers and data in the fashion usual to graphics and simulation. An
introduction to such data structures can be found in Chapter 2 of Knuth's Art of Computer Programming
(Knuth 68). Quickly reviewing Knuth's terminology, a node is a group of conseculive words of memory,
a field is a named portion of a node and a link is the machine address of a node. The notation for
referring to a field of a node consists simply of the field name foliowed by a link expression enclosed
ih parentheses. For example, the two faces of an edge node whose link is stored in the variable named
"edge", are found in the fields named NFACE and PFACE, and are referred to as NFACE(edge) and
PFACE(edge). Although my latest language of implementation is PDP-10 machine code, examples in
this chapter will be given in a fictional programming language which combines ALGOL with Knuthian
node/link notation. (As an exerciss, the energetic reader should write out a possible representation

for general polyhedra, before reading any further.)

- 15 =

FIGURE 2.1 - Winged Edge Topology. WINGED EDGE.

PVT(edge)

NCCW(edge) PCW(edge)

NFACE(edge) PFACE(edge)

NCW(edge) PCCW(edge)

NVT(edge)

FIGURE 2.1 - Winged Edge Topology.

The orientation of links is as viewed from the exterior side of the surtace.
The eight mnemonics in the figure, were derived as follows:
NFACE(edge) Negative Face of edge.
PFACE(edge) Positive Face of edge.
PVT(edge) Positive Vertex of edge.
NVT(edge) Negative Vertex of edge.
NCW(edge) edge in Negative face Clockwise from edge.
PCW(edge) edge in Positive face Clockwise from edge.
NCCW(edge) edge in Negative face Counter Clockwise from edge.
PCCW(edge) edge in Positive face Counter Clockwise from edge.

“16 -

2.1 Winged Edge Link Fields. WINGED EDGE.

2.1 Winged Edge Link Fields.

A polyhedron in made up of four kinds of nodes: bodies, faces, edges and vertices. The body
node is the head of three rings: a ring of faces, a ring of edges and a ring of vertices. In this context,
a ring is a doubly linked circular list with a head node. Each face and each vertex points directly at
only one of the edges on its perimeler. Each edge points at its two faces and its two vertices.
Completing the topology, each edge node contains a link to each of its four immediate neighboring
edges clockwise and counter clockwise about its face perimeters as seen from the exterior side of the
surface of the polyhedron. These last four links are the wings of the edge, which provide the basis for
efficient face perimeter and vertex perimeter accessing. Finally, the links of the edge nodes can be
consistently oriented with respect to the surface of the polyhedron so that the surface always has two

sides: the inside and the outside.

ﬁox 2.1 WINGED EDGE STRUCTURES AND LINK NAMES. \
Data Structures Link Names
1. Face Ring of a Body. NFACE PFACE
2. Edge Ring of a Body. NED PED
3. Vertex Ring of a Body. NVT PVT
4. First Edge of a Vertex. PED
5. First Edge of a Face. PED
6. The two faces of an edge: NFACE PFACE
7. The two vertices of an edge: NVT PVT
k 8. The four wing edges of an edge: NCW PCW NCCW PCCW J

Observe that there are twenty-two link fields in the basic representation: bodies contain six
links, faces three links, vertices three links and edges ten links. If we allow a link name such as PED to
sarve differant roles depending on whether it applies lo a body, face, edge or vertex; then the
minimum number of different link field names that need {0 be coined is ten. The data struciures and
the link fields comprising the structures are listed in Box 2.1. The ten link names include: NFACE and
PFACE for two fields that contain face links in edges and the face ring, NED and PED for two fields that
contain edge links, NVT and PVT for two fields that contain vertex links, and NCW, PCW, NCCW and

PCCW for the four fields that contain edge links and are called the wings.

-]7 =

2.1 Winged Edge Link Fields. ' WINGED EDGE.

By constraining the arrangement of links in an edge node both the surface oriantation (interior
and exterior) and a linear orientation of the edge as a directed vector can be encoded. Figure 2.1
diagrams the arrangement of the links comprising the topology of an edge of a polyhedron as viewed
from the exterior side of ils surface. Although the vertices in Figure 2.1 are shown with only three
edges, vertices may have any number of edges; the other potential edges would not be directly linked

to the middle edge of the figure and so were not shown.

To complete the representation, space is aliocated to contain the 3-D coordinates of each vertex
in fields named XWC, YWC and ZWC; the initials "WC" stand for World Coordinates. For the sake of
vision and display, three more words are allocated to hold the Perspective Projected coordinates of
each vertex in fields named XPP, YPP and ZPP. Also a word of thirty six status bils is carried in every
node: permanent status bits specify the type (body, face, edge, vertex, etc.)'of every node, temporary
bits provide space for operations such as hidden line elimination that require marking. Passing now
from necessities to conveniences, faces carry exterior pointing normal vectors and several words of
photomelric surface characteristics. The face vectors are derived from surface topology and vertex
loci, and so they are not basic geometric data as in some representations. Bodies carry a print name,
as well as four link fields (DAD, SON, BRO, SIS) for implementing a parts tree data structure; and two
link fields (CW and CCW) for a body ring of all the bodies in the world model. Node formats are given

in Section 11.2 for an implementation based on fixed sized (tweive word) nodes.

The Winged Edge Polyhedron Representation as just presented is complele. Edge nodes carry
most of the topology, vertex nodes carry the geometry, face nodes carry the photometry and body
nodes carry the linguistics (nomenclature) and parts tree structure. The point that remains to be
demonstrated, is that the appropriate subroutines for creating, maintaining and exploiting edge
orientation execule efficiently and provide good primitives for solving such geometric problems as

hidden line elimination and polyhedral intersaction.

-18 -

2.3 Perimeter Accessing. . WINGED EDGE.

2.2 Sequential Accessing.

An immediate consequence of the ring structures is that the faces, edges and vertices of a body

are sequentially accessible in the manner illustrated by the following lines of code:

COMMENT RPPLY R FUNCTION TO ALL THE FACES, EDGES AND VERTICES OF R BODY;
PROCEDURE APPLY (PROCEDURE FN; INTEGER B);

BEGIN

INTEGER F,E,V;

F « By WHILE Bu(F«PFACE(F)) DO FN(F); COMMENT RPPLY FUNCTION TO FACES OF A BODY;

E « B; WHILE B=(E<PEDB(E)) DO FN(E); COMMENT RPPLY FUNCTION TO EDGES OF A BODY;

V « By WHILE Bx(VePVT(V)) DO FN(V); COMMENT RPPLY FUNCTION TO VERTICES OF R BODY;
END;

The rings could of course have been traversed in the other direction by invoking NVT, NED and NFACE
in place of PVT, PED and PFACE. The reason for doubly linked lists (i.e. rings) is rapid deletion.
Finally, observe that the face and vertex rings could be eliminated at the cost of having a more
complicated face/vertex sequential accessing method requiring a visitation marking bit in the status

word of face and vertex nodes. The idea might be coded as follows:

COMMENT APPLY R FUNCTION TO ALL THE FACES OF A BODY WITHOUT USING THE FACE RINGS;
PROCEDURE APPLY (PROCEDURE FN; INTEGER B);

BEGIN
INTEGER F,E,H;
E + B; COMMENT FIRST EDGE OF BODY;
M « MARK(PFRCE(E)); COMMENT READ INITIAL STRATE OF MARKING BIT;
DO FOR F « PFACE(E),NFRCE(E) DO COMMENT FOR BOTH FACES OF ERCH EDGE...;
BEGIN
IF M=MARK(F) THEN FN(F); COMMENT APPLY FUNCTION TO "UN-RE-MARKED" FACE;
MARK (F) « -l COMMENT FLIP THE MARKING BIT;
END;
UNTIL B=(E+PED(E)); COMMENT RLL THE EDGES OF THE BODY;
END;

2.3 Perimeter Accessing.

The perimeter of a face is an ordered list of edges and vertices, the perimeter of a vertex is an
ordered list of edges and faces, and the perimeter of an edge is an ordered list consisting of exactly
two faces and two vertices. The perimeter definitions are caricatured in Figure 2.2. One virtue of the
winged edge representation is that both vertex and face perimeters can be traversed in either

direction (clockwise or counter clockwise) while being dynamically maintained in "one ring".

-19 -

2.3 Perimeter Accessing. WINGED EDGE.

FIGURE 2.2 - Three Kinds of Perimeters.

g
FACE
¢ o o
A Vertex is surrounded An Edge is surrounded A Face is surrounded
by Edges and Faces by Faces and Vertices by Edges and Vertices

Given one edge of a face (or vertex) perimeter, the next edge clockwise (or counter clockwise)
from the given edge about the particular face (or vertex) can be retrieved from the data structure
with the assistance of two subroutines called ECW and ECCW. The idea of the edge clocking routines is
to match the given face (or vertex) with one of the faces (or vertices) of the given edge and to then

return the appropriate wing. A possible coding of ECCW and ECW might be as follows:

COMMENT FETCH EDGE CCH FROM E RBOUT FV; COMMENT FETCH EOGE CLOCKWISE FROM E RBOUT FV;

INTEGER PROCEDURE ECCH (INTEGER E,FV); INTEGER PROCEDURE ECW (INTEGER E,FV);

BEGIN "ECCH" BEGIN "ECH"
IF PFACE (E)=FY THEN RETURN(PCCH(E)); 1F PFRCE(E)=FV THEN RETURN(PCH(E));
IF NFRCE (E)=FV THEN RETURN(NCCH(E)); IF NFRCE (E)=FV THEN RETURN(NCW(E));
IF PVT(E)=FV THEN RETURN(PCH(E)); IF PVT(E)=FV THEN RETURN(NCCW(E));
IF NVT(E)=FV THEN RETURN(NCH(E)); IF NVT(E)=FV THEN RETURN(PCCH(E));
FATAL ; FATAL;

END "ECCH"; END "ECH";

The first edge of a face or vertex is {of course) immediately available from the PED field of the face or
vertex. For example, the two procedures below can be used to visit all the edges of a face or all the

edges of a vertex, respaectively.

COMMENT APPLY FUNCTION TO EDGES OF A FACE; COMMENT RPPLY FUNCTION TO EDGES OF A VERTEX;
PROCEDURE APPLY (PROCEDURE FN; INTEGER F); PROCEDURE RPPLY (PROCEDURE FN; INTEGER V)
BEGIN BEGIN

INTEGER E,E0; INTEGER E,E0;

E-EQ-PED(F); E-EQ-PED (V)

DO FN(E) UNTIL E@= (E-ECCU(E,F)); DO FN(E) UNTIL E@= (E«ECCH(E,V));
END; END;

Using the same idea as in the edge clocking routines, a face or vertex can be retrieved relative

to a given edge and a given face or vertex. These routines include: FCW and FCCW which return the

.20 -

2.4 Basic Polyhedron Synthesis. WINGED EDGE.

face clockwise or counter clockwise from a given edge with respect to a given vertex; YCW and VCCW
which return the vertex clockwise or counter clockwise from a given edge with respect to a given
face; and OTHER which returns the face or vertex of the given edge opposite the given face or vertex.
Together the seven routines: ECW, ECCW, VCW, VCCW, FCW, FCCW and OTHER exhaust the possible
oriented retrievals from an edge node; thay also allaviate the need to ever explicitly reference a wing
field when traveling the surface of a polyhedron. With node type checking the primitives can be made
stronger, for example ECCW(vertex,face) is implemented to return the edge counter clockwise from
the given vertex about the given face. With node type checking and signed arguments the seven
perimeter accessing routines could even be replaced by a single routine perhaps named
PERIMETER_FETCH or PGET. On the other hand, | favor having the proliferation of accessing names for

the sake of documenting the clocking direction and the types of nodes involved.

Two remaining surface accessing routines, of minor importance, are BGET(entity) and
LINKED(entity,entity). BGET of a face, edge or vertex merely cycles the appropriate ring to retrieve
the body of the given entity. The LINKED routine determines whether its two argumenis (faces, edges
or vertices) are adjacent; there are six LINKED cases: (i) Face-Face, returns a common edge or
FALSE; (ii) Face-Edge, returns boolean value F=PFACE(E) v F=NFACE(E); (iii) Edge-Edge, returns a
common vertex or false; (v) Edge-Vertex, returns boolean value V=PYT(E) v V=NVT(E); (vi)

Vertex-Vartex, returns common edge or FALSE. (As in LISP, zero is false and non-zero is true).

2.4 Basic Polyhedron Synthesis.

/ BOX 2.2 LOWEST LEVEL WINGED EDGE ROUTINES.
Node Makers: MKNODE, MKB, MKF, MKE, MKV, MKTRAM.
Node Killers: KLNODE, KLB, KLF, KLE, KLV.
Wing Mungers: WING, INVERT, EVERT.
Surface Fetchers: ECW, ECCW, OTHER, VCW, VCCW, FCW, FCCW, LINKED.

k Parts Tree Routines: BODET, BATT, BGET.

There are sixteen routines for node creation and link manipulation which when combined with the
nine accessing routines of the previous section form the nucleus of a polyhedron modeling system.

These routines are very low level in that the final applications user of winged poiyhedra will never

-2] -

2.4 Basic Polyhedron Synthesis. WINGED EDGE.

explicitly need to make a node or mung a link. The word mung (meaning to modify an existing
structure by altering links in place) is LISP slang that deserves to be promoted into the technical
jargon; traditionally, a mung routine is one which makes applications of the LISP primitives RPLACA and
RPLACD. The twenty five routines listed in Box 2.2 are the bedrock foundation for the Kuler

primitives presented in Chapter 3.

Node Makers and Killers. The MKNODE and KLNODE are the raw storage allocation routines
which fetch or return a node from the available ffee storage. Ths MKB routine creates a body node
with empty face, edge and vertex rings; the body is placed into the body ring of the world model. The
MKF, MKE and MKV each take one argument and create a new face, edge or vertex node in the ring of
the given entity; with type checking these three primitives could be consolidated. Finally the MKTRAM
node creates a tram node, which consists of twelve real numbers that represent either a Euclidean
transformation or a Cartesian frame of reference depending on the context. ’ (Tram nodes are explained
in Section 3.3.) The corrasponding kill routinas KLB, KLF, KLE and KLV remove the entity from its

respective ring and return its node to free stora‘ge.

Wing Mungers. The WING(edgel,edge2) routine finds which face and vertex the arguments
edgel and edge2 have in common and stores the wing pointers between edge! and edge2 accordingly;
the exact link manipulations are illustrated in the example coding of the WING procedure immediately
following this paragraph. Recalling that edges are directed vectors, the INVERT(E) routine flips the
direction of an edge by swapping the contents of the appropriate fields as follows:
PFACE(E)eNFACE(E); PVT(E)eNVT(E); NCW(E)erCW(E) and PCW(E)ePCCW(E). Finally, the EVERT(B)
routine turns a body inside out, by performing the following link swaps on all the edges of the given

1
body: PFACE(E)eNFACE(E); NCW(E)ePCCW(E); and NCCW(E)ePCW(E).

PROCEDURE WING(INTEGER EI1,E2);

BEGIN
1F PVT(EL)=PVT(E2)APFARCE(E1)=NFRCE (E2) THEN BEGIN PCH(EL)«E2;NCCH(E2)+EL;END;
IF PVT(EL)=PVT(E2) ANFRCE(EL)=PFRCE (E2) THEN BEGIN NCCH(EL)«E2; PCW(E2)«EL1;END;
IF PVT(EL)=NVT(E2) APFRACE(EL)=PFRCE (E2) THEN BEGIN PCH(EL)«E2;PCCH(E2)«EL1;END;
IF PVT(EL)=NVT(E2) ANFRCE (EL)=NFRCE(E2) THEN BEGIN NCCH(EL)«E2; NCH(E2)«EL;END;
IF NVT(EL)=PVT(E2) APFACE(E1)=PFRCE (E2) THEN BEGIN PCCH(E1)«E2; PCHU(E2)«EL;END;
IF NVT(EL)=PVT(E2) ANFACE (E1)=NFACE (E2) THEN BEGIN NCH(EL)«E2;NCCU(E2)«EL1;END;
IF NVT(EL)=NVT(E2) APFACE (E1)=NFACE (E2) THEN BEGIN PCCH(EL1)«E2; NCH(E2)«ELl;END;
IF NVT(EL)=NVT(E2) ANFACE (E1)=PFACE (E2) THEN BEGIN NCW(EL)«E2;PCCH(E2)«EL;END;

END;

-22-

2.4 Edge and Face Splitting. WINGED EDGE.

Part Tree Routines. As mentioned before, body nodes can be grouped into a tree structure or
parts. The parts tree consumes four link positions (DAD, SON, BRO, SIS) and is maintained in body
nodes by the following primitives: BDET(body) detachs a body node from the parts tree,
BATT(body1,body2) attachs bodyl to the ring of children belonging to body2, and BGET(entity) returns
the body node at the head of the given face, edge or vertex ring. The SON field of a body may contain
a pointer o a headless ring of subpart bodies, the ring of subparts is maintained in the BRO (Brother)
and SIS (sister) fields, and each subpart contains a pointer back to its parent in its DAD field. At
present, the notion of a body is coincident with the notion of a connected polyhedron; however by
allowing several bodies to be associated with a single polyhedral surface, a flexible object such as an

animal could be represented.
2.4 Edge and Face Splitting.

One of the most important properties of the winged edge representation is that edges and faces
can be split using subroutines that make only local alterations o the data structure; and the splits can
easily be removed (since the doubly linked rings allow rapid deletion of nodes from a body). The edge
split routine, ESPLIT, makes a new edge and a new vertex and places them into the surface topology as
shown in Figure 2.3; the kill edge~vertex routine, KLEV, undoes an ESPLIT. The face split routine,
MKFE, creates a new edge and a new face and places them into the surface topology as shown in

Figure 2.4; the kill face-adge routine, KLFE, undoes a MKFE.

The rest of this section concerns implementation; it may be skipped by the applications oriented
reader. The split and kill routines are examples of a pattern which applies to the coding of operators
that alter winged edge structures. In a typical situation, there are five steps: first, get the proper
kinds of nodes into the body rings using the MKF, MKE, MKV primitives; second, position the vertices
by setting their XWC, YWC, ZWC fields; third, connect each vertex and face to one of its edges by
setting face/vertex PED fields; fourth, connect each edge to its two faces and its two vertices by
setling the NFACE, PFACE, NVT, PVT fields of the edge; finaily, set up the wing perimeter pointers by
applying the WING primitive to the pairs of edges to be mated.

.23 =

2.4 Edge and Face Splitting.

WINGED EDGE.

FIGURE 2.3 - ESPLIT AND KLEV.

EDGE

PFACE

BEFORE: VNEW « ESPLIT(EDGE);
AFTER: EDGE « KLEV(VNEW);

INTEGER PROCEDURE ESPLIT (INTEGER EDGE);
BEGIN "ESPLIT"
INTEGER VNEW, ENEM;
COMMENT CREATE R NEW EDGE AND VERTEX;
VNEW « MKV (PVT(EDGE));
ENEW « MKE (EDGE);
COMMENT CONNECT VERTICES & FACES TO EDGES;
PVT(ENEW) « PVT(EDGE);
NVT (ENELD » VNEW;
PVT(EDGE) «~ VNEW;
PFACE (ENEW) « PFACE (EDGE);
NFRCE (ENEW) + NFRCE (EDGE);
COMMENT CONNECT EDGES TO VERTICES;
IF PED (PVT (EDGE) =EDGE THEN
PED (PVT (EDGE)) «ENEW;
PED (VNEW) +ENEM;
COMMENT LINK THE WINGS TOGETHER;
NCH (ENEH) « EDGE; PCCH(ENEW) « EDGE;
PCH (EDGE) « ENEW; PCCH(EDGE) « ENEW,
WING (NCCH (EDGE) , ENEN)
WING (PCH (EDGE) ,ENEN)
RETURN (VNEW)
END “ESPLIT";

INTEGER
BEGIN "K

COMMENT

COMMENT -

COMMENT

COMMENT

AFTER: VNEW « ESPLIT(EDGE);
BEFORE: EDGE « KLEV(VNEW);

PROCEDURE KLEV (INTEGER VNEM);
LEV"
INTEGER EDGE,ENEW,V,F,B;
ENEW « PED (VNEH);
EOGE « ECCH(ENEW, VNEW) ;
ORIENT EDGES RS IN DIRGRAM;
IF NVT(ENEW) = VNEW THEN INVERT (ENEW);
IF PVT(EDGE) = VNEW THEN INVERT (EDGE);
TIE € TO ITS NEW UPPER VERTEX AND WINGS;
V « PVT(EDGE) w PVT(ENEW);
WING (PCH (ENEW) ,EDGE) ;
WING (NCCM (ENEW) ,EDGE) ;
ELIMINATE OCCURRENCES OF ENEW IN F AND V;
IF PED(V)=ENEW THEN PED(V) « EDGE
IF PED(PFACE (EDGE)) =ENEN THEN
PED (PFACE (EDGE)) «EDGE ;
IF PED(NFACE (EDGE))=ENEW THEN
PED (NFACE (EDGE)) «EDGE ;
REHOVE NODES FROM RINGS AND RETURN EDGE;
KLV (VNEW) ;
KLE (ENEW)
RETURN (EDGE) ;

END "KLEV";

The actual routines differ slightly from those given above in that they do argument type

checking and data structure checking; nevertheless, a diagnostic trace of the implemented version

reveals that the ESPLIT routine executes an average of 170 PDP~10 instructions and the KLEV routine

executes an average of 200 instructions.

-24 -

24

Edge and Face Splitting.

WINGED EDGE.

FIGURE 2.4 - MKFE AND KLFE.

Vi

v2
~

BEFORE: ENEW « MKFE(V1,FACE,V2);
AFTER: FACE « KLFE(ENEW);

INTEGER PROCEDURE MKFE (INTEGER VI,FRCE,V2);
BEGIN "MKFE"

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

END;

INTEGER V1,V2, FNEM,ENEM,E,E8,B,V;
CREATE NEW FACE & EDGE;
FNEW « MKF (FACE); ENEW « MKE(PED(FACE));
LINK NEW EDGES TO ITS FACES & VERTICES;
PED(F) « PED(FNEW) « ENEW;
PFACE (ENEW) « F; NFACE(ENEH) « FNEW;
PVT(ENEW) « Vi; NVT(ENEW) « V2;
GET THE WINGS OF THE NEW EDGE;
E2 « PED(VI)
D0 E2-ECH((EL+E2),V1) UNTIL FEW(EL,V1)=FACE;
E4 « PED(V1);
D0 E4~ECH((E3+E4),V2) UNTIL FCH(E3,V2)=FACE;
SCAN CCW FROM VI REPLACING F*S WITH FNEW,
E « E2;
D0 IF PFACE(E)=FACE THEN PFACE (E)+FNEN
ELSE NFRCE (E) <FNE;
UNTIL E4 = (E~ECCH(E,FNEW));
LINK THE WINGS;
WING (EL,ENEW) ; WING(E2,ENEW);
WING (E3,ENEN) ; WING (E4,ENEW);
RETURN (ENEW) ;

INTEGER

AFTER: ENEW « MKFE(V1,FACE,V2);
BEFORE: FACE « KLFE(ENEW);

PROCEDURE KLFE (INTEGER ENEW);

BEGIN "KLFE"

COMMENT

COMMENT

COMMENT

COMMENT

END;

INTEGER FNEW,FACE,V!,V2,E,EL,E2,E3,E4;
PICKUP ALL THE LINKS OF ENEN;

FACE « PFRACE(ENEW); FNEN « NFACE(ENEN);
V9 « PVT(ENEH); V2 « NVT(ENEW);

ELl « PCH(ENEW); E2 « NCCH(ENEW);

E3 « NCH(ENEW); E4 « PCCUH(ENEW);

GET ENEW LINKS OUT OF FACE, V1 AND V2,
IF PED(VI) = ENEW THEN PED(VL) « El;
IF PED(V2) = ENEW THEN PED(V2) « E3;
IF PED(FRCE)=ENEW THEN PED(FACE)«E3;
GET RID OF FNEW RPPERRANCES;

E+«E2

DO IF PFACE(E)=FNEW THEN PFACE (E)«FACE
ELSE NFACE (E) «FACE;

UNTIL €4 = (E«ECCU(E,FNEW));

LINK WINGS TOGETHER ARBOUT FRCE;
NING(E2,EL) ;HING(E4,E3);

KLF (FNEH) ;KLE (ENEW) 4

RETURN (FACE) ;

Again, the actual routines differ from those given above in that they do argument type checking

and data structure checking. The above two routines typically take about twice as long to execute as

the previous pair; notice that the execution time is dependent on the length of face perimeters, which

are mostly three or four edges long.

- 25 =

25 Coordinate Free Polyhedron Representation. WINGED EDGE.

2.5 Coordinate Free Polyhedron Representation.

As in general relativity, all geometric entities can be represented in a coordinate free form. In
particular, the vertex coordinates of a polyhedron can be recovered from edge lengths and dihedral
angles (the angle formed by the two faces at each edge). Having the geometry carried by only two
numbers per edge rather than by three numbers per vertex does not necessarily yield a more concise
representation because edges always outnumber vertices two for one, and in the case of a triangulated

polyhedron edges outnumber vertices by three to one.

One applicatibn of a coordinate free representation arises when it is necessary to measure a
shape with simple tools such as a caliper and straight edge. For example, one way to go about
recording the topology and geometry of an arbitrary object is to draw a triangulated polyhedron on its
surface with serial numbered vertices and to record for each edge its length, its two vertices and its
signed dihedral length. The dihedral length is the distance between the vertices opposite the edge in
each of the edge's two triangles; the length can be given a sign convention o indicate whether the
edge is concave or convex. The required dihedral angles can then be computed from the signed

dihedral lengths.

-26 -

3.0 Introduction to GEOMED. GEOMED.

SECTION 3.
A GEOMETRIC MODELING SYSTEM.

3.0 Introduction to GEOMED.

3.1 Euler Primitives.

3.2 Routines using Euler Primitives.

3.3 Euclidean Routines.

3.4 Image Synthesis: Perspective Projection and Clipping.
3.5 Image Analysis: Interface to CRE.

3.0 Introduction to GEOMED.

GEOMED (Geometric Editor) is a system of subroutines for manipulating winged edge polyhedra.
The system has two manifestations: first, it appears as an interactive 3-D drawing program and second,
it appears as a geometric modeling command language. It is the latter manifestation along with some of
the details of implementation that is the subject of this chapter; the interactive drawing program is
documented in (Baumgart 74). As a language, GEOMED is all semantics with no particular syntax of its
own; there are about two hundred subroutines which take from zero to four arguments, return one or
no values and which usually have considerable side effects on the data structures. The subroutines can
be grouped into five classes: utility routines, Euler routines, Euclidean routines, image synthesis and
image analysis routines. The utility routines include input/output, trigonometric functions, memory
management, a command scanner, and device dependent display routines; the utility routines will not be
further elaborated. The Euler routines perform topological operations on links, the Euclidean routines
perform geometric computations on data, and the image synthesis routines perform photographic

simulations on the model as a whole. The fifth class, image analysis routines, consists at present solely

.27 -

3.0 introduction to GEOMED. GEOMED.

of an interface between GEOMED and CRE, the fifth group lacks the completeness of the other parts of

the system.

As in the previous chapter, the programming notation used will continue to have an ALGOL
appearance with spacific examples of actual GEOMED code being given in the language SAIL (Stanford

ALGOL) as is example #1 immediately below. The program in example #1 creates two cubic prisms and

BEGIN "EXAMPLE ONE"
REQUIRE "GEOMES.HOR [GEM, HE] " SOURCE_FILE;
DEFINE PI="3,1415927";
INTEGER B1,B2,1;
HKUNIV;
Bl + MKCUBE(8,1,8.5);
B2 « MKCUBE(1,2,4);
TRANSL (82, -7, 1.5,0);
FOR 1«1 STEP 1 THRU 24 0O
BEGIN
GEODPY;
PLOTO ("THP, "&CVS(1));
ROTATE (B1,P1/10,P1/12,P1/13);
ROTATE (B2, 8, 2:P1/23,0);

COMMENT DECLARE GEOMED EMBEDDED IN SAIL;

COMMENT THO BODIES AND AN IMRGE COUNTER;
COMMENT INITIALIZE THE DARTA STRUCTURES;
COMMENT CRERTE A COUPLE OF CUBIC PRISMS;

COMMENT DISPLACE ONE OF THEM;
COMMENT MAKE 24 IMAGES;

COMMENT OISPLAY REFRESH;

COMMENT OQUTPUT LATEST DISPLAY TO DI1sK;
COMMENT ACTION WITH RESPECT TO ...
COMMENT .. .HORLD COORDINATES;

END;

END “EXAMPLE ONE“;

FIGURE 3.1 = THE 24 DISPLAYS OF EXAMPLE #].

M

0_—

8y

A

i

T

P

iim

[

o=

=

i

%m

=1

-

'

F

7

1

i

ol

O &

D

displays them rotating. The header file, GEOMES.HDR, is kept on a disk area [GEM,HE] and contains the
names of the necessary load modules, the daclarations of all the modseling routines and SAIL macros for
accessing GEOMED data structures. After the header, the first routine to execute is MKUNIV (make
universe), which initializes the data structures. Next two polyhedra are created using the MKCUBE
routine which takes three arguments: width, breadth and height for specifying a rectangular right
parallelepiped. All such creation routines return an integer which is the machine address of the node

of the enlity created. The first routine of the FOR-loop is GEODPY which refreshes the display of the

-28 -

3.0 Introduction to GEOMED. GEOMED.

model. Finally, the example calls TRANSL and ROTATE which perform translation and rotation. TRANSL
takes four argument: the thing to be moved followed by the three components of a translation vector;
similarly ROTATE takes four arguments: the thing to be moved followed by the three components of a

rotation vector; there are sevaeral other ways to specify translation and rotation.

FIGURE 3.2 - THE 24 DISPLAYS OF EXAMPLE #2.

BEGIN "EXAMPLE TWO"
REQUIRE "GEOMES.HDR[GEM,HE)" SOURCE _FILE;
DEFINE u="COMMENT"; DEFINE PI="3.1415927";
INTEGER B1,B2,J1,J2,J3,J4,J5,J6,C1,CHR, I
HKUNIV; GEODPY;

o GEOMED EMBEDDED IN SAIL;
o DECLARE COMMENT PREFIX;

B1 « INB30 (“ARMIDAT,BGBI™); « HODEL OF THE YELLOW ARM;
B2 «~ INB3D("TABLE(DAT,BGBI"); « MODEL OF THE HAND/EYE TRBLE;
J1 « FONRHME ("JOINTL"); « SHOULDER - ABOUT VERTICAL;
J2 « FDNAME ("JOINT2"); « ARM - ABOUT HORIZONTAL;
J3 « FDNAHE ("JOINT3"}; « SLIDE;
J4& « FONARME("JOINTA™); « NRIST THIST;
JS « FONRHE ("JGINTS"); « HRIST FLAP;
J6 « FDNAHE ("JOINTE"); « HAND;
Cl1 « INCRM("ARMCAMIDAT,BGB)"); « INPUT A PARTICULAR CAMERA MODEL;
FOR I«1 STEP 1 UNTIL 24 DO « THENTY FOUR IMAGES FOR FIGURE 3.2;
BEGIN
SHOW2(8,8); « HIODEN LINE ELIMINATION DISPLRY REFRESH;
PLOTO ("PLTX2. "8CVS (1)) « DUTPUT LATEST DISPLAY FILE TO DISK;
ROTATE (-J1,0,8,P1/48); « ACTION HITH RESPECT TO BODY COORDINATES...;
ROTATE (-J2,8,8,-P1/80); « ...HHEN BODY ARGUMENT IS GIVEN NEGATIVE;
TRANSL (-J3,8,0,8.86);
END;

END "EXAMPLE THO";

In example #2, the model of an actual robot arm is read in and the first three joints are run
through a simulated arm motion. The routine INB3D reads a B3D polyhedron file from the disk. The
arm was drawn from measurements using the interactive form of GEOMED. The FDNAME, find name,
routine retrieves a body by its print name; FONAME returns zero when a name is not found. The
routine INCAM reads in a camera file. Finally, the routine SHOW2 calls the hidden line eliminator;.

when SHOW2's arguments are zero, default options are assumed. The arm model was originally made

.29 -

3.1 Euler Primitives. GEOMED.

to illustrate an arm trajectory for a thesis on arm control (Paul 69) and has been used two times since

in projects concerning arm trajectory planning and arm collision avoidance.

GEOMED is a hierarcy of several levels of routines that are finally invoked by syntactically trivial
subroutine calls. The point illustrated by the examples is that some applications leval GEOMED code
has a quite ordinary appearance that does not require mastery of the many underlying primitives which

are explained in the next several sactions.
3.1 Euler Primitives.

The Euler routines are based on the idea thal an arbitrary polyhedron can be created in steps
that always maintain the Euler relation: F-E+V=2%(B=H). Topologically, a connected Eulerian polyhedral
graph can be built up with only four creation primitives: MKBFV, MKEV, MKFE and GLUEE or taken
apart with four kill primitives: KLBFEV, KLEV, KLFE and UNGLUEE. The prefixes "MK" and "KL", stand
for make and kill; the initials "B", "F", "E" and "V" invariably stand for body, face, edge and vertex
and tend to appear in that order. The notion of GLUE is associated with the process of forming (or
removing) a handle which increases (or decreases) the topological genus of the surface by one unit.
The MKBFYV primitive takes no arguments and creates a degenerate point polyhedron of one vertex,
one face and one body which is the minimal non-zero binding satisfying the Euler relation. The MKEV
creates a new edge and a new vertex, the new edge is attached to the old vertex as a spur in the
periméter of the given face. The MKFE creates a new face and a new edge, the new edge is placed
between the two given vertices. And the GLUEE routine creales a handle or kills a body node by
placing a new edge between two given vertices and by removing the second of two given faces.

Completing the set, the ESPLIT routine (explained in Section 2.5) is included as a form of MKEV.,

In principle, the advantages of the pure Euler primitives are that they assure valid topology, full
generality, reasonable simplicity and they achieve a semanlic level slightly higher than that of
manipulating the nodes and links directly. However, the Euler primitives only satisfy the first of the
conditions defining a solid polyhedron; imposing no particular restrictions on surface orientation,

faca/vertex trivalence, face planarity, face convexity or surtace self intersection. Furthermore, even

-30 -

3.1 Euler Primitives. GEOMED.

some low level topological operations (such as body intersection, Chapter 5) are inconvenient to
specity in term of the Euler primitives. Nevertheless in practice, the Euler primitives perform a useful
role as a topological foundation for coding routines which embody more algebra and geometry and

which lead to higher semantic levels.

/ BOX 3.1 THE EULER PRIMITIVES. \

EULER MAKE PRIMITIVES:

1. BNEW « MKBFV; Makes point polyhedron.

2. VNEW « MKEV(F,V); Makes new edge and vertex.
VNEW « ESPLIT(E); . Makes new edge and vertex.

3. ENEW « MKFE(VI,F,V2); Makes new face and edge.

4, ENEW « GLUEE(F1,V1,F2,V2); Makes new edge, kills F2,

and makes a hole or kills a body.
EULER KILL PRIMITIVES:

l. QNEW « KLBFEV(Q); Kills bodies, faces, edge and vertices,

2. FACE « KLFE(E); Kills £ and NFACE(E). Returns PFACE(E).

3. EDGE « KLEV(V); Kills V and PED(V). Returns other E of V.
VERT « KLEV{E); Kills E and NVT(E). Returns PVT(E).

4, FNEW « UNGLUE(E); Kills E, makes F. Returns the new face,

\ and kills a hole or makes a body.

The remainder of this section consists of more explanation and examples of the Euler primitives

and may be skipped by the reader who does not need an elaboration of this lavel of modeling.
Non-solid polyhedra: Intermediate between Eulerian and solid polyhedra are the wire, dangling=wire
(or spur), lamina, sheet and wasp-edged polyhedra which are transition states for creating and aitering
polyhedral solids. The wire polyhedron consists of one face, N edges and N+1 vertices. A lamina is a
two faced polyhedron with no interior edges or dangiing wire. A dangling wire or spur is made when
a MKEV is applied to a vertex of an already closed simply connected face perimeter; dangling wire
spurs are ultimately "closed” or "lied down" by a MKFE application. A sheet is an array of lamina, with
the exceplion of ruled surfaces of rotation, commands for folding and manipulating sheets have not
been developed. Finally, a wasp polyhedron is a transition state formed by the GLUEE primitive; this
degenerate polyhedron is named for the wasp waisted face perimeter which (like a spur) is eliminated

by appropriate MKFE applications.

-3] -

3.1 Euler Primitives. GEOMED.

FIGURE 3.3 - FIVE KINDS OF NON-SOLID POLYHEDRA.

]

WIRE LAMINA DANGLING WIRE SHEET WASP WAIST

The use of the Euler primitives is limited to the above transition states. MKEV sweeps a MKBFV
point body into a wire, the wire may be continued (at only its newest end) by additional MKEVs until it
is closed into a lamina by MKFEing the first and last vertices of the wire. The MKFE is oriented such
that if the wire is‘planar and the resulting lamina is homogeneous (non-self-intersecting); then the
exterior vector of the newly created face points into the counter clockwise halfspace of the lamina, the
halfspace from which the order of creation of the verlices appears to be counter clockwise. This
particular generation by Euler sweeping from point, through wire and lamina, to solid is illustrated by
the make hexahedron example #3 and by the make tetrahedron example #4; the final example of this

section, example 45, illustrates the use of GLUEE.

Example 3 - Make Hexahedron.

BEGIN "EXAMPLE THREE"
REQUIRE "GEOMES.HDR [GEM,HE] " SOURCE_FILE; « GEOMED EMBEDDED IN SRIL;
INTEGER PROCEDURE MAKECUBE (REAL DX,DY,02);
BEGIN "MAKECUBE"
INTEGER B,F,E,V1,V2,V3,V4;

DEFINE a="COMMENT"; o COMMENT OELIMITER;
« MAKE RECTANGULAR LAMINR;
B « MKBFV; F « PFRCE(B); V1 « PVT(B); o MAKE POINT POLYHDERR;
XHC (V1) « DX/2; YHC(V1) « DY/2; ZHC(V1) «-D2/2; « POSITION FIRST VERTEX;
V2 « MKEV(F,V1); XHC(V2) « -DX/2; « MRKE AND POSITION 2ND VERTEX;
V3 « MKEV(F,V2); YHC(V3) « -DY/2; o« MAKE AND POSITION 3RD VERTEX;

V& « MKEV(F,V3); XWC(VA) « DX/2; « MAKE AND POSITION 4TH VERTEX;
MKFE(VL,F,V&); F « PFACE(F); .
« MAKE FOUR SPURS ON THE LAMINA;
V1 « MKEV(F, V1) V2 « MKEV(F,V2);
V3 « MKEV(F,V3);V4 « NKEV(F,V4);
ZHCVL) « ZHC(V2) « ZHC(V3) « ZWC(V4) « D2/2; o POSITION LAST FOUR VERTICES;
« JOIN SPURS TO FORM FINAL FACE;
HKFE (V1,F,V2); HKFE(V2,F,V3);
MKFE (V3,F,V4); MKFE(V6,F,V1);
RETURN (B) ;
END "MAKECUBE";
MKUNIV; MAKECUBE (18,8,6); « TEST CALL ON MAKECUBE;
END "EXAMPLE THREE";

-32 -

3.1

Euler Primitives.

Example 4 - Make Regular Tetrahedron,

BEGIN "EXAMPLE FOUR"

REQUIRE "GEOMES.HODR (GEM,HE)" SOURCE_FILE;
DEFINE a="COMMENT";DEFINE PI="3.1415927";

INTEGER PROCEDURE MKTETRA (RERL R);
BEGIN "MKTETRA®
INTEGER B,F1,F2,V1,V2,V3,V4;

B « MKBFV; F1 « PFACE(B); VI « PVT(B);

XHC (VL) « ABS (R#8.942809); ZHC(V1) « -ABS(R/3);
V2 « MKEV(F1,V1); ROTATE (V2,0,8,24P1/3);
V3 « MKEV(F1,V2); ROTATE(V3,0,0,2xP1/3);

V4 « MKEV(FL,V3);
XHC (V4 «YHC (V4) 83 ZHC (V4) «ABS (R) ;
MKFE(VL,F1,V4); F2 « PFACE(FL);
MKFE(V1,F1,V3); MKFE(V2,F2,V4);
RETURN (B)

END "MKTETRA";
MKUNIV; MKTETRA(G);
GEQDPY;

END "EXRMPLE FOUR";

Example 5 - Glue two N-edged faces together.

BEGIN "EXRMPLE FIVE"

REQUIRE "GEOMES.HOR(GEM,HE]" SOURCE_FILE;
DEFINE ¢="COMMENT"; DEFINE PI="3,1415927";

INTEGER B1,82;

INTEGER PROCEDURE GLUEFF (INTEGER FACEL,FRCE2);

BEGIN "GLUEFF"

INTEGER V,V1,V2,E,EQ,1; RERL DMIN,D;

Vi « VCCH(PED(FRCEL),FACEL);

o FIND VERTEX OF FACE2 THART 1S CLOSEST TO Vi;

DMIN « 18e18; E ~ EO « PED(FACER)
DO BEGIN

V « VCCH(E,FACE2);D « DISTAN(VL,V);
IF D<DMIN THEN BEGIN DMIN«D;V2eV;END;

END UNTIL €O = (E«ECCH(E,FACE2));
« MAKE THE WASP EDGE;
E « GLUEE (FACEL,VI,FACE2,V2);
« CLOSE OTHER EDGES;
V « OTHER(NCCH(EY, V1),
D0 BEGIN
V1 « OTHER (PCHI(E),V1);
V2 « OTHER (PCCH(E),V2);
E « MKFE(V1,FRCEL,V2);
END UNTIL V=V1;
RETURN (BGET (E)) ;
END "GLUEFF";
MKUN1YV;

I
¥

Bl « MKCUBE(2,2,2); B2 « MKCUBE(3,3,3);
ROTATE (B1,8,-P1/2,0); TRANSL (B1,-3,8,8) ;
ROTATE (B2,8,+P1/2,0) ; TRANSL (B2, +4,8,8);
GLUEFF (PFACE (B1), PFACE (B2));

GEODPY;

END "EXAMPLE FIVE";

-33 -

2 2 2 2

-1

-]

=

[

a

2 QR 2 R XK

GEOMED.

GEOMED EMBEDDED IN SAIL;

MRKE TETRAHEDRON;

MRKE POINT POLYHDERRA;
POSITION FIRST VERTEX;

MRKE AND POSITION 2ND VERTEX;
MAKE AND POSITION 3RD VERTEX;
MAKE AND POSITION 4TH VERTEX;
CLOSE SKEW QURDRILATERAL;
RETURN THE CREATION;

INITIALIZE AND TEST MKTETRRA;
DISPLAY REFRESH;

GEOMED EMBEDDED IN SRIL;

THO TEST CUBES;

DEMO GLUE FRCE TO FACE;

PICK ONE VERTEX OF FACE!;
INITIALIZE MINIMAL DISTANCE;

SCAN FACE2 FOR VERTEX CLOSEST T0 Vi

FRACE2 AND BOOY ARE KILLED;

LAST VERTEX, TO STOP SCAN;
FETCH NEXT PRIR OF VERTICES;
CLOSE RN EDGE;

RETURN THE SURVIVING BODY;
INITIARLIZATION;

THO TEST CUBES;

ORIENT CUBES SO FIRST FRCES...;
+..RRE OPPOSITE;

TEST THE FUNCTION;
DISPLAY REFRESH;

3.2

3.2

Routines using Euler Primitives.

Routines using Euler Primitives.

GEOMED.

Further methods of polyhedral construction can readily be coded using the Euler primitives. For

example, the routines listed in Box 3.2 illustrate the direct generation of simple prototypical polyhedra,

as well as contruction by sweaping, cutting, glueing, copying and duality.

/ BOX 3.2

ROUTINES USING EULER PRIMITIVES.

~N

1. BNEW « MKCUBE(DX,DY,DZ); Croeate right rectangular prism.
2. BNEW « MKCYLN(RADIUS,N,DZ); Create cylinder approximation.
3. BNEW « MKBALL(RADIUS,M\N); Create sphere approximation.
4., FACE ¢ SWEEP(FACEFLAG); Make prism on face (or sweep wira).
5. FACE ¢ ROTCOM(FACE); Rotation sweep wire face completion.
6. PEAK « PYRAMID(FV); Make pyramid on a face (or vertex).
7. BODY « GLUE(FACEI,FACE2); Removes facel and face2.
8. BNEW « MKCUT(BODY,X,Y,2); Divide body at cutting plane.
9. QNEW « MKCOPY(ENTITY); Copy an entity.
klo. BODY « FVDUAL(BODY); Apply face/vertex duality to a body. J

The first three routines make cubic prisms as well as polyhedral approximations to circular
cylinders and spheres; or more accurately, MKCUBE creates rectangular right prisms, MKCYLN creates
regular polygonal right cylinders and MKBALL creales hedrons faceted by two N-sided regular polar
polygons and Nx(M=1) trapezoidal polygons with all vertices lying on the surface of a sphere of a

given radius.

FIGURE 3.4 - Examples of MKCUBE, MKCYLN and MKBALL.

Nl
A

\

N
Sd
X

MKCUBE Results MKCYLN Results MKBALL Results
Although, the implementation of curved edges and curved faces in GEOMED has always been
Just around the corner, | have balked at the idea because it would require additional nodes connected

to edges and faces or it would require expanding the node size, which | have always before taken as

-34 -

3.2 Routines using Euler Primitives. GEOMED.

an omen for restarting from scratch. There have so far been four cold starts: GEOMED 1, 1969, was
based on sweep primitives and was written in LEAP/SAIL; GEOMED I, 1970, was based on winged
edge primitives and was written SAIL without using LEAP; GEOMED Ill, 1971, was written SAIL and
FAIL; GEOMED iV, 1972 to present, is written in FAIL. Future mythical GEOMED's include export
GEOMED V, coded in simple international ALGOL for export; a big GEOMED VI, larger nodes for curved
object representation of smooth manifolds rather than polyhedra; a small GEOMED Vil coded for a mini

computer; and finally a 4-D GEOMED Vill for four dimensional modeling.
FIGURE 3.5 - Creation of a Solid of Rotation by Sweeping a Wire.

Initial Wire After four SWEEPs After ROTCOM
The three sweep primitives SWEEP, ROTCOM and PYRAMID involve the non=solid Euler
polyhedra: wire, lamina and sheets. A lone vertex body can be swept into a wire, a wire can be
closed to form a famina or a wire can be swept into a sheet, and a sheet can be closed to form a solid
polyhedron. Figure 3.5 illustrales the creation of a solid by sweeping a wire-face, using
SWEEP(FACE,0), to form a sheet. Figure 3.6 illusirates the creation of a solid by sweeping a normal
face as well as the use of the GLUE(FACE],FACE2) primitive to close a torus.

FIGURE 3.6 - Sweep and Glue.

@

Initial Face Lamina After twelve SWEEPS After GLUE

- 35 -

3.2 Routines using Euler Primitives. GEOMED.

The sweep flag argument determines whether triangles {flag non-zero) or rectangles (flag zero)
are to be formed as the sweep of the edges of the face. Sweeping out rectangles forms prisms,
sweeping out triangles forms prismoids. The PYRAMID routine when applied to a face creates a peak
vertex at the average locus of vertices of the face and connects all the vertices of the given face to
the peak vertex. PYRAMID applied {0 a veriex coerces all the faces of the vertex to be triangles, the
interpretation being that the given vertex is to be made like a peak of a pyramid. Prismoid sweep and
face pyramiding are illustrated by the construction of an icosahedron in Figure 3.7; the icosahedron can
be changed into a dodecahedron by the DUAL routine. The DUAL routine mungs face nodes into vertex
nodes and vertex nodes into face nodes; the new vertices are placed at the arithmetic mean of the

vertices of the old faces, consequently the dual is not its own inverse since objects tend to shrink.

FIGURE 3.7 - ICOSAHEDRON BY PRISMOID SWEEP AND PYRAMID SWEEP.

— BB W Y @

The MKCUT(BODY,X,Y,Z) primitive divides a body at culting plane into as many pieces as

necessary. Figure 3.8 illustrates how to cut a toroidal polyhedron into thirteen pieces using only three
cutting planes, after Figure 63 of (Gardner 61). The action of MKCOPY should be obvious - a new
polyhedron is returned that has the same topology, geometry and pholometry as the given polyhedron.
More routines using Euler primitives could be coded for particular applications in architecture,

computer animation, mechanical design, numerical machine control, assembly diagraming and so on.

FIGURE 3.8 - THREE CUT TORUS DISSECTION INTO THIRTEEN PARTS.

e LY N

-,
*"\‘u’l

REE WA X

3.3 Euclidean Routines. GEOMED.

3.3 Euclidean Routines.

The Euclidean routines of GEOMED fail roughly into four groups: transformations, metrics, tram
routines and space simulators. The Euclidean transformations are translation, rotation, dilation and
reflection following Klein's Erlangen Program, 1872, The Euclidean metric routines compute distances,
angles, areas, volumaes and inertia tensors. The tram routines create or aller tram nodes which are the
main topic of this section. The final group of routines perform spatial simulations such as collision,

intersection, propinquity, occupancy and occultation.

Tram Nodes. A tram node contains twelve real numbers. Fundamental to all the Euclidean
routines is the curious fact that tram nodes have two interpretations: they may represent a coordinate

system or they may represent a Euclidean transformation. As a coordinate system, the tweive numbers

contain a location of the origin of the coordinate system as well as the three components of each of the

three unit vectors of the axes of the coordinate system. As a transformation, the application of a tram

node to a vertex is defined by the procedure named SCREW, given below.

"Tram as a Coordinate System: Tram Node Data Field Names
focation of origin of coordinates: XWC, YWC, IWC, LOCATION VECTOR.
components of X-axis unit vector: IX, Iy, 1Z,
components of Y-axis unit vector: JX, Jy, JZ, ORIENTATION MATRIX.
components of Z-axis unit vector: KX, KY, K2.

Tram as a Transtormation:

COMMENT APPLY TRRM Q TO VERTEX V POSTFIX;

PROCEDURE SCREW (INTEGER V,Q);

BEGIN REAL X,Y,2;
X « XUC(V); Y « YNC(V), 2 « ZHC(V);
XWC (V) « X#IX(Q) + YeJX(Q) + ZuKX(Q) + XHC(Q);
YHC (V) « XxIY(Q) + YxJY(Q) + Z5KY(Q) + YHC(Q);
ZHC (V) « X212(Q) + Y%J2(Q) + 2xK2(Q) + 2ZHC(Q);

END;
Ganeralizing, the procedure APTRAM(ENTITY,TRAM) applies a tram to an arbitrary entity. The
APTRAM procedure is formed by surrounding the SCREW procedure with suitable type checking and
data structure tracing mechanisms so that a tram can be applied (postfix) to almost anything: bodies,

faces, edges, vertices, as well as to other trams, camera models and window nodes.

-37 -

33 Euclidean Routines. GEOMED.

To repeat for emphasis, a tram node has two interpretations; a tram node may be interpreted as
a coordinate system and the very same tram node may be interpreted as a Euclidean transtormation. A
source of confusion, is that a coordinate system trém is a definition of one coordiate system (call it the
body coordinates) in terms of anothar coordinate system (call it the world coordinates). The application
of a body coordinate system tram to an eniity in body coordinates brings the entity down into the
world coordinate system in which the tram is defined. To say it another way, the rule is that
APTRAM(BODY,TRAM) converts from body coordinates to world coordinates, whereas
APTRAM(BODY INTRAM(TRAM)) converts world coordinates to body coordinates. The procedure
INTRAM inverts a tram node in the manner given below. As alluded to in example #2, body nodes
carry a pointer to a {ram defining a system of body coordinates so that Euclidean transformtions can be

relocated relative to arbitrary coordinate systems.

INTEGER PROCEDURE INTRAN (INTEGER Q)
BEGIN "INTRAM"

REAL X,Y,Z;

X« XHC(D) Y e YHC(Q); 2« 2HCD);

XHC(Q) + = (X#IX(Q) + YalY(Q) + ZxIZ2(Q));

YHE(D) o - (aJXEQ) + YadY(Q) + 22J2(Q));

ZHCAD) & = (XaKX(Q) + YaKY(Q) + Z%KZ(Q));

IY(Q) « JX(Q); 124Q) = KX{(Q); J2(Q) » KY(Q); COMMENT TRANSPOSE;

RETURN (D)
END "INTRAN";
BOX 3.3 EUCLIDEAN TRANSFORMATIONS

ENTITY + APTRAMI(ENTITY,TRAM);
TRAM « INTRAM(TRAM);
RESULT « TRANSL(XWD(TRAM,ENTITY),DX,DY,DZ);
RESULT « ROTATE(XWD(TRAM,ENTITY),WX,WY,W2);
RESULT + SHRINK(XWD(TRAM,ENTITY),SX,SY,52);

Pfagmatically, the creation, relocation and application of a tram node are invoked all at once by
an appropriate Euclidean transformation routine. The transformation routines are listed in Box 3.3 with
APTRAM and INTRAM. As a further pragmatic device, the first argument of the Euclideans is
"microcoded” using the XWD notation which packs two links into one word. The expression XWD(A,B)
is equivalent to the expression (A%2118 + (B MOD 2118)), where A and B are positive integers. When
the entity of the first argument of the Euciidean routines is zero, the transformations create and return

a tram node; when the entity of the first argument is nonzero, the transformations create a tram, apply

-38 -

3.3 Euclidean Routines. GEOMED.

it to the entity, kill the tram node and return the entity. When the first argument carries a tram as
well as an entity (using the XWD notation) the desired transformation (or creation) is done with respect
to the coordinate system defined in the given tram, (this is called coordinate relocation). When the
first argument is negative the body coordinates tram is retrieved and used for relocation of the
transformation. Most bodies carry a tram pointer (in the link field named TRAM) which defines body
coordinates; the body coordinates of a face, edge or vaeriex are taken as the TRAM of the BGET of the
face, edge or body; a zero TRAM link is mapped into a zero translation, unit rotation matrix tram by all
the Euclidean routines. Finally, the actual transformation is specified by giving three components of a
vecior; the meaning of a translation vector is obvious, rotation vectors are explained in a subsequent
paragraph and a scale vactor is a triple of factors which are multiplied into the corresponding
components of all the vertices of an entily with respect to the axes of transtormation. Reflactions are
spacified as negative shrinks; a reflection on one or on three axes wili evert a body's surface

orientation.

Further routines to create and alter tram nodes are listed in Box 3.4. The MKTRAM routine
simply returns an identity tram with zero translation and zero rotation (that is a unit rotation matrix).
The MKTRMA routine creates a tram from the Euler angles pan, tilt and swing; see (Goldstein 1950),
The Euler angles come conveniently close to the rotational degrees of freedom of automatic camera

mounts, but unlike a rotation vector the Euler angles are discontinous 2t zenith and nadir.

/ BOX 3.4 TRAM ROUTINES \
TRAM & MKTRAM;

Returns an identity tram.
TRAM « MKTRMA(PAN,TILT,SWING); Makes a tram from Euler anglas.
TRAM « MKTRMF(FACE); Makes a tram from a Face.
TRAM « MKTRME(EDGE); Makes a tram from an Edge.
TRAM ¢ MKTRMV (WX, WY ,WZ); Makes a tram from a rotation vector.
TRAM « NORM(TRAM); Normalization to unit vectors.
TRAM « ORTHOI(TRAM); Orthogonalize by worst case
TRAM « ORTHO2(TRAM); Orthogonalize by two cross products:
k K « (1 CROSS J) and J « (K CROSS I).)

The Rotation Matrix. The nine elements named IX, 1Y, 1Z, JX, JY, JZ, KX, KY and KZ form what
is know as a three by three rotation matrix. By virtue of the definition of rigid objact rotation, the

tram rotation matrix must be maintained orthonormal. (The trams created by SHRINK are tolerated as a

-39 -

3.3 Euclidean Routines. GEOMED.

special case which are not considered to be rigid rotations.) Orthonormality is maintained with the aid
of three routines: NORM(TRAM) which normalizes the row vectors of a tram rotation matrix; ORTHO!
which orthogonalizes a rotation matrix by comparing the sums of pairs of dot products of pairs of the
three unit vectors; the unit vector that is most out of allignment is recomputed by crossing the other
two (ORTHO! performs its check twice and then exits); and ORTHOZ2, which coerces orthogonality by
-gsetting row vector K to the cross product of rows | and J, followed by setting row vector J to the cross)

product of rows K and 1.

The Rotation Vector. All 3<D rotations can be expressed as a vector where the direction of the
veclor specifies the axis of rotation and where the magnitude of the vector specifies the amount of
rotation in radians. Given such a rotation vector WX, WY, WZ with direction cosines CX, CY, CZ and
magnitude W in radians; let CW be cosine(W) and SW be sine(W); and let a function called SIGN return
positive or negative one depending on whether its argument is positive or negative; then the relation

between a rotation matrix and a rotation vector can be listed:

Rotation vector to Rotation matrix:

I1X = (1 =CW)%CX*%CX + CW; 1Y & (1-CW)RCY*CX ¢ CZ%SW; IZ = (1-CW)*CZ%CX - CYRSW;
JX = (1=CW)XCX*CY = CZkSW; JY = (1-CW)*CY4CY + CW; JZ = (1-CW)xCZ%CY + CX%SW;
KX = (1-CW)XCX*CZ + CY*®SW; KY = (1-CW)xCY*CZ - CX%SW; KZ = (1-CW)%CZ%CZ + CW;

Rotation matrix to Rotation vector:
WX = SIGN(JZ~KY)XACOS(0.5x(IX+JY+KZ~1))%xSQRT(+IX=JY=-KZ)/(3=IX~JY-KZ));
wy SIGN(KX=IZ}kACOS(0.5%(IX+JY+KZ~1))*SQRT (=IX+JY=KZ)/(3~IX~JY=-KZ));
Wiz SIGN(IY=JX)*%ACOS(0.5%{IX+JY+KZ~1))kSQRT(=IX~JY+KZ)/(3=IX=JY=~KZ));

Homogeneous Coordinates. The Euclidean routines involving trams could be written out in
terms of the 4-D homogeneous coordinates frequently found in computer graphics, by prefixing a

column to each tram and a fourth component to each vertex.

1 XWC YWC IWC

0 iX Iy 1z
TRAMAD = 0 X Jy Jz

0 KX KY KZ

I did not use homogeneous coordinates in GEOMED for three reasons: first, the computer at hand, (a

PDP-10) has fioating point arithmetic hardware so that homogeneous components were not needed for

- 40 -

3.3 Euclidean Routines. GEOMED.

numerical scaling; second, the homogeneous representation requires more coordinates per vertex and
more multiplications per transformation than the GEOMED representation; and third, my intuition is

stronger in affine metric geometry than it is in homogeneous projective geometry.

Standard Conventions. There are saveral nettlesome details related to rotation, translation and
projection among which a computer geometer must distinguish: (i). matrix vs. algebraic notation; (ii).
postfix vs. prefix transformation application; (iii). row vs. column vertices; (iv). 4-D homogeneous vs.
3-D affine coordinates; {v). rofation vector vs. Euler angles and so on. At the moment, | favor
algebraic notation, postfix transformations, row vertices, 3-D coordinates and rotation specification by

vactor; a demonstrably superior natural set of standard conventions probably does not exist.

In GEOMED, tram nodes were until recently called frame nodes, however | wish to abandon all
use of the word frame for three reasons: first, the term is ambiguous and overused (even within
graphics alone); second, the term does not inciude the notion of transformation; and third, the term
risks confusion (or association) with the connotations of (Minsky 74) and (Winograd 74); ie. the
connotation of a Frame System as a modular mental universe of stereotyped world situations. In
geometric modeling, the word frame can be replaced in all three of its usual graphics applications: the
frame of reference or coordinate frame is now a coordinate system, the frame of a movie film is

now an image, the frame of a display screen is now a window or bhorder.

Metrie Routines. Given one or several geometric entities, the Euclidean metric routines listed
in Box 3.5 compute length, area, volume, angle or moments of inertia. The DISTANCE routine computes
the distance between two anythings in a reasonable manner; the measure routine returns the volume,
area or length of bodies, faces or edges respectively (by a pragmatic argument hack, the measure of a
negative body is its surface area). The ANGLE routine computes the angle between two entities by
returning the arc cosine of the normalized inner product of two vectors: vertices are interpreted as
vectors from the origin of the body in which they belong, edge are vectors from their NVT to their
PVT, faces are taken as their normal vector and bodies are represented by the K unit vector oi their

body coordinates tram; trams and cameras also are mapped into K unit vectors.

-4] -

3.3 Euclidean Routines. GEOMED.

ﬁox 35 METRIC ROUTINES \

VALUE « DISTANCE(ENTITY ENTITY);
VALUE - MEASURE(ENTITY);
RADIANS & ANGLE(ENTITY,ENTITY);
RADIANS - ANGL3V({V1,V2,V3);
RADIANS & ANGLCW(EDGE);
RADIANS « ANGLCCW(EDGE);
VALUE « DETERM(TRAM);

-

k NODE INERTIA(BODY); J

Since the arc cosine function returns an angular value between zero and pi; the routines ANGL3V,

ANGLCW and ANGLCCW employ the arc tangent to compule an angular value between negative pi and
positive pi. The ANGL3V return the angie between the vector (V3-V2) and (V2-V1), the ANGLCW(E)
returns the angle between E and PCW(E), ANGLCW(-E) returns arctan of E and NCW(E); likewise
ANGLCCW returns values for E and PCCW(E) or E and NCCW(W). The DETERM of a tram is the
determinate of the rotation matrix of a tram. Finally, the INERTIA of a body is a sixtuple: MXX, MYY,
MZZ, PXY, PXZ, PYZ packed into the first six words of a node and representing the moments and
products of the intertia tensor of a polyhedron of uniform (unit) density associated with the given body.
The inertia routine takes the liberty of updating the origin of the body coordinates to correspond to '

the center of mass and to orient the K unit vector of the body parallel to the principal axis of inertia.

Spatial Simulation. The difficult space routines perform occultation and intersection and are
explained in Chapters 4 and 5 respectively. The simple space routines, listed in Box 3.6, perform

propinquity, collision detection and spatial compare.

/ BOX 3.6 SIMPLE SPACE ROUTINES \

HEXAHEDRON « MKBUCK(BODY);

V-PIERCE - COMPFE (FACE,EDGE);

FLAG - COMPEE(EDGE,EDGE);

FLAG - WITH2D(FACE,VERTEX);

FLAG - WITH3D(BODY,VERTEX);
-

\ FLAG COLDET(B1,B2,EPSILON). J

The MKBUCK routine returns a hexahedron that buckets the given body. The COMPFE compares a face

and an edge in 3-D for intersection, if the argumenis are disjoint then zero is returned, if tha

-42 -

3.4 Image Synthesis: Perspective Projection and Clipping. GEOMED.

arguments intersact then the edge is split avnd the new vertex is positioned at the locus where the
edge pierces the face. The COMPEE rodﬁne determines whether two edges cross in a given
perspective Yiew. The within 2-D rouline, WITH2D, determines whether a vertex appears to be
interior {0 a given face in a parspactive view and the WITH3D determines whether a given vertex falls
interior to a body in 3-D. The COLDET routine compares all the vertices and faces of two objects for
propinquity within an epsilson as well as all the edges of the two objects. Temporary collision pointers
are left between vertices and the nearest alien collision face as well as between temporary collision
vartices. Collision vertices are formed at the foot of the shortest line segment between the skew lines

of two edges that pass within the epsilon distance of each other.
3.4 Image Synthesis: Perspective Projection and Clipping.

Image synthesis is the process of generating various kinds of images: vector display, video,
contour map or mosaic. Indapendent of the final image representation the process always requires the
operations of perspective projection and clipping. The perspective projection takes the 3-D worid
locus of every potentially visible vertex and computes a 3=D camera center coordinate locus followed

by a perspective projection in the fashion illustrated in the PROJECT procedure given below.

INTEGER PROCEDURE PROJECT (INTEGER V,CAMERA);
BEGIN "PROJECT"
INTEGER TRM; REAL X,Y,Z,XCC,YCC,2CC;
COMMENT TRANSFORM FROM HORLD COGRDINARTES TO CRMERA COORDIATES;
TRM « TRAM(CAMERA);
X « XHC(V) - XHC(TRM);
Y « YUC(V) - YHC(TRM);
2« UCLV) - ZHC(TRM);
XCC « XxIX(TRM) + YaxIY(TRM) + 2xIZ2(TRM);
YCC « XaJX(TRM) + YadY(TRM) + Z2JZ(TRM);
2CC « XsxKX(TRM) + YxKY(TRM) + Z2%K2(TRM);
COMMENT PERSPECTIVE PROJECTION TRANSFORMRTION;
COMMENT NOTA BENE: ZPP(V) is positive when vertex is in view of camera ! ;

XPP (V) « SCALEX(CANERRA)%XCC/2CC; COMMENT ¢ SCRLEX = -FOCAL/PDX)3
YPP (V) « SCALEY(CAMERR)%YCC/2CC; COMMENT (SCALEY = -FOCAL/PDY);
ZPP (V) « SCRLEZ(CAMERA) /2CC; COMMENT (SCRLEZ = -FOCAL/PDZ)4

RETURN (V)
END "PROJECT";

The perspective projection transformation is a2 3-D to 3-D mapping; the third component, ZPP, allows

the hidden line eliminator to perform orthographic depth corﬁparisons. The perspactive projection

.43 -

3.5 Image Analysis: Interface to CRE. GEOMED.,

quite literally is taking the whole world model and crushing it into a slanty space between the camera
lens center and the camera focal plane. The camera scales are defined in terms of the ficticious 3-D
pixel dimensions PDX, PDY, PDZ and the physical camera focal plane distance, FOCAL. The pixel
dimensions are arbitrarily defined as PDY=PDZ=40 microns and PDX=AR%PDY where AR is the aspect
ratio of the camera; the aspect ratio can be directly measured by taking the ratio of the width to
height of the image of a large black sphera on a white background, AR is usually almost one. The focal
plane distance is typically between 10 and 50 millimeters and is derived from definition

(FOCAL=FR*PDY) of the focal ratio, FR, which can be simply measured as explained in Section 9.1,

The term clipping refers to the process of computing which paris of the world model are in view
of the camera. In GEOMED there are several clipper routines: one for fast transparent refresh, three
for hidden line elimination and one more for clipping the contents of 2-D display windows that may be
scrolled about. Three dimensional ciipping can be factored into a Z-clipper and an XY-clipper. The
Z-clipper determines which portions of the model are in the visible 3D halfspace and splits edges and
faces that cross the focal plane. The XY=-clipper determines which portion of a 2-D perspective edge
is within a given 2=-D rectangular window (with sides parallel fo the coordiate axes). The XY=-clip is
done by first applying an easy outsider test: endpoints of the edge both below, above, left or right of
the window; followed by an easy insider test: endpoints of the edge both inside the window; followed
by the evaluation of four polynomials of the form A%X+BxY+C where AB,C are the edge coefficents
and X,Y are the locus of corners of the clip window. If all four polynomials have the same sign the
edge is a hard outsider, otherwise the intersection of a side of the window and the edge can be
detected from alternating signs and the locus of intersection can be computed from the edge

coefficients.
3.5 Image Analysis: Interface to CRE.

Aithough there are no actual honest image analysis routines currently implemented in GEOMED,
the internal GEOMED environment was designed for image based model synthesis and model

verification. The routine INCRE(FILENAME) inputs from a disk file a CRE node structure that consists of

a film of contour images, contour images consist of levels, levels consist of polygons and polygons

- 44 -

35 Image Analysis: Interface to CRE. GEOMED.

consist of vectors. In GEOMED, the CRE polygons become two-faced lamina bodies; the contour levels

hierarchy becomes a parts tree structure; and a new kind of GEOMED node called an image is

introduced.

The root of the GEOMED data structure is a universe node, which is the head of a ring of world
nodes. World nodes have a ring of body nodes and a ring of camera nodes each camera represents a
physical camera so that there might be at most three or four camera ncdes. Each camera has two rings
of images: a ring of perceived images and a corresponding ring of simulated images. The perceived
image ring is created by INCRE and the simulated image ring is created by the hidden line eliminator,
thus providing a environment for the development of polygon based imqgé analysis. This completes the

general description of the geometric modeling system called GEOMED.

- 45 -

Page Intentionally Left Blank

4.0 Introduction to Hidden Line Elimination. OCCULT

SECTION 4.

HIDDEN LINE ELIMINATION FOR COMPUTER VISION.

4.0 Introduction to Hidden Line Elimination.

4.1 Initialization and Culling.

4.2 Hide Marking a Coherent Object.

43 Edge-Edge and Face-Vertex Comparing.

4.4 Recursive Windowing.

45 Photometric Modeling and Video Generation.
46 Performance of OCCULT and Related Work.

4.0 Introduction to Hidden Line Elimination.

Hidden line elimination refers to the process of simulating the appearance of opaque three
dimensional objects. The phrase hidden line elimination dates from when the problem only involved
deleting the undesired, that is the hidden lines, from a line drawing (Figure 4.1); today the phrase
persists but connotes the wider problem of synthesizing realistic images using a computer. The
present discussion is about techniques which have been implemented in a particular hidden line
eliminator named OCCULT, from the Latin word occultare meaning to hide. OCCULT illustrates novel
solutions to the graphics problems of exploiting object coherence and image coherence, of combining

image space with model space techniques, and of sorting faces, edges and vertices in two dimensions.

OCCULT is further characterized by its intended application to computer vision and robotics. The
distinguishing desigh requirement of a hidden line eliminator intended for vision is that it must maintain
back pointers from the final 2-D images to the initial 3-D models so that the identity of features can be

recovered. In computer graphics, the results of hidden line elimination are intended for human viewing

- 46 -

4.0 Introduction to Hidden Line Elimination. , ~ OCcuLy

so the correspondence between the image and the model is not usually retained (unless image based
model editing is being attempted). Another design goal for OCCULT was to output a connected graph
of regions, edges and vertices thal covers the image with no holes missing, no regions overlapping and
no dangling edges. It was naively assumed that such a highly structured image representation, called a
mosaic image, would provide a suitable basis for deriving features such as the location and orientation

of high contrast edges without having to generate video images.

FIGURE 4.1 - EXAMPLE OF HIDDEN LINE ELIMINATION.

BEFORE

Hidden line eliminators appear in two previous vision systems: one by Roberts (63) and the
other by Falk (70); the present system is a direct heir of the work of Falk in that the last version of
the Falk system contained one of the first versions of OCCULT (installed by Richard Orban). As with
image analysis, image synthesis (i.e. hidden line elimination), is a perennial research problem because
it cannot be fully isolated from physical modeling. Metaphorically, hidden line elimination is the visible
tip of the iceberg of physical simulation. The weaknesses of the underlying model literally show up in
passing through the process of image synthesis. The present day collection of techniques is still quite

lacking in realism, economy, flexibility and even reliability.

QCCULT is not a simple hidden line eliminator. In overall structure it is a combination of five
techniques, Box 4.1. The first method, called culling, eliminates portions of the model which are
hidden because of some easy to compute heuristic reason. The cull heuristics (detailed in Section 4.1)

include: elimination by clipping planes, elimination by face vectors, elimination by inspection of concave

- 47 -

4,1 Initialization and Culling. OCCULT

corners, and elimination by previous occultation. After the culls have been applied, the next three
techniques are arranged in a three level heirarchy which comprises the main part of OCCULT. At the
outermost level there is a Warnock (68) like recursive windowing method, which calls an edge-edge
comparing method on small enough windows, which in turn calis a coherent object tracing method to
split off and mark the portions of an object that are hidden. The methods are explained in bottom=-up
order: hide tracing in Section 4.2, edge-edge comparing in Section 4.3 and recursive windowing in
Section 4.4. The fifth technique is a face-vertex compare method that is occasionally required to solve
a particular class of cases that are missed by the edge-edge compare. The difficult part in building an
OCCULT like hidden line eliminator lies in getting all the unruly beasts in harness together; the

mystery being that no one beast is sufficiently strong to carry the whole burden by itself.

BOX 4.1 THE FIVE HIDDEN LINE ELIMINATION TECHNIQUES OF OCCULT.
1. Initialization Hide Culling.
2. Recursive Windowing.
3. Coherent Object Hide Tracing.
4, Edge-Edge Comparing.
5. Face-Vertex Comparing.

4.1 Initialization and Culling.

A substantial part of sophisticated hidden line elimination lies in careful attention to initial
preparations. As it has now stood for the past two years, OCCULT has two input restrictions imposed
for the sake of execution speed: no conflicting bodies are allowed and no concave faces are allowed.
Conflicting bodies are those that occupy the same space at the same time; concave faces are faces with
interiors containing a pair of points such that the line segment between the points is not contained in
the face. The rational for both these restrictions is based on the optimization technique of getting
computations out of inner loops; contlicting bodies and concave faces can be eliminated by employing
certain polyhedral construction primitives prior to hidden line elimination. The restrictions are not
inherent limitations of any of the techniques in OCCULT, so that a less restricted but slower

implementation is feasible.

- 48 -

4.1 Initialization and Culling. OCCULT

OCCULT is a marking algorithm, the temporary marking bils are listed in Box 4.2. The
combination (POTENT and -~VISIBLE) means potentially visible; (~POTENT and VISIBLE) means actually
visible; (\POTENT and ~VISIBLE) means hidden; and the combination (POTENT and VISIBLE) is an unused

state that happens to be interpreted as VISIBLE.

ﬁOX 42 STATUS BITS FOR OCCULT MARKINGS. \
Potentially Visible Entity.

...Actually Visible Entity.

...Baehind the camera image plane, Positive Zcc.

....Before the camera image plane, Negative Zcc.

TMPBIT oo, Temporary Split edge of vertex.
FOLDED....ccooomvvrecrnrererenrennn: Edge with only one POTENT face.
101 21 (O Joint over T vertex.

k JUTBIT v Joint under T vertex. J

The initialization is performed in three steps: (1). vertex marking and vertex perspective

projection; (2). face marking, face I-clipping, and computation of face coefficients; and (3). edge
marking and computation of edge coefficients. Two cull heuristics are done during the initialization:
clipping and backside face elimination; and the other two culls are done immediately afterwards:

concave corners check and the hide last hidden check.

Vertex initialization includes the prespective projection of every vertex in the model and the
marking of every vertex that is in front of the camera as POTENT (potentially visible) if its perspective
projected I coordinate, ZPP(V), is greater than the simulaled image plane distance, FOCAL. Two
further status bits, named PZZ and NZZ, indicate positive ZCC (camera coordinates) or negative 2CC

are inclusive ORed into all the faces and edges of each vertex for the sake of the Z-clipper.

Face initialization consists of Z-clipping: if a face has only its NZZ bit turned on, then it is
completely behind the camera and is immediately dropped from all futher condsideration (i.e. culled
out); if the face has both its PZZ and its NZZ turn on then it is Z-clipped by using the camera's image
plane as a culting plane. Next for faces in view of the camera, the 3-D perspective projected face
coefficients are computed (equations given below) and the faces with their backsides towards the
camera are culled out (Figure 4.2); faces surviving to this point are marked as POTENT and are placed

into a list of faces of the first window of the recursive window sort.

- 49 -

41 Initialization and Culling. OCCULT

Edge initialization consists of computing the normalized 2-D edge coefficients (aquation given
below) and of marking the edge as FOLDED or ~FOLDED depending on whether it has one face POTENT
or two faces POTENT, respactively. FOLDED edges are then inverted it necessary so that the POTENT
face is the PFACE. Folded edges are illustrated in the rightmost panel of Figure 4.2. The folded
edges are called contour edges by Appel(71) and Sutheriand(73). The folded bit is passed along to

{inclusive ORed into) the verticas of folded edges.

BOX 4.3 Normalized 3=D Face Coefficients:
E « PED(F);VL « VCU(E,F};V2 « VCCH(E,F); £ « ECCH(E,F);V3 « VCCN(E,F); ‘
KK(F) « XPP (V1) (ZPP (V2)%YPP (V3) ~YPP (V2) £ZPP (V3))
+ YPP (V1) 2 (XPP (V2) 22PP (V3) -2PP (V2) xXPP (V3))
+ ZPP (V1) (YPP (V2) 5XPP (V3) ~XPP (V2) #YPP (V3)) ;
AA(F) « (ZPP (V1) x(YPP(V2)-YPP(V3)) + ZPP(V2)#(YPP(V3)-YPP (V1)) + 2PP(V3)#(YPP (VLI -YPP (V2)));
BB(F) « (XPP(V1)%(ZPP(V2)-ZPP(V3)) + XPP(V2)x(ZPP(V3)-ZPP(V1}) + XPP(V3)x(ZPP(V1)-ZPP(V2)}),
CCUF) « (XPP(V1)x(YPP(V3)-YPP(V2)) + XPP(V2)%(YPP(VL)-YPP(V3}) + XPP(V3) % (YPP(V2)-YPP(V1i});
TMP « 1/SQRT(RAR(E)T2 + BBIF)T2 + CC(F)12);

RACF) « TMPxAR(F);BB(F) « THP=BB(F);CC(F) « TMPXCC(F);

Normalized 2-D Edge Coefficients:
AR(E) « YPP(PYT(E)) - YPP(NVT(E));
BB(E) « XPP(NVT(E)) - XPP(PVT(E));
CC(E) « XPP(PVT(E))xYPP(NVT(E)) — XPP(NVT(E))%YPP (PVT(E));

THP + SORT(RA(E) 12 + BB(E)12);
k AAC(E) « ARCE)/THP; BB(E) « BB(E)/THP; CC(E) « CC(E)/TMP;)

FIGURE 4.2 - FRONT FACES AND FOLDED EDGES.

After face, edge and vertex initialization two culls are applicable. The concave corner cull
checks folded vertices of valence four or more for edges of the vertex that are hidden by a face of the

same vertex; the corner marked by a heavy dot in Figure 4.3 is a concave corner with two folded

-50 -

4.2 Hide Marking a Coherent Object. OCCULT

edges that are easily discovered fo be hidden (i.e the end of the edge that is connected to the corner
is hidden by a face of that corner). The second culi is applicable when hidden line elimination is being
done on a sequence of images which are not changing very much from one picture to the next. By
saving a pointer to the owverface that covered each hidden vertex in the immediately preceding hidden
line elimination, the previous overface can be quickly checked to see if it still covers the vertex. In the
case of arm animation (example #2, Section 3.0) this form of exploiting frame-coherence realized a

twenty~-five percent savings in computation time (under timesharing, but with no other user programs).

FIGURE 4.3 - FRONT FACES AND FOLDS OF A CONCAVE CORNER.

Inspite of the complexity explained so far, slill further measures could be taken to make the
hidden line eliminator even faster, For example more 3=D clipping or spatial recusive cell sorting would

allow the earlier elimination of objects that are out of sight.

4.2 Hide Marking a Coherent Object.

QCCULT marks the faces, edges and vertices of a poiyhedral scene as being either visible or
hidden with respect to a simulated camera. Edges that were at first partially visible are split into
pieces so that each piece is either fully visible or fully hidden. All splits are undone and all QCCULT
bits are cleared by a fixup routine named UNCULT. In a modeling environment that provides coherent
polyhedra that can be easily traveled and modified, the simple technique of hide marking the neighbors
of entities already hidden can be used to do almost all of the actual hiding, once a starting place has

been found.

In OCCULT, the two innermost routines, EHIDE and VHIDE, perform this kind ot marking and
splitting. The routine VHIDE takes two arguments: the vertex, V, which is to be marked as hidden and

the face, F, that is known to hide V; the routine then simply calls EHIDE for each potentially visible

-h] -

43 Edge-Edge and Face-Vertex Comparing. OCCULT

edge of V's perimeter. EHIDE in turn takes three arguments: an overface, F, an edge, E, and one
vertex, V, of that edge which is known to be hidden by F. EHIDE then checks to see whether or not E
leaves its overface, F, there are three basic cases: (i) E does not leave F, so it is marked as hidden
and VHIDE is applied to the vertex OTHER(E,V); (ii) E does leave overface F by crossing under a
~FOLDED edge which provides a new overface for EHIDE to check; or (iii) E leaves F by crossing under
a folded edge, so EHIDE splits the original edge, E, and the folded edge to form a T-joint (explained
below) marking the hidden portion of E as hidden and leaving the remaining portion of E potentially

visible.

A T=joint occurs in the image, when a folded edge hides a second adge that ic further away
from the camera. When OCCULT discovers a T=joint, both edges are ESPLIT and two new verticas are
created the further one is called the JUT, Joint-Under-T, vertex the nearer one is called the JOT,

Joint-Over-T, vertex. Juts and Jots point at each other using a temporary link field named TJOINT.

FIGURE 4.4 - T-JOINT DIAGRAM.

(The diagram is a view from slightly to the left and below the camera from which JOT and JUT appear coincident.)

Q
FOLD
- 4 Jot
oEDGE o °
ur
[

There are several tachniques for finding hidden starting places, the major techniques involve
doing an edge-edge or a face-veriex compare using all the potentially visible faces, edges and

vertices; the minor techniques include the concave corner cuil and the hidden on iast hide cull.

4.3 Edge-Edge and Face-Vertex Comparing.

in OCCULT, two particular compares stand out as most basic, the edge-edge compare and the

face-vertex compare which are implemented in procedures named COMPEE and COMPFV, respectively.

-52 -

43 Edge-Edge and Face-Yertex Comparing. OCCULT

The edge-edge compare routine, COMPEE, determines whether or not two edges intersect in the 2-D
image coordinates, XPP and YPP. The basic edge-edge intersaction test requires passing two
opposition conditions: the ends of one edge must be in the opposite halfplane with respect to the line
containing the other edge and vice versa. Haliplane opposition is checked by two evaluating the normal
equation of the line using the edge coefficients AA, BB, CC and the vertex coordinates XPP and YPP.
Consequently, it can be assumed that the two edges cross if the following expressions both return
negative values:
FLAGL « (RACEL)xXPP(PVT(E2)) + BB(EL)%YPP (PVT(E2)) + CC(EL))
XOR (AR(EL)=XPPNVT(E2)) + BBIEL)#YPPNVT(E2)) + CC(EL));
FLAGZ « (RA(E2)=XPP(PVT(EL)) + BB(E2)xYPP(PYT(EL)) + CC(E2))
XOR (AR(E2)sXPPNVT(E1)) + BB(E2)%YPP(NVT(EL)) + CC(E2));
The intix operator XOR (exclusive OR) is for toggling the sign bits in the same fashion as a

multiplication would in more conventional ALGOL. When the crossing condition is true, the locus of

intersection can be computed by solving two equations in two unknowns:

™p . (RAGEL) BB (E2) - RAR(E2)xBB(ED));
XPP (V) « (CC(EL)+BB(E2) - CC(E2)+BB(EL))/TMP;
YPP (V) « (RA(E1) %CC(E2) - RR(E2)=CC(EL))/TMP;

An alternate edge-edge comparé method would be to solve the two equations in two unknowns
tirst and then to see whether the intersection locus is interior to the line segments of both edges.
Since, disjoint pairs of edges occur much more frequently than intersecting edges, the alternate method
requires more floating arithmetic on the average than the first method which can discover about half of
the disjoint cases by computing FLAGI. Furthermore the allernate method does not lend itseif to
distinguishing the almost touching cases which must be nudged to be disjoint. The OCCULT design
depends on coercing edges to intersect at one unique point or not at all, the steps listed in Box 4.4
handle the special cases requiste to such a crossing discipline. The nudge is done in image coordinates,

so the accuracy of world coordinates is maintained.

BOX 4.4 Edge-Edge Compare Steps.
i. Test for Identity: same edge twice,
i, Test for Topological connection: Edges with vertex or T=joint in common,
iii. Test for span Overlap in XPP and YPP: To prevent nasty collinear cases.
iv. Compare for crossing: Opposition Tests and Crossing Solver.
v. Nudge (Move off line, towards right and down).

53 =

43 Edge-Edge and Face-Vertex Comparing. OCCULT

The face-vertex compare routine, COMPFV has two parts: Z-depth compare for vertex under
the plane of the face, and 2-D within compare for vertex enclosure by the face perimeter. The first
compare is done by evaluating the Z-depth of the vertex with respact to the plane of the face. The
second compare tests whether the vertex falls outside of the face with respect to any of the adges of
the face perimeter, since faces are convex and since polyhedra are oriented the properly directed

edges coefficient are available. The Z-depth test is performed first because it is quicker.

Two very simple but important kinds of hidden line eliminators (that aimost work) are based on
combining edge-edge comparing or face-vertex comparing with coherent object hiding. In the
edge-edge compare method all the edges (or even merely all the folded edges) of the image are
compared with each other, N%(N-1)/2 compares, for crossings; when a crossing is found a T-joint is
made and the hidden portion of the under edge is given to an EHIDE routine. In the face-vertex
compare mathod all the vertices are compared with all the faces, (face count)*(vertex count) comparaes,
for enclosure and covering; when a vertex is found hidden under and within a face it is given to a
VHIDE routine. Together the EE-compare method and the FV-compare method form one slow but sure
hidden line elimination algorithm; alone the EE-method fails to detect hidden objects with edges that
don't intersect any edges of the occluding object as in the left panel of ‘Figure 45 which shows two
bricks of the same size but one behind the other. Likewise the FV-method fails to detect hidden
objects in scenes where no vertex of the object is surround or covered by a face, right panel of

Figure 4.5,

In OCCULT, the edge-edge compare is done afler recursive windowing has isolated a reasonably
small number of edges (twelve). A face-veriex compare is done only if any potentially visible vertices
remain after all the other techniques have finished; in particular face-vertex comparing is only done
when the case illustrated in the left panel of Figure 4.5 actually occurs and the set of faces that are

used are only the faces that intersect the recursive window that contains the vertex.

-54 -

*

4.4 Recursive Windowing. OCCULT

FIGURE 4.5 - EE AND FV UNDETECTED HIDDEN OBJECT CASES.

I ———

[——

~ EDGE-EDGE FAILURE CASE. FACE-VERTEX FAILURE CASE.

4.4 Recursive Windowing.

Recursive Windowing is a two dimensional spatial sorting technique for partitioning the faces,
edges and vertices associaled with a rectangular region called a window into two subwindows. The
technique is applied racursively until a desired condition is achieved. The usual termination condition is
that the population of entites in the window becomes sufficiently low or that the window becomas
extremely small. The idea is implament in a routine called ESORT which resembles the hidden line
eliminators of (Warnock 68) and (Sutherland 69). However ESORT is unique in that it maintains a data
structure which allows edges to be split during the sort. The potentially nasty fixups are accomplished
using a data structure that maintains a coherent image of both windows and edges. Metaphorically, the
data structure is a cloth with a warp of windows and a woof of edges, where each warp thread is

bound to a woof fiber by a bead.

Window Structure. The sort window itseif is a2 twelve word node which contains data fields
named XLO, XHI, YLO and YHI which specify the boundary of the window and data fields named
PENCNT, SURCNT, EDGCNT and VCNT which specify the number of faces that penetrate the window,
the number of faces that surround the window, the number of edges that pass through the window and

the number of vertices that fall within the window, respectively. The window contains link fields to

=55 -

4.4 Recursive Windowing. OCCULT

hold pointers to the head of the pen-face list (penetrating faces), the sur-face list (surrounding faces),

the vertex list, the head and tail the edge list and a pointer to its antecedent window.

Bead Structure. A bead is a two word node that contains four pointers and which represents
one instance of an edge passing through a window. Each edge has a list of beads representing an
ordered list of the windows through which it passes; and each window has a list of beads representing
a list of the edges it contains. The link fields named WND and EDG of a bead, point to the particular
window and the particular edge to which the bead belongs. The link fields named WNBL and EDBL of a

bead contain the necessary links for the window's bead list and for the edge’s bead list.

BOX 45 RECURSIVE WINDOWING ROUTINES.
MKSWN Make Sort Window.

PSHSWN Push Sort Window.

PENSUR Update penetrator and surrounder lists.
POPSWN Pop Sort Window.

BLED Bead List Edit.

o e W -

The actual sort is composed of five routines (Box 4.5) which perform all the necessary creations
and alterations to the window/edge/bead data structure. Initialization is done by the make sort window
routine, MKSWN, which places all the potentially visible faces, edges and vertices into the first sort
window along with the population counts and the extreme location of vertices in the positive and

negative, XPP and YPP directions.

It the population counts of the window are too large, the pushdown sort windowing routine,
PSHSWN, creates a new window node, places the node into the sort-window pushdown list, halves the
original window’s rectangie (spliting the longer sides) leaving the left (or upper) half of the rectangle
in the old window node and allocating the right (or lower) half to the new window node. Next the
vertex list is partitioned, each verlex falls into only one or the other window. Next the original
window's bead list of penetrating edge is scanned, each edge must fall into one or the other or both
windows. If an edge falls into both windows then a new bead is made and is placed in order into the
bead list of the edge so that the beads of every edge indicate window penetrations in order from

upper=left-most to lower=right-most. Finally PSHSWN applies PENSUR to each of the two windows.

- 56 =

4.4 Recursive Windowing. OCCULT

The penetrator and surrounder face routine, PENSUR, scans the new bead lists of penetrating edges of
the two subwindows and marks the faces of those edges as penetraiors and places them on the pen-list
of the new window; next the routine scans the old penetrator list of the parent window and tests (and
clears) the markings. Unmarked faces must be either surrounders or outsiders; the surrounders are

placed in the sur-list of the new window.

if the populations of the window are sufficiently low the hidden line eliminator (or the body
intersector, Chapter 5) processas the window {(does the edge-edge compares) and calls the pop sort
window routine, POPSWN. POPSWN zeroes the window field, WND, of beads of the window as an
indication that the window is dead and so are its beads; dead beads are returned 1o free storage by
the BLED routine explained below. Next the POPSWN scans the vertices or the window and places the
pen-list and sur-list pointers of the window into temporary fields of each vertex; this trick preserves
the results of the recursive window sort for the sake of possible face=vertex comparing. Finally the

window node is popped off the pushdown window list and returned to free storage.

During both hidden line elimination and body intersection, edges are split in order to isolate the
portion tHat is hidden or in order to create face piercing points. When an edge is split its bead list of
windows is also split by means of the bead list edit routine, BLED. Since beads of an edge are ordered
upper-left to lower-right; the BLED routine scans the beads for the window into which the newly
sreated split vertex falls withing the vertex is then placed on that window's vertex list and a new bead
is created (since both the old and the new edges must have beads in the window that contains the split)
and the old bead list is split. Dead beads that are found while scanning the bead list are returned to

free storage.

Although the link manipulations are complicated to recite, the essential point is that both
windows and edges can be split without losing their topological connectedness, which gives one a tool -
for reducing an N-squared spatial computation into an N-log-N computation. The present
implementvaﬁon is coded in PDP-10 machine code, an ALGOL publication version will appear in a

forthcoming technical report which is beyond the scope of this paper.

57 -

45 Photometric Modeling and Video Generation. OCCULT

FIGURE 46 - EXAMPLE OF VIDEO SYNTHES!S

i

!lm 1
| ; "
”'“M Mo

‘H[u ”“W

4.5 Photometric Modeling and Video Generation.
' [

,’

The light scattering properties of ordinary surfaces can be modeled by limu'“:m
thinking of the surface as composed of many little mirrors. The orientation of

each mirror is described by two angles, its tilt from the normal vector of the surface and its pan about

the normal vector with respect to a specified reference vector in the tangent plane of the surface. For

a perfect reflecting surface all the differential mirrors have a zero pan and ftilt; for isotropic

conventional surfaces the statistical distribution of pan orientations is flat and the distribution of tilt

orientations is a blip function; and for a perfact isotropic Lambert surfaces both the pan and tilt

distributions are flat.

After the visible faces have been assigned intensity values, a conversion from an QCCULT mosaic
image to a raster image is done by an auxiliary program called MKVID, make video. MKVID resembles
a Gouraud (71) and Watkins{70) hidden line eliminator in that it fills scan line by linear interpolation of

segments between edges of the mosaic which are in their turn linear interpolations between vertices.

-G8 -

¢ 5 Performance of OCCULT and Related Work. OCCULT

4.5 Performance of OQCCULT and Related Work.

Ten hidden line elimination techniques were recently surveyed in (Sutherland, Sproull and
Schumacker 1973), which after emphasing that hidden line elimination can be viewed as a sorting
problem concluded with the remark that future implementations should be based on exploiting frame
coherance, object coherence and combinations of the existing techniques. However the survey paper
might be inadquate for a would-be implementer who should consult the textbook by (Sproull and
Newman 73) for detailed explainations of the Warnock method and the Watkins method. Original
recsarch reports on hidden line elimaiors include: (Roberts 63), (Appsl 67), (Warnock 68), {(Warnock
69), (Watkins 70) and (Archuleta 72).

Inspite of ali the activity and surveying of the literature, no quantitative commensurate study of
the different methods has been attempied. In particular, the performance tables at the end of
(Sutherland el al 1973) are subjective evaluations rather than experimental results of benchmark
problems, as the authors clearly state. Continuing in the same subjective fashion, OCCULT is fast in
that it can generate simple scenes (200 edges) of blocks in less than a second; the arm animation (524
edpges) requires four fo six seconds; the starship Enterprise (1230 edges) requires ten to twelve

seconds; and the largest scenes that fit in core (4000 edges) take from thirty to sixty seconds.

-59 -

5.0 Introduction to Polyhedron Intersection.

5.0
5.1
5.2
5.3
5.4
55
5.6

SECTION 5.

POLYHEDRON INTERSECTION.

Introduction to Polyhedron Intersection.
Intersection Geometry.

Intersection Topology.

Special Cases of Intersection.

Face Convexity Coercion.

Bady Cutting.

Performance and Related Work.

5.0 Introduction to Polyhedron Intersection.

POLYHEDRON INTERSECTION.

The intersection, union, and set differences of two solid polyhedra can be computed by

combining a body intersection procedure called BIN with the EVERT primitive, as Figure 5.1 iilustrates.

The body intersection procedure is important for three reasons: first, it is a ganeral and conceptually

elegant construction operator; second, it can be used for spatial modeling in collision detection and

trajoectory planning for manipulators and vehicles; and third, it can be used to localize an object in 3=D

space from a sequence of silhouotte views. The intersection algorithm consists of two parts: first,

there is a geometric part in which all the faces and edges are compared with each other for potential

face/edge intarsections called piercing points; and second, there is a topological part in which the

results are “copied off” of the given polyhedra; the results may consist of zero, one or many

polyhedra, In the following, the term "operands” refers 1o the sets of polyhedra given to BIN as

arguments and the term "result" refers to the set (possibly empty) of polyhedra produced by BIN.

-60 -

50 Introduction to Polyhedion Intoranction POLYHEDROM IMNTE

FIGURE 5.1 - POLYAEDRON INTERSECTION, UNION AND SUBTRACTI

VWO POLYHEDRA i

| INTERSECTION UNION

! QL

BIN(EVERT(STAR)},CYLN) BIN(STAR,EVERT{CYLN})

- 61 -

Reproduced from

best available copy

5.1 Intersection Geometry, POLYHEDRON INTERSECTION.

5.1 Intersection Geometry.

Conceplually, the geometric part of the polyhedron intersection aigorithm, BIN, consists of
comparing each face of one operand with every edge of the other operand and vice versa. In practice
the potentially N-squared compares are avoided by using the same recursive window partition sort that
was used in the hidden line eliminator, OCCULT, Section 4.3. ignoring the recursive windowing for a
moment, the innermost face-edge compare of BIN consists of four steps: opposition, intersection,

enclosure and fission.

FIGURE 5.2 - FACE PIERCING GEOMETRY.

Piercing Point Within F. Piercing Point Qutside F.

Opposition Test. Given a faco F and an edge E, first, the endpoints of the edge are checked to
see whether they are in opposite halfspaces with respect to the plane of the face. In terms of vector
geometry, the dot product of the face vector and each vertex vector is taken and the signs compared;
different signs indicate that the vertices are in different halfspaces. The opposition test requires six

multiplications. [ntersection Locus. The locus of the point where the edge pierces the plane of the

face is computed (four multiplications). . Enclosure Test. Next the edge is tested to see if it actually
passes thru the interior of the face. In BIN, this test exploits the face convexity restriction. The test
consists of crossing neighboring pairs of vectors radiating from the face-plane piercing=point to each
vertex of the given face and testing for a sign change, Figure 5.2. Since only one component of the
cross product needs to be evaluated, the test requires only two multiplications per edge of the face
whoes plane is pierced. Edge Ilission. If the edge pierces the face, then the edge is split (using the
ESPLIT and BLED routines) forming a new vertex, called a face piercing vertex. A temporary link of
the vertex node (field CW, left half of word 7) is set to point at the face that was pierced and the PED

link of the new vartex is set to point at the one of its two edges that is external to the surface.

-B2 -

5.2 Intarsection Topology. POLYHEDRON INTERSECTION.

5.2 Intersection Topology.

After the face=piercing vertices have been made (assuming no pathological cases, Section 5.3),
the edges and vertices of the result can be created in relation to the faces, edges, and vertices of the
operands. The relation between the operands and the results is established in terms of two kinds of
edges: interior edges and surface edges as illustrated in Figure 5.3. Surface edges correspond to the
intersections of pairs of operand faces and interior edges correspond to edges of one operand that are
enclosed inside the surface of the other operand. Surface edges always form connected loops. In
Figure 5.3, two solid prisms are being intersacted, on the left the surface edges of the intersection (a

surface loop) is intensified in heavy lines, on the right the interior edges are intensified.

FIGURE 5.3 - THE SURFACE AND INTERIOR EDGES OF INTERSECTION.

K

|
[
|

Surface Edges of Intersection, interior Edges of Intersection‘:

In similar fashion there are surface vertices and interior vertices of the result. Each
face-piercing vertex of the operands has a corresponding surface vertex in the result which is always’
a trihedral corner. The operand/result correspondence is maintained in a temporary link field named
ALT; the alternate vertices and edges that belong to the result are created by two topological trace
routines: the make surface, MKSURF routine, which creates surface edges and vertices of the result by
tracing surface loops starting from an "un=-AlTered" face piercing vertex. At each face-piercing
vertex, MKSURF applies the ETRACE routine to the single interior edge of the trihedral corner.
ETRACE creates edges and vertices interior to the result by tracing the edge graph bounded by
face~piercing vertices. The new result edges are temporarily linked (PFACE and NFACE) to the old

-63 -

5.2 Intersection Topology. POLYHEDRON INTERSECTION.

operand faces. The MKSURF and ETRACE routines are followed by three steps that fix up the surtace

wings, interior wings and face nodes so that a complete winged edge polyhedral result is legally

formed.

The interior trace routine is trivial = all the links are readily accessed using the ECCW and
OTHER primitives on the operand polyhedra. The surface trace routine is made easy by implementing a
procedure, NEXTPV, to retrieve the next face-piercing vertex about a surface loop. The NEXTPY
procedure, given below, is based on the obseravtion that the intersection of two convex faces is one
line segment and either one face is pierced twice by two different edges of the other face; or each

face is pierced once by one edge of the other face, Figure 5.4.

FIGURE 5.4 - FETCH NEXT FACE-PIERCING VERTEX.

Edge of Fl pierces F2 at V2, Edge of F2 pierces F1 at V2.

COMMENT RETURN THE NEXT FACE PIERCING VEXT OF A SURFACE LOOP;
INTEGER PROCEDURE NEXTPV (INTEGER F2,V1);
BEGIN "NEXTPV"
INTEGER F1,V2;
Fl « CH(VL); COMMENT FACE PIERCED BY Vi;
COMMENT DOES AN EDGE OF F1 PIERCE F2 AT THE OTHER PIERCE-VERTEX V2,
E « EB8 « PED(FY);
DO IF F2 = CH(V2.VCCH(E,F1)) THEN RETURN(V2) UNTIL EG@ = (E«ECCH(E,F1));
COMMENT DOES AN EDGE OF F2 PIERCE F1 AT THE OTHER PIERCE-VERTEX V2;
E « E0 « PED(F2);
DO IF Fl = CH(V2+VCCH(E,F1)) A V2=V] THEN RETURN(V2) UNTIL E@ = (E<ECCH(E,F2));
COMMENT FATAL CONSISTENCY ERROR - SOMETHING WRONG IN FARCE/EDGE COMPARE PRSS;
RETURN(9);
END "NEXTPV";

Fix up step-l places vertex and wing pointers in all the interior edges. An intericr edge is
distinguished by its non-zero ALT link. The new vertices are provided with a first edge, PED{VNEW),

if it be lacking. Fix up step-2 wings {ogether the surface vertex tridedral corners. Since by good luck

-64 -

5.3 Special Cases of Intersection. POLYHEDRON INTERSECTION.

all surface vertices are necessarily trihedral, the edges can be passed to the WING primitive for
oriented linking, in any order. The two surface wings of a surface vertex were stored in the NED and
PED links by MKSURF; the inward wing can be retrieve as the PED(ALT(U)). Surface vertices are
distinguished by their ALT vertex being marked as a piercing vertex. Fix up step-3 replaces the alien
faces of the result with native faces. This is done by scanning the edge ring of the body, testing the
two faces of each edge to see if they belong to the result body, and if a face doesn't belong it is
replaced by a new one. Face replacement, as ususal, requires clocking around a face perimeter and
changing the appropriate face link in each edge. A final marking trace assigns one body node to each

separate connected graph of faces, edges and vertices.

FIGURE 5.5 - EXAMPLE OF A FACE HOLE FIXUP.

5.3 Special Cases of Intersection.

In order of difficulty from easy to hard, the four special cases that must be handled are

non-intersection, extremely short edges, face holes and coincident entities. Non-Intersection. When

the face-edge compare (by recursive window space sort) returns no piercing points, it implies that the
surfaces of the given polyhedra do not intersect and that a further test is needed to determine
whether the operands are disjoint (and so the intersection be empty) or whether one operand contains
the other. I‘ace lloles. Because EVERTed solids are allowed, one polyhedron can cut a hole in a face
of the other without intersecling any of the edges of that face, which would fool the copy~trace. So as
a preliminary step to BIN, all the surface loops are traced and checked to make certain they cross
more than one face. If a one face surface~loop is found, the face is pyramided to a vertex interior to

the surtace-loop. A face hole fix up is illustrated in Figure 5.5, the middle pane! of the figure shows

- 65 -

55 Body Cutting. POLYHEDRON INTERSECTION.

that two faces of the cubic prism were pyramided, the right panel of the figure shows the result after
face-convexity coercion. Short lidges. An application of BIN can create edges with almost zero length,

which require an exira pass to find and delete. Coincident Entitiecs. An occasional edge that lies

exactly in the plane of a face can be nudged off the plane a little resulting in extremely short edges
which are later removed. Although it is meaningful to try to intersect polyhedra which have many
faces, edges and vertices that are exactly coincident, the present implementation loses track of intsrior

and exterior when too many nearly zero length edges are made.
5.4 Face Convexity Coercion.

Since, both the body intersecter, BIN, and the hidden line eliminator, QCCULT, are restricted to
convex faced polyhdera; it is essential to have a routine that detects and subdivides the concave faces
of a given polyhedron. The make convex routine, MKCNVX, reduces the concave faces of a body into
reasonably small number of convex faces. The method consists of two steps: first, the face is broken
down into triangles and second, the longest unnecessary newly made edges are removed. The
reduction to triangles step is recursive: the pointiest extrema vertex of a face, V0, is lopped off, if no
other vertices of the face are on the same side of the line segment between VO’s immediate
neighboring vertices: OTHER(ECCW(VO,F),V0) and OTHER(ECW(VO,F),V0). Otherwise the face is split,
MKFE, using the vertex closest to VO that violates V0's potential lop line. An extrema vertex is one
that touchs the smallest circumscribed rectangle whose sides are parellel to the coordinate axes; the

pointiest vertex is the one with the largest cosine.

FIGURE 5.6 - EXAMPLES OF FACE CONVEXITY COERCION.

Ly XK

5.5 Body Cutting.

Body cutting is the operation of dividing an arbitrary polyhedron into sets of parts above and

-66 -

56 Performance and Related Work. POLYHEDRON INTERSECTION.

below a given cutting plane, as has already been iliustrated in Figure 3.8. Although body cutting might
be done by subtracting a very large thin rectangular prism, the process is sufficiently important to
merit a separate implementation which nevertheless resembles the subtraction. First, all the edges of
tha given body are compared with the given cutting plane and piercing vertices are formed in pairs
(one vertex for each side of the cut). Belween the cutting-plane vertex-pairs are zero length edges
which are placed into a special temporary list. Next, pairs of cutting-plane vertices (belonging to the
same face and destined to be in the same half-space) are MKFEed together splitting the faces with
cutting=plane edge pairs {one edge for each side of the cut). Between the cutting-plane edge-pairs
are zero area faces. Finally all the zero length cutting plane edges are KLFEed if their PFACE and
NFACE are different or UNGLUEed if their PFACE and NFACE are the same. [n this circumstance an
edge having the same NFACE and PFACE is a wasp edge. The simplicity of the body cutting

implementation is do to the power of the UNGLUE Euler primitive.
5.6 Performance and Related Work.

Curious to relate, | have found no example in the literature of a general polyhedron intersection
method. Maruyama's {72) method i.s a collision detector rather than a intersector, because he does not
attempt to generate the polyhedra of intersection; however, his algorithm does resemble the geometric
first phase of BIN and might have been extended for generating new solids. The intersection methods
of Braid (73) are restricted to particular combinations of six volume elements which comprise a useful

subset of cases for mechanical drawing.

The version of BIN is implemented on a PDP=10 (with 2 microsecond core memory) can
construct the intersection of simple objects such as a pair of cubes in less than a quarter of a second;
the intersection of a couple of twenty sided cylinders in about two seconds; the intersection of two
horse sithouette cones takes (chapter 9) about fifteen seconds; and the intersection of two silhouette

cone intersections can take up to a minute.

-67 -

6.1 A Geometric Feedback Vision System. VISION THEORY.

SECTION 6.

COMPUTER VISION THEORY.

6.0 Introduction to Computer Vision Theory.
6.1 A Geometric Feedback Vision System.
6.2 Vision Tasks.

6.3 Vision System Design Arguments.

6.4 Mobile Robot Vision.

6.5 Summary and Related Vision Work.

6.0 Introduction to Computer Vision Theory.

Computer vision concerns programming a computer to do a task that demands the use of an
image forming light sensor such as a television camera. The theory | intend to elaborate is that
general 3-D vision is a continuous process of keeping an internal visual simulator in sync with
perceived images of the external reality, so that vision tasks can be done more by reference to the
simulator's model and less by reference fo the original images. The word theory, as used here, means
simply a set of statements presenting a systematic view of a subject; specifically, | wish to exclude the
connotation that the theory is a natural theory of vision. Perhaps there can be such a thing as an

artificial theory which extends from the philosophy thru the design of an artifact.

6.1 A Geometric Feedback Vision System.

Vision systems mediate between images and world models; these two exiremes of a vision
system are called, in the jargon, the bottom and the top respectively. In what follows, the word

image will be used to refer to the notion of a 2-D data structure representing a picture; a picture

- 68 -

6.1 A Geometric Feedback Vision System. VISION THEQRY.

being a rectangle taken from the pattern of light formed by a thin lens on the nearly flat photoelectric
surface of a television camera’s vidicon. On the other hand, a world model is a data structure which is
supposed to represent the physical world for the purposes of a task processor. In particular, the main
point of this thesis concerns isolating a portion of the world model (callved the 3=-D geometric world
model) and placing it below most of the other entities that a task processor has to deal with. The

vision hierarchy, so formed, is illustrated in box 6.1,

ﬁox 6.1 VISION SYSTEM HIERARCHY. \

Task Processor

I
Task World Model

The Top = |
3-D Geometric Model

\ The Bottom - 2-D Images ‘

Between the top and the bottom, between images and the task world model, a general vision

system has three distinguishable modes of operation: recognition, verification and description.
Recognition vision can be characterized as bottom up, what is in the picturé is determined by extracting
a set of features from the image and by classifing them with respect to prejudices which must be
taught. Verification vision is top down or model driven vision, and involves predicting an image
followed by comparing the predicted image and a perceived image for differences which are expected
but not yet measured. Descriptive vision is bottom up or data driven vision and involves converting the
image into a representation that makes it possible {or easier) to do the desired vision task. ! would
like to call this third kind of vision "revelation vision" at times, although the phrase "descriptive vision"

is the term used by most members of the computer vision community,

Box 6.2 THREE BASIC MODES OF VISION.

1. Recognition Vision - Feature Classification. (bottom up into a prejhdiced top).
2. Verification Vision - Model Driven Vision. (nearly pure top down vision).
3. Descriptive Vision = Data Driven Vision. (nearly pure bottom up vision).

There are now enough concepts to outline a feedback system. By placing a 3=-D geometric

mode! between top and bottom; recognition vision can be done mapping 3-0 (rather than 2-D) features

-69 -

6.1 A Geometlric Feedback Vision System. : VISION THEORY.

into the task world model with descriptive vision and verification vision linking the 2-D and 3-D models
in a relatively dumb, mechanical fashion. Pravious atlempts to use recognition vision, to bridge directly
the gap between 2-D images (of 3D objects) and the task world model, have been frustrated because
the characteristic 2-D image features of a 3-D object are very dependent on the 3-D physical
processes of occultation, rotation and illumination. It is these processes that will have to be modeled
and understood before the features relevant to the task processor can be deduced from the perceived

images. The arrangement of these elements is diagramed below.

ﬁox 6.3 BASIC FEEDBACK VISION SYSTEM DESIGN. \

Task World Model

T

RECOGNITION
T

3-D geometric model
1 {
DESCRIPTION VERIFICATION
) {

- y

The lower part of the above diagram is the feedback loop of the 3-D geometric vision system.

Depending on circumstances, the vision system may run almost aentirely top-down (verification vision)
or bottom=-up (revelation vision). Verification vision is all that is required in a well known predictable
environment; whereas, revelation vision is required in a brand new {tabula rasa) or rapidly changing
environment. Thus revelation and verification form a loop, bottom=up and top~down. First, there is
revelation that unprejudically builds a 3-D model; and second, the model is verified by testing image
features predicted from the model. This loop like structure has been noted before by others; it is a
form of what Tenenbaum (71) called accommodation and it is a form of what Falk (69) called heuristic
viston; however | will go along with what | think is the current majority of vision workers who call it

feedback vision.

Completing the design, the images and worlds are constructed, manipulated and compared by a

variety of processors, the topmost of which is the task processor. Since the task processor is expected

to vary with the application, it would be expedient if it could be isolated as a user program that calis

-70 -

6.2 Vision Tasks. VISION THEORY.

on utility routines of an appropriate vision sub-system. Immediately below the task processor are the
3-D recognition routines and the 3=D modeling routines. The modeling roulines underlie most

everything because they are used to create, alter and access the models.

Box 6.4 PROCESSORS OF A 3-D VISION SYSTEM.

0. The task processor. 4. Image analyser.

1. 3-D recognition. 5. Image synthesizer.

2. 3-D modeling routines, 6. Locus solvers.

3. Reality simulator. 7. Comparators: 2D and 3D.

The remaining processors include the reality simulator which does mechanics for modeling
motion, collision and gravity. Also there are image analyzers, which do image enhancement and
conversions such as converting video rasters into line drawings. There is an image synthesizer, which
does hidden line and surface elimination, for verification by comparing synthetic images from the modal
with perceived images of reality. There are three kinds of locus solvers that compute numerical
descriptions for cameras, light sources and physical objects. Finally, there is of course a large number
of (at least ten) different compare processors for confirming or denying correspondences among

ontities in each of the different kinds of images and 3-D models.
6.2 Vision Tasks.

The 3-D vision research problem being discussed is that of finding out how to write programs
that can see in the real world. Related vision problems include: modeling human perception, solving
visual puzzles (non-real world), and developing advanced automation techniques (ad hoe vision). In
order to approach the problem, specific programming tasks are proposed and solutions are sought,
however a programming task is different than a reseach problem because many vision tasks can be
done without vision. The vision solution to be found should be able to deal with real images, should
include the continuity of the visual process in lime and space, and should be more general purpose and
less ad hoc. These three requirements (reality, continuity, and generality) will be developed by

surveying six examples of computer vision tasks.

7] -

6.2 Vision Tasks. VISION THEOQRY.

BOX 6.5 SIX EXAMPLES OF COMPUTER VISION TASKS.
Cart Related Tasks. Table Top Related Tasks.
1. The Chautfeur Task. 4. Turntable Task.
2. The Explorer Task. 5. The Blocks Task,
3. The Soldier Task. 6. Machine Assembly Tasks.

First, there is the robot chauffeur task. In 1869, John McCarthy asked me to consider the vision
requirements of a computer controlled car such as he depicted in an unpublished essay. The idea is
that a user of such an automatic car would request a destination; the robot would select a route from
an internally stored road map; and it would then proceed o its destination using visual data. The
problem involves representing the road map in the computer and establishing the correspondence
between the map and the appearance of the road as the automatic chauffeur drives the vehicle along
the selected route. Lacking a computer controlled car, the problem was absiracted to that of tracing a
route along the driveways and parking lots that surround the Stanford AJ. Laboratory using a
television camera and transmitter mounted on a radio controlled electric cart. The robot chauffeur task
could be solved by non=visual means such as by railroad like guidance or by inertial guidance; to
preserve the vision aspect of the problem, no particular artifacts should be required along a route

(landmarks must be found, not placed); and the extent of inertial dead reckoning should be noted.

Second, there is the task of a robot explorer. In (McCarthy 1964) there is a description of a
robot for exploring Mars. The robot explorer was required to run for long periods of time without
human intervention because the signal transmission time to Mars is as great as twenty minutes and
because the 23.5 hour Martian day would place the vehicle out of Earth sight for twelve hours at a
time. (This latter difficulty could be avoided at the expense of having a set of communication relay
satellites in orbit around Mars.) The task of the explorer would be to drive around mapping the
surface, looking for interesting features, and doing various experiments. To be prudent, a Mars
explorer should be able to navigate without vision; this can be done by driving slowly and by using a
tactile collision and crevasse detector. If the television system fails, the core samples and so on can

still be collected at different Martian sites without unusual risk to the vehicle due to visual blindness.

-72 -

6.2 Vision Tasks. VISION THEORY.

The third vision task is that of the robot soldier, tank, sentry, pilot or policeman. The problem
has several forms which are quite similar to the chauffeur and the explorer with the additional goal of
doing something to coerce an opponent. Although this vision task has not yet been explicitly attempted
at Stanford, to the best of my knowledge, the reader should be warned that a thorough solution to any

of the other tasks almost assures the Orwellian technology to solve this one.

Fourth, the turntable task is to construct a 3~D model from a sequence of 2-D television images
taken of an object rotated on a turntable. The turntable task was selected as a simplification of the

explorer task and is an example of a nearly pure descriptive vision task.

Fifth, the classic blocks vision task consists of two parts: first convert a video image into a line
drawing; second, make a selection from a set of predefined prototype models of blocks that accounts
for the line drawing. In my opinion, this vision task emphasizes three pitfalls: single image vision, line
drawings and blocks. The greatest pitfali, in the usu‘al blocks vision task, is the presumption that a
single image is fo be solved; thus diverting attention away from the two most important depth
perception mechanisms which are motion parallax and stereo parallax. The second pitfall is that the
usual notion of a perspective line drawing is not a natural intermediate state; but is rather a very
sophisticated and platonic geometric idea. The perfect line drawing lacks photometric information; even
a line drawing with perfect shadow lines included will not resemble anything that can readily be gotten
by processing real television pictures. Curiously, the lack of success in deriving line drawings from
real television images of real blocks has not dampened interest in solving the second part of the
problem. The perfect line drawing puzzle, was first worked on by Guzman (68) and extended to
perfect shadows by Waltz (72); nevertheless, enough remains so that the puzzle will persist on its own
merits, without being closely relevant to real world computer vision. Even assuming that imperfect line
drawings are given, the blocks themselves, have lead such researchers as Falk (69) and Grape (73) to
concentrate on vertex/edge classification schemes which have not been extended beyond the blocks
domain. The blocks task could be rehabilitated by concentrating on photometric modeling and the use

multiple images for depth perception,

-73 -

6.3 Vision System Design Arguments. VISION THEORY.

Sixth, the Stanford Artificial Intelligence Laboratory has recently (1974) begun work on a
National Science Foundation Grant supporting research in automatic machine assembly. In particular,
effort will be directed to developing techniques that can be demonstrated by automatically assembling a
chain saw gasoline engine. Two vision questions in such a machine assembly task are, where is the
part and whaere is the hole; these questions will be initially handled by composing ad hoc part and hols

detectors for each vision step required for the assembly.

The point of this task survey was to iliustrate what is and is not a task requiring real 3-D vision;
and to point out that caution has fo be taken to preserve the vision aspects of a given task. In the
usual course of vision projects, a single task or a single tool unfortunately dominates the research; my
work is no exceplion, the one tool is 3-D modeling, and the task that dominaled the formative stages of
the research is that of the robot chauffeured cart. A better understanding of the ultimate nature of

computer vision can be obtained by keeping the several tasks and the several tools in mind.
6.3 Vision System Design Arguments.

The physical information most directly relevant to vision is the location, extent and light
scattering properties of solid opaque objects; the location, orientation and projection of the camera that
takes the pictures; and the location and nature of the light that illuminates the world. The
transformation rules of the everyday world that a programmer may assume, a priori, are the laws of
physics. The arguments agains! geometric modeling divide into two categories: the reasonable and the
intuitive. The reasonable arguments attack 3-D geometric modeling by comparing it to another
modeling alternative, some of which are listed in Box 6.6. Actually, the domains of efficiency of the
possible kinds of models do not greatly overlap; and an artificial intellect will have some portion of
each kind. Nevertheless, | feel that 3-D geometric modeling is superior for the task at hand, and that

the other models are less relevant to vision.

74 -

6.3 Vision System Design Arguments. ‘ VISION THEORY.

f BOX 6.6 Alternatives to 3-D Geometric Modeling in a Vision System. \

1. Image memory and with only the camera model in 3-D.
2. Statistical world model, e.g. Duda & Hart.

3. Procedural Knowledge, e.g. Hewilt & Winograd.

4. Semantic knowledge, e.g. Wilkes & Shank.

5. Formal Logic models, e.g McCarthy & Hayes.

\ 6. Syntactic models.)

Perhaps the best alternative to a 3-D geometric model is to have a library of little 2-D images

describing the appearance of various 3-D loci from given directions. The advantage would be that a
sophisticated image predictor would not be required; on the other hand the image library is potentially
quite large and that even with a huge data base new views and lighting of familiar objects and scenes
cannot be anticipated. A second allernative is the statistical world model used in the pattern
raecognition paradigm. Such modeling might be added to the geometric model; however, alone the
statistical abstraction of world features in the presence of occuitation, rotation and illumination seems as

hopeless as the abstraction of a man's personality from the pattern of tea leaves in his cup.

Procedural knowledge models represent the world in terms of routines (or actors) which either
know or can compute the answer to a question about the world. Semantic models represent the world
in term of a data structure of conceptual statements; and formal logic models represent the world in
terms of first order predicate calculus or in tarms of a situation calculus. The procedural, semantic and

_formal logic world models are all general enough to represant a vision model and in a theoretical sense
théy are mersly other notations for 3-D geometric modeling. However in practice, these three
modeling regimes are not efficient holders and handlers of quantitative geometric data; but are rather
intended for a higher level of abstract reasoning. Another alleged advantage of thess higher models is
that they can represent partial knowledge and uncertainty, which in a geometric model is implicit, in
that structures are missing or incomplete. For example, McCarthy and Feldman demand that when a
robot has only seen the front of an office desk that it should be able to draw inferences from its model
about the back of the desk; | feel that this so called advantage is not required by the problem and that

basic visual modeling is on a more agnostic lavel.

«75 -

6.3 Vision System Design Arguments. VISION THEORY,

The syntactical approach to descriptive vision is that an image is a sentence of a picture
grammar and that consequently the image descriplion should be given in terms of a sequence of
grammar transformations rules. Again this paradigm is valid in principle but impractical for real images
of 3-D objects because simple replacement rules cannot readily express rotation, perspective, and
photometric transformations. On the other hand, the syntaclical model has been used to describe

perfect line drawings of 3-D objects, (Gips 74).

The intuitive arguments include the opinions that geometric modeling is too numerical, too exact,
or too non-human to be relevant for computer vision research. Against such intuitions, | wish to pose
two fallacies. First, there is the natural mimicry fallacy, which is that it is false to insist that a machine
must mimic nature in order fo achieve ils design goals. Boeing 747's are not covered with feathers;
trucks do not have legs; and computer vision need not simulate human vision. The advocates of the
uniqueness of natural intelligence and perception wili have to come up with a rather unusual uniqueness
proof to establish their conjecture. In the meantime, one should be open minded about the potentigl

forms a perceptive consciousness can take.

Second, there is the self introspection fallacy, which is that it is false 1o insist that one's
introspections about how he thinks and sees are direct observations of thought and sight. By
introspection some conclude that the visual models (aven on a low level) are essentially qualitative
rather than quantitative. My belief is that the vision processing of the brain is quite quantitative and
only passes into qualities at a higher level of processing. In either case, the exact details of human

visual processing are inaccessible to conscious self introspection.

Although describing the above two fallacies might soften a person’s prejudice against numerical
geometric modeling, some important argument or idea is missing that would be convincing short of the
final achievement of computer vision. Contrariwise, | have not heard an argument that would change
my prejudice in favor of such models. Nevertheless beyond prejudice, my theory would be proved
wrong if a really powerful computer vision system is ever built without using any geometric models

worth speaking of, perhaps by employing an elaborate stimulus response paradigm.

-76 -

6.4 Mobile Robot Vision. VISION THEORY.

6.4 Mobile Robot Vision.

The elements discussed so far will now be brought together into a system design for performing
mobile robot vision. The proposed system is illustrated below in the block diagram in Box 6.7. (The
diagram is called a2 mandala in that a mandala is any circle~like system diagram). Although, the robot
chauffeured cart was the main task theme for this research; | have failed to date, August 1974, to
achieve the hardware and software required to drive the cart around the laboratory under its own
control. Nevertheless, this necessarily theoretical cart system has been of considerable use in

developing the visual 3-D modeling routines and theory, which are the subject of this thesis.

’ BOX 6.7 CART VISION MANDALA. ‘

4440424000 a20aa0000 PERCETVED 244994 REALITY 240449 PREDICTED -4sa
HORLD SINULATOR WORLD L]
1}

3
PERCEIVED sses2s CART 42444040 PREDICTED 244t

- ... -

CAMERA LOCUS DRIVER CAMERA LOCUS 3

1) 4

1) 4

1 H THE CART PREDICTED <241

pony CAMERA SUN LOCUS i

LOCUS Locus :]

SOLVIR SOLVER 4

\] A 4

1 1)
REVEN VERITY TMAGE
COMPavt COMPARF SYNTHESIZIR

1 t 1 1 4

1 t t t 1]

t o PERCEIVED v et tesessssececrrresessss PPEDICTED seeveced

eseee MOSAIC EMAGE MOSAIC IMAGE]

1 |)

1 1]

t t 3

PLRCLIVID PREDICTED 4

CONITDUR IHAGE CONTOUR IMAGE 4

LN A L}

1 | 4

1] 1 1}

PERCEIVED PREDICTED soscrrnes

VIDEO INRGE VIDED IMNGE

\
1
1

. TELTVISION
COMERA

The robot chauffeur task involves establishing the correspondence between an internal road map

and the appearance of the road in order to steer a vehicle along a predefined path. For a first cut, the
planned route is assumed to be clear, and the cart and the sun are assumed to be the only movable
things in a static world. Dealing with moving obstacles is a second problem, motion thru a static world

must be dealt with first.

-77 -

6.4 Mobile Robot Vision. VISION THEORY.

The cart at the Stanford Artificial Intelligence Laboratory is intended for outdoors use and
consists of a piece of plywood, four bicycle whaeels, six electric motors, two car batteries, a television
camera, a telavision transmitter, a box of digital logic, a box of relays, and a toy airplane radio
receiver. (The vehicle being discussed is not "Shaky", which belongs to the Slanford Research
Institute’s Artificial Intelligence Group. There are two Al labs near Stanford and each has a computer
controlled vehicle.) The six possible cart actions are: run forwards, run backwards, steer to the left,
steer to the right, pan camera to the left, pan camera to the right. Other than the television camera,

there is no telemetry concerning the state of the cart or its immediate environment.

BOX 6.8 A POSSIBLE CART TASK SOLUTION.
1. Predict (or retrieve) 2-D image features.
2. Perceive (take) a television piclure and convert into features.
3. Compare {verify) predicted and perceived features.
4. Solve for camera locus.
5. Servo the cart along its intended course.

The solution to the cart problem, begins with the cart at a known starting position with a road
map of visual landmarks with known loci. That is, the upper leftmost two rectangles of the cart mandala
are initialized so that the perceived cart locus and the perceived world correspond with reality.
Flowing across the top of the mandala, the cart driver, blindly moves the cart forward along the
desired route by dead reckoning (say the cart moves five feet and stops) and the driver updates the
predicted cart locus. The reality simulator is an identity in this simple case because the world is
assumed static. Nexi the image synthesizer uses the predicted world, camera and sun to compute a
predicted image containing the landmark features expected to be in view. Now, in the lower left of the
mandala, the cart's television camera takes a perceived picture and (flowing upwards) the picture is
converted into a form suitable for comparing and matching with the predicted image. Features that are
both predicted and perceived and found to match are used by the camera locus solver to compute a
new perceived camera locus (from which the cart locus can be deduced). Finally the cart driver
compares the perceived and the predicted cart locus and corrects its course and moves the cart again,

and so on.

-78 =

6.5 Summary and Related Vision Work. VISION THEORY.

The remaining limb of the cart mandala is invoked in order to turn the chauffeur into an
explorer. Perceived images are compared in time by the reveal compare and new features are located
by the body locus solver and placed into the world model. The generality and feasibility of such a cart
system depends almost entirely on the representation of the world and the representation of image
features. (The more general, the less feasible). Four smaller cart systems might be possible using

simpler 3-D models.

A first system might consist of a road map, a road model, a road model generator, a solar
. ephemeris, an image predictor an image comparator, a camera locus solver, and a course servo routine.
The roadways and nearby environs are entered into the computer. In fact, real roadways are
constructed from a two dimensional (X,Y) allignment map showing where the center of the road goes as
a curve composed of line segment and circular arcs; and from a two dimensional ($,Z) elevation
diagram, shbwing the height of the road above sea level as a function of distance along the road in a
sequence of linear grades and verlical arcs which (not too surprising) are nearly cubic splines. A
sacond version, might be made like the first except that the road model, road model generator, and
image predictor are replaced by a library of road images. In this system the robot vehicle is trained
by being driven down the roads it is suppose to follow. A third system also might be made like the
first except that the road map is not initially given, and indeed the road is no longer presumed to exist.
Part of the problem becomes finding a road, a road in the sense of a clear area; this version yields the
cart explorer and if the clear area is found quite rapidly and the world is updated quite frequently, the

explorer can be a chauffeur that can handle obstacles and moving objects.
6.5 Summary and Related Vision Work.

To recapitulate, three vision system design requirements were postulated: reality, generality,
and continuity. These requirements were illustrated by discussing a number of vision related taéks.
Next, a vision system was described as mediating belween 2-D images and a world model; with the
world model being further broken down into a 3-D geometric model and a task world model. Between
these entities three basic vision modes were identified: recognition, verification and revelation

(description). Finally, the general purpose vision system was depicted as a quantitative and description

-79 -

6.5 Summary and Related Vision Work. VISION THEORY.

oriented feedback cycle which maintain a 3-D geometric model for the sake of higher qualitative,
symbolic, and recognition oriented task processors. Approaching the vision system in greater detail;
the roie of seven (or so) essential kinds of processors were explained: the task processor, 3-D
modeling routines, reality simulator, image analyser, image synthesizer, comparators, and locus solvers.

The processors and data types were assembled into a cart chauffeur system.

Larry Roberts is justly credited for doing the seminal work in 3=D Computer Vision; although his
thesis (Roberts 63) appeared over ten years ago the subject has languished dependent on and
overshadowed by the four areas called: Image Processing, Pattern Recognition, Computer Graphics, and
Arlificial Intelligence. Outside the computer sciences, workers in psychology, neurclogy and philosophy

also seek a theory of vision.

Image Processing involves the study and development of programs that en'hance, transform and
compare 2-D images. Nearly all image processing work can eventually be applied to computer vision in
various circumstances. A survey of this field can be found in an article by Rosenfeld(69). Image
Pattern Recognition involves two steps: feature extraction and classification. A comprehensive text
about this field with respect to computer vision, has been written by (Duda and Hart 73). Computer
Graphics is the inverse of descriptive computer vision. The problem of computer graphics is to
synthesis images from three dimensional models; the problem of descriptive computer vision is to
analyze images into three dimensional models. An introductory text book about this field would be that
of (Newman and Sproull 73). Finaily, there is Arfificial Intelligence, which in my opinion is an
institution sheltering a heterogenous group of embryonic computer subjects; the biggest of the present
day orphans include: robotics, natural language, theorem proving, speech analysis, vision and planning.
A more narrow and relevant definition of artificial intelligence is that it concerns the programming of

the robot task processor which sits above the vision system,

The related vision work of specific individuals has already been mention in context. To
summarize, the present vision work is related to the early work of Roberts{63) and Sutherland; to
recent work at Stanford: Falk, Feldman and Paul(67), Tenenbaum(72), Agin(72), Grape(73); to the

work at MIT: Guzman, Horn, Waltz, Krakaurer; to the work at the University of Utah: Warnock, Watkins;

-80 -

6.5 Summary and Related Vision Work. ; VISION THEORY.

and to work at other places: SRl and JPL. Fulure progress in computer vision will proceed in step with
better computer hardware, better computer graphics software, and betler world modeling software.
Further vision work at Stanford, which is related to the present theory is being done by Lynn Quam
and Hans Morevac. The machine assembly task is being pursued both by the Artificial Intelligence
Group of t__he Stanford Research Institute and by the Hand Eye Project at Stanford University., Because
the demand for doing practical vision tasks can be satisfied with existing ad hoc methods or by not
using a visual sensor at all; litlle or no theoretical vision progress will necessarily result from the
achievement of épactacular robotic industrial assembly demonstations (hire the handicap, blind robots
assembles widgets). On the other hand, since the missing ingredient for computer vision is the spatial
modeling to which perceive images can be related; | believe that the development of the technology
for generating commercial film and television by computer for entertainment might make significant

contribution to computer vision.

-8l -

7.0 Introduction to image Analysis. IMAGE CONTOURING.

SECTION 7.
VIDEO IMAGE CONTOURING.

7.0 Introduction to image Analysis,

7.1 CRE - An Image Processing System,
7.2 Thresholding.

7.3 Contouring.

7.4 Polygon Nestling,

7.5 Contour Segmentation.

7.6 Related and Future image Analysis.

7.0 Introduction to Image Analysis.

Simply put, image analysis is the inverse of image synthesis. From this point of view, the
usually difficult question of "analysis into what ?" is answered by the answer to the question “synthesis
from what ?". Since a 3-D geometric model is adequate (and necessary) for synthesizing digital
television pictures, it is reasonable to suppose that such a model is an appropriate subgoal in the
analysis of television pictures. Such an analysis into a 3-D model would provide a useful data reduction
as well as a convenient representation for solving robotics problems such as manipulation, navigation
and recognition. This approach to image analysis is somewhat heretical, the orthodox method is to
extract features from 2-D images, which features are then used directly for the desired task. On the
other hand, vision by inverse compuler graphics may be viewed as an extreme form of feature finding,
involving the extraction of a set of basic geometric features which are combined to form a
superfeature, a 3-D model. The rest of this introduction enumerates some of the kinds of information
available in a sequence of images and some of the kinds of data structures for representing images.
An image is a 2-D data structure representing the contenis of a rectangle from the pattern of light

tormed by a thin lens; a sequence of images in time is called a film.

~82 -«

7.0 Introduction to Image Anaiysis, IMAGE CONTOURING.

Threé basic kinds of information in an image are photometric information, geometric information,
and topological informaticn. Fundamentally, geomelry concerns distance measure. The geometry of an
image is based on coordinate pairs that are associated with the elements that form the image. From
the coordinates such geometric properties as length, area, angle and momenis can be computed.
Photometry means light measure, although physical measurements of light may include power, hue,
saturation, polarization and phase; only the relative power between points of the same image is easily
available to a computer using a television camera. The taking of color images is possible at Stanford by
means of filters; however, the acquisition of color is inconvenient and has not been seriously pursued
in the present work. Finally, topology has to do with neighborhoods, what is next to what; topological
data may be explicitly represented by pointers between related entities, or implicitly represented by

the format of the data.

Three basic kinds of image data structures are the raster, the contour map and the mosaic. A
raster image is a two dimensional integer valued array of pixels; a pixel "picture element”, is a single
sample position on a vidicon. Although the real shape of a pixel is probably that of a blunt ellipse; the
fiction that pixels tesselate the image into little rectangles will be adopted. For other theoretical
purposes the array is assumed to be formed by sampling and truncating a two dimensional, smooth,
infinitely differentiable real valued function. A contour image is like a geodesic contour map, no two
contours ever cross and all the contours close. A mosaic image (or tesselation) is like a ceramic tile
mosaic, no two regions ever overlap and the whole image is completely covered with tiles. Further
useful restrictions might be made concerning whether it is permitted to have tiles with holes
surrounding smaller tiles or whether it is permitted for a tile to have points that are thinner than a

single pixel.

Given a raster image, the usual visual analysis approach is to find the features. One canonical
geometric image feature is called the edge and the places where edges are not found are called
regions. For a naive slart, an edge tan be defined as a locus of change in the image function. Edges
and regions are complementary sides of the same slippery concept; the concept is slippery because

although a continuous function of two variables and a graph of edges are each well known mathematical

-83 -

7.1 CRE - An Image Processing Sub-System. IMAGE CONTOURING.

objects the conversion of one into the other is a poorly understood process that depends greatly on
ones motives and resources. A computational definition of the region/edge notion would include a
procedure for converting a raster approximation of an image function into a region/edge

representation based on parameters which are conceptually elegant.
7.1 CRE - An Image Processing Sub-System.

The acronym CRE stands for "Contour, Region, Edge". CRE is a solution to the problem of
finding contour edges in a sequence of television pictures and of linking corresponding edges and
polygons from one picture to the next. The process is automatic and is intended to run without human
intervention. Furthermore, the process is bottom ups there are no inputs that anticipate the content of
the given television images. The output of CRE is a 2-D contour map data structure which is suitable
input to the 3-D modeling program, GEOMED. Five design choices that determine the character of CRE
are listed in Box 7.1. The design choices are ordered from the more strategic to the more tactical; the
first three choices being research strategies, the latter two choices being programming tactics.
Adopting these design choices lead to image contouring and contour map structures similar to those of

Krakauer (71) and Zahn (66).

/ BOX 7.1 CRE DESIGN CHOICES ‘ \
{. Dumb vision rathaer than model driven vision.

2. Multi image analysis rather than single image analysis.

3. Total image structure imposed on edge finding; rather
than separate edge finder and image analyzer.

4, Automatic rather than interactive.

\ 5. Machine language rather than higher level language. ‘

The first design choice does not refer to the issue of how modei dependent a finished general

vision system will be (it will be quite model dependent), but rather to the issue of how one should
begin building such a system. The best starting points are at the two apparent extremes of nearly
total knowledge of a particular visual world or nearly total ignorance. The first extreme involves
synthesis (by computer graphics) of a predicted 2-D image, followed by comparing the predicted and a
percaived image for slight differences which are expected but not yet measured. The second extreme

involves analyzing perceived images into structures which can be readily compared for near equality

-84 -

7.1 CRE - An Image Processing Sub-System. IMAGE CONTOURING.

and measured for slight differences; followed by the construction of a 3-D geometric model of the
perceived world. Thae point is that in both cases images are compared, and in both cases the 3-D
model initially (or finally) contains specific numerical data on the geometry and physics of the particular

world being looked at.

The second design choice, of multi image analysis rather than single image analysis, provides a
basis for solving for camera positions and feature depths. The third design choice solves (or rather
avoids) the problem of integrating an edge finder's results into an image. By using a very simple edge
finder, and by accepting all the edges found, the image structure is never lost. This design postpones
the problem of interpreting photometric edges as physical edges. The fourth choice is a resolution to
write an image processor that does not require operator assistance or manual parameter tuning. The
final design choice of using machine language was for the sake of implementing node link data
structures that are processed one hundred times faster than LEAP, ten times faster than compiled LISP
and that require significantly less memory than similar structures in either LISP or LEAP. Furthermore
machine code assembles and loads faster than higher level languagas; and mathine code can be

extensively fixed and altered without recompiling.

It is my impression that CRE itself does not raise any really new scientific problems; nor does it
have any really new solutions to the old problems; rather CRE is another competent video region edge
finding program with its own set of tricks, However, it is further my impression that the particular
tricks for nesting and comparing polygons in CRE are original programming techniques. As a part of
the larger feedback system, CRE is a necessary, but not entirely satisfactory implementation of pure

bottom up image analysis.

CRE consists of five steps: threshoiding, contouring, nesting, smoothing and comparing.
Thresholding, contouring and smoothing perform conversions between two different kinds of images.
Nesting and contouring compute topological relationships within a given image representation. In
summary the major operations and operands are as listed in Box 7.2; the VIC-Images are Video Intesity

Contour Images and the ARC-images are contours that have been smoothed.

-85 -

7.2 Thresholding. IMAGE CONTOURING.

/ BOX 7.2 CRE DATA TRANSFORMATIONS. \
MAJOR OPERATION OPERAND RESULT.
1. THRESHOLDING: 6-BIT-IMAGE, 1 -BIT-IMAGES.
2. CONTOURING: 1-BIT-IMAGES, VIC-IMAGE.
3. NESTING: VIC-IMAGE, NESTED-VIC-IMAGE.
4, SMOOTHING: VIC-IMAGE, ARC-IMAGE.

\ 5. COMPARING: IMAGE & FILM, FILM. ‘

The initial operand is a 6-bit video raster, which in the present implementafion is coerced into a

window of 216 row by 288 columns; intermediate operands consist of 1-bit rasters named PAC, VSEG
and HSEG which are explained below, as well as a raster of links named SKY which is used to perform
the polygon nesting. The magic window size 216 by 288 was derive by considering the largest
product of powers of two and three that would fit within a video image. The final result is a node/link
structure composed of several kinds of nodes: vectors, arcs, polygons, lamtens (lamina inertia tensors)

levels, images and the film node.

Afthough the natural order of operations is sequential from image thresholding to image
comparing; in order to keep memory size down, the first four steps are applied one intensity level at a
time from the darkest cut to the lightest cut (only nesting depends on this sequential cut order); and
comparing is applied to whole images. Figure 7.1 illustrates an initial video image and its
corresponding contour image. The contoured image consists of thirteen intensity levels and took 45
seconds to compute (on a PDP-10, two microsecond memory). The final CRE data structure was

composed of 1996 nodes.

7.2 Thresholding.

Thresholding, the first and easiest step of CRE, consists of two subroutines, called THRESH and
PACXOR. THRESH converts a 6-bit image into a 1 =bit image with respect to a given threshold cut levael
between zero for black and sixty-three for light. All pixels equal to or greater than the cut, map into
a one; all the pixels less than the cut, map into zero. The resulling 1-bit image is stored in a bit array
of 216 rows by 288 columns (1728 words, 36 bits per word) called the PAC (picture accumulator)
which was named in memory of McCormick's ILLIAC-IIl. After THRESH, the PAC contains blobs of bits.

- 86 =

' IMAGE CONTOURING.
FIGURE 7.1 - VIDEO IMAGE AND CONTOUR IMAGE.

I
‘

flot
‘"n g

Ml

" it
|]

-87 -

7.3 Contouring. IMAGE CONTOURING.

A biob is defined as "rook's move" connected; that is every bit of a blob can be reached by horizontal
or vertical moves from any other bit without having to cross a zero bit or ha\)ing to make a diagonal
(bishop's) move. Blobs may of course have holes. Or equivalently a blob always has one outer
perimeter polygon, and may have one, several or no inner perimefer polygons. This blob and hole

topology is recoverable from the CRE data structure and is built by the nesting step.

Next, PACXOR copies the PAC into two slightly larger bit arrays named HSEG and VSEG. Then
the PAC is shifted down one row and exclusive ORed into the HSEG array; and the PAC is shifted right
one column and exclusive ORed into the VSEG array to compute the horizontal and vertical border bits
of the PAC blobs. Notice, that technically this is the very heart of the edge finder of CRE; namely,
PACXOR is the mechanism that converts regions into edges. Edge tracing is the only operation CRE
performs on the |-bit rasters; although Boolean image processing has caught the eye of many vision
programmers {perhaps because it resembles an array automata or the game Life) one rapidly discovers
that raster operations alone are {oo weak to do anything interesting that can't already be done better

analytically in a raster of numbers or topologically in a node/link data structure.

7.3 Contouring.

Contouring, converts the bit arrays HSEG and VSEG into vectors and polygons. The contouring
itself, is done by a single subroutine named MKPGON, make polygon. When MKPGON is called, it looks
for the upper most left non-zaro bit in the VSEG array. |f the VSEG array is empty, MKPGON returns
a NIL. However, when the bit is found, MKPGON traces and erases the polygonal outline to which that
bit belongs and returns a polygon node with a ring of vectors. The MKPGON trace can go in four
directions: north and south along vertical columns of bits in the VSEG array, or east and west along
horizontal rows of the HSEG array. The trace starts by heading south until it hits a turn; while heading
south MKPGON must check for first a turn to the east (indicated by a bit in HSEG); next for no turn
(continue south); and last for a turn to the west. When a turn is encountered MKPGON creates a
vector node representing the run of bils between the previous turn and the present turn. The trace
always ends heading west bound. The outline so traced can be either the edge of a blob or a hole, the

two cases are distinguished by looking at the VIC-polygon's uppermost left pixel in the PAC bit array.

- 88 -

7.4 Polygon Nesting. IMAGE CONTOURING.

There are two complexities: contrast accumulation and dekinking. The contrast of a vector is
defined as (QUOTIENT (DIFFERENCE (Sum of pixel values on one sida of the vector)(Sum of pixel values
on the other side of the vector)) (length of the vector in pixels)). Since vectors are always either
horizontal or vertical and are construsd as being on the cracks between pixels; the specified
summations refer to the pixels immediately o either side of the vector. Notice that this definition of
contrast will always give a positive contrast for vectors of a blob and negative contrast for the vectors

of a hole.

The contours that have just been traced would appear "sawtoothed” or “kinky"; the terms
“kink", "sawtooth" and “jaggy" are used to express what seems to be wrong about the lowermost left
polygon in Figure 7.2. The probiem involves doing something to a rectilinear quantized set of
segments, to make its continuous nature more evident. In CRE, the jaggies' solution (in the subroutine
MKPGON) merely positions the turning locus diagonally off its grid point a little in the direction
{northeast, northwest, southwest or southeast) that bisects the turn's right angle. The distance of
.dekink vernier positioning is always less than half a pixel; but greater for brighter cuts and less for
the darker cuts; in order o preserve the nesling of contours. The sawtoothed and the dekinked
versions of a polygon have the same number of vectors. | am very fond of this dekinking algorithm
because of its incredible efficiency; given that you have a north, south, east, west polygon trace
routine (which handles image coordinates packed row, column into one word); then dekinking requires

only one more ADD instruction execution per vector !
7.4 Polygon Nesting.

The nesting problem is to decide whether one contour polygon is within another. Although easy
in the two polygon case; solving the nesting of many polygons with respect to each other becomes
n-squared expensive in either compute time or in memory space. The nesting solution in CRE
sacrifices memory for the sake of greater speed and requires a 31K array, called the SKY. CRE's
accumulation of a properly nested tree of polygons depends on the order of threshold cutting going

from dark to light. For each polygon there are two nesting steps: first, the polygon is placed in the

-89 -

FIGURE 7.2 - SAW TOOTH DEKINKING ILLUSTRATED.

IMAGE CONTOURING.

SAW TOOTHED

DEKINKED

SMOOTHED

—

SAW TOOTHED
& SMOOTHED

SAW TOOTHED

DEKINKED

-90 -

7.4 Polygon Nesting. IMAGE CONTOURING.

tree of nested polygons by the subroutine INTREE; second, the polygon is placed in the SKY array by
the subroutine named INSKY.

The SKY array is 216 rows of 289 columns of 18=bit pointers. The name "SKY" came about
because, the array use to represent the farthest away regions or background, which in the case of a
robot vehicle is the real sky blue. The sky contains vector pointers; and would be more efficient on a
virtual memory machine that didn't allocate unused pages of its address space. Whereas most
computers have more memory containers than address space; computer graphics and vision might be
easier to program in a memory with more address space than physical space; i.e. an almost empty

virtual memory.

The first part of the INTREE routine finds the surrounder of a given polygon by scanning the
SKY due east from the uppermost left pixel of the given polygon. The SON of a polygon is always its
uppermost left vector. After INTREE, the INSKY routine places pointers to the vertical vectors of the
given polygon into the sky array. The second part of the INTREE routine checks for and fixes up the
case where the new polygon captures a polygon that is already enclaved. This only happens when two
or more levels of the image have blobs that have holes. The next paragraph explains the arcane
details of fixing up the tree links of multi level hole polygons; and may be skipped by everyone but

those who might wish to implement a polygon nester.

Let the given polygon be named Poly; and let the surrounder of Poly Be calied Exopoly; and
assume that Exopoly surrounds several enclaved polygons called “endo's”, which are already in the
nested polygon tree. Also, there are two kinds of temporary lists named the PLIST and the NLIST.
There is one PLIST which is initially a list of all the ENDO polygons on Exopoly's ENDO ring. Each endo
in turn has an NLIST which is initially empty. The subroutine INTREE re=-scans the sky array for the
polygon due east (to the left) of the uppermost left vector of each endo polygon on the PLIST,
(Exopoly's ENDO ring). On such re=scanning, (on behalf ¢f say an Endol), there are four cases: No
change; the scan returns Exopoly; which is Endol's original EXO. Poly captures Endol; the scan

returns Poly indicating that endol has been captured by Poly. My brothers fate; the scan hits an

endo2 which is not on the PLIST; which means that endo2's EXO is valid and is the valid EXO of endol.

-8] -

7.5 Contour Segmaentation. IMAGE CONTOURING.

My fate delayed; the scan hits an endo2 which is still on the PLIST; which means that endo2’s EXO is
not yet valid but when discovered it will also be Endol’s EXO; so Endol is CONSed into Endo2’s NLIST.
When an endo polygon's EXQO has been rediscovered, then all the polygons on that endo's NLIST are
also placed into the polygon tree at that place. All of this link crunching machinery takes half a page of

code and is not frequently executed.
7.5 Contour Segmentation.

In CRE the term segmenting refers to the probiem of breaking a 1-D manifold (a polygon) into
simple functions (arcs). The segmenting step, converts the polygons of vertical and horizontal vectors
into polygons of arcs. For the present the term "arc" means “linear arc" which is a line segment.
Fancier arcs: circular and cubic spline were implemented and thrown out mostly because they were of
no use to higher processes such as the polygon compare which would have to break the fancy arcs

back down into linear vectors for computing areas, inartia tensors or mere display buffers.

Segmenting is applied to each polygon of & level. To start, a ring of two arcs is formed (a
bi-gon) with one arc at the uppermost left and the other at the lowermost right of the given vector
polygon. Next a recursive make arc operation, MKARC, is appled to the two initial arcs. Since the arc
given to MKARC is in a one to one correspondence with a doubly linked list of vectors; MKARC checks
to see whether each point on the list of vectors is close enough to the approximating arc. MKARC .
returns the given arc as good enough when all the sub vectors fall within a given width; otherwise
MKARC splits the arc in two and places a new. arc vertex on the vector vertex that was farthest away

from the original arc.

The two large images in Figure 7.3, illustrate a polygon smoothed with arc width tolerances set
at two different widths in order to show one recursion of MKARC. The eight smaller images illustrate
the results of selting the arc width tolerance over a range of values. Because of the dekinking
mentioned earlier the arc width tolerance can be equal to or less than oné pixel and still yield a

substantial reduction in the number of vectors it takes to describe a contour polygon.

-92 -

IMAGE CONTOURING.

FIGURE 7.3 - CONTOUR SEGMENTATION.

\

\

—
—

-93

7.6 Related and Future Image Analysis. IMAGE CONTOURING.

A final important detail is that the arc width tolerance is actually taken as a function of the
highest contrast vector found along the arc; so that high contrast arcs are smoothed with much smaller
arc width tolerances than are low contrast arcs. After smoothing, the contrast across each arc is
computed and the ring of arcs replaces the ring of vectors of the given polygon. (Polygons that would

be expressed as only two arcs are deleted).

7.6 Related and Future Image Analysis.

In general, robotic image analysis should consist of three steps: first, high quality pictures are
taken continuously in time and space; second, several low level bulk operations (such as correlation,
filtering, histogramming and thresholding) are applied to each image and to pairs of images; third, the
rasters are converted into linked 2-D structures which are further amalgamated into connected 3-D
models. It is clear 1o me that my presen! implementation only has fragile toy routines where rugged
tools are needed. Eventually, more kinds of image features and larger coherent structures must be
included. In particular, the contour maps should be bundled into regional mosaics and more features

should be woven into the node/link structurae.

Contour image processing is effectively surveyed by Freeman (74) who gives the erroneous
impression that contour images are the best image representation (rasters and mosaics are equally
important). Contours are applied to recognition of silhouettes by Dudani (70) using moments similar to
those explained in the next chapter. Finally, my own acquainténce with the contour image

representation was initially derived from papers by Zahn (66} and Krakauer (71).

-94 -

Page Intentionally Left Blank

8.0 Introduction to Image Comparing. COMPARING.

SECTION 8.

IMAGE COMPARING.

8.0 Introduction to Image Comparing.

8.1 A Polygon Matching Method.

8.2 Geometric Normalization of Polygons.
8.3 Compare by Recursive Windowing.

8.4 Related Work and Work Yet To Be Done.

8.0 Introduction to Image Comparing.

The image compare process is both the "keystone of the arch" as well as the "weakest link of
the chain". By comparing images, the 3-D modeling and the 2-D image processing are finally linked,
however as will be apparent the implementation to date demonstrates only a small part of what is
possible. In the feedback perception design, there are three classes of compare operations:
verification, revelation and recognition which may be applied to each of the three kinds of image data
structures: raster, contour and mosaic. The verify compare finds the corresponding entities between a
predicted image and a perceived image for the sake of calibration measurement and for the sake of
eliminating already known features from further consideration. In vision for industrial machine
assembly, calibration measurements suddenly seems to be the only kind of vision necessary in a
relatively constrained {actory situation. The reveal compare involves finding the corresponding entities
in two perceived images, so that the location and extent of new objects can be solved. Finally, the

recognition compare involves matching a perceived entity with one of a set of prototype entities.

- 95 -

8.0 Introduction to Image Comparing. COMPARING.

From the view point of modeling the lowest level compare operation should somehow be
arranged to be a one to one template match rather than a multi dimensional statistical discrimination or
a graph isomorphism test. That is if the entities to be matched are incommensurate, the model
designer censures the model that generated an unrealistic prediction rather than the pattern matcher
which cannot see a vague resemblance. Clearly this position should not be taken to an extreme and the
present system could be enhanced by the inclusion of an appropriate collection of traditional pattern
matching techniques. However, two techniques of commensuration that are naturally the responsibility
of a mode! builder are geometric normalization and topological segmentation. Geometric normalization
involves eliminating the irrelevan! geomelric differences such as location, orientation and scale.
Topological segmentation involves subdividing a complex object into pieces, {perhaps even canonical
pieces) so that only simple small parts need be matched (that is the compare becomes recursive). The
remainder of this chapter explains a method for matching structured images consisting of polygons.
The most original part of the method involves finding the correspondence, illustrated in Figure 8.1, for

polygonal figures that fission or fuse from one image to the next.

FIGURE 8.1 - EXAMPLE OF POLYGON FUSION COMPARE.
\ \

8.1 A Polygon Matching Method. COMPARING.

8.1 A Polygon Matching Method.

The image compare process in CRE, connects the polygons and vectors of one image with
corresponding polygons and vectors of another image. CRE's compare solves the problem of

correlating polygons between two similar images and is composed of four steps:

1. Compute polygonal lamina inertia tensors, lamten nodes.

2. Compare and connect polygons one {o one at corresponding levels of the nested polygon tree.
3. Compare and connect polygons two lo one at corresponding levels of the nested polygon tree.
4, Compare and connect vertices of connected polygens using recursive windowing.

First, the lamina inertia tensor nodes (called lamten's) of all the polygons of an image are
computed. A lamten node contains the center of mass as wall as the tensor of a polygon. The meaning
of the inertia tensor is that it characterizes each polygon as a rectangle of a certain length and width
at a particular location and orientation; and of further importance such inertia tensors can be added to
characterize two or more polygons by a single rectangle. It is the lamten rectangles that provide a

basis for normalization,

Second, all the lamtens of the polygons of one level of the first image are compared with all the
lamtens of the polygons of the corresponding lavel of the second image for nearly exact match. The
potantially (MxN/2) compares is avoided by sorting on the center of mass locations. In CRE, which is
intended for comparing sequences of pictures of natural scenes; match for center of mass location is
tested first and most strictly, followed by match for inertia. Pointers between matching polygons are

placed in two link positions of the polygon nodes and the polygons are considered to be matched.

Third, all the unmated polygons of a level are considered two at a time and a fusion lamten node
for each pair is made. The potentially (NxN/2=N) fusion lamiens are avoided because there is a
maximum possible unmated inertia in the other image; if there are no unmated polygons in one image
then the extra polygons of the first image can be ignored. In the event where there are unmated
polygons in corresponding levels of the two images, the mulli-polygon fusion lamten of one are

compared with the single polygon lamten of the other. The fusion (fission) compare solves the rather

- 97 -

8.2 Geometric Normalization of Polygons. COMPARING.

nasty problem, of linking two contour polygons of one image with a single contour polygon in the next

image.

Fourth, the vertices of mated polygons are in turn compared and mated. To start a vertex
compare, the vertices of one polygon are translated, rotated and dilated to get that polygon's lamten
rectangle coincident with its mate (or mates). Conceptually, each vertex of one polygon is compared
with each vertex of the other polygon(s) and the mutually closest vertices (closer than an epsilon) are
considered to be mated. Actually the potential (N%M) compares are avoided by a recursive windowing
scheme similar to that used in hidden line elimination algorithms. The compare execution takes less
than a second on images such as the pump base (Figures 0.3 and 0.4) blocks (Figure 8.1) and a doll

(Figure 8.2). The doll's silhouette is headless when viewed from the backside because its hair is black.

FIGURE 8.2 - EXAMPLE OF VERTEX MATCHING.

8.2 Geometric Normalization of Polygons.
The lamina inertia tensor of a polygon with N sides is computed by summation over N trapezoids.

The trapezoid corresponding to each side is formed by dropping perpendiculars up to the top of the

image frame; each such trapezoid consists of a rectangle an a right triangle; since the sides of

-98 -

8.2 Geometric Normalization of Polygons, COMPARING.

polygons are directed vectors the areas of the triangles and rectangles can be arEanged to take
positive and negative values such that a summation will describe the interior region of the polygon as
positive. The equations necessary for computing the lamina inertia tensor of a polygon were derived

from material in (Goldstein 1950).

RECTANGLE'S LAMINA INERTIA TENSOR ABOUT ITS CENTER OF MASS.

MXX & BxBxAREA/12; (B HEIGHT IN ROWS).
MYY « AxAxAREA/12; (A WIDTH IN COLUMNS).
MZZ « MXX + MYY;
PXY e 0;
ORIENTED RIGHT TRIANGLE'S LAMINA INERTIA TENSOR ABOUT ITS CENTER OF MASS.
MXX & BxB*AREA/18; (B HEIGHT IN ROWS),
MYY ¢ A%AXAREA/18; (A WIDTH IN COLUMNS).
MZZ « MXX + MYY;
PXY « -A%B*AREA/36;

SUMMATION OF LAMINA INERTIA TENSORS.
AREA « (AREA1 + AREA2);
XCM (AREA! % XCM1 + AREA2 % XCM2) / AREA;

YCM « (AREA] x YCM]1 + AREA2 x YCM2) / AREA;

MXX MXX1 +YCMI*YCMIXAREAL +MXX2 +YCM2%YCM2%AREA2 -YCM*YCM*AREA;
MYY « MYY] +XCM1%XCMI*AREAl +MYY2 +XCM2xXCM2%AREA2 ~XCM%XCM*AREA;
PXY « PXY1 -XCMI*YCMI*AREAI +PXY2 -XCM2%YCM2*AREA2 +XCMxYCM*AREA;

ANGLE OF PRINCIPLE AXIS

The angle of the principle axis, PH, lies in the interval -n/2 to n/2.
PHI « O.5%ATAN(2%PXY/(MYY=MXX));
PXY ¢ 0.5%(MYY - MXX)*TAN{2%PHI);

TRANSLATION OF LAMINA INERTIA TENSOR AWAY FROM CENTER OF MASS.
MXX' « MXX + AREA%DY*DY;
MYY! MYY + AREA*DXxDX;
PXY' « PXY - AREAxDXx*DY;

ROTATION OF LAMINA INERTIA TENSOR ABOUT CENTER OF MASS.

Cc + COSINE{PHI);

S - SINE(PHI);

MXX' « CRCxMXX + SKSHMYY = 2%CxSkPXY;
MYY' « CRCKMYY + SkSkMXX ¢ 2%CkSkPXY;
PXY' « {CHC = S%S)KPXY + CkSk(MYY = MXX);

- 99 =

8.4 Related Work and Work Yet To Be Done. . COMPARING.

8.3 Compare by Recursive Windowing.

The final step in the CRE polygon match (Section 8.1) is to link the corresponding vertices
between two geometrically normalized polygons (or sets of polygons) using a nearest neighbor
criterion. The nearest neighbors are found by recursive windowing, initially all the vertices are
pushed into one large window which is subsequently split until there were few enough vertices
contained in the window to allow exhaustive comparing. To make this windowing techniqua applicable
to the nearest neighbor problem a distance criterion, delta, has o be declared so that the windows
overlap by that amount. Consequently the windows are no longer disjoint rectangles, but are rather
boxes with rounded corners, the smallest possible window being a circle with radius, delta. The
recursive windowing technique is essentially a two dimensional parlition sort, the technique can be

generalized for comparing edges and other enlities in 2=D or higher dimensions.
8.4 Related Work and Work Yet To Be Done.

To complete the visual feadback system, there remains yet to be written an image compare that
uses both raster based and polygon based techniques. The two kinds of compares are symbiotic in that
the polygon compare could aim the raster correlator alleviating the need to do bulk correlation over
wide areas, and the raster correlator could verify and improve the measurement of corresponding
vertex loci. At Stanford, image comparison by raster correlation techniques is begin worked on by
Quam(71), Hannah and Morevac. Another approach fo comparing polygons is to examine their
curvature, the curvature of a polygon can be expressed as a parametric function of arc length; two

such functions can be normalized and alligned and differenced using statistical techniques (Zahn 66).

- 100 -

9.0 Introduction to Locus Solving. LOCUS SOLVING.

SECTION 9.

CAMERA AND FEATURE LOCUS SOLVING.

9.0 Introduction to Locus Solving.

9.1 An Eight Parameter Camera Model.

9.2 Camera Locus Solving: One View of Three Points.

9.3 Object Locus Solving: Siihoueite Cone Intersection.
* 9.4 Sun Locus Solving: A Simple Solar Ephemeris.

95 Related and Future Locus Solving Work.

9.0 Introduction to Locus Solving.

There are three kinds of locus solving problems in computer vision: camera locus solving,
teature locus solving and sun locus solving. Camera solving is routinely attempted in two ways: using
one image the 2-D image loci of a set of already known 3=D world loci (perhaps points on a calibration
object) are measured and a camera model is computed; or using two or more images a set of
corresponding landmark feature points are found among the images and the whole system is solved
relative to itself. After the camera positions are known, the location and extent of the objects
composing the scene can be found using parallax (motion parallax and stereo parallax). Parallax is the
principal means of depth perception and is the alchemist for converting 2-D images into 3~D models.
After the camera and object positions are known to some accuracy, the nature and location of light
sources might potentially be deduced from the shines and shadows in the images. However, in outdoor
situations the primary light source is the sun, whose pasition in the sky can be computed from the time,

date and latitude by means of a simple solar ephemeris routine.

- 101 -

9.1 An Eight Parameter Camera Model. : LOCUS SOLVING.

9.1 An Eight Parameter Camera Model.

in GEOMED and CRE the basic camera model is specified by eight parameters. There are three
parameters for the lens center location of the camera: CX, CY, CZ; three parameters for the
orientation: WX, WY, WZ; and two parameters for the projection ratios: the aspect ratio, AR; and the
focal ratio, FR. The location is given in world coordinates and the orientation is specified by a rotation
vector whose direction gives an axis and _whose magnitude gives rotation which when applied to a set
of three axes unit vectors yields a set of unit vectors that determines the camera's coordinate system.
By convention the principal ray of the camera is parallel to the Z axis unit vector and is negatively
directed. The camera raster is alligned such that the rows (vidicon scan lines) are parallel to the X unit

vector and the columns are parallel to the Y unit vector.

The aspect ratio, AR, is the ratio of widlh, PDX, o height, PDY, of a single vidicon sample point
called a pixel: AR = PDX/PDY. The focal ratio, FR, is the ratio of the focal plane distance to the height
of a single pixel: FR = FOCAL/PDY. The typical value of the aspect ratio is about one, and the typical

value of the focal ratio runs from 300 to 3000.

The actual physical size of the digital raster of a television vidicon is on the order of 12
millimeters wide by 8 millimeters high with approximately 512 lines of potentially 512 pixels per line.
However, a standard television scans its raster in two phases (odd rows in one phase, even rows in the
next) so that a one=phase pixel is approximately 40 microns by 40 microns (rather than 20 by 20). By

contrast, the cones and rods in a human eye are | and 2 microns in diameter respectively.

The aspect ratio and the focal ratio can be measured individuaily using a spherical calibration
object. | have used plastic toy balls and billiard balls, billiard ball radius RBB=2.i25". The perspective
projection of a sphere is an ellipse and the ratio of the apparent width to height of the ellipse of a
sphere that nearly fills the viewing screen is the aspect ratio. To r‘nelasuro the focal ratio, mount the
sphere on a stick and measure its apparent radii (rl and r2) at two positions that are approximately

along the camera's principal axis a measured distance, DZ, apart. Then then the focal ratioc FR =

- 102 -

9.1 An Eight Parameter Camera Model. LOCUS SOLVING.

DZxr1%r2/(R*(r1-r2)) which can be thought of as the FOCAL plane distance in pixels. The beauty of
this is that a naive measuring method yields results as good as measurements obtained by more
elaborate methods such as principal axis relaxation of a camera model in numerous variables (Sobel 70)

and Pingle unpublished.

Cameara Resolution. The focal ratio description allows one to have a firm numerical intuition of

camara's spatial resolution in the object space. The smallest distance interval, DELTA, a camera can
measure at a given range, RNG, is merely the ratio of range 1o FR: DELTA=RNG/FR. The arctan of the
reciprocal of the focal ratio ARCTAN(1/FR) is the angle subtended by a single pixel. '

Lens Center Irrelevancy Theorem. The actual localion of the principal axis of the lens in the

image plane is irrelevant bacause the effect of deviation from the true center is equivalent to rotating
the camera Many camera modelists worry needlessly about the exact location of the camera lens
center; the angular error, ANGERR, of a pixel X units from the center of the image of a camera
modeled with a lens center that is wrong in the X direction by Q pixels is given by the following
expression:
ANGERR = ARCTAN(X/FR) = ARCTAN((X+Q)/FR) = ARCTAN(Q/FR)

Which for the physical parameters of the telavision hardware at Stanford in 1974; means that the lens
center can be allowed to wander by tens of pixels from its true position without causing a pixel of
error at the edge of the image, (allowing that one camera model is alligned on the same feature by

rotation as the camera that defines a good lens center).

=103 -

9.2 Camera Locus Solving: One View of Three Points LOCUS SOLVING.

9.2 Camera Locus Solving: One View of Three Points

- The Iron Triangle Camera Solving Method.

A mobile robot having only visual perception must determine where it is going by what it sees.
Specifically, the position of the robot is found relative 1o the position of the lens center of its camera.
The following algorithm is a geometric method for computing the locus of a camera's lens center from

three landmark points.

B

FIGURE 9.1
The Iron Triangle and Tripod.

C

Consider four non-coplanar points A, B, C and L. Let L be the unknown camera's lens center,
also called the camera locus. Let A, B and C be the landmark points whose loci either are given on a
map or are found by stereo from two already known viewing positions. Assuming for the moment an
ideal camera which can see all 4n steradians at once, the camera can measure the angles formed by
the ravs from the camera locus to the landmark points. Let these angles be called a, 8 and v where a
is the angle BLC, B is the angle ALC and v is the angle ALB. The camera also measures whether the
landmarks appear o be in clockwise or counter clockwise order as seen from L. If the landmarks are
counterclockwise then B is swaped with C and 8 with 4. A mechanical analog of the problem would be
to position a rigid triangular piece of sheet metal between the legs of a tripod so that its corners touch
each leg. The metal triangle is the same size as the triangle ABC and the legs of the tripod are rigidly

held forming the angles a, # and y. The algorithm was developed by thinking in terms of this analogy.

- 104 -

9.2 Camera Locus Solving: One View of Three Points LOCUS SOLVING.

FIGURE 9.2 = FIVE IRON TRIANGLE DIAGRAMS. |

B
in order to put the iron triangle into the tripod, the edge BC
is first placed between the tripod legs of angle a. Let a be L
a
the length of BC, likewise b and ¢ are the lengths of AC and
AB.

Restricting attention to the plane LBC, consider the locus of
points L' arrived at by sliding the tripod and maintaining

contacts at B and C.

Remembering that in a circle, a chord subtends equal angles
at all paints of each arc on either side of the chord; it can be
seen that the set of possible L' points lie on a ¢ircular arc.

Let this arc be called L's arc, which is part of L's circle.

Also in a circle the angle at the center is double the angle at
the circumference, when the rays forming the angles meet

the circumference in the same two points.

And the perpendicular bisector of a chord passes thru the
canter of the chord's circle bisecting the central angle. Let §

be the distance between the center of the circle and the

chord BC. So by trigonometric definitions:
R = a/ 2sin(a)
S = R cos(a)

- 105 -

9.2 Camera Locus Solving: One View of Three Points LOCUS SOLVING.

The position of L on its arc in the plane BLC can be expressed in terms of one parametric
variable omega w, where w is the counter clockwise angular displacement of L from the perpendicular
bisector such that for w=n=a, L is at B and for w=a~-n, L is at C. By spinning the iron triangle about the
axis BC, the vertex A sweeps a circle. Let H be the radius of A's circle and let D be the directed
distance between the center of A's circle and the midpoint of ZC. By Trigonometric relatioﬁs on the

triangle ABC:

COS(ACB) = (a?2 + b12 - ¢12)/2ab
SIN(ACB) = SQRT(l - COS(C)t2)
H = b SIN(ACB)

D = b COS(ACB) - a/2

Now consider the third leg of the tripod which forms the angles 8 and 4. The third leg
intersects the BLC plana at point L and exiends into the appropriate haifspace so that the landmark
points appear to be in clockwise order as seen from L. Let A’ be the third leg's point of intersection
with the plane containing A's circle. Let the distance between the point A’ and the center of A's circle
less the radius H of A’s circle be called "The Gap”. The gap's value is negative if A’ falls within A's
circle. By constructing an expression for the value of the Gap as a function of the parametric variable
w, a root solving routine can find the w for which the gap is zero thus determining the orientation of

the triangle with respect to the tripod and in turn the locus of the point L in space.

Using vector geometry, place an origin at the midpoint of BC, establish the unit y-vector j
pointing towards the vertex B, let the plana BCL be the x~y plane and orient the unit x=-vector i
pointing into L's halfplane. For right handedness, set the unit z=vector k to i cross j. In the newly

defined coordinates points B, C, and L become the vectors:

B = (-5, +a/2, 0);
C = ('5’ '6/2,0)
L = (R cos{w), R sin{w), 0)

introducing two unknowns xx and zz the locus of point A’ as a vector is:
A' = (xx, D, 22)

- 106 -

9.2 Camera Locus Solving: One View of Three Points LOCUS SOLVING.

The vectors corresponding to the legs of the tripod are:
LB = B~ L = (=s-Rcos{w), +a/2-Rsin{w), 0)
LC = C~L =(-s=Reos(w), ~a/2=Rsin{w), 0)
LA = A’-L = (xx=Rcos(w), D=Rsin(w), 22)

Since the third leg forms the angles 8 and ¥:
LA . LC = |LA] |LC] cos(B)
LA . LB = JLA] LB} cos(y)

Solving each equation for |LA} yields:
ILA] = (LA . LC)/|LClcos(8) = (LA .LB)/|LBjcos{y)

Multiplying by |LB] |LC] cos (8) cos (y) gives:
(LA . LC)ILB| cos{v) = (LA . LB)ILC| cos(8)

Expressing the vector quantites in terms of their components:
ILB] = sqrt((-S=Reos(w))12 + (+a/2-Rsin(w))12)
ILC| = sqrt{(-S~Rcos{w})T2 + (=a/2=Rsin({w))12)
LA . LC = (xx=Rcos(w))(=s-Rcos(w)) + (D=Rsin{w))(=a/2=Rsin(w))
LA . LC = (xx=Rcos(w))(=s=Rcos(w)) + (D=Rsin(w)){+a/2-Rsin{w))

Substituting:
((xx~Rcos{w))(=s=Rcos(w)) + (D=Rsin(w))(~a/2=Rsin{w)}) |LBJcos(+)
= ({(xx=Rcos{w)){=s=Rcos(w)) + (D-Rsin(w))(+a/2=Rsin(w})) |LC|cos(B)

The previous equation is linear in xx, 50 solving for xx:
xx = P/Q + Rcos(w)

where
P = (=s=Rcos(w))(|LBcos(y) = |LClcos(8))
Q = (D-Rsin{w))({+a/2=Rsin(w))]LC|cos(8)
= (~a/2=Rsin(w))|LBcos{y))

The unknown zz can be found from the definition of |LA|
JLA} = sart((xx-Rcos(w))12 + (D=Rsin(w))t2 + 22%2)
S0 zz = sqri(JLAJT2 - (P/Q)t2 =~ (D-Rsin{w))t2)

and since:
JLA] = (LA . LC) / JLClcos(B)

The negative values of zz are precluded by the clockwise ordering
of the landmark points. Thus the expression for the Gap can be formed:

GAP = sqrt((XX+5)12 + 2212) - H

- 107 -

9.2 Camera Locus Solving: One View of Three Points LOCUS SOLVING.

As mentioned above, when the gap is zero the problem is solved since the locus of A’ then must
be on A's circle, so the triangie touches the third leg. The gap function looks like a cubic on its

interval [a-n,n-a] which almost always has just one zero crossing.

Having found the locus of L in the specially defined coordinate system all that remains to do is to
solve for the components of L in the coordinate system that A, B and C were given. This can be done
by considering three vector expressions which are not dependent on the frame of reference and do
not have second order L terms, namely: (CA dot CL); (CB dot CL); and ((CA x CB) dot CL). Let the
locus of L in the given frame of referance be (X,Y,Z) and let the components of the points Ab, Band C

be (XA,YA,ZA), (XB,YB,2B) and (XC,YC,IC) respectively. Listing all four points in both frames of

reference:
A =(xx, D, zz) = (XA YA, ZA)
B =(-s,+af2, 0) = (XB, YA, ZA)
C =(-s,=a/2, 0) = {XC, YC, ZC)
L = (Reos(w),Rsin(w),0) = (X Y 2)

Evaluating the vector expressions which are invariant:
CA=z=A-C = (XA-XC. YA-YC, ZA-IC)
CB=B-C=(0,30) = (XB-XC, YB-YC, ZB-IC)
CL = L = C = (Reos(w)+s,Rsin({w)+af2,0) = (X-XC, Y-YC, Z-IC)

The dot products are:
CA . CL = (xx+S){Rcos(w)+s)¢{D+a/2)(Rsin{w)+A/2)
s (XA=XC)(X-XC) + (YA-YC)(Y-YC) ¢+ (ZA-ZC){Z-ZC)
CB .CL = a{Rsin{w) + a/2)
= (XB~XC)(X-XC) + (YB-YC)(Y-YC) + (ZB-ZC)(Z-1C)

The cross product is: -
(CA x CB) . CL = ~a zz(Reos{w) * s)
~ = ((YA-YC)(ZB-IC) = (ZA-ZC)}YB=YC)) (X=XC)
= ((XA=XC)}(ZB-ZC) = (ZA-ZC)(XB-XC)) (Y-YC)
+ {(XA=XC)YB=-YC) - (YA-YC){XB=XC)) (Z-2C)

The last three equations are linear equations in the three unknowns X, Y and Z which are readily
isolated by Cramer's Rule. The whole method has been implement in auxiliary programs LS1V3P and
QBALL which calibrate a camera with respect to a turntable for the sake of the silhouette cone

intersection demonstration in Section 9.3.

- 108 -

9.3 Object Locus Solving: Silhouette Cone Intersection. LOCUS SOLVING

9.3 Object Locus Solving: Silhouette Cone Intersection.

After the camera location, orientation and projection are known; 3-D object models can be
constructed. Tha silhouelite cone intersection method is a conceptually simple form of wide angle,
stereo raconstruction. The idea arose out of an original inlention to do "blob" oriented visual model
acquisition, however a 2~D blob came to be represented by a silhouette polygon and a 3-D biob
consequently came to be represented by a polyhedron. The present implementation requires a very
favorably arranged viewing environment (white objects on dark backgrounds or vice versa); application
to more natural situations might be possible if the necessary hardware (and software) were available '
for extracting depth discontinuities by bulk correlation. Furthermore, the restriction to turntable

rotation is for the sake of easy camera solving; this restriction could be lifted by providing stronger

feature tracking for camera calibration.

Figure 9.3 shows four video images and the corresponding silhouette contours of a baby doll on
a turn table. Figure 9.4 is an overhead view of the four silhoueite cones that were swept from the
contours, the circle in the middle of Figure 9.4 is the turntable. Figure 9.5 gives three views (cross
eyed stereo pairs) of the polyhedron that resuited by tfaking the intersection of the four silhouette
cones. Like in the joke about carving a statue by cutting away everything that does not look like the
subject, the approximate shape of the doll is hewed out of 3=D space by cutting away everything that
falls outside of the silhouettes. A second example of silhoustte cone intersection is depicted in Figure
9.6; the model was made from three silhouetles of the horse facing to the left which can be compared
with an initial video image and a final view of the result of the horse facing to the right = a plausible

(maximal) backside has been constructed that is consistent with the front views.
The silhouelte cone intersection method does indeed construct concave objects and even objects

with holes in them - what are missed are concavilies with a full rim, that is points on the surface of tﬁe

object whose tangent plane cuts the surface in a loop that encloses the point.

- 108 -

FIGURE 9.3 - FOUR VIEWS OF A BABY DOLL.

wdeo |mages

i
l
Ly

g
N _“""" ol
L

"‘ rumuﬂ!m

“!!lllllll 1
;L,llullllHll b t
‘=z
)

l |l”lmm“|]|lllllmummmlillil\ll" mlnllxln !QI'hmf!El Il” !mmhmu ‘ H i
le o l
Il
il
mmlull’u‘ |

-

il |1 |
iy |

A

[l

:W‘J’
'{l'iil}f‘ il

il i : 1{

'*‘:'," | mnrw"[lli'

iy
Iml ,.Jnltimlﬂ

- 110 -

silhouette contours

= HES
-
A
g ,

FIGURE 9.4 - FOUR TURNTABLE SILHOUETTE CONES.

..as viewed from abaove.

- 111 -

FIGURE 9.5 - RESULTS OF SILHOUETTE CONE INTERSECTION

Front View.

Rear View.

Top View.

- 112 -

FIGURE 8.6 - HIGH HORSE SILHOUETTE CONE INTERSECTION

- 113 -

9.4 Sun Locus Solving: A Simple Solar Ephemeris. LOCUS SOLVING

9.4 Sun Locus Solving: A Simple Solar Ephemeris.

The location of the sun is useful to a robot vehicle vision system both for sophisticated scene
interpretation and for avoiding the blunder of burning holes in the lelevision vidicon. The approximate
position of the sun in the sky is readily computed from the time, date and latitude using circular
approximations. The longitude is implicitly used to compute Local Solar Time, since the Stanford A.l
Lab is 122 degrees 10 minutes wek of the Greenwich meridian, Local Solar time is 8 minutes, 44
saconds earlier than Pacitic Standard Time (120 degrees west). The orientation of the earth with
respect {o the sun follows from remembering that the sun is highest at noon. The tilt of the earth with
respect to its orbit is 23.45 degrees, so in earth centered coordinates the sun appears to circle the
earth counterclockwise crossing the plane of the equator from south to north on the spring equinox,
March 21. The SUNLOCUS pfocedura given balow computes the local azimuth and altitude of the sun in
thé sky, given the number of days since March 21, the time in seconds since midnight and the latitude

in radians.

PROCEQURE SUNI OCUS (RFAI DAY, TIME,LAT; REFERENGE REAL SLNAZM,SUNALTY;
BEGIN

REAL RHO,PHI, THP,ECLIPTIC,NORTH, EAST, ZENITH;
COMMENT POSITION OF THE SUN ON THE ECLIPTIC IN THE CELESTIAL SPHERE;

ECLIPTIC ((23+427/60)5P1);
RHO . 24P 1::DAY/365.25;
EAST - SIN(RHO) 2COS(ECLIPTIC);
NORTH « SIN(RHO) «SIN(ECLIPTIC);
ZENITH « €05 (RHO) ;
COMMENT LOCAL SOLRR TIME, OVER THE MNRST AT NOON;
TINE - TIME -~ (8260 + 44);
PHI - PIs(1~-TIME/(12+3688)) - ATANZ(ERST,ZENITH);
THP . ZENTITH:COS (PHI) - SIN(PHI)xERST;
EAST - EAST:COS (PHI) + SIN(PHI)«Z2ENITH;
ZENITH + THP;
COMMENT ROTATE CLOCKWISE IN THE NORTH/ZENITH PLANE TO LOCAL LATITUDE;
TP - COS(LAT) %ZENITH + SIN(LAT)xNORTH;
NORTH « COS(LAT)=NORTH - SIN(LAT)%2ENITH;
ZENITH « THP;
CONVERT TG ANGULAR MEASURES;
SUNRZM « ATANZ (NORTH,EAST) ; COMMENT AZIMUTH FROM DUE ERST;
SUNALT « PI/2 - ACOS(ZENTIH); COMMENT ALTITUDE RBOVE HORIZON;

END "SUNLOCUS";

- 114 -

9.5 Related and Future Locus Solving Work, LOCUS SOLVING

9.5 Related and Future Locus Solving Work.

The camera solving problem is discussed in Roberts (63), Sobel (70} and Quam (71). | have
always disliked the many dimensional hill climbing approach to camera solving and have sought more
geometric and intuitive solutions to the problem. Aithough the bulk of this chapter concerned camera
solving using one view of three points the multi view camera calibration is probably more important to

continuous image processing.

=115~

Page Intentionally Left Blank

10.1 Results: Accomplishments and Original Contributions. RESULTS AND CONCLUSIONS.

SECTION 10.

RESULTS AND CONCLUSIONS.

10.1 Results: Accomplishments and Original Contributions.
10.2 Critique: Errors and Ommissions.

10.3 Suggestions for Future Work.

10.4 Conclusion.

10.1 Results: Accomplishments and Original Contributions.

As a regular feature in a Ph.D. dessertation, it is required to state explicitly what has been
accomplished and what is original. Some of what has been accomplished is itemized in box 10.1; with
the so called original contributions marked by asterisks. Each of the accomplishments has been

elaborated in the indicated chapter.

ﬂa’ox 10.1 ACCOMPLISHMENTS AND ORIGINAL CONTRIBUTIONS ' \

0. The Geometric Feedback Vision Theory . { Chapter 6.

%*1. The Winged Edge Polyhedron Representation © Chapter 2.

%2, The Euler Primitives for Polyhedron Construction Chapter 3.

3. The Iron Triangle Camera Locus Algorithm Chapter 9.

%4, The OCCULT hidden line elimination algorithm - Chapter 4.

%5, The Polygon Nesting Algorithm Chapter 7.

%6. The Polygon Dekinking Method Chapter 7.

7. The Polygon Segmenting Method Chapter 7.

8. The Polygon Comparing Method Chapter 8.

k %9. Silhouette Cone Intersection Chapters 5 and 9. ‘

As a whole, the system described in this thesis is the third of its kind, succeeding the systems of

Roberts (1963) and Falk (1970). Aithough, the modeling routines of the present system are
considerably more sophisticated than were those of its predecessors; improvement in the visual

analysis routines is less dramatic and more open to question. The present image analysis differs from

-116 -

10.1 Results: Accomplishments and Original Contributions. RESULTS AND CONCLUSIONS.

the earlier systems in that emphasis is placed on the use of mulliple images for the sake of parallax
depth perception and in that several spatially connected image representations are combined (contour
image, mosaic image and raster image) to preserve the structure of the scene through feature
extraction rather than following the earlier paradigm of exiracting features from the image piecemeal

and attempting to splice them together afterwards.

As a design theory, the present work can be compared with earlier work by compari;wg the
block diagrams. The charcteristically circular feedback vision mandala like diagrams appear in (Falk)
Figure 4-7, page 78; (Grape) Figure 12.1, page 242; (Tenenbaum) Figure 1.13, page 43; as well as in
this work Figure 6.1, page 70. The feedback mandala is conspicuously absent in the best of the
stimulus-response visual parsing work, (Waltz), as well as in statistical recognition work, (Duda and
Hart). The imporiant ideas depicted in the feedback vision mandala are the duality of the simulated and
physical worlds, the duality of description and verification, the dualism of camera and body locus
solving, and the dual opposing flows of predicted and perceived images along a hieracry of
commensurate abstractions. Tenenbaum’s figure illustrates the basic feedback loop in the immediate
vicinity of the visual sensor. The diagrams of Falk and Grape are similar mirrors of the overall system
design of the Slanford Hand/Eye group (1969 to 1973) under the leadership of Professor Jerome
Feldman. The two diagrams depict an array of relevant boxes (camera solver, edge finder, world
modeler and so on) all sending messages to each other under the benign direction of a box labeled

"general strategist".

Among the elements composing the GEOMED/CRE system, the most original accomplishment is
the winged edge polyhedron representation. In computér graphics models are basad on face perimeter
lists (or arrays), with an awareness that more topological relations exist but with no realization that a
substantiai improvement in surface topology modeling is feasible using approximately the same

resources.
Another accomplishment, the Euler primitives was based on a constructive proof of the Euler

relation from (Coxeter 61). Other graphics systems lack this level of abstraction that falls between the

leve! of node/link operations and operations with solids. The Euler primitives were useful in

- 117 -

10.2 Critique: Errors and Omissions. RESULTS AND CONCLUSIONS.

implementing OCCULT and GEOMED sweep and glue operations, but they were less useful in

implementing the body intersector, BIN.

A pre-computer form of the Iron Triangle camera solving method appears in a paper by Berkay
{59). Berkay described the method as an analog procedure to be performed with paper, ruler and
afew other photogrammetric hand tools. (The existence of this paper was pointed out to me by Irwin

Sobel).

The original accomplishment of the hidden line eliminator, OCCULT lies in its unification of
several methods and in its exploitation of object and image coherence made possible by the Euler

primitives and the Winged Edge Representation.

The last five accomplishments listed in box 10.1 are related to vision. The nesting and dekinking
problems have been stated and solved by others, the present solutions are original only in technical
detail: the nesting for its use of memory to avoid a N-squared number of compares and the dekinking
for its achiavement of good results with almost no effort. The recursive polygon segmentation and the:
polygon compare idea were accomplishments that were compatible with the contour image approach but

are not necessarily original ideas.

10.2 Critique: Errors and Omissions.

The major weakness in the existing modeling system is that it lacks overall unity = the modeling
and image anaylsis are not yet sufficiently well integrated. The second major weakness is that the
essential subsystems involving comparing, locus solving and recognition are stiil in a primitive condition.
Consequently, an unambiguous cbjective demonstation of the relevance of 3-D modeling to computer
vision is missing; the particular demonstration which | had in mind was to have a robot vehicle drive

outside around the laboratory visually servoing along a trajectory given in advance.

in the course of this work, technical failures have included the attempt to use Euler primitives to

implement body intersaction, the attempt to bundle contour images into mosiac images, as well as

-118 -

10.3 Suggestions for Future Work. RESULTS AND CONCLUSIONS.

attempts to make the Euler kill primitives logically air tight without time consuming model checking,
Howaever, the worst errors are of the form of misallocated effort; more time might have been spant on
image analysis and less on image synthesis and so forth. The research suffers from not having a

criterion for deciding which objectives deserves the most immediate effort,

A final barrier to progress in computer vision is the inadequacy of the hardware. It may be true
that "It is a poor workman who blames his tools"; but for me the greatest source of personal
frustration has been the television cameras, the cart and the turntable. At Stanford, these devices

have not been implemented or maintained with sufficient care to make them convenient to use.

10.3 Suggestions for Future Work.

Box 10.2 SUGGESTIONS FOR FUTURE WORK. \
SPATIAL MODELING WORK.

i. Combination Geomelric Models ~ Converters.

2. Cellular Space Modeling - Tetrahedral Simplices.

3. Spatial Simulation: Collision Avoidance Problem.

4, Higher Dimensionality, 4-D GEOMED.
SIMULATIONS. :

5. Mechanical Simulation,

6. Creature Simulations.

7. Geometric Task Planning.

8. Geomatric/Semantics Modeling.
MATHEMATICALLY ORIENTED PROBLEMS.

9. The Manifold Resurfacing Problem.

10. The Curved Patches Problem.

11, Prove the Correctness of a Hidden Line Eliminator,
GET RICH QUICK APPLICATIONS.

12. Automatic Machine Shop.

13. Animation for Entertainment Industry.
SYSTEMS SOFTWARE AND VISION HARDWARE WORK.

14, Better Loader and/or Incremental Assembler.

15. Better Cameras.

16. Image Oriented Number Crunching Computer Hardware.
\ 17. Better Robot Vehicles. J

The application of geometric modeling o vision and robotics raises numerous interesting ideas
and problems, box 10.3. Future development of Combination Geometric Models may begin by writing

converters between geometric representations. For example, there is 2 need to convert polyhedra

~119-

10.3 Suggestions for Future Work. RESULTS AND CONCLUSIONS.

into spine cross sections, space points into polyhedra, contour maps into faceted surfaces and so on.
~ Extramural combination models include Geometric/Semantic Modeling which will be needed to cover
the gulf between Minsky's (1974) notion of a visual frame-system (e.g. the expectation of a room
interior) and a geometric prediction of the features to be found in the image. Although the Minsky
Frame-System theory does not explicitly reveal the crucial interface between numerical geometric

modeling and symbolic abstractions, that nexus is a central part of the frame-system idea.

The Cellular Space Modeling idea is that both space and objects should be modeled using a
space filling tesselation of cells; perhaps using the tetrahedral 3-simplex. The difficulty lies in getting
the Euclidean primitives to update the geomelry and topology of empty space as an object moves and
rotates. The rewards might include an elegant approach to collision avoidance problems in vehicle
navigation and arm trajectory planning. Other approaches to spatial simul:ztion and collision

avoidance problems that might be pursued include the use of simulated viewpoints to see obstacie free

trajectories by means of hidden line elimination, this method is suggested in (Sutherland 69).

In several recent Stanford dissertations, (Falk, Yakimofsky, Grape, and so on) the authors
conclude with the prediction that their essentially 2=D techniques can readily be extended to 3-D in
future work. In my turn, | seriously wish to propose that my essentially 3-D techniques can be
extended to 4-D. The resulting models could be applied to Regge Calculus for computing the general
relativistic geometric models of such systems as two or three colliding blackholes or on a less cosmic
level a 4-D GEOMED could be of service for planning sequences of arm manipulations viewing time as a
spatial dimension. Collision of 3-D polyhdera moving in time can be described as a static intersection

of 4-D polytopes.

Geometric modeling is also applicable to future work in simulation. Mechanical Simulation
involves computing the Newtonian mechanics of everyday objects, problems which are immediately
approachable from a GEOMED foundation include simulated object collision, statics, and pseudo friction.
For example, consider what is needed to predict the outcome of selting one more block at a given
place on an existing tower or of throwing one biock into a tower of other blocks. Geometric Task

Planning problems include the old Al favorite of block stacking as well as the newer research

- 120 «

10.3 Suggestions for Future Work. RESULTS AND CONCLUSIONS.

problems related to industrial assembly. Existing solutions to geometric lasks are notoriously
restricted, for example | know of no biocks siacking program that handles arbitrary rotations, all blocks

to date are piled on the square.

Although, it has been recognized (early and often) that the programming of numerically
controled machine tcols should be automated, the actual implementation of a system that builds artifacts
directly from a geometric model still lies in the future. As a start, someone at any of the research labs
with a general purpose manipulator could bagin by carving models out of soap or other soft material

with a rotating cutting tool.

Advanced mechanical simulations 2s well as /Animation for Entertainment quickly run into the
problem of Creature Simulation = given a multilegged bug, what control program is required to make
the bug walk through a building. Barring the darkness of war, it is likely that the greatest potential
future users of robotic simulation will not be found in government, universities, or manufacturing
industries but rather in the entertainment industry. When it becomes economically feasible to create
realistic (and surrealistic) animation by computer graphics, great progress will be made in simulating

visual reality and in representing mundane situations in a computer.

Theoretical work in geometric modeling will continue to pursue curved representations. Two
problems that | would especially like to see solved involve fitting curved surfaces to form a smooth
object, (a manifold), as well as resurfacing an existing manifold representation. Both problems |
believe are more a question of automatic segmentation rather than automatic smoothing. It is easy to
tit functions to facial patches of an object, it is hard to subdivide an object into the proper set of
patches. In terms of analysis of algorithms and the mathematical theory of computation, the one
geometric algorithm that seems most ripe for future quantative study and logical analysis is the hidden
line elimination process. There is a wealth of different techniques to be compared and the inputs and

outputs seam to be sufficiently well defined for formal axiomatizing.

Finally progress in compuler vision and geometric modeling requires progress in systems

software and computer systems. In my opinion, recent university based research in programming

-121 -

Reproduced from
best available copy

10.4 Conclusions. RESULTS AND CONCLUSIONS.

languages is over concentrated in very high level language theory and automatic programming. Future
language and systems work should include developing an incremental loader, assembler, debugger and
editor that can handie algebraic expressions, block structure, node/link storage notation as well as
unvarnished machine instructions. Although special purpose image processing hardware has earned a
bad reputation (starting with the llliac=lll); in my opinion a real vision system will be composed of a
large array of computer like elements (4096 by 4096) that pipeline a siream of images into structured
image representations. The percoived images are then compared with predicted images and a detailed
3=D mode! is altered or constructed in real time (24 images per second) using a §mall number of
computers (32 or less) which by the standards of our day (1974) would be very large and very fast
(ten megawords main memory and ten megahertz instruction execution). Assuming the continuation of
civilization with a growing technology over the next one hundred to a thousand years, developments in
Computer Vision and Artificial Intellegence could lead to robots, androids and cyborgs which will be

able to see, to think and to feel conscious.

10.4 Conclusions.

The particular technical conclusions of this work include the methods, system desfgns and data
structures for geometric modeling which have slready been elaborated. Based on the details, one
could make such generalized observations as. that: recursive windowing is a good technique for spatial
sorting, simple geometric representations fall into space oriented and object oriented classes, the
essence of an object representation is its coherence under various operators and that the power of a
vision system might be enhanced by application of 3-D modeling techniques. However in closing, 1
would like to draw three rather more general conclusions, conclusions which by contrast to the

technical ones might be construed as scientific conclusions.

1. The Nature of Perception. Perception is essential to intelligence as it is the process which ’

converts external sensations into internal thoughts. There are two kinds of simple perception systems:

stimulugs-response and prediction-correction feedback; together they explain perception.

-122 -

10.4 Conclusions. RESULTS AND CONCLUSIONS.

2. The Necessity to lixperiment. Robotic hardware is essential to Artificial Intelligence as an

experimental science. It is misleading to study only theoretical robotics of plausible abstractions,
mathematics, puzzles, games and simulations. The real physical world is the best test of adaptive
genoral intelligence. The complexity and subtlety of real world situations, even of a situation as
seemingly finite as a digital television picture, can not be anticipated from a philosopher's armchair or .

from a programmer's console.

3. The Necessity to Simulate Visual Reality. Medeling is essential to prediction-correction

feedback perception. Although simulated robot environments should not be used in place of the
external physical reality, such environmental simulations are an essential part of a robot's internal
mental reality. In the particular case of vision, geometric models should be easy to adapt to the basic
mental abilities of present day computer hardware. To conclude, perception requires two worids one

that is the external physical reality and the other which is the internal mental reality.

- 123 -

11.1 References. ADDENDA

SECTION 11,

ADDENDA

I11.]1 References.
11.2 GEOMED Node Formats.

11.1 References.

Agin (1972)

Gerald Jacob Agin; "Representation and Description of Curved Objects";
Ph.D. Thesis, Computer Science Department, Stanford Artificial Intelligence
Laboratory, Memo no. AlM=173, Stanford University, October 1972,

Archuleta (1972)
Michael Archuleta; "Hidden Surface Line Drainwg Algorithm"; University of
Utah, Technical Report UTEC-CSc-72-121; Sait Lake City, Utah; June 1972,

Baumgart (1972)

Bruce G. Baumgart; "Winged Edge Polyhderon Representation”; Stanford
Artificial Intelligence Laboratory, Memo no. AIM=179, Stanford University,
October 1972.

Baumgart (1973)

Bruce G. Baumgart; "Image Contouring and Comparing"; Stanford Artificial
intelligence Laboratory, Memo no. AIM=199, Stanford University, October
1973.

Baumgart (1974)

Bruce G. Baumgart; "GEOMED - A Geometric Editor"; Stanford Artificial
Intelligence Laboratory, Memo no. AIM=-232, Stanford University, May 1974,

- 124 -

11.1 References. ADDENDA

Berkay (1958)

Nedret Berkay; "Determination of Space Coordinates of Photographic
Exposures by a Semi-Graphic Method"; Brausch & Lomb Photogrammetry
Yearbook; 1958,

Coons (1967)

Steve A. Coons; “"Surtace for Computer Aided Design of Space Forms":
Project MAC Technical Report, MAC-TR-4l, Massachusetts Institute of
Technology, Cambridge, Massachusetis; June 1967.

Coxeter (1961)
Harrold S. M. Coxeter; Introduction to Geometry; John Wiley & Sons, New
York, 1961.

Coxeter (1963)
Harrold S. M. Coxeter; Regular Polytopes; Macmillan, New York, 1963.

Duda (1973)
Richard Duda and Peter Hart; Pallern Classitication and Scene Analysis; John
Wiley & Sons, New York, 1973.

Dudani (1970)
Sahibsingh Amulsingh Dudani; "An Experimental Study of Moment Methods
for Automatic Identification of Three Dimensional Objects from Television
Images.”; Ph.D. Thesis, Department of Electrical Engineering; Communication
and Control Systems Laboratory, Ohio State University; Columbus, Ohio
August 1970.

Eves (1965)
Howard Eves;A Survey of Geometry;Allyn and Bacon, Boston, 1965,

Falk (1970)

Gilbert Falk; "Computer Interpretalion of Imperfect Line Data as a Three
Dimensional Scene”; Ph.D. Thesis, Computer Science Department, Stanford
Artificial Intelligence Laboratory, Memo no. AIM=132, August 1970.

Feldman (1969)

Jerome Feldman, Gilbert Falk and Lou Paul; "Computer Representation of
Simply Described Scenes”; Stanford Artificial Inteiligence Laboratory,
SAILON=-52; Stanford University, 1969,

Feynman (1963)

Richard P. Feynman, Robert B. Leighton, Matthew Sands;

The Feynman Lectures on _Physics; Addison-Wesley; Reading,
Massachusetis; 1963.

- 125 -

i1.]1 References. ADDENDA

Freeman (1974)
Herbert Freeman; "Computer Processing of Line Drawings”; ACM Computing
Surveys, volume 6, humber 1; March 1974,

Gardner (1959)

Martin Gardner;

The Scientifie American Book of Mathematical Puzzles and Diversions:
Simon and Schuster; New York; 1959,

Gardner (1961)

Martin Gardner;

The 2nd Scientific /lmerican Book of Mathematical Puzzles and Diversions:
Simon and Schuster; New Yolk; 1959,

Gill (1972)

Aharon Gills "Visual Feedback and Related Problems in Computer Controlled
Hand Eye Coordination”; Ph.D. Thesis, Computer Science Department,
Stanford Artificial Intelligence Laboratory, Memo no. AIM-178, Stanford
University, October 1972.

Gips (1974)

James Gips; "Shape Grammars and their Uses"; Ph.D. Thesis, Computer
Science Departmant, Stanford Artificial Intelligence Laboratory, Memo no.
AIM=-231, Stanford University, May 1974.

Goldstein (1950)
Herbert Goldstein; Classical Mechanics; Addison-Wesley; Reading,
Massachusetts; 1950,

Gouraud (1971)

Henri Gouraud; "Computer Display of Curved Surfaces"; Ph.D. Thesis,
Department of Computer Science, University of Utah, Technical Report
UTEC-CSec~71-113; Salt Lake City, Utah; June 1971.

Grape (1973) ‘

Gunnar R. Grape; "Mode!l Based (Intermediate-~Level) Computer Vision";
Ph.D, Thesis, Computer Science Departmant, Stanford Arlificial Intelligence
Laboratory, Memo no. AIM=201, Stanford University, May 1973.

Graustein (1935)
Wiiliam C. Graustein; Differential Geometrys; Macmillans New York; 1935,

- 126 -

11.1 References. ADDENDA

Guzman (1968)

Adolfo Guzman; "Computer Recognition of Three Dimensional Objects in a
Visual Scene”; Ph.D. Thesis, Department of Electrical Engineering, Project
MAC Technical Report, MAC-TR-59, Massachusells Institute of Technology,
Cambridge, Massachuselts; December 13968.

Hilbert (1952)

David Hilbert and S. Cohn=Vossan; translated by Nemenyi, P.;

Geometry and the Imagination; Chelsea Publishing Company; New York;
1952.

Knuth (1968)
Donald Ervin Knuth; The Art of Computer Programming: Addison-Wesley;
Reading,Massachusetts; 1968.

Krakauer (1971) .
Lawrence J. Krakauer; "Computer Analysis of Visual Properties of Curved
Objects”; Project MAC Technical Report, MAC-TR-82, Massachusetts institute
of Technology, Cambridge, Massachuselits; May 1971.

Luzadder (1971)
Warren J. Luzadder; Fundamenials of Engineering Drawing: Printice Hall;
Englewood Cliffs, New Jersey; 1971.

Maruyama (1972)

Kiyoshi Maruyama; "A Procedure to Determine Intersections Between
Objects”; International Journal of Computer and Information Sciences, volume
1, number 3, 1972,

McCarthy {1964) }

John McCarthy; "Computer Control of a Machine for Exploring Mars's
Stanford Arlificial Intelligence Laboratory, Memo no. AIM-14, Stanford
University, June 1964,

McCarthy (1968)

John McCarthy and Patrick Hayes; “Some Philosophical Problems from the
Standpoint of Artificial Intelligence”; Stanford Artificial Intelligence
Laboratory, Memo no. AIM=73, Stanford University, November 1968.

Minsky (1974)

Marvin Minsky; "Frame=Systams"; Unpublished Paper, MIT=-Al LAB 1974; (cf.
draft version of 27 February 1974; SAIL internal document).

- 127 -

11.1 References.. ADDENDA

Muller (1967)
Edward J. Muller; Architectural Drawing and Light Constructions
Printice=Hall; Englewood Cliffs, New Jersey; 1967.

Nevetia (1974)

Ramakant Nevetia; “Structured Descriptions of Complex Objects for
Recognition and Visual Memory”; PhD. Thesis, Computer. Science
Department, Stanford University, (Forthcoming) 1974,

Newman and Sproull (1973)
William M. Newman and Robert F. Sproull;
Principles of Interactive Computer Graphicss McGraw=Hill; New York; 1973,

Parke (1972)

Frederic Ira Parke; "Computer Generated Animation of Faces"; Ph.D. Thesis,
Department of Electrical Engineering, University of Utah, Technical Report
UTEC-CSc-72-123; Salt Lake City, Utah; June 1972,

Paul (1969)

Richard Paul, Gilbert Falk and Jerrome A, Feldman; "The Computer
Representation of Simply Described Scenes"; Stanford Artificial Intelligence
Laboratory, Memo no. AlM=101, Stanford University, October 1969.

Paul (1872)

Richard Paul; "Modelling, Trajectory Calculation and Servoing of a Computer
Controlled Arm"; Ph.D. Thesis, Computer Science Department, Stanford
Artificial inteiligence Laboratory, Memo no. AIM~177, Stanford University,
November 1972,

Quam (1971)

Lynn H. Quam; “"Computer Comparison of Pictures"; Ph.D. Thesis, Computer
science Department, Stanford Artificial Intelligence Laboratory, Memo no.
AIM=-144, Stanford University, May 1971.

Quam at 3l (1972)

Lynn H. Quam, Sidney Liebes, Robert B. Tucker, Botond G. Eross and
Marsha Jo Hannah; "Computer Comparison of Pictures”; Stanford Artificial
Intelligence Laboratory, Memo no. AIM=-166, Stanford Universily, April
1972.

Roberts (1963)

Larry G. Roberts; "Machine Perception of Three Dimensional Solids"; Lincoin
Laboratory Technical Report no. 315; Lexington, Massachusetts; May 1963.

- 128 -

11.1 References. ADDENDA

Rosenfeld (1969) :
Azriel Rosenfeld; "Picture Processing by Computer"; ACM Computer
Surveys, volume 1, number 3; September 1969;

Schmidt (1971) .
Rodney A. Schmidt; "A Sludy of the Real-Time Control of a Computer
Driven Vehicle"s Ph.D. Thesis, Department of Electrical Engineering;
Stanford Artificial Intelligence Laboratory, Memo no, AIM=149, Stanford
University, May 1971.

Snyder (1914)
Virgil Snyder and C.H.Sisam; Analytic Geometry of Space; Henry Holt and
Company; New York; 1914.

Sobel (1970)

lrwin Sobel; "Camera Models and Machine Perception”; PhD. Thesis,
Department of Electrical Engineering; Stanford Artificial Intelligence
Laboratory, Memo no. AIM=121, Stanford University, May 1970.

Stewart (1970)
Bonnie Stewart; Adventures Among the Toroids; Okemos, Michigan; 1970.

Sutheriand, Sproull and Schumacker(1973)

ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker; "A
Characterization of Ten Hidden~Surface Algorithms"; Evans & Sutherland
Computer Corporation, Salt Lake City, Utah; 1973. (also published int ACM
Computing Surveys; volume 6, number 13 March 1974).

Sutherland (1969)
lvan E. Sutherland; draft copy of "A Method for Solving Arbitrary-wall
mazes by Computer”; which later appeared in the IEEE transactions on
Computers, 1969,

Sutherland (1970)
lvan E. Sutherland; "Computer Displays"; Scientific American, volume 222,
number 63 June 1970.

Sutro and Kilmer{1969)

Louis L. Sutro and William L. Kilmer; "Assembly of Computers to Command
and Control a Robot"; Instrumentation Laboratory, Report number R-582;
Massachusetts Institute of Technology, Cambridge, Massachusetts; February
1969.

Symon(1953)
Keith R. Symon; Mechanics; Addison-Wesley; Reading, Massachusetts; 1953,

-129 -

11.1 References. ADDENDA

Tenenbaum (1970)

Jay Martin Tenenbaum; "Accommodation in Computer Vision"; Ph.D. Thesis,
Dapartment of Electrical Engineering, Stanford Artificial Intelligence
Laboratory, Memo no. AlM=134, Stanford University, October 1970.

Waltz (1972)

David L. Waltz; "Generating Semantic Descriptions from Drawings of Scenes
with Shadows"”; MIT Aritificial Intelligence Laboratory, Technical Report,
Al=-TR=271, Massachusetts Institute of Technology, Cambridge, Massachusetts;
November 1972. '

Warnock (1968)

John E. Warnock; "A Hidden-Line Algorithm for Halftone Picture
Representation,”" Technical Report 45, Department of Computer Science,
University of Utah, Salt Lake City, Utah; May 1968.

Warnock (1969)

John E. Warnock; "A Hidden-Surface Algorithm for Computer Generated
Halftone Pictures”; Technical Report 4-15, Department of Computer Science,
University of Utah, Salt Lake City, Utah; June 19689.

Watkins (1970)
G. S. Watkins; A Real=Time Visible Surface Algorithm"; University of Utah,
Technical Report UTEC-CSc~70-101; Sait Lake City, Utah; June 1970.

Winograd (1971) .

Terry Winograd; "Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language"; Ph.D. Thesis, Department of
Mathematics; MIT Arilificial Intelligence Laboratory, Tachnical Report,
Al-TR=17 or MAC-TR-84, Massachusetts Institute of Technology, Cambridge,
Massachuselts; January 1971,

Winograd (1974)
Terry Winograd; "Frame Representations and the Declarative/Procedural
Controversy"; (forthcoming), 1974,

Yakimovsky (1973)

Yoram Yakimovsky; "Scene Analysis Using a Semantic Base for Region
Growing"; Ph.D. Thesis, Computer Science Department, Stanford Artificial
Intelligence Laboratory, Memo no. AIM=209, Stanford University, June 1973,

Zahn (1966)

Charles T. Zahn; "Two-Dimensional Pattern Description and Recognition via
Curvaturepoints"; Stanford Linear Accelerator Center, SLAC Report no. 70,
Stanford University, December 1966.

=130 -

11.2 GEOMED Node Formats. ADDENDA.

11.2 GEOMED Node Formats.

The latast (June 1974), public implementation of GEOMED distinguishes sixteen different node
formats at the user level: Tram, Empty, Universe, Sun, Camera, World, Window, Image, Text, Xnode,
Ynode, Znode, Body, Face, Edge and Vertex. Of the sixteen nodes, five are unimplemented, open
ended or trivial and so will not be exhibited: Empty, Text, Xnode, Ynode and Znode. The empty node
contains all zeroes except for a one in the status word and a free list pointer in the PFACE field. The
Text nodes were implemented in 1973 by Tovar Mock and were taken out. The X, Y and Z nodes are
used for miscellaneous things such as beads, one~word atoms and inertia tensors. Field names printed
in capital letters indicate that the contents of that field have one standard intrepretation; lower case
field names are temporary intrepretations. The machine address of a node points to word zero of the

format diagrams.

TRAM NODE-0 FORMAT

The tram node, explained in Section 3.3, represents both Cartesian coordinate systems
and Euclidean transformation. Although the status bils contain data, TRAM nodes are can be
distinguished from other nodes because bits 0 and 9 are either different or the word is all zeroes in
the PDP-10 floating number format.

-3 XWC Location of TRAM origin
-2 YwC or Vector of TRAM translation.
-1 ZWC

0 IX X-axis unit vector

1 Y or 3 by 3 rotation matrix.
2 12

3 JX Y-axis unit vector

4 JY

5 - JZ

6 KX Z-axis unit vector

7 KY

8 KZ

- 131 -

11.2 GEOMED Node Formats. ADDENDA.

UNIVERSE NODE-2 FORMAT

The Universe node is the unique root of tha data structure and represents the universe
of discourse. Directly accessible from the universe node are the free storage list, the world ring and
the display ring. The world ring and display rings are headless so two pointers are kept one indicating
a "now" entity and the other indicating the "first" made entity.

-3
-2
-1

0 STATUS BITS

1 AVAIL Free Storage List of Nodes.
2

3

4 NWRLD PWRLD Now World, First World.

5

6

7 NDPY PDPY Now Display Ring, First Display Ring.
8

SUN NODE-3 FORMAT

The sun node represents a very distant point light source. The sun belongs to a ring of
suns that belongs to a world, although handling of multiple light sources is quite piematura. The
location and orientation of the sun is carried by a TRAM pointed to by the TRAM field.

-3
-2
-1
0 STATUS BITS
1
2
3
4 PWRLD World containing this sun.
5 BRO SIS Ring of Suns.
6 alt TRAM Location/QOrientation of Sun.
7
-8 nink pink User links.

-132 -

11.2

CAMERA NODE-4 FORMAT

The camera node contains the scale constants of projection, the physical pixel size, PDX
and PDY; the logical image size, LDX and LDY; and the focal piane distance FOCAL.

| I I
- N W

0N Ol HWN - O

GEOMED Node Formats.

scalex = -focal/pdx

scaley = -focal/pdy

scalez = -focal/pdz

STATUS BITS
PDX LDX
PDY LDY
FOCAL
PWRLD
BRO SIS
alt TRAM
SIMAG PIMAG
nink pink

WORLD NODE-5 FORMAT

The world node has a ring of bodies, a ring of cameras, and a ring of suns which

ADDENDA.

Perspective Projection Scales.

Physical Pixel Size
and Logical image size.
Focal Plane distance.
World of Camera.
Camera Ring.
Camera location/orientation.
Simulated and Perceived Image Rings.
User links.

comprise the totality of existence for image simulation. One world is the reality world whose cameras
correspond to actual video hardware and whoes bodies correspond to the physical objects actually in
the proximity of the cameras. Other worlds are fantasy worlds for planning and learning.

-3 time and date Simulated World Time.
-2 PNAME1 Print Name of World.
-1 PNAME?2

0 STATUS BITS

1 nface pface Potentially visible face list.

2 ned ped Potentially visible edge list.

3 .

4 NCAMR PCAMR Now camera and First camera.

5 BRO SIS Worlid Ring.

6 NSUN TRAM Sun Ring and World Coordinates.
7 cwW CcCw Head links of Body Ring of World.
8 nink plnk User links.

- 133 -

11.2 - GEOMED Node Formats. ADDENDA.

WINDOW NODE-6 FORMAT

The display window node represents a mapping from a camera's image coordinates
{source image) to a display device's screen coordinates (object image). Window mappings can be
composed. The mapped window is clipped to a border XL, XH, YL, YH in object coordinates after being
dilated by the scale factor MAG. The windows are organized into a ring of displays which each consists

of a ring of windows.

-3 SX SY Locus of center of Source Image.
-2 0X 0) ¢ Locus of center of Object Image.
-1 MAG Magnification of Window Mapping.
0 STATUS BITS

1 XL XH Object Image Clipping Border.

2 YL YH

3 _

4 NCAMR Now Camera of Window.

5 BRO SIS Window ring of a display.

6

7 Cw CCw Display ring of window rings.

8 nlnk plnk User Links.

IMAGE NODE-7 FORMAT

image nodes represent either perceived contour images created by input from CRE or
simulated mosiac images created by the hidden line eliminator, OCCULT. Like a world, images carry a
list of bodies and a time representing when the image was taken. Image nodes also carry a pointer to

a copy of the camera and sun under which they were made.

-3
-2 PNAME1 Corresponding Video image file name.
-1 PNAME?2

0 STATUS BITS

1

2

3

4 NCAMR PWRLD Camera Copy and World of this image.
5 NTIME PTIME Image ring links to form a film.

6 ALT Corresponding image.

7 Cw CCW Head links of image body ring.

8 nink plnk User Links.

- 134 -

11.2 GEOMED Node Formats. ADDENDA.

BODY NODE-14 FORMAT

The body node is the head of the face, edge and vertex rings which use word 1, 2, and
3. The body node carries a paris tree structure in word 4 and 5. There is 2 print name of up to ten
characters carried in words =2 an =1. The links of the eighth word are always left free for linkage to

user data structures.

-3
-2 PNAME1 Ten character print name.
-1 PNAME?2

0] STATUS BITS

1 NFACE PFACE Face ring.

2 NED PED Edge ring.

3 NVT PVT Vertex ring.

4 DAD SON Parts Tree links: up and down tree.
5 BRO SIS Parts Tree links: ring of siblings.
6 alt TRAM Body coordinate system TRAM.
7 cw cCcwW Body ring of world.

8 nink plnk User links.

FACE NODE-15 FORMAT

The tace node carries a normalized face normal vector in AA, BB, and CC; the negative
distance of the face plane from the orgin, KK; photometric parameters are kept in words 4, 5 and 7.

-3 AA Face plane normal vector.
-2 BB
-1 cC

0 STATUS BITS

1 NFACE PFACE Face ring of a body.

2 Nent PED Edge count and first edge.

3 KK ‘ Distance of face plane from origin.
4 red grn biu wht Reflectivities under four filters.

5 Lr Lg Lb Lb Sm Sn Luminosities and Spectral constants.
6 alt alt2 Temporaries.

7 QQ Video Intensity under four filters.
8 nink pink User Links.

- 135 -

11.2 GEOMED Node Formats. ADDENDA.

EDGE NODE-16 FORMAT

The important fields of the winged edge node are explained in Chapter 2. The negative
three words are used for edge coefficients and for clipped display coordinates of the edge. The alt,
alt2 and cw field are used as temporary fields in OCCULT, BIN and so on. The CCW field points at
body of edge and expedites BGET. The nink and pink fields are kept empty for developmental work.

-3 x1dc AA ylde Clipped Display Coordinates or
-2 x2dc BB y2dc 2-D Edge Coefficients or
-1 cC 3-D line Cosines.

0 STATUS BITS

1 NFACE PFACE Two faces of the edge.

2 NED PED Edge ring of the body.

3 NVT PVT Two vertices of the edge.

4 NCW PCW Wings: neighboring edges in PFACE and
5 NCCW PCCW Neighboring edges in NFACE.

6 alt alt2 Temporaries.

7 cw ccw Temporary and Body Link.

8 nink pink User links.

VERTEX NODE-17 FORMAT

The vertex node carries a point's locus in three coordinate systems: world coordinates,
perspective projecled coordinates and display coordinates. The first edge of a vertex perimeter is
contained in the PED field. The alt, alt2, cw, cew and Tjoint fields are used as temporaries.

-3 XWC World Locus

-2 YwC
-1 ZWC

0] STATUS BITS

1 XDC YDC Display Screen Locus.

2 ' Tjoint PED Temporary and First Edge.
3 NVT PVT Vertex ring of the body.

4 XPP Perspective Projected Locus.
5 YPP

6 alt ZPP alt2 ..also used for temporaries.
7 cwW ccw temporaries.

8 nink plnk User links.

- 136 -

Page Intentionally Left Blank

5.

REPORT DOCUMENTATION PAGE pErEAD INSTRUCTIONS

1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
STAN-CS-Tk-463 4?0/# o022 /[

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
GEOMETRIC MODELING FOR COMPUTER VISION technical, Oct., 197k

6. PERFORMING ORG. REPORT NUMBER

STAN-CS-T4-463

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)
Bruce Guenther Baumgart DAHC 15-73-C-0435
10. PROGRAM ELEMENT, PROJECT, TASK
S. PERFORMING ORGANIZATION NAME AND ADDRESS AREA & WORK UNIT NUMBERS

Stanford University
Computer Science Department
Stanford, California 94305

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
ARPA/IPT, Attn: Stephen D. Crocker, October, 1974
1400 Wilson Blvd., Arlington, Va. 22209 13. NUMBER OF PAGES

o vy

14. MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Office) 15. SECURITY CLASS. (of this report)
ONR Representative: Philip Surra

Durand Aeronautics Bldg., Rm. 165 UNCLASSIFIED
Stanford Univergity 'Sa. DECL ASSIFICATION/DOWNGRADING

Stanford, California
16. DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination.

PRICES SUBJECT T0 (HANSZ

P

17. DISTRISBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The main contribution of this thesis is the development of a
three dimensional geometric modeling system for application to computer
vision. In computer vision geometric models provide a goal for
descriptive image analysis, an origin for verification image synthesis, ‘
and a context for spatial problem solving. Some of the design ideas
presented have been implemented in two programs named GEOMED and CRE;

the programs are demonstrated in situations involving cameras motion
relative to a static world.

DD , 'jfﬁ“% 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCIASSIFIED

) SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

!

SECURITY CLASSIFICATION OF TH|SiPAGE(When Data Entercd)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

