PB-233 045

PROVING THAT COMPUTER PROGRAMS
TERMINATE CLEANLY

Richard L. Sites

Stanford University
Stanford, California

May 1974

BIBLIOGRAPHIC DATA |- Report No. 2
SHEETY STAN=-CS-Th-418

PB 233 045

4. Title and Subticde §. Repont Date
PROVING T.{AT COMPUTER I OGRAMS TERMINATE CLEANLY May 1974
6.

|7. Author(s)
9

[3 getioming Organization Repe.
O

-CS-T4-418

+ Performing Orgsnization Name and Address
Stani‘ord University

Computer Science Department
Stanford, California 943095

10. Pioject/Task/Work Unit No.

11. Contract/Gramt No.

12. Sponsocing Organization Name and Address

IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218

13. Type of Report & Period
Covered

technical, May 1974

['8

18, Supplementary Notes

V6. Abstracts

applicatior to high-level languages.

arithmetic.

A system of techniques is presented for proving mechanically that a computer
program terminates cleanly., In this paper, clean termination means that the
program has no infi ite loops and no semantic errors - no undefined variables,
no subscripts out of range, no overflows on a given computer, etc. The techniques
are discussed in terms of programs expressed as flow charts, and they have wide

The work described here complements work done on program correctness, differing
particularly by not requiring a description of the correctness properties of a
program and by treating the running of programs on machines with finite-range

T7. Kcy Words and Document Apalysis. 17e. Descriptors

7% Wentifiers /Open-Ended Terms

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
17¢. COSAT! Field/Group Springfield VA 22151

8. Availability Statement

approved for public release; distribution
unlim’ted.

9. Security Class (This
Report)

urity s 18

Page
UncrassiFiED

p———
rORM NTI1S-39 (REV. 3-72)

J21- No. of Pages

75

THIS FORM MAY BE REPRODUCED

USTCCMM-DC 14982-P72

Dedication

This thesis ic dedicated to a certain place in a cow pasture
behind the Stanford campus; & Hill without whom this thesis would
never have been written. May all schools have the foresight to

preserve such places for the loct souls who will need them.

Richard L. Sitec
Dedicated January 11, 1973

Acknowledgments

The single most important factor in the completion of this thesis
has been Don Knuth's willingness to read and extensively annotate
early drafts of this and related papers. He has been such an outstanding
thesie advisor for me that I could enjoy doing another thesis
under him, Jjust so I could learn how to be a good thesis advisor myself.
I aiso am grateful for the support of Bob Floyd and Ben Wegbreit on
my reading ccmmitiee.

Financial assistance for the most difficult year of my thesis
work was provided by the Fannie and John Hertz Foundation, and was
offered Tor subsequent years in spite of my progress reports; I thank
the Ysundation for its long-range view and particularly for alleviating
one of the stresses of campleting a taesis. I also thank Hewlett-Packard,
Inc. for its indirect support during the final year of this work.

The previous work of others wham I drew upon for technical suppcrt
is acknowledged in reterances throughout the text.

Jim Dulev, Don Knuth, John Walters, Phyllis Winkler, and represen-
tatives of the Fannie and John Hertz Foundation provided continuing
moral support. 1 thank them all.

Finally, heartfelt thanks to Susan Phoebe Watts, whose encouragement
started my pursuit of & Fh.D. in the firct place. May che find similar

encouragement .

iv

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

Chapter 7.

Appendix A.

Arpendix B.

Bibliogrephy

5.

£,

Table of Contents

Introduction
Filow Graph Processing
Generation of Semantic Error Assertions
Generation of Loop Termination Assertions
Proofs

Related Literature

Extensions and Related Topics
Conclusion + « « « + o . .

Examples

King's Examples 1-9
McCarthy's 91 Function

Node Visiting Algorithm from Chapter L .

Index and Notation

17
23
29

Note to the reader

I have tried to structure this thesis so that it can be read at
many different levels of detajl. You have already passed the first
level, the title. I have tried to write the introductory chapter so
that you can see what the rest of the thesitc is and is nct about and
how this work is different fram others. Hopefully, after reading the
introduction, you will have enough information to decide whether to
read the rect. At the third level of detail, each chapter begins with
a summary of its content. If your interests are very specific, this
arould allow you to skip the bulk of some chapters. The chapter
curmariec end with the symbol & . The fourth level is Appendix A.
411 of the examplec in it should be readable if you have read just the
chapter summaricc. The rest of the thesis is at the fifth levei of
detail. For yet more detail, read a.l the references, 35315 references,
etc. /Proof of termination of the last step 1s left to you.)

For a guick reading, I woulé suggest the following order:

Chapter °, Fxample 1 in Appendix. A, all the chapter svrmaries, then
kxample 1) in Appendix A. For reference purposes, On pages 138-139
snere is an index, and on pague (£-68 there is a sumrary of the points

covered in the Appendix A examples.

vi

Chapter O. Introduction

This thesis discusses techniques for proving that a computer
program terminates cleanly -- that it always terminates and does so
without encourtering any semantic errors -- overflows, out-of-range
subscripts, ete. 1In contrast with others' work on rigorous proofs of
program correctness, this work only tangentially examines what a
program does; the empharis is on proving that whatever it does,

a program always terminates normally. ®

Proof of clean termination is not an end in itself. Rather, it
is u well-defined subgoal in convincing oneself that a program works
reljably. Pz‘;pving that a program does not "blov up" in the middle
does not in any way say that the progrem correctly produces useful
results; it just says that whatever the program does, it will eventually
come tc a normal end. For a large class of programs, it is useful to
run & set of test cases to demonstrate that the program goes through
its intended notions for at least those test cases, then to try to
prove that the program terminates cleanly in order to discover anomalies

that the test cases missed. The proof will pick up problems like:

(1) Degenerate cases of same data structure which the progran did
not anticipate and which result in, say, the use of a zero
subscript in an array whose legal bounds are 1:100 .

(2) Degenerate cases where some loop exits before iterating at all,
leaving some variables undefined (never assigned to) on exit.

(3) A programner's assumption that, say, N 1is always positive, when
in fact there is not an explicit test for this, and the program
loops indefinitely if N =0 .

1

Chapuer 0. Introduction

(k) Use of uninitialized variables, which could make the program
non-deterministic.
(5) Calculations on a small (say 16-bit) machine which could easily

produce integer overflows and nence invalid results.

For some programs. this process is not very useful. For example,
in 2 matrix inversion routine almost every arithmetic operation could
prodv..e¢ . 2verflow or underflow, so the attempted proof of clean
tereina.ion will fail miserabily, flagging almost every statement as
a possible place for an unclean termination.

For other programs, proof of clean termination may actually be an
e.! in itself, as in certain real-time programs or operating system
subsyctems, where it may be all right for the program (or subsystem)
to rive wrong answers occasionally, but it would be disastrous if
the progran ¢ot in an infinite loop and impacted the operation of the
rest of the system.

Proof of clean termination is a valuable tool because it is a
well-defined problem which lends itself to being done almost entirely
mechanically, with very little help from a ucer. Unlike rigorous
proofs of correctness, which require the user to supply a cerefully-
constructed cet of acsertions about the program's behavior, proofs of
clean termination can use mechanically generated assertions: based
on each operator in the program, it ic possible to synthesize a set of
assertions about semantic errors, and based on some flow analysis of
the program, it is possible to synthesize a set of assertions stating

that each loop terminates. Attempting to prove these assertions then

usually has the effect of finding that some of them aren't true and

Al

Chapter 0. 1introductiomn

hence suggesting to the user bugs to be fixed or an appropriate set

of restrictions for the program‘'s data. The user can then either change
the program, or add tests to the program to detect data that can't be
handled (and if detected, return a clean indication or message), Or run
the program as it stands, knowing that it will blow up in a poesibly
obscure way for some sets of inputs.

In contrast to work on algorithm correctness, the system described
here deals expiicitly with programs which fail because of finite-range
arithmetic. In this regard, see London's certification of the
algorithm TREESORT3 {London 1970b], in which he states "... it is
possible and appropriste to certify algorithms with a proof of
correctness. This certification would be in addition to, or in many
cases instead of, the usual certification [by testing]", and Sites's
certification of the program TREESORT> [Sites 1974], in which he notes
that the program can fail to sort large arrays because of an overflow
in the subscript calculations, in spite of London's proof of correctness.
The same issue is pointed out in London's reply to Redish (Redish 1971].
As minicomputers and microcomputers with small word lengths proliferate,
the restrictions of finite-range arithmetic will become more important.

in contrast to work on partial correctness, the system described
here deals explicitly with proof of termination. 1In this regard, see
King's proof of partial correctness of a simple division program
[King 1969], and the same Example 2 in Appendix A of this thesis, in
which it is noted that King's proof of partial correctness includes
the case of division by zero, for which the program loops indefinitely.

At this point, I will summarize the major limitations and results

of the work described in subsequent chapters.

>

Chapter 0. Introduction

Limitations:

(1) There is no computer implementation of the techniqvués.

(2) calculations with floating-point numbers are not; handled,
although Chapter f includes scme discassion of the Froblems that would
be involved.

(3) Recursion and asynchronous events are not handled.

{4) The system in fact requires a minimal amount of program
annotation to be supplied by the user -- descriptions of the bcunds
of arrays passed t» procedures, and descriptions of the intended

structuring of linked lists and trees.

Results:

{1) The analysic of a program is based on an algorithm for the
forward propagation of information while visiting the nodes of a
program's flow raph in a fixed order. The last time a node is visited,
all the ascertions ascociated with it are either proved, disproved, or
the theorem prover gives up. Proved assertions need not concern the
user, disproved acsertions represent definite bugs or hidden restric-
tions, and the remaining assertions represent possible problems on
which the user thould focus hi. attention.

2) A second result is a set of techniques for untangling loops
and eliding tests, an extension of the interval analysis and compller
optimization techniques of Cocke, Allen, et al. {Allen 1970] [Allen and
Cocke 1972]. The technique for finding paths along which a test can
be elided is important in the automatic synthesis >f lexicographic
orderings for proving temmination of complex loops.

(%) Techniques are presented for proving the temination of

some loops which do not lend themselves to mapping into monotonically

Chapter O. Introduction

decreasing sequences, such as some search-for-equality loops and
circularly-linked-1ist loops.

(4¥) Procedures, parameters (both name and value), read statements,
and arrays are all explicitly treated.

(5) Specific programs which have been proved to terminate cleanly
include TREESORT3 [Fioyd 196k4] [London 1970bj [Sites 1974]; SELECT,
an algorithm for finding medians [Floyd and Rivest 19737 [Sites 1974};
an iterative version of McCarthy's 91 function [Manna et al. 1a721];
and some of Xing's examples {King 1969] (see Examples 1-0 in
Appendix A). Hand simulation of these proof techniques uncovered a
hidden restriction in TREESORT3 and a simple bug in Knuth's
Algorithm 2.%.2A [Knuth 1975b]. Preliminary work on this thesis
jneluded hand simulation of some of the techniques on & wide variety
of programs: a list reversal routine, a symbol tuble search routine,
Knuth's program for Dijkstra's inversion problem {Xnuth 1973a],

a floating-point calculation [Fritsch et al. 1973>], a hash cearch
routine [Brent 1973), and a list move routine [Reingold 19731.

In brief, proof of clean termination is a mechanical process,
requiring little effort from the human user, vhich can do much of the
tedious work of examining a program's bekavior in all possible degenerate
cases, for all possible sete of input data, and either report to the user
an assurance that the program is free of an important class of errors,
or report pieces of the program or sets of inputs which may fail. This
process can be applied to programs for which we have no way of even

expressing what it means for the program to be rigorously "correct”.

Chapter O. Introduction

SUGS BUNNY

Nl Pm O

o w o

Chapter 1. Flow Graph Processing

1g chap:er discusses preliminary modifications to the flow graph
of a program to make its loop structure more tractable. The modifications
consis:z of putting all loops in leading test form and inserting a
"loophead" node at the beginning of each loop. Coples may be made of
same nodes in the flow graph, either because of node splitting during
interval analysis {Allen and Cocke 1972], or because of permuting
the nodes in a loop to bring an exit test to the front of the loop.
The nodes in the modffied flow graph are then ordered so that when
a node is encountered in subsequent processing, all of its
predecessors (and any loops containirz them but not the current node)
will have already been processed.

For programs which have already been put in while format (perhaps
using techniques described in [Ashcroft and Manna 1972]), the rrocessing
described in this chapter can be skipped, except for the ingsertion
of "loophead" nodes and ordering the nodes. ®

In this paper, we shall view all programs as flow graphs consisting
of nodes and directed arcs. Our flow graphs have seven kinds of nodes:
binary test, assignment, START, HALT, PROCEDURE, RETURN, and CALL.

The last three aren't strictly necessary, but they make the discussion
of subroutines easier. All high-level flow-of-comtrol constructs are
mapped into tests and assignments. Thus, Algol 60 FOR loops are mapped
into leadinyg tests and explicit assignments to the control variable,
Fortran DO loops are mapped into following tests, and CASE statements

are mapped into a series of tests (inctead of a single multiple-exit

Chapter 1. Flow Graphs

test). An eighth kind of node, the LOOFHEAD node, will be discussed
a little later.

We shall assume that, in forming the flow graph, any necessary
variable renaming has been done so that all names are unique and we
do not have to deal with scope rules. Blocks and scope rules would
have to be handled in a more complicated way if the system described
here were to be redesigned to analyze recursive procedures. For our
purposes, input/output statements could be modeled in the flow grarh
with assignments to/from the variables read or written. Complicated
input/ocutput semantics can be modeled with assignments to auxiliary
variables representing, for example, device position.

The nodes in our flow graphs are connected by directed arcs. Test
nodes have two arcs leaving them (exit arcs); HALT and RETURN nodes
have no exit arcs; all other nodes have one exit arc. START and
PROCEDURE nodes have no entry arcs; all other nodes have ocne or more
entry arecs.

A complete flow graph for a program and its sub-procedures consists
of a set of disjoint graphs, one for each procedure or main program.
The graph for the main program contains exactly one START and one HALT
node; the graphs for the sub-procedures each contain one PROCEDURE
and one RETURN node. The limitation to a single RETURK node is
somewhat arbitrary, but allows us to describe one set of exit conditions
for a procedure, instead of describing a different set of conditions
for each RETURN.

We accept general flow graphes of the type describea above as
input; but to tind, analyze, and eventually prove the termination of

the loops in a program, we need to modify the input flow graph to

Chapter 1. Flow Graphs

put it in a more constrained form. The operations described below
are to be performed on each of the disjoint graphs, representing one
procedure each.

First, we perform interval analysis with node splitting [Allen 1970]
[Allen and Cocke 1972], [Cocke and Schwartz 1970], which forces each
loop in the graph to have exactly one ertry node, so that we can analyze
the manipulations within a loop in terms of unique initial entry
conditione. A graph with multiple-entry loops, such ag the one in
Figure 1.1 is changed into a reducible graph by node splitting, which
makes copies of some of the nodes of a graph so that the new graph
has fewer multiple-entry loops. Node splitting would change the graph
in Figure 1.1 to that in Figure 1.2.

Arcs which go from a node within an interval to the interval head

node are called latchback arcs; they represent branches back to the

beginning of & loop. In any interval which has latchback arcs and
whose interval head is not already a loophead node, we now replace the
interval head node, A , with a pair of nodes: a LOOPHEAD node and A .
We reroute A's original entry arcs to the LOOPHEAD node, add an arc
from the LOOPHEAD to A , and leave all of A's exit arcs intact, as
in Figure 1.3. The LOOFPHEAD node serves to identify the top (beginning)
of a loop and provides us & canvenient place to attach loop termination
assertions.

In analyzing a loop, we are interested both in its branches back

to the top of the loop (its latchback arcs) and in its loop exit arcs,

vhich cannot lead back to the LOOPHEAD node (without going through

the LOOPHEAD node of a containing loop). We are ihterested in the loop

Chapter 1. Flow Graphs

Figure 1.1. An irreducible graph, with rectangles showing its
partition into intervals. The loop BC has multiple
entry nodes, making its analysis difficult.

in

Chapter 1. Flow Graphs

Figure 1.2. Node split version of the graph in Pigure 1.1, in which
the loop BC now has a single entry node, C .

Chapter 1. Flow Graphs

Figure 1.3a. A flow graph Figure 1.3b. The same flcw
with its two intervals graph after inserting
indicated by dashed LOOFHEAD nodes.

lines.

Chapter 1. Flow Graphs

exit arcs because one way of proving that the loop terminates is to
prove that an exit arc must eventually be taken as the program executes.

We may find that two or more loops in a program have a common
beginning node and interval analysis indicated only a single loop,
as in Figure l.ka. To detect and clear up this situation, we in
general need to modify each loop so that every path around the loop
goes through an exit test (a test node which has a loop exit arc
ieaving it). We make a separate, contained, loop out of any paths
which do not exit directly, as in Figure 1l.4b. More formally, if
breaking one arc leaving a TEST node breaks the only path from that
node which eventually latches back to the top of the loop, then the
other arc Zeaving the TEST node is a loop exit arc and that TEST node
is an exit test. [Also see Appendix A, Example 10.]

In analyzing the effects of loops (described in Chapter L), we
may find it convenient to permute the nodes inside each loop (Figure 1.5)
so that all the exit tests are at the tcp of the loop, thus making it
easier to consider the degenerate case of zero iterations. If a loop
has multiple exit tests, this modification is not always possible, so
the best we can do is permute the loop so that ome of the exit tests
is at the top. [See Appendix A, Examples L, 7, and 10.]

One final step in the preliminary processing of the flow graphs
is to order the nodes so that when we later examine them one at a time
tco gather information and prove accertions, all of the appropriate
predecessor nodes will have been already examined. We use the following

rules to order the nodes:

1>

Chapter 1. Flow Graphs

Loophead 1

Loophead 1

latchback
arc s
| .
| L./
la::g:ack loop exit °
' | arc
Figure 1l.la. A single loop Figure 1.4b. The same graph
as seen by interval after forcing each path
analysis. The interval around a loop to go through
is indicated by dashed an exit test. The two
lines and may contain termination issues of getting
more nodes below E . to node C and getting to

node E are separated now
into two different loops,
indicated by their loophead
nodes and by dotted lines.
Note that, in contrast to
intervals, node E and its
successors are not in the
loops. [See also Appendix A,
Example 10.]}

Chapter 1. Flow Graphs

exit

Figure 1.5a. A loop without Figure 1.5b. The same loop
leading exit tests. permuted so that the exit
test is at the top.

(1)
(2)

(h)

Chapter 1. Flow Graphs

Reduce each loop in the program to a single node.

Topologically sort [Knuth 1973b, p. 258] the nodes in the reduced
graph, using the directed arcs as the ordering.

For each node in the reduced graph which represents a loop,
topologically sort the nodes within the loop, ignoring all
latchback arcs, then insert these nodes in the main topological
ordering as a single group, sé that all the nodes in the loop
prrecede any nodes which followed the loop in the reduced ordering.

Apply Step 2 until all loops have been expanded.

A discussion ol this ordering and its properties appears in

[Earnest et al. 1972].

16

Chapter 2. (Generation of Semantic Error Assertions

This chapter discusses the generation of assertions which state
that "no semantic error occurs 1f the following node is executed".
This is a very local, operator-driven process. These assertions are
attached to each of the entry ares for the node, as in Floyd's original
description of the inductive assertion technique [Floyd 1967].
Semantic errors occur whenever an operation gives an undefined result,
as specified in the language definition or in a set cf implementation
restrictions for a particular compiler/computer combination. The
examples are given in terms of Algol 60 programs rumning on a machine
which gives undefined results for underflow/overflow, assigment or
any other use of uninitialized values, subscripts out of range, etc.
The machine is also assumed to perform mathematically correct
comparisons of, say, 1 and Jj even when J-i would overflow/underflow.
Machines (such as the CDC 6600) which violate this last assumption
are discussed below, and in [Sites 197k].

Assertion generation for value parameters is straightforward,
but name parameters are handled strictly according to the copy rule,
making a separate copy of a procedure for each call.

The symbols Imin and 1I max °ore introduced as notations for
the smallest and largest representable integers on the target machine.

The symbol @ is introduced to denote the undefined value.
®

After forming a modified flow graph, as described in Chapter 1,
we attach to its arcs various assertions stating that the operations

in each node are well-defined. For each node in the flw graph, we

17

Chapter 2. Semantic Errors

mechanically form a set of assertions describing restrictions on the
program variables which must be true upon entry to the node in order
for each operation in the node to produce well-defined results. We
then attach this set of assertions to each of the entry arcs for that
node.

In most of the examples which follow, we shall assume that
programs are written in Algol €0 and are run on a compiler/computer

system which has the following implementation restrictions.

1. No real numbers.

2. Integer overflow. The binary operations i+j , 1i-3, ixj ,
and i+j, give the mathematically correct resuit if and only
if 1 and J have defined values and the result is in the range

I. to I inclusive; otherwise the result is undefined.
min max

Division by zero produces a result outside of the range Imin

to I . It is assumed that I <0 and I >0 . As
m max

max in

an example, for the PDP-8 with 12-bit 2's complement integer

arithmetic, Tngn = -2048 , Lex = +2047 .

A program can be analyzed using only symbolic values for
I. and I » in which case we may be able to state maximum
min max
and minimum values for them, respectively, drawn fram the values
of the smallest and largest integer constants in the program.
Alternately, a program can be analyzed with only lnose bounds
on Imin and Ima.x , such as Imin
This will save some work in checking tihat the small integer

< =100 , I >1000 .

constants often encountered in programs are within the representable

range. Alternately, the exact values of Imin and I BAX for some

18

Chapter 2. Semantic Errors

varticular machine can be supplied, in order to auswer the
gquestion, "Will this program generate any overflows when run on
this particular machine?" Most of the examples below assume

I, <-1000 and I >1000 .

3. Representable constants. All integer constants must be in the

renge Imin to Ima.x inclusive.

L. No use of uninitialized variables, including simple assigmments.
No right-hand-side expression is allowed to use an uninitialized
variable. In particular, the operation i :=J will assign the
value of J to 1 if and only if J has a defined value;
otherwise a semantic error occurs. It is possible to write
programs which violate this restriction and still give meaningful
results, but more often a vioclation of this condition indicates

an error which is best caught as soon as possible.

Algol 60 semantics for local variables starting out undefined at
the beginning of a block are modelled by putting into the flow graph,
at the start of each block, special assignments of the undefins=d
value, @ , to each local variable. The program proper is not allowed

to use ® .

5. Mathematically correct camparison. The relations i <J, 1<j,
i>j, 1>3, 1#£3, 1=]J produce the proper value true
or false, even in cases where j-i would produce an overflow.

For a machine which does not have this property, such as the
CDC 6600, programs must be transformed 4so that every comparison
is done as a subtraction and a sign test. All such subtractions

vwill then be checked for overflow in the normal way. Two

19

Chapter 2. Semantic Errors

representations of zero are allowed if tle implementation gives

identical results for each.

These restrictions are in addition to those specified in the
Alzol 60 Report [Naur 1963], such as requiring each subscript to be
within the declared bounds of an array.

The examples presented here do not directly address the 1ssues of
a program executing in a given amount of memory or a given amount of
time. The only guarantees about space and time are that both require-
ments are finite: the memory required is finite because no recursion
is allowed, and because the bounds for individual arrays are limited

by I and Ima.x $ the time required is finite if 211 loops are

min

proved to temminate.

Typical assertions generated are:

Node Asgertion generated
Af1] :=j+k J;éwAk,éwAImin53+k51mA
14w A Aj<icaA, - (A, and A are

the lower and upper bounds for the array A .)

1 < 3#*5 1WA GEOAT <5 <L ALy <
j+551m. (Since Imin is assumed to be <O,

the condition I, <5 is clearly true.)

in

i:= JFw.

Ali] s=A[11+1 1fwA A, <1 <AL A Alil Ao A Iin <
1<T . A Tpyn SAILRL < Toax M 1 fwA
Al S1<A - {The last two terms come from

the left-hand A[i] .)

Chapter 2. Semantic Errors

Standard technjjues can be used 10 sinplify the assertions,
including removing terms which are clearly true, removing duplicat:.
terms, and removing terms which are implied by other terms

(1<5 A 1<8A1412 reducesto 1 <5). One way to
remove redundant terms mechanically from a set T of n temms
ic to eliminate any term for which the theorem

{T-ti} >ty

is true. ({T -ti} represents the set of all terms except ti .)

In most cases, the generation of semantic error assertions is
quite straightforward, but some complications arise in handling
procedure calls. Arguments passed to value parameters are treated
like the right-hand side of an assignment statement at the oint of
call, i.e., the argument expression must be well-defined whken evaluated
bet'ore the call. 1In contrast, procedures with name paramevters must
be handled strictly according to the copy rule, makinz a unique copy
of the procedure for each call and logically substituting the body of
the procedure for the CALL node. This use of the copy rule is one way to
reflect properly the side effects which can result from tricky use of
name parameters, but is also a reason that we do not handle recursion.

Procedures with array arguments have the problem that the
procedure does not specify the legal lower and upper bounds for
subscripts. Either of two strategies can be adopted for generating
and proving assertions about subscripts for such arrays: symbolic
names like Al and Au can be used in all the assertions, and the
proof techniques can try to push back to the entry point of the

procedure any assertions (restrictions) which must be true on entry

Chapter 2. Semantic Errors

in order to avoid subscript range errors; alternately, the programmer
can supply an extra statement to the proof system, describing the bounds
for each such array. If the programmer has definite assumptioms about
array bounds in his mind, it is better to state them to the proof
system. Not doing so forces the system to try to synthesize equivalent

information, a much harder process.

Chapter 3. Generation of Loop Termination Assertions

This chapter describes the generation of assertions which are true
if and only if the loops in a progrun terminate after a finite number of
jterations. For many practical cases, the assertions generated lend
themselves to direct proof. For loops which have obscure reasons for
termination, the assertions have equally obscure reasons for being true
{of course, in general, proving loop termination is theoretically
unsolvable; we shall not solve the halting problem here). For many
loops which do not terminate, the corresponding assertions can be
proven definitely false and the user alerted to the bug, perhaps with a
counterexample.

The basic form of the assertions generated is, "There exists a k
such that on the k-th iteration of the loop, ane of the exit arcs
will be taken." For many loops involving monotonic expressions in
their exit tests, or simple searches, or movement through a linked

list, these assertions are easy to prove. ®

Loop termination assertions are harder to generate than semantic
error assertions because the goal is much more abstract. For semantic
errors, the assertions generated are a strailghtforward function of the
scurce language definition and compiler/camputer implementation
restrictions. For loop termination, however, synthesizing an appropriate
assertion may well be harder than proving it true.

Generation of termination assertions can be "driven" by a variety
of goals. One technique is to insert a counter in each loop and assert
that the count is bounded; however, such a statement doemn't lend
itsel? to direct proof -- having a counter doesn't give any insight

into its behavior. Another technique is to require all loops to

Chapter 3. Loop Termination

be ‘P‘QE loops or D_.g loops in which the atep and limit are evaluated
exactly once and the iteration variable cannot be changed inside the
loop; such loops teorminate by definition (if a zero step is prevented).

In between these extremes, vwe need to find a strategy for
generating asserticns which are related to the intended reasons for
loop termination that the programmer had in his mind when he wrote the
loop. Without searching for these reasons, we will have a hard time
mechanically proving the termination of subtle loops whose temmination
properties may be perfectly clear to a human. In unannotated programs,
the best evidence we have for the intended termination of loops is
in their exit tests. For a given loop to terminate, one of its exit
tests eventually must be satisfied (i.e., branch to a loop exit arc).
Often the tests themselves present the reason for loop termination,
while sumetimes the preceding logic (which sets the values of the
variablef{s) in the test) embodies the reason for temination.

For example, in a loop such as:

while ¢ <r do
if p(2) then £ :=1+1
else r:=r-1

where p 1ls an unspecified predicate, the exii test ¢ <r provides
us with the proper driving goal: prove r-f 1is monctonically
decreasing. If we try to prove that the loop terminates because
either ¢ or r 1is monotonic, we will fail; tie relevant monotonic
expression Involves both r and f and appears only in the exit test.

As a second example, consider the loop:

ok

Chapter 3. Loop Termination

comment this program is a subset of an example in [Ashcroft and
Manna 1972];

4f 5(x) then
x :=c(x)
else begin
X :=£(x);
t :=false

end

end

else begin
x 1= o(x)3

t := false
2nd

end.

~ Here, the exit test of t offers no direct enlightenment, but as we
shall see in Chapter L, the flow graph for this loop will be mechanically
modifed by test elision so that the manipulations of t are ignored,

the assignments t :=false are immediately followed by branches out of
the loop, and the assigmment x :=c(x) 1s immediately followed by a

branch to the test if g(x) ... as in this modified program:

25

Cnapter 3. Loop Termination

loop: if q(x) then

begin
x :=b(x);
if s(x) then

begin

x:=c(x);

goto loop
end

else begin
1= £(x);
goto exit
end

end

else begin
X :=g(x);
goto exit

end
exit:
Thus q(x) and s(b(x)) become exit tests, and we are now more
directly confronting the reasons for the loop’'s termination.

For loops with leading tests, such as those we tried to form by the
manipulations described in Chapter 1, it is straightforward to generate
an assertion that there exists a k > 1 such that on the k-th
iteration of the loop, an exit arc will be taken. For the original
while t ... loop above, the assertion would be:

* >1 s.t. ~tk

where the subscript k indicates "the value of the variable at the
beginning of the k-th iteration," i.e., the value of a variable at the
LOOFHEAD node, before any rnodes inside the loop have been executed the
k-th time. The termination assertion for the modified loop above

would be:

26

Chapter 3. Loop Termination

dk > 1 s.t. ~q(x) v ola(x) A~a(b(x))] .
Note that we describe the exit test &{x) in terms .of X,

the value cf x at the top of the loop, as modified by the assignrent
Kk :=b(x) . In general, a multiple-exit loop may have exit tests which
are preceded by enough computation that the values of the variables in
the exit test cannot be described in termms of the values at the top of
the loop. In this case, we will have to abandon the top-of-the-loop
bindings and state an assertion like:

4k > 1 s.t. ~q(xk) Vv~ s(x})

where the primed x signifies the value of Xx upon entry to the
test node s(x) , in the middle of the k-th iteration of the loop.
All we are really doing is delaying the analysis of the behavior of
x}'(until we actually try to prove the assertion true. This is
appropriate, since we may find that the stronger theorem

Ik >1 s.t. ~q(xk)

is true, or we may find that the flow graph for the loop (and hence
the termination assertion) is campletely changed during the information-
gathering and proving process described in Chapter 4. [A simple
multiple-exit locp is in Appendix A, Example b.]

while assertions such as those above can be mechanically
generated from any loop, it is in general an unsolvable problem to
prove that the assertions are true. However, a small variety of
techniques based on monctonic expressions, finite sets, and searches
can prove the termination of most loops encountered ip practical

programs. Also, this strategy of genmerating a k... assertion

Chapter 3. 1oop Termination

sometimes allows a proof system to stat: that a loop definitely never
terminates. If the final 1 :=i+l were left out of the loop:

while A[i] >0 do
begin

i:=i+1

end
and no other statements inside the loop changed the value of i or
A[i] , then the loop termination assertion,

Ik >1 s.t. Adi]l <o

could re shown to be invariant over k , and the quantifier dropped:
Ali] <o
If this assertion is true, the loop terminates irmediately; if it is
false, the loop never terminates.
The next chapter discusses proofs of the mechanically generated
semantic error and loop termination assertions. You may want to

review Appendix A, Example 1, at this point.

~O

Chapter 4. Proofs

This chapter is the heart of the thesis; it describes an algorithm
for examining the nodes of a flow graph in forward topological order
(detailed in Chapter 1), and at each node {1) trying to prove all lts
entry assertions, (2) performing extra processing for 1O0OPEAD and
TEST nodes, and (3) developing the given information for its exit
arcs (to be used in subsequent proofs). In trying to prove an assertion,
there can be five answers: a) true; Db) false; c) maybe, but more
information will be known later; d) maybe, but a refinement of the
given information is available; e) or juet plain maybe. In the last
case, the user will have to decide if the program contains a bug or if
the proof system just isn't powerful enough.

When a LOOPMEAD node is encountered, & first pass is made through
all of the nodes in the loop gathering recurrence relations about how
the values of the variables at the beginning of the ktlst iteration
are related to values at the beginning of the k-th iteration. Then an
induction routine tries o describe the set of values each variable
takes on during all iterations. Finally, a second pass 1s made through
the loop, proving assertions and processing nodes in the normal way.
When a TEST node is encountered,. an attempt is made to elide the test:
to prove that along some entry path(s), the test is either always true
or always false. If such a path is found, then it is separated fram
other paths [perhaps causing node splitting), and re-routed around
the test. The topology of the flow graph is then re-analyzed. This
sametimes has the effect of mechanically synthesizing an appropriste
lexinographic ordering on & pair of variables, when 2 single loop is
changed into a pair of nested loops.

29

Chapter L.1. Proofs

After the entry assertions and the node itself have been processed,
the new given information for the exit arcs is synthesized. This
synthesis involves merging the entry given information, the entry
assertions, and the results of tests, then modifying this information
to reflect any assignments inside the node.

There is no backtracking in the node processing algorithm, but
some nodes are visited more than once: a) Since two passes are made
through each loop, a node inside a nest of n loops will be visited 2"
times, although only n+l of these visits will do any work. b) If a
test is elided, the graph is re-analyzed and re-processed from the
beginning of the outermost loop containing that test.

The notation " —¢ " is introduced tc specify an initial subset of

an ordered set. [See Appendix B for a summary of the procedure for

procassing nodes. } ®

Given a modified flow graph with assertions attached, as described
in Chapters 1-3, we will now process the nodes one at a time, proving
v assertions and developing information for the proofs at later nodes.
Starting with the graph for the outermost procedure, we examine each node

in topological order, performing the following operations on it as we go.

1. Prove Assertions

First, we try to prove the assertions on the entry arc(s). If
the node is a LOOPHEAD ..ode, we temporarily ignore the assertions on
the latchback arc(s), and just treat the initial entry arc(s). Each
arc has attached to it two sets of information: the given information
developed on exit from the predecessor node, and the assertions to be

proved. (The given information for START and FPROCEDURE nodes is null.)

30

Chapter 4.1. Pruofs

We simply call a theorem prover for each assertion on an arc, asking it
to prove

glven > assertions .
The possible answers true, false, and maybe are explained in detail

below:

a) If the answer is true, then we mark the assertion true and

never bother proving it again.

b) If the answer is false, then the program contains a definite
error. At this point, we can state to the user that the assertiom
was false and go on, but we can often be more helpful than that.
Firet, the theorem prover may have supplied a counterexample, a set
of values for program variables which make the assertion false. In
this case, we tell the user the counterexample. Second, a false
assertion may be an indication of an error much earlier in the program,
§0 it would be helpful (but entirely optional) for us to "push back"
the assertion as far as possible toward the start of the program. In
moving such false assertions toward the start of the program, we may
find related assertions moved to a common point from many different
nodes of the program. In this case, we can give a single error message,
instead of "discovering" the same bug in, say, three different places.
To the extent that this merging of related or identical false assertions
is successful, we also guide the user to the most appropriate place in
the program to fix the error. If an assertion is false on the very
first iteration of a loop, then we may be able to move it outside of the
loop entirely, thus directly indicating an error in loop initialization,
not (necessarily) in the inductive properties of the loop. [See
Appendix A, Examples 1 and 2.] Any false assertions which are pushed

31

Chapter L.1. Proofs

all the way back to a START or PROCEDURE node represent entry
restrictions for the whole routine, and should be both documented

and explicitly tested. Thus, although this movemen’ of false assertiomns
is not logically required, it enables our system to encourage a
programming style which includes explicit, executable tests for all
entry conditions, perhaps coupled with the printing of a user's error
message and the returning of an "undefined »ver the given inputs" value
for the result of a function. Alternately, we may encourage & style
which e*ends the meaning of a procedure to include all possible inputs,
thus removing the restrictions. 1In either case, the user is encouraged
to make his program more reliable without his engaging in a tedlous and

often incamplete analysis of degenerate cases.

¢) If the answer from the theorem prover is maybe, but we are on
the first, information-gathering pass around a loop (using dummy bindings
of variables), then we simply reserve judgment until the second pass.
It would be possible to attempt no theorem proving at all during the
first pass through a loop, but that has the general effect of delaying
the discovery of information and lemmas which are useful in analyczing
the loop. 8o, &s & somewhat arbitrary choice, we try proving all
assertions on the first pass through a loop, d.roppiﬁg ,";hose for which

we are successful, and trying again on the second pass for the others.

d) If the answer from the theorem prover is maybe, but the given
information has come from a merging of severaul different paths and is
marked "a possibly useful refinement of this information is available”,
then we can break the proof down into several cases, for different

paths leading to the node being processed. A "refinement" mark is

32

Chapter 4.1. Proofs

A B A B
i>9 i>1n i>9 i>1n
c C c?
i>9 1>9 1i>1
(Refinement)
D D D!
1>9 i29 i>n
{Refinement) H
|
if10 1410,
TN ¢
4
i =10 ifg1C
E ¥
E F
Figure L.la. At node C, the Figure 4.1b. Because the
two relutlons about 1 are refinement is useful at
merged by taking the one the test, nodes C and D
implied by both, the weaker: have been split to
(1>11) > (1 >9) and separate the two paths.
(1>9) 2 ((1>9 . The dotted arrow indicates
the subsequent elision of
the test.

Figure 4.1. Example of node splitting to separate paths associated
with a useful refinement of given information.

Chapter 4.2. Proofs

created wher two arcs in the flow graph merge and they contain different
given information, as described in detail later in this chapter. If a
refinement of the given information exists, and we can prove the
assertion in question conclusively true or false for some of the cases
in the refinemert, then we make separate paths for those cases in the
flow graph, possibly maeking copies of some nodes, as shown in

Figure 4.1. [Also see Appendix A, Examples 8 and 10.]

e) If the answer from the theorem prover is maybe, then either
the program contains an error or our proof system isn't good enough

to discover that the theorem is in fact true.

We have covered the five cases involved in proving assertions on

entry arcs. We now look at the processing of the node itself.

?a. LOOPHEAD Nodes

If we are examining a LOOPHEAD n:de, then we have Just
reached the beginning of a loop. To prove the various assertions
inside the loop, we need to synthesirze the ranges of possible values
that all variables can take on in the body of the loop. Essentially,
if we can describe the complete set of values that a variable takes on
at the loophead node, be it the first iteration or the k-th, then we are
in a good position to prove all of the assertions inside the loop which
depend on this set of values.

Our method for discovering the ranges of variables in a loop is
to take one pass through the nodes in the loop symbolically developing
the value of each variable after one iteration of the loop in terms of

the value of all variables at the beginning of that iteration. For

3k

Chapter 4.2. Proofs

example, starting with the symbolic bindings (2) in Figure 4.2, ome

pess through the loop body gives the following recurrence relations:

(3) i £ 20 A
1!&1 = 1k+11 A
der = dtt A
"1 T "k

W2 then feed these induction relations and the set of initial entry
relations (1) to an induction routine, which synthesizes the camplete
set of values that each variable takes on at the loophead node. The

synthesized sets of values for i , j , and n at tkhe LODOPHEAD node

would then be:

(&) i, #w A 1) <A
<3 oA
n = io'l ’
where i,) represents the value of 1 at the READ statement. Note

that it is wrong to deduce that
i <111

at the LOOBEAD node. This is only true after going around the loop
one or more times, but is not true on the filrst iteration if the value
read in for i 1is, say, 347 . As discussed later in this chapter,
the relations for 1 and j would actually be marked "a refinement
exists", so that the two cases of first iteration and subsequent ones
could be distinguished later if necessary. The details of the loop

induction routine will be discussed later in this chapter.

35

Chapter 4.2. Proofs

{1) entry relations
ifwa
d =0 A
n=1i-1

(3) recurrence

(2) symbolic bindings relations

1k+l =1

Iyl = Iy

nk_'_l=n

(4) synthesized %
range of values

Figure L.2. Sample loop for showing loop induction informetion.

Chapter L.2. Proofs

After the initial pass around the loop and call of the induction
routine, we attach the synthesized relationships and set of variable
values to the exit arc of the LOOFHEAD node as given information for
subsequent nodes. We than take a second pess around the loop,
processing nodes and proving assertions in the normal way, proving
the assertions on the latchback arcs just before processing nodes
which topologically follow the loop. [For examples of loop processing,

see Appendix A, Examples 1, 7, 9, and 10.]

2b. TEST Nodes

Tf the node we are examining is a TEST node, then we try to elide
the test. We check to see if ihe test is always true or always false
along some incoming path by meking assertions out of the test and its
negation and trying to prove ti:ese assertions. Our normal refinement
and path-separating mechanism described above will then separate out
any incoming path for which the test can be elided. If 50, we re-route
that path to the appropriate true or false exit node. This re-routing
may change the structure of the loops in the program, either creating
new 1loops [example below and Appendix A, Example 8] or destroying an
existing loop [Appendix A, Example 10], so we must re-analyze the
ctructure of the program, as described in Chapter 1. Actually, we
only need to re-analyze starting with the outermost loop containing
the re-routed are. After the re-structuring, we start over at that
outermmost loop, gathering information and proving assertions. This
elision of redundant tests is an important tool for separating

loop-termination issues. For example, in the program:

Chapter L4.2. Proofs

while p £ A do
if info(q) > info (p) then q :=1ink(q)
else p :=1ink(p);

sametimes we make progress toward the end of the 1list P , and sometimes
we don't. We can see in the flow diagram, Figure 4.3, that after
setting gq:=1link(q) , the test p £ A is always true since p 1is

unchanged, so we can elide it, giving the program:

while p £ A do

begin
while info(q) > info(p) do
:=1link(q);
P :=link(p)
d;

In this modified program, the two loop termination issues are
separated: 1t is now fairly easy to prove that the outer loop
terminates (if the inner loop dces and assuming that we have an
appropriate model of single-linked lists), and the inner loop may

or may not terminate, depending on what else we know about q,

info(q) , and info(p) . In some sense, the effect of our creating
two nested loops 1s to synthesize an appropriate lexicographic ordering

on (p,q) pairs.

Chapter ..2. Proofs

¥
info(q) > info(p)

P :=link(p)

[a:=1ink(q)

— |

Figure L.5. An example of eliding a test and thus changing one

loop to two nested loops, separating the termination

issues, and synthesizing a lexicographic ordering
on p and q .

39

Chapter L4.3. Proofs

3. Develop Given Information for Exit Arcs

Before leaving a node and going on to process the next one, we
must attach the appropriate given information to all of the node's
exit arcs. We synthesize this by merging the given information from
the node's entry arcs, adding the assertions on those arcs (the
assertions must be true or the program will terminate uncleanly at
that node and never traverse the exit arcs), and modifying everything
to reflect any assigmments within the node. Also, if the node is a
TEST node, we add the tested condition and its negation to the true
and false exit arcs respectively.

Simple as the preceding paragraph may sound, there are gcme
very camplicated issues involved in this step. The first complication
arises when a node has multiple entry arcs with different given
information, as in Figure L.4. We could simply use the disjunction
of the two cases for the exit arec:

(1210 A m=1) v (1>11 A m=0)
but this has the drawback that all proofs based on this information
will have to consider two separate cases. Since we would be creating
multiple cases whenever two ur more arcs merge in the program, we
can be faced with 2" cases after n merges, as in Figure k4.5,
vwhere the given information on the exit arc for C includes

((AAd1=2Am=L) Vv (~AA1=1Am=1)] A

(BAi'=3Am =9AJ=5) v (~BAJ=TAL"=1iAM =m)] .
This is an unwieldy premise for proving a later assertion like
i* >0 ,
where the only relevant information is that

i'*'=1,2, 0or 3

ko

Chapter L.3. Proo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>