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SECTION 1

BACKGROUND

1.1. Introduction to the Problem.

In previous papers,l/’g/ R. W. Cottle and R. S. Sacher have
discussed three algorithms for the solution of large-scale linear
. . . nxn .
complementarity problems. For a given matrix M € R and a given

vector @ € Rn,the linear complementarity problem is that of finding

a solution 2z to the system

g+ Mz>0

o

1t
(@]

z (q + Mz)
The methods required that M be a tridiagonal, Minkowski matrix. This
means M = (mij) satisfies the following conditions:
(1) m,
(11) mij
(iii) M has positive principal minors.

0 if i #3j

A

0 if |i-j| >1

The three algorithms may be briefly described. Algorithm I is
a modification of the principal pivoting method [13]. Algorithm II is

a specialization of a method proposed by Chandrasekaran [9] and employs

L/R.W. Cottle and R. S. Sacher, "On the Solution of Large, Structured
Linear Complementarity Problems: I, " Technical Report 73-k, Department
of Operations Research, Stanford University, 1973.

S R S Sacher, "On the Solution of Large, Structured Linear Complementarity
Problems: II," Technical Report 73-5 Department of Operations Research,
Stanford University, 1973.



LU factorizations. The algorithm is "adaptive" in the sense that each
iteration exploits the factorization associated with its predecessor.
Algorithm IIT is a modification of the point successive overrelaxation
— technique.
In this paper, we consider the more general linear complementarity

problem in which the matrix ‘is no longer necessarily tridiagonal but may

be block tridiagonal. We still assume it to be Minkowski, however.

e This means we may partition M into submatrices Mij (i, 3 = 1,2,...,m)
- such that

f (1) Mii is a Minkowski matrix of order n, =1, 2 .,

(- (ii) M.. < 0 (elementwise) if i # 7,

1j =

(iii) M has positive principal minors,
i M.. = i iej .
(iv) X 0 if |i-j| > 1

(Matrices satisfying condition (iv) alone are known as block tridiagonal

matrices.) We also require that M be positive definite and the diag-

onal blocks, Mii’ be symmetric and tridiagonal. (With this last assump-

tion, we may vastly increase the efficiency of the algorithm we propose

. r— r°r—

in Section 2.4 by incorporating the techniques described in the previously

cited paper by R. S. Sacher.) Such matrices include block tridiagonal

r——

Stieltjes matrices (see [58, p.85)) whose diagonal blocks are tridiagonal.
- These occur frequently in the discretization of elliptic partial differential
equations. In fact, it 1is in this connection that an important application
of the linear complementarity problem is discussed in Section 3.
The convergence of the algorithm we propose in Section 2.4

requires only that M be positive definite and that the diagonal blocks,



M,,, be symmetric. (That is, in proving convergence, we drop the
11
assumptions of block tridiagonal structure and nonpositive off-diagonal

entries.) The method is consequently stated in full generality.

1.2. Drawbacks of the Generalization of Algorithm I.

The success of Algorithms I and II for the tridiagonal case
suggests that they may be profitably applied to the block tridiagonal
case. The purpose of this section is to show why the benefits of those
techniques are lost in their extensions.

Consider first the modified principal pivoting algorithm. Certain
structural properties of the tableaux under principal pivoting when M
is block tridiagonal are analogous to those when M is a tridiagonal
matrix. Consequently, an immediate extension of Algorithm I
may create a prohibitive number of nonzero entries to be stored as
the algorithm progresses. The following two examples illustrate this

remark.

Example 1. In Figure 1, the lighter lines indicate the partition of M.
We assume that the matrix is block tridiagonal and Minkowski, M&i is
tridiagonal of order n,=n=3 and the off-diagonal blocks are
diagonal matrices. The innermost block is M33, the pivot block. The
locations of possibly nonzero entries in the pivotal transform M are
indicated by the asterisk symbol. The main significance of this

example is that with the given pattern of zeroes, the principal block

pivot on M33 may create complete fill-in within the dark border.

(For notational convenience, we refer to the entries outside the
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Bivot block but inside the dark lines as the frame of the pivot, n

this case, the frame is of width n.)

Example 2. Figure 2 portrays the effect of pivoting on the blocks
MEZ’Mhh" . .y Mm{bnrl where m is odd. If m equals n, one can
easily show that even if (as in Algorithm I) we discard the transformed
tableau entries in columns where a pivot has occurred, the number of non-
zeroes which must be stored in the transformed tableau is (g (n-1) + 1)n
= g n5 - % n- . Compare this with the number of initial nonzero entries
in M, i.e., n(3n-2) + 2(n-1)n = 5n2 -4n. (It is not uncommon [19]

for n to equal 100 and thus to have an approximate increase in the

number of nonzeroes which must be stored from 50,000 to 2,500,000.)

6.%. Drawbacks of the Generalization of Algorithm II.

Recall that Algorithm II, the modification of Chandrasekaran's
method using factorization, requires the solution of a sequence of
systems of linear equations by LU decomposition. The order of the
final system solved is equal to the cardinality of the set of positive
z-variables in the solution to the linear complementarity problem.
From [9], we know that if M&ZRPXP is a Minkowski matrix and if

a < 0, then the solution is the positive vector z = =M "q < R and

we are required to solve a linear system of order p. If we use the
example corresponding to Figure 1, we have p = mn. We would like
to factor M in a way that exploits its structure and sparsity as
much as possible. If we were to view it as a band matrix of width n,

we would use LU or Cholesky (ﬁfT) factorization since they both
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(m =7). Original Matrix is Block Tri-

Diagonal and Minkowski.



preserve the bandwidth [%6]. Unfortunately, neither method of decom-
position will preserve the sparseness of the original data. This is
illustrated by the example in Figure 3 where the matrix M corres-
ponds to the finite difference equations representing the Laplace
equation: M'l‘l is tridiagonal with diagonal entries equal to 4 and

off-diagonal entries equal to -1; furthermore, M and Mi

i,1-1 ,1i+1

are negative identity matrices. Since the bandwidth of such a matrix
cannot be reduced any further, the Cholesky (EET) factorization re-
quires storage for almost Zg%%m—Z)n i= 2mn2 + mn - 2n2 - n nonzero
matrix entries. For instance, if m =n = 100, then the initial number
of nonzeroces in the matrix is approximately Sn2 = 50,000 while

2mn2 + mn - 2n2 - n is approximately 2,000,000. The LU factorization
needs nearly twice as much storage as the Cholesky factorization since
L, UT and L have idential patterns of nonzeroes, i.e., ﬁij,lgi and

gij are simultaneously nonzero or zero [36].

A third alternative for factorization is a special case of

methods known as group- or block—elimination [36, p. 59]. Isaacson and

Keller [36] discuss one technique which is a highly efficient direct
method but which requires slightly more storage than the Cholesky

decomposition. Following their discussion, we seek a factorization of

the form
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where the identity matrices I.J and the matrices Alf BJ’ and C.

J
are all of order nj (3=1, 2, . . ., m. Consequently,
Ay oMy €y = AllMle
B1 = Mi,i-l i=2,3 , I,
A, =M, - B,C, i = 2, 3 , m,
i ii i’i1l
and c. =AM i =2,3. .., nl.
1 1 1

There are m-1 matrices Ai and m-1 matrices Ci which may
each contain n2 nonzero entries. The Bi matrices need no additional
storage. Hence, the block-LU decomposition requires 2mn2--n2 storage
locations versus the 2mn2 + mn - 2n2 - n required by Cholesky
factorization.

In summary, extensions to both principal pivoting methods and
various factorization techniques are stymied by storage problems.
Similar difficulties in solving large systems of linear equations were
recognized by numerical analysts. These difficulties rekindled their
interest in iterative (versus direct) methods of solution--that is, in
determining techniques to accelerate the convergence of existing methods
and in developing new approaches. ‘In Section 2, some results in the
former category will provide motivation for the iterative technique
we propose for solving the linear complementarity problem (q,M) when
M "is a block tridiagonal, positive definite Minkowski matrix whose

diagonal blocks have symmetric tridiagonal structure.



SECTION 2

ALGORITHMS FOR THE BLOCK TRIDIAGONAL LINEAR COMPLEMENTARITY PROBLEM

2.1. Introduction.

It is ironic that the algorithm we develop in this section
arises as a generalization of the least computationally attractive
method of Algorithm I, II and 1II. Yet the computational experience
reported in Section 4 demonstrates that this generalization is at
least competitive with, if not superior to, techniques currently
available [7], [19], [29], [45], [46], [47],[59] f o r solving the
engineering application described in Section 3.

Because of the analogy of the proposed algorithm with relaxation
techniques for systems of linear equations, we open this section with
some remarks about these methods. For the remainder of the paper, we
will observe the following notational conventions. All vectors are
column vectors. By a slight abuse of notation, we let z = (a,zz,...,zn)

n,

R ! and

(O]

denote the column vector z in R. Similarly, if z4

zg;l n, =N, then we may let z = ( / Zm) denote the column

20125 -
vector z in RN. Finally, the algorithms to be described will

generate a sequence of iterates z,kk =1, 2, . .., converging to a

solution. The value of zk is determined by a specified transformation

k .
on 2z . Therefore the sequence z } k=1, 2, . . ., 1is totally
determined by an initial vector zo. We denote the sequence z]i

k=1,2, . . ., by’{zk} and suppress its implicit dependence on zo,

10




2.2. Point Successive Overrelaxation (SOR) Algorithm for Linear Systems.

The point successive overrelaxation algorithm for solving the
linear system Mz + g = (0, where M is an m X m matrix, is an
accelerated version of the earlier Gauss-Seidelmethod [58]. This

latter method generates a sequence of iterates zk -~ Rm

< according
to the formula:
k+1 ) k+1 k
2z, =-( ) m, 5 m,.zv +4q.)
w 1 j< i 1J J 351 1373 J / ii
-i=1, 2, , m
- Fach k+1 | , . .
ach component of z 1s recursively determined in terms of the
L current values of the others. The recursion formula may be rewritten
in the following format in which @ = 1: pgteymine 257
i
¢
. (1=12, ., m) by
L_ k+1 k ~k+1 k
L Zi = z1 + (,o(zi_, - z_,) (l)
where m..51,§+l + () m, __z},{"'l + > om zlf q.)
1171 T B A S AN T T A
L J<i g> i
v . ~J b K
[ We interpret the term (Zi"zj) as a direction in which to pro-
-~

ceed from the current value of , _ zk. The parameter @ is thus
1

thought of as a weighting factor to indicate how far to move in this

direction.

We have noted that in the Gauss-Seidel algorithm o _ 4 In

1950, young [61] and Frankel [25] simultaneously, but independently,

recognized the efficacy of using values of w different from unity to

11



gain faster convergence rates. The scalar o 1s called the relaxation
parameter, and o > 1 (w < 1) corresponds to overrelaxation (under-
relaxation). The method of Young and Frankel (using @ > 1) is

called the point successive overrelaxation algorithm.

The word "point" in the name of the method has an interesting
geometric origin. Suppose we are solving laplace's equation, Vgu = £,
over a rectangular region by - finite difference method. This first
requires forming a grid over the region. We then seek an approximation
to the unknown function u at the grid points only. This is achieved
by assigning a variable Zy to each grid point (see Figure b) and
obtaining, by well-known techniques (see [2L, p. 192]), a linear
system Mz + g = 0. We definc the error at the ith grid point to be
the absolute value of the difference between z4 and the function u
evaluated at that grid point. If the grid is square and has n
points on a side, then the maximum of these errors is O(l/ne). When
the point SOR method is applied to the linear system, the algorithm
changes the value of only one variable 2, at a time, i.e., only one
grid point is examined at a time. Hence the word "point" in the algo-

rithm name.

2 .%3. Block Successive Overrelaxation (SOR) Algorithm 'for Linear

Systems.
In certain situations, it is natural to consider simultaneously
changing the values of all variables associated with a coordinate line

of the grid points. Such methods are known as line- or block-iterative

techniques. The word 'block" refers to the fact that the variables

12
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which are simultaneously changed correspond to a diagonal block (or
principal submatrix) of the matrix M. Varga[58, p. 96] indicates

that block methods are not new developments but may be traced back to

the work of Gerling [28] in 1843.

We again use the example of the finite difference discretization
of a differential equation over a rectangle. 1In the corresponding
linear system, Mz + g = 0, we conformably partition the vectors z

and g and the matrix M. We will view z as a direct sum of

n
IR zm) where 1z, € R L Thus

vectors z = (z Z

1 !

z = Z ). A corres-

(211, Z12" o, ln1;ZQl’ 222,..I , %n HEN Zm,n
2 m

ponding relabeling of the grid in Figure 4 is shown in Figure 5.

Finally, g - (ql,qg, oL ,qm) is similarly relabled and partitioned.

- The corresponding changes in the recursion equation (1) may

now be stated. Recursively determine the subvectors z?+l

| ) i=1,2 ...,mnby
k+1 k =le+] k
| z, "=z + oz - z, ) (2)
o k
? where M..Z}.§+l+( 2 M..Z}?l+ oM .z, +q__.L)=O .
| ii 17 . 13 d . . 1Jd J
i g <1i jg>1
i

Varga [58, p. 91] remarks that in the numerical solution of
many physical problems, the matrix M is endowed with properties which
guarantee that block SOR will converge to a solution faster than will
point SOR. In these applications, the matrix M is irreducible and
Stieltjes (i.e., symmetric Minkowski). Arms, Gates and Zondek [1]

! state that if M is merely a Minkowski matrix, then block SOR still

has the advantage. For a more extensive treatment of successive

14
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overrelaxation techniques and their many variants, see [361,[58],

[59], (60] .

ok, Algorithm IV: Modified Block Successive Overrelaxation Algorithm

for Linear Complementarity Problems.

The philosophy of generalizing point SOR to block SOR in order
to solve linear systems finds an analogue in generalizing Algorithm
IT1I, the modified point SOR technique for linear complementarity
problems. In this section, we show that by restating Algorithm III,

a certain generalization suggests itself. In the following sections,
an analysis of the latter algorithm will illustrate three points.
First, under reasonable hypotheses, the sequence of iterates generated
by the algorithm will form a monotonically increasing or decreasing
sequence of vectors converging to the solution of the problem. (Under
these hypotheses, the results in [52] guarantee that a unique solution
exists.) Second, the method may be interpreted as a manifold sub-
optimization technique applied to a related quadratic programming
problem. Third, values of  greater than unity may be used to
accelerate the convergence of the algorithm.

Recall Cryer's [20] description of the modified point SOR
algorithm for the linear complementarity problem (q,M) where M€ Rmxm
is positive definite. The parameter e > 0 is chosen small enough
to-insure that the errors in the values of the z-variables are

sufficiently small. We shall make a slight modification in notation.

16
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Algorithm III (Modified Point SOR)

0 0O 0 0
= (Zl,ZE, e ., 70)

Step 0. Let z

be an arbitrary nonnegative

m
m-vector and o€ (0,2). Set k = 0.

~k+1 k+1
Step . Let 2. ==~ ( X m .z, + 2 m,, z.+ q)/m.
1 j<i iJ g 3> 1979 q1 ii
1 = 1, 2, ,
Let . L _ max[0, £ 4 012§+l - zg)]
i i t i
Step 2. Define J = {i:z?+l > 0) U {i;z?+l =0, (Mzk+l + q)i < 0}.
k+1

If  max |(Msz
ie€yg
at hand. Otherwise, go to Step 1 with k replaced by k+l.

+ q%J < ¢ stop. An "approximate" solution is

The algorithm is essentially the point SOR algorithm for linear systems
with the precaution that if a z-variable ever becomes negative, it 1is
immediately set equal to zero. Cryer [19] gives a convergence proof
for Algorithm III under the assumption that M is symmetric and
positive definite. Historically, an identical modification of the
Gauss—-Seidel method has appeared in several varied contexts, see
[51, [26], [3L].

Algorithm III may be viewed in a slightly different but

equivalent way for values of w > 1.

Proposition 1. If w > 1, then Step 1 is equivalent to the following:

-k+1
step 1': (a) Let z solve the linear complementarity problem

K
(¢",M")=(} m SR L 9, ™

.z, g
g<'id 3>1 11

17
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k+1 - - -, -
(b) Let w ;= max{ow < o, z. + o z%ﬁl - z}i{) > 0}
£ - 3 1 =
k+1 k -k+1 k
(c) Let z, =z, o+ m(zi - zi); i=1, 2 , o

Proof. The analysis is divided into tyo cases:

Case 1. D n&j23+l + ZT mi,z% *a < 0. Consequently,

J< i ] g>1i 4
Ek+l = 2§+1. From (b) af+l equals « if and only if z? + w(%kflagé
In this case Steps 1 and 1' give the gaipe value for ; z$+l. Suppose,
on the other hand, that z? + w(2§+l - Ef) < 0, and therefore Step 1
sets Z?+l equal to zero. But max{0, z? + a%%§+l -z?)} = 0 if

and only if there is an @' < @ for which Zi + &(;T+l ) z%) S 0
= ; 1) 2

(resp. < 0) when w < @' (resp. @ > w'). 1In this situation, «&*t
= i
is chosen to be ®' in (b) and thus z"*1 = ¢ in (c) of step 1'.
i
Case 2.
k+1
5 m.z. 4+ ¥ . >0 .
j<i PRSI I %)
Therefore, in Step 1 we have 2$+l _Zlf<< -Zk zk + ai2k+l - zk) <0
1 i= i’ i i i/ =
k+1
for all @ > 1 and . is set equal to zero. TIn Step 1,
equation (3)implies that EF*I - 0 and that Téhl_ Zk) e
i i 1 1
Consequently, w > 1 implies that the value of wk+l chosen in (b)
of Step 1' is unity and thus z?+l is set equal to zero in (c). I

In Section 2.5, we show that Algorithm III with the Step 1'
substitution will converge for all w < (0,2). Under this new

interpretation regarding the choice of the relaxation parameter at

18

) > 0,



e |

each iteration, a generalization of the preceding algorithm maybe

proposed. By a slight change in notation, we shall pass from a point-
iterative to a block-iterative technique. e will use the notation
described in Section 2.3 on block SOR for linear systems. particular,

M is partitioned into submatrices M . (i, j =1, 2, . . ., m) where
1]
M. s of order N, 2z = (21’22""’Zm) and (qz(zl’q2’°°"qm) where

<4 and q; are n, -vectors. Algorithm III, with the substitution of

Step 1', then forms the basis for the following generalization. We

refer to the new algorithm as the Modified Block SOR Algorithm for
the linear complementarity problem (q,M) where M is positive

definite and Mii (i=12 ..., m is symmetric.

Algorithm IV (Modified Block SOR)

0 _ ;0,0
= (20,25, .
vector and ® < (0,2). Set k = 0 and i = 1

Step 0. Let =z s zﬁ) be an arbitrary nonnegative

=k+1
Step 1. Let z, solve the linear complementarity problem

k+1 , K
( M. .z +
j§ L 13 ) Migzs t s M)

J J>i
giggl_Z. Let a§+l = max{w:m <o, 4 & £T+l ) ZE) > o).
Let %k+l = %5 +j9$+lg;%+% 2?
Ste If 1 =m, go to Step 4. Otherwise, return to Step 1 with

i replaced by i+l.

19
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m
. k+1 k+1
Step 4. = i,3): ; + q. .
Step Define J {(1,3).(zi )j > 0 or (rzilnirzr q1>j < 0}
o k+1
If max I( 2 bﬁrzr + gi)5< ¢, stop. An approximate solution

(i,3) €0 r=1
is at hand. Otherwise, return to Step 1 with k replaced by k+l

and i = 1.

The differencesbetween this algorithm and block SOR for
linear systems are evident. 1In Step 1, we solve a linear complemen-
tarity problem (g,M) instead of solving a linear system Mz + g = 0.
Also, the nonnegativity constraint of the complementarity problem is
handled in Step 2 by requiring that movement in the direction'?gi-iz)
be constrained to remain in the nonnegative orthant. 1In solving linear
systems, the nonnegativity restriction is absent and thus w§+l always
equals .

The computational bottleneck to the modified block SOR algorithm,
if one exists, will occur in Step 1 where linear complementarity
problems must be repeatedly solved. 1In general, if Mﬁi is an
arbitrary positive definite matrix, then the standard methods for
solving (E&,Mﬁi), (e.g., the principal pivoting technique of Cottle
[13] or Lemke's method [38] may be used--possibly at the expense of
large core storage requiremehts and perhaps not particularly rapid
convergence.) However, if we apply the modified block SOR algorithm
to matrices whose diagonal blocks Mﬁi are tridiagonal Stieltijes
matrices, then Algorithms I and II may be profitably applied to yield
an algorithm of high overall efficiency. an example of this type will

be discussed in Section 3.

20
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2.5. Convergence of Algorithm IV .

It is natural to look at the corresponding problem of the
minimization of a quadratic function over the nonnegative orthant to
help demonstrate the convergence of the algorithm. We shall use a
method of proof similar to that of Cryer [20] and Schechter [53],[54].
If the matrix M is positive definite, then the Kuhn-Tucker conditions

for the problem

minimize f(z) =

no |

Zz Mz + qz

subject to z >0

are the necessary and sufficient conditions which a global minumum

satisfies. If we further assume that M is symmetric, +then the

Kuhn-Tucker conditions are equivalent to the linear complementarity

" problem (q,M).

The first result will show that the successive iterates {zk]

k . \ .
cause the sequence ({f(z )} to be strictly monotonically decreasing.

Theorem 1. Let

1,x, T A B x B
fi{x = = p x
) =5 ) G+ B )
he- . .n N—-n
where p, x - R, s, y€ R ', and x and y are arbitrary vectors.
Assume-that A is symmetric and positive definite. Let x solve

the linear complementarity problem (Hy + p,A) where H = (B+CT)/2.

Then f(x + o(x~x),y) < f(x,y) for Vo< (0,2). Furthermore,

quality holds if and only if x = x.

21
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Proof. We examine the minimization of g(u) = f(u,y) over the non-

1
2

negative orthant. Rearranging terms, g(u) = Ay + (Hy + p)Tu + c
where ¢ 1is a constant. Since A is symmetric and positive definite,
the minimizing vector X is the solution to the related linear com-

plementarity problem (Hy + p, A). For notational convenience, let

We will assume that x # X. By a principal rearrangement of

A, we may further assume that x = (5<K,O), where K is the index set

(L, 2, . . ., k) and Xe = (Xl’ Xy oun ,-pa% > O.Letting K be the
index set (k+l, k+2, . . . , D), the corresponding partitionings are
o Ao
ro= (I‘K,r_) and A= KK
K
A_ A__
KK KK

Let d = x-x = (x_-~ X - - - -
(Xl Xl’XE Xg,...,xK XK XK+1; Xk+2,...,
(dK’ -X ). We want to show that g(x) > g(v) for all v in the
K
open line segment Vv = (x, x + 2d). Noting that V may be rewritten

as {viv=x+ A, VA€ (-1,1)), we consider two cases )\ < 0 and

A > 0.

Case 1. A £ (-1,0]. since g is strictly convex, then for all

A< ('l)O];
g(x + M) < (1 - |A]) g(x) + [A] g(z-d)
= (1 - A]) e(x) + |A] a(x)
< (1 - A) &(x) + |A] a(x)
Thus,
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g(x + ad) < g(x) . (L)

Case 2. A < (0,1). Consider the Taylor series expansion

g(x + Ad) = g(x) + ?\dT(A;( + r) + -;'- 7\2dTAd. By showing that dT(Ai + 1) 0,

UA

we may conclude that g(x + A) < g(x - hd) for all A € (0,1). But
equation (4) shows g(x - Nd) < g(x) for all A € (0,1); thus
g(x + hd) < g(x) for all A € (0,1) also.

Using the index set K and the corresponding partitionings

described above, we have

T -1
. % M A\ /e © K ¥
A" (Ax + r) = +
-X A— A__ 0 0 r_ r_
K KK KK K K
T
d’K -I 0 rK rK
1 +
-X -A A : 0 T r
K KK K K
T -1
= -x(r -A r )
=T T A Pk
Now recall that x = (;cK,O) satisfies the system
A X r
Ak 7 *x K L
+ >0, x(Ax+71) =0
A A__ r_ -
KK KK 0 K
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Therefore AKKiKK = 0 and A_ iK +r_ > 0. Substituting
KK X~

- -1
= - T in the latter of these two systems gives - >
* = Ptk y g BoA_B_r >0,

K KK

Finally, we conclude the argument by noting that x > 0 implies
a'ax + o <0, [

Theorem 1 means that we can use the function f to monitor
the progress of the algorithm. If we can guarantee that f is bounded
from below on the nonnegative orthant, then we will be assured that
the sequence of successive iterates {zk) contain a convergent sub-
sequence. Positive definiteness of M is one sufficient condition
for the boundedness of f. A necessary condition is that M be co-
positive [31]. For f is unbounded on the nonnegative orthant if
there is a nonnegative vector x for which erx is negative. Hence
f is bounded below on the nonnegative orthant only if x IMx is non-

negative for every nonnegative vector x.

Each iteration of the algorithm updates the m subvectors of

k k k k . .

the vector =z~ = (Zl’ZE’ e e e Zm). For future notational convenience,
k _k k k-1 k-1 k-1
let f:(v) = f(zl, Zoy - e w0 By Vi 2505 Biiny eee zEl ).
k -
Theorem 1 thus shows that fi(zi) < f?(z? l) with equality if and
.k k-1 B -
only if z. =z, Consequently-— f(Zk) < f(Zk l) with equality if
. k k-1 .

and only if z= =z . In the case of equality, we can prove that

k .
z~  solves the linear complementarity problem.

Proposition 2. If the algorithm generates iterates zJ,j = 1,2,...,k

k-1 k
and =z z & then zF solves (q,M).

ol



k k-1
Proof. From Step 2 of the algorithm, we see that Zi =Z; if and

-k k-1 -k
only if 2, = 2, Suppose we are solving for 2z, in Step 1.
We require
- - -T-k
W, = E _zk + Mliz}ii +_ .M.z]f‘ 1 + > 0 and wg‘Z. =0
1 j < i le J j > i lJ J -
Since ;i}'{= Zki_l and zk_l = zk, then
k k k T k
W, = -2 7.+ M, .z, . =vw, >0 and (w$)'z.0 =0
o1 i<i ij J ii i S 133 4G i= i 1
. . k
This holds for all i =1, 2, . . ., m; soz solves {(a,M). '

Finally, we prove that the sequence of iterates have a unique

limit z and that the limit solves (gq,M).

Proposition 3. If M is positive definite, then the sequence of

, k . . .
iterates {z } are contained in a compact set and hence contain a

convergent subsequence with limit z.

Proof. (Similar to Cryer). From Theorem 1, {f(zk)} is a monotonically
decreasing sequence. Since M is-positive definite and f is a
quadratic function, f is bounded from below and thus there is some
value to which f(zk) converges as k —> o,

The set S = {x|f(x) <:f(zo), x > 0) is compact. It is closed

because f is continuous. Furthermore, S is bounded. Suppose

v, 78, i=1,2 ..., ad IVI—> » where | is the Euclidean

1

® e
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norm. In the quadratic function f(v) = 5V Mv + qv, we may assume

that M is symmetric and has real eigenvalues. Let 7\1 > 0 be the

smallest eigenvalue. Then, by the Fisher Minimax Theorem [k, p. 72]

T T 2 T . . .
vini>:?\l\ri-\7i = Alllvlll ; thus Vini > o as 1 —> o ., Since

. . T
the quadratic term]é— VEMVi dominates the linear term ¢ v, as

”ViH becomes large, we conclude that f(vi) —> 0 as 1 —> w. But

this contradicts the assumption that f(vi) < f(zo) <o for all i.
. k
Therefore the iterates {z } are elements of a compact set

and have a convergent subsequence with some limit point 2% € s. .

Proposition 4. Using the notation developed in the algorithm and

. -k e
assuming that M is positive definite, then  1lim (Zi-k:i 1) =0

k-l) kK o

and lim (zk-z = 0.

k =

Proof. From the proof of Theorem 1, for any k and each i,

K-k  k K, =k K\T -k L1, K\T K
- - - < (g a
£i(zy - ) = £(Z) - 4)T (e 4 ogp) £ 5 (a)) Myd
and
Kk, -k K Xk K\ T -k 1120 K0T K
- - - - F=AT(a)T M4
£i(z, + Ay f}ﬁi'_(z‘i) Mag )™ (Mg +oa) + 3 N(a))T Mpydy
where d,];. = 2}5 - 25-1. Adding these equations, we have
ko k-1 2 N S LS + L@y u
£z, & - fli((zi +ady) = -(ML)(a))” (2 + q;) + 5 )(a)" My, dy
2., K\T K
- &
> (1-N)(ag)” My, dy
>0 since A € (-1,1)
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Recall that &, is the scalar chosen in Step 2 of iteration and

k _ k .
thus A has the value Ai = “ﬁ'l' These values satisfy the following

bounds:
. k
1< min(0, @l) <A <®- 1<,
for all k and all i. Therefore there is a scalar @ independent

. k.2
of k and i for which l-—(%i) >a> 0.

. k
Since the {f(Z )] converge, the {f:}i{(zik)} also converge.

Therefore
K, -
lim (f ( f) - fi(zg + %?d?)) 1i Hl(f fk( k+l))
K k 5
and also

llm(d)M d =0

k 5w

. . . . . . k )
Since Mii is positive definite, then 1lim d =0, i.e.,

kK - o

. -k k-1 ) -

llH‘(Zi ~ 21 ) = 0. Finally, llHl(Z§ - zf l) = lim (1-} )d -
k 5o K — o 1 1 kK - o i

Proposition 5 Let I be the index set of a convergent subsequence

. k
of the iterates {z'} generated by the algorithm. Assume the sub-

sequence converges to the vector z. Then Mz + g > O.

Proof. If the inequality does not hold, then there are integers i,

j and N and some s > 0 for which k > N and k € I implies
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K k k
P TR I A T

t <1 t>1
However
k+1 -k+1 ]
( 8 M.z + M.z, o+ M, z9+.q ) >0 .
t<i1tt iii t>iltt qu=

Subtracting the second inequality from the first gives

kK ktl kK -k+l

Since the terms in parentheses become arbitrarily close to zero, we

have a contradiction. [}

Proposition 6. Let I be the index set for the convergent subsequence

above. Then ZT(MZ +.q) =0,

Proof. Suppose the contrary. Then there are integers i, j and N

and some & > 0 for which k > N and k € I implies that (z?lj> )

and

v k k
( X oMLz 4 Mil'zi + é\ M, 2zt (L.L)J > 5 . (5)

However

-k -
Suppose (Zi)j > 0. Then dividing equation (6)by (ZE)

. and sub-
1]

tracting the result from equation (5) gives
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kK -k Kk k-1
(g, (2 - 25) + tgiMit(Zt T2y ))j > b

As before, Proposition 5leads to a contradiction. Alternatively,

suppose (Zk) = 0. Pick N' > N sufficiently large to guarantee

1°J
that |(El; - le{)l <§ when k > N'. If (2}1{)3 = 0 for all k > N'
when k € I, then |(Ek - zk)l = (zk) > §-, a contradiction. If
i i3 i%j 2

there is some %k € I which is greater than N' for which ('Z-ll{)J > 0,
then the analysis in the preceding paragraph applies and a contradiction

follows. l

In summary, these results show that the algorithm generates a
sequence of vectors [zk} belonging to a compact set S. Given any
k .
convergent subsequence of ({z }, its limit point z solves the linear

complementarity problem (g,M).

. k . o .
Theorem 2. The entire sequence {z } has a unique limit point z,

and 7z solves (q,M).

Proof. Since M has positive principal minors, the linear complemen-
tarity problem (q,M) has a unique solution (see [4k], [52]). Propo-

sitions 5and 6show that the limit of any convergent subsequence of

k
{z"} solves (q,M). Consequently, every convergent subsequence has
a-common (and hence unique) limit point z. Finally, the entire

k .
N sequence {z'} converges to z since every convergent subsequence

does [49, p. 371.
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. k
2 .6. On the Monotonicity of the Iterates z ,k =0, 1, 2,

If M is merely positive definite, one cannot conclude much
more about the sequence (zk] than that it converges to a solution
of the linear complementarity problem (q,M). However, if we further
assume that M is Minkowski and require that O < o < 1, then a very
interesting result obtains. We shall use the following characterization

of Minkowski matrices from [ 17].

Lemma 1. (Cottle and Veinott [17]). M is a Minkowski matrix if and
and only if the solution z° to the linear complementarity problem
(q,M) is the unique vector minimum* of the polyhedral set

Z ={z:Mz + q>0, z>0}.

Lemma 2. If M is Minkowski, q, < q, and z?.i solves (ql.,M), then

Proof. By Lemma 1, z?ie is the vector minimum of

Zi = {z:Mz + ay > 0, z >=o}, i =1, 2. But a4 < 9% impliesthat

* * *
Zl c ZQ, SO zl c Z2. Therefore zl :z2 ) l

Theorem 3. Let M be a Minkowski matrix having diagonal blocks Mii’

i=1,2,...,mn If o€ (0,1] and 20 = 0, then 2t > 25 for

I.e., z* € Z and z* <z forall z€ Z.
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Proof. The proof is by induction. assume M is partitioned into

submatrices M'l’j L,§=1,2, ... | m and that g and 25 L.
.y k _ ,kk
conformably partitioned (e.g., z = {?22, Lo, Zm))' Since

1
z- > 0 = zo, we may assume that zk > zk-1 s . 0 and
k+1 k . . ~k+1 = = -
zJ > Zj for j<i. TILet z. solve the linear complementarity
problem
| k+1
( ) Moz o+ N M 25+ q, M, .)
| j<i *dd j>i 99 o
Since
L Mz T N Mzt v g < P s M, .z, o+
j<i 9 j>1 9 Ty j§i 193 EX
Lemma 2 implies tha'Z'lf:J’:L > El.{.
i =~ 1
k+1 k =+1 k
t = -
Recall that Zi zi + w(zf z, )i where (¢ (0,17.

We next show thatkE1. > zlf: for all i and all k.
il i Clearly,

-1 1 0 -
2y 22, 21, =0, somay assume 27 > z¥ for r < k. Therefore,
- 1 = 1 =
k+1 =k+1 k -k k
Z. = R - k k k
: wz; T+ (1 oo)zi >zl 4 (l—a))zi > wz; 4 (l_w)zi =z . ]

Theorem 3 may be made more intuitive by examining a simple
case in which m = 2 and n =m, = 1. 1In Figure 6, we illustrate
k
the sequence {z'} generated by the algorithm when w is equal to

one. The zigzagging which occurs causes slow convergence as we approach
. *
the solution z". mmis problem is mitigated when values of ® greater

than-one are used. However, in those cases, we lose the monotonicity
k
of the vectors (z }.

The next theorem shows that we can also approach z¥ from

above.
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Theorem 4. Let M be a Minkowski matrix having diagonal blocks Mii’

*
i=1,2, ..., n Furthermore, let z solve (q,M). If o < (0,1],

* k
Mzo+q_>Oamdzo_>z,thenzﬂ'fzk for all k =0, 1, 2,

Proof. The proof is by induction. We shall assume that zO > zlg

and Mz? + q >0 for j<k. We may further assume that 213 > z§+l

. . -k+1 , .
for j < 1. Let zZ, solve the linear complementarity problem

k+1 - k ,
X Mijz‘ LMzt M,i). Then, by assumption
<1 J j>1i 99 +
k o k R k
0 < M.z, + ) A > z
< 1 A Moz o M, .z,
Moy W 3309 e
k < k+1 k
< M, .z, + > ..z + ¥ M.z, + (7)
-] » Cad 1 3 — '
o j<i 94 j>1 199 k!
-k+1 k +1
Thus, by Lemma 2, z; < z; and so Z}:.: < zli. Furthermore,
- k -
Mot 4+ T o +l+‘M..zk+q1>0 (8)
11 1 . J J L = 13 J =
Jg<i jJ>1
. k+1 | , , -
Since z; is a convex combination of zliﬁ'l and Z]i(’ equations (7
and (8) imply that
k+1 3 =
i i+ + ¥ M.l.z}?fl + ¥ M, :sz +q > 0
g < i J J jg>i J Jd =
These arguments hold for all i =1, 2, . . . , m. Since M'i'
dJ
. . . +
(componentwise) for i # 3, g5, q > 0. Consequently, 2~ > 25 ang
w4 g>0 foranl k.

Intuitively, one might guess that a "dual" version of Theorem k&

exists. For instance, if M and ® are as above, zO< z , and z0

33
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is an element of the same cone but lies on the other side of the apex,

. k
i.e., MzO + q< 0, then 2z < zk+:L for all k =0, 1, 2, . . . . How-

0 . . . .
ever, Mz + q < 0 may imply that ZO % 0, an undesirable situation.

A slight modification of these hypotheses will correct this problem.

Theorem 5. Let M be a Minkowski matrix having diagonal blocks Mii’

, *
i=1,2, ..., mn Furthermore, let z solve (q,M) and assume that
* ' ' 2 0 ~
(Zi)t> O implies that (j/_z_;lMijzj + q_-L)t < 0. If we (0,1] and
*
ngogz,then Zk‘<_zk+:L for all k =0, 1, 2,

*
Proof. The proof is by induction. We first establish that (zi)t =0

. . . 0 ¥
implies that (z;‘_)t =0 forallr=20,1, 2, . . . . Since 0 <z<z,
we may assume that 0 < zr <z* forr=20,1, 2, . . ., k and
*
0 < zl.{+l <z for j < i. Therefore
— * —
S i.zkfﬂ + VoM .z}; tq > D Moz Mo* qQ .
-k+1 *
By Lemma 2, O=< 25 < Z; and consequently 0 < z}i&l < z’i. Thus,
r *

0 =< zZ =< z for all r =0, 1, 2, . . . . and we have resolved our first
problem.

Next A ("&l _Zk+l k+1 k k Zk)

ext, suppose Z = (217,25 yeees 2y 1525525 9000007

is known and 2 satisfies the hypotheses of the theorem. We may
, k+1
determine Z5 by applying Algorithm III (modified point SOR) to the

linear complementarity problem

— - k+1 —_ k
A) = > M, .z, + M M. .z, ..
(P: ) Z L1355 ) M .'ZJ + qi, M :21

(
J




0o k L t Lt ot
We let x =z, Dbe the initial guess, x = <X1’X2’ , x:’ ) be the
successive iterates, and let x*= 1i, x° (Note < ‘§k+l )1 Ve
i .

' + t = _
shall demonstrate that if x satisfies the hypotheses, then XL+l

]

t+1l xt+1 t+1 £ Lt t
1 - B Xj-l’ J',xj‘f'l’ s e o ) Xn' )
has been generated by the algorithm and satisfies the hypotheses.

will also. Assume y (x

- There are two cases.

*

. Case 1. (Z"i)j = 0. Since p_> Z M. z* + g, then X < z% and

¢ x*—O Since 0 Lt o :lt

L gy Xj must also equal zero, ye may assume that Xy = 0
for all t =0, 1, 2,

O —

* .
L Case 2. (Zi)j > 0. Then (Ay + p)j < 0. But X{Hﬂl =
= J
t .
max{0, Xt - w(Ay + P)J-} > *.+ Furthermore, A(xliﬂ,x;ﬂj , ot
_ .,
, t t t . J
. X541 ¥yp7 =+ + 0 % )+ p < 0 since 33, <0 for ifj.
: ij =
TR I S K ksl
r We may conclude that Z, "= x <z, 7, < and thus
kK k+l ) B
25 2% Since Mij < 0 (elementwise) for i # j, then
k+1  k+1 k+1 k Xk X
(297 2,7 - oy R IRD Zi4p? k2 Zm) satisfies the
hypotheses. The rest follows by induction. |

2.7. The Algorithm Interpreted as a Manifold Suboptimization Technique.

In this section, we shall transfer our attention from the

linear complementarity Problem to its related quadratic program. In

order to facilitate the following discussion, we create a more general

setting for the problem. e may view the function to be minimized as

m
one defined on the product space v= I v Consequently we have
i=1
7 = (Zl, Z2, e e ey Zm) € V where Zi € Vl. Each Zi will be
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restricted to the subset E cV,; thus 2 €E= 1T E. Let
i=1

(‘,04 be the scalar product corresponding to V;, and let Mij be

a linear transformation from Vj to Vi' Then the function

£((z) :f(zl,z,,L C ey zm) may be defined as

1 = )
5 : : <Z-) M, .Z.>-+ 2_‘ ( i2%. 7,
I A P LA TR

where g, S Vl' In the case of Algorithm IV (Modified Block SOR),
n.xXn,
» By = (x:x S V;,x>0), and M., € R * J. Recall that we

assumed that the matrix M (having partitions Mij) is positive

_ooni
Vi = R 3

M

definite and that the Mii are, furthermore, symmetric. With this

notation, we may state an algorithm for the minimization of f over F.

Algorithm V.
(ZO 20
1’72’

Set k =0 and 1 = 1.

Step. Let 2= , zﬁ) € E and let o€ (0,2) be given.

, -k+1 ,
Step 1. Determine zi € Ei for which

k+1 k+1 k+1l -k+1 k k)

f(Zl )ZE }OEBZi_l)Z-i ;:-?-‘L_I_l,..., Zm

k+1 k+1 k+1 k k
§ f(Z.l ’Z2 JOggc'i_l'v,Zi+l, .o .,Zm)
for every v € Ei’
ol - k | -,-k+l Kk
Step 2. Tet o = = max{w:w < o, z; + oz, 'Zi) € Ei}'
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k+1 k k+1,-k+1 k
Let - =
% %‘ * fm“ 9?‘ Zi

Step 3. If 1 = n, go to Step L, Otherwise return to Step 1 with

i replaced by i+l.

k+l 134 '
Btep Is z reasonably" close to the solution?

If so, stop. Otherwise, return to Step 1 with k replaced by k+l
and 1= 1.

Notice that Steps 0, 1, % and 4 of Algorithm V are essentially
identical to the corresponding steps of Algorithm IV. For the problem

described above, the algorithms are, in fact, jdentical. In Step 1

of Algorithm V, we perform a constrained minimization of f on the

manifold of V determined by using fixed values in g g B
l)2}-.:) i_l)
Ei+l’ Cwx Em and letting the minimization take place in Ei’ the
constraint set in the space Vi' This is equivalent to solving
minimize f; (u) = % UTM..u + 7 5+l + M2+ )T u
11 < 139 LT i37 I
d i Jg>1
subject to u & El' 9)
But M,, 1is a symmetric positive definite matrix by assumption.
i1 Hence
-k+1 . - -k+1
z, solves (9) if and only if z, solves the linear complementarity
problem
( 7 M Zk+l £ T on Zk .
- _ L, M .
j<i 144 331 L4 4 ii)

However, this is Step 1 of Algorithm IV.
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If we let w = 1, then w§+1 =1 and.z%?l = E%+l for all
1

k and all i. 1In this case, Algorithm V is a typical example of a
manifold suboptimization algorithm [63]. When o is greater than 1,
we have an accelerated version of a manifold suboptimization technique.
The results of Section 2.5 apply and we have convergence for any value

of w strictly between 0 and 2.

2.6. Related Manifold Suboptimization Techniques.

Methods similar to Algorithm V have appeared in the literature
on the minimization of functionals on Hilbert spaces or reflexive
Banach spaces. J. Cea [8] treats the case in which the bilinear form
(corresponding to our quadratic form uTMv) is continuous, symmetric
and coercive. The sets Ei are closed convex subsets of Vi' Under
these hypotheses, Cea proves that if w = 1, then the zk, k =1,2,...
converge weakly to the solution.

A. Auslender [2] treats the case in which Vi and Ei are
defined as above but where the gradient of f satisfies a uniform
Lipschitz condition on the closed, bounded, convex sets of V. If
EE f VU he requires w< (0,1} for convergence of his algorithm.

In the unconstrained ease, i.e., Ei =-Vi,w is permitted to assume
any value strictly between 0 and 2. 1If vV is finite dimensional,
the Lipschitz condition on f is relaxed and replaced by a much
weaker condition.

R. Glowinski [30] uses the same hypotheses as Cea. However,
Glowinski's algorithm modifies Steps 1 and 2 as follows. He minimizes

i over Vi instead of Ei in Step 1. In Step 2, he uses a fixed
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value of @, for i =1, 2,

, m and guarantees that K+l .

1 i
by lettingzk+l= P.(z
1

- k+ w .(El,{.ﬂ - Z,l-{)) where

i T { Pi is the

n . .

orthogonal projection operator from Vi to Ei corresponding to
% . " \ \

the norm* induced by Mii' Glowinski states, without proof, that

if the w, €(0,2),i =1, 2, . . ., m, then the iterates {zk]
1 converge
strongly to the solution.

The research of J.-C. Mielloy [43] and of B. Martinet [L2]

is also of related interest.

*
“V” = (MiiV;V> where (',-) is a scalar product
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SECTION 3

APPLICATION--THE JOURNAL BEARING PROBLEM

3.1. Statement of the Problem.

A journal bearing consists of a rotating cylindrical shaft
(the journal) which is separated from a bearing surface by a film of
lubricating fluid. The journal and bearing are of length L and have
parallel longitudinal axes (of rotation). A typical journal bearing
is shown in Figure 7 as is an unfolding of the bearing surface into
the plane. A cross-section perpendicular to the axis of rotation is
depicted in Figure 8. The mathematical description of the system will
be stated using various coordinate systems as need dictates. A
description of the cross-section is most easily couched in polar
coordinates whereas a description of the entire journal bearing has a
more natural setting in rectangular coordinates.

We wish to know the distribution of pressure on the lubricating
film. An important underlying assumption of the model is that the
lubricating film is so thin that there is no variation in pressure
in the axial direction. Therefore (in Figure 8 ), the pressure is
constant on the "line" from the journal to the bearing for each value
of 9. Consequently, one may view the problem as the determination
of the pressure distribution on the lubricant of the bearing surface.

An initial understanding of the journal bearing model may be
obtained by first examining the cross-section of Figure 8. e shall

review Cryer's [19] description. The thickness* of the film

.x.
I.e., depth, not viscosity.
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is minimum at Qmin where the angle 6 measures rotation about the
z-axis, the axis of rotation. 1In the case of a partial bearing (one
which does not completely encase the journal) the lubricant flows out
at 6 and is replenished at 90. In the case of a full bearing,

T
where 6_ = 6_1- 27, the liquid which may have vaporized is assumed

T 0
to condense at @T into its previous liquid state. (In the full
model of Figure 6, the lubricant can also flow out of both ends of

the journal bearing.) The thickness of the film is denoted by h(8,z);

it satisfies

n(e,z) > 0
(6,z) > 0 8 € [6,,6,]
oh
28 <« o ec (6,0
06 ( o’ min)
oh
>0 6 ¢
G <9min’6T)

The pressure on the film can be expected to increase between 9 = 90
and e = Qmin and to decrease between g = emin and QT_ It is
assumed that when 6 = 9f, the pressure becomes so low that the
lubricant vaporizes. The interface between the two boundaries of the
lubricant is called the free boundary (see [39]). In the finite

length bearing of Figure 7, the location of the free boundary depends
on the axial coordinate z and is denoted by Gf(')- The pressure

is zero (i.e., atmosphere) along and beyond the free boundary 6. This
is discussed in more detail in Section 3.k In Figure 9, we illustrate

the profile of the pressure distribution on the lubricant at the
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(developed) bearing surface. Tecocmputztions and graph were Cone Tty
Cameron and Wood [k]. This journal teering has an eccentricity ratic
€ = e/r equal to 0.8 and a bearing diem=ter-to-length ratio of D/L
equal to 1. The isobars (constant pressure contours) are given in
nondimensional units (lOBRB/uUre)p. The variable p is the pressure,
R is the bearing radius, ¢ 1s the viscosity of the lubricant, U is
the surface velocity of the journal, r is the minimum clearance
between the bearing and the journal and e is the distance between

the two axes (see Figure 8).

3.2. The Reynoclds Eauation

In 1886, Osborne Reynolds [48] developed the now-classic
equation governing the mechanism of hydrodynamic lubrication by incom-
pressible fluids. The equation, a special case of the more general
Navier-Stokes equation {45, p. 4], is deduced from seven essential
assumptions On the physical properties of the system (see [45, p. 51).

(1) The dimensions are sufficiently large to justify ignoring the
curvature of the journal bearing when studying a small section
of it.

(i1) The pressure across the film (from the journal to the bearing)
is constant; i.e., dpfy = 0.

(ii1) The flow is laminar, i.e., there is no turbulence in the film.

(1V) There are no external forces acting on the film.

(v). The fluid inertia is small compared to the viscous shear.

This means that the rotational forces of the journal acting
on the lubricant are much larger than the natural tendency
(e.g., fluid gravity) of the fiuid to remain at rest.
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(vi) There is no slippage of the fluid at the bearing surfaces.
(vii) If u and w are the velocities of the fluid in the x- and
z-directions, respectively (see Figure 13),then all velocity

gradients are negligible compared to du/dy and dw/dy.

Pinkus and Sternlicht [45] note that in most practical cases,
the bearing is stationary and only the shaft is moving. In these cases,

the most general form of the Reynolds equation is
2 (e 22), 2 (anldp) . gy2len) -
ax( , §£)+Bz( . £ = 6= v azv . (10)

The variable p represents the density of the lubricant, p 1is the
absolute viscosity, and V0 represents a velocity resulting from the
motion of the journal center. In the ensuing discussion of equation
(10), we will postulate that VO = 0 and that p and p are constants.
In order to gain a better understanding of the model of a
journal bearing of finite length, we first examine a simpler model.

By means of this special case, we may motivate the boundary conditions

for the problem of more general interest.

3.3. A Limiting Case: The Infinite Length Full Journal Bearing.

If we suppose that the length L of the journal bearing is
infinite, certain further simplifications may be made. We may dis-
regard the effect of fluid flow from the ends of the bearing and
therefore Bp/Bz, the pressure gradients in the axial direction, will

be zero.
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Obviously, an infinitely long journal bearing is a physical

impossibility and does not closely approximate the dimensions of those
used in practice. However, it does provide some understanding of' the
behavior of more realistic bearings. Some notable similarities between
the finite and infinite length models are the following. The infinite
case provides upper limits on both the pressure exerted on the fluid
film and on the loads which the film will support. Moreover, Pinkus
and Sternlicht [45, pp. 69-71] show that the solution to equation (10)
(which describes the finite length journal bearing) is a perturbation
to the solution of the infinite length journal bearing problem. The
perturbation involves adding the product of the solutions of two
differential equations of a single variable. (To the authors
knowledge, this realization has not borne fruit due to the difficulty
of solving the latter two differential equations.)

As Pinkus and Sternlicht indicate [45, p. 68], the difficulty
in obtaining satisfactory solutions for journal bearing problems lies
not only in solving a given formulation but in adequately defining the
boundary conditions for the formulation. For the remainder of the
paper, we shall assume 90 = 0. In order to determine these boundary
conditions for the simpler model, we first recall that there is no
pressure variation in the axial direction. Consequently, it is
sufficient to examine an arbitrary cross-section perpendicular to the
axial direction (see Figure 8). Generalization to the finite length
case (where, for a given 6, there is pressure variation in the axial
direction z) may then be thought of as the examination of a collection

of cross-sections along the z-axis, say at z = where

21,22,25,...,ZN,
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the boundary conditions for the ith cross-section are analogous to
those for the infinite-length journal bearing model.

Replacing the variable x by R9, where 6 is in radians
and R is the bearing radius, and recalling that Bp/az = 0, then
the Reynolds equation for an infinite journal bearing is

a% 02 %gij _ 6uR%§ : (11)

We may use full instead of partial derivatives because both p and h
are now functions of 6 alone. Furthermore, since 6uR is a constant,
a change of units is sometimes made to allow setting it equal to unity.

In 1904, Sommerfeld obtained* the first solution to equation
(11); he addressed the full journal bearing case in which the boundary
values were P (0) = p(2m) = Do He also assumed that both journal and

bearing were cylindrical and hence (h being a function of 6 only),

h(8) = r(1 + ¢ cos 8) .

The parameter Py is the ambient (or atmospheric) pressure and is
usually set equal to zero. Sommerfeld's expression for the pressure

distribution was

(12)

6uURe 2 + € cos 0) sin 0
p(8) = p, + 2 ( ’

2 2
o ¥ (2 + € )1 +¢e cos 0)

Setting p, equal to zero, the graph of p(6) becomes

*
by a clever transformation of variables
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The important thing to notice is that equation (12) yields

regions of high negative pressure. This model was unacceptable since

a lubricating fluid cannot support such high negative pressures and
still remain an incompressible fluid. The underlying problem was that
as 0 increased beyond emin = 7, the width of the film increased

and consequently the pressure exerted on the film decreased. Eventually,
at 96 = Gf, the pressure became so low that the tensile strength of

the fluid was overcome and the fluid vaporized. Since the Reynolds

equation only holds for incompressible lubricating fluids and the

region of the journal bearing beyond the free boundary, i.e., 0 > 9f,

contained a compressible gaseous lubricant, it was no longer valid to

apply equation (11) over the region (Gf, T)°

Thus, a different set of boundary conditions was needed to
provide a more realistic solution to the problem of determining both
the region (QO,Gf) in which the lubricant exists as a liquid
and the pressure p(6) in that region. From the literature, one

infers that the boundary conditions commonly used today are due to

Swift [55]. They state that when the pressure falls to zero, the
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circumferential pressure gradient dp/d® also falls to zero. In other

words,
(i) P(0) = 0
(ii) p(ef) =0
(iii) %g (9,) = 0

Clearly, the pressure function p may be continuously extended on the
interval [Bf,%ﬁ by setting it equal to zero on that interval. From

the results of Cryer [19], the free-boundary €. occurs at the largest

f

value of 6 = 6 for which p is nonnegative on [0

0.
Sommerfeld's technique for solving the differential equation

with these boundary conditions is still applicable and yields the

following complex expression for p(8) in terms of another angle, V

2 -
P(W) = -——EEEEL——— ¥ -~ € sin ¥ - K +€)W ke sin e + 62 sin ¥ cos w)
r2(1_€2)5/2 2(1 + ¢ cos(mjff - 7-r)
. (13)
€ + cos 6
— where cos V¥ T+ ¢ cos 0

and wf corresponds to Gf.
. The location of the free boundary 6, is not immediately
apparent from the original problem. However, the boundary condition

p(Gf) = 0 yields an implicit formula for wf.
E(sin(wf-v)cos(wf-w)- Wf)-+2(wf cos(wf-w) - sin(wf-v))s 0

. The solution under these new boundary conditions has the following

graph.
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Notice that the regions of negative pressure found in the graph of
equation (12) do not appear in this graph. This is the principal

reason for using the boundary conditions of Swift.

3.k, The Use of Finite Difference Techniques.

Before leaving the case of the infinite length journal bearing,
we wish to discuss a situation where Somrnerfeld's technique does not
apply and where no other means of obtaining an exact solution is
currently known. An example of this might be one where the bearing
is not cylindrical and hence the width function h does not have
the common form h(6) = r(1 + € cos 6). In 1941, Christopherson [10]
proposed a technique forsolving free boundary problems for journal
bearings by means of approximating the differential equation by finite
differences. Later, improvements on Christopherson's method were made
by Raimondi and Boyd [46] and by Gnanadoss and Osborne [29]. The
former solved the difference equations by modifying the Liebman
(or Gauss-Seidel) method, the latter by modifying successive over-

relaxation (SOR). In 1971, Cryer [19] analyzed the numerical aspects
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of Christopherson's algorithm with the SOR modification when applied

to the infinite journal bearing case. He proved that if

(1) A is the interval length on the approximation grid,
(i1) Dy = p(ja) 1is the true value of the pressure at Jj4o, i.e.,
at the jth grid point, 3 =1, 2, . . . , N,
(1ii) Pj is the discrete approximation value at the jth grid point,
j=1,2, . . ., N, and

(iv) A is sufficiently small, then there is a K < = for which

2
m.a..xlpj - Pj] < KA

dJ
Furthermore, he showed that the boundary conditions (in particular,
the "free boundary') cause this problem to be equivalent to a linear
complementarity problem (q,M). The matrix M corresponds to the

finite difference equations which are fully discussed in [19].

30 5 The Finite Length Journal Bearing Model and an Approximation.

A realistic mathematical model of a finite length journal bear-
ing has great potential for becoming very complicated. For instance,
the lubricant can be admitted through oil grooves to the bearing at
any angle and the larger the angle, the more pronounced is its effect
on the resulting pressure distribution. Further, the lubricant is
not always admitted at atmospheric (i.e., zero) pressure. These and

other factors contribute a significant complexity to the formulation.
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In our discussion of the finite length case, we shall treat
a fairly simple model, one in which the bearing is a full (as opposed
to partial) cylindrical bearing. Ambient pressure is taken to be
zero. As in the infinite length case, the lubricant that vaporizes
at the free boundary is assumed to condense along the line where 6 = 0.
The boundary conditions are a natural generalization of (i)-(iii) for
the infinite length case (see [29]). As indicated before, it is
easier to present the finite length case in rectangular coordinates.
Referring to the bearing surface of Figure 7, we shall let p(x,z)
represent the pressure on the lubricant along the bearing surface.

The boundary conditions are

(1) p(0,z) = 0 for all z,
(i) p(2m, z) = 0 for all z,
(iii)" %-2- (x, %) =0 for all x,
(iv)' p(6.(z),2) = 0 for all z, and

(v)' R (8,(2), 2) = 0 for all z,

where ef is the free boundary, and %E (Gf(z), z) 1is the normal
derivative of p at (Gf(zL z), i.e., the derivative of p in the

direction normal to the tangent of the free boundary © at(ef(Z%Z)-

f
(In the case of the infinite length journal bearing, the normal
o 3p o |
derivative at Gf becomes S6 (Gf) = 0 as in (iii) of Section
3.3. )
Since even this relatively simple model of the finite length

journal bearing has eluded attempts to obtain a closed form solution

by analytic means, other avenues have been explored and have met with
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more success. These alternate methods have included electrolytic tank
- models, d-c analogues and finite difference models (see [45]). It
is the last category to which Christopherson's method belongs.

To develop the discrete model, we shall first follow Pinkus
and Sternlicht [45, pp. 79-81] in deriving a five-point finite
difference approximation to the Reynolds equation. By a change of
variables, we first obtain a dimensionless version of equation (1).
Let x = x/D, z = z/L, h = h/2r, and p = (re/uVRQ)p where V is
the speed of the journal measured in revolutions per unit time. This

yields

Z = 2 = -
D FaE e
3% ox '/ dz dz ox

Dropping the bars above the variables and referring to Figure 16, we

~ have the following finite difference representations.

W3 (pizj+l—Pizj) ) (pl Py -1)
, k3 (02 gﬁ) _ i, g+l 2 X i,j=1/2 X
E ox P AX ’
- D. P b, .-P. .
3 i+l,J 1,3 _ _hj____l_‘_lz_sl)
3 (hB Q;e) _ hi+,l/2,,j ( /:z ) hi-l/2,j ( Az
dz dz’ Az
h, . - h, .
: oh _ 1)J+l/2 ,13,;1';[2
- wTE

After rearranging terms, the evaluation of the equation at grid point
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(i,3) takes the form

W, =q +

. . Ao . .. + a, . . .
1] ij 1,3,1%1, 5-1 1,3,2%-1,5 + ai,j,5pi,j

+a

where

- -n¥ e
ai’j,l - hi)j'l/z/(AX) ?

D 3 2
2,5, = () hi1ye,s/(02)"
3
X ) (hi+l/’2,j i-1/2 J>
1, j,3 L
(az)
2
— 3 2
ai,j,ll B (L) h1+1/2,j/(Az) ’
_ o) 2
i,3,5 1,j+l/2/(Ax) ’

and Wij = 0 if the pressure at (i, )

Ifi=1, 2, . . ., mand j=1, 2,

. . . . toa, . ..
i, J)upl"'l)J 1,J,5p1,3+l

satisfies the Reynolds equation.

, n, then the discretized

version of equation (1) is an (mn) X (mn) linear system. For each i, we

define the entries of the matrix M as
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P50 T P, 4,1

M9-1 T %k, 8,2

m, . a
1,d = k;ﬂ;B

M1 = %k, 0,k

5t = %, 0,5

and m, =0 for all other r

vhere k-1 is the largest integer not exceeding i/n and where
£ = 1i-kn. 1In addition we let the subvector p, = <pil’ Pigs %% pPin)
and the vector p = (pl,pg, .« - s py); we define the vector g
similarly.

The matrix M and corresponding vector g form the basis
for an approximation to the model of a finite length journal bearing
having a free boundary €. As in the infinite length case, there is
an associated linear complementarity problem (g,M) whose equivalence
is illustrated by a synthesis of Christopherson's original application
[10] of his method to the finite length journal bearing problem and
Cryer's later discussion [19] of the method and its application.
Intuitively, the complementarity problem arises as follows. Denote
the region where the lubricant exists in its liquid (vaporized) statc
as the positive (zero) region. These appellations refer, of course,
to the pressure on the lubricant in those regions. 1In the positive
region, the Reynolds equation is required to be satisfied. pence,
if the grid point (i,j) belongs to the positive region, then

wij = 0 and the discretized version, equation (15), becomes
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W,. = d.._ . . . +m, .
1] q‘J.J ¥ ml, J-npg-n ml,J-lpj-l

On the other hand, if the grid point (i, Jj) belongs to the 'interior"
of the zero region, then the pressure variables associated with the

adjacent points (p. ) have zero value.

i)j'n, P

i,3-17 P1, 3417 Pi, 54

Consequently, equation (15) becomes w,, = q.. = 67(h. -
q Y, eq 5= % m( 1,3+41/2 hi,j_l/g)/ﬁx

However, the location of the free boundary and the zero region requires
hihﬂﬂ/e‘ hihy1/2’ and hence wij’ to be nonnegative. Summarizing,
we have a variable pib and an algebraic expression Wij associated
with the point (i, j) and related by w = Mp + 9. If pij is
positive, then w.l:J equals zero and if pij is zero, then wij is
nonnegative, i.e., p and w satisfy the conditions of the linear
complementarity problem (q,M).

If the bearing is cylindrical in the example discussed above,
then h(x,z) is independent of z and consequently p.
1-1/2,j

is independent of i. From this observation, we may draw

and
Piv1/2, ;
several conclusions about the matrix M.
(i) M 1is a symmetric block tridiagonal Minkowski matrix where
nxn

Mij € R and i, j =1, 2. . ., m.

(i1) Mﬁ+1,i = Mﬁ,i+l = aiI where .o& <0and i =1, 2, ..=, m.
(iii) N%i is a tridiagonal matrix whose subdiagonal and superdiagonal

entries are identical and whose diagonal entries are identical.

With this structure, the Modified Block SOR Algorithm may be brought
to bear on the journal bearing problem. The computational experience

reported in the next section demonstrates the efficacy of this approach.
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SECTION 4

COMPUTATIONAL ASPECTS OF ALGORITHM IV

L,1. Storage Requirements.

We first address the question of storage requirements for the
most general form of Algorithm IV. In this case, M is merely assumed
to be positive definite with symmetric diagonal blocks, Mii-The
matrix M is partitioned so that Mﬁi is a square matrix of order n.
fori=1, 2, . . ., m. Then, for each i, there are, say, Ni non-
zero double precision matrix entries and ny double precision entries
for each of the subvectors 9y and Z- If one uses sparse matrix
techniques to store the entries of M, additional storage demands are
made in the form of row and column index vectors. In the algorithm

itself, the updating of the solution vector iterate zF requires

1

sufficient space to solve the complementarity problem
k+1

—

(q,ﬁ) = (Q._L + 2 M'l

J<i

"M, zk, ). This means allocating

; 44
j>1it9d

(R

J
space for a copy of q and M as well as any additional space re-
quired by the complementarity subroutine. Notice that it is not
necessary to have all the initial data constantly available in core.
For instance, it is sufficient to have the vector =z, the subvector
qi,'the submatrices M.&Jfor j=1, 2, . . . , m and appropriate
storage for solving (gq,M).
By restricting our attention to the block tridiagonal case

and M,

i+l,1

where M,, 1is symmetric and tridiagonal and both M, .
i1 i i+l

are diagonal matrices, we find certain economies in storage. Suppose

the diagonal blocks Mﬁi are of order n, =1 fori=1, 2, . . . , m.
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Then, one can easily show that the storage required for M, z and

g is 6mn + 4n - 2m - 2 (8-byte) words.

What further requirements does Step 1 impose? If B%i is
solved by Lemke's algorithm or the principal pivoting method, we need
approximately n2 more 8-byte words. If we further assume, as
above, that M;, is Minkowski, then Algorithms I-III are applicable.
Recall that Algorithms I-III preserve the sparsity of the data. Their
additional requirements are approximately L4On, 60n and 40n bytes
of storage, respectively. Of course,-savings (of 8m-8n bytes) are
achieved when M is symmetric and more dramatic savings occur when
M corresponds to the finite length journal bearing problem described
in Section 3.5. In the latter case, M has attributes (i)-(iii)
found on page 58.

These storage estimates represent the minimum necessary for
the algorithm. Computational refinements (e.g., reduction of multi-
plications by zero) make further storage demands in the manner of
sparse matrix techniques (i.e., in the form of index sets incorporated

into the computer program).

4.2. The Computer Codes.

Three computer codes have been written for Algorithm IV, the
Block Modified SOR Algorithm. They differ from each other in the way
that each solves the subproblems found in Step 1. The programs are
written in IBM 360/370 Fortran IV and use double precision (8-byte)

floating-point arithmetic.
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The matrix M is required to be symmetric, block tridiagonal,
and positive definite. Furthermore, the diagonal blocks Mii are
required to be tridiagonal Minkowski matrices and the off-diagonal

blocks M, and M, . must be diagonal matrices. The "tri-
1, i+l 4,

i+l
diagonal" linear complementarity problems occurring in Step 1 are

solved by Algorithms I, II and III, respectively.

43 Computational Experience.

A computational study of the problem (g,M) was performed in
which we used two types of matrices M. The "JB" matrix corresponds
to equations (15)-(16), the 5-point finite difference approximation
to the Reynolds equation arising in the free boundary problem for the
journal bearing problem. (The eccentricity e equals 0.8 and the
ratio D/L equals 1.) The "LAP" matrix corresponds to the five-point
difference approximation to Laplace's equation. (See Figure 3 for
an example.) In both cases, the diagonal blocks Mii are of order n
and m 1is set equal to n. Thus the matrix M is of order N = na
When the JB matrix is used, the g-vector comes in two varieties. One
type corresponds to the finite difference equations for the journal
bearing. The other is a random vector in which the absolute values of
the components are chosen from a uniform distribution on [0,2] and

their sign is determined by the formula

+1 if j(mod @)

VAN
W

sgn(q.)=‘
J
1—1 if  j(mod @) > B
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where a and B are given constants. For instance, if & = 20 and
B = 10, then the g-vector has a repeating pattern of 11 positive and
9 negative entries. The LAP matrix is used only with the random ¢-
vectors described above.

Algorithm IV uses two parameters, a stopping criterion tolerance
€ and a relaxation parameter w. We have set ¢ equal to 10" 7 and for
each experiment, have determined (to within 0.02) the value wexp of
the parameter o which minimizes the number of iterations to achieve
the desired level of error in the solution. (In one of the three codes,
we solve Step 1 by Algorithm III, the modified point SOR algorithm.
Algorithm III uses its own relaxation parameter o' and for each
experiment, we have determined (to within 0.1) the value agxp of
the parameter o' which minimizes the total solution time when
w = wexp.)

Finally, we shall use the following nomenclature for the
algorithms tested. Let BSORF, BSORP and BSORS denote the three
versions of the Modified Block SOR Algorithm with the first solving
Step 1 by Algorithm I--the factorization method, the second by
Algorithm II--the modified principal pivoting method, and the third
by Algorithm III--the modified point SOR algorithm. Also, let PSOR
denote the Modified Point SOR Algorithm as coded for symmetric block

tridiagonal matrices for which N%i is a tridiagonal matrix and both

M, . and M,
i

are diagonal matrices.
i,i-1

,i+l
The first experiment is a general comparison of the four
methods applied to a sample of each type of problem. The results are

summarized in Tables 1, 2 and 3.  (The number of iterations of BSORF,

BSORP and BSORS is the same for each w.)
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Table 1. Data; JB matrix, JB g-vector
BSORE  BSORP BSORS PSOR
fEEE iter sec _ifi_ EEEE sec féﬁE Efii sec
.30 18 0.133  (.183 1.3 1.797 1.58 s 0.282
1.54 37 0.881 5 559 1.3 20.517 1.76 87 2.296
1.74 78 7.388 33.862 1.3 182.291 1.88 179 20.616
Table 2. Data; JB matrix, random g-vector, n = 16
BSORF  BSORP BSORS PSOR
SEKE. iter _EES_ sec SEEB sec SEKE iter sec
L o150 0183 a6 1.2 2.013 , 1.3 26 0.183
1.24 18 0.249 0.266 1.2 2.995 1.52 36 0.249
1.22 18 0.216 0.299 1.2 2.961 1.56 39 0.266
Table 3: Data; LAP matrix, random g-vector, n=16
BSORE  BSORP BSORS PSOR
fézg iter .iii_ sec SEEE sec a%xp iter sec
1.34 22 0.316 0.316 1.1 2.329 1.46 31 0.216
1.50 33 0.332 0.482 1.1 4113 1.62 43 0.299
1.32 21 0.282 0.3%2 l.'J. 2.579 1.46 33 0.232



One notices that BSORF is almost always uniformly faster and
BSORS uniformly slower than the others. Further comparison seems to
be very dependent on the sign configuration of the g-vector. From
the results of Section 35 we may deduce that the sign configuration
of the g-vector used in Table 1 is that the first n(n-1)/2 entries
are negative, the next n are zero (or negative if n is even) and
the remainder are positive. Here, we see a pronounced ordering of
convergence speed (as measured in seconds), especially as n increases.
From fastest to slowest, it is BSORF, PSOR, BSORP, and BSORS. In
contrast, the g-vectors used in Tables 2 and 5 have a large number of
reversals in their sign configurations. Furthermore, a significantly
larger fraction of the z-variables are positive in the experiments of
Tables 2 and 3than in Table 1. These two characteristics tend to be
levelling effects, i.e., the running times of BSORF, BSORP and PSOR
are nearly equal (as well as we can tell in light of the systematic
error involved in measuring execution time in the multi-programming
environment of the 1M 360/91).

The second experiment dealt specifically with the hypothesis
that when the number of positive components of the solution vector was
small, then BSORF was considerably faster than PSOR and that as the
number of positive components increased, the running times became
equal. A LAP matrix was used with m and n equal to 30. A sequence
of constant vectors qt were used in which the first 30t components
were -3and the remaining 900-30t components were + 1. The results,
summarized in Table k4, support the hypothesis. Since the number of

positive components of the solution vector is at least as large as the
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number of negative entries in the g-vector (see [9]), this experiment

may serve as a guideline in the choice of an algorithm for a specific

problem.
Table 4. Data: LAP matrix, random g-vector, n = 30
Ratio

BSORF PSOR PSOR/BSORF No. pos.
_E Q%xp iter sec a%xp iter sec iter sec Z=~COompon .
1 1.08 [ 0,099 1.20 19 0449 5 914 4.535 60
2 1.26 14 0.216 1.40 32 0.732 9.8 3.389 118
5 140 20 o.3s9 150 42 0.998 2.100 2.860 174
6 158 3% 0765 168 0 1.431 1667 1871
9 1.66 so 1.8 176 79 1.ss0 1580 1.638 480
12 172 60 1580 178 sg 2113 1483 1.:37 6w
50 174 97 2995 182 124 2.061 {575 0.989 900

(In this Table, the relaxation parameter w was determined to within
exp

0.02 for both BSORF and PSOR.)

The third experiment attempts to relate the solution time to n.
From Table 1, we find that a growth rate of order 5/2 holds between the
. . 2
order of the matrix (i.e., n ) and the solution time for BSORF (i.e.,
2y3/2 : P - . .
t o« (n) ). Doubling n increases the running time of BSORF, BSORP,
BSORS and SOR by a factor of about 8, 13.5, 9 and 7.5, respectively.
The results of further testing with random g-vectors are summarized in
Tables 5 and €. These approximately support the factors determined

from Table 5.
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Table 5. Data: JB matrix, random g-vector

BSORF
_?_ _f_ f wexp iter sec
16 4 § 1.12 {5 0.183
32 4 § 1.14 18 1.181
16 8 16 1.2k 18 0.249
3 § 16 1.36 3 1.896
16 16 By, 1.22 18 0.216
32 16 32 1.50 39 1.747

Table €. Data: LAP matrix, random g-vector

BSORF
_Ii j —fi wexp iter sec

6 4 § 1.34 2 0.316
3 4 § 1.36 2 1.880
16 § 16 1.50 3 0.3%2
3 8 16 1.62 48 2.046
6 16 1.32 21 0.282
P 16 32 1.72 6/ 2.346
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The fourth experiment demonstrates the sensitivity of the
Modified Block SOR Algorithm to the relaxation parameter ®. The test
problems used LAP matrices of order 1024 and random g-vectors. Since
the number of iterations is identical for BSORF, BSORP and BSORS, we
present the results only for BSORF. Summarized in Tables 7, 5 and 9,
this experiment indicates that the convergence is fairly robust, e.g.,
if is the optimal value, then we still achieve good convergence

exp

rates for w€ [w - .2, W + .27,
exp exp

Table 7 . Data:; LAP matrix, random g-vector, n = 32, o0 = 4, B = 8

BSORF
w iter sec w iter sec

o 5 301 140 = 1.7113
1.20 47 2.396 1.50 39 1.980
- 130 37 183% 160 47 2.39
| 132 % 1880 170 59 3.011

1.3k 33 1.7%0 1.80 85 4. 309
136 33 1.880 1.90 153 1.870
138 B 1607




r

— 99—

r—-r*w

Table 8. Data: LAP matrix, random g-vector, n = 32, d= 8, B = 16

BSORF

W iter sec iter sec

1.10 >200  __ 162 48 2.046
1.20 175 7.288 1.64 5 2.063
130 140 5807 170 6 2.529
140 100 4459 180 87 3577

. 81
188 53 3% 190 183 6739

Table 9. Data: LAP matrix, random g-vector, n = 32, a= 16,8 = 32

BSORF

iter sec w iter sec

>200 - - 170 7= 2612
174 5.973 172 67 2.346
12n 4176 174 1 2.612
105 3.560 176 77 2.128

9% 3178 1.80 94 3,394
8 2078 1.90 175 5 .93

— —— — —— . B
o> oo oo e~ |B
O SR SS o

The fifth experiment measures how much of the total solution
time is used by Step 1 alone. The results, reported in Table 10,
indicate that the subproblems use nearly one-third to one-half of the
total time. The times reported are somewhat inaccurate due to the
resolution of the timer (16 milliseconds). Despite this, the results
emphasize the importance of having a very efficient linear complementarity

algorithm for use in Step 1. Further investigation along these lines
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might study the dependence of the solution time on the partitioning of

the matrix, i.e., on the values of n n n .
l) 21 o o 3 m

Table 10. Subproblem Solution Time vs. Total Solution Time

' Subproblem Time Total Time
Matrix n a 8 (sec) (sec)
JB 31 nonrandom 0688 1.999

J-B 63 nonrandom 4304 13 369
JB 16 4 8 0.208 0.448
I8 16 § 16 0.176 0.416
JB 5 16 32 0.304 0.644
LAP 32 4 8 1.409 3178
LAP 3 § 16 1.664 3.807
LAP 39 16 32 1.792 4808

The sixth experiment studies the possibility of accelerating

the convergence by varying the value of the relaxation parameter during
the progress of the algorithm. 7Tt is sometimes profitable when solving
systems of linear equations by overrelaxation methods to let z0 _ 0,

el = 1 and wk = o for some fixed @ and all k > 2. The intended
effect of this procedure is to reduce the variation in the components

of z' which would result if & were given a value greater than unity.
The overrelaxation technique then proceeds with some appropriately chosen

value* of the relaxation parameter. 1p applying this scheme to Algorithm

IV, we repeat the experiments reported in Tables 1-3 and 5-9 and set

*
theoretically or empirically based
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w equal to the u%xp determined in those experiments. As a point

of interest, we also determine the value ® = & that minimizes
exp

the number of iterations necessary to satisfy the convergence

. . . 1 . . ;
criterion when using @ = 1. The results are summarized in Table li.

They indicate that the scheme has a minor effect, if any. When there

—
is a change, it is usually a variation of one more iteration than
in the preceding experiments. (However, one test showed a decrease
: of one iteration.)
L The eighth, and last, experiment studies another approach to
{ solvingthelinear complementarity problem (g,M). In Section 26,
) we indicated that when M is a Minkowski matrix, then the solution
[_ to (q,M) is the unique vector minimum of the polyhedral set
{z:Mz + q >0, 2 z 0}. It is thus a simple exercise to show that the
- - problem (q,M) is equivalent to the linear programming problem

.. T
Minimize ¢ z

subject to Mz >

v
|
Q

N
v
o

. for any strictly positive vector c.- Letting ¢ be a vector of ones,
we solved the linear program with a production code LPML [41] written
at the Systems Optimization Laboratory at Stanford University. The
data was a JB matrix of order 225 and the g-vector corresponded to the
journal bearing problem. The LPMl code took 4.93 seconds with most
of the time spent in the Phase I procedure. (Recall that BSORF

took .13% seconds to solve (q,M).)
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Table 1L Varying the Relaxation Parameter Using BSORF

w =1 ®» =1

k k A
= w =D '
exp exp

ot = W= w k> 2 k > 2
exp = =
Matrix « B n ugxp iter iter aéxp iter
JB « o+ 15130 18 19 1.30 19

S ) I T 38 154 38

« o« 63 174 T8 79 1.4 7
§ 16 112 15 15 1.12 15
16 16 1.24 18 19 1.2k4 19

o % 1 12 18 21 126 17
8 R 114 18 18 11418

o = 136 3 33 138 %

B 2 2 10 ¥ 40 150 40

me 4§ 16 134 2 23 134 2
16 150 33 34 150 3

B == 16 132 21 21 132 =

. i 8 » 136 0B 32 136 3
) 8§ 16 % 162 48 48 162 48
b % R 12 6 67 1.2 67

"+ " indicates that the g-vector corresponds to journal bearing data.
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Next, we solved the dual problem using the same data. In this

case, the zero vector was a initially feasible point, thus no Phase I
was necessary. The solution time for LPM1 solving the dual problem
was 4.09 seconds.

Since the matrix is block tridiagonal, it can be partitioned
so that the nonzero entries exhibit a "staircase" structure. Under

this partitioning, the corresponding linear programming problem was

solved by the Ho-Manne nested decomposition algorithm [35], an algorithm

especially developed for problems with this structure. The running
time was 11.46 seconds. 1In all cases, the numerical accuracy was

comparable.

Further experimentation might investigate whether a reordering
of variables might reduce solution time. One possibility is the
so-called 'checkerboard" ordering.* Forsythe and Wasow [2k, p.259]
have reported, however, that the (unpublished) work of M. R. Powers
has indicated the convergence of the SOR method for linear equations

may not be very sensitive to various orderings.

9.4. Choice of the Relaxation Parameter w,

The problem of determining a 'theoretically optimal' yzlue of
w for the PSOR algorithm applied to tridiagonal Minkowski matrices
is discussed in Section l.3. The setting was the application of over-
relaxation to systems of linear equations. {e pow review and extend

the key notation and results.

*
Also known as the "black-white" or "odd-even parity" ordering.
See [24, p. 2457,
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Most generally, an algorithm may be expressed in the operator

+ + *
form zk L Q’zk where zk l, zk € Ran. If we let z represent
. k * k * %
the solution and € =12z - 2z be the error vector, then z - @,
k+l K : . .
and e = Ze . We will let ”” be any vector norm or its induced

matrix norm with usage dictating its meaning.
. . k >
Since lim (]l “/“eO”)l/k < p(#2),[58] where po(%Z)
k »ow *
is the spectral radius of & and 4 = z - ZO is the initial error
vector, we want to minimize (). In the specific case where we are
applying successive overrelation to the jlinear system Mz + q = 0,

the operator & is formed as follows. e write M = D - E - F where

D and (E + F) is a regular splitting of M (see [58, p. 88]) and

let L = D-]E, U = 'F. (The splitting used depends on whether we
are doing point or block SOR. Since the operator # is dependent

on w and M, we express it as
ZM) = (- o)™ [oU + (1-0)L]

When M is a tridiagonal or block tridiagonal Minkowski matrix,
it belongs to the class of consistently ordered 2-cyclic matrices
[58, pp. 99-101]. Consequently, the relaxation parameter dlb that

minimizes p({/jw) can be uniquely specified in terms of B = L + T,

the Jacobi matrix associated with M. From a formula of Young [62
b

p. 169], the optimal parameter value is

a () = 2/(1 +41 - 5%(p) ).
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As discussed in Section 1.3, one approach to theoretically
determining an "optima? value of w for Algorithm IV is to imitate
the procedure for systems of linear equations outlined above. This
is a plausible idea since if z* solves (aq,M), then for large enough
walues of k, (Mzk + q)i will equal zero when z? is positive. In
other words, after a number of iterations, Algorithm IV will appear
to act as a block SOR algorithm solving a subsystem of linear equations
extracted from the original problem. More specifically, let
N= .g' n, F=1{1,2, ..., N, T be an index set from £ and
T ;Zlits complement. Also let MTT be the principal submatrix of
M corresponding to rows and columns j € T and let
F(z) = {iGSJV:zi > 0}. The results of Cryer [20] are easily generalized
to form the basis of the conjecture that the optimal w for Algorithm

* * *
IV is Uﬁpt = a%(MTT) where 2 solves (g,M), w = Mz + g and
T = I F).

In the case where M is a tridiagonal Minkowski matrix, the
theoretical estimate of abpt is not supported very well by experi-
mental evidence [20]. However, when M is a block tridiagonal matrix,
the correlation between theory and practice improves considerably. In
order to demonstrate this, we first need to develop some technical
machinery.

Recall that the expression for @ requires the evaluation of
‘0(B). In general, this is difficult to do theoretically. If the

matrix is symmetric, an approximation may be obtained by setting
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o T .
o(B) = min(lIBl_, 871} = min(mex ¥ |b, .|, max 2} [v, .1}

.S J . - 1J
i jJ g 1

or by a variety of iterative methods (e.g., the power method [36,

p. 147]1). In the special case of the LAP matrix, we can state o(B)

explicitly. We deal first with the Jacobi matrix B arising in the

PSOR algorithm, Algorithm III. We decompose M =D - E - F into a

diagonal matrix D and strictly lower and upper triangular matrices

E and F. The matrix M is partitioned the usual way into sub-
matrices M'ij for i, 3 =1, 2, ..., m so that Mii is n Xn. We
will next determine p(BKK) where K = (1, 2, . . . , kn} for any
k=12, . .., m (Note that BKK is the Jacobi matrix associated

with the LAP matrix MKK')

Theorem

o(Be) =

Let BKK be the matrix described above. Then

(cos m/(k+1) + cos m/(n+l)).

Proof. Define the s X s matrix TS = (tij) by t

b th g s
ti+l,i =1 for 1 = 2, 3, « e e g S—l, t§ o1 = ]_, and t.l.J= 0
otherwise. Let IS be an s X s identity matrix. Recall that if

1 2
product (or Kronecker product [32, pp. 97-98]) P = G® H is an

G and H are s, X s. and 83'X s4 matrices, then their tensor

sls5 X SESM matrix of the form:

15
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818 g H ... ngEH
P = '
g Hg H ... g _H
s, 1 52 5,5,
It is easy to show that " =) =
B EK ’I‘K®IN+IK®TN. LetQS

be the orthogonal s xs matrix whose column vectors are the eigen-
vectors of Ty and let Ly Dbe the diagonal matrix of eigenvalues;

thus ng. = QSLS. The matrix Q = QK ®QN is orthogonal since

A

and QN are, hence QTﬁKQ has the same eigenvalues as BK (Note
that we have suppressed the explicit dependence of Q on X and N.)

Using the fact that (Gl ® GE‘)(G5 ® Gl&) = (GlGB) ® (GgGh) for any

. TA
matrices, G G, one can show that @ - +
T e st Y EKQ L ® I, K ®Ly-
But this is a KN XKN diagonal matrix with entries ;\( + A where
i nJ
7}10 i=1,2, ..., k and An,j’ 5 = 1, 2, «.. , n are the diagonal

entries of L. and Ly, respectively. From [33, p. 154], we know

that 7\1'3 = 2 cos mj/(r+l) for j =1, 2, . . . , r. Thus the spectral

~
radius ofBK is

L}

(B,) | T T
° BK -1 <ml;x< ,)\kl * >\n.j,' =2 | CO% 3T * cos n+l

1< <

([ ANIT]
(AN

n

A

. 1
and since B = 4B, o(B) = 5 (cos m/(k+1) +cos 7/(n+1)),
We now study the block Jacobi matrix associated with Algorithm

IVv. Let M=D - E - F where, again, M is a IAP matrix and
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and U = 32 -

Let B = -D (L + U) and By be the leading principal kn X kn

submatrix. The application of Young's formula for @ to block SOR

algorithms refer to BKK’ the Jacobi matrix associated with MKK'

The next result gives the spectral radius of these submatrices of B.

Theorem 7. Let BKK be the matrix described above. Then

o(By) = cos(m/(k+1))/(2 - cos(w/(n+1)).

Proof. Define the s X s matrix US = g%..) by u, = L for

i=1,2, ..., s U, = -l’lﬁ,i+l = ui,i-l = -1, uas_l = -1 and

uij = 0 otherwise. Let VS = Uél and IS be an s X s identity
- matrix. Also let Ty = MIS - Ug. Finally, let PS (resp., QS)

be the orthogonal s X s matrix whose column vectors are the eigenvectors

11
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of TS (resp., VS) and let LS (resp., CS) be the diagonal matrix

of eigenvalues. Thus, the matrix Q = QK® PN is orthogonal. (Again,

we have suppressed the dependence of Q on K and N.)

T
Notice that BK = TK® VN. Since BK and Q BKQ have the

same eigenvalues, we can instead determine those of the latter matrix.

But QTBKQ = I.K ® CN’ a diagonal matrix. Hence, the eigenvalues of

BK are all possible products of the diagonal entries of LK and CN’
i = e ] =1, 2, . . . .

say D\kicnj} where i =1, 2, , k and j , 2, , N. As

in Theorem 6, 7\43 = 2 cos mj/(k+l) for § =1, 2, . . . , k. Further-

more, {cnj} are the reciprocals of the eigenvalues of UN’ there-

fore [33, p. 154], cnj = l/(h - 2 cos ’n‘j/‘(n+l)) for 3 =1, 2, . . . , n.

It then follows that

o(B)

max cos(mi/(k+1))/(2 = cos(mi/(n+1)))
i k

IA A
o
[[7AN

.
A
s

cos(m/(k+1))/(2 - cos(m/(n+1))). |

There are two problems in applying Theorem 6 or 7 to determine

wopt' The theorems both presuppose that one knows, a priori, the
*

index set T = F(z ) since T determines the linear subsystem

M’[‘TZT + qT = 0 which is eventually solved. Furthermore, they both

assume that T = {1, 2, . . . , kn) for some 1§ k < m. (The theorems
remain true if K = {t+l, t+2, . . . , t+kn} for t = 0, n, 2n,...,(m-1)n
and k =1, 2, . . ., m.) From the Perron-Frobenius theory of non-
negative matrices, if T = (1, 2, . . . , kn, kntl, . . . , kn+c} where

0 <k < n, then we can bound a)b(MTT) between cub(MT ) and wm(MT T )
=7 = T1 272
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where T ={1,2, ..., kn) and T, ={L2 ..., (k+1)n}. This

fact mitigates the second problem somewhat although it still leaves

the problem of determining T, and T), One might be able to determine

Tl and T2 during the progress of Algorithm III or IV by monitoring
k A o .

F(z7) until it appears to stabilize at some index set. prom [20],

we know that gross bounds for wb can be obtained by setting

T, = & (-q) and T, = & . Our computational experience has shown

these latter bounds are not very useful unless Tl is a fairly large

index set in which case ( ) and . ( ) are fairly close
“% MTlTl b MT2T2
together.

In order to illustrate the use of Theorems 6 and 7, we use

the data of the second experiment reported in Section 9.3.

We let
T o= {1, 2, .-. , 320t} and T, = (1, 2, . . ., 30(k+1)} where

*
(1,2, . . . 30k} ¢F (z ) T, The results are summarized in

Table 12. For the PSOR algorithm, o, = w ( =
K 1 bM'I’lTl) and @ mb(MTETE)

is determined via Theorem 6. For the BSORF algorithm, these quantities

are calculated using the results of Theorem 7. 1n poth cases, o

exp
was determined (within 0.02) to be the empirically optimal value and

can be seen to be remarkably close to @, in most cases. (We would

expect w, < w%xp < ub-) These results suggest that an adaptive

mechanism which sets ol = o and changes ® during the operation

of the algorithms could prove very worthwhile.
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Table 12. Theoretical Rounds for the Relaxation Parameters

FSOR BSORF

w
exp

exp

7 108
6 1.2
1.39 1.40
159 1.58
167 166
17
1.7 174

£
|n$
e

o
=
oI LI

1.20

1.40
1.50
1.68
1.76
1.78
1.82

N o W
O —=0 NdO

oo

12 22
30 30

CO O\ O N -
—
N
— b A A A | —
O DS IO L
RO =S
—_— A A A A A
PO T OO o
" p— —_— ek

~
o

An alternate approach for estimating the optimal relaxation
parameter is suggested by some research of Garabedian [27]. In a study
of the point SOR method applied to linear systems derived from finite
difference approximations to partial differential equations, he proposed
an asymptotically good estimate for w, (i.e., the estimate became
better as the mesh size on the region R of interest tended to zero).
He assumed that the mesh size was uniform and of width h and the
area of the closure of R was a. Garabedian then suggested using a
relaxation parameter o = 2/(1 + 3.015(h2/a)l/2). For many shapes of
regions, he noted that in several numerical tests carried out by
Young, this choice of w resulted in approximately a 20 percent decrease
in convergence rate from the optimal convergence rate. The remarkable
-success of this estimate lies in the simplicity of its application in
comparison with the application of Young's formula. This suggests

that a generalization to the block SOR method (and thence to

il
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Algorithm IV) could be worthwhile as future research. The authors
have not yet derived similar results for either the block SOR or

Modified Block SOR techniques.
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