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An Analysis of Alpha-Beta Pruning

Put one pound of Alpha Beta Prunes
in a jar or dish that has a cover.
Pour one quart of boiling water over
prunes. The longer prunes soak, the
plurper they get.

- Alpha Beta Acme Markets, Inc.,
Le Habra, California

Computer programs for playing games like chess typically choose their

moves by searching a large tree of potential continuations. A technique

called "alpha-beta pruning" is generally used to speed up such search

proces:es without luss of information. The purpose of this paper is 10

analyz: the alpha-beta procedure in order to obtain some quantitative

estimates of ita performance characteristics.

Sention 1 defines the basic concepts associated with game trees.

Section 2 presents the alpha-beta method together with a related technique

which is similar, but not as powerful, because it falls to make "deep

cutoffs" The correctness of both metnods is demonstrated, and Section 3

gives examples and fur:her development of tne algorithms. Several

suggestions for applying the method in practice appear in Section 4, and
the history of alpha-beta pruning is discussed in Section 5.

Section 6 begins the quantitative analysis, by deriving lower bounds

on the amount of searching needed by alpha-beta and by any algorithm which

solves the same general problem. Section 7 derives upper hounds, primarily

by considering th: case of random trees vhen no deep cutoffs are made. IU

is shown that the prozedure is reasonably efficient even under these weak

assumptions. Section 8 shows how to introduce same of the deep cutoffs

into the analysis; and Section 9 shows that the eificiency improves when

there are dependencies Letween successive moves. This paper is eisentially

self-contained, except fr a fev mataematical results quoted in the later

sections.
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1. Games and position values

The two-person games we are dealing with can be characterized ty

a set of "positions", and Ly & set of rules for moving from one position

to another, the players moving alternately. We assume that no infinite

sequence of positions is allowed by the rules4 and that, there are only
finitely many legal moves from every position. It follows from the

"infinity lemma’, see [11, Section 2.2.4.3), that for every position pp

there is a number N(p) such that no game starting at p lasts longer

than N(p) moves.

If p is a position from which there are no legal moves. there is

an integer-valued function f(p' which represents the value of this

position to the player whose turn it is to play from p ; the vaiue to

the other playe.’ is astumed to be =f(p) .

If p is a position from which there are 4d legal moves Pyse*sDy >

where 4d > 1 , the problem is to choosc the "best” move. We assume that

the best move is one which achieve: the zreatest ‘possible value when the

game ends, if the opponent also choises noves which are best for him.

Let F(p) be the greatest porsible value achievable from position Pp

against the optimal defensive strategy, from the standpoint of the player

who is moving from that position. Since the value (to this player)
/

after moving to position p, will be -F(p,) , we have

f(p} > if 4d =0;
F(p) - (1)

< 1 d

J mmwr nnae

Strictly spealing, chesc does not satisfy this condition, since its
rules for rereated poreitions only rive the players the optiom to
reques’. a draw, in certain circumstances; if neither player actually
does ask for a draw, the gamc can go on forever. But this technicality
is of no practical importance, since campu:er chess programs only
look finitely many moves ahead. It 1s possible to deal with infinite
games by assigning appropriate values to repeated positions, tut such
questions ar: veyond the scope of tnis paper.
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Tris formula serves to define F(p) or all positions p , by inducticn

or the length of the longest game playable from p .

In most discussions of game-ployling, a slightly different formalism

is used; the two players are named Max and Min , where all values

sre given from Max's viewpoint. Thus, if p Is a terminal position

with Max to move, its value is f(p) us before, but if p is a

terminal position with Min to move its value is

gp) = -f(p) (2)

Max will try to maximize the final value, and Min will try to minimize

it. There are now two functions corresponding to (1), namely

(0 ’ if a=0 ,F(p) = (3)

max (G(p,)» ---,G(py)) , 1f£f 4>0 ,

vhich is the best value Max can guarante: starting at position p,

and

(on ’ if 4=0 ,a(p) = (4)

min(F(p,), ++ +)F(By) , 1 4>0 ,

vhich is the best that Min can be sure of achiaving. As before, we

assume that Py +-+»)Py are the legal moves from poeition p . It is

easy to prove by induction that the two definitions of F in (1) ad

(3) are identical, and that

G(p) = -F{p) (5)

for all p . Thus the two approaches are equivalent.

Sometimes it is easier to reason about gmme-pliaying by using the

minimax” framework of (3) and (k) instead of the "negamax" approach

of Equation (1); the reason is that we are sometimes less confused if

we consistently evaluate the gase positions from one player's standpoint.
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On the other hand, formulation (1) is advantageous when weire trying

to prove things about games, because we don't have to deal with two

(or sometimes even 4 or 8) separate cases when we want to establish

our results. Equation (1) is analogous to the "NOR" operation which

arises in circuit design; two levels of NOR logic are equivalent to

a ler:l of AND's followed by a level of OR's.

The function F(p) 4s the maximum final value that can be achieved

if both players play optimally; but we should remark that this reflects

a rather conservative strategy that won't always be best against poor

players or Against the nonoptimal players we encounter in the real

world. For example, suppose that there are two mover, to positions

p, and p, , here p, assures a dray (value © ) but cannot possibly

vin, while 2 give: a chance of either victory or defeat depending on

whether or not the opponent overlooks a rather subtle winning move.

Ve may b: better off gambling on the move to Ps» vhich is our only

chance to win, unless we are convinced of our opponent's competence.

Indeed, humans seem tO beat chess-playing programs by adopting such a

strategy.
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2. Development of the algorithm

The following algorithm (expressed in an ad-hoc AILGOL-like language)

clearly computes F(p) , by following definition (1):

integer procedure F (position Pp):

determine the successor positions Pyro +sPy}

ifd = 0 then F := £(p) else
begin m i= ==;

for 1 t= 1 step 1 until d do
begin t := -F(p,) 3

if © >m then m := t;
end;

F := mj;

end;
end.

Here ® denctes a value that is greater than or equal to |£(p)| for

all terminal p.sitions of the game, hence -» is less than or equal

to + F(p) for all p . This algoritim is a "brute force" search

through all possible continuations; the infinity lemma assures us that

the algorithm will terminate in finitely many steps.

It is possible to improve on the brute-force search by using a

"branch-and-bound” technique [14], ignoring moves which are incapable of

veing better than moves which are already known. For example, if

F(py) = -10 then P(p) > 10 , and we don't have to know the exact value

of r(p,) if we can deduce that F(p,) > «10 (i.e., that -F(p,) <10).
Thus if Poy 18 & legal move from Po such that F(Py) < 10 , we need
not bother to explore any other moves from Pp In game-playing

terminology, a move to p, can be "refuted” (relative to the alternative
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move D, ) if the opposing player can make a reply to p, that is at

least as good as his best reply to Py - Once a move has been refuted,

we need not search for the best possible refutation.

This line of reasoning leads to a computational technique that

avoids much of the computation done dy F . We shall define Fl as

a procedure on two parameters p and bound , and cur goal is to

achieve the following conditions:

F1(p,bound) = F(p), if F(p) < bound;

F1(p,bound) > bound, if F(p) > bound. (1)

These relations do not fully define Fl , but they are sufficiently

powerful to calculate F(p) for any starting position p because they

imply that

Fl(p,=) = F(p) (2)

The following algorithm corresponds to this branch-and-bound idea.

integer procedure Fl (position p, integer bound) :
begin integer m,1,t,4;

determine the successor positions Pyre + +3Pys

if 4 = 0 then Fl := £(p) else
begin m i= -;

for 1 := 1 step 1 until 4 do

begin ¢ t= ~F1(p;.-m);
itt >a theym := ¢3
if m > bound then go to done;pa Pe rs

md;
done: Fl := nm;

-d;
end.
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We can prove that this procedure satisfies (1) hy ¢rguing as follows:

£t the beginning of the i-th iteration of the for loop, we have the

"invariant" condition

mn = max(-F(py),.-»=F(p;_;)) (3)

just as in procedure F . (The max operation over an empty set is

conventionally defined to be -=» .) For if ~F{p,) is >m then

F1(py» -m) = F(py) » by condition (1) and induction on the length of the

game following p ; therefore (3) will hold on the next iteration.

And if max(=F(p,)- +s -F(p,)) >bound for any i , then F(p) > bound .
It follows that condition (1) holds for all p .

The procedure can be improved further if we introduce both lower

and upper bounds; this idea, which is called alpha-beta pruning, is a

significant extension to the one-sided branch-and-bound method.

(Unfortunately it doesn't apply to all branch-and-bound algorithus, it

works only when a gane tree ir being explored.) We define a procedure

F2 of three parameters p , alpha, and beta, tor alpha < beta,

satisfying the fullowing conditizns analogous to (1):

F2(p, alpha,beta) < alpha, if F(p) < alpha;

F2(p,alpha,beta) = F(p), if alpha < F(p) < beta; (4)

F2(pyalpha, beta) > bets, if F(p) > beta.

Again, these conditions do not fully specify Fe , but they imply that
i

P2(py-=ya) = Fp) (5)

Jt turns out that this improved algorithm looks only a little different

from the others, vhen it is expressed in a programming language: | |
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integer procedure F2 (position p, integer alpha, integer beta):
begin integer m,i,t,d4;

determine the successor positions Py + 3Py

if4 = O then F2 := f(p) else
begin m := alpha;

for 1 := 1 step 1 until d do
begin t := -F2(p,,-beta, -m);

if t >m then m := t;
ifm > beta then go to dome;

end;
done: F2 := m;

end;

end;

To prove the validity of F2 , we proceed as ve did with Fl .

The invariant relation analogous to (>) is now

and m < beta . If -F(p) > beta then ~F2(py» -beta,-m) will also

be > beta, and i? m < -F(p,) < beta then -F2(p, , -beta, -n) = -F(p,) 3
so the proof goes through as before, establishirg (I) by induction.

Now that ve have found two improvements of the minimax procedurs,

it is natural to ask whether still further improvement is possible. Is

there sn "alpha-beta-gamma" procedure FJ , which makes use say of the

second-largest value foumd so far, or some other gimmick? Section 6 |

below shows that the answer is no, OF at least that there is a reasomsble

sense in which procedure F2 is optimum.
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3. Examples and refinements

As an example of these procedures, consider the tree in Figure 1,

which represents a position that has three successors, each of which

has three successors, etc., until we get to 5 = 81 positions possible

after four moves; and these 81 positions nave been assigned "random

f values according to the first 81 digits of nn . Figure 1 shows the

? values camputed from the £'s ; thus, the root node at the top of the

tre- has an effective value of 2 after best play by both cices.

F:qure 2 shows the same situation as it is evaluated by procedure

F1(p,») . Note that only >¢ of the 81 terminal positions are

examined, and that onc of “he uodes at level 2 now has the "approximate"

value >» instead of its “rue value 7 ; but this approximation does not

of course affect :he value at the top.

Figure 3 shows the sume situation as it is evaluated by the full

alpha-beta pruning procedure F2(p,-=,+») will always examine the came

nodes as Fl(p,®) util the fourth level of lcokahead is reached, in

any same tree; this is a consequence of the theory developed below.

on levels L,5,..., however, procedure F2 is occasionally able to

make "deer cutoffs” which Fl 1s incapable of finding. A comparison

of Mgure 3 with Figure 2 shows that there are five deep cutoffs in this

exauple.

All of these iliustrationr present the results in texms of the

"negamax” model of Section i; if the reader prefers to see it in "mininax"

tems, it is sufficient to ignore all the minus signs in Figures 1-3.

Tae procedures of Section 2 can readily de converted to the minimax

conventions, for example by replacing F2 by the following two procedures:

10
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integer procedure F2 (position p, integer alpha, integer beta):

begin integer m,1,t,4;

determine the successor positions SERREPF
if @ = 0 thenF2 := f(p) else

fori := 1 step 1 until d do

begin t := G2(p,,m, beta);
if t >n then m i= 13
Afm >Deta thengo to done;

end;
done: F2 := mj

end;

end;

integer procedure G2 (position p, integer alpha, integer beta) :
begin integer m,i,t,d;

determine the successor positions Pyre-+sPy)
if4 = 0 thenG2 := g(p) else

for 1 i= 1ateplwitild do

begin t := r2(p,,alpha,n);
irs <m thenm := t;

if =m < alpha then go to done;

od;

done: F2 := mj

end;

ead.

It is a simple but instructive exercise to prove that (2(p,alphs,beta)

alvays equals -F2(p,-beta,-alpha) .

The above procedures have mace use of a magic routine that determines

the successors Pyse+2Py ofa given position p . If we want to be

more explicit about how positions are represented, it is natural to use

1h



the fcrmat of linked records: When p 1s a reference {> a record

dencting a position, let [first(p) be a reference to the first

successor of that position, or A (a null reference) if che position

ice terminal. Similarly if q references a successor Dy of p,

let next(q) be a reference to the next successor Pipl *

or A if 41 =d . Finally let generate(p) be a procedure that

creates the records for p,,...,p; » Sets their next fields, and maxes

first(p) point to Py (or to A if dd = 0 ). Then the alpha-beta

pruning method takes the following more explicit form.

integer procedure F2 (ref (position) p, integer alpha, integer beta):

begin integer m,t; ref (positicn) q;
generate(p);

q := first(p);

ifq = A then }2 := £(p) else

while q 4 A and n < deta do
begint := ~-F2(q, -beta,-n);

ift >m thenm := ¢¢

3 := next(q);

od;
F2 := mj;

end;

en.

It 18 interesting to covet this recursive pracedure to an

iterative (nomrecursive) fom. by a soquence Sf mechanical transformations,

and to apply simple optimizations which presarve program correctness

(see [12]). The resulting procedure is surprisingly simple, but not

as easy to prove correct as the recursive furm:

15



integer procedure alphabeta (ref (position) p);

begin integer 2; cament level of recursion;

integer array a[-2:L]; comment stack fcr recursion, where
[2-2], a[t-1), alt], A[2+1l] denote respectively

ref (position) array ri0:I+1)]; comment another stack for
recursion, wherz r{2] and R{2+1] dencte respectively

p and q in F2;

f := 0; a[=2] := a[-1] = ==; r[0] := Pp;

F2: generate (x[1]); |

rl1+l] := first(r(1]);

if r(1+1] = A then ait] := £(r[2]) else

begin af!] c= al 2-2]

loop: J := 1+]; g to Fe;
resume: if -a[2+1] > a[2] then

begin a(t] := -al#+l];

if a{#+1] <a[f-1] then go to done;
end;

r{i+l] := next(r{2+1l]):

if r(#+1] £ A then go £3 loops
end; |

done: ff := f-1; if § > 0 then 80 to resume;
alphabets := a[0];

end.

This procedure alphabeta(p) will compute the same value as 'F2(p,-w, +=) ;

ve must choose 1 large enough so that the level of recursionnever

exceeds L .

16



men n oorrmiter is playing a complex game, it will rarely be able

to search =". ~~sribilities until truly teiminal positions are reached;

even the alpha-:ta technique won't be fast enough to solve the game

of chess! But ve can still use the above procedures, if the routine

that generates all moves is modified so that sufficiently deep positions

are consifered to be terminal. For example, if we wish to look six

moves ctcad ‘turee ior each player), we can pretend that the positions

reachud al lov-. ( have no successors. To compute f at such

artificially-.erminal positions, we must of course use or best guess

about the value, hoping that a sufficiently deep search will ameliorate

the inaccuracy ol our guess. (Most of the time wil)i be spent in evaluating

these guessed ralies for f , unless the determination of legal mover is

ecpeeially difficult, so same guickly-computed estimate is needed.)

Instead of searching to a fixed depth, it is also possible to carry

some lin=s further, e.g. to play out all sequences of captures. An

intersecting approach was suggested by R. W. Floyd in 1965 [€], but it

hes apparently not yet been tried in large-scale experiments. Each

move in Floyd's scheme is ascigned a "likelihood" according to the

following genera. plan: A forced move has "likellaood” of 1, vhile

very implausible moves (like queen sacrifices ir chess) get .01 «r so.

In chess a "recaptur:' has "likelihood" greater than 1/2 ; and the best

strategic choice out of 20 or 30 possibilities gets a "likelihcod”

of about 0.1 , while the worst choices get say 0.02 . Uhen the

product of all "likelihoods" leading to a position becomes less than a

given thresnhcld say 1078 ), we consider that position to be terminal

7



and estimete ite value without furthe: searching. Under this scheme,

the "most likely" branches of the tree are given the most attention.

Whatever method is used to produc:c a tree of reasonable size, ihe

alpha-beta procedure can be somewhat improved if we have an idea what

the value of the initial position will be. Instead of calling

F2(p, =», +®) , we can try F2(p,a,b} where we expect the value to be

greater than a and less than b . For example, if F2(p,0,4) 1s used

instead of F2(p,-10,+10) 4n Figure 3, the rigbtmost " -4 " on level 2,

and the “ 4 " below it, d. not need to be considered. If our expectation

is fulfilled, we may have pruned off more of the tree; on the other

hand if the value turns out to be low, say F2(p,a,b) =v where v <a,

we can use F2(p,-=,v) to deduce the correct value. This idea has been

used in same versions of Greenblatt's chece program [8].

5. History

Before we begin to meke quantitative analyses of alpha-beta's

efiectiveness, let us look briefly at its historical development.. The

early history is somewhat obscure, because it is based on undocumented

recollections and because some people have confused procedure Fl with |

the stronger procedure F2 ; therefore the following account is based

on the best information now availadle to the authors.

John MeCucthy [15] thought of the method during the Dartmouth

fummer research conference on artificial intelligence in 1956, when

A. Bernstein described an early chesc program [2] which didn't use

any sort of alpba-beta. McCarthy "criticiied it on the cpot for

this [reason], but Bernstein was not comvinced. No formal specification

of the algorithm was given at that time.” It is plausible that McCarthy's

18



remarks at that conference led to the use of alpha-beta pruning in

game-playing programs of the late 1950's. Arthur Samuel has stated that

the idea was present in his checker-playing programs, but he did not

allude to it in his classic article [21] because he felt that the other

aspects of his program were more significant.

TLe first published discussion of a method for game tree pruning

appeared in Newell, Shaw, and Simon's description [16] of their early

chess program. However, they illustrate only the "one-gided"” technique

used in procedure Fl above, so it is not clear whether they made use

of "deep cutofis’.

McCarthy coined the: name "alpha-beta" vhen he first wrote a LISP

program embodying the technique. iis original approach was sacevwhau

more elaborate than the method described above, since he assumed the

existence of two functions " optimistic value(p) " and “pessimistic velue(p) *

which were to be upper and lower bounds om the value of a position.

McCarthy's form of alpha-beta searching was equivalent to replacing the

above body of procedure F2 by |

if optimistic value(p) < alpha then F2 := alpha
else if peseimistic value(p) > beti them F2 := beta

else begin (the above body of procedure F2) end.

Because of this elaboration, he thought of alphs-bela as a (possibly

inaccurate) heuristic device, not realizing that it would also produce

the same value as fullminisaxingin the special case that

cptimistic value(p) = +=» and pessimistic vidue(p) = -» for all p .

19



He credits the latter discovery to T. P. Hart and D. J. Edwards, who

wrote a memorandum [10] on the subject in 1961. Their unpublished

memorandum gives examples of the general method, including deep cutoffs;

but (as usual in 1961) no attempt was made to indicate why the method

worked, much less to demonstrate its validity.

The first published account of alpha-beta pruning actually appeared

in Russia, quite independently of the American work. One of the developers

of an early Russian chLess-playing program, Aleksandr L. Brudno, described

an algorithm identical to alpha-beta pruning, tcgevner with a rather

complicated proof, in 1963 [L].

The full alpha-beta pruning technique finally appeared in "Western"

canputer-science literature in 1968, within an article on theorem-proving

strategies by J. Slagle and P. Bursky [24], but their description was

somewhat vague and they did not illustrate deep cutoffs. Thus we might

say that the first real English descriptions of the methicd appeared in 1969,

in articles by Slagle and Dixon [25] and by Samuel [22]; both of these

articles clearlv mention the possibility of Aecep cutoffs, and discuss

the idea in some detail.

The alpha-beta technique seems to be quite difficult to communicate

verbally, or in conventional mathematical language, and the authors of

the papers cited above had to resort to rather complicated descriptions;

furthermore, considerable thought seams to be required at first exposure

to convince oneself that the method is correct, especially when 1t has

been described in crdinary language and "deep cutoffs™ must be justified.

Perhaps this is why many years went by before the technique war published.

However, we have seen in Section 2 that the method is easily understcod

and proved correct when it has been expressed in algorithmic language;
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this makes a good illustration of a case where a "dynamic" approach to

process description is conceptually superior to the "static" approach

of conventional matheratics.

Excellent presentations of the method appear in the recent textbooks

by Nilsson [18, Section 4) and Slagle (23, pp. 16-24], but in prose

style instead of the easier-to-understand algorithmic form. Alpha-beta

pruning has become "well mown”; yet to the ¢-thors! knowledge only two

published descrivntions have heretofore been expressed in ar algorithmic

language. In fact the first of these, by Mark Wells [27, Section 4.3.3],

isn't really the full alpha-beta procedure, it isn't even as strong ac

procedure Fl. . (Not only is his algorithm incapeble of making deep

cutoffs, it makes shallow cutoffs only on strict inequality.) The other

published algorithm, by Ole-Johun Dahl and Dag Belsnes (5, Section 8.1],

appears in a recent Norwegian-language textbook on data structures;

however, th2 alpha-beta method is presented using label parameters,

so the corresponding proof of correctness becomes somewhat difficult.

Another recent textbook [17, Section 5.3.1] contains an informal description

of what is called "alpha-bete pruning”, but again only the method of

procedure Fl js given; apparently many people are unavare that the

alpha-beta procedure is capable of making deep cutoffsY For these reasons,

the authors of the present paper do not feel it redundant to present a

new expository usccount of the method, even though alpha-beta pruning has

been in use for more than 15 years.

the research deucribed in Section 7 approximately five years before he war
aware that deep cutoffs were possivle. It is easy to understand
procedure Fl and to associate it with the term "alpha-beta pruning”
your colleagues are talking about, without! discovering F2 .
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6. Analysis of the best case

Now let us turn to a quantitative study of the algorithm. How

much of the tree needs to be examined?

For this purpose it is convenient to assign coordinate numbers to |
the nodes of the tree as in the "Dewey decimal system" (11, p. 310]:

Every position on level { is assigned a sequence of positive integers

a 8, ..-8, The root node {the starting position) corresponds to the

empty sejuence, and the 4d successors of position a ..-a, are

assigned the respective coordinates 8y «- a,l yee By een e,d . Thus, |

position 314 1s reached after making the third possible move from the

starting position, then the first move fram that position, and then the

fourth.

Let us call position 8, ...8, critical if a, = 1 for all even

values of i or for al odd values of i . Thus, positions 21Lhl2 ,

131512 , 11121113 , and 11 are critical, and the root position is

always critjecel; but 12112 is not, since it has non-1l's in both even

and odd positions. The relevance of this concept is due to the following

theorem, which characterizes the action of alpha-beta pruning vhen we are

lucky enough to consider the best move first from every position.

Theorem 1. Consider a game tree for which the value of the root position

is not +e , and for which the first successor of every position 1s

optima; 1.e.,

Hay... a) {le ’ it SEE is terminal; 2)F(a, ... al) , otherwise.

The alplw-beta procedure F2 examines precisely the critical positions

of this game tree.
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Proof. Let us say that a critical position By reed is of type 1

if all the a, are l; it is of type 2 if ay is its first entry
>1 and (-j is even; otherwise (i.e., when (-j 1s odd, hence

a, = 1) 4i is Ff type 3 . It is easy to establish the following

facts by inducti '. on the computation, i.e., by showing that they are

invariant assertions:

(1) A type 1 position p is examined by calling F2(p,-®,+a) . If

it 18 not terminal, its successor position Py is of type 1,

and PF(p) = -F(p,) f# += . The other successor positions

Ppr---»Py Aare of type 2 , and they are all examined by calling

F2(p,,-=F(p,)) .

(2) A type 2 position p 1s exanined by calling F2(p, -=,beta) ,

where -= <beta <IF(p) . If it !8 nc* terminal, its successor

position p, 1s of type 3 , and F(p) = “F(p,) ; hence, by the

mechanis™ of procedure F2 as defined in Section 2, the other

SUCCessors Pos: spy are not examined.

(3) A types 3 position p is examined by calling F2(p,alpha,+a)

where +o > globe > F(p) . If it is not terminal, each of its

successor positions Pp, is of type 2 and they are all examined

by calling ¥2(p,, ~~, ~alpha) .

It follows by induction on £ that every critical position is

exanined.

-
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Corollary 1. If every position on levels O0,1,...,21-1 of a game tree

satisfying the conditions of Theorem 1 has exactly d successors,for

same fixed constant d , then the alpha-beta procedure examines exactly

qua/2r  giefal (2)

positions on level | J

Proof. There are al4/2al sequences a, ...a , with 1 < a; < da for
all 1 , such that a, = 1 for alli odd values of 1 ; there are

a't/2] such sequences with a, = 1 for all even values of i ; and

we subtract 1 for the sequence 1 ...1 which was counted iwice. 5

This corcllar, was first derived by Michael Levin in 1961, but no

proof wac apparently ever written down at the time. In fact, the

informal emo [10]by Hart and Edwards justifies the result by saying,

"For & convincing personal proof using the new heuristic hand waving

techninue, see the author of this theorem." A proof was later published

Ly Slagle and Tixon [25). However, none or these authors pointed out

that the valu. of the root position must not equal += . Although

this is a rare occurrence in nontrivial games, since it means that the

root position is a forced win or loss, it 1s a necessary hypothesis for ]

both the theorem and the corollary, since the mumber of positions examined

on level t will be al#/2 when the root value is +o , and it will

be alt/2] when the root value is =-= . Roughly speaking, we gain a

factor of 2 vhen the root value is +a .

The characterization of perfect alpha-veta pruning in terms of

critical positions allows us to extend Corollary 1 to a much more general

class of game trees, having any desired probability distribution for the

of legal moves on each level.
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Corollary 2. let a random game tree be generated in such a way that

each position on level Jj has probability 9; of being nonterminal,

and has an average of a3 successors. Then the expected number of

positions on level { is d, d, I. d, ; and the expected number of

positions on level examined by the alphau-beta technique under the

assumptions of Theorem 1 is

BLS CREEPER PIC Wk FLUE FRCLBal LEERY I BL Shid

4,9,9,9; “oo q, 4, ;* 4ndy9583 ‘oe d, 0%, =940y +++ 9,_y * § odd. (5)

(More precisely, the asiumptions underlyiag this random bre..ching

process are that level Jj+1 of the tree is formed from level J as

follows: Each position p on level Jj is assigned a probability

distribution {ry(P)sry(P)s ++) » where r,(p) is the probability

tliat p will have d successors; these distributions may be different for

different positions 7p , but each must catisfy r,{p) = 1-q, , and each must

have the mean value r,(p) +2r,(p) +... = a. . The number of successor
positions for p ie chosen at random from this distribution, independently

of tiie number of successors of other positions on level Jj .)

Proof. If x is the expected number of positions of a certain type

on level J , them xd3 13 the expected number of successors of these

poeitions, and xq3 is the expected number of "mumber 1" successors.
It follows as in Corollary 1 that (3) is the expected number of critical

positions on level ( ; for example, 959; ++ 9.3 is the expected

number of positions on level |! whose identifying coordinates are

ell l's .
oJ
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Note that (3) reduces to (2) when qy = 1 and d, = d for

n<i<t.

Intuit: vely we might think that alpha-beta pruning would be most

effective when perfect-ordering assumption (1) of Theorem 1 holds; 1l.e.,

when the firs: cuccessor of every position is the best possible move.

But this is no: always the case: Figure 4 shows two game trees which

are identical except for the left-to-right ordering of successor

positions; alpha-beta search will investigate more of the lefthaad

tree than the righthand tree, although the lefthand tree has its |

positions perfectly ordered at every branch.

Thus the truly optimum order of game tree traversal isn't obvious.

On the other tand it is possible to show that there always exists an

order tor processing the tree ro that alpha-beta examines as few of the

terminal positions as possible; no algorithm can do better. This can

be demonstrated by strengthening the technicue used vo prove Theorem 1,

as we shall see.

Theorem 2. Alpha-beta pruning is optimum in the following sense:

Given any game tree and any algorithm which computes tae value of the

root position, there is a way to permute the tree (by reorderins successor

positions if necessary) so that every terminal position examined by the

aipha-beta method under this permutation is exapined by the given

algorithm. Furthermore if the value of the root is not +e, the

alpha-beta procedure examines precisely the positions which are critical

under this permutation. (It is assumed that all teminal positions have

independent values, or equivalently that the algorithm has no knowledge

about dependencies between the values of terminal positioms.)

An equivalent result has deen obtained by G. MN. Adel'son-Vel'sill

(1, Appendix 1]; a scmevhat simpler proof will be presented here.
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Figure 4. Perfect ordering is not always pest.
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froof. The following functions F, and F, define the best possible

bounds ¢n the value of any position p , based on the terminal positions

examinec. by the given algorithm:

-® |, .f p is terminal and not examined;

F,(p) = fp) , if p is terminal and examined; (4)

max(-F (34) 3eany -F,(Py)) ’ otherwise.

+o if p 1s terminal ard not examined;

F,(P) = f£(p) if p is terminal and examinag; (5)

max(-F,(p)y...,-F,(p4)) , otherwise.

Note that F,(p) < F.(P) for ail p . By independently varying the

values at unexamined terminal positions below p , we can make F(p)

assume any given value between F,(p) and F, (Pp) , but ve can rever
go beyond these limits. When p ics the root position we must therefore

have F.(p) =F (p) = F(p) .

Assume that the root value is not +» . We will show how to

permute the tree so that every critical terminal position (according

to the new numbering of positions) is examined by the given algoritim

and that precisely the critical positions are examired by the alpha-beta

procedure F2 . The critical positions will be classified as type 1,

2, or 3 as in the proof of Theorem 1, the root being type 1 . The

following facts can be proved by induc tion:

(1) A type 1 vosition p has PF(p) = F,(p) = F(p) £ to, and it
is examled during the alpha-beta procedure by culling

F2(py=m+e) . If p is teminal, it must be examined by the given

algorithm, since r,(p) fg -o . If it is not terminal, let j and
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k be such that ?4(p) = “Fy (P.) and F,(?) = ~Fo(p) . ‘then
by (4) and (5) we have

Fy(p,) = 7y(py) < Filey) = -F(p) = Fp)

hence F, (py) = F,(p,) and we may assme that Jj = k . By
vermuting the successor positions we may assume in fact that

J=k=1. Position p, (after permutation) is of type 1 ;

the other successor positions Pos :+»P, are of type 2 , and

they are all examined by calling F2(p; ~c0, -F(p,)) .

(2) A type 2 position p has F,(P) > -« , and it is examincd

during the alphu-beta procedure by calling FPF2(p,-o, beta} wicre

-= < beta < F,(p) . If p l= terminal, it must be examined by

the given algorithm. Ctherwise let Jj be such that F,(F) = Fp, :
and permute the successor positions if necessary so that Jj =1.

Position p, (after permutation) is of typ > and is examined

by calling F2(p,, -beta, +=) . Since F, (7) = -F,(p) < -beta ,

this call returns a value < ~beta ; hence the other successors

Pps-++>Py (which are not critical posit ons) are not examined
by the alpha-beta method, nor are their descendants.

(3) A type > position p has F(p) <=, and it is examined during

the alpha-beta procedure by calling F2(p,alpha,+s) where

F(P)< alphe < » . If p is teminal, it must be examined |

by the given algoritim. Otherwise all its successor positions Py

are of type 2 , and they are all examined by calling F2(p,,-=,-alpha) .

(There is no need to permute them, the ordering makes bsolutely

no difference here.)
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A similar srmment can be given when the root value is +o

(treating it as a type 2 position) or -= (type J). ,

A surprising cornllary of this proof is that the ordering of

successors oo type > positions in an optimally-ordered tree has

absolutely no effect on th: behavior of alpha-beta pruning. Type 1

positions constitute the so-called "principal variation”. corresponding

to the best strategy by both players. The alternative responses to

moves on the principel variation ere of type 2 . Type 35 positions

occur when the best move is made from a type 2 position, and the

successors of type 3 positions are again of type 2 . Hence about half

of the critical positions of a perfectly ordered game tree are of type 2,

and current game-playing algorithms are probably wasting nearly half of

the time they now spend trying to put successor moves in order.

Let us say that a gaae tree is uniform of degree 4d and height h

if avery position an levels O0,1,...,h-1 has exactly da successors,

and if every position on level h is terminal. For example, Figure 1

is a uniform tree cf height bk and degree 3 , but the trees of

Figure 4 are not uniform. Since all permuations of a uniform tree are

uniform, Theorem 2 impli.c the following generalization of Corollary 1.

Corollary 3. Any algorithm which evaluates a uni form game ree of
~hedght h und degree d must evaluateat least

aa, g0/2) 5 (6)

terminal positions. The slpha-beta procedure achieves this lower bound,

if the best move is considered first at each position of tyjes 1 and 2.
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I Uniform trees without deep cutofit

low that we have determined the besi case of alpna-beta pruning,

let's be more pessimistic and try to look at the worst that can happen.

Given any finite tree, it is possible to find a sequence of values for

the terminal positions so that the alpla-beta procedure will examine

every node of the tree, without making any cutoffs unless the tree

tranches are permuted. (To see this, arrange the values so that

whenever F2(p,aiphz;beta) is called, the condition

-alpha > F(p,) > F(p,) > ee D F(F,) > -beta is satisfied.) On
the other hand, there are game trees with distinct terminal values for

which the sipha-beta procedure will always find some cutorfs no matter

how the branches are permuted, as shown in Figure 5. (Procedure Fl

does not enjoy this property.)

Since gam~2-playing programs usually use some sort of ordering

strategy in connection with alpha-beta pruning, these facts about the

worst case are of little or no practical significance. A more useful

upper bound relevant to the behavior we may expect in practice can be

based on the assumption of random data. S. H. Fuller, J. G. Gaschnig,

and J. J. Gillogly have recently undertaken & study [7] of the average

number of terminal positions examined when the alpha-beta procedure is

applied to a uniform tree of degree 4 and height h , giving independent

random values to the terminal positions on level h . They have obtained

formulas by which this average number can be computed, in roughly &

steps, and their theoretically-predicted results were only slightly

higher than empirically-observed data obtained fram a modified chese-

playing program. Unforiunately the formulas turn cut to be extremely

complicated, even for this reasonably simple theoretical model, sc that

the asymptotic behavior for large 4 andfor h seems to defy analysis.
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rmocedure will alvays find at le=st two cutoffs, no matter
how we permute the branches of this game tree.
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Since we are looking for upper bounds ar: -~.y. 3% in rafural Lo

consider the behavior of the weaker procedure Fl . This method is

weaker since it doesn't fina any "deep cutiilo”; tut it is much hetter

than comrlete minimaxing, and Figures 1 - > indicate that dep entoffs

probably have only a serond-order effect on the efficiency. Furthermore,

procedure Fl has the great virtue that its analysis is much simpler

thar that of the full alpha-beta procedure Iz .

On the other hand, the anelysls »f TF1 i: by; in. means 8 €asy ac

it lookz, and the methematics turns out to be cxtremely interesting.

In fact, the authors’ first analysis was {>ind “o be incorrect. although

several competent people had checked it without seelng any mistakes.

Since the error is quite instructive, we shall | esent our "riginal

(but fallacicus) analysis here, challenging the reader to "find the

bug"; then we shall study how to fix things up.

With this understanding, let us ccnslder the following problem:

A uniform game tree of degree 4 and height h is constructed with

randm values attached to its at terminal positions. What is the

expected mmber of terminal positions examined when procedure Fl is

applied to this tree? The ansver to this problem will be denoted by

T(d,h) .

Since the search procedure depends only orn tne relative order of

the a terminal values, not op their magnitudes, and since there is

zero probability that two different terminal positions get the same

value, ve may assume that tle respective values assigned to Lhe terminal

positions are permutations of {1,2,...,8°] , each permutation ocenrring

with probability 1/ (2D) . From this observation it is clear that the
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al values oi’ positions on each level {¢ are also in random order,

tor 0 <f <h . Although procedure Fl does not always compute the

sxact F vaiues at every position, it is not difficult to veriry that

the decisions Fl makes upout cutoffs depend entirely on the F values

(not on the approximate values Fl(p) ); so we may ccnclude that the

expected number of positions examined on level ¢ is T(d,2) for

0 <t <h. This justifice restricting atteniion to u single level h

when we count the number of positions examined.

In order to simplify the notation, let us consider rirst the case

of ternary trees, 4 = 3 ; the general case will follow easily once thic

one is understood. Oar first step is to classify the positions of the

tre: into types A , B , C as follows:

The root position is type A .

The first successor of every nonterminal position is type A .

The second successor of every nontemminal position is type B .

The third successor of every nont.erminal position is type C .

Figure 6 shows the local "environment" c.f typical A , B, C positions,

as they appear below a nonterminal vosition ? which may be of auy

type. The P-values of these three positions are Xy 5 X55 xX, ,

respectively; and their descendanis have respective F-values VERE LY .

Our assumptions guarantee that ¥yy7°° 2Y33 Are in rariom order, ao
matter vhat level of the tree we sre studying; hence the values

4) = X(TVyp ys) sees Xp = WAXK(oT5Fp -Yys)

are also in randun order.
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Figure 6. Part of a uniform ternary tree.
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If position p is examined by calling Fl(p,bound) , then position A

will be examired by the subsequent call F1l(A,+«) , by definition of Fl

‘see Section 2). Sventually the value x, will be returned; and if

“7 Lound , yosition B will be examined by calling F1(B,x,) .
“ventuslly the value x, will be re-urned; or, if x, 2 x, , any value

x}, > x, may be returned. If max(-x,,-¥5) < bound , position C will

be examined by calling F1(C,min(x,,x. )) . Note that

-max(-x ;-xi) = min(x,,x,) : the precise value of XJ, is not involved
when C is czlled.

This srgument shows that all three successors of an A position

are always examined (cince the corresponding bound is += ). Each B

position will examine its firsi successor, bat (since its bound is

x, = -min(y,,9¥702¥73) ) it will examine the second successor if and

only if -v,, < -min(y,,5¥,00¥y3) sy i.a,, if and only if the values

sut1sfy min(y,,,¥,51Y,3) < y,, - This happens with probability 3/k ,
gince the v's are readomly ordered and since the relation

min(y,,5¥109¥; 3) > yy Obviously holds with probability 1/u .
Similarly the third successor of a Bb position is evaluated if and

only if the values satisfy min(y,,,¥,,»¥3s) < min(y,,,¥,,) » and this
has probability 3/5 . The probability that the second successor of a

C position is evaluated is the probability that

max (min(y,;,¥)00¥y3) + WR(Yp15¥p0s753)) < ¥5; » and this occurs 9/1b
of the time; the third successor is examined with probability 9/20 .

(A general formula for these probabilities is derived below.)

Let A, » By» Cj be the expectednumber of positions examined n
levels below an A , B, or C position examinedby procsdure Fl in

a random game tree. Our discussion proves that
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Rosa = Ap tB CG, >

2 2 :
Brel - SR LM 5 “n g

_ 9Car = Ant Bat 35 On ’ 1)

and T(3,h) = A is the anever to our problam when da = % .
The solution to these simultaneous linear recurrences can be

studied in many ways, and for our purposes the use of generating functions

is most convenient. Let

Az) = © AZ , B(z) = XZ Bz , ol) = = c 2" ;
n>0 n>0 n>0

so that (1) is equivalent to

A(z) -1 = zA(z) + 2B(z) + 2C(2)

B(z) -1 = zA(z) + ¢ 2B(2) + 2 (2)

C(2) -1 = A(z) + 3 2B(z) + z5 X(2) (2)

By Cramer's rule, A(z) = U(z)/Vv(z) where

-1 z = c=] Z A N
\

U(z) = aet] -1 22-1 2a Wz) - det! =z fz-1 2 LD (:= - L - 5 ’ pi = 2 “ YZ Che ' 2)
{- 22. \ ; Q @ 1 41 £2 oka t oo iL © 2-1 f

are polynomials in z . If the equation z“V(1l/z) = 0 has distinct

roots TIT Ty , there will be e partial fraction expansion of the
fora
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¢ ¢ c
1 2 5

A(z) = Tor *iTrz Tors (1)
1 r,z 1 r,z 1 TZ

where

c, = -r,U(1/xr,) / Vv' (1/x,) . (5)

Consequently A(z) = (c.(r z)? +e (r 2) +c {r 2)™) and we
n>0 1%1 2\"2 373 ’

have

n n n

A, = Cry + Cro + CaTa

by equating coefficients of z' . If we number the roots so that

Ir| > Ir] 2 |r] (and the theorem of Perron [17] assures us that
this can be dome), we have asymptotically

A, ~ eT) (6)

Nuzerical calcuiation gives r, = 2.533911 , cy = 1.162125 ; thus, the
alpha-beta procedure without deep cutoffs in a random ternary tree will

examine about as many nodes as in a tree of the same height with average

degree 2.534 instead of 3 . (It is worthwbile to note that (6)

predicts about 48 positions to be sxamined on the fourth level, while

only 35 occurred in Figure 2; the reason for this discrepancy is

chiefly that the one-digit values in Figure 2 are nonrandom becsuse of

frequent equalities.)

Elementary manipulation of dsterminants shows that the equation

°V(1/z) = 0 is the same as
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: 2.1 4 50 z

hence r, 1s the largest eigenvaluz of the matrix

i 1 1

21g F

We might have deduced this directly fro~ equation (1), if we had known

encugh matrix theory to calculate the constant cy by matrix-theoretic

means instead of function-theoretic neans.

This solves the case d = 3 . For general 4 we find simliarly

that the expected number of terminal positions examined by the alpha-beta

procedure without deep cutoffs, in a random uniform game tree of degree a

and height h , is asymptoiically

T(4,) ~ ey(d)ry(a)” (7)

for fixed 4 as h — = , vhere r,(d) is the largest eigenvalue of
a certain dxd matrix

b



Poy Pop +r Pog

My = (8)

Pou Tap -c- Pgg

rnd where c,(d) 1s an appropriate constant. The general matrix element

Psy is (3) is the probability that

max (min(Y .,...,Y, .)) < min Y (9)
1<k<i kl kd 1<k<j 1%

in a sequence of (i-1)d+ (j-1) independent identically distributed

random variables Yyyoeeoo¥y 0401; .
When 1 =1 or j =1, the probability im (9) is 1, since

the min overan empty set is +» and the max is -« . Whem i,j >1

we can evaluate the probability in several ways, of which the simplest seems to

be cambinatorial: For (9) to hold, the minimum of all the Y's must be Y,
11

for some ky) <1, and this occurs with probability (i-1)d/ ((i-l)d+j-l) ;

removing Ty 12 . + ¥y a from consideration, the minimum of the remaining

Y's must be Tt for some k, <i, and this occurs with probabilitye

(1-2)a/ ((1-2)a+j-1) ; and s0 on. Therefore (9) occurs with probability

. i-1)a i-2)a = __aPy hta+j-1 Toay A 1 |

- 1/ 1-1+(J=1)/d (10)i-1
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Ths explicit formula allows us to calculate r,(d) numerically for

small 4 without much difficulty, and to calculate cya) for small 4d

with somewhat more difficulty using (5).

The form of (10) ien't very convenient for asymptotic calculations;

there is a much simpler expression which yields an excellent approximaticln:

Lemma 1. When 0 <x <1 and k is a positive integer,

K < (3) < Wyre) (12)
(Note that 0.885603 < I'(l#x) <1 for 0 <x <1, with the minimum

value occurring at x = 0.461672 ; hence the simple fcrmula kK is

alweys within about 11 per cent of the exact value of the binomial

coefficient.)

Proof. When 0 <x <1 and t >-1 we have

(+t) < 1+tx (12)

since the function f(x) = (+t) / (1+tx) satisfies f£(0) = f(1) =1,

and since f(x) = ((In(1+t)<t / (1+ex)) 2 +22 / (1+tx) 2) £(x) > 0 .

Using (12) for t =1,1/2,1/3, ... ylelds

ex _ x © 3 14x) (2+ nt 1
2 2* (3/2) mo “ (+1)

. 1
T(1+x)

k-1+x x

and the k-th term of this series of inequalities is _y JX.
-
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For trees of height 2 , deep cutoffs are impossible, and proceduret
2

F1 and F2 have an identical effect. How many of the d-~ positions

at level 2 are examined? Our analysis gives an exact answer for this

case, and Lemma 1 can be used to give a good approximate result which

we may state ac a theorem.

Theorem 3. The expected number of teruinal positions examined by the

elpha-beta procedure on level 2 of a random uniform gaue tree of

degree d is

7(d,2) = by Py, (13)

where the Py are defined in (10). We have

2° a“
C, jog a < T{d,2) < Ca Tog a (1k)

for certain positive constants C, and C, .

Proof. Equation (13) follows from our previous remarks, and from

lama 1 we know that

c8(d) < T(4,2) < §(a)

vhere C = 0.885603 = nfs cx <1 (+x) and

sa) = & 3-Q-n/a
| 1<1,j<4

a 4-1

| k=2 Jj=0

d -1
l=-k

- 4+ L .(ag:)
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Now for k = d° we have xd =exp(-t Ind/d) =1-t Ind/d+0C{(log a/d)°) ;

hence for Ja <k <d, (1k3)/(1-k"¥%) lies between d/In 4 and
2d/ln @ times 1+0{(log d/d) . The bounds in (1%) now follow easily.

-

When the values of r (ad) for 4 < 30 are plotted on log log
paper, they seem to be approaching a straight line, suggesting that

r,(d) is avproximately of order ai? . In fact, a least-squares fit
for 10 <4 < 30 ylelded a'76 ag an approximate order of growth;
this can be compared to the lower bound 2a"? of an optimum alpha-beta

search, or to the upper bound 4 of a full minimax search, or to the

estimate ae obtained by Fulicr et al. [7] for randam alpha-beta

pruning when deep cutoffs are included. However, we shall see that

the true order of growth of r,(d) as 4 «+= is really d/log 4 .

There is & moral to this story: If we didn't mow the theoretical

asymptotic growth, we would be quite content to think of it as 3-76

vhen d is in a practical range. The fonmula d/log d seems much worse

than a-T6 , until we realize the magnitude of log d in the range of
interest. (A similar pheromenon occurs with respect to Shell's sorting

method, see [12, pp. 93=95].) On the basis of this theory we may well

regard the approximation a‘1e in [7] with some suspicion.

But as mentioned cbove, there is a much more significant =oral to

this story. Formula (7) is incorrect becsuse the proof overlooked what

appears to be a ri.ther subtle question of conditional probabilities.

Did the reader spot a fallacy? The authors found it only by comparing

their results to those of [T] in thecase h=3, 4d = 2, since

procedures Fl and F2 are equivalent for heights <3 . !ccording
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‘0 the analysis above, the alpha-beta procedure will examine an averag:

of 61 nodes on level > of a randan binary game tree, but according to
[7] the number is 6 . After the authors of [7] were politely
informed that they must have erred, since we had proved tlrat 61 Was
correct, they politely replied that simulation results (including a test

on all 8! permutations) had confirmed that the correci unswer is

69%
105

A B

A B A B

A B A B A B A B

I f, fs $y fe fe I, fa

Figure 7. A tree which reveals the fallacious reasoning.

A careful scrutiny of the situation explains what is going on.

Theorem > is correct, since it deals only with level 2 , But trouble

occurs at level 3 . Jur theary predicts a cutoff on the right subtree

of every B node vith probability 2/3 , so that the terminal values

VY



( £5 .. -1%q) in Figure 7 will be examined with respective probabilities

(L,1,1, 2, 1,1, 2, 3) . Actually Iq is examined with probability
18 h
LL instead of 3 ; for fa is examined if and only if

£, > min(£,, fe)

and min(f, 99 < max (min (f,,£,) s min(f;, £))) . (15)

Each of these two events has probability 2/3 , but they are not

independent.

When the fallacy is stated in these terms, the error Is quite pl=in.

but the dependence wis much harder to see in the diagrams we had been

drawing for curselves. For example, when we argued using Figure ¢ that

the second successor of a B position is examined with probability 3/L .

we neglected to consider that, when p is itself of type B or C ,

the B node in Figure 6 is entered only when min(yy4s¥q,0¥) 2) is less

than the bound =t p ; Bo nin(y,,,¥)50 V3) is scmewhat smaller than a
random value would be. What we should have computed is the probability

that y,, > 2in(y,5¥;50¥y3) given that position B is not cut off.
And unfortunately this can depend in a very complicated way on the :

ancestors of p .

To make matters worse, our error iz in the wrong direction, it

doesn't even provide an upper bound for alpha-beta searching; it yields

only a lower bound on an upper bound (i.e., nothing). In order to get

information relevent to the behavior of procedure F2 on randox data,

we need at lcost an upper bound on the behavior of procedure Fl .

A correct analysis cf the binary case (d = 2) involves the

solution of recurrences

hs



} (Q) .
Ar = AtB, ’

L(k) (k+1) :Coil © A + PB ) for k>0

_ gO)_ (1)_ (2)_ _ :
Ay= By" = By! = By = ...= 1 ; (16)

“nere the Pp are appropriate probabilities. For example, p, = 2/3 ;

pp. is the probability that (15) holds; and P,P,P, 1s the probability
that fifteen independent random variables ratisfy

15 > TizA fy,

£sAL) < (£4 A 2.0) V(E ALL)
[4

(fg A £10) Vv (fy, A £..) > ((£3 A £,) Vv (£5A £,,)) A (£5 A £.) v(£, A £g)) , (17)

writing v for max and A for min . These probabilities can be

computed exactly by evaluating appropriate integrals, but the formulas

ure camplicated and it is easier to look for upper bounds. We can at

irusl show eaegily that the probability in (17) 1s < 4/9 , since the

“‘vgt and third conditions are independent, and they each hold with

reobability 2/3 . Thus ve obtain an upper bound if we set

Pn =Pp =P = «+» =2/3 and Py =P; = --- =1; this is equivalent
+0 the recurrence

A, = B, = 1 3;

Al = A, * B, »

B = A+ 2A (18)nel At 3A

hE



Similarly in the case of degree 7 , we cbtain an upper bound on

the average number of nodes examined with: it deep cutoffs by solving

the recurrence

Aq = By = Co = 1 3

Awl = Bat Bat Cy

Br © I Ti ZA
Q

Cl - An * th * 20 Pn (19)

in place of (1). This is equivalent to

2 4 2 2App = Bt gr5els EAL

and for general degree d we get the recurrence

Al = Pa? Sahn (22)

where Ay = 1, Ay =4d, and

S, = 2 De. (21)
4 2<1<a

1<j<d

This gives a valid uprer bound on the behavior of procedure Fl , because

jt 1s equiva_ent to setting bound ~ += at certain positions (and this

operation never decreases the number of position: examined). Furthermore

we can scive (20) explicitly, to obtain an asymptotic upper bound om

7(d,h) of the fim ec, (a)r, (a)" , where the growth ratio is

r(a) = Vs, + 1k + 1/2 (22)
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Unfortunately it turns out chet §; 1s of order a”) log 4d , by
Theorem 7; sO (22) is of order d/*/1cg d , while an uppe. bound of

order dflogd is desired.

Another way to get an upper bound relies on a more detailed

enalysis of the structural tehavioral of procedure Fl , as in th

following theorem.

Theorem 4. The expected number nf terminal positions examined. by

the alpha-beta procedure without deep cutoffs, in a random un!.form

game tree of degree d and height h , satisfies

»* +
(ah) < e (Q)r ()" (23)

where r(d) is the largest eigenvalue of the matrix

YPyy YP cr VPyy

* By VPpp +r VP
M, = ’ (2k)

and NE) is an appropriate constant. (The Py in (24) are the same
a~ in (8).)

Proof. Assign coordinates B...8, to the positions of the tree as

in Section 6. For ¢ >1, it is easy tc prove by inductionthat

position a...a, bas bound = min{#(a, ...a,_ Kk) |1<k< a,] vhen
it is examined by procedure Fl ; hence it is examined if and only if

a,...a, 4 is examined and

l1ckeca, + 1-1 l1<k<a 17-2
- 2 - 1-1
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It follows that a terminal position 8 oeBy is examinedby Fl if

snd only if (25) holds for 1 <! <h . Let us abbreviate (25) by P, ’

so that 8-8 holds if and only if Fy and ... and Py ‘

Condition P, by itself for { > 2 holds with probability Py j

vhere {i = a, and J = a, because of definition (9); hence if

the P, were independent we would have 8 eeeBy examined with

probability p _ PT veo P and thls 1s precisely equivalent
812, 2,82 eT

to the analysis leading to (7). However, *he F, aren't independent,

as we nave observed in (15) and (17).

Condition P, 8 a function of the termina. values

f(a, veel, ska, Le. ay) ’

vhere Jj <a or J =a, . and k <a, . Hence P, is independent
1-1 1=1 | 4

of PisPyyecyPy 5 . (This generalizes an observation we made about

(17).) Let x be the probability that position ay... 8 is examined,

and assume for convenience in notati. nn that h 1s odd. Then oy the

partial independence of the P,'s , Wwe have

xX <p yo Lea P "
818: 82%,  Bp2%ha1

XxX <p P coe P 3
beWy a TE "V5 hy

hence

kK < Jp P vee P
Bho AEs ®h-1%n

and the theorem follows by choosing ¢(d) large enough.
-
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Now we are ready to establish the correct asymptotic growth rate

of the brancaing factor for procedure Fl .

Theorem 5. The expected number T(d,h) of terminal positions examined

by the alpha-beta procedure without deep cutoffs, in a randam uniform

game tree of degree d and height h , has a branching factor

1m 1(a,n)? = ra) (26)
h=o

which satisfles

d d

“sea STS Cunga (21

for certain positive constants C, and C) .

Proof. We have

T(d,h, +h) < T(d,h )T(4,h,) (28)

since the righthand side of (28) is the mumber of positions that would

be examined by Fl if bound were set to +o for all positions at

height h, . Furthemore the argurents above prove that
FJ bh *

lim inf T(4,h) > r,(d) » lim sup T(d,h) < r.(a),r (a) . |
ho ho

By a standard argument about subadditive functions (see e.g. [20, Problem 1.98])

it follows that the limit (26) exists.

To prove the lower bound in (27) we shall show that r, (d) > C,d/10g d .

The largest eigenvalue of a matrix with positive emtrles Py3 is known

to be > min, (2, Py 4) , acrording to the theory of Oskar Perrom [19];
" *see [20, Section 2.1) for a modern account of this theory. Therefore

by Lemma 1,

*/ We are indebted to Dr. J. H. Wilkinson for suggesting this proof of
the lower bound.
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“(a

ro(d) > C min ( 1 ure)1<i<d \ 1<j<d

= C min 0
pci<a\ 1-179

-1
l-@a d-1= C > C :

1-4-4 In d

where C = 0.885603 = inf, «1 T(1l+x) , since g/d = exp/-1n d/d) > |
l-1n d/d .

To get the upper bound in (27), we shall prove that rv (d) < C),d/ log di ,
using a rather curious matrix norm. If s and t are positive real

numbers with

2+3 = 1 (29)
8 t

then all eigenvalues A of a matrix A with entries a,3 satisfy
8/t\1/8

A < (z(=z |a, 1)’ ) : (30)= J
1\J

To prove this, let Ax = Ax where x is a nonzero vector; by HSlder's

inequality [9, Section 2.7],

“l/s 1/s

A £1) = (Z]z- xX | )| (z 1 gly WI
| sft l/s

< (Zz |a ) (z =)~ (2 13 3
s/t \1/s l/s

- (= lat ) ) (z 1)(Z(z 1; D Ix}
and (30) follows. |
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Ifwe let s =t = 2, inequality (30) ylelds =(d) = 0(d/10g @) ,

while if &8 or t - ®» the upper bound is merely 0(d) . Therefore

same care is necessary in selecting the best s and t ; for our

purposes we choose ; = f(d) and t = £(d)/(£(da)-1) , where

£(d) =3 In d/lnnd . Then

_ (4 s/t \1/s
rd) < Z L gttd-n/a

1<i<d \(1<J<d

s/t \1/s
< | Jd a*t + (a -/a) 2 Ja-t(3-1)/ed : (31)

j>1

=t/)
The inner sun is g(a) = 1/(1-a"%"%) = (La/1n a)(1+0(1n In 3/1n A) ,

so 4 a(t. af(d)-1/2 exp( 5 1n Llnd/ln Ind + 1n 1nd + 01) .
Hence the righthand side of (31) is

exp(lnd - In Ind + In 4 + O({In 1n 4)°/1n d)) ; we have proved that

r'(d) < (4d/in d)(1+0((1n 1n d)°/n a)) as d- =.
a

Table 1 shows the various bounds we have obtained on r(d) .

nemely the lower bound r,(a) and the upper bounds r,(d) and r (a) .
We have proved that r,(Q) and r (4) grow as d/log 4 . and that r,(d)

—

grows as d/vlog d ; but the table shows that r,(a) is actually a

better bound for d < 2k .
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*

& ry (d) red) r(a) a r1,(d) ra) or (a)
2 1.8h7 1.884 1.912 17 8.97¢ 11.378 11.L70
2 2.53h 2.666 2.722 18 9.358 11.938 12.021
y 3.1bh2 2.397 3.473 19 g. 724 12.hok 12.567
5 3.701 4.095 4.186 20 10.106 15.045 13.108
6 Lh.,2256  L.767 4.871 21 10.473 13.593 1>.6LL
7 L,7ok4 5.421 5.552 22 10.836 1h.137 1h.176
8 5.203% 6.059 6.176 2% 11.194 1h.678 1k.70k
9 5.664 6.68L 6.8C5 sh 11.550 15.215 15.22%

10 6.112 7.298 7.420 25 11.901 15.750 15.748
11 6.547 7.902 8.02k 26 12.250 16.282 16.265
12 6.972 8.438 8.618 7 12.595 16.811 16.778
13 7.388 q.086 9.203 28 12.937 17.337 17.2868
ih 7.795 9.668 9.781 29 13.277 17.86L 17.796
15 8.195 10.243 15.350 x0 13.6.4 18.383 18.300
16 8.589 10.813 10.913 Zz] 13.948 18.903 18.802

Table 1. Bounds for the branching factor in a random tree when no

cutof'fs are performed.

8. Discussion of the model

The theoretical model we have studied gives us an upper bound on

the actual behavior sbtained in practice. It 1s an upper bund for

four separate reasons.

(a) the deep cutoffs are not considered;

(b) the ordering of successor positions is random;

(c) the terminal positions are assumed to have distinct values;

(d) the terminal values are assumed to be independent of each other.
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Each of these conditions makes our model pessimistic; for example, it

is usually possible in practice to make plausible guesses that some

moves will be better than others. Furthermore, the large number of

equal terminal values in typical ze- ps to provide additional

cutoffs. The effect of assumpt) 8 less clear, and it will be

studied in Section 9.

In spite of all these pessimistic assumptions, the results of our

calculations show that alpha-beta pruning will be reasonably efiicient.

Let us now try to estimate the effect of deep cutoffs vs. no deep

cutoffs. One way to study this is in terms of the best case: Under

jdeal ordering of successor positions, what is the analogue for

procedure F1 of the thecry developed in Section A? It is not difficult

to see that the positions 8) +--+ 8, examined by Fl in tle best case

are precisely those with no two non-1's in a row, l.e., those for which

a, >1 implies 8541 = 1.

In the ternary case under best ordering, we obtain the recurrence

= A +3 +C -
Ane m “n “a °’ (1)

Ba = Ay :

Cat1 = A 3

hence A, = At 2A, + For general d the corresponding recurrence
is

hog = 1 3 Ap =@ 3 A, = Ay, r(a-DA, (2)

The solution to this recurrence is

Sl



—_— n+2 n+2

A = = (=m + 1/2 ) (a 1/2 ) ), (3)Jia

80 the growth rate or effect.ve branching factor is vd -3/4 + 1/2,

not much higher than the value Ja obtained for the full method

including deep cutoffs. This result tends to support the contention

that deep cutoffs have only a second-order effect, although we must

admit that poor ordering of successor moves will make deep cutoffs

increasingly valuable.

55



J. Dependent terminal values

Our model gives independent values to all the terminal positions,

but such independence doesn't hapnen very often in real games. For

(xample if f(p) is based on the piece count in a chess game, all the

positions fcllowing a blunder will tend to have low scores for the

player who loses his men.

In this section we shall try ty account for such dependenci:zs Ly

cor. .idering a total dependency model, which has the following property

for all nonterminal positions p : For each i and J , 2ll of the

terminal successors of Py either have greater value than al]. terminal

successors of pjy? or they all have lesser value. This model is
equivalent to assigning a permutation of {0,1,...d-1}] to the moves at

every position, and then using the concatenation of all move numbers

leading to a terminal position as that position's value, considered as

a radix-d mmber. For example, Figure 8 shows a uniform ternary game

tre2 of height 2 constructed in this way.

Another way to loox at this model is to imagine assigring the

values 0, 1, ..., aP-1 in d-ary notation to the terminal positions,

and then to apply a random permutation to the branches emanating froa

every nonterminal positicn. It follows that the F value at the root

of a ternary tree is always -(0202... 20) 5 if h 4s odd,

+ (2020 -e+ 20) 4 if h is even. |
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Theorem 6. The expected number of terminal positions examined by the

alpha-beta procedure, in a randam totally dependent uniform game tree

of degree d and height h , is

aYOUBRUSe 82-1 a d d d ’

where Hy = 143 a3 ’

Proof. As in our other proofs, we divide the positions of the tree

jnto a finite number of classes or typer for which recurrcnce relations

can be given. In this case we use three types, somewhat as in our

proof of Theorems 1 and 2.

A type 1 position p is examined by calling F2(p,alpha,beta)

where all terminal descendants q of p have alpha < +f(q) < beta ;

here the + or - sign is used according as p is an even or an odd

number of levels from the bottom of the tree. If p 1s nonterminal,

its successors are assigned a definite ranking; let us say that P,

is relevant if F(p,) < F(p,) for all 1 <3 <i . Then all of the
relevant successors of p are exsained by cclling F2(p,,-beta, -m)

where F(p,) lies between -beta and -m , hence the zclevant p,

are again of type 1 . The irrelevant Py are examined by celling

Fa(p,, -beta, -m) where F(p,) > -m , and we shall call them type 2 .
A type 2 position p is examined by calling F2(p, alpha, beta)

where all terminal descendants gq of p have +r(q) > beta . If DP

is nonterminal, it2 first successor p, is classified as type 3,

and it is exsmined Ly calling Fa(p,, -beta, -alpha) . This procedure

call eventually returns a value < -beta . causing an immediate cutofZ.
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A type 2 position p is examined by calling F2(p,alpha,beta)

where all terminal descendarts q of p have +f(q) < alpha . If

p is nonterminal, all its successors are classified type 2 , and they

are examined by calling F2(py >» -beta,-alpha) ; they all return values

> -alpha .

Let A ’ B » Ch ne the expected number of 4erminal positions
examined in a random totally dependent uniform tree of degree d and

helght n , when the room is of type 1,2, or 3 respectively. The

above argument shows tha* the following recurrence relations hold:

Ag = By =Cp=1 3

Ca a (Ea alias a2 1, 4a
Aner = Apt (58,433)+ (3A +3B) +--+ (GA, *=77 BY)

_ (d= .

- Hghy * a Hy By ?

Bel = Cn >

Chel B dB, ) (2)

\n/2;
Consequently B = dv , and A hag the value stated in (1).

—

Corollary 4. When d > 3, the average mmber of positions examined

by alpha-beta sesrch under the assueption of totally dependent terminal

values is bounded by a constant times the optimum number of positions

specified in Corollary >.

h/2
Proof. The growth of (1) as h =e is order d . The stated

constant is approximately

(4-H) (1+Hy) /2(a-Hy)a d d

(When d = 2 the growth rete of (1) is order (3/2)2 instead of ke J)
-
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Incidentally, we can also analyze procedure [1 under the same

assumptions; the restriction of deep cutoffs leuds to the recurrence

By =1 5» Ay =1 Ayo = Hho? (d-Hy)4) ’ (2)

— hand the correspording growth rate is of order Ja- H, + Hy/b + 1/2 )
50 again the branching facto: is approximately vd for large 4 .

The authors of [7] have suggested another model to account for

dependencies between positicas: Each branch (i.e., each arc) of the uniforn

zame tree is assigned a random number between O and 1 . and the values

of terminal positions are taken to be the sums of all values on the branches

above. If we apply Lhe naive approach of Section 7 to the analysis

of this model without deep cutoffs, the probability needed in place of

Fquation (9) in that section is the probability that

max (X +min(Y, .;.-+,Y..)) < X.+ min Y ’ (4)
1<k<i © kl kd by <k<y ik

where as before the Y's are independent and identically distributed

random variables, and where xy ‘eo 2.9 are independent uniform random

ruriables in [0,1] . G. Balkesa [ ] has shows that (4) never occurs

vith greater probability than the value Py3 derived in Section 7,
regardless of the distribution of the Y's (as long as it is continuous).

Therefore we have good grounds to believe that dependencies between

position values tend to make alpha-beta pruning more efficient than it

vould be if all teminal positions had independent values.
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