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The Semantics of PASCAL in LCF

- SECTION 1 INTRODUCTION

This paper is an attempt to determine the order of magnitude of the problem of giving an axiomatic

treatment, in LCF, of an established programming language with a sizable user community. We
wanted to include such features as declarations, 1/0, different types of parameter bindings and
control structures. For this purpose we chose the integer arithmetic part of PASCAL, which we will
refer to as PASCAL. It seemed to us a reasonable choice in that:

1) it satisfies the above criterion, thus it is not a toy language.

2) it is powerful enough to compute any partial recursive function on sequences af integers.

~ 3) the existence of VCCEN (Igarashi, London and Luckham 1973) and FOL (Weyhrauch and
Thomas 1974) will eventually give us the ability to compare the effectiveness of Hoare’s

~ axiomatic definition of PASCAL, McCarthy’s style of first order axiomatization (McCarthy
and Painter 1966) and the Scott style of assigning extensional meanings to programs.

oo One pleasant result of our work was the discovery that the task seems more manageable than we
. had originally thought. Most discouraging was realizing exactly how inadequate even careful

descriptions of programming languages actually are.

- LCF 1s both a logical calculus and a proof-checker for a suspected proof in the logic.It could be
described as an equation calculus based on terms in the typed A-calculus, whose most powerful rule
of inference is Kleene's first recursion theorem stated as a rule (see Kleene 1952). Using this

-. language in the mathematical theory of computation was first suggested by Dana Scott. Its formal
~ properties are described in Milner 1972a,1972b. Also see Milner and Weyhrauch 1972, Weyhrauch

and M ilner 1972, Newey 1973, 1974, Aiello and Aiello 1974 for other applications. A short
_ description of LCF syntax is given in appendix 1.

| Initially our intent was to present a semantics for the description of PASCAL given in Wirth 1971,

~ 1972 and Wirth and Hoare 1973. As a result of our attempts to give what we consider a complete
description, we found many ambiguities and places where the literal interpretation of Wirth’s
descriptions led to a semantics having undesirable properties (see 3.3.2.3 for a discussion of the for

| statement). We have described a language which has a fairly smooth semantics, and whose formal

- properties are more clearly apparent. All the differences are documented in the text.

- We think of our axiomatization as characterizing properties of the whole PASCAL and not as a
. description of properties of individual statements. In section 4.2, for instance, we prove that, if two’

programs P and Q don’t contain goto statements, we can represent the function computed by the
program consisting of P appended to QQ as the composition of the function computed by P with that

computed by Q. This theorem and others in section 4 simply cannot be expressed or used in

o formalisms like Floyd’s method of attaching assertions to programs or in Hoare’s axiomatic
approach. We consider this a major difficulty with those techniques. Both consider programs

individually. [It is our belief that the feasibility of checking (or generating) large formal proofs
= depends on our ability to prove general properties of classes of programs. A description of the

entire programming language is required in order to mention these classes.

« Characterizing an entire language in this way means that conflicts arising out of putting different

-“
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programming features together must be resolved, or at least describable in the formalism. The
discussion of function activations in section 3.2.1.3 is a typical example of the difficulty one
encounters when trying to characterize the behavior of an entire language. Unusual programs

cannot be ignored or left unmentioned. In actual programming languages the ability to decide if a
program is well formed is in general too costly and many “ill formed” programs are usually accepted

by the parser.” An example of such a difficult case 1s found in section 3.3.2.3. on the for statement.

In section 2 we describe the ax ioma tiza tion of the environment in which PASCAL programs are
executed

A special word is needed here to make clear an abuse of language that appears throughout the
report. We frequently speak about a combinator being executed and then explain what it does.
Strictly speaking this is not correct. Combinators don’t do anything. The functions we mentioh are
to be interpreted extensionally. It means that the only properties of LCF functions that can be
mentioned are properties of their graphs. Thus, when looking at

F = [AN.(isname(N)=(isRichard(N)-Good,Bad),FF)]

we may say informally that F is a function which checks if N is a name. If it is not then its value is
FF otherwise it returns Good or Bad depending on whether that name is Richard or not. This
description is in the style of an interpreter. More correctly we should say, F is a three valued
function whose value is FF on arguments which are not names, and otherwise has the value Good or

Bad depending on whether that name is Richard. How the function is computed is transparent to
LCF. This point is very important so that there is no confusion about the nature of the semantics
defined here. To each. program is assigned a function, not a computation procedure. LCF terms

also have interpretations as computation procedures, but it is not this interpretation that concerns us
here.

Section 3 describes all the control structures and statements relevant to the arithmetic part of
PASCAL. They include

1) type definitions
2) variable and array declarations,
3) procedure declarations and procedure activations,
4) function declarations and function evaluations,

5) assignment, conditional, while, repeat, for-to,for-downto and goto statements,
6) input/output instructions.

We do not consider constant definitions, label declarations (Wirth 1972), case or with statements, or

records and files (except INP and OUT). These are either easily addable or are not relevant to the
arithmetic part of PASCAL.

Although LCF uses the typed X-calculus, a natural semantics may be given to goto’s and to
procedures having themselves as actual parameters without introducing type conflicts. This is
explained in section 3.3.1.3. .

Examples of general theorems about PASCAL are presented in section 4. Most of the work to date

on the correctness and equivalence of programs, has actually. only dealt with the extensional
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properties of algorithms. Input/output or the effects of declarations cannot be ignored in any theory
~ of correctness which hopes to be practical. As soon as we ask whether a program will run or not, or

whether it will compile or not, then the question “do we have the correct algorithm?” is a minimal
criterion for correctness. In addition, the distribution and consumption of resources during the
execution of a program, involves both what has been declared and how bindings are made to

- parameters. The correctness of programs which input data incrementally, must know how these
inputs are treated.

We have set out here a description of a large but stable core for any interesting programming
language. We wanted to establish a base from which further work could be done towards a practical
system for proving properties of programs within this core. Some example are the theorems of
section 4.

he Section 5 gives partial correctness proofs for some programs. The much overworked factorial
program 1s again discussed. We included it to show some of the flexibility in our approach to
program correctness as well as illustrate points made in other parts of the report. A proof of the

correctness of a program implementing the McCarthy Airline reservation system is given. This is
new in that it treats an interactive program which has a potentially infinite number of inputs. The

OC details are in 5.2.

The appendices contain a short description of the LCF syntax, the list of all the LCF axioms
describing the syntax and semantics of PASCAL, and the actual. LCF printouts of the proofs of
theorems mentioned in the text.

. Some familiarity with the papers Wirth 1971, 1972 and Wirth and Hoare 1973 is recommended to
- better understand this memo.

\

A.

“

i

\



The Semantics of PASCAL in LCF 4

SECTION 2 THE SEMANTICS OF PASCAL

Section 2.1 Description of the semantics

In this version of PASCAL we restrict our attention to programs whose inputs are sequences’of

integers. The meaning (or interpretation) we assign to a program is thus a function from sequences
of integers into sequences of integers.

Programs, on the other hand, map memories onto memories. In order to describe the effects of
procedures and function activations more clearly we introduce the notion of a store. A store divides
the memory into frames or environments. Frames are specified by a framepointer. Thus we think of
programs as mapping stores onto stores, and stores are functions from framepointers to frames.

store: framepointer = frame

Aframe is a function from locations to values.

frame: location = value

A store describes abstractly additional structure of a memory without knowing how it is realized in
any particular implementation. The execution of a program, p, starts with’ the creation of the initial
store. This is done by FRAMES (see next section). It contains the locations fileloc INP and fileloc QUT
for the input and output files respectively, and a location textloc where the text of the program is
stored. This store has only one frame called 8.

Type definitions are then made in this frame. Each frame represents an environment in which the
current declarations and variable bindings are found.

The effect of declaring a variable, v, in a frame is to create a location typelo¢ v, which contains the

type of v. Thus we can tell if a variable has been declared in a frame s{f) by checking if

s(f,typeloc v)=UNDEF.

The execution of a procedure or a function creates a new frame. It is set up by the combinator
MAKFRAME defined in appendix 3.9. The new framepointer is just the successor of the current one,
namely that pointing to the frame where the procedure or function has been activated. This
imposes a stack discipline on procedure and function activations. The binding of free variables are

made in the style of ALGOL. The position of the variable declaration in the program text
determines the binding frame. FETCHYV is the function which looks up the value currently bound to
a variable.

The combinators FRAMES and MAKFRAME build stores with the following property. If f is a

framepointer corresponding to a non activated frame, then s(f)=UU, otherwise for any legal location
loc, s(f,loc) is either a value or is UNDEF. The value of a variable is stored in a location which

depends on its name. This is slightly complicated in PASCAL, because both identifiers and array
element names (e.g. Al1)) are considered variables. Section 3.2.1.2 describes the combinators which
allow us to treat them uniformly.
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~ Both FRAMES and MAKFRAME store the body of statements to be evaluated into a location of the

o frame they are defining. The effect of procedure and function declarations is to add new locations
to the store.

.. The statement part of a program, procedure or function, is interpreted in the store where the
corresponding declaration part has been evaluated. Statements are evaluated in sequential order,

- unless a goto statement is encountered. Where to go is determined by the function segm, which takes
a text and a label, and returns a text, i.e. it tells you where to jump. The new text is evaluated in

the same frame as you jumped from. Thus you cannot jump out of a procedure activation. This
follows Wirth 1971. The effects of the other statements are pretty much as you might expect. They
are defined by MS in section 3.3.

~ The stack discipline imposed on procedure and function activations and the discipline imposed on

goto’s are not intrinsic to this approach to the description of the semantics of programming
: languages. We impose them because we wanted to correspond to Wirth 1971.

Programs are written in abstract syntactic form. Each syntactic construct is assembled by a

oo constructor and its components are selected by a selector. The list of all the axioms about the syntactic
- constructors and selectors are given in appendices 2.1 and 2.2. Each construct is identified by

associating a type to it. A predicate 1s defined which is satisfied only by objects of that type (see
appendix 2.3). The equality of identifiers denoting types of syntactic constructs and of location

) names is denoted by "="in the formulas through the text and is detected by LCF itself.

\- Section 2.2 Top level functions

The function FUNCT:

FUNCT = [Ap o.[Ai.(INPUT®PASCAL(p,0)@0UTPUT)(I)]] .

hd where ®z[\f g x.g(f(x))] is the composition function and i, o are sequences of integers, represents the
) “interface” between functions which compute on integers and programs which compute on stores.

Wirth 1971 describes a program as a PASCAL procedure which has an input and an output file as
: parameters. The combinator PASCAL

h PASCAL = [Ap.[xo0 i.MP(p,8,FRAMEB(p,0,)]]

| when applied to a program, p, is a function which takes as arguments two sequences of integers o
and 1 (representing the initialization of the output and input files respectively) and returns a
function from stores to stores. The definition of PASCAL Imitates explicitly the bindings which a

. procedure would make when executed as part of a program. FRAMEB(p) applied to o and i creates a
store containing a single frame, called 8, with these bindings and then applies MP to the program p
in frame 8 and this store.

FRAMES = [Ap.[xo i.[Af. (=8) -
[Aloc.{loc=fileloc INP) INTERNALREP(i),

(loc=fileloc OUT)- INTERNALREP(0),

(loc=textloc)- statmof (p),UNDEF],UU]]],
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PASCAL programs read sequences of numerals supplied by some input device into the buffer fileloe
INP and write outputs into the buffer fileloc OUT. INPUT is just the identity function. The write
statement puts numerals in the output buffer, thus OUTPUT maps sequences of numerals, onto

sequences of integers. INTERNALREP is a function which takes sequences of integers and returns
sequences of numerals. The definitions are found in appendix 3.1.

Programs in PASCAL have two parts: a declaration part and a statement part.

The interpretation of a program in some frame specified by the framepointer f:

MP = [xp f.MD(declof t,{)@MS(statmof tf)

is just the interpretation of definitions MD composed with that of statements MS. These are
described in the next section.
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CL SECTION 3 DESCRIPTION OF THE LANGUAGE

: This section contains the description of all the instructions included in our version of PASCAL and
] the description of their semantics in LCF. Each text (it may be a program, a procedure or a function

SE text) consists of two parts: declaration part and statement part. The semantics of a text depends on
the frame in which such textis executed, for this reason a framepointer is specified as parameter in

lb every semantic function.

Section 3.1 Declaration part

The declaration part includes type definitions andthe declaration of allthe variables, functions and
“ procedures local tothattext. Its semantics is defined by:

. MD = [xd {.MDEF(d,)®MDEC(d,{)),

MDEEF =[ecF.[NdT.
isemptyst d = ID,

. istypedef d = CREAT(f,namof d,typof d),
¢ iscmpnd ~~ d = F(fstof d,f)@F (rmdof d,f),ID]],

MDEC = [oF [Ad f.
— isemptyst d = ID,

isvardeci d =» CREAV(f,namof d,typof df),
| isprocdeci d =» CREAP({f,namof d,prspof df),

4 isfundecl d = CREAF(f,namof d,fnspof d,typeof d.f,f),
Tr iscmpnd d= F(fstof d,f)@F (rmdof d,f),ID]].

i MD is the composition of MDEF, which defines the semantics of type definitions and MDEC, whichdefines the semantics of variable, procedure and function declarations. Every identifier appearing in

a declaration statement isaname soit must satisfy the predicate isname. Consequently, whenever
} some property of a PASCAL program is to be proved in LCF, for each identifier appearing in that
| program, axioms stating that it is a name are to be added. The predicates for the identification of

syntactic constructs are given in appendix 2.3.

i 3.1.1 Data Type Definitions
| Since wearedealing withthe integer arithmetic part of PASCAL, the scalar data types we haveintroduced are the integertype INT and its subranges. A subrange is an interval of integers and is

defined by specifying i t s lower a n d upper bounds. The structured d at atypes included in ous
language are the array types. An array mayhaveanynumber of indices (each ranging in a subrange
type) and its elements are all of the same scalar type.

Each type may be assigned a name in a type definition. The semantics of a type definition is CREAT:

~ CREAT = [\M n ty s.CREALOC(fs,typidloc,n,ty)).

1 CREALOC = [Af s loc n val. ISPRESENT(n,s(f))=UU,STORE(f,s,loc n,val)]
h
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CREALOC is used by CREAT. It declares a name n to be a synonym for the type.ty in the frame s(f),
by storing tyina new location typidlocn. The result of CREALOC is undefined if n doesn’t satisfy the
predicate isname or if it has been already declared in the current frame. This is tested by ISPRESENT.
Modification of the store is done by the combinator STORE. Their definitions are in appendix 3.9.

Inthe definitions of MDEF and CREAT no assumption is made on the order of the type definitions. If
all the type identifiers satisfy the predicate isname and are different from each other, the result of
MDEF on a frame, in which they don’t appear, doesn’t depend on their order in the text (see theorems
in 4.5).

3.1.2 Variable Declarations

Each variable occurring in a textmust be assigned a type which specifies the range of values that
variable may assume during the execution of the statement part of the text. ‘The semantics of a
variable declaration is defined by CREAV:

CREAV = [Af n ty fl s.CREALOC(fs,typeloc,n, TYPEVAL(ty,fls))]. |

CREAV creates a location in the current frame s(f), whosename is typelocn, provided nis a name and
no other location with the same name already exists in that frame, The content of that location is
the type associated with n. Such type is evaluated by TYPEVAL (see 3.3.1.3). Each type identifier
possibly appearing in it is removed and its definition is substituted for it. The evaluation is made in
the frame specified by the framepointer fl. When a variable is declared fl coincides with f,so at the
moment there is no point in introducing another parameter in CREAV. We have introduced this

extra parameter since CREAV is also used when binding value parameters in a procedure or function
activation, On that occasion the two framepointers f and fl (the one in which the new location is

| created and the one in which the type evaluation starts) do not coincide.

3.1.3 Procedure and Function Declarations

The semantics of a procedure declaration is defined by CREAP:

CREAP = [Xf n ps fl s.STORE(f,CREALOC(f,s,accink,n,fl),procioc n,ps)),

The result of CREAP is undefined if nisnotaname or something with the samename has already
been declared. Otherwise two locations are created. One of them, whose name is proclocn contains

the formal argument list and the text associated to that procedure declaration, the other one, whose
name is acelnk n contains the frame pointer specifying the frame where the procedure hasbeen
declared, 1.e. the environment where its free variables are bound. As for variable declarations, when

a procedure is declared the two framepointers fand fl are the same, but the combinator CREAP is
also used when binding procedure parameters in a procedure or function activation,, and in that case

thetwo framepointers differ.

The semantics of a function declaration is CREAF:

CREAF= [ Xf nis ty ft fl s.
STORE(f,STORE(f,CREALOC(f,s,accink,n,fl),typeloc n,TYPEVAL(ty,ft,s)),funcioc n,fs)).
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'Y CREAF is similar to CREAP. The only difference is that, in addition to funloc n and acclnk n, a location
typelocn is created, whose contentisthe type of the result of that function.

From the definition of MDEC and the others LCF combinators describing the semantics of the
declarations it follows that the order in which declarations are made is not relevant. If the identifiers

being declared are different and no other locations have been declared with these names the same

« store is obtained, independently of the order (see theorems in 4.5). This is slightly more general than

) the definition of PASCAL in Wirth 1971, which requires that all the variable declarations must
appear before the function and procedure declarations.

Section 3.2 Expressions

An LCF function can either evaluate to an object or to a truth value, but not both. For this reason
i we could not introduce a unique evaluation function for arithmetic and boolean expressions. So we

have divided expressions into arithmetic and boolean (this distinction is absent in Wirth 1971) and
introduced two evaluation functions. Furthermore, we have introduced a finer distinction between

the types of operators in order to avoid funny situations like the prefix adding operator “or” which

\ is allowed in the syntax given in Wirth 1971, 1972 but whose meaning is not defined there.

- 3.2.1 Arithmetic Expressions

Arithmetic expressions are written in abstract syntactic form and are evaluated by MEXPR:

| MEXPR =[eF [Ne fs.
isconst @e = MCONST oe,
isexpr e =isunary(opof e) = MOP (opof e,F(arglof e,f,s)),

oo - isbinary (opof e)~ MOP2(opof e,F(arglof e,f,s),F(arg2of e,f,s)}),
| isvariable e = FETCHV(e,{,s),

« isfundes e = RETURN(suce f,MF(namof e,actargof e,f,s)),UU,UUJ].

3.2.1.1 Evaluation of Constants and Expressions

: The abstract syntactic representation of numbers is defined by the combinator mknumconst. If n is a

« number, mknumconstnisthe corresponding numeral and it satisfies the predicate isconst(see
appendix 2.3). Numerals are evaluated by the semantic combinator MCONST, which returns the

) corresponding number.

MCONST = [Ax.isconst x = numof x,UU].

Arithmetic operator symbolsappearexplicitlyin expressions and satisfy the predicate isunaryor
“ isbinary according to thenumber of arguments the corresponding operator expects (see definitions in

appendix 2.4). When evaluating arithmetic expressions MEXPR checks whether the operator symbol
. is unary or binary, then MOP1 or MOP2 evaluates them and applies the corresponding value to the

argument(s) evaluated recursively.

C MOP I =[Ax.x=pplus=Ax.x,x=pminus-»Ax.(B-x),x=plus 1 =*suce,x=minus|-spred,UU].

“
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MOP2 = [Ax.x=plus=!+,xsminus—!=x=times— 1x x=div->!/ x=rmdr-mod,UU]. |

MOP1 evaluates unary operator symbols and MOP2 evaluates binary operator symbols to the
corresponding functions. For example, the meaning of the symbol Plus is the LCF function +. Note
that, due to the LCF syntax, infix operators, when written without arguments, are prefixed by "!".
An LCF axiomatitation of arithmetic is given in Newey 1973.

Asan example, if:

| mkexpr2(plus,mkexpr] (plusl,nl),mkexpr2(times,mknumconst 2,mkexprl (minusl ,n2)))

| is evaluated in a frame where the location nl contains the value 3 and the location n2 contains the

value 7, its result is 16, i.e. succ(3)+(2%pred(7)).

3.2.1.2 Evaluation of Variables

If the expression to be evaluated is a variable, then-the corresponding value is fetched by the
FETCHV com bina tor.

FETCHYV =[ecF.[An fs.
ISLOCAL(typeloc NAMOFVAR(n),s(f))~ISLOCAL(NAMOFVAR(n),s(f))-s(f,LOCOFVAR(n,f,s)),uU,
istopf(f)=>UU,F (VARBNDTO(n,f,s),NEWFP(n,f,s),s)]].

The fetching mechanism is very simple. The variable to be fetched may be an entire variable of a
scalar type or an array element. In both cases a test is done (by ISLOCAL) to see whether or not that
variable name has been declared in the current frame. If this is the case, the corresponding value is
fetched in the current frame (it will be undefined if the variable has been declared, but no value has

been assigned to that location). If the variable name has not been declared in the current frame and
the current frame is not the top one (i.e. if the fetching is done during a procedure or function
activation), the binding list is checked. In fact the variable to be fetched may be a formal parameter
passed by name (see 3.3.1.3 for details on the binding mechanism). In this case FETCHV applies
recursively to the corresponding actual parameter in the preceding frame. If that variable name is
not found in the binding list, the variable is free for that procedure or function activation, hence
FETCHYV applies recursively to the same variable in the frame specified by the result of NEWFP, i.e. the
frame where the procedure or function in execution has been declared, hence where its free
variables are bound.

The definitions of the auxiliary combinators used in FETCHV may be found in appendix 3.7,-9.
ISLOCAL performs a -test to see whether a given name has been declared or not in a frame.
NAMOFVAR applies to a variable n, and gives as result its name: it coincides with n if n is an entire
variable of scalar type, or it is the name part of n if n is an array element. Analogously LOCOFVAR
returns the location of n. As above, the location of n might be n itself, or an array location. varbndto
is the function which accesses the list of parameter bindings. If the variable n appears in it, then n
(or its name-part) is a formal name parameter and the corresponding actual parameter is the result
of varbndto. If n is not a name parameter, then n itself is the result of varbndto. In this case n is a
free variable for the function or procedure in execution. NEWFP evaluates to pred f or to the content

of the alnk location of the current frame, according to whether n is a formal parameter or a free |

variable. The alnk location is set up when a new frame is created for a procedure (function)
activation, it contains the pointer to the frame where the activated procedure (function) has been
declared.
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From the definition of NAMOFVARgiveninappendix 3.7 we see that its result is undefined if itis
= applied to FUNV.Asexplainedin 3.2.1.3 and 3.3.1.2 FUNV is the location where the value of a

function 1s stored. Since NAMOFVAR is undefined on FUNV, the resultof FETCHV is undefined if it

applies t 0 FUNV. So it is impossible to “read” the value of a function withthe usual fetching
_ combinator.

_ 3.2.1.3 Function Designators

N If the expression to be evaluated is a function designator, then a new frame is set up. The function
is evaluated by MF and itsvalueisretricved by the RETURN combinatorin a special location named
FUNV.

9 RETURN = [Af s.ISLOCAL(FUNV,s(f))-s(f,FUNV),UU],

The semantics of a function activation is very similar to that of a procedure activation {see 3.3.1.3).

| Starting from a given store, a new frame is created by the combinator MFB and thenthe semantic
function MP (described in section 2.2) is applied to the text of the function. The current frame is
changed by incrementing the frame pointer by I.

C
MF = [An a f. MFB(FUNCFAL(n,f),a,f,n)®MP(FUNCDEF{n,{),succ f)}.

3 FUNCFAL and FUNCDEF are the two functions which fetch from the store the formal argument list
and the text of the function being activated. Their definition is given in appendix 3.8. T h e y use the
FETCHcombinator which, like FETCHV, returns the content of a location from the frame where it has

been created.

The activation of anew frame andthe binding of parametersis done by MFB:

Co - MFB = [Afa aa f n s.BIND(fa,aa,succ f,CREALOC(succ f,typeloc FUNV,TYPEDEF(n,f,s),
MAKFRAME(FUNCBODY (n,f,s),PFLNK(n,{,s),suce f,s) ))).

t not on Inds the rormal parameters to the actual parameters (the binding function D will be“ I ly bindsthe formal p h I p (the binding function BIND willb
oo fully explained in 2.2.1.3), but it also creates a new frame. The frame in which the function is

evaluated issetupbyMAKFRAME(see appendix 3.9).1t creates a location textloc where the statement
part of the text is stored, and alocationalnk whose contentisa pointer to the frame where the

— function has been declared. Moreover,a location typeloc FUNVis created, whose contentisthe type of

| the function being evaluated. A location named FUNV will eventually contain the value of the
L function. In fact Wirth 1971, 1972 says that the function name must appearat least once inthe
_ function text at the left hand side of an assignment statement. The value of the function in

execution is storedin the FUNV location by the combinator ASSIGN. From its definition in 2.3.1.2 we
see that the result of a function can onlybe assigned toFUNVinitsfunctionframe. Thismeans that
if the name of the function in execution appears at the left hand side of an assignment statement in

O the text of a procedure where such identifierhas not been declared, it is interpreted as a free
variable, not the name of thefunctioninexecution.

- As noted in 3.2.1.2 the FETCHV combinator returns an undefinedvalue if applied to FUNV. This
implies thata variable named FUNV cannot be declared even in a frame different from that set up
by a function activation. We have prevented this by considering FUNVa “reserved” identifier which

“

|.
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doesn’t satisfy the predicate isname, so it cannot be used in declarations (the axiom isname FUNV=FFis

included in appendix 2.4).

| We assume that the translator from concrete to abstract syntax has substituted FUNV for all the
| occurrences of the function name on the left hand side of assignment statements within the function
| text. If there are no such occurrences, the function activation returns an undefined result. If there

are several, the last executed determines the value of the function. If a variable identifier equal to
the name of the function in execution occurs on the rigth hand side of an assignment statement,
then either that variable has been declared within the function execution or it is considered a free

variable of that function. When a variable has been declared with the same name as the function in

execution, its value is undefined during the function execution. In fact, it cannot be assigned a value

since FUNV has replaced it on the left hand side of any assignment statement. It cannot be inputed
since the read statement cannot be executed within a function activation’ (see the following
paragraphs for a discussion on side effects).

The declaration of a variable with the same name as the function in execution is not forbidden by
Wirth 1971, 1972, but we do not see any reasonable semantics for it. In addition Wirth 1971, 1972

says that:

“Occurrence of thefunction identifier in ajunction designator within its declaration
implies recursive execution oj the junction’. ;

This sentence doesn’t specify what happens if within a function another function is declared with
the same name. Our semantics allows such declarations - why not? In such case the “outermost”

function cannot be executed recursively. This is also the case if a function has a formal parameter
with the same name (this is not forbidden in Wirth 1971, 1972). In this case the corresponding
actual parameter is executed.

PASCAL allows functions to have themselves as actual parameters. Even though LCF is a typed

logic, the semantic combinators we have defined avoid type ‘conflicts by passing the text of the
function and not the function itself as a parameter. This is also true for procedures having
themselves as parameters.

Haberman 1973 is very critical of the PASCAL’s notion of function. He says that, while the aim of a
PASCAL function is that of not having side effects, this is not true since a function may call a
procedure which may have side effects. Our semantics deals with this situation in a different way,
Statements which change the content of a location and hence cause side effects are only the
assignment, read, write and for statements.

The read and write statements modify the content of the input and output buffers so they cannot be
executed during a function activation. We forbid this by the test ISFUNFR which 1s performed
whenever a read/write statement is executed. It checks if any frame between the current one and the
top one has been set up by a function activation (see 3.3.1.4,-5). The test on whether a frame has
been created for a function activation or for a procedure activation is done by checking in the frame
whether typeloc FUNV is defined or not.

An assignment statement may cause side effects by assigning a value to a free variable. Whenever
the variable to be assigned is a free variable for the current frame, the ASSIGN combinator (see
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3.3.1.2), checks whether between the current frame and that where the variable is bound (hence

where the modification of the store actually takes place) a function has been activated.

The for statement may cause a side effect if its control variable is free in a function activation.
Wirth 1971, 1972 doesn’t say that the control variable must be local to the frame where the for
statement 1S executed. In our semantic definition of PASCAL, the for statement cannot cause side

effects in a function activation since its definition relies on the combinator ASSIGN for updating the
control variable (see 3.3.2.3).

We included the above checks in our semantics so that ill-formed programs return an undefined
store. It turns out, however, that in our formalism no function can cause side effects. This is because

MEXPR simply returns a value from a function activation. The checks clone in our semantic

combinators amount to checking for side effects “at run time”. Thus some programs which would be

rejected by a PASCAL compiler will still have well defined meaning for us if the statements
producing side effects are never executed.

Finally, we want to point out that our semantics allows parameters of a function to be passed by
name, but guarantees that those parameters can only be “read” during the function execution. This
contrasts with Hoare’s opinion (private communication) that PASCAL functions must not have
parameters passed by name. Wirth 1971, 1972 says nothing about it. In Wirth 1971 the assignment
to nonlocal variables is explicitly forbidden. Nothing is said about this in Wirth 1972.

3.2.2 Boolea n Expressions

~The evaluation of boolean expressions is very similar to that of arithmetic expressions (see 3.2.1 and
subsections). It is performed by MBEXPR:

MBEXPR =[ocF.[A0 fs.
(e=true)-TT,
(e=f alse)FF,

isbexpr e =isbunary(bopof e) » MBOP| (bopof e,F(barglof e,f,5)),
isbbinary (bopof e)= MBOP2(bopof e,F(barglof e,f,s),F(barg2of e,f,s)),
isrelop(bopof e) = RELOP(bopot e,MEXPR(arglof e,f,s),MEXPR(arg2of e,f,s)),UU,UU]J]J.

true and false are the abstract syntactic representations of the boolean constants true and false. If the
expression to be evaluated is the constant true,then it evaluates to TT, if it is the constant false,it
evaluates to FF. Boolean expressions containing unary and binary operator symbols are evaluated
like arithmetic ones. Relation operators take integers as arguments, so the meaning of a relation

symbol is applied to its arguments evaluated by MEXPR. The meaning of unary and binary boolean
operators and that of relation operators is defined by MBOP1, MBOP2 and RELOP:

MBOP | = [Ax.x=not->~,UU],
MBOP2 = [Ax.x=and=!Ax=or-iv,Ul],
RELOP = [Ax.x=lseq=!¢,x=greq-=Rx=lt-1¢ x=gt-h x=eq-!=,x=neq-4,Ul].

For example in the frame specified by the frame pointer f and in the store s |

mkbexpr 1 (not,mkbexpr2(or,mkrel,it,a,mknumconst 8),mkrel(gt,a,mknumconst 1)))
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evaluates to

=((MEXPR(a,f,s)<8)v(MEXPR(a,f,s)>1)).

An LCF axiomatization for the boolean operators is given in Newey1973.

Section 3 . 3 Statement Part

The semantics of the statement part of the program is defined by MS.

MS={ocF [Ast f.
isemptyst st = ID,
iscmpnd st -
isamptyst(fstof st) F(rmdot st,f),
islabstat(fstof st) F(mkcmpnd(statmof(fstot st),rmdof st),f),
isgoto(fstof st) —» GOTO(F,labelof (fstof st),f), ]
isass (fstof st) = ASSIGN(Ihsof(fstof st),MEXPR(rhsof(fstof st),f),f)®F (rmdof st,f),
igproccali(fstof st)=>[As.MPB(PROCFAL(namof(fstof st) f,s),actargof(fstof st) f,s,namof(fstof st))]®

[xs.MD(PROCDECL(namof (fstof st),f,s),succ f,5)]®
[As.F(PROCBODY(namof(fstof st),f,s),succ f,5)J®@CLEAR(succ f)8F(rmdof st,f),

isread(fstof st) — READ(namof(fstof st) f)@F (rmdof st,f),
iswrite(fstof st) = WRITE (namof{fstof st),{)®F (rmdof st,f),
iscond(fstof st) = COND(MBEXPR(testof(fst8t st),f),

F(append(thenof(fstof st),rmdot st),f),F(append(eiseot(fstof st),rmdof st),f)),
iswhile(fstof st) @ COND(MBEXPR(testof (fstof st),f),

F(append(bodyof (fstof st),st),f },F (rmdof st,f)),
-  isrepeat(fstofst)= F(append(bodyof(fstof st),mkempnd(mkcond(mkbexpr 1 (not,

testof(fstof st)),fstof st,ES),rmdot st)),f),
isforto(fstof st) = COND(MBEXPR(fortest(fstof st),f),

ASSIGN(indexof (fstof st),MEXPR(Ibof (fstof st),f },f)®
F(append(bodyof(fstof st) fortoup st),f),F(rmdof st,f)),

isfordn(fstof st) — COND(MBEXPR(fortest(fstof st),f),
ASSIGN(indexof (fstof st),MEXPR(ubof (fstof st),f),f)®
F(append(bodyof(fstof st),fordnup st),f),F(rmdof st,{)),UU,UU]].

The definition of MShas the form of a nested conditional, each branch corresponds toone
instruction of the language. Note that MS is defined only on the empty statement ES, whose semantics

is the identity ID=[Ax.x]), and on compound statements. In fact, the abstract syntactic form of a

programisalistof instructions assembled by the constructor mkempnd and ending with the empty
statement ES. When the first argument of MS is-a compound statement a test is done on its first

element. Except for thelabeled statements, whose semantics is simply that the corresponding
unlabeled statement,the detailed description of the semantic functions defining the meaning of each
instruction will be given in the following sections.

3.3.1Simple Statements

We have defined the semantics of all the simple statements of PASCAL, i.e. gotostatement,
assignment statement, and procedure statement. Furthermore, we have defined the semantics of an
instruction for reading input data from the input buffer INP and of an instruction which writes
outputdata into the output buffer OUT.
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fr 3.3.1.1 Got0 Statement

The semantics of the goto statement is defined by the GOTO combinator.

GOTO = [AF.[An f. F(segm(n,TEXT(f)),)]],

It applies the semantic function MS recursively to the text returned by the segm combinator:

a segm = [oF [An st.
isemptyst st = UU,
iscmpnd st

isemptyst(fstof st) =F(n,rmdof st),
islabstat(fstof st)=(n=labelof st)= st,F(n,mkcmpnd(statmof(fstof st),rmdof st)),

~ issingle(fstof st) =F (n,rmdof st),
iscond(fstof st) =occurs(n,thenof(fstof st))=rappend(F(n,thanof(fstof st)),rmdof st),

: occursin,elseof (fstof st ))=append(F(n,elseof (fstof st)),rmdot st),
F(n,rmdof st),

isrepwh(fstof st) —occurs(n,bodyof(fstof st))=append(F(n,bodyot(fstof st)),st),
F(n,rmdof st),

oo isforto(fstof st) —occursi{n,bodyof(fstot st))—
> append(F (n,bodyof(fstof st)),fortoup(st)),F (n,rmdof st),

isfordn(fstof st) —occurs(n,bodyof (fstof st))—

" append(F (n,bodyof(fstof st)),fordnup(st)),F{(n,rmdof st),UU,UU]).

segmappliestoalabel, and the text stwhich is retrieved from the store by the TEXT combinator,
andreturns the piece of text starting from the first occurrence of thelabel. If thelabel is not found

\ inthetexttheresult of segmis undefined. The behaviour of PASCAL programs when several
- identical labels appear in it is another example of ambiguityin Wirth 1971, 1972. An accurate

description of alanguagemust say if this 1s a well-formed program or not.

- In our semantics, no restriction isimposedonwhere the label may appear in the text. This means
| that jumps into (or out from) the body of a repetitive statement are allowed. The behavior of segm
- in such case will be described in their respective sections.

According to Wirth 1971 we do not allow jumps into a procedure body, but, contrary to Wirth1972
we do notallow jumps out of a procedure activation, i.e. Jumps cannot cause the change of the

_ current frame. For this reason we have not introduced the label declaration statement of Wirth 1972

| since the notion of scope for a label is meaningless to our semantics.
L

B Lockhood Morris and others have suggested the notion of continuation as a possible way of defining
the semantics of programming languages with the goto instruction. It cannot be used in LCF in a

straightforward way since a type conflict arises. On the contrary in our semantics no type conflict 1s
introduced by the goto, in fact its semantics simply reduces to changing the first argument of MS.

N | The text to be executed next is replaced by the text evaluated by the segm function. |

| 3.3.1.2 Assignment Statement

| The semantics of the assignment statement is defined by the combinator ASSIGN:

C

C
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ASSIGN = [F.[An v f s.
| n=FUNV-3ISADMISVAL(s(f,typeloc FUNV),v(s))->STORE(f,s,FUNV,v(s)),UU,

ISINTYPE(n,v,f,s)2STORE(f,s,LOCOFVAR(n,f,s),v(s)),
istopf (f)-UU,
ISFUNFR(f,s, NEWFP(n,f,s))=F (VARBNDTO(n,f,s),v,NEWFP(n,f,s),s),UU]].

First of all a test is done to see whether the location to be assigned is FUNV, i.e. if we are assigning
the value to a function identifier in a function activation (see 3.2.1.3). In this case if the typeloc FUNV

is present in the current frame and the value v matches with its content, the combinator STORE stores

v(s)in FUNV (see appendix 3.9). Otherwise ASSIGN returns the undefined score. If nis not FUNYV,
then the current frame is checked. If n has been declared in it and the value v matches with its type
then the assignment. takes place. A type mismatch makes the assignment to return the undefined

store. If n is not local to the current frame, it may be a name parameter or a free variable for that
frame. In both cases ASSIGN applies recursively with a mechanism quite similar to FETCHV (see

3.2.1.2). The only difference is that here a test is done by ISFUNFR to see if the assignment may cause
a side effect in a function activation.

ISFUNFR = [ocF.[Af s nf. ISLOCAL(FUNV,s(f))= FFpred f=nf = TT,F{pred {,s,nf)]].

ISFUNFR checks if any frame between those pointed to by f and nf is a function frame, i.e. if FUNV is
local to it.

The auxiliary combinator ISINTYPE:

ISINTYPE 5 [Xv val f s.ISLOCAL(typeloc NAMOFVAR(v),s(f))=ISADMISVAL(TYPOFVAR(v,f,s),val(s)),FF].

evaluates to true if the variable v is local to the frame s(f) and the value val is compatible with its

type. It evaluates to false if v is not local to s(f) and to undefined if a type mismatch occurs. The

definition of the combinators used in ISINTYPE may be found in appendix 3.7,-9.

3.3.1.3 Procedure Statement

When a procedure is activated, its formal arguments are bound to the actual arguments in a new
frame obtained by increasing the current frame pointer by 1. In such frame a location textloc is

created whose content is the statement part of the activated procedure, and a location alnk is created
containing the pointer to the frame where the procedure has been declared.

By looking at the definition of MS given in 3.3 we see that, when a procedure statement is executed,
the auxiliary combinators PROCFAL, PROCBODY, PROCDECL are used. They are defined in appendix
3.8 and are used for fetching the formal argument list, the declaration part and the statement part of

the activated procedure.

The set up of the new frame and the binding of the parameters is done by MPB:

MPB = [Af a aa fs n.BIND(fa,aa,succ f MAKFRAME(PROCBODY (n,f,s),PFLNK(n,f 5),succ f s)) ].

MAKFRAME sets up anew frame and creates the locations textloc and alnk in it. At the end of the
procedure activation such frame is deleted by CLEAR:

CLEAR=[Afsf 1 .(f1=f)=UU,s(f 1)].
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CLEAR makes it explicit that the local variables of the procedure frame are no longer in the store.
jp -

| The bindings of the parameters in a procedure activation is the same as that of a function
activation. It is defined by:

N BIND = [oF .[Afaaafs.
iseof fa = (iseof aa =» s,Ul),

~ isparameter(fstof fa) =F (rmdof fa,rmdof aa,{,MKBINDING(istof fa,fstof aa,f,s)),UU]].

Corresponding parameters in the two lists are bound by MKBINDING. If the two lists have different
length the binding results in an undefined store. PASCAL allows procedures without parameters. In
such case the abstract syntax for the two parameter lists is the empty list EOF.

~~ T he MKBINDING combinator is defined as:

- MKBINDING = [\fa aa f s.
isvarp(fa) =» TYMATCH(fatypeloc,aa,f,s) = ]

CREALOC(f,s,bindloc,namof ~~ fa,EXPRFORV(aa)),UUu, =
| isvalp(fa) = ASSIGN(namof fa,MEXPR(aa,f),f,

C7 CREAV(f,namot fa,typof fa,CRNTF(f,s),s)),
istunp(fa) = TYMATCH(fa,typfunloc,aa,f,s) =

CREAF (f,namof fa,FUNCDEF (aa,f,s),typof fa,CRNTF(f,s),PFLINK{aa,f,s),s),Ul,
B isprocp(fa)- CREAP(f,namof fa,PROCDEF (aa,f,s),PFLINK(aa,f,s),s),UU].

If the formal parameter fa is a variable parameter (i.e. a parameter passed by name) then, if its type
matchesthe type of theactual parameter aa,a binding location bindloc (namof fa) is created. Its

ha content is the EXPRFORV(aa). If aa has subscripts they must be evaluated whenthe binding takes
place (see Wirth 1971). This evaluation is performed by EXPRFORYV which substitutes a numeral for

the value of each subscript.

The test on the type matching between formal and actual parameters is done by TYMATCH:

~ TYMATCH = [Afa loc aa f s.TYPEVAL(typof fa,CRNTF(f;5),5)=TYPEDEF(loc aa,pred f,s)].

The type identifier associated with the formal argument is evaluated (by TYPEVAL) in the frame
where the procedure has been declared. The pointer to it is retrieved by CRNTF. We have in fact

_ chosento evaluate the type associated with the formal arguments of a procedure when it is activated
and not when it 1s declared. The type of the actual argument is fetched from the store by the

= TYPEDEF combinator in the location typelocaaor typfunloc aa depending on whether ta is a variable
§ or function parameter. All these auxiliary combinatots are defined in appendix 3.8. Here we only

| describe TYPEVAL:

TYPEVAL = [ecF.[An {s.
Coe isbasetype n = n,
- isarspec n = mkarspec(F(ariimof n,f,s),F(typelof n,f,s)),

istyppart n = iseof n = n,
ispair n = mkpair(F(fstof n,f,s),F (rmdof n,f,s)),UU,

— ISLOCAL(typeloc n,s(f))=F (s(f,typeloc n),f,s),
istopt f = UU,F (n,CRNTF (f,s),5)]].

If the type n being evaluated is abasetype, i.e. integer or subrange, then TYPEVAL evaluates to it.If
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n is an array specification, then both the types of its subscripts and the type of its elements are
recursively evaluated. The types of the subscripts of an array are given as a list of subranges. This
list satisfies the predicate istyppart, so each one of its elements is recursively evaluated. Finally, if the

type being evaluated is a type identifier defined in the current frame, then TYPEVAL applies
recursively to its definition. If the type definition is not found in the current frame, then the
appropriate frame is searched.

If a formal parameter fa is passed by value, then a variable fa is declared in the current frame by
CREAV (see 3.1.2). Its type is evaluated by TYPEVAL in the appropriate frame and stored into the
location typeloc fa. The value of the actual parameter a8 is then computed by MEXPR and assigned to

fa. ASSIGN checks whether or not the types of fa and aa are compatible (see 3.3.1.2).

If the formal parameter fa is a function parameter and the type of fa matches with that of aa, a
function fa is declared in the current frame by the combinator CREAF (see 3.1.3). The type of this
function is the type of fa evaluated by TYPEVAL in the appropriate frame. In its acclnk location the
content of the acclnk location of aa is stored. The text of the actual argument is retrieved by
FUNCDEEF, its acclnk by PFLINK and its type 1s evaluated by TYPEVAL in the usual way.

If the formal parameter fa is a procedure parameter a procedure fa is declared in the current frame
by CREAP. In the acclnk of such procedure the content of the acclnk location of the actual parameter is
stored.

Since the combinators used for binding formal and actual parameters are those used in declarations
(see 3.1.2,-3), an undefined store is returned if the reserved identifier FUNV 1s used as formal

parameter (see 3.2.1.3 for a discussion on the use of FUNV). From the definition of MKBINDING it is
also evident that FUNV cannot be used as an actual parameter since both EXPRFORV and MEXPR
return an undefined result if applied to FUNV. The auxiliary combinators used by MKBINDING test,

by ISPRESENT, the presence of identifiers in a frame. It follows that an identifier cannot appear twice

as formal parameter and in the declaration part of a procedure.

Procedures, as well as functions (see 3.2.1.3), cannot be executed recursively if they declare a
procedure or have a formal procedure parameter with the same name.

As noted for functions, a procedure may also have itself as actual argument. Even though LCF is a
typed logic, we avoid type conflicts by passing texts, and not functions as parameters.

3.3.1.4 Read Statement

PASCAL has no read and write statements. We have introduced them for dqgfining the semantics of
the input and output. In Wirth 1972 a standard procedures, read and write, are introduced for
handling the input and output.

As said in 2.2 the data to be inputed is stored into the fileloc INP location of the store by the PASCAL
function. Whenever the value of a variable has to be inputed, it is read from the buffer INP by the
READ function:

READ = [An f s.ISFUNFR(f,s,8)=ASSIGN{(n,MEXPR(fstof(IBUFFER s),f),f,
STORE(8,s,fileloc INP,rmdof (IBUFFER s))),UU].
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s A testisdoneto see if the read statement is executed during a function activation, in this case the
| result of READ is undefined. Otherwise its result is a new store where the first element of the input

buffer has been removed and its value has been assigned to the variable being read.

i 3.3.1.5 Write Statement

« The results produced by aprogramarestoredinto the fileloc OUT location, where theyare eventually
retrieved by the OUTPUT combinator (see 2.2). The write statement putsintothebuffer the numeral

BN of the value of the variable to be outputed.

WRITE = [An f s.ISFUNFR(f,s,8)>STORE(8,s,fileloc OUT,mkpair(mknumconst(FETCHV(n,f,s)),
OBUFFER s)),UU]].

~ As with the read statement, itis forbiddentowrite during afunction activation.

3.3.2 Structured Statements

C The structured statements included in our version of PASCAL are:
1) the conditional statement in its two forms: if-then and if-then-else,

2) the repetition statements while and repeat,
- 3) the for statement in its two forms: for-te and for-downto.

We have not included the ease andthe with statements definedinWirth1971,1972 since they do
- not seem very relevant to the integer arithmetic partof PASCAL.InWirth1971,1972the

- compound statement is also included in the list of structured statements.Inour description of
PASCAL the compound statement does notappearsincethe begin, end delimiters are not present in

the abstract syntactic form of a program. The compound statementinitsabstractsyntactic formisa
list of statements assembled by the syntactic constructor mkempnd and ending with the symbol ES.
The semantics of the compound statement is defined byMS which’establishes the flow of the control

C through the statement part of the program text.

3.3.2.1 Conditional Statement

The conditional statement in PASCAL has two forms: if-then and if-then-else. In ‘the abstract

syntactic form the conditional statement always has an else part, possibly it reduces to the empty
. statement ES.

The semantics of the conditional statement is defined by the combinator COND:

COND = [Aq f g s.(q(s)=f(s),g(s))].

| The test of the conditionalis evaluated in the store where the conditional statement is executed. The
conditional returns the then-part orthe else-part evaluated in thisstore, depending onthe value of
the test.

Going back to the definition of MS given in 2.3, we see that if the first statement of the text in
execution is a conditional, itstestisevaluated by the MBEXPR combinator and then MS applies

«

}
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recursively to the text resulting from appending the then-part or the else-part of the conditional to
the remaining statements. The appond function, defined in appendix 2.5 corresponds to the ordinary
appending function for lists.

If a goto statement is executed within a branch of a conditional, then the execution goes on with the
text furnished by the segm function. If a jump into a branch of a conditional is done, then the text
to be executed next consists of all the statements between the first occurrence of the label to jump to
and the end of the branch of the conditional, appended to the rest of the program. This text is the
result of the segm function defined in 3.3.1.1.

3.3.2.2 While and Repeat Statements

The while statement isa repetition statement whose abstract syntax is:

mkwhile(test,body).

body is repeatedly executed until test becomes false. The semantics of the while statement as given in
MS (see 3.3) can be explained as follows: test is evaluated, if its result is true, then MS applies
recursively to body appended to the while statement itself and to the remaining statements in
execution. If the test fails, MS applies to the remaining statements.

Wirth 1971 says that in PASCAL, for all e¢ and § the two statements

while ¢ do S

and

if e thenbegin S; while e do S end

are equivalent. We prove this true for our semantics (see 4.4).

The repeat statement is similar to the while statement. The only difference is in that the repeat first
executes its body and then performs the test to see whether to go on or stop. The semantics of the

repeat statement is defined in MS (see 3.3). MS applies recursively to the body of the repeat,
appended to a conditional (specifying whether or not the repeat must be executed again), appended

to the remaining statements in execution.

We have also proved the equivalence described in Wirth 1971 for the repeat statement, i.e. for alle
and S the two following statements are equivalent:

repeat S untile

and

begin S; if ~e¢ then repeat S until ¢ 07d

In Weyhrauch and Milner 1972 and in Aiello and Aiello 1974 a WHILE combinator was introduced

for defining the semantics of the while statement:
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WHILE = [«F.[\t b.COND(t,b®F (t,b),ID)]].

It cannot be used here since a goto statement can stop the execution of the body of the while. We
can prove that the definition of the semantics for the while statement given in MS reduces to the
above semantic combinator when the body of the while is goto free (see 4.3).

The language described in Weyhrauch, Milner 19°72 had no repeat statement. The semantics for the
repeat statementwas described in Aiello, Aiello 1974 by the combinator REPEAT:

REPEAT = [«cF.[Ab t. b®COND(t,F(b,t),ID)]]

Itis similar tothe WHILE combinator described above and the same considerations concerning the

presence of goto’s hold for it.

If a goto statement is executed within the body of a while or repeat statement, then the execution of
the repetition statement is stopped and the text to be executed next is furnished by the segm

combinator. From the definition of segm given in 3.3.1, we see that when a goto statement jumps
into the body of a repeat (while) statement the piece of body starting from the first occurrence of the
label is appended to the text starting from that repeat (while) statement. This means that the part of
b o d y fromthe labelto t h e end is executed and then a t e s t is done to see whether or not the
execution of the repetition statement must be stopped or goes on.

3.3.2.3 For Statement

In PASCAL the for statement has two forms:

for i:=¢l toe2 do b;

and

for i:=el downto 42 da b;

Inbothcases b is thebody of statements which is repeatedly executed, and ¢ is the variable which
controls the loop. In the for-to statement it is increased by 1 each time b is executed. In the for-
downto statement it is decremented by l. The two expressions el and a2 will be referred to as the
initial and final values of the control variable.

The abstract syntax for the two forms of for statements is defined by:

mkforto(i,el,e2,b),

mkfordn(i,el,e2,b).

Their semantics is defined in MS. A t e s t is done to check if t h e value of the control variable i is

equal to thefinalvaluee2. The test is:

fortest = [Ax .isforto(x)=>mkrel(iseq,lbof (x),ubof(x)),isfordn(x)=mkrel(greq,ubot (x),Ibof (x)}),UU ].

If tfortestevaluatesto TT, the initial value el is assigned to the control variable i, then the meaning
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function MS applies to the body of the for statement appended to the text assembled by the

combinator fortoup (fordnup):

fortoup = [Xx .mkempnd(mkforto(indexof(fstof(x)),mkexprl(plus! indexof(fstof(x))),
ubof (fstof (x)),bodyof (fstof (x))),rmdof (x))],

fordnup s [Xx .mkempnd{mkfordn(indexof (fstof (x)),mkexpr | (minus 1 indexof (fstof (x))),
loof (fstof (x)),bodyof (fstof (x))),rmdof (x))).

fortoup (fordnup) updates the initial value of the for loop by substituting 1+1 (i-1) for 1.

We have chosen to define the for in terms of the algorithmic equivalences given in Wirth 1971, j.e.
for all 1, el, e2 and § the statement:

for i=el to e2 do S

1S equivalent to

if el<el then

begin i-=¢l;S;
for t:=succ(i) to e2 do S

end

and the statement

for i:=eldownto e2 do S

1S equivalent to

if eke2 then
begin i:=el;S;

Jor i:=pred(i)to e2 do S
end

We have imposed no restrictions on the fact that the values of i, el and e2 are changed by S or by
the for statement itself, or on the jumps into or out from the body of a for statement. The value of .
the control variable at completion of the for has the last value assumed, namely the value it had

after the last execution of S. This interpretation of the for statement is different from the description

of the PASCAL for statement as given in Wirth -1971, 1972 and in Hoare and Wirth 1973. The
definitions given in these three papers are indeed different from each other. Our choice .has been

motivated by the fact that we wanted the semantics of the for statement to be as smooth as possible

and, at the same time, we wanted to make it less ambiguous then Wirth 1972. The definition of the

for, given in terms of the above algorithmic equivalences in Wirth 1971, was changed in Wirth
1972, following the suggestions made in Hoare 1972. In order to leave the implementer more
freedom; the following equivalences are required in Wirth 1972:

fori:=el to e2 do S

| is equivalent to
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« i=el;S;i=suce(i);S;...i=e2;S
and

fori=el downto e2 do S

NC is equivalent to

i=el; S;i=pred(i); S;...i=e2;S

These definitions seem ambiguous to us: what happens if ¢/>¢2 in the for-to statement?

“ The third definition of the PASCAL for statement is given in Hoare and Wirth 1973. This is
closer to that given in Wirth 1972, but not the same. It is given in axiomatic form:

(asx<h) A P(la.x)) {S} P(la.x])

P({]) {for x:=a to b do S} P(la.b])
C

(asx¢b) a P((x.b]) {S} P([x.b))

P(L1) (for x:=b downto a do S}P(la.b]) co

It is written in the formalism proposed by Hoare 1969, where P{QJR means that if P and R are
8 predicates and P is true before the execution of the body of statements Q, and) terminates, then R

“is true after the execution of Q.[ab} denotes the interval {xJasx<b},[a,b) denotes the interval
{xla<x<b}, and so on. This rule was used in Hoare 1972 for characterizing the correctness of the for
statement. Apart from the fact that the description of the rule given in Hoare 1972 and that given in
Hoare and Wirth 1973 are different, we do not agree with it. In fact it leaves unspecified what
happens when the for-to statement is executed with the initial value greater then the final value. It

C seems to us that any definition which leaves this ambiguous cannot serve as a satisfactory
specification of the meaning of the for statement. In particular it cannot be used to prove general
theorems about the for statement. Consider for example an implementation of PASCAL in which if
b<a in one of the above for statements, then the body of statements § is executed 14 times! This

implementation satisfies the above axioms, but is certainly strange.

\ In Wirth 1971, 1972 nothing is said about the behavior of the goto’s with respect to the for
statement. Hoare and Wirth 1973 ‘do not deal with goto’s. In our semantic definition, if a goto
statement is executed within the body of a for statement, then the execution of the repetition
statement 1s stopped and the text returned by segm is executed next. From the definition of segm we

see that if a jump into the body of a for statement is executed, then sogm returns the piece of body
starting from the first occurrence of the label to jump to, appended to the piece of abstract syntax

L returned by the fortoup or fordnup combinators.

If a jump into the body of a for statement is executed we distinguish between two cases: I) the Jump

is from one point to another point of the body of the same for statement. In this case the
computation goes on with the control variable having the current value. 2) the jump is from a point

N of the program outside the for statement. In such case the computation may result in the undefined

C
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store accordingly to whether or not the control variable has been assigned a value prior to the
execution of the jump. In fact the updating combinators fortoup and fordnup replace i+1 and i- 1 for
el in the for statement, so it evaluates to UU if the control variable has not yet been assigned a
value.

Haberman 1973 dislikes the possibility of jumping into a for statement. We have allowed such
jumps, thus a for loop may be initialized from outside and started by a jump. This seems reasonable
since PASCAL has no block structure, so the control variable of a for statement has to be declared

in the declaration part of the text and may be given a value independently of the for statement.
Furthermore, since the control variable is not local to the for statement, we do not see any reason for
leaving it undefined after the execution of the for statement, as required in Wirth 1972. Nothing is
said at this regard in Wirth 1971 and in Hoare and Wirth 1973. We do not. agree that a perfectly
behaved statement should leave an undefined value in a location which has been declared and

assigned a value. It also leaves ambiguous what happens to the control variable if a goto stops the
execution of the for loop.

Our semantics doesn’t check to see if the control variable, the initial value or the final value are

modified during the execution of the for statement. This makes our for statement similar to the

while statement. Since the control variable is not a dummy variable of the loop there is no reason
for it to be treated differently from any other variable. Wirth 197 1, 1972 and Hoare and Wirth
1972 are discordant about the requirements on such modifications. Moreover it is our opinion that
checking for them is very difficult and is unlikely to be done in any current implementations of
PASCAL. Consider for example a program where an integer variable 1 is declared which also

declares the following procedure:

© procedure A(jkinteger)
fori=j tok do

if ie3 then A(k+lj)
else A(jelk);

Note that in this, program the control variable is changed by the recursion of the procedure A, not
by an assignment statement.

A final point regarding our semantics: as with the while and repeat statements, if a text is goto-free
the semantics of the for statement can be defined by the following two combinators:

FORTO = [«F.[Ai el 62 b {. COND(MBEXPR(mkrel(lseq,el ,62),f),ASSIGN(i,MEXPR(e! ,f),f}®b®
F(i,mkexpr 1 (plus 1 ,i),e2,b,f),ID)]};-

FORDN =[«F.[Niele2 Db f. COND(MBEXPR(mkrei(greg,el,e2),f),ASSIGN(i, MEXPR(e1,f),{)®b®
F(i,mkexpr 1 (minusl ,i),e2,b,{),ID)]);

The equivalence, in the goto-free case, between the definition of the semantics of the for statement
given in MS and that given by the two above combinators, can be proved easily (see 4.3).
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SECTION 4 PROPERTIES OF THE SEMANTICS
ag

In this section we discuss some general properties of the interpretation of PASCAL in LCF. We

have proved :

| 1) the meaning function MS is strict on the store, i.e. for any statement st and any framepointer f,
MS (st,f,UU)=UU,

A

2) for goto-free programs, MS is a homomorphism with respect to the constructor mkcmpnd, i.e.
V{.MS{mkempnd(a,b),f)=MS(a,f)@MS(b,f).

3) MS reduces to a simpler function for goto-free programs. New combinators defining the
o semantics of the repetition statements are given.

i. 4) all the equivalences about repetition statements given in Wirth 1971 hold in our semantics.

5) some miscellaneous theorems about MDEC, MDEF, MS

2
Section 4.1 The strictness of MS on the store

" The main theorem of this section is

Vst £.MS(st,{,UU)=UU.

" - We do not show the proof here as it 1s a single LCF simplification using the lemma

| Vt a b.(t=a,b)(UU)=(t-=a(UU),b{UU))

The main theorem should not be regarded as trivial however, as it requires 208 substitutions.
_ Without the LCF simplifier, this proof would have been over 1000 steps long. This is an important

theorem because it shows that our interpretation of statements behaves correctly with respect to the
termination of computations.

| Consider the following program

_ var n.integer
begin

: I: goto I;

n:=\I;

end

| This program fails to terminate. To us it seems that the only reasonable interpretation of this
program must be the undefined function. If the meaning function 1S not strict, it may happen that

the assignment of 1to n builds up a store nwhichn has value 1. Suppose we were to choose the
} most obvious interpretation of assignment, i.e. if the above program is being executed in a store s,

and a frame whose framepointer is f then the meaning of the assignment statement in the example is
a new store sl:
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s1 = [Xfr.fref=>[Am.mzn=>1,s(f,m)],s({fr,m)),

SO

sl (f) = [Am.m=n=>1,s(f,m)].

This new store has the unfortunate property that even if $2UU, we still have sl (f,n)=l. It is thus not
undefined.

The desire for the interpretation of a program to be an extensionally given function on the store
and composition of these functions to correspond to executing one program after another, means that
an interpretation which is strict on the store is the only one that makes sense. In Hoare’s axiomatic
treatment this problem goes away but the price is that every statement that you can prove about a
program is conditional on its termination. In the above case one proves the sentence, “If the
program terminates then n=1".

Because, as already said, the proof is a single step we do not give it here. Instead we will explain
why for our semantics ASSIGN is strict on the store. The "=x" represent some arbitrary combinator.

ASSIGN = [An v f s.n=FUNV-ISADMISVAL (s(f,typeloc FUNV),v(s))= *%*,ISINTYPE(n,v,f,s)= xxx, %%xk)

So

ASSIGN(n,v,f,Ul) = nsFUNV=ISADMISYAL(UU,v(UU))= x%x UUISINTYPE(n,v,f,UU)= kkk dk) |

ISADMISVAL asks if a value is of an admissible type. UU is not even a type, no less admissible, so
ISADMISVAL returns UU.

ISINTYPE(v,val,f,UU)=ISLOCAL(typeloc NAMOFVAR(v),Ul))=ISADMISVAL(TYPOFVAR(v,f,UU),val(UU)),FF]

ISLOCAL(loc,UU) = UU=UNDEF=FF,TT

But for any X, UU=X is just UU so ISLOCAL(loe,UU)=UU. This is the central point of the entire strictness
proof. Looking up a location in a defined store in an existing frame is not undefined if that
location has not been created. Stores are constructed in such a way that we can test if it 1s defined
and no assignment is made if it isn’t. This check is done by ISLOCAL, which returns UU if the frame

is undefined. The proof is completed by making the correct substitutions.

| Other theorems about strictness appear’in section 4.5.

Section 4.2 Properties of MS for goto-free programs

| A goto-free program is defined by the following predicate :

isgotofree =[«F.[AS.
isgoto s&s = FF,
issingles = T T ,
islabstat s =» F(statmof s),
isiter s =» F(bodyofs),

| —
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iscond s =» F(thenof s) A Flelseof s),
~~ iscmpnd s = F(fstof s) A F(rmdof s),UU]],

whereissingle and isiter are predicates satisfied by the simple and the repetition statements

~ | respectively (see appendix 2.4). The main theorem about goto-free programs is:

V S P fisgotofree(S)::isgotofree(P):: MS(append(S,P),f) = MS(S,f) ® MS(P,f).

— It states that if S and P are texts without any goto statement, then the result of the application of MS
to the concatenation of themis the same as the functional composition of the application of MS to
each of them. The proof of this theorem is based on a case analysis on the first element of S. We

3 have not included it in the paper as it is rather long even if very simple. We didn’t find any proof

byinductiononisgotofree, so we proved it by induction on MS. To do this the two following lemmas
~ are to be proved:

oo VS P f.isgotofree(S)::isgotofree(P)::MS(append(S,P),)eMS(S,f)eMS(P,f)
VS P f.isgotofree(S)::isgotofree(P)::MS(S,{)@MS(P,f}cMS(append(S,P),f)

Co In section 4.1 it has been noted that the proof of the strictness of MS on the store depends on a

- theorem about conditional expressions. For proving the above lemmas with a similar proof we
needed the following theorem about conditional expressions:

B Vi(t-ab) © (t=d,f) ASSUME acd, bet.

| Unfortunately the current version of the LCF conditional simplifier doesn’t handle sentences of the
No form AeB as simplification rules, even though in this case no specific property of the symbol eis

Involved.

- Theabove homomorphism theorem isanalogous to the Hoare’s composition rule for statements,
valid for goto-free programs. This theorem, as welt as Hoare’s rule is not valid in general. Consider
the following example:

“-

- a=
goto l;

a:=3,

- l: a:=a+l,;

~ the corresponding abstract syntax Is;

P = mkempnd(mkass(a,mknumconst 1),
mkempnd(mkgoto 1),
mkempnd({mkass{a,mknumconst 3),

oo mkempnd(mklabstat( 1 ,mkass(a,mkbexpri(plusi,a)),ES))))

The-meaning of this program in the frame specified by the frame pointer f is defined by MS(P,f).
— T he validity of the composition rule would imply the following equivalence:

MS (P,f) = MS(mkempnd(mkass (a,mknumconst 1 ),ES),1)®
MS (mkempnd(mkgoto(l),ES),f)®

« MS (mkempnd(mkass(a,mknumconst 3),ES),f)®

A" ~ .
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MS(mkempnd(mklabstat(]l ,mkass(a,mkbexprl (plusl,a))),ES)f),

which is false: starting from a store where a is declared in the current frame, MS(P,{) returns a store
where, inthe current frame, a has value 2, while the right hand side evaluates to a store where, in

the current frame, a as value 4. The right hand side is wrong, since by interpreting each statement

separately, it 1s impossible to skip a piece of text as required by a goto.

In the next section we consider how the semantics of a PASCAL statement part is simplified when it

is goto-free.Our semantics deals also with programs where the composition rule is not valid. Hoare
axiomatic approach to the definition of the semantics of a programming language relies on the

validity of the composition rule, so it cannot easily treat programs with goto’s. Hoare and Wirth
| 1973 axiomatizationof PASCAL, for instance, doesn’t define the goto statement. The ' Igarashi,

London and Luckham 1973 VCGEN, based on this approach, deals only with backwards goto’s and
preserves the validity of the composition rule by considering indivisible the piece of program

{ between the label to jump to and the goto.

Section 4.3 An equivalent meaning function for goto-free programs

As noted in the description of repetition statements (see 3.3.2.2,-3), if the body of the repetition
statement is goto-free, new combinators may be defined for describing their semantics. In this case

; the semantics defined by MS is thesame as that defined by the new combinators.

: The proofs of the first four equivalences are quite similar; they are carried out by subgoaling to the
two goals with the logical symbols 2, & respectively. All these proofs are standard and could be
automated by enriching the features of the current LCF system. In appendices 4,56 we have
included the commands and the printouts of the proof of one half of each of the first three

] equivalences. The fourth is analogous to the third one.

The proof of the equivalence between MS and MSGTFR is carried out by proving the lemmas with €,
1 o> respectively, and using the above equivalences for repetition Statements. A long case analysis on $
i is performed, analogous to that discussed in 4.2. Even in this case the proof could become very short

by improving slightly the LCF conditional simplifier.

| 1 )VSt{.isgotofree(S):: MS(mkempnd(mkwhile(!,S),ES),f) = WHILE(MBEXPR(t,f),MS(S,1))

where WHILE = [oF [At b.COND(t,b®F (t,b),ID)]]

2) VS tf. isgotofree(S):: MS (mkempnd(mkrepeat($ 1),ES),f) = REPEAT(MS(S,f),MBEXPR{mkbexpr! (not,1),{))

where REPEAT = [oF.[Ab tb®COND(tF(b,1),ID)]]

| 3) VSi el e2 f .isgotofree(S):: MS{mkcmpnd(mkforto(iel ,02,5),ES),f) = FORTO(i,el,82,MS(S,f),{)

where FORTO = [«F.[\i el e2 b f. COND(MBEXPR(mkrel(lseq,el ,02),{),ASSIGN(i,MEXPR(el ,f),f)
®boF (i,mkexpr! (plusi ,i),e2,b,),ID)]];

j 4) VSiel e2 f .isgotofree(S):: MS(mkempnd(mkfordn(i,el ,e2,5),ES),f) = FORDN(i,el ,e2,MS(S,f),f)

| where FORDN= [«cF.[Ai €] e2bf. COND(MBEXPR(mkrel(greq,el ,e2),f),ASSIGN(i, MEXPR(e1 ,f),f)
|

|

|
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| ®b&F (i,mkexpr 1 (minusl ,i),e2,b,f ),ID)]};s

| 5) VS f. isgotofree(S):: MS(S,f) = MSGTFR(S,f)

where

| MSGTFR=[ocF[Ast f.
isemptyst st = ID,

_ iscmpnd st =

} isemptyst(fstof st)= F(rmdof st,f),
islabstat(fstof st)= F(statmof(fstof st),f)@F (rmdof st,f),
isread(fstof st) =» READ(namof(fstof st),f)®F(rmdof st,f),
iswrite(fstof st) = WRITE(namof (fstof st),f)®F (rmdof st,f),
isass (fstof st) => ASSIGN(ihsof(fstof st),MEXPR(rhsof(fstof st),f),f)®F (rmdof st,f),
isproccall(fstof st)-[\s.MPB(PROCFAL(namof{fstof st),f,s),

“ ~ actargof(fstot st),f,s,namof(fstot st))]®
[As.MD(PROCDECL (namof(fstot st),t,s),suce f,5)}®

— [AsF(PROCBODY(namot(fstof st),f,s),suce f,s)J@CLEAR(suce f)SF (rmdof st,f),
iscond(fstof st) = COND(MBEXPR(testof(fstof st),f),

F(thenof(fstof st),f),F(elseof(fstof st),f))®F (rmdof st.f),
iswhile{fstof st) = WHILE(MBEXPR(testof(fstof st),{),F(bodyof(fstof st),f))OF (rmdof st,f),

- isrepeat(fstof st) = REPEAT (bodyof(fstof st),MEXPR(mkbexpr! (not,testot(fstot 5t)),1))@F (rmdot
isforto(fstof st) = FORTO(indexof(fstof st),Ibof(fstot st),

| ubot(fstof st),bodyot(istot st),f)@F (rmdof st,f),
- isfordn(fstot st) = FORDN(indexof(fstof st),ubof(fstof st),

Ibof(fstof st)bodyof(fistof st),f)OF(rmdof st,f),UU,UU])

The definition of MSGTFR shows how our semantics simplifies for goto-free programs. No
be manipulation of the text is required, every statement can be treated independently of the others,

“some combinators as fortest, fortoup, fordnup, append are no longer necessary. The semantic

| combinators for repetition statements not only simplify the form of MS but also the proofs of
. properties of goto-free programs. In fact, in the general case proofs by induction on the repetition

statement mustbe done by inducting on MS. For goto-free programs the induction can be directly
done on the appropriate semantic combinator. Hence, only properties of the body of the repetition

! statements and not of the whole program are involved. The structure of the program reflects
directly on the structure of the proof since allows to factorize it into easier lemmas.

| Insection 5.1 two different programs which compute the factorial function are compared. In the first
one the iteration is performed by a while statement, in the second one by a backwards goto. The
proofs of their correctness are different, the goto-free case is more straightforward. The proof of the

| correctness of the goto program may be‘reduced to-that of the goto-free program by showing that, ingeneral, a while loop is equivalent to an appropriate loop controlled by a conditional goto. This
example shows the advantage of a formalism which allows to prove general properties of the

language and the necessity of creating the right environment of theorems about the programming

_ language to greately simplify the proofs of properties of programs.

: Sect ion -4.4 Equivalences for repetitive statements
1]

In giving an interpretation of PASCAL in LCF our aim was to be as close as possible to the

| informal description given in Wirth 1971. For this reason we proved most of the properties of thestatementsthat are mentioned in that paper. The LCF theorems stating the equivalences for

. repetition statements given in Wirth 1971 are:
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Ve S. MS(mkempnd{mkwhile(e,S),ES)) =
MS (mkempnd(mkeond(e,append(S,mkempnd(mkwhile(e,S),ES)),ES),ES)),

Ve S f. MS(mkempnd(mkrepeal(S,e),ES),f) =
MS (append(S,mkempnd(mkeond(mkbexpr} (not,e),mkempnd(mkrepeat(S,e),ES),ES),ES)),{),

Vi el @2 S f. MS{mkcmpnd(mkforto(i,e! ,2,5),ES),f) =
MS (mkempnd(mkcond(mkrel{lseq,el,02), |

mkempnd(mkass(i,e1 ),append(S,mkempnd(mkiorto(i,mkexpr1(plusl ,i),e2,8),ES))),ES),ES),f),

: Vi el e2 S f. MS(mkecmpnd(mkfordn(i,el,e2,5),ES),f) =
MS (mkempnd(mkecond{mkrel{greq,e 1,02),

mkempnd(mkass(i,e1 ),append(S,mkempnd(mkfordn(i,mkexpr| (minusl,i),e2,5),ES))),ES),ES),1),

All the proofs of the above statements are one step proofs. In fact, we have defined the semantics of
the repetition statements directly in terms of the equivalence described in Wirth 1971.

Section 4.5 Miscellaneous theorems on MDEC, MDEF, MS

Our aim in this section is not to give an exhaustive list of the properties of PASCAL, but rather to
show some typical example of theorems which have beenusedinthe proofs presented in this report.

First of allwewant to state that type definitions and declarations are independent of the order. The

theoremproved for type definitions is:

Vnln2 tyl ty2 fs.
isname(n] ):sisname(n2)::nl gn2::1SABSENT(n1 ,s(f)):sISABSENT(n2,s(f)) 32
MDEF(mkempnd(mktypedef(nl,tyl),mkempnd(mktypedef(n2,ty2),ES)),f,s) 5
MDEF(mkempnd(mktypedef(n2,ty2),mkempnd(mktypedef(nl,ty1),ES)),f 5);

This theorem states that if nl and n2 are different names and they do not appear in the store, then
the order of type definitions using these namesastype identifiers is irrelevant. The predicates

appearing in it have an obvious meaning: A is the negation of =,ISABSENTis the negation of
ISPRESENT. The proof of this theorem has not been included in the report sinceitisa very simple
proof done by simplification and using some properties of conditional expressions. Analogouslythe
following theorems can be proved. They state that declarations are independent of the order,

Vnin2 tyl ty2 fs.
isname(n1):tisname(n2)::nl #n2 ::ISABSENT(nl ,s{f))::ISABSENT (n2,s(t))::
MDEC(mkcmpnd(mkvardeci(nl ,ty] ),mkempnd(mkvardecl(n2,ty2),ES)),{,s) =
MDEC(mkcmpnd(mkvardecl(n2,ty2),mkempnd(mkvardeci(ni ty1),ES)) 1,5);

Vnin2 tyl ty2 fs2 fs .
isname(nl):cisname(n2):nl fn2::ISABSENT(n1 ,s(f))::ISABSENT (n2,s(f))::
MDEC (mkempnd(mkvardecl(nl ty| ),mkempnd(mkfundeci(n2,is2,ty2),ES)),{,s) =

MDEC (mkempnd(mkfundecl(n2,{s2,ty2),mkecmpnd(mkvardeci(n} yl ),ES)),f,8);

Vnl n2 tyl ty2 fsl fs2 fs .
isname(nl):isname(n2)::nl An2::ISABSENT(nl ,s(f))::ISABSENT (n2,s(f))::
MDEC (mkempnd(mkfundecl(nl fs1,ty1),mkempnd(mkfundeci(n2,fs2,ty2),ES)),f,s)=
MDEC (mkempnd(mkfundecl(n2,fs2,ty2),mkempnd{mkfundeci(nl ,fs1,ty1),ES)) fs);
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Vnin2 tyl fsl ps2 fs.
~~ isname(nl):tisname(n2)::nl #n2::SABSENT(nl,s(f))::ISABSENT(n2,s(f))::

MDEC (mkempnd(mkfundecl(nl {sl ty1)mkempnd(mkprocdeci(n2,ps2),ES))fs) =
MDEC (mkempnd(mkprocdecl(n2,ps2),mkempnd{mkfundecl(nl fs1,ty1),ES)),f,8);

Vnin2 tyl ps2 fs.
isname(nl)::isname(n2)::nl gn2::ISABSENT (nl ,s(f))::ISABSENT(n2,s(f))::

~ MDEC (mkempnd{mkvardecl{nl ty 1),mkempnd(mkprocdecl(n2,ps2),ES)),f,s) =
| MDEC (mkcmpnd(mkprocdecl(n2,ps2),mkempnd(mkvardecl(nl ,ty1),ES)) fs);

| Vnl n2 psl ps2 fs.
isname(n] ):zisname(n2)::nl #n2 :ISABSENT(n]1 ,s(f))::ISABSENT(n2,s(f))::

MDEC (mkecmpnd(mkprocdecl(nl ps] ),mkempnd(mkprocdeci(n2,ps2),ES)),f,s) =
MDEC (mkcmpnd(mkprocdecl(n2,ps2),mkempnd(mkprocdeci{nl psi ),ES)) fs);

Some theorems describing properties of MDEF and MDEC are now listed. Each of them has been
- proved in one step.

V x y f. MDEF{mkecmpnd(x,y),f)=MDEF(x,f)®MDEF (y,f);

- | V x y f. MDEF (mkvardecl{(x,y)f)= 1D;

V xy z . MDEF (mkfundecl(x,y,2),f)s 1D;

B V x y f. MDEF (mkprocdeci(x,y),f)= ID;

| V x y f. MDEF (mktypedef(x,y),f}= CREAT(f,x,y);
- .

V§. MDEF(ES, f)=ID;

V x y f. MDEC(mkempnd(x,y),{)=MDEC(x,)®MDEC(y,f);

V x y f. MDEC(mkvardecl(x,y),f)s CREAV(fx,y,);

V x y z {. MDEC(mkfundecl(x,y,z),f)= CREAF(f,x,y,2,,f);

Vv x y f. MDEC(mkprocdecl{x,y),f)= CREAP(fx,y,f);

. Vf.  MDECES,f)=ID;
~

: In the following we present some of the theorems dealing with MS, the combinators defining the
semantics of statements and some predicates used by the semantic combinatots. The proofs of these
theorems are very simple (one step), however they were useful in proving programs as well as

properties of MS.

V{MS(ES,f)=ID;

: Vx y f.MS(mkecmpnd(mkread x,y),f)=READ(x,f)®MS(y,f);

Vx y f.MS(mkecmpnd(mkwrite x,y),f)=WRITE(x,f)@MS(y,1);

“ Vx! x2 y f.MS(mkempnd(mkass(x! ,x2),y),{)=ASSIGN(x] ,MEXPR(x2,f),{)eMS(y,f);

~ P—
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Vn f s.ASSIGN(n,UU,f,s)=UU;

Vn e {.ASSIGN(n,e,f,UU)=UU;

Vn {.WRITE(n,f,UU)=UU;

Vn{.READ(n,f,UU)=UU;

MEXPR(UU)=UU;

BIND(UU)=UU;

MPB (UU)=UU;

VI {.FETCH(l,f,UU)=UU;

Vn { PROCDEF (n,f,UU)=UU;

Vn f.PROCFAL(n,f,UU)=UU;

MD(UU)=UU;

Vn f.PROCTXT(n,f,UU)=UU;

Vn f.PROCDECL(n,f,UU)=UU;

V{.CLEAR(f,UU)=UU;

. Viec.ISLOCAL(loc,UU)=UU;

ISINBOUND(UU)=UU;

ViyISADMISVAL(ty,UU)=UU;

Vv f s.ISINTYPE(v,UU,{,s)=UU;

Vp e f.ISINTYPE(v,e,f,UU)=UU;

V1.ISPROCFRAME(f,UU)=UU;
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: SECTION 5 EXAMPLES

In this section we want to discuss how to prove PASCAL programsin LCF. Two examples will be
fully described:

1) the factorial program,

oo 2) the McCarthy Airline reservation system.

We have also proved correct a PASCAL program for the computation of the GCD of two positive

integers with the euclidean algorithm and a PASCAL programfor the computation of the norm of a
vector. These proofs have been executed using an earlier version of the LCF axiomatization of

L PASCAL and are described in Aiello and Aiello 1974. We have not rerun them on the final

version of the axioms because, even though many details have been changed, the underlying ideas
= have ‘not been modified, so the proofs would remain very similar.

_ Section 5.1The factorial program
,

>

| The partial correctness of a program for the computation of the factorial function has been already

a proved in LCF and discussed in Weyhrauch and Milner 1972. The proof presented here is very
| similar to that one. We have included it because the factorial program is a very simple and familiar

example, so it is easy to go through the proof of its correctness] By comparing the proof given here

| and that given in Weyhrauch and Milner 1972 it may be seen that even though the programming
he language described here is much richer, the proof isn’t more complex.

[

| A PASCAL program which computes the factorial function is the following:
var nln2: integer
hegin

read(nl);

read(n2);
while n2#8 do

begin nl:=nl:m2n2:=n2-1; end;
. write(nl);
i end;

If the input consists of-two nonnegative integers ¥ and n this program computes x=:n/. The factorial

function is obtained if x equalsl.

| in this program the repetition is performed by a while statement, hence we will call it while-program.
- An analogous program for the computation of the factorial function may be also written using a

goto statement (it will be called goto-program):

| var nln2: integer
begin

read(nl);

read(n2), |
1: if n2#8 then
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begin nl.=nlin2n2:=n2-1;g0to I; end;
write(nl),
end;

In LCF both programs are provable correct with respect to the function FACT:

FACT =[eF.[An x.n=8 = x,F (pred n,n¥x)]],

FACT applies to two arguments n and x and evaluates to x*n!.

In the following, the LCF proof of the while-program is described in details. This program has no

goto’s, so the theorems described in 4.2 for goto-free programs can be used, making the proof much
simpler. The proof of the second form of factorial program will only be sketched.

The abstract syntactic form of the while-program is:

FACTORIAL =mkiext(DP,SP),

DP = mkempnd(mKkvardeci(n} INT),mkempnd(mkvardeci(n2,INT),ES)),

SP = mkempnd(mkread(n2),mkempnd(mkread(nl),
mkempnd(mkwhile(test,body),mkempnd(mkwrite(nl),ES)))),

test =mkbexpr 1 (not,mkrel(eq,n2,mknumconst(8))),

body = mkempnd(mkass(nl ,mkexpr2(times,nl ,n2)),mkempnd(mkass(n2,mkexpr! (minusl,n2)),ES)).

The form of the LCF theorem to be proved is:

Vn x.isnat (n)::isnat (x):: APPLY (FACTORIAL,n,x)cFACT(n,x). 3

Informally,it says thatthe evaluation of the program FACTORIALon the data nand x,’ if it
terminates, gives the same result as the computation of the function FACT on n and x. APPLY is the

following combinator:

APPLY = [A p x y.fstof (FUNCT (p,EOF,LIST(x,y)))]},

LIST =[Xxy.mkpair(x,mkpair(y,EOF))].

As said in section 2, FUNCT maps sequences of integers into sequences of integers. Given a program p
andtwoinputnumbersxandy, APPLY applies the combinator FUNCT to the sequence LIST(x,y) and
then takes the first element of the output sequence.

The method used to prove the partial correctness of the while-program is quite standard for proving

programswitha whileloop. All the combinators appearing on the term at the left hand side are
substituted by their definition. After some simplification (automatically done by LCF) the goal to be

proved is:
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” Vn x . isnat(n) :: isnat(x) ::

RESULT(WRITE(n1,8,WHILE(MBEXPR(test,B8),MS(body,8),READ(n1,8,READ(n2,8,
CREAV(8,n2,INT,8,CREAV(8,n] ,INT,8,FRAMEB(FACTORIALINPUT (LIST (n,x)),EOF))))})))) © FACT (n,x).

| where RESULT is defined as Vx.RESULT x = f{stof(QUTPUT x). The theorem on the while statement

given in section 4.3 for goto-free programs has been used in achieving the above goal. The
~ semantics of the loop is expressed in terms of the WHILE combinator. As it cah be seen from the

| | | printout in appendix 7.2 the proof is done by induction on the WHILE combinator. The base case istrivially proved. The induction step is proved by cases on the predicate which controls the loop, i.e.
-(n=8). If ~(n=8)s fi be then the result easily follows, if -~(n=8) is undefined a contradiction arises

oo because n is a natural number. If ~(n=8) is true, the goal is proved by a proper instantiation of the

C induction hypothesis. It is instantiated for pred n and x¥n. Usually, in programs for the computation
of the factorial of a natural number the variable nl is not inputed a value, but it is initialized to I.

The initialization of nl to x results in a strengthening of the induction hypothesis. In fact the
variable x appears universally quantified in the statement of the theorem to be proved and can be
properly instantiated. Actually the proved theorem is stranger than the desired one. The factorial
program is obtained by giving the value | to x in the above theorem.

, -

- The proof given in appendix 7.21 s generated by the list of commands given in appendix 7.1. We
| want again to point out that LCF is not an automatic theorem prover. It has only a subgoaling
Lo mechanism and a sophisticated simplification algorithm which converts terms and simplifies them by

using the axioms and theorems put (by the user) into a “simplification set".

VL In the simplification set there are all the syntactic constructors and selectors, plus the semantic
combinators appearing in the first line of the list of commands. Note that LCF labels are prefixed
by a ".", each axiom has been labeled with an identifier equal to the combinator being defined, and

i INDUCT | s the label of the induction hypothesis. The modifications done to the simplification set after
the proof is started (SS+/-something) are done only to increase the readability of the goals. In
addition, to increase the readability of the proof, a combinator FRAME! is introduced to describe an

| intermediate store:
, FRAME! = [At n x.[\f.f=0-

[Aloc.locz=n2 =n,
loc=n] =-3x,

~ loc=typeloc n2 = INT,

. loc=typeloc nl = INT,
loc=fileloc INP— EOF,

X loc=fileloc QUT- EOF,
loc=textloc = t,UNDEF],UU]].

| In the printout of the proof each step appears with its “reason”, namely the tactic used in achievingit, as well as the step numbers of the axioms and the names of the theorems involved in the
simplifications. The theorems THI, TH2.. are general theorems about the semantics, they are some of
the theorems listed in section 4.3 and 4.5. Theorems named ARITHI, ARITH2.. deal with the

arithmetic, they are taken from Newey 1973. Theorems named LMI, LM2... are specific lemmas about
this program. All of them have been proved in the same environment as the main theorem and their
proofs are very simple. Often the proof reduces to a one step simplification. They are:



The Semantics of PASCAL in LCF 36

READ(nl1,8,READ(n2,8,CREAV(8,n2,INT,8,CREAV(8,n1,INT,8,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF)))))=FRAME (SP,n,x)

ASSUME isnat x = TT, isnatn=TT

which implicitly defines the frame FRAMEL,

MS (body,8,FRAME!L (SP,nx))= FRAME] (SP,pred n,x¥n) ASSUME isnat x = TT, =(n=8)=TT.

It specifies the effect of the meaning function MS on the body of the while statement. Moreover

MBEXPR (test,8,FRAMEI (SP,n,x))= ~(n=8) ASSUME isnat n =TT, isnat x=TT

evaluates the test appearing in the while, and finally

RESULT(WRITE(n1 ,8,FRAMEIL (SP,n,x)))=FACT(n,x) ASSUME ~(n=B)=FF, isnat(x)=TT;

asserts that, when the loop is over, the value of the varible nl is FACT(n,x).

As already noted the proof is fearly standard and could be almost completely automated by
increasing the proving capabilities of LCF. The case of the goto program the proof is standard as
well, but much longer. In fact the theorem presented in 4.3 no longer applies, so the goal to be
proved, after the first simplification is:

V n x.isnat (n) :: isnat(x) s:

© RESULT{MS(mkecmpnd(mklabstat( 1 ,mkcond(test,
mkempnd(mkass(nl,mkexpr2(times,nl,n2)),
mkempnd(mkass(n2,mkexpr 1 (minusi n2)),
mkempnd({mkgoto(1),ES))),ES)),mkempnd{mkwrite(nl ),ES)),8,

READ(nl,8,READ(n2,8,CREAV(8,n2,INT,8,CREAV(B,n],INT,8,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF)))))) € FACT{n,x).

In order to prove it by induction on MS a possibility is that of proving the above goal in parallel
with the following 3 goals:

V n x.isnat(n) :: isnat(x) ::

RESULT([As.COND(MBEXPR(test,8,s),

MS (mkempnd(mkass{nl,mkexpr2(times,ni ,n2)),
mkempnd{mkass(n2,mkexpr | (minus1,n2)),
mkempnd(mkgoto( 1 ),mkempnd(mkwrite(n1),ES)))),8,s),

WRITE(n1,8,5)] |
READ(n},8,READ(n2,8,CREAV(8,n2,INT,8,CREAV(8,nlINT,8,

FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF))N)) © FACT(n,x).

Vn x . isnat(n) :: isnat(x) ::
RESULT([As.COND(MBEXPR(test,8,s),

ASSIGN(nl MEXPR(mkexpr2{times,nl ,n2),8),s)®
MS (mkempnd(mkass(n2,mkexpr] (minusl ,n2)),
mkempnd(mkgoto( 1),mkempnd(mkwrite(ni),ES)))),0,s),

WRITE(n!1,8,s)]
READ(n}1,8,READ(n2,8,CREAV(8,n2,INT,8,CREAV(8,n],INT,8,
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« FRAMEB(FACTORIAL,INPUT(LIST{(n,x)),EOF))))) = FACT(n,x).
Vn x . isnat(n) :: isnat(x) ::

RESULT ([\s.COND(MBEXPR(test,B,s),
ASSIGN(n! ,MEXPR(mkexpr2(times,nl,n2),8),5)®
ASSIGN(n2 MEXPR(mkexpr | (minusi,n2)),8),5)®
MS{ mkempnd(mkgoto(l ),mkempnd(mkwrite(nl ),ES)))),B,s),

. WRITE(n1,8,s))
READ(n1,8,READ(n2,8,CREAV(B,n2,INT,8,CREAV(B,nl INT,8,

FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF)))))) = FACT (nx).

In this way there are four induction hypotheses to be instantiated and it can be seen that each of
them serves to prove the next goal in the above order. Even this tricky way is standard. It can be

C applied whenever in a ‘program a backward goto is encountered. In addition, such tactic could also
be implemented in a PASCAL oriented version of LCF, so the user is relieved from the task of

generating all the parallel goals.

Section 5.2 The McCarthy Airline Reservation System

C’
John McCarthy suggested the problem of proving the correctness of a program for the reservation

system of the McCarthy Airline Company. Such company has one plane, with only one seat. The
plane never flies! There are two customers, each one sometimes makes a reservation and then, tired
of waiting for the departure of the plane he cancels. Later on he may try again.

N Proving the correctness of a program for the McCarthy Airline reservation system is interesting
- since it presents some characteristics absent in the programs so far proved correct. A program which

realizes a reservation system must deal with a potentially infinite stream of input data “read” at
successive instants of time. Each time a request is inputed, an output datum is produced. The
correctness of incremental computations cannot be dealt with in a system where the input and output
operations aren’t mentioned.

LN

Usually, in the existing systems for program verification, I/O is completely ignored. It is not
considered to influence the “meaning” of a program. In fact, existing systems deal with algorithms,
rather than programs, even though such algorithms are expressed in the syntax of a programming

language.

N Our axiomatization of PASCAL includes the operations of inputing data from aninputfileinto
locations of the store and outputing data from the store into an output file. The length of these files

isn’t fixed a priori, even for a particular program.

In our formalism we may express and prove a statement of the correctness of a PASCAL program
for the McCarthy Airline reservation system. Such statement asserts that, no matter what the

“ sequence of requests has been, the seat at any instant of time is reserved for the right person.

Let

st denote the seat,

w! denote the waiting list,

rq denote the request and
¢ ps denote the passenger.

C
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The variable st may assume the values 8, 1 or 2 meaning free, reserved for passenger 1 or 2. The
variable w! assumes the values 8, 1 and 2 with the same meaning. rg mayassume the valueBand|
for cancellation and reservation, respectively. ps assumes the values 1 or 2, denoting the two
passengers.

A PASCAL program realizing the McCarthy Airline reservation system is the following:

hegin

var st,wl,ps,rq: integer,
read(w!),

read(st),

repeat

hegin

read(rq);
if rq#3
t hen begin

read(ps);
if rq=1
then if st=8 v st=ps

then st:=ps also wl=ps;
else if st=8 v st#ps

then wl:=8 else begin st:=w! end
write(st)
end

until rq=3
end

The program consists of an initialization part, in which the initial status of the seat and the waiting

list (presumably both 8) are inputed, and of a repeat loop. The body of the loop consists in reading
new data, updating the status of the seat and the waiting list and then writing the status of the seat

intothe output buffer. An extraneous value in the input sequence, in this case the number 3, stops
the repetition.

This program doesn’t make any assumption on the behavior of the passenger or about the kind of

requests it receives. Each request is accepted and the program behaves correctly even if, for instance,
two cancellationsinarow are done by the same person.

The abstract syntax for the above program is: v

McCARTHY = mktext(DP,SP),

DP = mkempnd(mkvardecl(wl,INT),mkempnd{mkvardecl(st,INT),
mkempnd(mkvardeci(rq,INT),mkempnd(mkvardeci(ps,INT),ES)))), |

SP = mkempnd(mkread(wl),mkempnd(mkread(st),
mkempnd(mkrepeat(BODY, mkrel(eq,rq,mknumeonst(3))),ES))),

BODY = mkecmpnd(mkread rq,mkempnd(mkcond(mkrel{eq,rq,mknumconst(3)),ES,
mkempnd(mkread ps,SEATUPDATE)),ES)),

SEATUPDATE:=
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mkempnd(mkcond{mkrel(eq,rq,mknumconst 1),
\ mkcmpnd{mkcond(mkbexpr2(or,mkrel{eq,st,mknumconst 8),mkrel(eq,st,ps)),

mkempnd({mkass(st,ps),ES),mkempnd(mkass{wl,ps),ES)),ES),
mkempnd(mkeond(mkbexpr2(or,mkrel(eq,st,mknumconst 8),mkbexpr! (not,mkrel(eq,st,ps))),

mkempnd{mkass(wl,mknumconst 8,ES),
mkempnd(mkass (st,wl),mkempnd(mkass(wl,mknumconst 8,ES))),ES)),

mkempnd(mkwrite st, ES)),

“

The statement of the partial correctness of the McCARTHY program is:

Visq 0sq p q.iswfsq(isq)::iswfos(osq):tisint(p)azisint(q)::
APPLY (McCARTHY,p,q,isq,054)<BOOKING(p,q,isq,059),

where: isq denotes the input sequence, osqdenotes the initialization of the output buffer, namely the

. output sequence,p and q are the initial values of the waiting list and the seat.

The predicate iswfsq (is-well-formed-sequence) is defined as:

iswfsq = [«F.[Asq. (ell (sq)= 3)=TT,iseof sq =UU,isrqst(ell sq)Aaisprsn(el2 sq)=>F(taill sq),FF]],

‘ whereell,el2,taill,isrqst (isrequest) and isprsn (isperson) are defined as follows:

ell = [xx. fstof x],

el2 = [\x. ell (rmdof x)},

taill = [Ax. rmdof(rmdof x)],

isrgst = [Ax.(x=8)v(x=1)],
isprsn = [Ax.(x=1 )v(x=2)].

The predicate iswfos (is-well-formed-olJtyut-sequence) is:

‘ iswlos = [oF [Aos.iseof 0s = TT,isint(fstof 0s)=F(rmdof os),FF]],

and must be satisfied by the object, presumably EOF, that initializes the output buffer.

The combinator APPLY appearing in the definition of the goal is:

“ APPLY = [X p x y is 0s.FUNCT(p,0s,LIST(x,y,is))],

LIST = [Ax y is. mkpair(x,mkpair(y,is))},

FUNCT, the combinator which “interprets” a program p in the frame where the input and output
buffers have been initialized, 1s described in section 2.

C

The factthat, ateachmoment, the scat is reserved for the right person, is expressed in LCF by the

B function BOOKING:

u

«
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BOOKING = [ocF.[A st wi sq 0s.
iseof sq = UU,

(ell sq=3) = os,
F(taill sq,stupdt{sq,st,wl),wlupdt(sq,st,wi),mkpair(stupdt(sq,st,wl),0s8))]],

where stupdt (seatupdate) and wlupdt (waiting-listupdate) are defined as:

stupdt=[Asq st wl.(ell sq=1 )—(st=B)v(st=el2 sq)el2 sq,st,(st=8)v -~(st=el2 sq) = st,wl],

wlupdt=[Asq st wl.(ell sq=I )=2(st=B)v(st=el2 sq)-wi,el2 sq,8].

We express the fact that, at each instant of time the program “answers” in the right way, by stating
that it behaves correctly on input sequences of any length. Being extensional our semantics cannot

express the concept of elapsation of time, but, by talking of sequences of any length we give an
adequate extensional representation of a continuing process.

The list of LCF commands and the printout of the proof of the partial correctness of the MCCARTHY
program with respect to the BOOKING function is given in appendix 8. The goal to be proved, after
the first simplification is:

Visq osq DP q.iswfsqlisq) :: iswfos(osq) :: isint(p) :: isint(q) =:
OUTPUT (~(MEXPR(rq,8,MS(BODY,B,READ(st,8,READ(WI,8,FRAME (p,q,isq,059)))))=3)=

REPEAT(MS(BODY,8),MBEXPR{mkbexpr] (not,mkrel(eq,rq,mknumconst(3))),8),8,
MS(BODY,B,READ(st,8,READ(wI,8,FRAME] (p,q,i5q,059))))),
MS (BODY,8,READ(st,8,READ(wI,8,FRAME] (p,q,isq,08q))))) « BOOKING(p,q,isq,0s9)

In achieving this goal the theorem on the repeat statement, given in section 4.3 has been used, The

combinator FRAME! is introduced to increase the readability of the goal. It describes the store after
the declarations are done.

FRAME! = [Ax y sq os. [Af.(f=8)-[\loc.
loc=typeloc ps=INT,
loc=typeloc rq—>INT,
loc=typeloc st-INT,
loc=typeloc wi=>INT,
loc=fileloc INP=INTERNALREP(LIST(x,y,sq)),
loc=fileloc QUT=INTERNALREP os,
loc=textloc  =»SP,UNDEF],UU].

The proof of the McCARTHY program differs from that of the factorial program mainly for two
reasons: 1) the while and the repeat statements behave differently, having the test performed at

different places. 2) here an initialization is done within the body of the repetition statement. In fact,
the two values of rq and ps are read within the loop. For this reason the loop must be executed once
in order to create a location named rq and one named ps, before doing an induction on the

combinator REPEAT.The goalis proved by cases on the test which controls the repeat loop. The
only nontrivial case is thatinwhich the input sequence is not yet over, namelyrq¢3. In this case the
repeat loop goes on, so an induction is needed for completing the proof. The base case of this
induction is trivial. The induction step is proved by doing again cases on the test which establishes
the exit conditionsfromtheloop. If the loop is completed a lemma is used to state the result, if it
goes onthe goal is proved by an appropriate instantiation of the induction hypothesis.
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As in the proof of the factorial program thetheorems used inthe proof havebeendivided into THs,
- ARITHs and LMs. THs state facts about the semantics, oie of them istheabove mentioned theorem

| about the semantics of the repeat statement f o r goto-free programs. They are shown in 4.3 and 4.5.
ARITHs are theorems dealing with the arithmetic and properties derived from the above axiomson

the well formedness of input and output sequences. LMs are specific lemmasregarding this program.
oT T he list of these lemmas follows.

a. Vsqos x1 x2. MD(DP,8,FRAMEB(McCARTHYINPUT(LIST(x1 ,x2,5q)),INTERNALREP(0s)))=
_— FRAME 1 (x1,x2,5q,08);

isan implicit definition of FRAMEL. It defines the store after thedeclarationsaredone.

READ(st,8,READ(wl,8,FRAME] (x1 ,x2,5q,05)))=FRAME2(x1 ,x2,5q,0s)

| - ASSUME iswteq(sq)=TT, iswlos(os)=TT, isint(x] J=TT, isint(x2)TT
oo This statement is an implicit definition of FRAME2. It describ es the store after wi and st are

| initialized.

FRAME2 = [Ax] x2 sq os. [\f.(f=8)=[Aloc.
 ™ loc=st x2,

; loc=wl -x1,
loc=typeloc ps=INT,
loc=typeloc rq=>INT,

| loc=typeloc st—3INT,
loc=typeloc wi=INT,
loc=fileloc INP->INTERNALREP(sq),
loc=fileloc QUT-INTERNALREP(os),
loc=textloc ~~ —=SP,UNDEF],UU],

The nexttheorem:

OUTPUT(MS (BODY,8,FRAME2(x1 x2,5q,05)))=BOOKING(x] x2,5,05)
| ASSUME «(ell sq=3)=FF,iswfsq sqiTT,iswfos 0s=TT,isint x1=TT,isint x2&TT

states that, when the input sequence is over, the content of the outputfile after the execution of
BODY in the store described by FRAMEZ, equals the value of the function BOOKING.

BOOKING (stupdt(sq,x,y ),wlupdt(sq,x,y), tail sq,mkpair (stupdt(sq,x,y),08))2BOOKING(x,y,5q,0s)

ASSUME iswfsq sq =TT,iswfos os = TT,isint x & TT, isint y & TT,~(ell sq=3)=TT

states a simple property of the function BOOKING.

MS(BODY ,8,FRAME2(stupdt(sq,x,y ),wlupdt(sq,x,y)taill sq,mkpair (stupdt(sq,x,y),08)))=
MS (BODY ,8,FRAME3(x,y,5q,05))

| ASSUME iswfsq sq =TT,iswfos os = TT,isint x = TT, isint y = TT,~(ell sq=3)= TT;
MS(BODY,8,FRAME2(x,y,sq,058))= FRAME3(x,y,sq,0s)
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ASSUME iswisqsq=TT,iswfosos = TT,isint x = TT, isint y = TT,~(ell sq=3)= TT;

Thetwoabovetheoremsuse the combinator FRAME3 to describe an intermediate store:

FRAME3 = [Ax] x2 sq 0s. [M.(f=8)=[xloc.
loc=ps -el2 sq,
loc=rq -rell sq,

| loc=st -stupdt(sq,x 1 ,x2),
loc=wl -wiupdt(sq,x1,x2),
loc=typeloc ps=INT,
loc=typeloc rq-3INT,

i loc=typeloc st-INT,
loc=typeloc wi=INT,
loc=fileloc INP-taill (INTERNALREP gq),
loc=tileloc OUT—=mkpair(mknumconst stupdt (sq,x 1 ,x2),INTERNALREP os),

: loc=textloc -SP,UNDEF]},UU);

FRAMES3 is the description of the store after the body of the loop has been executed once.

| MEXPR(rq,8,MS(BODY, B,FRAME3(x,y,59,06)))= el3 sq

ASSUME iswfeq sq =TT,iswfos os = TT,isint x = TT,isint y = TT,~(ell sq=3) = TT

| MBEXPR(mkbexpr (not,mkrel(eq,rq,mknumconst(3))),8,MS(BODY,B,FRAME3(x,y,sq,0s)))= ~{el3 sq = 3)

| ASSUME iswfsq sq =TT,iswfos os = TT,isint x = TT,isint y = TT,~(ell sq=3)= TT

MEXPR(rq,8,MS(BODY,8,FRAME2(x,y,s5q0,0s)))=ell sq

ASSUME iswfsq sq=TT,iswfos os =TT,isint x=TT,isint y=TT.

The three above lemmas are introduced to abbreviate the evaluation of expressions.
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A SECTION 6 CONCLUSION

The most important aspect of this memo relates to our attempt to axiomatize al/l of the arithmetic

part of PASCAL. This is interesting for two reasons. First we are able to describe in LCF different
programming language features and show how they interact. Secondly we can express property, of
classes of programs and use them as lemmas in proofs of theorems about particular programs. A

yg typical example is the theorem about goto-free programs in section 4.2. It is used in section 5.2 to
simplify the first proof of the correctness of the factorial program. When interpreted literally, it
proves that for goto-free programs the composition rule in Hoare 1969 is valid. By formulating the
validity of this rule as a theorem we can discuss, in LCF, the relative merits of various programming
features. This has not previously been accessible to a formal treatment, and is important if the

mathematical theory of computation is ever to have an effect on language design.
L

Our desire to axiomatize all aspects of a programming language is not simply a matter of choice of:
available formalisms but represents a philosophy about what kinds of questions the mathematical
theory of computation should ask. The method of attaching inductive assertions to programs treats
programs one at a time. We do not think general theories about programs can be developed in this
way. Of course using inductive assertions is not a waste of time, but formalisms which use them

« should be expanded to include more general applicability.

The kind of questions about programs we have in mind include: will it run at all, even if its

| algorithm is correct? Will it compile? Does some other coding or “optimization” compute the same
function? We believe that LCF is capable of expressing these notions. Furthermore, any formalism
for describing a programming language could reasonably be expected to have this property.

QC.

- We criticize the original description of PASCAL, not because Wirth didn’t have philosophically
reasonable ideas of what various features of a programming language should do, but rather he
lacked a formalism which was strong enough to describe the effect of putting together features,

which although separately make clear sense, cause problems when combined. The example of the

procedure in the discussion of the for statement is a case in point. It is nor a PASCAL procedure as

LC the value of the index variable of the for statement is changed in its body. This fact, however is
- hard to detect and is certain to be missed by most compilers. The difficulty arises out of the desire

not to make the index of a for statement local to that statement, to have the limits of the for loop
variable determined once and for all and to have recursive procedures in the same language.
Features when combined in arbitrary ways make even the recognition of well formed programs

complicated. Further evidence of this difficulty is found in the large number of restrictions
L Igarashi, London and Luckham1973 have put on the application of their rules. The only example

. of a procedure given in Hoare and Wirth 1973 cannot be treated in their system. It does not seem
obvious to us how to extend their style of axiomatization to all of PASCAL. We do not impose any
of their restrictions, but describe the full generality allowed by Wirth. The expressive power of LCF
permits us to represent their restrictions and to prove that rules similar to theirs are valid for the

« subset of PASCAL they treat.
The above should reflect on language design. One overwhelming feeling of al\ three authors after

- doing this work was that we know large amounts more about how to describe a language to make

proving theorems about it reasonable. We believe that the ability to describe programming features
and demonstrate by proving theorems that a language has ‘certain properties represents a
particularly satisfying way to describe a language. Furthermore we propose this as a. standard for

¢ acceptable descriptions.

C -
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| One possible idea for future work is designing a programming language using the more precise

description of this paper. Only small modifications to PASCAL are necessary to give a similar
language a demonstrably smoother semantics. Thus, by starting with a more detailed description,
some properties of the language, which could only be informally described before would now be
made explicit as statements in LCF. One could then begin to amass a collectron of theorems that
could be used to prove properties of particular programs. We could then integrate everything into
an LCF-PASCAL “machine” which took a concrete PASCAL syntax and generated the LCF

abstract syntactic representation. Of course the new language would have to include more features
than those discussed here, Obvious candidates are real arithmetic, file manipulation and more

complicated data structures, If we wanted to abandon the ALGOL like control structures it would
be possible to choose either that of LISP or even the more aggressive control structures of Bobrow

and Wegbreit or the Landinj operator. It would be an interesting project to describe them all and
see what theorems hold when you allow them to exist simultaneously.

We chose to work out the McCarthy airline reservation system as an example because we believe
the treatment of interactive programs is another area which a vital mathematical theory of
computation must consider. Our idea for how to treat the correctness of continously interactive

programs was to consider them as functions from sequences of inputs to sequences of outputs. If the
processes you are considering are continous, that is, some initial sequence of outputs is completely
determined after some fixed number of inputs, then equivalently we can consider the correctness of

finite output sequences given finite put sequences. Basically this idea has been used in
intuitionistic theories of free choice sequence as developed by Brouwer and Kleene (see Kleene and
V esley I 965).

We end this memo with some comments about LCF. A major difficulty involved in using LCF as
the language for interpreting programming languages is that descriptions of the data being
manipulated (in our case integers) is awkward. The axiomatization of arithmetic in LCF although

adequate is both non standard and frequently hard to use. It is partially the fault of LCF as it does

not implement such nice user oriented features as arbitrary structural inductions. It forces you to use

computation induction in its primitive form. Unfortunately the implementation cannot be blamed
for everything. A proof of Wilson’s theorem, for example, would be virtually impossible even by
mathematical induction. LCF terms not only haveinterpretations as functions, but can also be
interpreted ds computation rules. Although this duality has not been fully exploited it is the
essential reason that the simplification mechanism of LCF is so successful.
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: APPENDIX |

| A BRIEF DESCRIPTION OF LCF

! The syntax of LCF sentences is described in detail in Milner 1972a. Here we only give an informal
3 description of the language, its interpretation and enough of the abbreviation conventions to make
~ the formulas in this report intelligible to those not familiar with LCF.

There are two kinds of base variables and constants in LCF. Those that range over individuals

and those that range over truth values. Each term has an associated type. If tis a term and e its |

associated type symbol we write t:6. IND and TV are type symbols. If & and 7 are type symbols

. then so is (0-7). We write X:IND and x:TV for x of type individual and truth values respectively.
There are variables and constants for each different type symbol. The variable symbols of different

types ‘are supposed to be disjoint. There are three constants of type TV. They are TT for true, FF
for false, and -UU for undefined.

R Terms are formed as follows: if x0 is a variable and tT then [Ax.t}(e-7) is a term whose

interpretation is a function from things of type ¢ onto things of type 7. In LCF [Ax.[Ay.t]] 1s
abbreviated by [Xx y.t} If r{(e=7) and s:0 then r(s):T.We interpret r(s) as the result of applying the

L function rto the argument s. We frequently write this rs, thus

a b c =a(b){c)=(alb))(c)=alb,c).
{

he

Note that if 7 1s TV then r 1s a predicate. Conditional expressions are formed as (p-sq,r), where
p:TV and q, r are of the same type. On the undefined truth-value the conditional is undefined, j.e,

| for all gq and r,(UU=q,r)sUU. Terms are also built up using the least fixed point operator «. If x:0
is a variable and s:0-0 then [«x.8] is a term representing the least fixed point of the functional sg,

Atomic well formed formulas (or AWFFs) are formed by joining two terms using = or c, i.e. if r and
~~ s are terms then rss and res are AWIFs.rss means that the functions denoted by r and s are the

| same. In a full description of the theory there is also a partial order between terms of the same type.
This is represented using €.

The more usual definition of the factorial function fact(n)}« if x=0 then 1 else n:fact(n-1) becomes
in LCF

}

FACT =[ecf.[ANn.(n=0-31] ,nkf{n=1)]].

LCF also allows two other abbreviations.

Vx.fzg is the same as [Ax.f]z[Ax.g].

Because terms are interpreted as extensionally given functions, this definition makes sense.

P::Q=R is the same as (P-Q,UU)z(P-R,UU)

Intuitively this is read as: If Pis true then Q=R, otherwise I don’t know anything.
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APPENDIX 2

THE ABSTRACT SYNTAX

2.1 Syntax for Statements

AXIOM SYNAXS:

V ds. type(mkiext d s) = _T,
V d s. declof(mktext d s) = d,
V d s. statmof(mktext d sg) = s,

V d 1 d2.type(mkempnd dl d2) = CM,
V dl d2. fstof(mkempnd d1d2)= d 1,
V dl d2. rmdof(mkcmpnd dl d2) = d2,

VY n ty. type(mktypedef n ty) = _TD,
¥Y n ty. namof(mktypedef n ty) = n,
V n ty. typof(mkiypedef n ty) = ty,

VY nl n2. type(mksublim nl n2) = _SL,
VY nl n2. Ibof{mksublim nl n2) = nl,
V nl n2. ubof(mksublim nl n2) = n2,

V al ty. type(mkarspec al ty) = _AS,
- ¥ al ty. arlimof(mkarspec al ty) = al,
V al ty. typelof(mkarspec al ty) = ty,

Y il i2. type(mkpair il i2)= _PA,
Vi 1 i2.fstof(mkpairili2)=il,
VY il i2. rmdof{mkpair il i2)= i2,

V n ty. type{mkvardeci n ty) = _VD,
V n ty. namof(mkvardeci n ty) =z n,
V n ty. typof(mkvardecl n ty) = ty,

V n ps. type(mkprocdeci n ps) = _PD,
VY n ps. nhamof(mkprocdeci n ps) = n,
V n ps. prspof(mkprocdecl n ps) = ps, .

V n fs ty. typa(mkfundeci n fs ty) = _FD,
V n fs ty. namof(mkfundeci n fs ty) = n,
VY n fs ty. fnspof(mkfundecl n fs ty) = fs,
V n fs ty. typeof(mkfundecl n fs ty) = ty,

V { t.type(mkprocspec ft) = _PS,
V f t.fargof(mkprocspec f t) = f,
V { t.textof(mkprocspec f 1) =,

V f t.type{mkfunspec f {) = _FS,
VY f t.fargof(mkfunspec f t) = {,
V { t.textof(mkfunspec f t) = {,
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| | V x ty. type{mkvarp x ty) = _VRP,
{°- VY x ty. namof (mkvarp x ty) = x,

| V x ty. typof(mkvarp x ty) = ty,
: Vx ty, type(mkvalp x ty) = _VLP,

V x ty. namof(mkvalp x ty) = x, |
] V x ty. typof(mkvalp x ty) = ty,

"Vx ty. type(mkfunp x ty) = _FP,
V x ty. namof(mkfunp x ty) = x,
V x ty. typof(mkfunp x ty) = ty,

V x. type(mkprocp x) = _PP,
V x. namof(mkprocp x) £ x,

A

V | 's. type(mkiabstat | s) = _LS,
V | s. labelof(mklabstat | 5) = |,
V | s. statmof{mklabstat | s) = s,

[ V n. type(mkread n) = _RD,
V n. namof(mkread n) = n,

{ V n. type{mkwrite n) = _WT,
V n. namof{mkwrite n) = n,

| Vn. type(mkgoto n) = _G,
he Vn. labelof(mkgoto n) = n,

Vn e. type{mkass n e) = _A,

| Vn e. lhsof(mkass ne) =n,Vn e. rhsof(mkass h e) = @ ,

VY n a. type(mkproccall n a ) = _PC,
| V n a. namof(mkproccalln a) = n,
— V n a. actargof(mkproccall n a) = a,

Vbe pl p2. type(mkcond be pl p2) = _C,
VYhe p | p2. testof(mkecond be pl p2) = be,

~ nl p2. thenof(mkcond be pl p2) = pl,
p | p2. elsoof(mkcond e p | p2) = p2,

i Vt b. type{mkwhile t b) = _W,
Vt b. testof(mkwhile tb) = t,

Vi b. bodyotf{mkwhile t b) = b, |

Vb t. type(mkrepeat b t) = _R,
Vb {. bodyof(mkrepeat b t) = b,

Vb {. testof(mkrepoat bt) = t |

Vi el e2 b. typo{mkforto i el e2 b)=_FT,
Vi el e2 b. indexof(mkforto i el e2 b)= |,
Vi el e2 b. Ibof(mkforto i el e2 b)= el,
Vi e | @2 b. ubof(mkforto i el e2 b)= e2,
Vi e 1 e2 b. bodyof (mkforto i el e2 b)z b,
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Vi el e2 b. type(mkfordn i el e2 b)=_FD,
Vi e 1 e2 b. indexof(mkfordn i el e2 b)= |,
Vi e 1 @2 b. ubof (mkfordn i el e2 b)= el,
Vi el e2 b. Ibof(mkfordn i el e2 b)= e2,
Vi el e2 b. bodyof(mkfordn i el e2 b)z b,

type UU = UU,
type ES = _ES,
type EOF = _EOF;

2.2 Syntax for Expressions

AXIOM EXPRAX:

Vo cl. type(mkexprioel)=_E,
Yo el.opof(mkexprlo 01) =o,
Vo el. arglof(mkexprl o el) = el,

Vbo bel. type(mkbexprl bo bel) = _BE,
Vbo bel . bopof(mkbexprl bo bel ) = bo,
Vbo bel. barglof(mkbexprl bo bel) = bel,

Vo el e2. type(mkexpr2 o ¢] e2) = _E,
Yo el 62. opof(mkexpr2 o el e2) = o,
Vo el 2. arglof(mkexpr2 o el e2) = el,

" Vo el e2. arg2of(mkexpr2 o el e2) = e2,

Vbo bel be2. type(mkbexpr2 bo bel be2) = _BE,
Vbo bel be2. bopof(mkbexpr2 bo b 01 be2) = bo,
Vbo bel be2. barglof(mkbexpr2 bo bel be2)= bel,
Vbo bel be2. barg2of(mkbexpr2 bo bel be2) = be2,

Vbo el e2. type(mkrel bo e¢ 1 e2) = _BE,
Vbo e¢ 1 e2. bopof(mkrel bo el e2) = bo,
Vbo el e2.arglof(mkrelbo cl e2) = el,
Vbo e] e2. arg2of(mkrel bo el e2) = e2,

VY ni. type(mkae ni) = _AE,
V n i. namof(mkae n i) = n,
VY ni. subof(mkae n i) = i,

V n a. type(mkfundes n a) = _FA,
V n a. namof(mkfundes n a) = n,

V n a. actargof(mkfundes n a) = a,

VY n. type(mknumconst n) = _NC,
V n. numof(mknumconst n) = n;
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3 2.3 Predicates for the Identification of Syntactic Constructs
Ny

AXIOM PREDAX:

Vx. istext x = type x = _T,
Vx. iscmpnd x = type x = _CM,

| Vx. istypedef x = type x = _TD,

~ Vx. issublim x = type x = _SL,
V x . isarspec x = type x = _AS,

a Vx. ispair x = type x = _PA,
Vx. isvardecl x = type x = _VD,
Vx. isprocdec! x = type x = _PD,
Vx. isfundecl x = type x = _FD,
Vx. isprocspec x = type x = _PS,

~ Vx. isfunspec x = type x = _FS,
Vx. isvarp x = type x = _VRP,

: Vx. isvalp x = type x = _VLP,
Vx. isfunp x = type x = _FP,
Vx. isprocp x = type x = _PP,

: Vx. islabstat x = type x = _LS,
~ Vx. isread x = type x = _RD,

Vx. iswrite x = type x = _WT,
Vx. isgoto x = type x = _G,

B Vx. isass x = type x = _A,
Vx. isproccall x = type x = _PC,
Vx. iscond x = type x = _C,

« Vx. iswhile x = type x = _W,
Vx. isrepeat x = type x = _R,
Vx. isforto x = type x = _FT,
Vx. isfordn x = type x = _FD,

Vx. isemptyst x = type x = _ES |
Vx. iseof x = type x = _EOF,

A)

. Vx. isconst x = type x = _NC,
Vx. ishame x = type x = _N,
Vx. isexpr x = type x = _E,
Vx. isbexpr x = type x = _BE,
Vx. isrel x = type x = _BE,
Vx. isae x = type x = _AE,

~~ Vx. isfundes x = type x = _FA;

“

\ -—
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2.4 Auxiliary Predicatesand Functions

AXIOM AUXSYN : .

isname FUNV = FF,

fstof EOF = UU,

rmdof EOF = UU;

issingle = [Ast. (isread st)v(iswrite st)v(issimple st)v(isemptyst st)],

issimple = [Ast. (isgoto st)v(isass st)v(isproccall st)),

fortest = [Ax .isforto(x)-*mkrel(!seq,Ibof(x),ubof(x)),isfordn(x)-mkrel(greq,ubof(x),ibof(x)),Ul] ,

fortoup= [Ax .mkempnd(mkforto(indexof(fstof(x)),mkexpr! (plus indexof(fstof(x))),
ubof (fstof (x)),bodyof (fstof(x))),rmdof(x))],

fordnup = [Ax.mkempnd(mkfordn(indexof (fstof (x)),mkexpr 1 (minus 1 indexof (fstof (x))),
Ibot(fstof(x)),bodyof({stof(x))),rmdot(x)}],

isrepwh = [Ast. (isrepeat st)v(iswhile st}),

isiter = [Ast. (isforto st)v(isfordn st)v(isrepwh st)],

isparameter = [Ax. (isvarp x)v(isvalp x)v(isprocp x)v(isfunp x},

isbasetype = [An.(n=INT)v(type(n)=_SL)],

istyppart = [An.ispair(n)viseof (n)],

occurs = [eF.[An st.
isemptyst st = UU,
isecmpnd st = F(n,fstof st)vF(n,rmdof st),
islabstat st = (n=labelof st)=TT,F(n,rmdof st),
issingle st = FF,
isiter st = F(n,bodyof st),
iscond st = F(n,thenot st)vF(n,elseot st),UlU]],

append= [ecF.[X\ stl st2.
isemptyst stl = st2,
iscmpnd st 1 =» mkempnd(fstof st 1, F(rmdof stl ,st2)),UU]),

segm = [o¢F.[An st.
isemptyst st = UU,
iscmpnd st=

isemptyst st ~F (n,rmdof st),
islabstat(fstof st) (n=labelof st)= st,F(n,mkempnd(statmof(fstof st),rmdof st)),
issingle(fstof st) =F (n,rmdof st),
iscond(fstof st) 2occurs(n,thenof(fstof st))=append(F(n,thenof(fstof st)),rmdof st),

occurs(n,elscof (fstof st))=append(F(n,elseof (fstof st)),rmdof st),
F(n,rmdof st),

isrepwh(fstof st)=occurs(n,bodyof(fstof st))=rappend(F(n,bodyof(fstof st)),st),
F(n,rmdof st),

isforto(fstof st)=>occurs(n,bodyof(fstof st))=append(F(n,bodyof(fstof st)}),fortoup(st)),
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a“ F(n,rmdof st),
isfordn({fstof st)=occurs(n,bodyof(fstof st))-append(F(n,bodyof(fstof st))fordnup(st)),

F(n,rmdof st),UU,UU]],

isvariable = [Ax.isname(x)visae(x)],

isunary = [Ax.(x=pplus)v(x=pminus)v(x=plus | V(x=minus1}],
\

isbunary = [Ax.(x=not))],

isbinary = [Ax.(x=plus)v(x=minus)v(x=times)v{x=div)v(xsrmdr)v(x=and)v(x=or)v
(x=lseq)Vv(x=greq)vix=It)v(x=gt)v(x=eq)v(x=neq)),

isbbinary = [Ax.(x=and)v(x=or)],
~~.

isrelop = [Ax.(x=lseq)v{x=greq)v(x=It)v(x=gt)v(x=eq)vix=neq)];

C

\

\

w

¢

\
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APPENDIX 3

THE SEMANTICS

3.1 Top Level Functions

AXIOM TOPSEM:

FUNCT =[xpo i.(INPUT®PASCAL({p,0)@0UTPUTXi)},

PASCAL = [Ap oi. MP(p,8,FRAMEB(p,0,i))),

FRAMES = [Ati of. (f=8)-[\loc.(loc=fileloc INP) = INTERNALREP(i),
(loc=fileloc OUT) =» INTERNALREP(o),
(loc=textloc) = statmof t,UNDEF],UU],

MP = [At f. MD(declof t,f)@MS(statmot tf),

INPUT = ID,

OUTPUT = [«F.[As.[Xiiseof i —EOF,
ispair i =»mkpair(F ({stof i),F(rmdof 1)),
isconst i=numof (i),UUJ(OBUFFER s)]],

INTERNALREP = [ocF.[Aiiseof i =EOF,
ispair i =mkpair(F(fstof i),F (rmdof i)),
isint i -*mknumconst(i),UU]];
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| 3.2 Declaration Part

AXIOM DECSEM:

MD = [Ad f. MDEF (d,f)®MDEC(d,f)],

MDEF = [oF[Ad fisemptyst d = ID,
~ istypedef d =» CREAT(f,namof d,typof d),

iscmpnd d= F(fstof d,f)®F (rmdof d,f),ID]],

MDEC = [«F.[Ad f.isemptyst d = ID,
isvardecl d =» CREAV(f namof d,typof df),
isprocdecl d = CREAP(f,namof d,prspof df),

“ isfundecl d = CREAF(f,namof d,fnspof d,typeot d,f,f),
iscmpnd d= F(fstot d,)®F (rmdot d,f),ID]],

CREAT = [Af nh ty s.CREALOC(f,s,typidloc,n,ty)], -

CREAV = [Af n ty fl s.CREALOC(f,s,typeloc,n, TYPEVAL(ty,fl,s))],

- CREAP = [Af n ps fl s.STORE(f,CREALOC(f,s,accink,n,fl),procloc n,ps)),

CREAF = [Xf nfs ty ft fl s.
| STORE(f,STORE(f,CREALOC(f,s,accink,n,fi),typfunloc n,TYPEVAL(ty,ft,s)),funcloc n,fs)],

CREALOC = [At s loc n val.ISPRESENT(n,s(f))-UU,STORE({,s,loc n,val)];

hi.

|
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3.3 Definition of MS

AXIOM MSDEF:

MS=[ocF.[Ast {.
isemptyst st = ID,
iscmpnd st -
isemptyst(fstof st) F(rmdof st,f),
islabstat(fstof st)= F(mkempnd(statmof(fstof st),rmdof st),f),
isgoto(fstof st) — GOTO(F,labelof(tstot st),f),
isass (fstof st) = ASSIGN(Ihsof(fstof st),MEXPR(rhsof(fstof st),t),f)®F (rmdof st,f),
isproccall(fstof st)>[xs. MPB(PROCF AL(namof(fstof st) f,s),actargof(fstof st),f,s,namof(fstof st)}]}®

[As.MD(PROCDECL(namoft(fstof st),f,s}),succ f,s)]}®
[xs.F(PROCBODY (namof(fstof st),f,s),succ f,5)]J@CLEAR(succ f)®F (rmdof st,f),

isread(fstof st) =» READ(namof (fstof st),f)®F (rmdof st,f),
iswrite(fstof s t ) = WRITE(namof(fstof st),f)®F (rmdof st,f),
iscond(fstof st) = COND(MBEXPR(testof(fstof st),f), -

F(append(thenot (istof st),rmdot st),{),F{append(elseot (isto st),rmdofst),f)),
iswhile(fstof st ) =» COND(MBEXPR(testot(tstot st),f),

F(append(bodyof(fstof st),st),f),F(rmdofst f)),
isrepeat(fstof st) = F(append(bodyof (fstof st),mkcmpnd(mkcond(mkbexpr 1 (not,

testof (istof st)),fstofst,ES )rmdof st)),f),
isforto(fstof st) = COND(MBEXPR(fortest(fstof st),f),

ASSIGN(indexof(fstof st),MEXPR(Ibof(fstof st),{),f)®
F(append(bodyof(fstof st) fortoup st),f),F{rmdof st,f)),

isfordn(fstof s t ) =» COND(MBEXPR(fortest{fstof st)tf),
ASSIGN(indexof (fstof st),MEXPR(ubof (fstof st },{),f)®
F(append(bodyof(fstof st),fordnup st),f),F(rmdof st f)), UUUU]];
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- 3.4 Axioms for Statements

AXIOM STATSEM:

| READ = [An f s.ISFUNFR(f,s,8)2ASSIGN(n,MEXPRfstof(IBUFFER S$),
STORE (0,s,fileloc INP,rmdof(IBUFFER 5))),UU],

Nn WRITE = [An f s.ISFUNFR(f,s,8)- STORE(8,s, fileloc OUT,
| mkpair(mknumconst(FETCHV(n,f,5)),0BUFFER 5)),UU],

GOTO =[\F.[An f. F(segm(n,TEXT()),1)]],

ASSIGN s[F[An v fs.

C n=FUNV-ISADMISVAL (s(f,typeloc FUNV),v(s))=STORE(f,s,FUNV,v(8}),uU,
ISINTYPE(n,v,f,8)STORE(f,s,LOCOFVAR(n,f,5),v(s)),
istopf(f)-UU,

ISFUNFR(f,5,NEWFP(n,f,s))=>F (VARBNDTO(n,f,s );,v, NEWFP(n,f,s),5),UU]],
COND = [Aq f g s.(q(s)=f(s),g(s))],

C MPB = [Xfa aa f s n.BIND(fa,aasucc f,
MAKFRAME(PROCBODY (n,f,s),PFLNK (n,f,s),suce f,s))],

CLEAR =[Ats fl (f 1=f)=UU,s(f I)];
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3.5 Binding Mechanism

AXIOM BINDINGS:

BIND =[«cF.[Afa aa fs.
iseof fa = (iseof aa = s,Ul),

isparameter (fstof fa)-=F(rmdof fa,rmdof aa,t,MKBINDING(fstof fa,fstof aa,f,s)),UU]],

MKBINDING = [xfa aa fs.
isvarp(fa) = TYMATCH(fa,typaloc,aa,f,s) *CREALOC(f,s,bindloc,namot fa,EXPRFORV (aa)),ul,
isvalp(fa) = ASSIGN(namot fa,MEXPR(aa,f),f,CREAV(f,namof fa,typof fa,CRNTF(f,s),s)),
isfunp(fa) = TYMATCH(ta,typfunloc,aa,t,s) =

CREAF(f,namof fa,FUNCDEF(aa,f,s),typof fa,CRNTF(f,s),PFLINK(aa,f,s),s),UU,
isprocp(fa)-> CREAP(f,namof fa,PROCDEF(aa,f,s),PFLINK(aa,f,s),s),UU],

TYMATCH = [fa loc aa { s.TYPEVAL(typot {a,CRNTF(f,s),s)=TYPEDEF(ioc aa,pred {,s)],

TYPEVAL = [ocF.[An § s.
isbasetype n = n,

isarspec n = mkarspec(F(arlimof n,fs)F(typelof n,f,s)),
istyppart n = iseof n = n,ispair n = mkpair(F(fstof n,f,s),F (rmdof n,f,s)),UU,
ISLOCAL (typidloc n,s(f))=F(s(f,typidloc n)f,s),
istopf f = UU,F(n,CRNTF(f,s),5)]];
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“ 3.6 Evaluation of Expressions

AXIOM EXPRESSIONS:

MEXPR = [«<F.[Ae fs.
] isconst @ = MCONST e,

isvariable e = FETCHV(e,f,s),
“ isfundes @ = RETURN(succ f,MF(namof e,actargof e,f,s)),

. isexpr e ~»isunary{opof e) = MOP! (opof e,F(arglof e,f,5)),
isbinary(opof e)- MOP2(opof e,F(arglof e,fs),F(arg2of e,f,s)),UU,UU]),

| MF = [xn a f. MFB{FUNCFAL(n,f),a,f,n)®MP(FUNCDEF(n,f),succ f)],

a MFB = [\fa aa f n s.BIND(fa,aa,succ {,CREALOC(succ f,typeloc,FUNV,TYPEDEF(n,,s),
MAKFRAME(FUNCBODY (n,f,s),PFLNK(n,{,s),succ {,5) ))],

MBEXPR = [«F.[\e 1 s.
(e=true)->TT,(e=false)-FF, _
isbexpr @ =isbunary(bopof 6) = MBOP! (bopof e,F(barglof e,f,s)}),

isbbinary{bopof e)-> MBOP2(bopof e,F(barglof e,f,s),F(barg2of e,f,s)),
O isrelop(bopof e)-RELOP(bopof e,MEXPR(arglof e,f,s), MEXPR(arg2of e,f,s)),UU,UU]],

| MCONST = [Ax.isconst x = numof x,UU],
_ MOP1  =[Ax.x=pplus=Ax.x,x=pminus=Ax.(B=x),x=plus 1 =succ,xzminus 1 =pred,Ul),

MBOP! = [Ax.x=not--,UU],

MOP2 = [Ax.x=plus=>!+ x=minus=>!- x=times— 1% x=div-!/x=rmdr->mod,Uu},
LS MBOP2 = [Ax.x=and=!A,x=or->!v,UU),

- RELOP = [Ax.x=lseq=!{,x=greq=Rx=It=1 x=gt= xzeq=!= x=neq-#,UUJ;

“

C
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3.7 Variables

AXIOM VARIABLES:

NAMOFVAR = [Av.n=FUNV=UU,isname v-v,isae v=>namof v,Ul],
LOCOFVAR = [Av f s.isname v-v,isae v=>arioc(namof v,VAL(subof v,f,s)),UU),
TYPOFVAR = [Av f s.isname v=>TYPEOF (v,f,5),isae v=>typelof(TYPEOF (namof v,f,s)),UU],
EXPRFORYV = [Av f s.isname v-v,isae vmkae(namof v,EXPRVAL(subof v)),ul],
VARBNDTO = [Av f sISBND(NAMOFVAR v,f,s)=

isname v = BVALOF(v,f,s),

isae v => mkae{BVALOF (namof v,f,s),subof v),Ul,v],

ISINTYPE = [Av val { s.ISLOCAL(typeloc NAMOFVAR(v),s(f)) =
ISADMISVAL(TYPOFVAR(v,f,s),val(s)),FF),

ISADMISVAL = [Aty v.(ty=INT)=isint v,issublim ty=>ISINBOUND(v,ty),uU),

ISINBOUND = [eF.[Ax vY.
iseof x = TT,
ispair x = F(fstof x,fstof y)AF(rmdof x,rmdof y),
isint x =» issublim y=>(x2numof (Ibof y))A(xSnumof (ubof y))},Ul,UU]],

VAL = [F.[Ap fs.
iseof p = EOF,
ispair p = mkpair(MEXPR(fstof p,f,s),F(rmdof p,f,s)),UU]],

EXPRVAL = [«F[Apfs.
iseof p = EOF,
ispair p = mkpair (mknumconst(MEXPR(frstof p,f,s)),F(rmdot p,f,s)),UU]];
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- 3.8 The Lookup of the Store

AXIOM LOOKUP:

IBUFFER = [As5.5(0,fileloc INP)),
| OBUFFER = [As.s(8,fileloc OUT)],

TEXT = [Af s.s(f,toxtloc)),
a PROCDEF = [An f s.FETCH(procloc nf,s}),

Lo FUNCDEF = [An f s.FETCH(funcloc nf,s)],
TYPEDEF = [Aloc f s.FETCH(loc,f,s)],
PROCTXT = [An f s.textof(PROCDEF(n,f,s))),
FUNCTXT = [An { s.textof (FUNCDEF (n,f,s)}],
PROCFAL = [An f s.fargof (PROCDEF (n,f,s)}],

L FUNCFAL = [xn f s.targof(FUNCOEF(n,f,s))],
PROCBODY = [An f s.statmof(PROCTXT(n,1,5))],
FUNCBODY = [An f s.statmof(FUNCTXT(nf,s))),
PROCDECL = [An f s.declof(PROCTXT(n,f,s))],
FUNCDECL = [An f s.deciof (FUNCTXT(n,f,s)))},

a PFLNK = [An fs. FETCH(accink n,f,s)),
( NEWFP = [An fs. ISBND(NAMOFVAR v,i,s)= pred f,CRNTF(1,s)],

CRNTF = [Af s. s(f,alnk)],

: FETCH = [«F.[Al f s.ISLOCAL(l,s(f))=s(t,1),istopf(t)=>UU,F(I.CRNTF (f,s),8)]],
L FETCHV = [«F.[An f sISLOCAL(typeloc NAMOFVAR(n),s(t))-

ISLOCAL(NAMOFVAR(n),s(f))=s(f,LOCOFVAR(n,f,s}),UU,
| istopf(f)=>UU,F(VARB NOTO(n,i,s),NEWFP(n,f,s),5)]],
) TYPEOF = [An { s.s(f,typeloc n)),

BVALOF = [An { s.s{f,bindloc n));
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3.9 Updating and Miscellaneous Axioms

| AXIOM UPDATE:

| STORE  =[Afsloc val.[xf1.f1=f=>MODFRAME(s(f),loc,val)s(f])]),
MODFRAME = [floc val.[Aloc 1 .locl=zloc=sval,f (loc! )]],

| MAKFRAME =[Xtxtinfs.[Af 1 fl=f=>[Aloc | loc 1 =textioc=ixt,loc 1 =alnk = In,UNDEF]),s(f 1 NJ.

AXIOM FRAME:

| frame = [As f.s(f)],
istopf = [Af.(f=8)];

| AXIOM AUXSEM:

| © = [Mfg rglf(r))],
ID = [Axx],
ISFUNFR = [ocF.[Af 5 nf. ISLOCAL(FUNV,s(f))= FFpred fsnf = TT,F(pred f,s,nf)]],

| ISLOCAL = [Aloc fr.fr(loc)=UNDEF-FF,TT],
| ISPRESENT = [An fr.isname n=ISLOCAL(typidioc n,fr)vISLOCAL(typeloc n,fr)v

| ISLOCAL(accink n,fr)viISLOCAL(bindloc n,fr),UU],
; RETURN = [Af s.ISLOCAL(FUNV,s(f))-s(f,FUNV),UU),

ISBND = [An s fISLOCAL(bindloc n,s(f)];
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APPENDIX 4
-~

Proof of the equivalence involving WHILE for goto-free programs

Ne 4.1 List of LCF commands
TRY 1 INDUCT =;

TRY 1 SPREF;

LABEL INDUCT;

TRY 2 SPREF;

USE GOTOF;

“ RPPL - ,S,mkcmpnd (mkwhile(t,5),ES), f;
LABEL HELP;

SINPL - BY GOTOF1;
RPPL . INDUCT, S,t, f;
SINPL -;

USE COND!-;
APPL -,MBEXPR(t,1),5;

SIMPL -;

C SS+. HELP:

TRY SSUBST .MSFP OCC 3;

TRY ;QED;

C

{

¢

L

C

(
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4.2 Printout of the proof

|TRY #1 VS t f . isqototrese(S) 1 WHILE (MBEXPR(t,f),MS(S,)) c MS (mkcmpnd (mkuhile(t,S)ES), f) INDUCT 331 ~
| meee

| |TRY #1#1 vs t f. isqgotofree(3) : : UUMBEXPR(t,f),H5(S,{)) c MS (mkcmpnd(mkuhile(t,S)ES), §) SPREF.
| 1332 vs t §. isgotofree(S) :: UUMBEXPR(t,{),NS(S, f)) c MS (mkcmpnd(mkuhile(t,S),ES), f) --- SPREF BY.
me

| |TRY #1#2 vs t f. isgotofree(S) :: [xt b .COND(t,beF(t,b),10)] (MBEXPR(t,$),MS(5,f)) c MS (mkcmpnd (mkuwhile (t~
,5),ES),#) : RSSUME vs t f. isgotofree(S) :: F(MBEXPR(t,{),N5(5,)) c NS (mkcmpnd (mkuhile(t,S),ES),f) SPRE~
F.

| 1333 vs t {. isqgotofree(S) :: F(MBEXPR(t,f) M5(5,)) c MS(mkcmpnd(mkuhile(t,S),ES),f) (333) --- ASSUME.
| [334 isgotofres(S) = T T (334) - - - SASSUNE,
| 1335 vs P f. isgotofree(3) 11 isqototree(P) :: NS (append(5,P),t) = MS(S, H)eMS(P,{) --- USE GOTOF.
| |336 [XS P f |, isqotofres(S)s(isgototree(P)MS5 (append (S,P), 1),UU) UU) (S,mkempnd (mkuhile(t,S) ES), #) 2 [AS P «~

f , isgotofree(S)+(isgotofree(P)+(MS(S,f)alS(P, {)),UU),UU] (S, mkempnd (mkuhile(t,S)ES), f) --- APPL 335 S mkempnda
(mkwhila(t,S),ES) f.

| 1337 MS(append(S,mkcmpnd (mkwhile(t,5),E3)),#) = MS(S, {) «MS (mkcmpnd (mkwhile(t,5),ES),f) (334) --- SIMPL 336~
BY 334 GOTOF1 .

| 1338 [AS t f.isgotofree(S)F (MBEXPR(t,¢),NS(S,)) ULI (5,t,f) c (AS t f . isgotofree(S)MS(mkempnd (mkuhile (ta
,S),ES), ),UUI(S,¢,§) (333) ---APPL 333 S tt.

| [339  F(MBEXPR(t, £),MS(S,f)) c HS (mkcmpnd (mkwhile(1,S),ES5),) (333 334) --- SIMPL 338 BY 334 ,
| 1348 VT SI. COND(T,MS(S1,{)eF (MBEXPR (1, {),MS5(S,#)),10) c COND(T,MS(S], {)aNS (mkecmpnd (mkuhile (t,$),ES), f),1D~

) (333 334) --- USE COND! 339.
| |341 [AT S1 .COND(T,M5(S1,§)«F (MBEXPR(t,{) ,H5(5,)),10)] (MBEXPR(t,#),S) ¢ [AT S1 .COND(T,MS(S1,f)eMS (mkempna

d{mkuhile(t,5),E5),§),1D0)) (MBEXPR(t,{),5) (333 334) --- APPL 340 NBEXPR(t,#)S.

| 1342 COND (MBEXPR(t, f),NS(5, f)aF (MBEXPR(t, f),1MS5(S5,)),1D0) c COND(MBEXPR(t,f) ,MS(S, {) «MS (mkcmpnd (mkuhile (1,5) ~
LES), #), 1D) (333 334) --- SIMPL 341.

| | |TRY #1#2#1 COND (MBEXPR(t,f) MS (5, f)sF (MBEXPR(t, §),MS(S,)),10) c MS (mkempnd (mkuhile(t,S),ES),1) SSUB~
ST 328 OCC 3.

| | | ===

F | | |TRY #1#2#1#1 COND (MBEXPR (1, f) NS (5, f)eF (MBEXPR(t, f),NS(5,1)),I0) c COND(MBEXPR(t, f),MS(S, f)atS (mkcmpnd~
(mkwhile(t,S),ES), 1), 1D)

||| mmmmmmmmmmmemoee

| | | [343 COND (HMBEXPR(t, ),MS(S, #)&F (MBEXPR(1,) ,M5(S, §)),10) c MS (mkempnd (mkuhile(1,5),ES),{) (333 334) --- ~
| SSUBST 342 USING 328 OCC 8.

Br ———

| 1364 vs t f . isgotofreefS) :: (At b .COND(1, bef (t,b),1D)] (MBEXPR(t, ) ,MS(S,£)) c MS (mkcmpnd (mkwhile (1,5), En
S),f) (333) --- SPREF 343,

| I

1345 vs t f . lIsgotofree(S) tt: WHILE(MBEXPR(t,f),MS(5,§)) c MS (mkcmpnd(mkwhile(t,S),ES),f) --- INDUCT 332 3~
44.
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| APPENDIX 5

Proof of the equivalence involving REPEAT for goto-free programs

“ 5.1 List of LCF commands

TRY 1 INDUCT =;

TRY1 SPREF4

LABEL INDUCT;

TRY 2 SPREF;

« USE GOTOF;
APPL - ,5,mkcmpnd (mkcond (mkbexprl (not, t),mkrepeat(s,1),ES),ES),§
LABEL HELP;

SIMPL - BY GOTOF1;
RPPL . INDUCT,S, t, f;
SIPL ~-;

USE CONDI

APPL -,HBEXPR (mkbexprl (not, t), t),S;

C SIMPL -
SS+. HELP;

TRY SSUBST .MSFP OCC 3;

TRY SSUBST ISFP OCC 4;

TRY ;QED;

| 4
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5.2 Printout of the proof

(TRY #1 VS tf . isqototree(S) : : REPEAT(MS(S,f) ,HBEXPR (mkbexprl(not,t), t)) c¢ MS (mkcmpnd (mkrepeat(5, t),ES), f)w
INDUCT 331 .

| TTT TTToTTTTTttoe

| JTRY #141 VS t f . isgotofrese(S) :: UU(HS(S, f) ,MBEXPR (mkbexprl(not,t),f)) c MS (mkcmpnd (mkrepeat(S,t),ES),f)~
SPREF.

| 1332 vs tf . isgotofree(S) : : UUMMS(S, f),MBEXPR (mkbexprl(not,t),f)) c MS (mkcmpnd (mkrepeat(S,t)ES), f) - - -
- SPREF BY .

| ——
| TRY #142 vs t f . isgotofree(S) : : [Ab t .beCOND(t,F(b,t),ID)](NSCS, f) ,MBEXPR (mkbexprl(not,t),f)) Cc MS(mkcw~

mpnd (mkrepeat(S,t)ES), f) : ASSUME vs tf . isgotofree (8) :: F(MS(S,{),MBEXPR (mkbexprl(not,t),4)) c MS(mkcmpnd~
(mkrepeat (S, t),ES), f) SPREF.

| 333 vs tf. isyotofree(S) : : FNS (S,) ,MBEXPR (mkbexprl(not,1), {)) c NS (mkcmpnd (mkrepeat(S,t)ES), f) (333~
) --- ASSUHE.

| |334 isgotofree(S) = TT (334) --- SRSSUME.
| 1335 YS Pf . isgotofree(S) : : isgotofree(P) : : MS(append(S,P),f) = MS(S, f)aMS(P, {) --- USE GOTOF.
| 1336 [ASP f . isgotofree(S)s+(isgotofree(P)-l15(append (S,P), £),UU),UU] (5, mkecmpnd (mk cond (mkbexprl (not, t}, mkrep~

eat (5,1) ,ES),ES),f) = IAS P f . isgotofrea(S)a(isgotofree(P)+(MS(S,f)&NS(P,f)),UU), UU] (5, mkcmpnd (mk cond (mkbexprl (~
hot, t),mkrepeat(S,t),ES),ES),f) --- APPL 335 S mkempnd (mkcond (mkbexprl(not,t), mkrepeat(S, t+} ES), ES) ¢,

| 1337 MS (append (S, mkempnd (mkcond (mk bexpri(not,t), mkrepeat (S,t), ES), ES)),f) = MS(S, f) «MS (mkempnd (mkcond (mkbex~
prltnot,t), mkrepeat(S,t),ES),ES),f) (334)--- SINPL 336 BY 334 GOTOFI.

| 1338 [ASt f.isgotofree(S)+F(NS(S,{) MBEXPR (mkbexprl(not, t),f)) UU) (5,t,f) c [ASt f | isqotofree(S)MS(mkcw
mpnd (mkrepeat(S$, t),ES), £),UUI (S,t,) (333) -- RPPL 333 Stf.

| 1339 F(MS(S,¢),MBEXPR (mkbexprli(not,1),{)) c HS (mkcmpnd(mkrepeat(S,t),ES),f) (333334) -.. SIMPL 338 BY 334~

|}348 VT SI. MSS), )«COND(T,F (MS (GS, f) ,MBEXPR (mkhexprlinot, t),)),10) c MS(SL, {)=COND(T,MS(mkcmpnd (inkrepeat~
(S,t),ES), §),10) (333 334) --- USE COND! 339.

| 361 [AT S | .MS(SL, £)=COND(T, F (NSCS, f) NBEXPR (mkbexprl (not, t}, £1), 101] (MBEXPR (mkbexprltnot, t), f),5) c [AT S~
1 .MS(S1, £)=COND(T, HS (mkecmpnd (mkrepeat (5, t),ES), #3, 100) (MBEXPR (mkbexpri (not, t),1),S) (333 334) --- APPL 340 MBE~
XPR (mkbexprl(not,t),$) S.

|- 1342 NS (S, +)eCOND (MBEXPR (mkbexpri(not, t), {),F (NS(S, {) ,MBEXPR (mkbexpri(not, t), {)),10) c MS(S, {) «COND (MBEXPR(~
mkbexprl énot,t), f), 1S (mkcmpnd (mkrepeat(S,t),ES),§),18) (333 334) --- SIMPL 341.

| | ITRY #1#241 NS(S, {)«COND (MBEXPR (mcbexprl (not, t), ),F (NS(S, {),MBEXPR (mkbexprl not, t), f)),10) c MS (mkcmpnd(~
mkrepeat (S, t),ES), f) SSUBST 320 OCC 3.

| |] =memmmmmmemmee ee

[1] (TRY #142X1#1  NS(S, {)aCOND (HBEXPR (mkbexpri(not,t), +) ,F(MS(S, f) ,MBEXPR (mkbexprl(not,t),$)),ID) c MS(S, f)~
«MS (mk cmpnd (mkcond {mkbexprl(not, t),mkrepeat(5, t),ES) ES), f) SSUBST 328 OCC 4.
TI

[111 (TRY #i4241#1#1  NS(S,1)«COND(MBEXPR (mkbexprl(not,t},{} F(MS(S, {),MBEXPR (mkbexprl(not,t), f)), ID) c MS (~
S, £1) «COND ¢MBEXPR (mkbexprl (not, t), f) , MS (mkempnd (mkrepeat (5, t) ES), §), 1D) :

| 11] = mmmmmmmmmommeneee

bb 1 1343 NS(S, f) «COND (MBEXPR (mkbexprl(not, t), f),F (MS(S, {) ,MBEXPR (mkbexprl (not, t), §)),10) c MS(S, {)&MNS (mkcmp~
nd (mkcond (mkbexprl (not, t),mkrepeat(S,t)ES) ES}, f) (333 334) --- SSUBST 342 USING 320 OCC 4.

rors

| | |344  NS(S, f) «COND (MBEXPR (mkbaxprl(not,t), {),F (MS(5, 1) ,NBEXPR (mkbexprl(not, t), §)),1D) c MS (mkcmpnd (mkrepea~
tS, t),ES),f) (333334) --- SSUBST 343 USING 328 OCC 3.

[ TS ———
| |vTv wv

mkrepeat (5,1),E8), 11645 «ommmeennnisgotofren (5333) SPREF :: [Ao 344.1 . bwCOND (t,F (b, 1), 1I0)) (MS (S, 1) ,MBEXPR (mkbexprl (not, t), §)) c MS (mkcmpnd(~
YS tf.

| cmmmmm——— me =

(346 vs tf . isgotofree(S) :: REPERT(NS(S,1) HBEXPR (mkbexprl(mnot,t),{)) c MS(mkempnd(mkrepeat(S,t),ES), ) ~
--- INDUCT 332 345.



1 The Semantics of PASCAL in LCF 65

N APPENDIX 6

Proof. of the equivalence involving’ FORTO fot goto-free programs

6.1 List of LCF commands

TRY 1 INDUCT -;

1 TRY 1 SPREF;

: LABEL INDUCT;
1 TRY 2 SPREF;

USE GOTOF;
b | APPL - ,S,mkcmpnd(mk forto (i, mkexpri(plusl, i), e2,5),ES) ,#;
| LAREL HELP;
Eo SIMPL -;
] RPPL . INDUCT,S, i,mkexprl(plusl, i),e2,f{;
| SIMPL -;

: USE CONO1 -;
APPL - MBEXPR (mkrel (Iseq,e,e2),f),5,ASSIGN(i MEXPR (e, f), {);

| SIMPL -;

| SS+. HELP;

TRY SSUBST .MSFP OCC 3;

LL TRY ;QED;

| “

| N

iN
4

| _
N
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6.2 Printout of the proof

ITRY #1 VS i el e2 f . isgotofree(S) : FORTOCi,el,02,MS(S,1),) c MS(mkcmpnd(mk forto(i,el,e2,5) ES), f) In
NDUCT 304 .

| EE SE WE EY evn Se AIP SES SUS SNS Sm EE Se OS SS

| (TRY #141 VS i el e2f . isgototree(S) :: UU(i,el,a2,NS5(S,f),f) c MNS(mkcmpnd(mktorto(i,el,e2,5),ES),{) ~
SPREF.

, 1365 ¥S i el e2 f . isgotofree(S) :: UU(i,el,e2,M5(S,f),4) c MS(mkempnd(mkforto(i,el,e2,5),ES),{) ...SPRa
EF BY .

| —— i me i fa EE

Ira ——— |

| |TRY #1#2 VS i e e2 f . isgotofree(S) 1 [Xi ee2b f .COND(MBEXPR(mkrel(iseq,e,e2),1), (RSSIGN(i,MEXPR (ea, f)~
, §) eb) oF (i ,mkexprl(plusi,i),e2,b,f),10}) (i e,02,H5(5,4),{) c MS (mkempnd(mk forto(i,e,e2,5),ES), {) + ASSUME VS in
e e2 f . isqotofree(S): : F(i,e,e2,NS(S,),{) c NS(mkcmpnd(mkfortoli,e,e2,5),ES),f) SPREF

| [386 VS i e e2 f . isgotofree(S) :: F(i,e,e2,N5(5,f),1) c MS(mkcmpnd(mkforto(i,e,e2,5),ES),f) (388) - - -AS~
SUME.

| 1367 isgotofree(S)= T T(307)- - - SASSUNE.
[1308 , ¥YSP ff ,isgotofree(S)i: isgotofrea(P) :: NS(append(5,P),f)& NS(S,H)eNS(P,f)  ... USE GOTOF.
| 1369 [XS P f ,isgotofrea(S)a(isgotofree(P)-NS(append (S,P), {),UU), ULI (S, mkcmpnd (mk for to (i, mkexpri(plusl,i),en

2,5),ES),1) =(AS P f , isgotofree(S)+(isgotofree(P)a(MS(S,{)eNS(P,)),UU),UU] (S,mkempnd(mk for to (i, mkexprl(plusl,~
i),e2,5),ES),8) - - - APPL 308 S mkempnd (mk forto(i,mkexpri(plusl,i),e2,5)ES) ¢,

| 1318 MS (append (5,mkempnd (mk forto (i, mkexprl(plusl, i), e2,5),E5)),1) = NS(S, {)&MS (mkempnd (mk for to (i, mkexprl (pia
usl,i),e2,5),E5),f) (387)- - - SIMPL 309 BY 307 GOTOF1 |

| |311 (AS i e e2 f .isgotofree(S)F(i,e,e2,NS(5,4), 1), UUI(S, i, mkexpri(plusl,i),e2,f) c [A8i1e e 2 f.isgotofw~
ree (5) MS (mkempnd (mk for to (i,e,e2,5),ES), f),UU) (5, i,mkexpri(plusl,i),e2,f) (386) --- APPL 386 S i mkexpri(piusl,~
i) e2 f.

| 1312 F(i,mkexprl(plusl,i),e2,lIS(5,f),f) c NS (mkcmpnd (mk forto(i,mkexprl(plusl,i),e2,5),E5),f) (306 307) -—=-~
SIMPL 311 BY 3067 .

| 4313 VT S1 H . COND(T, (HeMS(S1, f))eF (i, mkexprl(plusl,i),e2,NS5(S5,1),§),10) c COND(T,H«(MS(S1,f) MS (mkecmpnd (m~
kforto(i,mkexprl(plusl,i),e2,5),ES),¢)),1D)(306 307) --- USE CONDI 312.

1 |314 [AT SI H .COND(T, (HeMS(S1, £)) =F (i, mkexprli(ptusl, i), e2,N5(S,),4),10)) (MBEXPR(mrel{iseq,e,e2),{),5,ASS~
IGN(i ,MEXPR(e, £),)) c (AT S1 H .COND(T, Hw (HS(S1, f)aMS (mkcmpnd (mk for to (1, mkexprl(pluel,i),e2,5),E8),)),10)] (MBE~
XPR (mkrel (Iseq,e,e2),f),5,ASSIGN (i, lEXPR (e, f),f}) (306 387) --- RPPL 313 MBEXPR(mkrel(lseq,e,e2),1) SRSSIGN(i,~
MEXPR(a, 1), f),

| |315 COND (MBEXPR (mkrel (Iseq,e,82),f), (ASSIGN (i ,NEXPR (e, f), ) MNS (5, 1) )&F (i, mkexpri(plusl, i), e2,MS(S, {),{),10~.
) c¢ COND (MBEXPR (mkrel (Iseq,e,e2),f) ,RSSIGN(i MEXPR(e, 1), f)®(NS(S, )=NS (mkcmpnd (mk for to (i, mkexpri(plusl, i),e2,5),~
ES), f )),IB) (306 387) --- SIMPL 314.
EE
| | |TRY #14241 COND (MBEXPR (mkrel (lseq,0,02),f), (RSSIGN Ci ,NEXPR(e, f), £) lS (S, f))aF (i,mkexprl(plusl, i),e2,MS(S~

,£),6),1D0) c NS (mkcmpnd (mk forto(i,e,e2,5),E5),f) SSUBST 293 OCC 3.
| | | ===mmm = =
| | | |TRY #1#2#141 COND (MBEXPR(mkrel (lteq,e,e2),f), (ASSIGN (i HEXPR (a, {}, IMS (S, f))eF (i,mkexpri(plusl, i), e2,~

MS(S,§),§),10) c COND (MBEXPR(mkrel (Iseq,e,e2),f) ASSIGN (i, MEXPR (e, f), {)a (MS (S, {) #MS (mk chpnd (mk for to (i, mkexprl(pl~
usl,i),e2,$,ES),),ID |

| ] | rm ———— tn——————— =~ =
| |316  COND(MBEXPR(mkrel(lseq,e,e2),f),(RSSIGN(i ,MEXPR (e,t),{)aNS(S, {)) ef (i,mkexprl(plusl,i),e2,NS(5,1),¢),~

1D) c MS (mk cmpnd (mk forto(i,e,e2,5),ES), f) (306 307) --- SSUBST 315 USING 293 OCC 3.

[= mmm
1 1317 ¥S i e e2 f . isqgotofrea(3) :: [Ai-ee2b f .COND(MBEXPR(mkrel(lseq,e,02),¢),(ASSIGNCi,NEXPR (a, {), f)cb~
YF Ci ,mkexprliplusl,i}, e2,b,),10)] (i, e,e2,N5(5,§),§) c NS(mkcmpnd(nk fortoli,e,e2,5),ES), f) (386) --- SPREF 316~

| meme

|318 VS i 91 e2 f . isgotofree(5) :: FORTO(i,el,e2,NS(S,{),f) c MS (mkcmpnd(mkforto(i,el,e2,5),ES),{) == = IN~
DUCT 385 317.
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Co APPENDIX 7

| Proof of the goto-free factorial program

“ 7.1 List of LCF commands

SS+ APPLY, .FUNCT, .PASCAL, .NP, .FUNCCOMP, . ID, .DP, . SP, . MD;
TRY SIMPL;

TRY INDUCT .HHILE;

TRY 1 SPREF;

Ig SS + .COND;SS -.5P;
LRBEL INDUCT;

TRY 2 SPREF;

LABEL Ll ==

TRY CASES =(ne8);

TRY 3 SIHPL;

( TRY 2;
USERRITHL.LL, =;
QED -;

L TRY 1 SIMPL;
RPPL . INDUCT, pred n, xan;
SIMPL -
TRY ; QED;

Ye

|

f
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7.2 Printout of the proof

|TRY #1 Yn x.isnat(n)::isnat (x) : RPPLY(FRCTORIAL,n,x) c FACT (n,x) SIMPL,
| nVva py ven —

| (TRY #141 Vn x , isnatin) :: isnat(x) :: RESULT(HRITE(nl,8,UWHILE(MBEXPR (test, 0),MS (body,8) ,READ(nl, 8,READ (n~
2,8,CKEAV(8,n2, INT, 0,CRERV(8,nl, INT, 8,FRANEDS (FACTORIAL, INPUT (LIST (n,x)),EOF)))))))) c FACT (n,x) INDUCT 314 .

|| mmmmmmmmmmmmmnnes

Il (TRY #14141 vn x . isnat{n) : :isnat(x) :: RESULT(NRITE(nl,8,UU(MBEXPR(test, 0) ,MS (hody,B) ,READ (nl, 08,READ (~
n2,0,CREAV(B,n2, INT, 8,CREAV(8,nl, INT, 0, FRAMES (FACTORIAL, INPUT(LIST (n,x)),E0F)))))))) ¢c FACT (n,x) SPREF.

|| 1318 Vn x . isnat(n) :: isnat(x) : RESULT(HRITE(nl,8,UU(MBEXPR(test,8),MS (body,8),RERD(n1,0,READ (n2,0,CR~
EAV(8,n2,INT,8,CRERV(8,nl,INT, 0, FRAMES (FACTORIAL, INPUT (LIST (n,x)) ,E0F)))))))) c FRCT(n,x) --- SPREF BY TH8 TH6.

I

|| [TRY #1#1#2 Vn x . isnat{n) : isnat(x) :: RESULT(HRITE(nl,8,[xt b ,COND(t,baF(t,b),1D)] (MBEXPR (test, 0), Ma
S (body, 8) ,READ (nl, 8,READ (n2,8,CREAV(8,n2, INT, 8,CREAV(B,nl, INT, 8, FRAMES (FRCTORIAL, INPUT (LIST (n,x)),EOF))))IN)) ¢ ~
FACT (n,») : RSSUME Vn x . isnat(n) : :isnat(x) :: RESULT(IRITE(nl,8,F(MBEXPR(test,8),MS(body,8),RERD(nl, 8, RERD~
(n2,8,CREAV(8,n2, INT,0,CREAV(B, ni, INT, 0, FRAMES (FACTORIAL, INPUT(LIST(n,x)),ED0F)))))))) c FACT (nh, x) SPREF.
[11319 Vn x . isnat(n)} : isnat(x) :: RESULTC(URITE(nl,8,F (MBEXPR (test,0),MNS(body,08),RERD(n1,B,REARD(n2,08,CRE~

AV(O,n2, INT,8,CREAV(,nl, INT, 8, FRANED (FACTORIAL, INPUT (LIST (n,x)),E0F)))))))) ¢ FACT(n,x) (319) --- RSSUME.
| | 1328 ishat(n) = TT (320) --- SASSUNE.
| | 1321: isnat(x)=TT (321) --- SASSUIE.

(| (TRY #1#41#2#1  RESULTWRITC (nl,8,-(n=8)+F (MBEXPR (test, 8) MS (body, 8) MS (body, 8,FRAMEL(SP,n,x))) FRAME] (SPA
yn,x))) ¢ FACT (n,x) CRSES ~(n=0).

| | | | ========—ommmm—mmmm—

Fit] (TRY #1#1#2#4143 RESULT (URITE (nl, B8,-(n=8)4F (NBEXPR (test, 0) ,M5 (body, 8), HS (body, 8,FRAMEL (SP,n,x))) , FRAME ~
I(SP,n,x))) ¢ FACT(n,») : SRSSURE =~(n=0)= FF SIMPL.
[1]] (322 =(n=0)= FF (322) -- SRSSUME.
| 1 1 | 1323 RESULT(NRITE(nl,8,-(n=0)~F(MBEXPR (test, 8) ,NS (body, 0), HS (body, 8,FRAMEL (SP, n,x))) ,FRANEL (SP, n,x)))~
c FACT(n,x) (321 322) --- SIMPL BY 321 322 LH4.

| | | | |TRY #l#142#142  RESULT(HRITE(nl,B8,-(n=8)4F(MBEXPR (test, 8),MNS (body, 8) ,HS (body, 8, FRAME L (SP, n,x))) , FRAME ~
1(SP,n,»))) c FACT(n,x) : SASSUME  =(n=0} 5 UU |,

I 1111324 -(n=8)=z UU (324) --- SASSUNE.
||] 1 325 TT= UU (320 324) --- USE ARITHI 324 324,
| | | od 326 TT = UU (320 324) --- INCL 325.

| | | | ITRY #141#2414#1  RESULT(HRITE(nl,B,~(n=8)-F(MBEXPR (1est,0),MS5 (body, 8) MS (body, 8,FRAMEL (SP,n,x))),FRAME~
1(5P,n,x))) ¢ FRCT(n,x) : SRSSUME “n= TT SIMPL.
IH|] (327 ~(n=8) a TT (327) -- SRSSUME.
| | | | 1328 [An x . isnat(n)a(isnat (x)+RESULT(HRITE (nl, 8,F (MBEXPR (test, 8) ,MS (body, 0) ,REARD (n1,8,READ (n2, 8, CREA~

V(8,n2, INT,0,CREAV(8,nl1, INT, 8,FRAMEQ (FRCTORIAL, INPUT(LIST(n,x)),EQF)))))))),UU) ,UU) (pred(n) ,xxn) c [An X .isnat{~
n)a(icnat{x)sFACT(n, x), UU), UU} (pred (n),>:zn) (319) --- RPPL 319 pred(n)xxn,

| +1] 1339 RESULT (HRITE (nl, 8,F (MBEXPR (tes1,8),H5 (body, 08) ,FRAMNEL (SP, pred (n),x:n)))) ¢ FACT(n,x) (319 320 32~
1 327) --- SIMPL 328 BY 320 321 327 LM1 RRITH2 RRITH3 RRITH4.

| 11] } mmm mmm

| 111 | [TRY #lai#2alslédl RESULT UIRITE (nl, 0,F (MBEXPR (test, 0),MS (body, 8) ,FRANEL (SP, pred(n),xxn)))) c¢ FACT(n,x).
I I I

| 1 1 | 1338 RESULT(HRITE(nl,8,~(n=8)-F(MBEXPR (test, 0),1S (hody, 8), 15 (body, 8,FRAMEL (SP,n,x))) ,FRAMEL (5P,n,x))) ~
c FRCT(n,x) (319 320 321327) --- SIHPL 329 RY 321 327 LN2.

| 1 | |331 RESULT (URITE(nl,8,~(n=8)~F (NBEXPR (test, 0) 1S (body, 8) ,MS (body, 8, FRAMEL (SP, n,x))) ,FRAMEL (SP,n,x))) c~
FACT (n,x) (319 320 321) --- CRSES ~(n=0) 330 326 323.

[17777 mmm

[| (832 ¥n x . isnatdn): isnatlx) 1 RESULT(URITE(nl,0,{xt b .COND(t,bef (t,b),I0)] (MBEXPR (test, 8),MS (body, ~
8) ,READ (nl,0,RERD (n2,8,CREAV(8,n2, INT, 8,CREAV(B,nl, INT, 8, FRAMES (FACTORIAL, INPUT (LIST (n,x)),EOF)))))))) ¢ FACT (n,~
x) (319) --- SPREF 331 BY 227 280 281 320 321 LM3 LH].

|| mmmmmmmm mmm

[1333 Yn x . isnat(n): :isnati{x) :: RESULT(MRITE (n1,0,UHILE (MREXPR (test, 8) ,MS (hody,0) ,RERD(n1,0,READ(n2,0,C~
REAV(0O,n2, INT,0,CRERV(8,nl, INT, 0,FRANED (FACTORIAL, INPUT (LIST (n,x)) ,EOF))) I) ))) c FACT (n,x) --- INDUCT 318 332,

| Cp En mE Ew A, gp —

(334 Vn x . isnat(n) : :isnat(x) :tAPPLY(FRCTORIARL,n,x) ¢ FRCT(n,x) --- SINPL 333 BY 207 208 210 214 280 2a
81 394 306 307 310 311 316 TH13 THI5THI8 TH12 THI11THS TH14 TH2 TH7 TH3 THI.
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. APPENDIX 8
Proof of the McCarthy Airline Reservation System

oe 8.1 List of LCF commands

Co SS+ .APPLY,.FUNCT,.PRSCRL,.FUNCCOMP, . HP, .SP;
I TRY SIMPL;

TRY INDUCT .REPERT;
TRY 1 SPREF;

TRY CRSES ~(a1l(isq)=3);
TRY 3 SIMPL;

“ TRY 2; USE RARITHI -,--~-~--; QED;
TRY 1 SIMPL;

LABEL , INDUCT;

TRY 2 SPREF;

TRY CASES ~(ell(isg)=3);
TRY 3 SIMPL;
TRY 2; USE ARITH{-, ~~s=-~=; QED;

— ss+ .COND,. ID;
L TRY 1 SIMPL,

THF . INDUCT, tai Hisq,mkpair(stupdt(isa,p,q),o08q),stupdt154,p,4), klupdt (isa, p,q);PL —-;

TRY; QED;

!

I
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8.2 Printout of the proof

ITRY #1  Visq osq p q , isufsqlisq) :: isufos(osq) :: isint(p) ::isint(q) :: APPLY (McCRRTHY,p,q, isq,0sq) c¢ BO~
OKING (p,q, isq,05¢) SIHPL.

| =mmmmmmmm

| (TRY #121 VYisqosqg p q , isufsqlisq) ::isufosfosaq):iisint(p)::isintlq) :: OUTPUT(~(MEXPR (r¢,B,MS (BODY,~
0,RERD (st, 0,RERD (Ww! ,0,FRAMEL (p,q, isg,05q)))))=3)+REPERT(MS (BODY, 0) ,MBEXPR(mkbexprl(not,mkral (eg,r4q,mknumconst (3)~
)),0),6,1S (BODY, 0,READ (st, 8,RERD (Wi, d,FRAMEL (p,q, isq,0s¢))))),N5(BODY,B,RERD(st,B,READ (W1,B,FRAMEL (p,q, isq, 050) ) ~
))) c¢ BOOKING (p,q, isq,osq) INDUCT 308 .
J

| | [TRY #1#1#1 Visqg osqpq .isufsqlisq)::isufos(osq) ::isint(p)::isint(qg) :: OUTPUT(S(MEXPR(rq,8,MS(B~
00Y,0,RERD(st,B8,READ(WI, 0,FRAMEL (p,q, isy,05¢)))))=3)UUNS (BRODY, 8) ,MBEXPR (mkbexprl (not,mkrel (eq, rq, mknumconst (3) ~
)),8),8,1S (BODY, 8,RERD(st,0,RERD(ut! ,0,FRAMEL (p,u, isq,0s4))))) MS (BODY, B8,RERD(st,B, READ (i, B,FRAMEL (p,q, isg, 089) ) ~
}1) c BOOKING (p,q, isq,o0s5q) SPREF,

| | 1335 iswfsqlisg)= TT (335) --- SASSUME.
| | 1336 iswfosfosq)z TT (336) --- SRASSUINE.
| | 1337 isint{p)=7TT (337) --- SASSUNE.

| | 1338 isint{g)s TT (338) --- SRSSUME.
[ [mmm
| ||| TRY #1414141 OUTPUT (-(ell(isq)=3)-UU,NS(BODY,08,FRAMES(p,q, isq,0s9))) c BOOKING(p,q, isq,o0sq) CASES ~

-{elllisg)l=3).

[11] (TRY #L#1#1#143 OUTPUT (~(ell(isq)=3)4UU,NS(BODY,O,FRAME2(p,q, isa,0sq))) c BOOKING(p,q, isq,osq) : SASS~
UME -(ellisq)=3)z FF SIHPL.

|) | 1339 -(ell(isq)=3)=z FF (339) --- SASSUME.
| | | | 1348 OUTPUT(~(elllisq)=3)UU,NS(BODY,8,FRAME2(p,q, isq,0s4))) c BOOKING(p,q, isq,08q) (335 336 337 338~
339) --- SIMPL' BY 335 336 337 338 339 LN3.

n|] | {TRY #1#1#14142  QUTPUT(~(ell(isq)=3)-UU,NS(BODY,B,FRANE2 (p,q, isq,089))) c BOOKING(p,q, isq,osq) : SASS~
UME (ell lisq)=3) =u u .

|| | 1341 ~(ell(isgq)=3)z UU (341) --- SRSSUME.
| | | | 1342 TT = UU (335 341) --- USE RRITHI1 34} 335.

EE I
BEE rrr
| | | | |TRY #141#14141 OUTPUT(=(ell(isq)=3)-UU,NS (BODY,B8,FRANE2(p,q, i5q,0sq9))) c BOOKING(p,q, isq,osq) : SASS

UME ~(eltl(isq)=3) = TT SIHPL.

1] 1 | 1343 ~telllisg)=3)=TT (343) --- SASSUME.
| 1 1 | 1344 OUTPUT (-(eil(isq)=3)-UU,NS (BODY,0,FRANE2(p,q, isq,08q))) c BOOKING(p,q, isq,08q) (343) --. SIMPL ~

BY 343 THG6.

I I I Bd

| | | |345 OUTPUT (~(all(isq)=3)-UU,N5(BODY,8,FRANE2(p,q, isq,039))) c BOOKING(p,q, isq,05q4) (335 336 337 338)~
- - - CASES -(elllisq)=3) 344 342 340.

I

| | [348 VYisqo s gqpq . isufsqlisg) : @isufoslosq) : isintlp) : 1isint(g) :: OUTPUT (=~ (NEXPR (rq, 0,MS (BODY, O0,R~
£AD(=1t,8,READ(ul! ,0,FRANEL(p, 4. isg,03q)))))=3) UU MNS (BODY,8) ,MBEXPR (mkbexprl (not, mkrel (ag, rg, mknumconst (3))), 8), 0~
, 11S (BRODY, 0,READ (st, 8,READ (wi), B,FRANEL (p,q, ise, 054))))) N5(BODY,0,RERD(st, 8, READ (WI, 8,FRANEL (p,q, ise,059))))) ¢ Ba
OOKING (p,q, 139,059) --- SPREF 345 BY 335 3.36 337 338 LN9LHM2.

| | mmmam mann

| | mmmmmmmmemeen oes

| | TRY #1#142 Visqosqp q .isufsqlisq) : :iswfoslosq) : :isint(p): :isint(yg) :: OUTPUT (~(MEXPR (rq, 8,MS (Ba
00Y,08,READ(st,8,READ(wi, 8,FRANEL (p,q, isg,05¢q)))))=3)+[AB T f .B«COND(T,F(B,T,#),1D)] (MS(BODY,0),MBEXPR (mkbexprl (~

hot, mkral (aq,rq,mknumconst(3))),8),8,M15(BODY,8,READ(st,B,READ(wi, B,FRANEL (p,q, isq,0sq))))),MS(BODY,8,REARD(st, 0,R~
ERD (wu! ,8,FRAMEL(p,q, isq,0sq))))) cc BOOKING(p,q, isq,omqy : HUME Visq osq pg . iswisg(ie
gq) 1 isufoslosg) =: isint(p): : isint(q) - - OUTPUT (~(MEXPR (rg,.8 MS (RODY, A RFAN(=t 0 READ (uw) 8,FRAMEL (p~
yd, i59,05qG)))))=3)F (NS(BODY,8), NBEXPR (mkbexprl (not, mkrel (eq,rq,mknumconst (3))),8),0,MS (BODY, 8,RERD (st, 8, READ (wl ~
,8,FRANEL (p,q4, isg,0sq9))))) MS (BODY,0,RERD (st, 8, READ (wi, 8,FRANEL (p,q, izq,0s5q))))) c BOOKING (p,q, isq,osq) SPRE~
F.

| | 1347 Visq 0 Ss qpq ,isuisg(isg) : :isufos(osqg) : :isint(p) : isint(g) :: OUTPUT (= (MEXPR (rq, 8, MS (BRODY, 8, R~
ERD (st,0,READ (ui, 8,FRANEL (p,q, isq,0sq)))))=3)F (NS (BODY,8) ,MBEXPR (mkbexprl(not,mkrel (eq,rq, mknumconst (3))),0),8, ~
MS (BODY, 8,RERD(st,0,READ(1, 08,FRANEL (p,q, isq,0sq))))) ,MS(BODY,8,READ(st, 8, READ (wi,8,FRANEL (p,q, isq,08q))))) c BO~
OKING (p,q, isq,0sq) (347) --- RSSUNME.

| | 1348 isufsqlisg)= TT (348) --- SRSSUHE.
1 11348 iswfosfosq)= TT (349) --- SASSUNE.
| | |358 isint(p) = TT (358) - - - SASSUNE.
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| | | 1354 isint (q)=T T (351) --- SASSUME.
| | | mmmmmmmmesemeoeeee

~ | | | [TRY #1414241 OUTPUT (~(ell(isg)=3)-COND(MBEXPR (mkbexpriinot,mirel (sq,rq,mknumconst (3))),0),F(MS (BODY, Q)~
, MBEXPR (mkbexprl (not, mre] eq, rq, mknumcons? (3)),0,8),10,1S (BODY, 0,NMS (BODY, 0,FRAME2(p,q, t5q,0359)))) , 1S (BODY, 8,F~

: RAME2 (p,q, isq,0sq9))) c BOOKING(p,q, isq,osq) CASES ~(ell(isg)=3}.
| | {|| mmmmmmmmem eee

I 111 (T RY #1#1#2#123 OUTPUT(~(ei1(isq)=3)COND (MBEXPR (mkbexprl (not, mkrel (eq,rq,mknumconst (3))),8),F (MS (BOD~
I. Y,8) ,MBEXPR (mkbexprl(not,mkrel leq, rq, mknunconst(3)1),8),0), 10, M5 (BRODY, 8, MS (BODY, 8,FRAME2 (p,q, isq,05¢)))), MS (BODY~

: ,B8,FRAMEZ (p,q, isq,089))) c BOOKING (p,q,isq,05¢) : SRSSUHE -{eillisq)=3)=z FF SIHPL.

| |b 11352 <(et1isq)=3)= F F (352) --- SRSSUHE,
~~ | 1111353 OUTPUT(-(ell(isq)=3)+COND(MBEXPR(mkbexprlinot,mkrel (eq,rq,mknumconst(3))),8),F (MS(BODY, 8), MBEXPR~

(mkbexprl(not,mkrel (eq, rq, mknumconst(3))),08),8), 10,15 (BODY, 0,MS (BODY, 8,FRAME2 (p, 4, isq,08q)))), MS (BODY, 0, FRAME (p~
.q, isq,0sq)))c BOOKING (p,q, isq,0sq) (348 349 358 351 352) --- SIHPL BY 348 349 350 351 352 LM3.

| |] | mmmmmmmmmme nna

| || mmmmmmmmemeeooeeee

| | || [TRY #ix1#24142 OUTPUT(-(ell(isq)=3)COND (MBEXPR (mhbexprl(not,mirel (eq; rq,mknumconst(3))), 0) F (NS (ROD~
. Y, 8) ,MBEXPR (mkbexprlinot,mkrel (eq,rq,mnunconst(3))),0),8), 10,15 (BODY, 8, NS (BODY, 8,FRRNE2 (p,q, icq, 0s) ))), MS (BODY A

,8,FRAME2(p,q, isg,0sq))) c BOOKING(p,q, isg,osq) : SASSUME  -~(elllisg)=3)z U U
~ IT I | 1356 -(etlfisq)=3)z UU (354) --- SRSSUHE.

| 11 | 1355 TT = UU (348 354) --- USE ARITH1 354 348.
| 1h] mmmmae

[|] mmm = mmm

[HHT (TRY  #i#142#141 OUTPUT (-(eil(isq)=3) LOND (MBEXPR (mibexprl (not, mkrelleq,rq,mknumconst (3))) ,0),F(MS (ROD~
Y,8) ,NBEXPR (mkbexprl(not,mkrel (eq,rq,mknumconst (3))),8),8, 10, NS (BODY, 8, MS (BODY, 8,FRAME2 (p,q, isq,0s5¢)))) , MS (BODY~
,8,FRAMEZ (p,4,isq4,05q9))) c BOOKING(p,q, 54,029) : SRSSUHE ~(elllisq)=3)= TT SIMPL.

- | | 1 | 1356 =(elifisq)=3)z TT (356) --- SRSSUHE.

§ | 1111357 [risq 0sq p q . iswisqlisqls(iswfos(osq)+(isint(p)alisint(q)0UTPUT (~(NEXPR (rq, 0,MS (BRODY, 8,RERD (s~
t,8,RERD(u1,8,FRANEL(p,q, isq,0sq)))))=3)F (NS (BODY, 8) ,MBEXPR Imkbexpr] (not, mkrei (eq, rq, mknumconst (3))) 0), 8,15 (RO~
OY,8,RERD(st,8,READ (ui, B,FRANEL (p,q, isq,0sq))))),HS(BODY,8,RERD (st, 8, READ (WI, B,FRANEL (p,q, isq,0s9))))), UU), UU) Un
U),UU) (taitlCisg) ,mkpair(stupdt(isq,p,q),08q),stupdtCisa,p,q),wlupdtlisq,p,q)) Cc (Nisqosqp gq , isutzsqlisg)sisua

ha fos (osqlalisint(p)=lisint(q)+BOOKING (p,q, isq,0sq),UU), UU, UU), UU] (taill(isg) ,mkpair (stupdt (isq,p,q) ;0sq),siupdt (a
isq,p,q),slupdtCisq,p,q)} (347) --- RPPL 347 taili(isq) mkpair{stupdt(isq,p,q),0sq) stupdtisq,p,qdutupdt(isq,~
p,q’.

, | | | | 1358 OUTPUT (~(e13 (isql)=3)~F (M5 (BODY, 8) ,MBEXPR (mkbexprl(not,mkrel (eq, rq,mknumconst(3))), 8), 0, MS (BODY, B~
2 ,FRAME3 (p,q, isq,0s9))),MS (BODY, 8, FRAMES (p,q, isq,05¢4))) c BOOKING(p,q, isq,0sq) (347 348 349 350 351 356) -~y SIM

PL 357 BY 348 349 350 351 356 LH7 LH2 LMSARITHZ ARITH3 RRITH4 ARRITHS LMN4.

| LEH (TRY #Lale2aidiel OUTPUT (~(e!3(isqg)=3)+F (MS (BODY, 8) ,MBEXPR (mkbexprl(not,mkre! (eq, rq, mknumconst (3) )) ~
| ,8),8,MS(BODY,8,FRAME3(p,q, isq,0sq))) ,NS(BODY,8,FRANES (p,q, isg,0sq))) c BOOKING (p,q, isq,o0sq)

| | | | 1359 OUTPUT(-(eillisg)=3)+COND(MBEXPR (mkhexprlinot,mrel(eq,rq,mknumconst(3))),8) ,F (MS (RODY, 8), MHBEXPR~

| (mkbexprl(not ,mkrel (eq, rq, mknumconst(3))),8),8),10,MS(BODY, 8,15 (BODY, 8, FRAME2 (p,q, isq,05q)))), HS (BODY, 8, FRAME (pa: 8 ,q, LM6. isq,05q))) c BOOKING(p,q, isq,05q) (347 348 349 359 351 358) --- SIMPL 358 BY 227 281 348 349 358 351 356 Li

| ||| mmmmmmmmmmeneeee

| | | [368 OUTPUT(~(ell(isq)=3)-CONDNBEXPR(mkhexpriinot,mkrel (eq, rq, mknumconst (3))),0),F (MS (RODY, 8), HREXPR (ma
khexprl(not,mkretl leq, rq, mhnumconst(3))),08),8),10,N5(BODY,0, NS (BODY, 0,FRRME2 (p,q, isq,03q)))) MS (BODY, 0,FRANEZ (p, g~
,isg,03q))) c BOOKING(p,q, isq,05q) (347 348 349 350 351) GRSES -(ell(isg)=3) 359 355 353.

| || meme

| 11361 visq osq p q . iswisqlisg) :: iswtoslosq) :: isintlp) = isintlq) = OUTPUT (=~ (MEXPR (rq,(BODMS3,R~
. EAD(st,0,READ(ul, 8,FRANEL (p,q, isd,05¢)))))=3)[A8 T f .B2COND(T,F(R,T,{},10)) (MS (BODY, 8), HBEXPR (mkbexprl (not, mkr~

e! (eg,rq,mknumconst(3))),8),0,M5(B0DY,d,READ(st, 8,RERD (W},8,FRANEL (p,q, isq,0sq))))), HS (BODY, 0, READ (st, 0, READ (ki, ~
~ 8,FRAMEL (p,q, isq,08q9))))) c BOOKING (p,q, 54,059) (347) SPREF 360 BY 288 348 349 350 351 LMI LM2.

[ERR

. | 1382 visqg osq pq. isWfsqlisg) : : iswfoslosg) ss isint(p):iisint(g) 1: OUTPUT(S(HEXPR(rq,0,MS(BODY, 8,REAN
Df(st,8,RERD(n!,8,FRAMEL (p,q, isgy,054)))))=3) JREPERT (MS (BODY,8) ,MBEXPR (mkbexprl (not, mkret (eq, rq, mknumconst (3))),8) ~
, 8,15 (BRODY, 0,READ (st, 8,READ (wi, 0,FRANEL (p,q, isq,089))))) MS(BODY,O,READ (st, 8,RERD (ui, 8, FRAMEL (p,q, isy,05¢))))) cw

. BOOKING(p,q, isq,054) INDUCT 346 361.
——

- |363 Visq o0sq p q , isufsqlisq) :: iswtos(osq) : :isintlp) :: isint(q) :: RPPLY (McCARTHY,p,q, isq,0sq) Cc BOOKI~
NG (p,q, -—— isqosq) SIMPL 362 BY 207 288 218 280 303 326 333 334 LMI TH2 THS.

i
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