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SECTION 1

BACKGROUND

1.1. Introduction to the Problem.

1/,2/
In previous papers, =’ R. W. Cottle and R. S. Sacher have

discussed three algorithms for the solution of large-scale linear

nxn

complementarity problems. For a given matrix M € R and a given

vector a € RY the linear complementarity problem is that of finding

a solution 2 to the system

q+ Mz >0

| z 2 0

L(g + Mz) = 0 .
\

The methods required that M be a tridiagonal, Minkowski matrix. This

means M = (my) satisfies the following conditions:\

,. <0 1f 1 j

. _ sc] > 1(11) fh, 5 0 if |i-j]
oT (iii) M has positive principal minors.
n

The three algorithms may be briefly described. Algorithm I 1s

a modification of the principal pivoting method [13]. Algorithm II is

a specialization of a method proposed by Chandrasekaran [9] and employs
\_ -

Ve ow. Cottle and R. S. Sacher, "On the Solution of Large, Structured
Linear Complementarity Problems: I, " Technical Report 73-4, Department

~~ of Operations Research, Stanford University, 1973.

2/5 S Sacher, "On the Solution of Large, Structured Linear Complementarity
‘ Problems: II," Technical Report 73-5Department of Operations Research,

Stanford University, 1973.
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oe ————————.

- oo LU factorizations. The algorithm is "adaptive" in the sense that each

) iteration exploits the factorization associated with its predecessor.

N Algorithm III 1s a modification of the point successive overrelaxation

| — technique.
5 In this paper, we consider the more general linear complementarity

problem in which the matrix ‘is no longer necessarily tridiagonal but may

be block tridiagonal. We still assume it to be Minkowski, however.

\. This means we may partition M into submatrices M; (i, 3 = 1,2,...,m)
— such that

| (i) M, is a Minkowski matrix of order n, =1, 2, ...,n,

- (11) Ms < 0 (elementwise) 1f 1 4 J,

i (111) M has positive principal minors,
(iv) Mo = 0 if li-3] > 1.

Lo (Matrices satisfying condition (iv) alone are known as block tridiagonal

matrices.) We also require that M be positive definite and the diag-

L onal blocks, Ms be symmetric and tridiagonal. (With this last assump-
| tion, we may vastly increase the efficiency of the algorithm we propose

in Section 2.4 by incorporating the techniques described in the previously

I cited paper by R. S. Sacher.) Such matrices include block tridiagonal
Stieltjes matrices (see [58, p.85])) whose diagonal blocks are tridiagonal.

- These occur frequently in the discretization of elliptic partial differential

equations. In fact, it 1s 1n this connection that an important application

of the linear complementarity problem 1s discussed in Section 3.

| The convergence of the algorithm we propose in Section 2.4
requires only that M be positive definite and that the diagonal blocks,



| M.., be symmetric. (That is, 1n proving convergence, we drop the
assumptions of block tridiagonal structure and nonpositive off-diagonal

entries.) The method 1s consequently stated in full generality.

a 1.2. Drawbacks of the Generalization of Algorithm I.

ET The success of Algorithms I and II for the tridiagonal case

| suggests that they may be profitably applied to the block tridiagonal

BE case. The purpose of this section 1s to show why the benefits of those

= techniques are lost in their extensions.

Consider first the modified principal pivoting algorithm. Certain

~- structural properties of the tableaux under principal pivoting when M

is block tridiagonal are analogous to those when M 1s a tridiagonal

matrix. Consequently, an immediate extension of Algorithm I

may create a prohibitive number of nonzero entries to be stored as

| the algorithm progresses. The following two examples illustrate this

| - remark.

| — Example 1. In Figure 1, the lighter lines indicate the partition of M.

We assume that the matrix 1s block tridiagonal and Minkowski, M,, 1s

_ tridiagonal of order n, =n =>3 and the off-diagonal blocks are

3 diagonal matrices. The innermost block is Man the pivot block. The
locations of possibly nonzero entries 1n the pivotal transform M are

N indicated by the asterisk symbol. The main significance of this
example 1s that with the given pattern of zeroes, the principal block

% pivot on Mos may create complete fill-in within the dark border.
| (For notational convenience, we refer to the entries outside the

|
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k N pivot block but inside the dark lines as the frame of the pivot, n
| oo this case, the frame is of width n.)

— Example 2. Figure 2 portrays the effect of pivoting on the blocks

| Mons Myys = oor Mi-1,m-1 where m 1s odd. If m equals n, one can
8 easily show that even 1f (as in Algorithm I) we discard the transformed

_ tableau entries in columns where a pivot has occurred, the number of non-

zeroes which must be stored in the transformed tableau 1s (2 (n-1) + 1)n”
2

N = 2 n’ - 2 n° Compare this with the number of initial nonzero entries
in M, i.e., n(?n-2) + 2(n-1)n = 5° -4n. (It is not uncommon [19]

” for n to equal 100 and thus to have an approximate increase 1n the

a. number of nonzeroes which must be stored from 50,000 to 2,500,000.)

|

L 6.3. Drawbacks of the Generalization of Algorithm II.

Recall that Algorithm II, the modification of Chandrasekaran's

. method using factorization, requires the solution of a sequence of

1 systems of linear equations by LU decomposition. The order of the
final system solved 1s equal to the cardinality of the set of positive

i z-variables in the solution to the linear complementarity problem.
[ From [9], we know that if Mc RP is a Minkowski matrix and if

I qa < 0, then the solution 1s the positive vector z= Mg SR and

| we are required to solve a linear system of order p. If we use the
- example corresponding to Figure 1, we have p = mn. We would like

| to factor M in a way that exploits 1ts structure and sparsity as
much as possible. If we were to view it as a band matrix of width n,

— we would use LU or Cholesky (IV) factorization since they both

_ 5
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— preserve the bandwidth [26]. Unfortunately, neither method of decom-

position will preserve the sparseness of the original data. This 1s

o illustrated by the example in Figure 3 where the matrix M corres-

ponds to the finite difference equations representing the Laplace

. equation: M..y is tridiagonal with diagonal entries equal to 4 and

- off-diagonal entries equal to -1; furthermore, Miia and My in
are negative identity matrices. Since the bandwidth of such a matrix

J cannot be reduced any further, the Cholesky (110) factorization re-

~ quires storage for almost i (m-2)n i = 2m’ + mn - on - n nonzero
matrix entries. For instance, 1f m =n = 100, then the initial number

“ of nonzeroces 1n the matrix 1s approximately 50° = 50,000 while
omn” + mn - on” - n 1s approximately 2,000,000. The LU factorization

a needs nearly twice as much storage as the Cholesky factorization since

. L, ot and IL have 1dential patterns of nonzeroces, 1.e., big Uy and
iy are simultaneously nonzero or zero [36].

_ A third alternative for factorization 1s a special case of

. methods known as group- or block-elimination [36, p. 59]. Isaacson and

— Keller [36] discuss one technique which is a highly efficient direct

method but which requires slightly more storage than the Cholesky

u decomposition. Following their discussion, we seek a factorization of
the form

1 IL 4

N 5 a2 I, Gp

_ M=LU-= B, As

Se B A I

y- 7
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= 4-1 -1
: -1 4-1 -1

-1 4-1 -1

~1 4-1 -1

41 4 - 1

-1 4-1 -1

-1 -1 4 —1 -1

-1 11 4 —1 -1

-1 -1 4 —1 -1

1 1 4 -1

-1 4 —1 -1

« -1 -1 4—1 -1

-1 “1 4-1 -1

-1 11 4—1 -1
- -1 4 4 1

-1 4-1

.. -1 ~1 4-1
-1 -1 4-1

| -1 -1 4-1

| -1 -1 4

L

| ' 1" 1f
= Figure > . Example of a IAP Matrix with m = 4, n =5.
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oT where the identity matrices I. and the matrices By Bs and C,

- are all or order un, (3=1, 2, .. ., m. Consequently,

— Ay = Mp C1 = ALM,

B By = M; 4 i =2,8...,mn,
A, = M.. - B,C, 1 i= 2, 3...,m,

Lo and pT i-=2,3..., nl.
LC 1 i 1

| R There are m—-1 matrices Ay and m—-1 matrices Cs which may
. each contain n’ nonzero entries. The B, matrices need no additional

storage. Hence, the block-LU decomposition requires mnt - n° storage

locations versus the on” + mn - on’ - n required by Cholesky

- factorization.

In summary, extensions to both principal pivoting methods and

_ various factorization techniques are stymied by storage problems.

: Similar difficulties in solving large systems of linear equations were

— recognized by numerical analysts. These difficulties rekindled their

interest in iterative (versus direct) methods of solution--that 1s, in

u determining techniques to accelerate the convergence of existing methods

and in developing new approaches. In Section 2, some results in the

former category will provide motivation for the iterative technique

| . we propose for solving the linear complementarity problem (g,M) when
| M "is a block tridiagonal, positive definite Minkowski matrix whose

=~ diagonal blocks have symmetric tridiagonal structure.

9
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3 SECTION 2

_ ALGORITHMS FOR THE BLOCK TRIDIAGONAL LINEAR COMPLEMENTARITY PROBLEM

FT 2.1. Introduction.

| It 1s ironic that the algorithm we develop in this section
arises as a generalization of the least computationally attractive

FP - method of Algorithm I, II and 1II. Yet the computational experience
nN

reported in Section 4 demonstrates that this generalization is at

least competitive with, if not superior to, techniques currently

| available [7], [19], [29], [451, [46], [47], [59] £ o r solving the

oC engineering application described in Section J.

| _ Because of the analogy of the proposed algorithm with relaxation
| techniques for systems of linear equations, we open this section with

- some remarks about these methods. For the remainder of the paper, we
will observe the following notational conventions. All vectors are

column vectors. By a slight abuse of notation, we let z = (2 52,5 00052)

oo denote the column vector z in R.. Similarly, if CR and
| Na n, = N, then we may let z = (252, ce ey z 1) denote the column
Be vector z 1n rR Finally, the algorithms to be described will

| ; generate a sequence of iterates 2 x =1, 2, . . ., converging to a
| - solution. The value of ot 1s determined by a specified transformation

| on £1 Therefore the sequence z ky =1, 2, . . . , 1s totally
- determined by an initial vector © We denote the sequence 25
-— k=1, 2,. . ., by (2°) and suppress its implicit dependence on 2°

| 10



2.2. Point Successive Overrelaxation (SOR) Algorithm for Linear Systems.

a The point successive overrelaxation algorithm for solving the

linear system Mz + q = (0, where M is anm X m matrix, is an

accelerated version of the earlier Gauss-Seidelmethod [58]. This

km
8 latter method generates a sequence of iterates ,* o R according

to the formula:

k+1 k+1

2; =~( Ema FB omo2t ra)
j< i J J i> 1) J J 11

-1=1, 2, .. . , m

L- k+1
Each component of z 1s recursively determined in terms of the

L current values of the others. The recursion formula may be rewritten
in the following format in which ® = 1: potarmine257%

i

(
Lo (L=1,2, . . . , m) by

L k+l  k ~k+1 k
z, © =z + oz, - 2, ) (1)

~K +

where a 1 + PX nm. zt + > nm. ze )11 1 . = 1g] C13 Syl ee
| J <1 J > 1
L . -}7 oh K

| We interpret the term (z, N 2: ) as a direction in which to pro-
h ceed from the current value of 2, = 2; The parameter ® is thus

thought of as a weighting factor to indicate how far to move in this

direction.

] We have noted that in the Gauss-Seidel algorithm w _ 1. In

1950, young [61] and Frankel[25] simultaneously, but independently,

| recognized the efficacy of using values of w different from unity to

i 11



gain faster convergence rates. The scalar o 1S called therelaxation

| parameter, and © > 1 (w < 1) corresponds to overrelaxation (under-
relaxation). The method of Young and Frankel (using w > 1) is

_— called the point successive overrelaxation algorithm.

| The word "point" in the name of the method has an interesting

| o geometric origin. Suppose we are solving laplace's equation, Fu - t,

| over a rectangular region by * finite difference method. This first

~ requires forming a grid over the region. We then seek an approximation

- to the unknown function u at the grid points only. This 1s achieved

by assigning a variable Zs to each grid point (see Figure L) and
~- obtaining, by well-known technioues (see [2L, p. 192]),a linear

| systemMz + gq = 0. We define the error at the ; th grid point to be

| } the absolute value of the difference between Z, and the function u
CL evaluated at that grid point. If the grid 1s square and has n

| points on a side, then the maximum of these errors is 0(1/n°). When

| . the point SOR method 1s applied to the linear system, the algorithm

\ changes the value of only one variable z, at a time, 1.e., only one
oT grid point is examined at a time. Hence the word "point' in the algo-

rithm name.

| . 2 .5. Block Successive Overrelaxation (SOR) Algorithm 'for Linear

| Systems.

B In certain situations, 1t 1s natural to consider simultaneously

| changing the values of all variables associated with a coordinate line

of the grid points. Such methods are known as line- or block-iterative

o techniques. The word 'block" refers to the fact that the variables

_ 12
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N which are simultaneously changed correspondto a diagonal block (or

principal submatrix) of the matrix M. Varga[58,p. 96] indicates

LL - that block methods are not new developments but may be traced back to

| the work of Gerling [28] in 1843.

- We again use the example of the finite difference discretization

| i of a differential equation over a rectangle. In the corresponding

; linear system, Mz + gq = 0, we conformably partition the vectors z

and gq and the matrix M. We will view z as a direct sum of
oT n

~ 1

| vectors z = (z,, Zy . . ., z) where z,€ R . Thus

| 2 = (Zig Zoos ee “1a 3%1 Zany sees 2 J Ce Zp ). A corres-m

ponding relabeling of the grid in Figure 4 is shown in Figure 5.

Finally,q = (ay, as CL aq) is similarly relabled and partitioned.

a. The corresponding changes in the recursion equation (1) may

k+1

- now be stated. Recursively determine the subvectors 2,

(i=1, 2, .. ., nn by

k+1 K -lo +1 k
2, =z + af 2 - zZ:) (2)

I.
| -k+1 k+1 k |

| where M.. 2, + ( ) M..z. + 2 M, Zo +a) =0.11 1° Le 13g . . J J
J <1 J > 1

|

Varga [58, p. 91] remarks that in the numerical solution of

many physical problems, the matrixM is endowed with properties which

guarantee that block SOR will converge to a solution faster than will

point SOR. In these applications, the matrix M is irreducible and

| Stieltjes (i1.e., symmetric Minkowski). Arms, Gates and Zondek [1]
state that 1f M 1s merely a Minkowski matrix, then block SOR still

has the advantage. For a more extensive treatment of successive

14
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| overrelaxation techniques and their many variants, see [361,058],

| [59], [60] |

o.4., Algorithm IV: Modified Block Successive Overrelaxation Algorithm

| for Linear Complementarity Problems.
| The philosophy of generalizing point SOR to block SOR 1n order
| to solve linear systems finds an analogue 1n generalizing Algorithm
| ITI, the modified point SOR technique for linear complementarity

| problems. In this section, we show that by restating Algorithm III,

| a certain generalization suggests itself. In the following sections,

an analysis of the latter algorithm will illustrate three points.

| First, under reasonable hypotheses, the sequence of iterates generated

| by the algorithm will form a monotonically increasing or decreasing

| sequence of vectors converging to the solution of the problem. (Under

| these hypotheses, the results in [52] guarantee that a unique solution
| exists.) Second, the method may be interpreted as a manifold sub-

optimization technique applied to a related quadratic programming

problem. Third, values of greater than unity may be used to

| accelerate the convergence of the algorithm.

Recall Cryer's [20] description of the modified point SOR

| algorithm for the linear complementarity problem (g,M) where M€ go

1s positive definite. The parameter ee > 0 1s chosen small enough

i to-insure that the errors in the values of the z-variables are

| sufficiently small. We shall make a slight modification in notation.

16



L

u Algorithm III (Modified Point SOR)

a Step 0. Let 0 = (29 ~ 29) be an arbitrary nonnegative| * 1° no? * . LI 4 m Y g
m-vector and w¢< (0,2). Set k = 0.

~k+1 k+1
> ftep . Let Z = - > m, 7. + 2 m,, z.+ q, )/m,

j<i 9 j>1i td

1 =1, 2, . . ., nm
k

Let |, Zt = max|0, 5 + (gE - 7, )]
i 1 I i

h k+l k+1 k+l
Step 2. Define J = (1:2; > 0) U (1:2; = 0, (Mz + a), < 0}.

If max | (Mz + a); | < € stop. An "approximate solution 1s
ic Jd

at hand. Otherwise, go to Step 1 with k replaced by k+l.

The algorithm 1s essentially the point SOR algorithm for linear systems

with the precaution that 1f a z-variable ever becomes negative, it 1s
\

. immediately set equal to zero. Cryer [19] gives a convergence proof

for Algorithm III under the assumption that M is symmetric and

positive definite. Historically, an identical modification of the

Gauss-Seidel method has appeared in several varied contexts, see

[5), [26], [3L].

: Algorithm III may be viewed in a slightly different but

equivalent way for values of ww > 1.
IY -

Proposition 1. If w > 1, then Step 1 is equivalent to the following:

: -k+1
step 1': (a) Let Z, solve the linear complementarity problem

1 ty — k+1 k
(a',M")=() m,.z, + 2 m .z. + Ls, mo).‘ . T ] 3 . 1J J 11

~ J <1 J >1

17



k+1 - - - -| (b) Let w . = max{w:w < w, 2 + wf Fatl - 25) > 0} .
1 —- 1 i i’ =

k+1 k -k+1 k :

(c) Let z. "=z +z," -2z/);1=12 ...,n

Proof. The analysis is divided into typ cases:

k+1 : k

Case1. 2 m; 52. +X mo.z, + a. <0. Consequently,
J <i ] j>1i td

~k+1 k+l k+1 k ~k+
. Z, = 2, . From (b) @ equals « if and only if zo + of 75 Tat) > 0,

: In this case Steps 1 and 1' give the gape value for SKFL SupposeCe ,
1

— k +1 -k

on the other hand, that z + az; - z.) < 0, and therefore Step 1
k+1 k -k+1 kKsets z, equal to zero. B + Ww - = i

C ; q ut max{0, z, (2. 2;)} = 0 if
and only 1f there 1s an '« ww for which + az - 25) > 0= 1 = al —

| (resp. < 0) when w < ®' (resp. ® > ®'). Tn this situation, «+r
= 1

r is chosen to be w' in (b) and thus LET = 0 in (c) of Step 1'.
i

L

Case 2.

[

k+1 k
. 2; m..z, + > m,.z2, +q. >0. 3

j<i Jd j>i td is (3)
[

: Therefore, in Step 1 we have git LE I > + w(25H - 25) < 0| i i= i? i i i/ =
k+1 |

for allw > 1 and zs is set equal to zero. In Step 1',
equation (3) implies that mt - 0 and that Ca 25) _ EK

i 1 "1 1

Consequently, w > 1 implies that the value of SEH chosen in (b)
= 1

of Step 1' is unity and thus 2 is set equal to zero in (c). i

In Section 2.5, we show that Algorithm III with the Step 1'

substitution will converge for all o Z (0,2), Under this new

interpretation regarding the choice of the relaxation parameter at

18



B each iteration, a generalization of the preceding algorithm maybe

| proposed. By a slight change in notation, we shall pass from a point-

| iterative to a block-iterative technique. ye will use the notation

described in Section 2.3 on block SOR for linear systems. 1, particular,
\

M is partitioned into submatrices M (i, 3 =1, 2, . . . , m) where

M. 1s of order Her Zz = (Z525 00,2) and A=(21585,..+59 ) where

. “9 and q, are 1, -vectors. Algorithm III, with the substitution of
Step 1', then forms the basis for the following generalization. We

refer to the new algorithm as the Modified Block SOR Algorithm for

| the linear complementarity problem (qgq,M) where M 1s positive
L-

definite and M,. (i=1,2, ... , m is symmetric.

r Algorithm IV (Modified Block SOR)
L

0 0 O 0
Step0. Let =z = (21,25, Coe Zz) be an arbitrary nonnegative

" vector and ow < (0,2).Set k = 0 and 1 = 1

| Step1. Let Z, solve the linear complementarity problem

| (Y M.zU 0 + Mm 2 +a, Mo)j<i 79 ji>i td tH

K+1 - - a .

step 2. Let wT = max{w < ©, 4 (75 Ly Ss 0).— 1 1 i =

K+ -

Let zh = 5 + oft ETL Ky
1 1 1° i i’

Step If 1 =m, go to Step 4. Otherwise, return to Step 1 with

1 replaced by i+l.

19



Step4. Define J = ((1,0):(2,), > 0 or ( 5 M, 2 tg), <0).
| r=1

| If max |( 3 M, Zt q,) |< stop. An approximate solution
(i,9) €J r=1 T° J

1s at hand. Otherwise, return to Step 1 with k replaced by k+l

and 1 = 1.

The differencesbetween this algorithm and block SOR for

linear systems are evident. In Step 1, we solve a linear complemen-

6 tarity problem (q,M) instead of solving a linear system Mz + q = 0.

- Also, the nonnegativity constraint of the complementarity problem is

| handled in Step 2 by requiring that movement in the direction™{z} 2)
C be constrained to remain in the nonnegative orthant. Ip solving linear

| systems, the nonnegativity restriction 1s absent and thus wi always
equals w.

| The computational bottleneck to the modified block SOR algorithm,
1f one exists, will occur in Step 1 where linear complementarity

i problems must be repeatedly solved. In general, if M, is an
arbitrary positive definite matrix, then the standard methods for

solving (aM, ), (e.g., the principal pivoting technique of Cottle
a

i [13] or Lemke's method [38] may be used--possibly at the expense of
large core storage requiremehts and perhaps not particularly rapid

| convergence.) However, if we apply the modified block SOR algorithm

to matrices whose diagonal blocks M,. are tridiagonal Stieltjes

matrices, then Algorithms I and II may be profitably applied to yield

an algorithm of high overall efficiency. ap example of this type will

be discussed in Section 3.

20



——————

: 2.5. Convergence of Algorithm IV .
It 1s natural to look at the corresponding problem of the

minimization of a quadratic function over the nonnegative orthant to

help demonstrate the convergence of the algorithm. We shall use a

method of proof similar to that of Cryer [20] and Schechter [53],[54].

If the matrix M 1s positive definite, then the Kuhn-Tucker conditions

for the problem

L

| minimize f(z) = 2 2 Mz + qz
subject to =z > 0

L
are the necessary and sufficient conditions which a global minumum

I satisfies. If we further assume that M is symmetric, then the
Kuhn-Tucker conditions are equivalent to the linear complementarity

" problem (q,M).

The first result will show that the successive iterates (7%)
.

cause the sequence (£(z5)) to be strictly monotonically decreasing.

Theorem 1. Let

T

fx) = 30 ABE 3)

where Dp, x < rR, S, ¥ € RW, and x and y are arbitrary vectors.
Assume-that A is symmetric and positive definite. Let x solve

the linear complementarity problem (Hy + p,A) where H = (3+cT) Je.

Then f(x + o(x-x),y) < f(x,y) for Vw (0,2). Furthermore,

quality holds if and only if x = x.
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| Proof. We examine the minimization of g(u) = f(u,y) over the non-

: | negative orthant. Rearranging terms, g(u) = : 1 Ay t (Hy + 0) +o
where Cc 1s a constant. Since A is symmetric and positive definite,

: the minimizing vector X is the solution to the related linear com-
N

plementarity problem (Hy + p, A). For notational convenience, let

r = Hx + p.

We will assume that x # Xx. By a principal rearrangement of
C - -

A, we may further assume that x = (x50), where K is the index set

L (1, 2, . . . , k) and Xe = (x, Xs en ; x) > 0 Letting K be the
| index set (k+l, k*2, . . . , Nn), the corresponding partitionings are

eo Bo

| r = (resr_) and A= ( °)K

A_ A
KK KK

Let ol = X=¥X = x - % - - — -— -(x4 X1 0X, Xo ewes X X, Xe? EP SRRRY
1 (ds -X}. We want to show that g(x) > g(v) for all v in the

K

| open line segment V = (x, x + 2d). Noting that V may be rewrittenas {viv =x + A, YA € (-1,1)}, we consider two cases A < 0 and

A> 0.

Case1. A £ (-1,0]. Since g 1s strictly convex, then for all

A € (-1,0],

glx +d) < (1 - |A]) a(x) + A] g(k-a)

< (1 - IN) glx) + A] a(x) .

Thus,
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J g(x + Ad) < g(x) . (4)

] Case 2. AN € (0,1). Consider the Taylor series expansion

g(x + Ad) = g(x) + NT (AR +r) + > \oalad. By showing that at(ax +r) <0,
we may conclude that g(x + Ad) < g(x - hd) for all A € (0,1). But

equation (4) shows g(x - Nd) < g(x) for all A € (0,1); thus

g(x + hd) < g(x) for all A € (0,1) also.

Using the index set K and the corresponding partitionings

described above, we have

: 7 - I Axx ho “Axx 0 k x
| d7(Ax + r) = +

-X A— A 0 0) \ _ r_
K KK KK K K

-

| dre -1 0) Ix Ty
1 +

; -X -A A % 0 r r
K KK K K

T -1

= -x(r_-AA_T )
K K KK K

Now recall that x = (350) satisfies the system

+ >0, x (Ax +1) =0.
A A r_ a
KK KK 0 K

| 03



Therefore Arc kxc tT = 0 and 2k + Ee > 0. Substituting
- -1 | -1

Xe = “ATi in the latter of these two systems gives r-A A lk > 0.
K KK i

| Finally, we conclude the argument by noting that x > 0 implies

aT (AX + 1) <0. |

Theorem 1 means that we can use the function f to monitor

the progress of the algorithm. If we can guarantee that f is bounded

| from below on the nonnegative orthant, then we will be assured that

] the sequence of successive iterates 25) contain a convergent sub-

: sequence. Positive defiliniteness of M 1s one sufficient condition

| for the boundedness of f. A necessary condition is that M be co-

positive [31]. For f is unbounded on the nonnegative orthant if

| there 1s a nonnegative vector x for which Mx is negative. Hence

f is bounded below on the nonnegative orthant only if x Mx is non-

negative for every nonnegative vector x.

Each iteration of the algorithm updates the m subvectors of

h ‘ k k k k| e vector =z = (215 25; ce. z ). For future notational convenience,
i kk k k-1 k-1 k-1

let f:(v) = f(z, Zoy +e ey 2, 10 Vi Zs Ziypr tee) ie ).
| k, k k, k-1

| Theorem1 thus shows that f(z) < £(z ) with equality if and
k k-1 -

| only if z, =z, ". Consequently- (25) < (2 Ly with equality if
| SO
| and only 1fz =z" 7, In the case of equality, we can prove that

k
z solves the linear complementarity problem.

Proposition 2. If the algorithm generates iterates 29, 3 = 1,2,...,k
| k-1 k k

and =z Z then =z solves (q,M).

2h
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| | zk k-1

x Proof. From Step 2 of the algorithm, we see that , = 2. 1f and
B kk k-1 SK

only if Zz, = 2; . Suppose we are solving for Zz, 1n Step 1.

| We require

Hi - K -T=-k

; Ww, = > M. z + M, Zs + Tim 2f 1 + ay > 0 and WL, = 0.

- k—-1 - kSince 7S = Zs and _ 1 = 2 , then

i “~
] nik k

o> = 5 M. 25 + M, 7 + > M. 25 +g =w, 20 and (v3)'z.5= 0 .
Loy<i td i>41i TJ ©

k

nN This holds for all 1 =1, 2, . . . , m; SO Z solves (a,M). |

- Finally, we prove that the sequence of iterates have a unique

u limit z and that the limit solves (q,M).

Proposition 3. If M is positive definite, then the sequence of

| iterates (7) are contained in a compact set and hence contain a

LL convergent subsequence with limit =z.

Proof. (Similar to Cryer). From Theorem 1, {f(z )} is a monotonically

decreasing sequence. Since M 1is-positive definite and f 1s a

| quadratic function, f 1s bounded from below and thus there 1s some
| k

| value to which f(z ) converges as k —> o.

| The set S = {x|f(x) < £(29), x > 0) is compact. It is closed

— because f is continuous. Furthermore, S 1s bounded. Suppose

v. 7S, 1=1, 2, . . . , and IViI—> © where I... is the Euclidean

25
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| 1 T
norm. In the quadratic function f(v) = 5 Vv Mv + qv, we may assume

that M 1s symmetric and has real eigenvalues. Let N > 0 be the

| smallest eigenvalue. Then, by the Fisher Minimax Theorem (4, p. 72]

| v Mv, > Viv, = a lv, 1%; thus Mv, —>® as i —>® . 35ince
the quadratic term 5 Vo, dominates the linear term av, as
Iv. | becomes large, we conclude that £(v,) —> ©» as i —> =. But

this contradicts the assumption that £(v,) < £(29) < wo for all 1.
Therefore the iterates (25) are elements of a compact set

and have a convergent subsequence with some limit point 2 € Ss. i

Proposition 4. Using the notation developed in the algorithm and

assuming that M 1s positive definite, then lim (Z;- 3 = 0
kK k-1 koe

and lim (z =z 7) = O.
k » x

Proof. From the proof of Theorem 1, for any k and each 1,

k,=k k k,-k kK\T -K + 1, _Kk\T k
- = - + = (d, M, .d.riz - a) = £(z) - a) (yz +g) + 5 (4) Mud

and

k,=k k -k k\T -K 1.2, Kk\T k
- = - 7) = + + = AN (4d. M, .d.f(z; i A) £ i) May) (M24 % 2 i) ii 1

-k k-1

where at = Zs 0" z. ~~. Adding these equations, we have

k, k-1 k,=k k kT -k 110% KAT 3 45eile) 0 = rp) + Mp) = -((a)” (ms +) +p (1-N")(a;)" My;
2y, .k\T kK

- d> (1-A)(a)" Mp4

> 0 since A € (-1,1) .

26
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3 Recall that w, 1s the scalar chosen in Step 2 of iteration kx and
| k _ k

thus A has the value A = ©. -L. These values satisfy the following
bounds:

| k

\ ~-1 < min (0, 1) <A SO - 1c

for all k and all 1. Therefore there is a scalar « independent
en . R k.\2

C of k and i for which 1 - (Ay) >a> 0.

Si the (£(z%)) Ke E
ince e z converge, the (£(2.)} also converge.

I Therefore
: k, k k,=k kk k, k k+1lim if - f, + = ) — _

{ K — oo ( i (25) (zg Asds)) im (f(z) r(7 )) =o
and also .

| lim (a7),a¥ = 0 .
- kK — oo 1 11 1

| Since M, . 1s positive definite, then 1im a, —0 , i.e.,
K —

: ~K k=1 - : |
lim (z, — %2i ) = 0. Finally, lim (25 — 251 = lim (1-25)g" = 0.

kK — ow kK — oo 1 1 kK — 37 i

Proposition 5. Let I be the index set of a convergent subsequence

k

of the iterates {z"} generated by the algorithm. Assume the sub-

sequence converges to the vector z. ThenMz + gq > 0.

Proof. If the inequality does not hold, then there are integers i,

J and N and some § > 0 for which k > N and k € I implies
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» kK k k
aX Mz, + Mz,+ } M,Z, +q)< -6

] £21 it t 1 3 it t 4/5
However

! k+1 -

| ¢ 3 Moz, + Mm, 25 ) M20 + q, ). > 0 .. t <i 11 1 tq 1 t J =

_ Subtracting the second inequality from the first gives

> (2 M 25 i 3 ko pkfl —
‘ Ri si n n ) M,. (z, zy )) © 5 .
L.

Since the terms in parentheses become arbitrarily close to zero, we

|

C have a contradiction. i}

| Proposition 6. Let I be the index set for the convergent subsequence
4 above. Then 2 L(Mz + qq) =.

| Proof. Suppose the contrary. Then there are integers i, J and N
and some ® > 0 for which k > N and k € I implies that (7), > 5

q and

. k k K
( M.,z2, + M.z, + Zz, +Jb it t 17 1 a Mt Yl; >. (5)

However

~k kK ~k
(z;),OC } Mz,+ M.z: + 5 Mz)=; ; Rp —A . = 0 . (06)
Td po itt 111 a itt 73

Suppose (75) > 0 Then dividing equation (6)Db (75)
ij } J <4 Y ie and sub-

tracting the result from equation (5) gives
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k =k K k-1
| mM, (z, =z.) + 2 M. (z, -z, 7)). > 5.
» ii 1 i ES it’ © t J

As before, Proposition 51leads to a contradiction. Alternatively,

suppose (7), = 0. Pick N' > N sufficiently large to guarantee
a that (2 - 25)] <2 when k > N'. If (7), = 0 for all k > N'

when k € I, then | (2X - 25) | = (25) | > ° a contradiction. If
| i i7] 173 2

there is some k € I which is greater than N' for which (23), > 0,
| then the analysis 1n the preceding paragraph applies and a contradiction

FC follows. |

h In summary, these results show that the algorithm generates a

sequence of vectors (2%) belonging to a compact set S. Given any

convergent subsequence of {z }, its limit point z solves the linear

nn complementarity problem (q,M).

Theorem 2. The entire sequence {z } has a unique limit point z,

- and 7 solves (q,M).

| Proof. Since M has positive principal minors, the linear complemen-

- tarity problem (q,M) has a unique solution (see [44], [52]). Propo-

= sitions Sand 6 show that the limit of any convergent subsequence of

k

| {z"} solves (q,M). Consequently, every convergent subsequence has

| ’ a-common (and hence unique) limit point z. Finally, the entire
k

- sequence {z} converges to z since every convergent subsequence

| does [49, p. 371. Hi
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3 2 .6. On the Monotonicity of the Iterates z ,k =0, 1, 2, . . . .

3 ) If M is merely positive definite, one cannot conclude much

more about the sequence (z } than that it converges to a solution

ns of the linear complementarity problem (qg,M). However, 1f we further

| assume that M is Minkowski and require that 0 < wo <1, then a very

TT interesting result obtains. We shall use the following characterization

| of Minkowski matrices from [ 17].
 .

- Lemma 1. (Cottle and Veinott [17]). M is a Minkowski matrix if and

and only 1f the solution z to the linear complementarity problem

~ (q,M) is the unique vector minimum* of the polyhedral set

Z = {z:Mz + qg> 0, z > 0}.

| i. Lemma 2. If M 1s Minkowski, d3-S 9%, and 24 solves (a, ,M), then
1 * *

| zy 2 25.

1 Proof. By Lemma 1, 2 1s the vector minimum of

| - Z, = {z:Mz + a > 0, z > 0}, i=1, 2. But q, < q, impliesthat

Zq - Zs SO zy SQ Zp + Therefore Z1 © Zn |

Theorem 3%. Let M be a Minkowski matrix having diagonal blocks Ms
2 TT +

i=1,2,...,n If o¢€ (0,1] and 20 = 0, then SHES SE for

| all k =0, 1, 2, . . ..

- : }

I.e., z* © Z2 and =z < =z forall zt Z.

|



Co Proof. The proof is by induction. assume M is partitioned into

he submatrices M. ,J=1, 2, . . + | m, and that g and ¥ are
| k k k

_ _ k

conformably partitioned (e.g., z (22, . — »22)). since
1

- z > 0 = 2°, we may assume that z > zk-1 s and
| k+1 k ~k — — —N ‘ : +1

ZS > 2, for J <i. Let Z. solve the linear complementarity
problem

k+1

( J M, 2, + 2 M 25 + q, ; M, .)
« | j<i jg>i tJ tio

Since

u

CL Mazo T+ Mozvg <P Moh M, Zz © +
j<i TY i>i YI TTT HI &, 13 J 1

‘ k
Lemma 2 implies thal > Z..

i — 1

| k+1 k =+1 Kk
j We next show that > 2° for alli and all k.
L SR | Clearly,

2 2% 2% = 0, somay assume gz’ > gz for r < k. Therefore,
- 1 = 1 =

kK+1 ~k+1 k ~k kZz. = - k kK k
; wz; 4 (Lew)zg > ez] + (l-w)z; > wz + (L-wz =z. |

Theorem 3 may be made more intuitive by examining a simple

. case in which m = 2 and ny =n, = 1. In Figure 6, we illustrate
k

the sequence {z'} generated by the algorithm when ® is equal to

" one. The zigzagging which occurs causes slow convergence as we approach
: *

| the solution z°. This problem is mitigated when values of ® greater

than-one are used. However, in those cases, we lose the monotonicity
kK

of the vectors {z }.

The next theorem shows that we can also approach 2 from
above.
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— Theorem 4. Let M be a Minkowski matrix having diagonal blocks Mo

- i=1,2, ...,n Furthermore, let z solve (q,M). If ow < (0,1],
BE * K+1

| Mz’ + q > 0 and z° > z', then z < 2" for all k =20, 1, 2, . . .

| | 0. 1 k
Proof. The proof 1s by induction. We shall assume that z= > 2™> ... z

: 3 k k+1
Co - and Mz“ + > 0 for J < k. We may further assume that z. > z~,

] kl TT
for Jj <1. Let Z, solve the linear complementarity problem

| k+1 — k

Fo EY M; 52 tL MZ +a, M.S) Then, by assumption
: J <i j>1i J J 1

0 < M.z,+» M .z.+> M .z. +
j<i td 5541 E

: < M,Z + YM,a + 2 M. zt + oq. (7)= 11 ss Wy T=. 1JJ
Fo J < 1 Jg>1

-k+1 k k+1

Thus, by Lemma 2, Zi; < 2; and so z, < 2. Furthermore,

- k+ —

M, zo + > OM. 2h Tow E+ q, > 0. (8)11°71 . XJ] . = 1J J =
Jg <1 J > 1

k+1 | -

Since Zs 1s a convex combination of Zi and 2 equations (7
and (8) imply that

k+1 —

M, 2, + § M2 + 3M. a a, > 0.
j< id j>10 ILE

These arguments hold for all 1 =1, 2, . . . , m. Since M. < 0
ij =

: : : kK+1

(componentwise) for i # j, Mz + gq > 0. Consequently, 2 > 25 ng

| ett + g>0 forall k. Jj
Intuitively, one might guess that a "dual" version of Theorem L

exists. For instance, if M and ww are as above, 2V< Z , and 2

53



Ff — 1s an element of the same cone but lies on the other side of the apex,

Eo 1.e., Mz + g £0, then =z < FH for all k =0, 1, 2, . . . . How-
Sa 0

ever, Mz + g < 0 may imply that 2° # 0, an undesirable situation.

A slight modification of these hypotheses will correct this problem.

— Theorem 5. Let M be a Minkowski matrix having diagonal blocks M,.,

i=1,2, ..., mn Furthermore, let z solve (q,M) and assume that
m

Be (24), > 0 implies that CoM; 52, + a), <0. If we (0,1] and
*

: 0<z°< 7, then F< KHL for all k =0, 1, 2, . . . .

~ Proof. The proof is by induction. We first establish that SION =0
0 *

: implies that (2), = 0 for all r=20, 1, 2, . . . . Since 0 <z< z ,
| we may assume that 0 < oa <z* forr=20,1, 2, . . ., k and

0 < ZA <z for j < 1. Therefore
= J = J

—_ — % —
> M,Z + Voz +g ke B M. z. °F > Mor + qd -

- j<i ted j >i JIT Ty Md 35g dd

-k+1 *

S- By Lemma 2, 0 < Zz, <2; and consequently 0 < 2 < Z% Thus,
0 <z <z forall r=20,1, 2, .. . . and we have resolved our first

n problem.

Next poo (gl kt] k+l kk 2)FE ext, suppose Zz = (29 , 25 seve Zy 7525520 9000002)

| is known and Z satisfies the hypotheses of the theorem. We may
i k+1
- determine Zs by applying Algorithm IIT (modified point SOR) to the

| linear complementarity problem

(pA) = ( M, .2. + NM. 2 + a. » M..), .
3 3 <itdd 3 > id

| Sh



| 0 Kk Co t tt
We let x =z, be the initial guess, x = (x), , x! ) be the
successive 1terates, and let x= 114i x". (Note x. = Zt We

| . t — oo i.
shall demonstrate that if x satisfies the hypotheses, then Ma

— t+1 t+1 t+1 t t
will also. Assume y = (x x x x L

ER Se CEP XE x)
“ has been generated by the algorithm and satisfies the hypotheses. :

— There are two cases.

Case 1. (2°) = ( Sj S ¥ * * *- -_ i’ y ince P_ M,Z. + q, then x < Z and

i Xs = 0. Since X; must also equal zero, we may assume that x; = 0
for all t =0, 1, 2, . . . .

=

Case 2 * t+l
ase <4. (2; ), > 0, Then (Ay + Pp), < 0. But x; == J

t

max{0, xt - o(Ay + p).} > SE Furthermore, Ale , wa= * » . I)

| t t f | J

h *3417 * ip? Cod Xo) + p < 0 since 2 5 <0 for 1ifj.; iy =

=u] x * k -k+]1

| We may conclude that 2, = X <z, 2. < Z, and thusk k+l -

2, 2%, . Since My < 0 (elementwise) for i # j, then

(2727 eT 21407.xx 2 2.) satisfies the

hypotheses. The rest follows by induction. |

2.7. The Algorithm Interpreted as a Manifold Suboptimization Technique.

In this section, we shall transfer our attention from the

linear complementarity problem to its related quadratic program. In

order to facilitate the following discussion, we create a more general

setting for the problem. yo pay view the function to be minimized as
| m

one defined on the product space v= II v, . Consequently we have
i=1

2 = (z, 20 « oe 2) ¢ V where 25 € Vi Fach Z, will be
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— m

restricted to the subset E.cV.; thus 2 & E = II E.. Let
R 1 1 i=1

oo (+, +), De the scalar product corresponding to Vs and let M, ; be

a linear transformation from vs to Vv... Then the function

A f(z) = f(z, Ziggy oe oe 2) may be defined as

m_n m
f(z) = = = Az, Mz.)+ 2 (a,z.),
A BEE HAESE | EE

IN

— where a, = v,. In the case of Algorithm IV (Modified Block SOR),
n. xn,

v. = 81, B= (x:x € V,,x> 0}, and M.,_€ R= J. Recall that we
i i i = 1]

\ assumed that the matrix M (having partitions M is positive

definite and that the Ms are, furthermore, symmetric. With this

notation, we may state an algorithm for the minimization of £ over FI.

\

Algorithm V.

_ 0 0 0 0
Step. Let z = (215 Zos eee z) € E and let w€ (0,2) be given.

N Set kK = 0 and i = 1.

S 1 Det Ete BE for whichtep 1. etermine 2, < EB.

. k+1 k+1 k+1 -k+1 k k
) f(z, » 20 ) 0 MMs 25.12% +% 10 MR z,.)

k+l k+l k+1 k k

< f(z, Zp semms C11 VaBi qo ve oz)

“ for every v € E..

- k+1 - = k -,-k+1 Kk

Step 2. Tet w= max {ww < Ww, zg + (zs -z ) € E }.

NC



k+1 i,
Let gz Ea 25)

1 1 1° 1° 1

Step 3. If 1 = n, go to Step 4. Otherwise return to Step 1 with

= 1 replaced by i+l.

Kt
k+1 " '

. Step Is z reasonably" close to the solution?

If so, stop. Otherwise, return to Step 1 with k replaced by k+l

- and 1 = 1.
C

| Notice that Steps 0, 1, 3 and 4 of Algorithm V are essentially
C

| identical to the corresponding steps of AlgorithmIV. For the problem
|

(- described above, the algorithms are, in fact, identical. In Step 1
of Algorithm V, we perform a constrained minimization of f on the

L manifoldof V determined by using fixed values in Eis Ey CL, E, |»
f Bipqr wk 2 E and letting the minimization take place in E., the
L | | i

) constraint set 1n the space Vi This is equivalent to solving

minimize f; (u) = + am uF (0M k+1 = k T
Jg <i i> 1 JJ

|

subject to u¢ E.. (9)

' But M,, 1s a symmetric positive definite matrix by assumption.
11 Hence

“k+l -kK+1
| Z, solves (9) if and only if z, solves the linear complementarity

problem

—~ » 54s _ 2, .s M .

j<i td PEEPSIF BA & 11)

However, this is Step 1 of Algorithm IV.
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| If we let w = 1, then wi = 1 and 2% = zi for all
| k and all 1. In this case, Algorithm V is a typical example of a

| manifold suboptimization algorithm [63]. When w is greater than 1,

we have an accelerated version of a manifold suboptimization technique.

The results of Section 2.5 apply and we have convergence for any value

of w strictly between 0 and 2.

N 2.6. Related Manifold Suboptimization Techniques.

Y Methods similar to Algorithm V have appeared in the literature

| on the minimization of functionalson Hilbert spaces or reflexive
L- Banach spaces. J. Cea [8] treats the case in which the bilinear form

| (corresponding to our quadratic form ul Mv) is continuous, symmetric
: and coercive. The sets BE, are closed convex subsets of Vy: Under
L these hypotheses, Cea proves that if w = 1, then the ~ k = 1,2,...,

converge weakly to the solution.

i A. Auslender [2] treats the case in which Vv. and E, are
defined as above but where the gradient of f satisfies a uniform

" Lipschitz condition on the closed, bounded, convex sets of V. If

E, ¢ V.,he requires w< (0,1] for convergence of his algorithm.

| In the unconstrained ease, 1.e., E1 =V., ® 1s permitted to assume
any value strictly between 0 and 2. If V is finite dimensional,

the Lipschitz condition on f is relaxed and replaced by a much

weaker condition.

R. Glowinski [30] uses the same hypotheses as Cea. However,

Glowinski's algorithm modifies Steps 1 and 2 as follows. He minimizes

i" over Vv, instead of E in Step 1. In Step 2, he uses a fixed
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| k+1 k + -k+1 k 1 1= P, w (z, - Z, h

| by lettingz” P. (2. ( ) 2.) where P, is the
¢ 1 ' '

orthogonal projection operator from v to F corresponding to
i 1

\ the norm* induced by Mi;." Glowinski states, without proof, that

if the w, £(0,2),i=1, 2, . . . , m, then the iterates (25)3C /)

1 converge

strongly to the solution.

C The research of J.-C. Miellou [43] and of B. Martinet [42]

! 1s also of related interest.

[-

h

<

*

oll = (u,v) where (*,.) is a scalar product
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| SECTION 3

APPLICATION--THE JOURNAL BEARING PROBLEM

3.1. Statement of the Problem.

A journal bearing consists of a rotating cylindrical shaft

(the journal) which 1s separated from a bearing surface by a film of

lubricating fluid. The journal and bearing are of length L and have

parallel longitudinal axes (of rotation). A typical journal bearing

is shown in Figure { as is an unfolding of the bearing surface into

L the plane. A cross-section perpendicular to the axis of rotation is

| depicted in Figure ©. The mathematical description of the system will
be stated using various coordinate systems as need dictates. A

g description of the cross-section 1s most easily couched in polar
coordinates whereas a description of the entire journal bearing has a

- more natural setting 1n rectangular coordinates.

3 We wish to know the distribution of pressure on the lubricating

. film. An important underlying assumption of the model is that the

| lubricating film is so thin that there 1s no variation 1n pressure
in the axial direction. Therefore (in Figure 8), the pressure is

constant on the "line" from the journal to the bearing for each value

of ©. Consequently, one may view the problem as the determination

of the pressure distribution on the lubricant of the bearing surface.

An 1nitial understanding of the journal bearing model may be

obtained by first examining the cross-section of Figure 8. ye shall

review Cryer's [19] description. The thickness* of the film

—

I.e., depth, not viscosity.
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3 1s minimum at in where the angle 6 measures rotation about the
| ) z-axls, the axis of rotation. In the case of a partial bearing (one
| which does not completely encase the journal) the lubricant flows out

= at 8. and 1s replenished at 9 In the case of a full bearing,
: where Or = 6, 1- 2m, the liquid which may have vaporized 1s assumed

to condense at 8. into its previous liquid state. (In the full

modelof Figure ©, the lubricant can also flow out of both ends of

v the journal bearing.) The thickness of the film is denoted by h(6,z);
— it satisfies

C h(8,z) > 0 6 € [6,6
i 2 <0 6 € (6,56. )

L 5 > 0 & < (0100p) :

| The pressure on the film can be expected to increase between 0 = Oy
ande = 9 in and to decrease between 9 = 0 in and Oe It is

- assumed that when b=, the pressure becomes so low that the
: lubricant vaporizes. The interface between the two boundaries of the

lubricant is called the free boundary (see [39]). In the finite

| length bearing of Figure 7, the location of the free boundary depends
on the axial coordinate z and is denoted by 6.0"). The pressure
1s zero (i.e., atmosphere) along and beyond the free boundary 8. pig

is discussed in more detail in Section 3.4. Figure 9, we illustrate
the profile of the pressure distribution on the lubricant at the
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(developed) bearing surface. Tecmputations and graph were Cone tp

L Cameron and Wood [4]. This journal tearing has an eccentricity ratic
( € = e/r equal to 0.8 and a bearing diameter-to-length ratio of D/L

- equal to 1. The isobars (constant pressure contours) are given 1in
nondimensional units (10°R ur” )p. The variable p is the pressure,

( R 1s the bearing radius, up 1s the viscosity of the lubricant, U is

. the surface velocity of the journal, r 1s the minimum clearance
between the bearing and the journal and e is the distance between

' the two axes (see Figure 8).

3.2. The Reynclds Eacation

C In 1886, Osborne Reynolds [48] developed the now-classic

| equation governing the mechanism of hydrodynamic lubrication by incom-
pressible fluids. The equation, a special case of the more general

C Navier-Stokes equation {k5, p. 4], is deduced from seven essential

assumptions 0n the physical properties of the system (see [45, p. 51).

i | (1) The dimensions are sufficiently large to justify ignoring the
1] curvature of the journal bearing when studying a small section

of it.

i (11) The pressure across the film (from the journal to the bearing)
; is constant; i.e., 3pfy = 0.
- (iii) The flow is laminar, i.e., there 1s no turbulence in the film.

: (iV) There are no external forces acting on the film.

\ (v). The fluid inertia is small compared to the viscous shear.
L This means that the rotational forces of the journal acting
I on the lubricant are much larger than the natural tendency

- (e.g., fluid gravity) of the fiuid to remain at rest.
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oT (vi) There 1s no slippage of the fluid at the bearing surfaces.

\ (vii) If u and w are the velocities of the fluid in the x- and

N | z—-directions, respectively (see Figure 1%), then all velocity

_ gradients are negligible compared to du/dy and ow/dy.

N

Pinkus and Sternlicht [45] note that in most practical cases,

the bearing 1s stationary and only the shaft 1s moving. In these cases,

the most general form of the Reynolds equation 1is
“.

: 3 (a 2) 2 (emg) - eo dehd ay (10)
No

The variable p represents the density of the lubricant, py is the

~ absolute viscosity, and Vv, represents a velocity resulting from the
. motion of the journal center. In the ensuing discussion of equation

N (10),we will postulate that Vs = 0 and that p and pu are constants.
_ In order to gain a better understanding of the model of a

\ journal bearing of finite length, we first examine a simpler model.

— By means of this special case, we may motivate the boundary conditions

for the problem of more general interest.

u

5.3. A Limiting Case: The Infinite Length Full Journal Bearing.

If we suppose that the length L of the journal bearing is

. infinite, certain further simplifications may be made. We may dis-

| regard the effect of fluid flow from the ends of the bearing and

=~ therefore Op/dz, the pressure gradients in the axial direction, will

. be zero.

N



Obviously, an infinitely long journal bearing 1s a physical

9 impossibility and does not closely approximate the dimensions of those

used 1n practice. However, it does provide some understanding of' the

behavior of more realistic bearings. Some notable similarities between

the finite and infinite length models are the following. The infinite

case provides upper limits on both the pressure exerted on the fluid

film and on the loads which the film will support. Moreover, Pinkus

C and Sternlicht [45, pp. 69-71] show that the solution to equation (10)
| (which describes the finite length journal bearing) 1s a perturbation

- to the solution of the infinite length journal bearing problem. The

. perturbation involves adding the product of the solutions of two
differential equations of a single variable. (To the authors

L knowledge, this realization has not borne fruit due to the difficulty
f of solving the latter two differential equations.)

. As Pinkus and Sternlicht indicate[45, p. 68], the difficulty

X in obtaining satisfactory solutions for journal bearing problems lies
not only in solving a given formulation but in adequately defining the

| boundary conditions for the formulation. For the remainder of the
paper, we shall assume 6, = 0. In order to determine these boundary

conditions for the simpler model, we first recall that there is no

pressure variation in the axial direction. Consequently, it is

sufficient to examine an arbitrary cross-section perpendicular to the

axial direction (see Figure 8). Generalization to the finite length

case (where, for a given 6, there ispressure variation in the axial

direction z) may then be thought of as the examination of a collection

of cross-sections along the z-axis, say at z = 21920555 nus By, WhETE
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the boundary conditions for the 1 cross-section are analogous to

oC those for the infinite-length journal bearing model.

| Replacing the variable x by RO, where ©6 is in radians

— and R 1s the bearing radius, and recalling that dp/oz = 0, then

the Reynolds equation for an infinite journal bearing 1is

d T.33p) dh~~ — — 11

B E oh a: (11)

CC — We may use full instead of partial derivatives because both p and h

are now functions of © alone. Furthermore, since 6uR is a constant,

> a change of units 1s sometimes made to allow setting it equal to unity.

In 1904, Sommerfeld obtained¥* the first solution to equation

| (11); he addressed the full journal bearing case in which the boundary

oo values were P (0) = p(2m) = Poy He also assumed that both journal and
bearing were cylindrical and hence (h being a function of 6 only),

\ h(9) = r(l + € cos 9) .

: The parameter 19% 1s the ambient (or atmospheric) pressure and 1s

— usually set equal to zero. Sommerfeld's expression for the pressure

: distribution was

6LURe 2 + ¢ cos 0) sin 6p(f) = Py, + To (2 tecosD) sinfb5 ) 5 (12)
N (2 + ¢ )(1 +e cos 9)

CC — Setting p, equalto zero, the graph of p(6) becomes

x

= by a clever transformation of variables
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2

_ D,LA0
| _ The important thing to notice is that equation (12) yields
| regions of high negative pressure. This model was unacceptable since

5 a lubricating fluid cannot support such high negative pressures and
| still remain an incompressible fluid. The underlying problem was that

| ~ as © increased beyond © . = 7, the width of the film increased
5 and consequently the pressure exerted on the film decreased. Eventually,

at 6 = 0p the pressure became so low that the tensile strength of

| — the fluid was overcome and the fluid vaporized. Since the Reynolds
oS equation only holds for incompressible lubricating fluids and the

- region of the journal bearing beyond the free boundary, i.e., 6 > ry

| contained a compressible gaseous lubricant, it was no longer valid to

~ apply equation (11) over the region (65560).

| — Thus, a different set of boundary conditions was needed to
provide a more realistic solution to the problem of determining both

the region (6,565) in which the lubricant exists as a liquid

and the pressure p(6) in that region. From the literature, one

- infers that the boundary conditions commonly used today are due to

aN Swift [55]. They state that when the pressure falls to zero, the

Fo 49
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B circumferential pressure gradient dp/aé also falls to zero. In other

| words,

| (i) P(0) = 0

| (ii) p(0.) = 0
n (114) BL (6) = 0

| Clearly, the pressure function p may be continuously extended on the

a interval [6,0] by setting it equal to zero on that interval. From
| the results of Cryer [19], the free-boundary Os occurs at the largest

value of 6 = 6 for which p is nonnegative on [6,0].
h Sommerfeld's technique for solving the differential equation

EE with these boundary conditions 1s still applicable and yields the

| following complex expression for p(6) in terms of another angle, V

p(y) = S Sh » ¢ sin ¥ - (2re)V he sin e€ + ’ sin ¥ cos vlr (l-¢ 3/2 2(1 + € cos Ve = 7-1)

3 (13)

a where cos VY Tees

| and ¥. corresponds to Op

- The location of the free boundary 6, is not immediately
| _ apparent from the original problem. However, the boundary condition

p(6,) = 0 yields an implicit formula for Vo

| e(sin(y-m) cos (V-m) =v.) +2(v, cos(.-m) = sin(y.-m))= 0

oN The solution under these new boundary conditions has the following

| graph.
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-— Notice that the regions of negative pressure found in the graph of

equation (12) do not appear in this graph. This is the principal

NC reason for using the boundary conditions of Swift.

3.4. The Use of Finite Difference Techniques.

tS Before leaving the case of the infinite length journal bearing,

we wish to discuss a situation where Somrnerfeld's technique does not

apply and where no other means of obtaining an exact solution 1is

' currently known. An example of this might be one where the bearing

1s not cylindrical and hence the width function h does not have

the common form h(6)= r(1 + € cos 0).In 1941, Christopherson [10]

i proposed a technique forsolving free boundary problems for journal

- bearings by means of approximating the differential equation by finite

differences. Later, improvements on Christopherson's method were made

\ by Raimondi and Boyd [46] and by Gnanadoss and Osborne [29]. The

former solved the difference equations by modifying the Liebman

(or Gauss-Seidel) method, the latter by modifying successive over-

relaxation (SOR). In 1971, Cryer [19] analyzed the numerical aspects
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of Christopherson's algorithm with the SOR modification when applied

to the infinite journal bearing case. He proved that if

- (1) A 1s the interval length on the approximation grid,

(ii) P = p(ja) is the true value of the pressure at jo, i.e.,
th

at the j grid point, 3 =1, 2, . . . , N,

(iid) P, is the discrete approximation value at the y= grid point,
\

7 =1, 2, .. . , N, and

— (1v) A 1s sufficiently small, then there 1s a K< » for which

max|p, - P.| < KA®
. 3 J J

J

he Furthermore, he showed that the boundary conditions (in particular,

the "free boundary’) cause this problem to be equivalent to a linear

complementarity problem (g,M). The matrix M corresponds to the

finite difference equations which are fully discussed in [19],

«

305x The Finite Length Journal Bearing Model and an Approximation.

« A realistic mathematical model of a finite length journal bear-

ing has great potential for becoming very complicated. For instance,

the lubricant can be admitted through oil grooves to the bearing at

N any angle and the larger the angle, the more pronounced is its effect

on the resulting pressure distribution. Further, the lubricant 1is

~— not always admitted at atmospheric (i.e., zero) pressure. These and

other factors contribute a significant complexity to the formulation.

(



In our discussion of the finite length case, we shall treat

a fairly simple model, one in which the bearing is a full (as opposed

to partial) cylindrical bearing. Ambient pressure 1s taken to be

zero. As in the infinite length case, the lubricant that vaporizes

at the free boundary is assumed to condense along the line where 6 = 0.

The boundary conditions are a natural generalization of (1)-(ii11i) for

the infinite length case (see [29]). As indicated before, it is

easier to present the finite length case in rectangular coordinates.

Referring to the bearing surface of Figure 7, we shall let p(x,z)

represent the pressure on the lubricant along the bearing surface.

The boundary conditions are

(1) p(0,z) = 0 for all gz,

(11) p(2m, z) = 0 for all z,

(iii) 2 (x, 2) = 0 for all x,

(iv) p(6.(2),2) = 0 for all z, and

(v)' 2p (6.(z), z) =O for all gz,
on * T

-

where 9 1s the free boundary, and 22 (6.(2), z) is the normal
. derivative of p at (0.(z), z), i.e., the derivative of p in the

direction normal to the tangent of the free boundary 90 at (6.(2),2).
(In the case of the infinite length journal bearing, the normal

derivative at 6. becomes op (6.) = 0 as in (iii) of Section
A f 36 fF

3.3.)

= Since even this relatively simple model of the finite length

journal bearing has eluded attempts to obtain a closed form solution

B by analytic means, other avenues have been explored and have met with
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| more success. These alternate methods have included electrolytic tank

— models, d-c analogues and finite difference models (see [45]). 1t

1s the last category to which Christopherson's method belongs.

To develop the discrete model, we shall first follow Pinkus

and Sternlicht[45, pp. 79-81] in deriving a five-point finite

difference approximation to the Reynolds equation. By a change of

variables, we first obtain a dimensionless version of equation (1).

Let x = x/D, z = z/L, h = h/2r, and p = (r° /uVE )p where V is

the speed of the journal measured in revolutions per unit time. This

ylelds

: > (330). (2 > (3p dE
oo =|" 2) (7) ZW E) r=. (1h)

dx Ox '/ oz oz Ox

: Dropping the bars above the variables and referring to Figure 16, we

AR have the following finite difference representations.

|

2 Zan ) Cn? (Zoltan)oO (n> 22) _ i,jv 2 AX i, j=1/2 NXOX X AX g

| 3 (Bester ) Th (72 in)| Q (pp) _ irl/2,] AZ 1-1/2, Az
oz oz Az

;

i h -

= dh  i,3+1/2 Bi s-1/e
 — dx Ax |
|

After rearranging terms, the evaluation of the equation at grid point
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- (1,3) takes the form

W.. =4d.. +a, . DP. . + a, . AD. a. . _p. .
1] 1J 1,d,171,J-1 1,d,271-1,§ + 1,3,3°1,]

, (15)| a. . . . ta, | .| i, 3,401+1, 1,3,571,j+1

where

] 3 _ op

| i,5,1 = "Bi ju1/0/(8%),
2

SE D 5 2

°1, 3,2 - (T) hi 1p, 4/02) g

ae 2 (nu? - 5 5
| ; = (2) ( i+1/2, J hi 1 2 .) i (hy 1 * h 3-1/2
| 1, j,3 OL P ’
| Js (Az) (25%)
TT 2
| _ _¢b 3 2
= 1,5,4 7 (T) hie, sl (82) ’

| 3 >
a, . = =h7 |

| 1,J,5 1, 341/2/ (8%) ’

- _ 6 Pa j+l/2 By 3-1/0)

and FE = 0 1f the pressure at (1i,]) satisfies the Reynolds equation.
~~ I1fi=1, 2, . . ., mand jJj=1, 2, . . . , Nn, then the discretized

_ version of equation (1) 1s an (mn) X (mn) linear system. For each i, we

| define the entries of the matrix M as
|

-

—
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CC ————————————————————————

B “5, j-n - “%,0,1

Mi 9-1 7 Px, e,2

m3 _ 0,3

To 41 = Zk, 8,l (16)

5 = x, 4,5

and m, = 0 for all other r

« i,r

| where k-1 is the largest integer not exceeding i/n and where

| f£ = 1-kn. In addition we let the subvector p, = SI Ps _%% , Pin)
- and the vector p = (Pys Pos . + «4 Dy); we define the vector q

| similarly.
The matrix M and corresponding vector gq form the basis

for an approximation to the model of a finite length journal bearing

i having a free boundary ©. As in the infinite length case, there is

. an associated linear complementarity problem (g,M) whose equivalence

| 1s 1llustrated by a synthesis of Christopherson's original application
[10] of his method to the finite length journal bearing problem and

Cryer's later discussion[19] of the method and its application.

Intuitively, the complementarity problem arises as follows. Denote

the region where the lubricant exists in its liquid (vaporized) statc

as the positive (zero) region. These appellations refer, of course,

to the pressure on the lubricant in those regions. In the positive

region, the Reynolds equation 1s required to be satisfied. pence,

1f the grid point (i,j) belongs to the positive region, then

M5 5 = 0 and the discretized version, equation (15), becomes
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: MT Sg TM, genPien TT 5e1Psen TLR TM, gaia + jf ©

| On the other hand, if the grid point (i,j) belongs to the 'interior"
of the zero region, then the pressure variables associated with the

N adjacent points P35 jen’ Pi, 3-1 Pi 541’ Pi sen have zero value.

Consequently, equation (15) becomes LE = 9 5 =ad
However, the location of the free boundary and the zero region requires

‘ Bi se1/e ETSY Y and hence Vi to be nonnegative. Summarizing,
1 we have a variable Ps and an algebraic expression Ws associated

with the point (i,j) and related by w = Mp + gq. If P; ; is

| positive, then LEY equals zero and if Pi; 1s zero, then Fr is

| nonnegative, 1.e., p and w satisfy the conditions of the linear
complementarity problem (g,M).

. If the bearing 1s cylindrical in the example discussed above,
then h(x,z) 1s independent of z and consequently p. and

1-1/2,

. fi41/2, 3 is independent of 1. From this observation, we may draw
several conclusions about the matrix M.

| (i) M is a symmetric block tridiagonal Minkowski matrix where
My © rE and i, §j =1, 2. . . , m.

(11) M1, = Mie = a, I where a, < 0 and i =1, 2, ..= , nm.

(1ii) M,. 1s a tridiagonal matrix whose subdiagonal and superdiagonal

entries are 1dentical and whose diagonal entries are identical.

With this structure, the Modified Block SOR Algorithm may be brought

to bear on the journal bearing problem. The computational experience

reported in the next section demonstrates the efficacy of this approach.
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secton 4

COMPUTATIONAL ASPECTS OF ALGORITHM IV

L,1. Storage Requirements.

We first address the question of storage requirements for the

most general form of Algorithm IV. In this case, M 1s merely assumed

to be positive definite with symmetric diagonal blocks, M,.- The

matrixM 1s partitioned so that M. 1s a square matrix of order n.

: for i=1, 2, .. . , m. Then, for each i, there are, say, N, mnon-

| zero double precision matrix entries and n, double precision entries

for each of the subvectors 4 and Zs If one uses sparse matrix

techniques to store the entries of M, additional storage demands are

made in the form of row and column index vectors. In the algorithm

itself, the updating of the solution vector iterate 2 requires
sufficient space to solve the complementarity problem

(q,M) = (a, + ) Met + Mz, M, This means allocating
J <1 J > 1

space for a copy of q and M as well as any additional space re-

quired by the complementarity subroutine. Notice that it is not

necessary to have all the initial data constantly available in core.

For instance, it 1s sufficient to have the vector z, the subvector

qs the submatrices M.y for j=1, 2, . . . , m and appropriate
storage for solving (q,M).

) By restricting our attention to the block tridiagonal case

| _ where M.. 1s symmetric and tridiagonal and both CE and Migs
| are diagonal matrices, we find certain economies in storage. Suppose

the diagonal blocks M.. are of order n, =n fori =1, 2, . . . , m.

0d



=n Then, one can easily show that the storage required for M, z and

| N gq is 6mn + Un - 2m - 2 (8-byte) words.

| What further requirements does Step 1 impose? If Ms 1s
- solved by Lemke's algorithm or the principal pivoting method, we need

approximately ne more 8-byte words. If we further assume, as

B above, that M,. is Minkowski, then Algorithms I-III are applicable.
Recall that Algorithms I-III preserve the sparsity of the data. Their

\ additional requirements are approximately L4On, 60n and 40n bytes

L of storage, respectively. Of course,-savings (of 8mn-8n bytes) are

| achieved when M 1s symmetric and more dramatic savings occur when
L- M corresponds to the finite length journal bearing problem described

| in Section 3.5. In the latter case, M has attributes (i)-(ii1)
found on page 58.

— These storage estimates represent the minimum necessary for

the algorithm. Computational refinements (e.g., reduction of multi-

- plications by zero) make further storage demands in the manner of

sparse matrix techniques (i.e., in the form of index sets incorporated

into the computer program).

4.2. The Computer Codes. .

Three computer codes have been written for Algorithm IV, the

Block Modified SOR Algorithm. They differ from each other in the way

that each solves the subproblems found in Step 1. The programs are

written in IBM 360/370 Fortran IV and use double precision (8-byte)

floating-point arithmetic.
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= The matrix M is required to be symmetric, block tridiagonal,

B and positive definite. Furthermore, the diagonal blocks M.. are
required to be tridiagonal Minkowski matrices and the off-diagonal

- blocks Mii and M1 4 must be diagonal matrices. The tri
Lo diagonal” linear complementarity problems occurring in Step 1 are

oC solved by Algorithms I, II and III, respectively.

4.3. Computational Experience.

_ A computational study of the problem (q,M) was performed in

] which we used two types of matrices M. The JB" matrix corresponds

| to equations (15)-(16),the 5-point finite difference approximation

: to the Reynolds equation arising in the free boundary problem for the

journal bearing problem. (The eccentricity e€ equals 0.8 and the

oC ratio D/L equals 1.) The "IAP" matrix corresponds to the five-point

i difference approximation to Laplace's equation. (See Figure > for

” an example.) In both cases, the diagonal blocks M,. are of order n
. | | | y

and m 1s set equal to n. Thus the matrix M is of order N =n

When the JB matrix 1s used, the g-vector comes in two varieties. One

BN type corresponds to the finite difference equations for the journal

h bearing. The other is a random vector in which the absolute values of

—- the components are chosen from a uniform distribution on [0,2] and

their sign 1s determined by the formula

~

( +1 if j(moda) < B
|e sen(a. ) =

-1 if j(moda) > B

|
|
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where a and f are given constants. For instance, if& = 20 and

i B = 10, then the g-vector has a repeating pattern of 11 positive and

| 9 negative entries. The LAP matrix is used only with the random g-
| vectors described above.

| Algorithm IV uses two parameters, a stopping criterion tolerance

¢ and a relaxation parameter w. We have set e€ equal to 10° 7 and for

each experiment, have determined (to within 0.02) the value © exp of
the parameter ow which minimizes the number of iterations to achieve

the desired level of error in the solution. (In one of the three codes,

we solve Step 1 by Algorithm III, the modified point SOR algorithm.

| Algorithm III uses its own relaxation parameter ®' and for each

| experiment, we have determined (to within 0.1) the value oT of
| the parameter ®' which minimizes the total solution time when

| ® =a)
| Finally, we shall use the following nomenclature for the

| algorithms tested. Let BSORF, BSORP and BSORS denote the three

versions of the Modified Block SOR Algorithm with the first solving

| | Step 1 by Algorithm I--the factorization method, the second by
Algorithm II--the modified principal pivoting method, and the third

by Algorithm III--the modified point SOR algorithm. Also, let PSOR

denote the Modified Point SOR Algorithm as coded for symmetric block

tridiagonal matrices for which M.. is atridiagonal matrix and both

| Miia and Moi are diagonal matrices.
a The first experiment 1s a general comparison of the four

methods applied to a sample of each type of problem. The results are

summarized in Tables 1, 2 and 3. (The number of iterations of BSORF,

BSORP and BSORS 1s the same for each w.)
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Table 1. Data; JB matrix, JB g-vectop

BSORE  BSORE  Bsoms PSOR
Co lexp IPT see sec “exp oC exp fer sec

15 1.30 18 0.133 0 183 1.3 1.797 1.58 3 0.282
31 1.54 37 0.881 4 so 1.3 20.517 1.76 87 2.296
63 1.74 18 7.388 33.862 1.3 182.291 1.88 179 20.616

Table 2. Data; JB matrix, random g-vector, n = 16

BSRE  BSORP moms pg

boos ne gs 0183 4 oi 1.2 2.013 , 1.36 2g 0.183
8 16 1.24 18 0.249 0.266 1.2 2.995 1.52 36 0.2549

16 32 1.22 18 0.216 0.299 1.2 2.961 1.56 39 0.266

Table 3: Data: TAP matrix, random g-vector, n=16

=P Lap ter see sec “exp = exp TT sec
4 8 1.34 272 0.316 0.316 1.1 2.329 1.46 31 0.216
8 16 1.50 33 0.332 0.482 1.1 1.143 1.62 43 0.299

16 32 1.32 21 0.282 0.332 1 2.579 1.46 33 0.232



Ss

One notices that BSORF 1s almost always uniformly faster and

he BSORS uniformly slower than the others. Further comparison seems to

| be very dependent on the sign configuration of the g-vector. From

the results of Section 35 we may deduce that the sign configuration

of the g-vector used in Table 1 is that the first n(n-1)/2 entries

| are negative, the next n are zero (or negative if n 1s even) and

the remainder are positive. Here, we see a pronounced ordering of

convergence speed (as measured 1n seconds), especially as n 1ncreases.

FE — From fastest to slowest, it is BSORF, PSOR, BSORP, and BSORS. In

| contrast, the g-vectors used in Tables 2 and J have a large number of

oT reversals in their sign configurations. Furthermore, a significantly

larger fraction of the z-variables are positive in the experiments of

Tables 2 and 3than in Table 1. These two characteristics tend to be

a. levelling effects, i.e., the running times of BSORF, BSORP and PSOR

| are nearly equal (as well as we can tell in light of the systematic

| - error 1nvolved 1n measuring execution time in the multi-programming

5 environment of the 1mm 360/91).
| The second experiment dealt specifically with the hypothesis

| - that when the number of positive components of the solution vector was

small, then BSORF was considerably faster than PSOR and that as the

number of positive components increased, the running times became

» equal. A LAP matrix was used with m and n equal to 30. A sequence

~ of constant vectors g were used in which the first 30t components

_ were -3and the remaining 900-30t components were + 1. The results,

summarized in Table 4, support the hypothesis. Since the number of

positive components of the solution vector 1s at least as large as the
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oC number of negative entries in the g-vector (see [9]), this experiment

! may serve as a guideline in the choice of an algorithm for a specific

problem.

2 Table 4. Data: LAP matrix, random g-vector, n = 30

Ratio

BSORF PSOR PSOR/BSORF No. pos.

L t ® iter sec Za iter sec iter sec  z~-compon.
1 1.08 / 0.099 1.20 19 0.449  » 914 4.535 60

L

2 1.26 14 0.216 1.40 32 0.732 2.7286 3.389 118

5 1.40 20 os 1.50 42 0.998 2.100 2.860 174
C. 6 158 3% 0765 1.68 eo 1.431 1.667 1871 346

o 1.66 so 1.18 1.76 79 1.850 1580 1.638 480
| 2 12 60 1580 178 so 2113 1483 1. eo

30 1.74 97 2.995 1.82 12k 2.961 1.278 0.989 900
f

L
(In this Table, the relaxation parameter w was determined to within

| exp

! 0.02 for both BSORF and PSCR.)
~

The third experiment attempts to relate the solution time to n.

| From Table 1, we find that a growth rate of order 3/2 holds between the

| order of the matrix (i.e., n°) and the solution time for BSORF (i.e.,
2\3/2 .

t o« (n) ) Doubling n increases the running time of BSORF, BSORP,

BSORS and SOR by a factor of about 8, 13.5, 9 and 7.5, respectively.

The results of further testing with random g-vectors are summarized 1n

Tables 5 and €. These approximately support the factors determined

from Table 5.
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| Table 5. Data: JB matrix, random g-vector

oT 16 J 0 1.12 1k 0.183
32 d 8 1.14 18 1.181

RN 16 g 16 1.2L 18 0.249

| 32 0 16 1.36 3? 1.896
16 16 3? 1.22 18 0.216

| 32 16 32 50 ® 147

Table €. Data: LAP matrix, random g-vector

BSORF

- 6 48 13 2 0306

K 1 4 ; 1.36 13 1.880

- 58 1 50 0B os
| 32 0 16 1.02 48 2.046
R 16 2 a 02

160 32 1.72 b/ 2.340



The fourth experiment demonstrates the sensitivity of the

Modified Block SOR Algorithm to the relaxation parameter ww. The test

problems used LAP matrices of order 1024 and random g-vectors. Since

the number of iterations is identical for BSORF, BSORP and BSORS, we

present the results only for BSORF. Summarized in Tables 7, 9 and9,

| this experiment indicates that the convergence 1s fairly robust, e.g.,

- if Cox 1s the optimal value, then we still achieve good convergence
| ) rates for w€ [w - 2, WO + ,2].

exp exp

aN

: Table 7 . Data: LAP matrix, random g-vector, n = 32, 0 = L4, Bp = 3

= BSORF
| w iter sec Ww iter sec

- 1.10 9 3.011 1.40 30, 1.713
| 1.20 4 2.396 1.50 39 1.980

i 130 37 18% 160 41 2.
: 12% 1880 170 5 3011

1.35 33 1.730 180 85 lk. 309
1.36 3 1.880 1.90 153 1.810
1.38 3 1.697

i - 67

.



Table 8. Data: IAP matrix, random g-vector, n = 32, d = 8, B= 10

BSORF

w iter sec Ww iter sec

1.10 >200  __ 162 4 2.046

. 1.20 {75 1.288 1.64 H1 2.063
130 140 5807 1.70 0 2.529
140 100 4.459 180 87 3577

uv 1.50 8 390 1.90 163 0.73960 5 2
L

|
-

Table 9. Data: LAP matrix, random g-vector, n = 32, d= 16,p = 32

r w iter sec w iter sec

- {40 >e00 -- 70 “= 282
| 150 174 5.91 1.72 6f 2.340
X 80 we A674 71 2612

164 105 3.560 V4 I 2.728
1.66 95 3.178 1.80 95 3.394
1.68 85 9.098 1.90 11) 5 923

The fifth experiment measures how much of the total solution

time 1s used by Step 1 alone. The results, reported in Table 10,

indicate that the subproblems use nearly one-third to one-half of the

total time. The times reported are somewhat inaccurate due to the

resolution of the timer (16 milliseconds). Despite this, the results
emphasize the 1mportance of having a very efficient linear complementarity

algorithm for use in Step 1. Further investigation along these lines

il



Co might study the dependence of the solution time on the partitioning of

! the matrix, 1.e., on the values of Nis Noy vow 5 Do

Table 10. Subproblem Solution Time vs. Total Solution Time

Subproblem Time Total Time

Matrix n a B (sec) (sec)
h

JB 3 nonrandom 0.688 1.999
. J-B 03 nonrandom 4 304 13 360

JB 16 4 8 0.208 0.443

. IB 16 5 16 0.176 0.416
JB 5 16 32 0.304 0.044

| LAP 32 4 8 1.409 3.178
LAP 32 8 16 1.064 3.807
LAP 32 16 32 1.792 4.808

L

. The sixth experiment studies the possibility of accelerating

| the convergence by varying the value of the relaxation parameter during

the progress of the algorithm. It is sometimes profitable when solving

systems of linear equations by overrelaxation methods to let z0 _ 0 I!

k - -
t=1 and w = ow for some fixed w and all k > 2. The intended

effect of this procedure 1s to reduce the variation in the components

1 1
of z which would result if®& were given a value greater than unity.

The overrelaxation technique then proceeds with some appropriately chosen

value* of the relaxation parameter. 1p applying this scheme to Algorithm

IV, we repeat the experiments reported in Tables 1-3 and 5-9 and set

*

theoretically or empirically based
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a - 0 equal to the exp determined in those experiments. As a point
. of interest, we also determine the value ® = Dro that minimizes

the number of iterations necessary to satisfy the convergence

= criterion when using oF = 1. The results are summarized in Table lL.

They indicate that the scheme has a minor effect, 1f any. When there
—

is a change, it is usually a variation of one more iteration than

in the preceding experiments. (However, one test showed a decrease

of one iteration.)

L The eighth, and last, experiment studies another approach to

| solvingthelinear complementarity problem (q,M). In Section 2.0,
) we indicated that when M 1s a Minkowski matrix, then the solution

| to (g,M) is the unique vector minimum of the polyhedral set
(z:Mz + ¢ > 0, z> 0}. It is thus a simple exercise to show that the

- © problem (q,M) is equivalent to the linear programming problem

- Co T
Minimize ¢ z

| subject to Mz > —q
Z > 0 .

~ for any strictly positive vector c.- Letting ¢ be a vector of ones,

we solved the linear program with a production code LPM1 [41] written

at the Systems Optimization Laboratory at Stanford University. The

data was a JB matrix of order 225 and the g-vector corresponded to the

journal bearing problem. The LPML code took 4.93 seconds with most

of the time spent in the Phase I procedure. (Recall that BSORF

took .133 seconds to solve (q,M).)
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X Table LL Varying the Relaxation Parameter Using BSORF

| BN Ww = 1 Ww = 1
| & = oF = B
| BN | ob = of k . “ k oo _-
. exp Z Z

_ Matrix « B n exp iter iter Serer der

| we oxox 15 130 18 ww 130 1
5 ETI TE ETRE

N NR F/B TEE ST TR

| bd 8 16 1.12 15 15 1.12 15
. 8 16 16 1.20 18 19 1.24 19

| 6p 6 12 8 A 1%
F i088 R114 18 18 114 18

$1 = 1% RB 1% @

| Bo 2 32 150 3 40 1.90 40

3 SURVER BT RRRY RR SE NEY VRRP
— 8 16 16 150 3 3A 150 3

| fo = 160 132 2 A 132 2

. Lf 13% 0B 1% R
oo 8 16 » 162 48 48 162 48

| 6 2 » 172 6 67 1m

BN *" indicates that the g-vector corresponds to journal bearing data.
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- Next, we solved the dual problem using the same data. In this

| case, the zero vector was a initially feasible point, thus no Phase I

was necessary. The solution time for LPM1 solving the dual problem

was 4.09 seconds.

Since the matrix 1s block tridiagonal, it can be partitioned

so that the nonzero entries exhibit a "staircase" structure. Under

this partitioning, the corresponding linear programming problem was

solved by the Ho-Manne nested decomposition algorithm [35], an algorithm

— especially developed for problems with this structure. The running

time was 11.46 seconds. In all cases, the numerical accuracy was

‘ comparable.

i Further experimentation might investigate whether a reordering
: of variables might reduce solution time. One possibility is the

L so-called 'checkerboard" ordering.* Forsythe and Wasow[24, p.259]

| have reported, however, that the (unpublished) work of M. R. Powers
has indicated the convergence of the SOR method for linear equations

| may not be very sensitive to various orderings.

9.4. Choice of the Relaxation Parameter w.

The problem of determining a'theoretically optimal' value of

® for the PSOR algorithm applied to tridiagonal Minkowski matrices

is discussed in Section 1.3. The setting was the application of over-

relaxation to systems of linear equations. ye now review and extend

the key notation and results.

"Also known as the "black-white" or "odd-even parity" ordering.
See [24, p. 245].
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: Most generally, an algorithm may be expressed in the operator

k+ +1 k *

y form z Lo 4 ~ where 2 o Zz < Fe, If we let z represent
oo k _ *¥ Xk * *

the solution and €¢ =z - z be the error vector, then z = @,

k+1  _, k
3 and e = Ze. We will let [+l be any vector norm or its induced

« matrix norm with usage dictating its meaning.

- since Lim ([e¥[/19)Y% < o(2),[58] where o(2)
kK ow x

is the spectral radius of & and8 = 7 - 2! is the initial error
b- 1 1 1
C vector, we want to minimize o(%). In the specific case where we are

I applying successive overrelation to the linear system Mz + gq = 0,

| the operator ¥ is formed as follows. We write M =D - E —- F where
{- D and (E + F) 1s a regular splitting of M (see [58, p. 88]) and

| let L =D E, U = DF. (The splitting used depends on whether we
are doing point or block SOR. Since the operator & is dependent

f

L on w and M, we express 1t as

| ZM) = (1 - aL)” [aU + (1-0)L] .

When M 1s a tridiagonal or block tridiagonal Minkowski matrix,

| it belongs to the class of consistently ordered 2=-cyclic matrices

[58, pp. 99-101]. Consequently, the relaxation parameter @, that
minimizes olz,) can be uniquely specified in terms of B = L + U,

the Jacobi matrix associated with M. From a formula of Young [62,

p. 169], the optimal parameter value is

2

wo (M) =2/(1 +41 - p(B) ).
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! As discussed in Section 1.3, one approach to theoretically

1 determining an "optima? value of w for Algorithm IV is to imitate

the procedure for systems of linear equations outlined above. This

| 9

1s a plausible idea since 1f z solves (q,M), then for large enough
*

values of k, (Mz" + q) , will equal zero when Zs 1s positive. In
| other words, after a number of iterations, Algorithm IV will appear

to act as a block SOR algorithm solving a subsystem of linear equations

] extracted from the original problem. More specifically, let

| N= > n. J =1{1,2, .. ., NN, Tbe an index set from & and
1=1

i T' be 1ts complement. Also let Mp be the principal submatrix of

M corresponding to rows and columns j € T and let

/ F(z) = (i CF iz, > 0}. The results of Cryer [20] are easily generalized
: to form the basis of the conjecture that the optimal ® for Algorithm

* * *

IV is opt = a (My) where z solves (g,M), w = Mz+ g and
| *

] T = %- F (w ).

| In the case where M is a tridiagonal Minkowski matrix, the

: theoretical estimate of Dopt 1s not supported very well by experi-
mental evidence [20]. However, when M is a block tridiagonal matrix,

| the correlation between theory and practice improves considerably. In

order to demonstrate this, we first need to develop some technical

machinery.

Recall that the expression for @ requires the evaluation of

| ‘0(B). In general, this is difficult to do theoretically. If the

B matrix 1s symmetric, an approximation may be obtained by setting

|
|

|



| . T . =
B o(B) = min{|[Bl_, 87M} = min{max}} |v, .[, max 2; [v,.]}

Fi J . J— J J L

| or by a variety of iterative methods (e.g., the power method [36,

| : p. 147]). In the special case of the LAP matrix, we can state o(B)

— explicitly. We deal first with the Jacobi matrix B arising in the

PSOR algorithm, Algorithm III. We decompose M =D - E - F into a

Co diagonal matrix ©D and strictly lower and upper triangular matrices

E and F. The matrix M is partitioned the usual way into sub-

: matrices Mo for i, 3 =1, 2, ... , m so that M.. isn Xn. We
Co will next determine p(B) where K = (1, 2, . . . , kn} for any

k=1,2, .. ., n (Note that Bg 1s the Jacobi matrix associated

Sh | with the LAP matrix M .)

| Theorem 6. Let Bx be the matrix described above. Then
1

= = k+l) + cos +1))._ o(B) = 5 (cos m/(k+1) 7/(n+1))

p — Proof. Define the s X s matrix TS = (tij) by ts = 1, ti ju =

tie1,1 =1 fori=2, 3, . . . , s-1, ty 51 = 1, and t= 0
otherwise. Let Iq be an s X s identity matrix. Recall that if

G and H are 51 X S, and S4X 5) matrices, then their tensor
| product (or Kronecker product [32, pp. 97-98]) P = G® H is an

515+ X 5,8), matrix of the form:
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| enn gH oe gE
| 2

| P — [J .

g. Hg BH ... 8 H

. It 1s easy to show that =} =T7T I +1 ®T I,. etBe TH ch ® I TL eT, Qq
be the orthogonal s Xs matrix whose column vectors are the eigen-

C vectors of Ty and let L. be the diagonal matrix of eigenvalues;
thus T Q = Q L_ , The matrix Q = ®| ne 3"g - Ue U is orthogonal since ox

| and A are, hence Q BQ has the same eigenvalues as B - (Note
- that we have suppressed the explicit dependence of Q on K and N.)

® G ® =

1 Using the fact that (Gy UL G,) (6,6) ® (G,G,) for any
matrices, G G, one can show that QR _
a BQ Le ® Ip + L®L.

| But this 1s a KN xXxKN diagonal matrix with entries A + A _ whereN A nJ

Net t=%4 2 ..., k and Any 5 = 1, 2, «.. , n are the diagonal
| entries of Le and Ly respectively. From [33, p. 154], we know

that Ars = 2 cos mj/(r+l) for yj =1, 2, . . . , r. Thus the spectral

radius OfBy 1s

o( ) = max C+ - COS SU + Ix PPL Pgl = 2 ktl © "0% nal
1<J3<n

~ 1

and since B, = 4B o(B) = 3 (cos m/(k+1)+ cos T/(n+l)). | |

We now study the block Jacobi matrix associated with Algorithm

IV. Let M=D~ E - F where, again, M is a IAP matrix and
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oo 0 M9

| “9 © Moo

M 0 M
m, m-1 i —- mm

| O Ms,

| and -U = 32 -
0 .

" M-1m

Let B = -D (L + U) and Bex be the leading principal kn X kn
| —

| submatrix. The application of Young's formula for @ to block SORf

algorithms refer to Beg the Jacobi matrix associated with Mex

The next result gives the spectral radius of these submatrices of B.

Theorem 7. Let Box be the matrix described above. Then

o(B) = cos (m/(k+1) )/(2 - cos(m/(n+l)).

Proof. Define the s X s matrix Uy = (u..) by u., = 4 for— 1] ii

1=1, 2, . . . , 8, Up, = -1, Usa = Uy o5a1 = -1, Ug go 1 = —-1 and
-1

.. = 0 oth . =
| 4 5 otherwise Let Vg Yq and Iq be an s X s 1ldentity

matrix. Also let Tq = hb, — Ug» Finally, let Pq (resp., A)
be the orthogonal s X s matrix whose column vectors are the eigenvectors

17



» of Iq (resp., Vy) and let La (resp., Co) be the diagonal matrix

| Co of eigenvalues. Thus, the matrix Q = Q 2 Py is orthogonal. (Again,
| we have suppressed the dependence of Q on K and N.)

| Notice that By o> LT? Vie Since Be and Q BQ have the
same eigenvalues, we can 1nstead determine those of the latter matrix.

R But Q'BA = Ly ® Cw a diagonal matrix. Hence, the eigenvalues of
| Bi are all possible products of the diagonal entries of Le and Cy’

= say (Ne, ) where 1 = 1, 2, « . ., kand 3=1, 2, . . . , n. As

ne in Theorem 6, Ny, = 2 cos 7j/(k+l) for 3 = 1, 2, . . . , k. Further-
] more, le, are the reciprocals of the eigenvalues of Uy there-

) fore [33, p. 154], oy = 1/(h - 2 COS mj/(n+l)) for 3 =1, 2, . . . , n.
It then follows that

|
| ~ o(B) = max cos(mi/(k+1))/(2 = cos(mj/(n+l)))

| 1<i<k

1 < J<n
= Y =

| = cos(m/(k+1))/(2 - cos(m/(n+1))). |

There are two problems in applying Theorem 6 or 7 to determine
|

Co Dopt! The theorems both presuppose that one knows, a priori, thef

*

index set T = #(z ) since T determines the linear subsystem

Mp + Up = 0 which 1s eventually solved. Furthermore, they both

assume that T ={1, 2, . . . , kn) for some 1<k < om. (The theorems

remain true if K = {t+l, t+2, . . . , t+kn} for t = 0, n, 2n,...,{(m-1)n

_ and k =1, 2, . . . , m.) From the Perron-Frobenius theory of non-

i negative matrices, if T= (1, 2, . . . , kn, kntl, . . . , kntc} where

< <

0 <k <n, then we can bound a, (My) between “Mp rp) and Mp 1)
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where 1, =1(1,2, . .., kn) and T,=1{1, 2, . . ., (k+l)n}. This
| fact mitigates the second problem somewhat although it still leaves

the problem of determining Ty and T,, One might be able to determine

Ty and I, during the progress of Algorithm III or IV by monitoring

7 (25) until it appears to stabilize at some index set. wrom [20],

we know that gross bounds for Oopt can be obtained by setting
I = #(-q) and I, = & . Our computational experience has shown

C these latter bounds are not very useful unless Ty is a fairly large

| index set in which case “Mp and *p Mpg) are fairly close
| together.
L- In order to illustrate the use of Theorems 6 and 7, we use

| the data of the second experiment reported in Section 9.3. je Jet
I. = (1, 2, .-. , 30t} and T,=1{1, 2, . . ., 30(k+1)} where

4 *

L (1,2, . .. . 30k}¢4 (z ) c T,. The results are summarized in

i Table 12. For the PSOR algorithm, “7 Oy gp) and ® ~My gp)
~ is determined via Theorem 6. For the BSORF algorithm, these quantities

are calculated using the results of Theorem 7. 1p poth cases, ®
ex

: was determined (within 0.02) to be the empirically optimal value nd

| can be seen to be remarkably close to w, in most cases. (We would
expect hy < Cexp < a, .) These results suggest that an adaptive

mechanism which sets ol= ® and changes ® during the operation
of the algorithms could prove very worthwhile.

19



u Table 12. Theoretical Rounds for the Relaxation Parameters

CL EE 1 2 Cewp SL % 0 Ceo
= 1 2 1.07 1.20 1.20 1.00 1.07 1.08
| | 1.20 140 140 107 120 1.26

= 1 6 £31 152 150 17 150 1a

J 17 163 175 176 151 167 1.66
PR 169 179 178 SCS A RR

= 30 30 82 82 82 15 1.75 1.74

u An alternate approach for estimating the optimal relaxation

_ parameter is suggested by some research of Garabedian [27]. In a study

| of the point SOR method applied to linear systems derived from finite

difference approximations to partial differential equations, he proposed

an asymptotically good estimate for aw, (i.e., the estimate became

| | better as the mesh size on the region R of interest tended to zero).

2. He assumed that the mesh size was uniform and of width h and the

area of the closure of R was a. Garabedian then suggested using a

relaxation parameter w = 2/(1 + 3.015(0° /a)/?) For many shapes of
» regions, he noted that in several numerical tests carried out by

| Bh Young, this choice of w resulted in approximately a 20 percent decrease

| in convergence rate from the optimal convergence rate. The remarkable

a -success of this estimate lies in the simplicity of its application in

- comparison with the application of Young's formula. This suggests

| that a generalization to the block SOR method (and thence to

| 80
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oo Algorithm IV) could be worthwhile as future research. The authors

have not yet derived similar results for either the block SOR or

| Modified Block SOR techniques.

\
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