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EDGE-DISJOINT SPANNING TREES, DOMINATORS,
AND DEPTH-FIRST SEARCH

by
Robert Endre Tarjan

Definitions

A graph G = (v,€) is an ordered pair consisting of a set of
vertices ¥V and a multiset of edges € . Let V be the number of
vertices and E be the number of edges in G . In an undirected
graph, each edge is an unordered pair (v,w) of distinct vertices; in a

directed graph, each edge is an ordered pair (v,w) of distinct vertices.

(This definition allows multiple edges but not loops in graphs.) An edge
(v,w) is incident to v and w . A directed edge (v,w) leaves v
and enters w . If Gl = (Vl, E‘,l) is a graph and VlC_V ' El_c_ € , then

G, 1is a subgraph of G . We define G-G, = G-€) = (v,a-el) S IfV,C

1
and €, = {(1,3)](1,3) e € and i,] €V2} (&2 is a multiset), then

G, = (V2,€2) is the subgraph of G induced by the vertices ¥, .

A sequence of edges (vl’VE)’(VZ’VB)’ J— (vn_l,vn) in G is a
path from vy to Vn . This path contains vertices vl,...,vn and
avoids all other vertices. .There is a path of no edges from every
vertex to itself. A path is simple if all its vertices are distinct
except possibly vy and LA A cycle is a path such that vy =V
A cycle must contain at least two edges. Vertex w is reachable from
vertex v if there is a path from v to w . A directed graph is

strongly connected if every vertex is reachable from every other.

A flow draph, r ) 1is a graph with a distinguished vertex r such



. r

that every vertex in G is reachable from r . Vertex v dominates

vertex w in flow graph (G,r) if v f w and every path from + to
w contains v . An edge (V,W) 1is a bridge of a flow graph if every
path from r to w contains (v,w) .

A tree T is a graph with a vertex r such that there is a
unique simple path from r to every vertex in T . If T is directed,

r is unique and is called the root of T ; if T is undirected, r 4,

be any vertex of T . If Tl is a tree and Tl is a subgraph of T ,

T, 1is called a subtree of T .| If T is a subgraph of a graph G

and T contains all the vertices of G , then T is a spanning tree

of G . 1If T is a directed tree, the notation v - w means (vyw)
is an edge of T ; in this case v is the father of w and w ig

a son of v . The notation v f'w means there is path from v to w
in T; v 1is an ancestor of w (proper if v # w) and w is a
descendant of v (proper if v # w) . Using these conventions, every

vertex is a (non-proper) ancestor and descendant of itself.

History

Let G be an undirected graph. Suppose we wish to find
(i) a maximum number of spanning trees in G which are pairwise
edge-disjoint, or (ii) a minimum number of spanning trees whose union
contains all the edges of G , or (iii) g set of k spanning trees
such-that the fewest possible edges are outside the union of the trees
(for some fixed constant k ). Problem (iii) for k = 2 has applications
in the solution of Shannon switching games and in the "mixed" analysis

of electrical networks. Many researchers, including Tutte[26],

- Edmonds [}4,5], Nash-Williams [16,17], and others [3,9,10,15,18] have



studied one or more of these problems and have given efficient
algorithms for sclving them. The best algorithm known has a time bound
of O(E2) for problems (i) and (ii) and a time bound of O(k2V2)
for problem (iii) [25].
Less is known about analogous problems in directed graphs.
Edmonds has considered the problem of finding k mutually edge-disjoint
spanning trees rooted at a fixed vertex r . He has shown that there
exist k disjoint spanning trees rooted at r if and only if there
exist at least k edge-disjoint paths from r to any other vertex v
[7T]. Based on this result, one can use a network flow algorithm to
find k disjoint spanning trees, if they exist, in O(k?Eg)'time [24].
In this paper we consider faster ways of finding exactly two

directed spanning trees with fewest common edges.

Lemma 1: Let (G,r) be a flow graph. Each bridge in G is in every
spanning tree rooted at r . There exist two spanning trees with only

the bridges in common.
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We can prove Lemma 1 using the algorithm below, which finds two spanning

trees ofea directed graph with only the bridges in common.

(1) find a spanning tree T, rooted at r ;

1

find a tree T2 rooted at r in G-Tl with as many vertices
as possible;

while T, 1is not a spanning tree do begin

a: find an edge v »w in T; such that veT, ,W#T2 , and

no descendants x, y of w in Tl satisfy x =y in T

1
xeT, , and yfT, ;
b: if w is not reachable from r in G~T2—{hmw)} then
duplicate (v,w) ;
comment (v,w) must be a bridge;
replace T, by a spanning tree rooted at r in G-TE-{(V,W)};
c: find a tree T2 rooted at r in G-Tl with as many vertices

as possible;

end;

Lemma 2: Step (1) finds two spanning trees rooted at r which have

only bridges of G in common.

Proof; At least one vertex (w) gets added to T, during each execution

2
of the while loop in step (1), so the while loop can be executed at most
V-1 times. Thus the algorithm terminates. Clearly the algorithm works
correctly if the test in statement b fails whenever (v,w) is not a bridge.

Suppose (v,w) is not a bridge and the test in statement b is performed

for some T2 . There is a path p = (T,Vé)(vzyvz):o--,(Vh_l:W) in




G-{(v,w)} . Let (vi’vi+l) be the last edge on this path such that
; o Then (vi’vi+l) eTl ; otherwise (vi’vi+l) would have been
added to T2 during the last execution of statement a. Since

viﬂL£T2 > Vs is not a descendant of w in T, by the condition

1
in statement a. Then w must be reachable from r in G-TQ-{(V,W)}
by a path of edges from r to Ve in Tl followed by the path
(vi’vi+l)"“@3(vn-l’w) . Thus the test in statement b fails. It
follows that step(l) computes two spanning trees with only bridges in

common.
Q.E.D.

Lemma 2 implies the second half of Lemma 1; the first half of
Lemma 1 is obvious. Lemma 1 also follows from Edmond's more general
result [7].

Statements a, b, and c clearly require O(E) execution time if
a set of adjacency lists is used to represent the graph, so the whole
algorithm requires O(VE) time and O(V+E) space. We can improve the
method's time bound to O(V2) by first finding a set of edges
partitionable into two disjoint spanning trees and then applying step (1).

However, depth-first search gives an even faster algorithm.

Depth-First Search

If T is a directed tree rooted at r , a preorder numbering [11]

of the vertices of T is any numbering which can be generated by the

following algorithm:



procedure PREORDER(V); begin
number v greater than any previously numbered vertex;
comment if v = r, v may be numbered arbitrarily;
for w such that v - w do PREORDER (w);

end;

PREORDER(r) ;

end;
Lemma J: Let ND(v) denote the number of descendants of a vertex v
in a directed tree T . If T has V vertices numbered from 1 to V

*
in preorder and vertices are identified by number, then v - w in T

iff v<w <v+ND(v) .
Proof: See [21].

Let (G,r) be a flow graph, and let T be a spanning tree of G
rooted at r which has a preorder numbering. T is a depth-first

spanning tree (DFS tree) if the edges in G-T can be partitioned into

three sets:

*
(1) a set of edges (v,w) with w - v in T , called cycle arcs;

*
(ii) a set of edges (v,w) with v =w in T , called forward arcs;

* *
(iii) a set of edges (v,w) with neither v -»w nor w - v , and

w < Vv, called cross arcs.

A DFS tree is so named because it can be generated by starting at r

and carrying out a depth-first search of G , numbering the vertices in

increasing order as they are reached during the search. A properly

7



implemented algorithm [19,21] requires O(V+E) time to execute step (2)

below.

(2) Carry out a depth-first search of G , finding a DFS tree, numbering the
vertices in preorder, calculating ND(v) , and finding sets of

cycle arcs, forward arcs, and cross arcs.

Henceforth assume that step (2) has been applied to flow graph
(G,r) , that T is the resulting DFS tree, and that vertices are identified
by number. An s-order numbering s(v) of the vertices of T is a

preorder numbering such that w - Wy g W W, and w, < w, imply

1 2
s(wl) > S<W2) . An s-order numbering of T can be calculated during
step (2).
Lemma U: Let s(v) be an s-order numbering of T . Then S(V) < s(w)

if (v,w) is a tree arc, forward arc, or cross arc, and s(V) > S(W)

if (v,w) 1is a cycle arc.
Proof: See [21].

If G is acyclic, s(v) defines a topological sorting of the
vertices (an ordering such that all arcs run from smaller numbered to
larger numbered vertices). . By examining the vertices of G in s-order,
from largest to smallest, we can compute the strong components[19],

the period [13], or the weak components [23] of G , each in O(V+E)

time. By examining the vertices of G in preorder from largest to
smallest we can compute the dominators and bridges of G in O(V log V+ E)
time, as discussed in the next section. A third systematic method of
exploring a DFS tree allows us to find pairs of disjoint spanning trees

efficiently.



Let S be a set of vertices in G and let vfs . By collapsing
S into v we mean forming a new graph G' by deleting all vertices
in S and all edges incident to vertices in S , adding a new edge
(v,x) for each deleted edge (w,x) with x¢ S U {v} , and adding a
new edge (x,v) for each deleted edge (x,w) with x£8 U {v} . Each
edge of G' corresponds to an edge of G , and each edge of G either
disappears or corresponds to an edge of G' .

For any vertex w , let C(w) = {v|(v,w) is a cycle arc} and let
Pw) = (v|w 5y and ¥z eC (w) such that there is a path from v to z
which contains only proper descendants of w} . Let w be the largest
vertex of G such that C(w) £ @ . Let G' be formed by collapsing
P(w) into w . Let T' be the subgraph of G' whose edges correspond

to the edges of T .

Lemmab: The subgraph of G induced by the vertices P(w)U {w} is

strongly connected.

Proof: Obvious.

Lemma 6: T' , with numbering the same as that of T , is a DFS tree
of G' with root r . Cycle arcs of G' correspond to cycle arcs
of G, forward arcs of G' correspond to forward arcs or cross arcs

of G, and cross arcs of G' correspond to cross arcs of G
Proof: See [22].

Suppose we calculate P (V) in G and collapse P(V) into V
to create a new graph G' , calculate P(V-1) in G' and collapse

P(V-1) into V-1 , and so on, until we reach vertex 1 . Eventually



we collapse G into an acyclic graph whose vertices correspond to the
maximal strongly connected subgraphs of G . This idea gives a way to
test the reducibility of G efficiently [22], and to efficiently find

a pair of edge-disjoint spanning trees (as we shall see).

Dominators

Lemma 7: Let (G,r) be a flow graph with G = (V,8) and let T be
a DFS tree of G with root r . Edge (v,w) is a bridge of G iff
(v,w) is a tree arc, w has no entering forward arcs or cross arcs,

and there is no cycle arc (x,w) such that w does not dominate x

Proof: If (v,w) is not a tree arc, or w has an entering forward arc
or cross arc, or there is a cycle arc (x,w) such that w does not

_ dominate x , then there is a path from r to w which avoids ﬁuw),
and (v,w) is not a bridge. If (v,w) is not a bridge, there must

be a simple path from r to w which avoids (v,w) . If the last

edge on this path is a tree arc, (v,w) 1is not a tree arc, if it is

a forward arc or a cross arc then w has an entering forward arc or
cross arc, and if it is a cycle arc (x,w) then w does not dominate x

Q.E.D.

If v dominates w and no vertex larger than v dominates w ,

then v is called the immediate dominator of w , denoted v = d(w)

By-convention d(1) = 0

10



Lemma 8: The edges {(d(w),w) | w ¢V-{1}} form a tree, called the

dominator tree of G , such that v dominates w if and only if

*
v - w 1in the dominator tree.

Proof: See [2].

If we calculate d(w) for all vertices w , then we can use
Lemmas 7 and 8 to find the bridges of G . Here is an O(V log V+E)
algorithm for calculating d(w) wvalues. The method is a greatly
simplified and improved version of [21]. We calculate d(w) by processing

the vertices in preorder from largest to smallest. Let

G = (L {(vsw) | (v,w) € € and w > k}) . Gy ... Gpp+ (LB . L e t
dk(w) = min{v | w is reachable from v in (:;1(} . Clearly d, (w) <k

for all w, and 4, (w) <k if k<w and w>1.

Lemma 9: dk(k) = min({v | (v,k) is a forward arc or tree arc}
U {dk+l(v) | (v,k) is a cross arc or cycle arc)

if k>1.

Proof: Obvious.

*
Lemma 10: Suppose w £k . If k-w and d_ . (w) > dk(k) , then

k+1
dk(w) = dk(k) . Otherwise dk(w) = dk+1(w)

Proof: If w>k, then any path from k to w must contain a

common ancestor of w and k . This result is proved in [21]. Thus
*

w 1s reachable from k in Gk iff k = w . Hence

dk(w) = min(dk+1(w)’dk(k)) if k —**w 5 dk(w) = dk+l(w) otherwise.

Q.E.D.

11



Lemmall: Suppose W # k and d(w) < k . If dk+l(W) = k then

d(w) = k . Otherwise d(w) < k

Proof: If k does not dominate w , there is some path fram 1
to w which avoids k . ©Let (x,y) be the last edge on this path
with x<k. Then dk+l(w) < x <k . Thus if dk+l(w) =k,

w dominates k , and since d(w) < k , d(w) =k . TIf dk+l(w) }é k ,

then dk+l(w) < k , and w is reachable from 1 by a path of tree
arcs, to dk+l(w) followed by a path 1in Gk+l . Since this path
avoids k , k doesn't dominate w , and since d(w) < k ,

d(w) < k .

12



We use Lemmas 9, 10, and 11 to calculate dominators, working from
k=Vto k=1. The algorithm appears below in an Algal-like notation.
At the end of an execution of for loop d below, each vertex w > k
will be contained in a unique set. All vertices w in the same set
will have the same value of dk(w) . Each set will have a distinguishing
name and a priority whose value is d, (w) for all elements w of the
set. In addition, given a set, either all its vertices have known
immediate dominators or none have known immediate dominators. Associated
'with each vertex w > k such that v - w implies v < k will be a

priority queue named w containing all sets which have descendants of

w as elements.

We use the following set operations:

FIND (w) returns the value (x,p) where x is the name and p is
the priority of the set containing w as an element;

UNION(x,y) adds the elements in set x to set y (destroying x)
The new set y remains in the same priority queue with the same

priority as the old set y

We use the following priority queue operations:

HIGH(q) returns the value (x,p) where x is the name and p the

priority of a set in queue g with highest priority (by convention

HIGH(q) returns (0,0) if queue g is empty);
DELETE (x,q) deletes the set named x from queue g ;

QUNION(g,r) adds the sets in queue q to queue r (destroying

queue q ).




(3) d: for k:=V step -1 until 1 do update: begin

e: p :=min((v | (v,k) is a forward arc or a tree arc)
U (p' |Hx,y such that (y,k) is a cross arc or cycle arc
and (x,p') = FIND(y)} U {k-1});
comment p = dkuo ifk$#1, p=0if k = 1;
create a set {k} with name 2k-1 and priority p;
create a set § with name 2k and priority p;
create a queue named k containing the sets named 2k-1 and 2k;
for w such that k ~ w do QUNION(W,k)
(x,p') :=HIGH(k);
f£: while p' > p do begin

g: > kifart all vertices w in set x have d(w) = 0 then

for each vertex w in set x do d(w) :=k;
DELETE(X, k) ;
if all vertices w in set x have d(w) = O_then UNION(x,2k-1)
else UNION(x,2k);
(x,p') :=HIGH(k);
end;
if the set named. 2k is empty then DELETE(2k,k);

end;

Steps (2) and (3) will compute d(w) for every vertex w . Statement e
implements Lemma 9, statement f (minus statement g) implements Lemma 10,
and statement g implements Lemma 11. The total time required by steps (2)
and (3) is O(V+E) plus time for O(V) set unions, O(E) FIND's,

and O(V) priority queue operations. The set operations require

1k



O(V log V + E) time using a method given in [8,20]. The priority
queue operations require O(V log V) time using Crane's method [12].
The total time is thus O(V log V + E) . The storage space required
is O(V+E) . (See [21] for further details.)

If the graph has no cross arcs, the priority queues are unnecessary
and dominators can be calculated faster, using only disjoint set union

operations. (See [21] for details.)

Disjoint Branchings

The dominators algorithm above forms an important part of an efficient
algorithm for finding two spanning trees having only bridges in common.
We use the dominators algorithm to find all the bridges of G . We duplicate
the bridges and discard all but the edges which will form the spanning trees.

The following lemma forms the basis for this calculation.

Lemma 12: Let w ;é 1 be a vertex of G . Suppose the tree arc
entering w 1s not a bridge. There must exist a non-tree arc
(x,w) with 4oy (x) = dw(W) . Form G' by deleting all edges
entering w except the entering tree arc and (xX,%) . Let

dl'{(v) = min{x|v is reachable from x in G}'{} where

Gy = (v, {(x¥)|(x,y) is an edge of G' and y > k}) . Then

' —_—
dk(v) = dk(v) for all v and for all k

Proof: Clearly dl'{(v) > d.k(v) for all k and dl'{(v) = dk(v) for
all k >w . Suppose there is some k <w and some v such that
d.l'((v) > dk(v) . Then there is a simple path containing w from dk(v)

to v in G . Let p be the part of this path from d.k(v)

15



to w . If there is a vertex y on p with y <w , vy # d.k(v)
and y ;é W , then some common ancestor z of y and w lies on p
by Lemma 8 of [21]. But the path of tree arcs from z to w is
in

and there is a path from dk(v) to v in Gl'i , a contradiction.

If every vertex y on p other than d.k(v) and w has y >w,

1
k )

then p is a path in G, , and dk(v) = dk(w) = dw(w) . But clearly
dw(w) = dv',(w) , and thus there is a path from dk(v) =d; (w) to w

to v in GI:: , a contradiction. Q.E.D.

To find two spanning trees with fewest common edges, we execute
step (2), which carries out a depth-first search of the problem graph G

Next we execute step (4) below, which uses statement "update" of step (3).

(&) for k:=V step -1 until 2 do begin

m :=min{x|(x,k) is a forward arc} U
U {p IHx,y such that (y,k) is a cross arc or a cycle arc
and (x,p') = FIND(y)} U {k};
comment m = min{dk+l(x)|(x,k) is a non-tree arc] U [k);
ifm = k then begin
comment the tree arc entering k is a bridge;
duplicate the tree arc entering k;
delete all other edges entering k;
end else begin
let (x,k) be a non-tree arc with dk+l(x) = m;
delete all edges entering k except the tree arc and (x,k);

calculate dk values from dk+ values using statement "update"

1
in step (2);
comment  statement "update" may actually be simplified somewhat

since dominators are not needed, only d‘k values;

16



end end;

delete all edges entering vertex 1;

It is easy to prove by induction using Lemmas 7 and 12 that during
the k-th iteration of the for loop in step (%), m = k if the tree
arc entering k is a bridge, m = dkOQ otherwise; and that after
step (4) is completed, the graph remaining is a bridgeless graph with

exactly 2(v-1) edges, containing two copies of each bridge of the

. original graph. BExccution of step (4) requires O(V log V + E) time.

Henceforth assume that G is a bridgeless flow graph with 2(V-1)
edges.

The idea of the remaining part of the disjoint spanning trees algorithm is
to collapse strongly connected regions of G until we create a bridgeless
acyclic graph. We can easily find two disjoint spanning trees in the
resulting graph. Then we expand the collapsed regions, modifying the
spanning trees accordingly, to produce two disjoint spanning trees of
the original graph.

+
(v+1) =G . For 2 <k <V, let GUQ be formed from

G(1<_-+1)

Let G

(k+1) _ _
and collapsing P(k) into k

G by computing P (k) in
For k = 2,%,...,1 , G(k) has a DFS tree T(k) corresponding to

the DFS tree T of G . G(e) 33 acyclic. The following lemmas show
that dk values are preserved during this collapsing process, and that

() L (v-1) (2)

G G 5..5G have no bridges.

Lemma 13: Let G be a bridgeless flow graph and let w be the highest
vertex of G with entering cycle arcs. TLet G' be formed from G by
collapsing P(w) into w . Suppose di(v) is defined in G' . Then

dﬁ(v) = dk(v) for all v in G' and for all k < w .

17



Proof: If k<w, every path in Gl'g (possibly containing w )

corresponds to a path in Gk (possibly containing one or more vertices

of P(w) U{w} ) and vice-versa. It follows that dl'{(v) = dk(v) .

Q.E.D.

Lemma 1h: Let G be a bridgeless flow graph. Let G(V+l) ,G(V), o .,G(E)

be defined as above. Then for k = 2,3,...,#1 , G(k) has no bridges.
(V1) . .
Proof: G has no bridges by assumption. Suppose for some k > 2 ,
oy
G( k1) has no bridges. We show that G(k) has no bridges. The lemma

then follows by induction.

From Lemma 12 we have dl({k"-l) (x) = dl({k)(x) for all x . Let
(k)

(v,w) be a tree arc of G By hypothesis the tree arc entering w

+
(kt1) is not a bridge; we wish to show that (v,w) is not a

(k)

G
" bridge in G Two cases arise from Lemma 7.

+
(i) Vertex w has an entering forward or cross arc in G(k 1) .

Then w has an entering cross or forward arc in G(k) , and (V,w)
is not a bridge by Lemma 7.

(ii) Vertex w has an entering cycle arc (y,w) with y not

¢ | Then w < k

dominated by w 'in

a) If w=k, let(l,ve),(vz,v5), o XXV (vn_l,y) be a path
from 1 to y in G(k+l) which doesn't contain k . Let (Vi’vi+l)
be the last edge on this path with vi not a descendant of k in the

(k1)

DFST-of G Then vi+leP(k) , SO (vi,w) is a forward or

cross arc of G(k) , and (v,w) 1is not a bridge.

18



b) It w < koand yARx) , a0 (y) - a®V ) < w by

Lemma 12 and the fact that w doesn't dominete y in G(k+l) Thus
w doesn't dominate y in G(k) end (v,w) is not a bridge.

c) If w < k and yeP(k) , (k,w) is a cycle arc of
G(k) , and d&i(k) = dxsq_k-;_l)(k) = dfrf;l) (y) < w , by Lemma 12, the
fact that P(k) U {k} induces a strongly connected subgraph of G(k+l) 5
and the fact that w doesn't dominate y in G(k+l) It follows
that (v,w) is not a bridge.

Thus G(k) contains no bridges.
Q.E.D.

Now we have a systematic way to collapse the bridgeless flow graph

+ .
G = G(V 1) into an acyclic bridgeless flow graph G(2) . We need to find

two disjoint spanning trees of G(E) and to systematically expand them

to give two disjoint spanning trees of G .

2
For any edge (v,w) in G( ) let h(v,w) = 0 . For any edge

o (k1)

(v,w) in , let h(v,w) = k if veP(k) U{k} and weP(k) Uk}

Otherwise let h(v,w) = h(v',w') , where (v',w') is the edge in G(k)
corresponding to (v,w) . According to this inductive definition,

h(v,w) is the largest vertex into which both v and w are collapsed

(WD) () (@)

when forming G 5 1f v and w are never collapsed

together, h(V,W) = 0 . The value h(v,w) is defined for all edges

(v,w) in all graphs G(k) , k= 2,3,...,"l .

Since G(e) has no bridges, each vertex except 1 in G(g) has

at least two entering edges. Let T:(Lg) =T(2) (T(e) is the DFS tree
@) @

of G(e)) and let Téz) be any subgraph of G containing

exactly one arc entering each vertex except vertex 1

19



For some k , 2 <k <V , suppose that Tik) and Ték) '"have
been defined. T_.E_k) and Ték) will be edge-disjoint subgraphs of
G(k) which together contain all the T(k) -arcs of G(k) . Without

loss of generality, suppose Tﬁk) contains the T(k) —arc entering k
. . ktl
Let (vl,vg),(vg,v5),.. .,(vn_l,k) be a simple path in G( )

such that
(i) vl,ép(k) and vy eP(k) for j = 2,3,...,n-1 ;

(ii)  either (vl,vz) corresponds to an edge of Ték) or

o (¥ 1) (k+1)

(vl,vg) is a non- -arc of G such that the

) is not a cycle arc; and,

(k) _ .
T, arc entering h(vl,v2

(iii) for all j = 3,4,...,n-1 , there is a non- T(k+l) -

arc
(x,vj) of G(k+l) such that either x e P(k) U {k} or

the T:Ek) arc entering h(x,vj) is not a cycle arc.

There must be such a path since there is an edge (X,¥) 4in G(k+l)

with x P(k) U{k} , yeP(k) U {k} , corresponding to the Tgk) —arc

entering k ; and there is a simple path from y to k in G( k1)

which contains only vertices in P(k) U{k} . Some final part of this

path plus some initial edge (vl’VE) must satisfy (i), (ii), and (iii).
Let T§_k+l_) and Tékﬂ‘) be defined as follows:

. + . .
For i = 1,2 let Tgk 1) contain all arcs in G(k+l) corresponding
to arcs in &'E) .

)

- . (k+1
Let (Vl, VE) ) (V2,V5) PEEY (Vn_l, k) be in T2 (If (vl,v2)

corresponds to an arc of ‘.I?;) , it is already in Ték'"l) )
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For each vertex w in P (k) with an entering arc (x,w) in

p(er1) (1)

s let (y,w) be another entering arc, g —arc if possible,

such that either yeP(k) U{k} or the Tl(k) -arc entering h(y,w) is
not a cycle arc. Add (y,w) to &'?l) .

For each vertex w in P (k) which still has no entering arcs in

r(+2) (1) (1e+1)

(y,w) be any other entering arc. 1If y£P(k) U {k} and the TJ(_k) Carc

or T let (x,w) be the entering T -arc and let

entering h(y,w) is a cycle arc, then add (y,w) to i[é,(\k+l) and

(x,w) to 7{¥1)

1 Otherwise, add- (x,w) to Tg(k”') and (y,w)
(kt1)
N .

to T
We need to show that, for all 2 < k < W1, o{k) and Ték) are
edge-disjoint spanning trees of G(k) Clearly T-{k) and Ték) are
edge-disjoint subgraphs of G(k) . It is easy to show by induction that
T:Ek) and Ték) each contain exactly one edge entering every vertex
of G(k) except vertex 1 , and that T£k) and Ték) together contain
all the T(k) —arcs of G(k)
Because of the way the G(k) 's are constructed, if (v,j) is
a cycle arc of G(j) , then for all k > j there is a corresponding
of G(k)

cycle arc (w,3J)

Consider-:

(3) Let (x,y) be an edge of G(k) which corresponds to an edge

) or 2{I*D) yg{itD)

(x',y* for some j < k but not to any edge of

T§_J) UTéJ) , and such that x' #P(j) U {j} . If h(x,y) has an entering

cycle arc in T§k) for 1 =1 or 2, then (x,y) is not in &‘E) .
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Lemma 15: For k = 2,3,...,#1 , Tik) and Ték) satisfy property (A)

above and are edge-disjoint spanning trees of G(k) .

Proof: The lemma is clearly true for k = 2 since G(2> is acyclic.
Suppose the lemma holds for integers from 2 to k . We prove the

lemma for k1 . To prove that (A) holds, let (x,y) be an edge of

G(k+l) ¢

j < k+1 but not to any edge of T:(LJ) UT,EJ) , and such that

which corresponds to an edge of T(J+l) U TZ(,‘TI-I) for some

x'fP(5)U {3} . 1f 3 = k , (A) holds for (x,y) because of the

way % (k1) and Tékﬂ')

(k)

are constructed. If J <k, let (x',y')

in G correspond to (X,y) in G(k+l)

k+1) U Ték-i-l)

Then h(x',y') = h(x,y) < k

and any cycle arc in Ti

(945

entering h(y,z) corresponds

to a cycle arc in T entering h(y',z') , so (A) holds for

(kt1) (kt1)
2

(x,y) by the induction hypothesis and the way Tl and T

are constructed.

:(Lk+l) and Ték+l)

+ +
that is, that neither T,(k 1) nor T%: l)

Now we must show that T are spanning trees;
contains a cycle. Suppose

+
to the contrary that for some i€ {1,2} p T:gk 1) contains a cycle.

This cycle must contain sane vertex of P(k) U {k} , since T:gk) contains
no cycles.
Suppose the cycle contains only vertices in P (k) U {k}.Then the

cycle must contain a cycle arc entering k , which means the cycle is

+ k+
in 'I‘,(Zk 1) But every vertex of G( 1) has only one edge of Tékﬂ')
L . (k+1) .
entering it, and there is a path of T2 —arcs from outside
C . (k+1) .
P (k) U{k} to k . This is impossible, so no Ti cycle containing

only vertices in P(k) U {k} can exist.
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Suppose the cycle contains one or more vertices outside P(k) U {k} .

The cycle must contain a cycle arc (v,w) such that all vertices on the

p(+1)

cycle are descendants of w in (This follows from Lemma$

in [21].) Let (x%,y) be any edge of the cycle. We will show that in

+
G(W 1) either x and y are collapsed together or there is an edge

s w+ . .
in Ti( 1) corresponding to (%,y).Clearly, h(x,y) > w , since x

(ker1) (1) ), there is

and y are descendants of w (in T and in T

. k+
a path from x to y to w in G( 1) which contains only descendants

of w, and some path in G(W+l) corresponds to this path. If x and

G(wl) , then h(x,y) = w .If in

T Ewl)

y are not collapsed together in
addition (x, y) corresponds to no edge in , then for some
wtl < j <k, (x, ¥) must correspond to an edge in T{J+1) with

x' £P(3) U {J}, and to no edge in ng) . But this is impossible, since
then property (A) would imply that (X,y) is not an edge of T.(k"'l) ,

since a cycle arc entering w is in T:(Lk*l) ,

Thus the cycle of T§k+l) -arcs corresponds to a cycle of Téw"'l)

arcs, since v and w are not collapsed together in G(W"‘l) .
w+l k+
T£ ) has no cycles. Thus T§ 1) can have no cycles, and T:Ek"‘l)

kt1 .
and T,é ) are spanning trees. The lemma follows by induction.
Q.E.D.

We now have a very delicate but direct way to construct two edge-

disjoint spanning trees in a bridgeless flow graph. We must still find a way

to implement this construction so that it is efficient. There are two
steps to be implemented. First, we must collapse the graph, calculating

P(V) , P(V-1),...,P(2) and successively forming G(V"'l),G(V), .. ',G(E)

During this process we gather enough information about each P (k) to
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enable us to later construct the paths necessary to give the spanning
trees. Then we must expand the graph, constructing spanning trees for
G(E),G(B),...,G(Wl) from the previously gathered information.

The algorithm needs several arrays and other data structures. For
each edge (v,w) , h(v,w) is the first vertex into which both v and
w are collapsed, as defined previously. If v is a vertex, s(v) 1is
the s—-number of ‘v , as defined in the section on depth-first search.
With each vertex v is associated a p—set with name v , containing

all those vertices currently collapsed into v . We use the following

operations on p-sets:

PFIND(w) returns the name of the p-set containing vertex w ;

PUNION(x,y) adds the elements in p-set x to p-set y , temporarily
destroying p-set y ;

_ SPLIT(x,y) undoes the operation PUNION(x,y) , if PUNION(x,y) is the

most recent PUNION not yet undone.

SPLIT(X,y) is necessary when we begin expanding the graph; we must
undo each collapsing operation. The Appendix to this paper describes
a way to implement PFIND, PUNION, and SPLIT so that each PFIND requires
0(log V) time and each PUNION or SPLIT requires constant time independent
of v

With each vertex v 1s also associated an _s—queue with name v .
This s-queue is a priority queue containing each original edge (x,¥)
corresponding to an edge entering v 1in the currently collapsed graph.
The priority of edge (X,y) in the queue is s(x) . We use the

following operations on s-queues:

2L



SHIGH(q) returns an edge (x,y) with highest priority in s-queue g ;

SDELETE( (x,y),q) deletes edge (X,¥) from s—queue q ;

SUNIQNﬁbxj adds all elements in queue g to queue r , destroying queue g .

We order s—-queues by s-number for the following reason: Suppose
* *
k - v . Then all edges (X,y) such that k - x will be deleted from
*

s-queue v before edges (X,y) such that -(k - x) . This fact
facilitates determining the P (k) 's and makes the algorithm's running
time linear except for set and priority queue operations.

Each vertex v can be in at most one P(k) . The array p is computed
so that p(v) = k 1iff veP(k) .If v is in no P(k) , p(v) = 0

v+l
T( ) -arc entering v . If veP(k) for

+1) k+1)

If v#1, T(v) is the

some k, N(v) is an arc in G( corresponding to a non- T( -arc

(k+1)

entering v in G If v£P(k) for any k , N(v) is an arc in

G(V*l) corresponding to a non- T(E) '-arc entering v in G(E).

Suppose VveP(k) . Then there is some path from v to k through
vertices in P(k) . E(v) will be a G(Vql) -edge corresponding to the ,
first G(k+l) -edge on some such path. That is, some path

(k&l)'through vertices in P(k) will

(1)

(v,ve),(va,v5), -..,(vn_l,k) in G
correspond to edges E(v),E(va),...,E(vn l) in G E(v) is
necessary to calculate the-paths used in constructing the edge-disjoint
spanning trees.

Step (5), appearing below in Algal-like notation, collapses G - G(V*l)
into G(V), G(V-l),...’lﬁa) .It calculates the sets P(k) , in addition to
various data items described above. It uses as a procedure SEARCH, which

is a recursively programmed depth-first search for exploring any

particular P (k)
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(5)  begin
procedure SEARCH(K,V); begin
add v to P(k);
p(v) :=k;
(x,y) := SHIGH(v) ;
if (N(v) = 0) and. (T(V) £ (x,y)) then N(v) := (x,¥);
while k - x do begin
SDELETE( (X, ¥) , V) ;
h(x,y) :=k;
W := PFIND(x)

comment if w has not been reached before, search from w;

if (p(w) # x) and (w # k) then begin
E(w) = (%¥);
SEARCH (k,w) ;

end;

(x,y) :=SHIGH(V);

if (N(v) =0) and (T(v) # (%¥)) then N(v) :=(%¥);

end end;
comment initialization;
for vi=1 until V do begin
create a p-set {v} with name v;
if v f- 1 then let T(v) be the tree arc entering v;

create an s—queue named v containing all arcs (u,v)

entering v, each with priority s(u);

N(v) :=0;
P(v) :=f;
p(v) = 03

end;
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comment collapsing;

for k=V step -1 until ,
- 2 do begin

(%5y) = SHIGH(k);
comment k has at most one entering cycle arc;
if k ot X dg be Eln

SDELETE( (%,),k);

h(x,y) :=k;

comment find P (k);

SEARCH(k,PFJJ\ID(x)) Z

comment collapse P (k) into k;

for veP(k) do begin

SUNION(v,k);

eénd end end end;

Step (6) below takes the information calculated by step (5) and

Uses it to construct edge-disjoint spanning trees of
6(3) 4(3) (1)

In the Process it undoes the PUNIQON operations performed 1n step (5),usmg

operation SPLIT. The list "Path"ls 2 list of d
ges_used to find a

path from outside P (k) through P (k) to k of the typeé necéssary

for the spanning tree construction.

(6) gomment compute edge-disjoint spanning trees for G( )
2

for k:=2 until V do if p(k) = 0 then begin
Ty (k) :=T (k)

(%,¥) :=SHIGH(k);
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if (%¥) = T(k) then begin
SDELETE ( (x, y) , k) 3
(x,y) := SHIGH(k);
end;
Tz(k) = (%,y) 3
end;
comment compute edge-disjoint spanning trees for

s oW m)

;o 3

for k = 2 until V do if P(k) # # then begin
for v e P(k) do SPLIT(v,k);

if Tl(k) = T(k) then i:=2 else i :=1;

(x,¥) :=T, (k)3
w :=PFIND(y) ;
T, (W) 1= (%,7);
T, s (W) i=T(w);
path :=0;
while w £ k do begin
add (x,y) to front of path;
(%,¥) :=E(w);
w :=PFIND(y) ;
end;
T, (k) := (%,9);
let (x,y) be first edge on path;
delete (x,y) from path;
while (p(PFIND(x)) = k) and ((h(N(PFIND(y)) = k) or

(TB_i(h(N(PF]]\ID(y) ))) is not a cycle arc)) do begin

T, (PFIND(y)) := (%,¥);
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if () A T(PFIND(y)) thenT, , (PFIND(y)):~T(PFIND(y))
else T, . (PFIND(y)) :=N(PFIND(y)});
let (x,y) be first edge on path;
delete (x,y) from path;
end;
T5_; (PFIND(y)) :=T(PFIND(y)) ;
if p(PFIND(x)) # k then T, (PFIND(y)) := (x,y)
else T, (PFIND(y)) :=N(PFIND(y));
for veP(k) do i£ T)(v) is undefined then begin
g (h(N(v)) # %) and T5 {(B(N(v)) is a cycle arc) then begin
T, (v) :=N(v) ;
T5_; (V) :=T(v);
end else begin
T, (v) :=T(v);
T5_; (V) :=N(v);
end end end;

comment Tl and T2 now give two edge-disjoint spanning trees of Gj

It is an elementary if tedious exercise to verify that steps (5)
and (6) correctly construct two edge-disjoint spanning trees of any
bridgeless flow graph with exactly two edges entering each vertex except
vertex 1 . It is also easy to show that the algorithm requires O(V)
time, plus time for O(V) set operations and O(V) priority queue
operations. The set operations require O(V log V) time using the method
described in the Appendix and the priority queue operations require

O(V log V) time using Crane's method [12].
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The total time required to execute steps (2), (4), (5), and (6),
which together construct two spanning trees containing only the bridges
of an arbitrary flow graph G , is thus O(V log V + E) . The total
space required is O(V+E) . Figures 1-6 illustrate the application

of this algorithm to a flow graph.

Conclusions

This paper has presented a very simple O(VE) algorithm and a much
more sophisticated O(V log V + E) algorithm for finding two spanning
trees with fewest common edges in a directed graph. The latter method
applied depth-first search, a highly simplified and streamlined version
of an efficient dominators algorithm (presented for the first time here),
and a systematic cycle-shrinking method. The data structures necessary,
disjoint sets and priority queues, are sophisticated but quite easy to
implement. The O(V log V + E) algorithm, although more complicated
than the O(VE) algorithm, is theoretically better by a factor of
V/log v . Computational experience with similar algorithms suggests
that the O(V log V + E) algorithm will be competitive with or superior
to the O(VE) algorithm for practical problems. Both algorithms can be
generalized to find two minimally intersecting spanning trees with
possibly different roots.

The depth-first search technique and the data manipulation methods
used here are applicable to a variety of other graph problems. An
interesting open problem is whether the methods used here (or other
methods) can be combined to give an ~ O(E) algorithm for finding two
spanning trees with fewest common edges in an undirected graph. Such
an algorithm could be used to efficiently solve Shannon switching games

and to do "mixed" analysis of electrical networks.
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Appendix: Implementation of Reversible Set Unions

Suppose we are initially given n disjoint sets, each a singleton
and each with its own name. We wish to implement sequences of operations

of three types:

FIND (z) returns the name of the set containing z as an element;
UNION(X,y) adds the elements in set x to set y , temporarily
destroying set x ; and,
SPLIT(x,y) splits set y into two parts, one part corresponding to

the old set x and the other corresponding to the old set y .

Any SPLIT(X,¥y) operation must follow a UNION(x,y) operation and be
separated from it only by FIND's and paired UNION and SPLIT operations.

To implement these operations, we represent each set as a directed
tree. Each vertex in a tree corresponds to an element in a set; a
vertex contains the name of the corresponding element, a pointer to
its father (if any) in the tree, and a count of its descendants in
the tree. In addition, the root of a tree contains the name of the
set corresponding to the entire tree.

To carry out FIND(z) , we locate the vertex corresponding to z
and follow father pointers to the root of the tree, there finding the
name of the set containing z

To carry out UNION(x,y) , we locate the roots corresponding to
X and y . If set x has more elements than set y , we combine the
trees by making the root corresponding to y a son of the root corres-
ponding to x . Otherwise, we make the root corresponding to y a son

of the root corresponding to x . We update the number of descendants
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of the new root and change the name in the root to y if necessary.
The new edge created corresponds to the UNION operation.

To carry out SPLIT(x,y) , we break the edge corresponding to the
UNION(x,y) operation which precedes SPLIT(x,y) . We update the names
and numbers of descendants of the new roots as necessary.

Clearly each UNION and each SPLIT operation requires constant time.
It is easy to prove by induction that any path in a tree with k
vertices created by this algorithm has length < log k . (See [20].)
Thus each FIND operation requires 0(log n) time.

In the application of this algorithm considered in the text, all
the SPLIT operations follow all the UNION operations. In this special
case it is possible to devise a slightly faster but much more complicated
set union method, based on results in [8]. However, the method presented

here is simple and is efficient enough for our purposes.
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Figure 1: A flow graph, with start vertex 1 . Edge (1,2) is a bridge.
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8(T) cr 9 (6)

Figure 2: Depth-first search of graph in Figure 1. Tree arcs are
marked T , forward arcs F , cycle arcs Cy , and
cross arcs Cr . Vertices are numbered in preorder;

numbers in parentheses give an s-order numbering.
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-Figure 3: Graph after step (2**) applied. Bridge has been duplicated;

two cycle arcs remain.
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(3)

B} 2 .
Figure b: Completely collapsed graph G = G( ) with two edge-

disjoint spanning trees, marked by e and Wu |



()

Figure 5: Partially expanded graph G with two edge-disjoint

spanning trees.
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(5) _

Figure 6: Completely expanded graph G = G with two edge-disjoint

spanning trees.
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