
PRB-233 045

PROVING THAT COMPUTER PROGRAMS
TERMINATE CLEANLY

Richard L. Sites

Stanford University

Stanford, California

May 1974

DISTRIBUTED BY:

National Technical informationService

BIBLIOGRAPHIC DATA |) Report No. 2

SRN Co-7h 118 PB 233 045
PROVING T.{AT COMPUTER J OGRAMS TERMINATE CLEANLY May 1974

Richard Site > STAN-CS-74=-418

Computer Science Department IT Comract/Cram No

12. Sponsoeing Organization Name and Address 13. Type of Report & Period

IBM Corporation Covered
Thomas J. Watson Research Center technical, May 1974

Arkon Helghts No Nk NS QH

V6. Datracts

A system of techniques is presented for proving mechanically that a computer
program terminates cleanly. In this paper, clean termination means that the
program has no infi ite loops and no semantic errors = no undefined variables,
no subscripts out of range, no overflows on a given computer, etc. The techniques
are discussed in terms of programs expressed as flow charts, and they have wide
application to high-level languages.

The work described here complements work done on program correctness, differing
particularly by not requiring a description of the correctness properties of a
program and by treating the running of programs on machines with finite-range
arithmetic. |

« Key Words and Document Analysis. 17e. Descriptors

7%. Kemifiers/Open-Ended Terms

Reproduced by

NATIONAL TECHNICAL

INFORMATION SERVICE
U S Department of Commarce

17¢. COSAT! Field /Group Springfield VA 22151

approved for public release; distribution | “BNC.
unlim! ted. , pce

FORM NTIS (REY. 3A THIS FORM MAY BE REPRODUCED VICCUM-OC 14952-572
:

Dedication

This thesis is dedicated to a certain place in a cow pasture

behind the Stanford campus; & Hill without whom this thesis would

never have been written. May all schools have the foresight to

preserve such places for the loct souls who will need them.

Richard L. Sitec

Dedicated January ll, 1973

; FF OF

Acknowledgments

The single most important factor in the completion of this thesis

has been Don Knuth's willingness to read and extensively annotate

early drafts of this and related papers. He has been such an outstanding
thesis advisor for me that I could enjoy doing another thesis

under him, just so I could learn how to be a good thesis advisor myself.

I aiso am grateful for the support of Bob Floyd and Ben Wegbreit on

my reading cimmit<ee.

Financial assistance for the most difficult year of my thesis

work was provided by the Fannie and John Hertz Foundation, and was

sffered Tor subsequent years in spite of my progress reports; I thank

the “sundation for its long-range view and particularly for alleviating

sne of the stresses of completing a taesis. I also thank Hewlett-Packard,

Inc. for its indirect support during the final year of this work.

The ;revious work of others wham I drew upon for technical suppcrt

is acknowledged in reterances throughout the text.

Jim Dulev, Don Knuth, John Walters, Phyllis Winkler, and represen-

tatives of the Fannie and John Hertz Foundation provided continuing

moral support. 1 thank them all.

Finally, heartfelt thanks to Susan Phoebe Watts, whose encouragement

started my pursuit of a Ph.D. in the first place. May che find similar

encouragement .

iv

Table of Contents

Chapter O. Introduction 4.0.0... . 1

Chapter 1. Flow Graph Processing + « « « « o « . 7

Chapter 2. Generation of Semantic Error Assertions 17

Chapter 5. (Generation of Loop Termination Assertions 23

Chapter hb. Proofs . . . « vv vv vv uv ve 29

Chapter 5. Related Literature 5k

Chapter ©. Extensions and Related Topics 57

Chapter 7. Conclusion « . oo... vv vv... 65

Appendix A. Examples . . + +. «4 4 4 4 4 hee ee ee ee 66

King's Examples 1-9 6&9

McCarthy's 91 Function 121

Appendix B. Node Visiting Algorithm from Chapter 4 131

Bibliography ©. LL Ls ee eee se eee. 12

Index and Notation © © «©. 0 0. 0 vy ee eee 145

v

Note to the reader

I have tried to structure this thesis so that it can be read at

many different levels of detail. You have already passed the first

level, the title. I have tried to write the introductory chapter so

that you can see what the rest of the thesis is and is nct about and

how this work is different fram others. Hopefully, after reading the

introduction, you will have enough information to decide whether to

read the rect. At the third level of detail, euch chapter begins with

a summary of its content. If your interests are very specific, this

srould allow you to skip the bulk of some chapters. The chapter

cummariec end with the symbol ® . The fourth level is Appendix A.

211 of the example: in it should be readable if you have read just the

chapter summaricc. The rest of the thesis is at the fifth levei of

detail. For yet more detail, read a.l the references, their references,

etc. /Proof of termination of the last step 1s left to you.)

For a quick reading, I would suggest the following order:

Chapter 3, Example 1 in Appendix. A, all the chapter surmaries, then

Lxample lo in Appendix A. For reference purposes, On pages 138-139

there 18 an index, and on page (£-68 there is a sumrary of the points

covered in the Appendix A examples.

| vi

Chapter O. Introduction

This thesis discusses techniques for proving that a computer

Program terminates cleanly -- that it always terminates and does so

without encourtering any semantic errors -- overflows, out-of-range

subscripts, etc. In contrast with others' work om rigorous proofs of

program correctness, this work only tangentially examines what a

program does; the empharis is on proving that whatever it does,

a program always terminates normally. ®

Proof of clean termination is not an end in itself. Rather, it

is u well-defined subgoal in convincing oneself that a program works

reliably. Proving that a program does not "blow up" in the middle

does not in any way say that the program correctly produces useful

results; it just says that whatever the program does, it will eventually

come tc a normal end. For a large class of programs, it is useful to

run & set of test cases to demonstrate that the program goes through

its intended motions for at least those test cases, then to try to

prove that the program terminates cleanly in order to discover anomalies

that the test cases missed. The proof will pick up problems like:

(1) Degenerate cases of some data structure which the program did

not anticipate and which result in, say, the use of a zero

subscript in an array whose legal bounds are 1:100 .

(2) Degenerate cases where some loop exits before iterating at all,

leaving some variables undefined (never assigned to) on exit.

(3) A programner's assumption that, say, N is always positive, when |
in fact there is not an explicit test for this, and the program

loops indefinitely if § =0 .

1

Chapuer 0. Introduction

(4) Use of uninitialized variables, which could make the program
non-deterministic.

(5) Calculations on a small (say 16-bit) machine which could easily

produce integer overflows and nence invalid results.

For some programs. this process is not very useful. For example,

in 2 matrix inversion routine almost every arithmetic operation could

prodv..e¢ ... overflow or underflow, so the attempted proof of clean

teranina.ion will fail miserably, flagging almost every statement as

a possible: place for an unclean termination.

For other programs, proof of clean termination may actually be an

e*. in itself, as in certain real-time proysrams or operating system

subsyctems, where it may be all right for the program (or subsystem)

to lve wrong answers occasionally, but it would be disastrous if

the program got in an infinite loop and impacted the operation of the

rest of the system.

Proof of clean termination is a valuable tool because it is a

well-defined problem which lends itself to being done almost entirely

mechanically, with very little help from a ucer. Unlike rigorous

proofs of correctness, which require the user to supply a cerefully-

constructed cet of acsertions about the program's behavior, proofs of

Clean termination can use mechanically generated assertions: based

on each operator in the program, it ic possible to synthesize a set of

assertions about semantic errors, and based on some flow analysis of

the program, it is possible to synthesize a set of assertions stating

that each loop terminates. Attempting to prove these assertions then

usually has the effect of finding that some of them aren't true and

Chapter 0. introduction

hence suggesting to the user bugs to be fixed or an appropriate set

of restrictions for the program's data. The user can then either change

the program, or add tests to the program to detect data that can't be

handled (and if detected, return a clean indication or message), or run

the program as it stands, knowing that it will blow up in a possibly

obscure way for some sets of inputs.

In contrast to work on algorithm correctness, the system described

here deals expiicitly with programs which fail because of finite-range

arithmetic. In this regard, see London's certification of the

algorithm TREESORT3 (London 1970b], in which he states "... it is

possible and appropriate to certify algorithms with a proof of

correctness. This certification would be in addition to, or in many

cases instead of, the usual certification [by testing)", and Sites's

certification of the program TREESORT) [Sites 1974], in which he notes

that the program can fail to sort large arrays because of an overflow

in the subscript calculations, in spite of London's proof of correctness.

The same issue is pointed out in London's reply to Redish (Redish 1971].

As minicomputers and microcomputers with small word lengths proliferate,

the restrictions of finite-range arithmetic will become more important.

In contrast to work on partial correctness, the system described

here deals explicitly with proof of termination. In this regard, see

King's proof of partial correctness of a simple division program

[King 1969], and the same Example 2 in Appendix A of this thesis, in

which it ig noted that King's proof of partial correctness includes

the case of division by zero, for which the program loops indefinitely.

At this point, I will summarize the major limitations and results

of the work described in subsequent chapters.

>

Chapter 0. Introduction

Limitations:

(1) There is no computer implementation of the techniques.

(2) Calculations with floating-point numbers are not handled,
although Chapter € includes scme discassion of the problems that would

be involved.

(3) Recursion and asynchronous events are not handled.

(4) The system in fact requires a minimal amount of program

annotation to be supplied by the user -- descriptions of the bounds

of arrays passed Lo» procedures, and descriptions of the intended

structuring of linked lists and trees.

Results:

{1) The analysic of a program is based on an algorithm for the

forward propagation of information while visiting the nodes of a

program's flow raph in a fixed order. The last time a node is visited,

all the ascertions associated with it are either proved, disproved, or

the theorem prover gives up. Proved assertions need not concern the

user, disproved assertions represent definite bugs or hidden restric-

tions, and the remaining assertions represent possible problems on

which ‘he user should focus hi. attention. |
2) A second result is a set of techniques for untangling loops |

and eliding tests, an extension of the interval analysis and compiler

optimization techniques of Cocke, Allen, et al. [Allen 1970] [Allen and

Cocke 1972]. The technique for finding paths along which a test can

be elided is important in the automatic synthesis of lexicographic

orderings for proving termination of complex loops.

(5) Techniques are presented for proving the temination of

some loops which do not lend themselves to mapping into monotonically

Chapter O. Introduction

decreasing sequences, such as some search-for-equality loops and

circularly-linked-1ist loops.

(4) Procedures, parameters (both name and value), read statements,

and arrays are all explicitly treated.

(5) Specific programs which have been proved to terminate cleanly

include TREESORT3 [Fioyd 1964] [London 1970bj [Sites 1974]; SELECT,

an algorithm for finding medians [Floyd and Rivest 1973] [Sites 197k];

an iterative version of McCarthy's 91 function [Manna et al. 1972];

and some of King's examples {King 1969] (see Examples 1-0 in

Appendix A). Hand simulation of these proof techniques uncovered a

hidden restriction in TREESORT3 and a simple bug in Knuth's

Algorithm 2.%.7A [Knuth 1973b]. Preliminary work on this thesis

included hand simulation of some of the techniques on & wide variety

of programs: a list reversal routine, a symbol tuble search routine,

Knuth's program for Dijkstra's inversion problem [Knuth 1973%a],

a floating-point calculation [Fritsch et al. 1973], a hash cearch

routine [Brent 1973), and a list move routine [Reingold 19731.

In brief, proof of clean termination is a mechanical process,

requiring little effort from the human user, vhich can do much of the

tedious work of examining a program's bekavior in all possible degenerate

cases, for all possible sets of input data, and either report to the user

an assurance that the program is free of an important class of errors,

or report pieces of the program or sets of inputs which may fail. This

process can be applied to programs for which we have no way of even

expressing what it means for the program to be rigorously '"correct”.

p)

Chapter O. Introduction

BUGS BUNNY by Heimdahi& Seoffel

HEY, BUGS, WHERE'S | THIS DOESNT LOOK IT WOULD TAKE

mates| lA | | (EEE ||BRE

A oONENI} aS, Sah7y | ~z BN ~

6

Chapter 1. Flow Graph Processing

This chap-er discusses preliminary modifications to the flow graph

of a program to make its loop structure more tractable. The modifications

consis: of putting all loops in leading test form and inserting a

"loophead" node at the beginning of each loop. Coples may be made of

same nodes in the flow graph, either because of node splitting during

interval analysis: {Allen and Cocke 1972], or because of permuting

the nodes in a loop to bring an exit test to the front of the loop.

The nodes in the modified flow graph are then ordered so that when

a node is encountered in subsequent processing, all of its

predecessors (and any loops containirz them but not the current node) ~

«111 have already been processed.

For programs which have already been put in while format (perhaps

using techniques described in [Ashcroft and Manna 1972]), the processing

described in this chapter can be skipped, except for the insertion

of "loophead"” nodes and ordering the nodes.
®

In this paper, we shall view all programs as flow graphs consisting

of nodes and directed arcs. Our flow graphs have seven kinds of nodes:

binary test, assignment, START, HALT, PROCEDURE, RETURN, and CALL.

The last three aren't strictly necessary, but they make the discussion

of subroutines easier. All high-level flow-of-control constructs are

mapped into tests and assignments. Thus, Algol 60 FOR loops are mapped

into leading tests and explicit assignments to the control variable,

Fortran DO loops are mapped into following tests, and CASE statements

are mapped into a series of tests (inctead of a single multiple-exit

1

Chapter 1. Flow Graphs |

test). An eighth kind of node, the LOOFHEAD node, will be discussed

a little later.

We shall assume that, in forming the flow graph, any necessary

variable renaming has been done so that all names are unique and we

do not have to deal with scope rules. Blocks and scope rules would

have to be handled in a more complicated way if the system described

here were to be redesigned to analyze recursive procedures. For our

purposes, input/output statements could be modeled in the flow graph

with assignments to/from the variables read or written. Complicated

input/output semantics can be modeled with assignments to auxiliary

variables representing, for example, device position.

The nodes in our flow graphs are connected by directed arcs. Test

nodes have two arcs leaving them (exit arcs); HALT and RETURN nodes

have no exit arcs; all other nodes have one exit arc. START and

PROCEDURE nodes have no entry arcs; all other nodes have one Or more

entry arcs.

A complete flow graph for a program and its sub-procedures consists

of a set of disjoint graphs, one for each procedure or main program.

The graph for the main program contains exactly one START and one HALT

node; the graphs for the sub-procedures each contain ane PROCEDURE

and one RETURN node. The limitation to a single RETURN node is

somewhat arbitrary, but allows us to describe one set of exit conditions

for a procedure, instead of describing a different set of conditions

for each RETURN.

We accept general flow graphs of the type describea above as

input; but to find, analyze, and eventually prove the termination of

the loops in a program, we need to modify the input flow graph to

8

Chapter 1. Flow Graphs

put it in a more constrained form. The operations described below

are to be performed on each of the disjoint graphs, representing one

procedure each.

First, we perform interval analysis with node splitting [Allen 1970]

[Allen and Cocke 1972], [Cocke and Schwartz 1970], which forces each

loop in the graph to have exactly one entry node, so that we can analyze

the manipulations within a loop in terms of unique initial entry

conditions. A graph with multiple-entry loops, such as the one in

Figure 1.1 is changed into a reducible graph by node splitting, which

makes coples of some of the nodes of a graph so that the new graph

has fewer multiple-entry loops. Node splitting would change the graph

in Figure 1.1 to that in Figure 1.2.

Arcs which go from a node within an interval to the interval head

node are called latchback arcs; they represent branches back to the

beginning of a loop. In any interval which has latchback arcs and

whose interval head is not already a loophead node, we now replace the

interval head node, A , with a pair of nodes: a LOOPHEAD node and A .

We reroute A's original entry arcs to the LOOPHEAD node, add an arc

from the LOOPHEAD to A , and leave all of A's exit arcs intact, as

in Figure 1.3. The LOOFHEAD node serves to identify the top (beginning)

of a loop and provides us a canvenient place to attach loop termination

assertions.

In analyzing a loop, we are interested both in its branches back

to the top of the loop (its latchback arcs) and in its loop exit arcs,

which cannot lead back to the LOOPHEAD node (without going through

the LOOBEAD node of a containing loop). We are interested in the loop

9

Chapter 1. Flow Graphs

1

(a)
L i

~~ 3 — 1

HONEEBON
 — ——d

I 7

NO| |

©
L_-_ J |

Figure 1.1. An irreducible graph, with rectangles showing its

partition into intervals. The loop BC has multiple |

entry nodes, making its analysis difficult.

1”

Chapter 1. Flow Graphs

/ ®)
/

{ (2,
A

7)
g

m

RON
|
o} |

L__]

Figure 1.2. Node split version of the graph in Figure 1.1, in which

the loop BC now has a single entry node, C .

11

Chapter 1. Flow Graphs

[a hal 4

JRO
|

| /
JOO (5RT—/ |

NO O

© (S)
|

Figure l1l.%5a. A flow graph Figure 1.3b. The same flcw |
with its two intervals graph after inserting |

indicated by dashed LOOFHEAD nodes. |
lines.

Chapter 1. Flow Graphs

exit arcs because one way of proving that the loop terminates is to

prove that an exit arc must eventually be taken as the program executes.

We may find that two or more loops in a program have a common

beginning node and interval analysis indicated only a single loop,

as in Figure l.lka. To detect and clear up this situation, we in

general need to modify each loop so that every path around the loop

goee through an exit test (a test node which has a loop exit arc

ieaving it). We make a separate, contained, loop out of any paths

which do not exit directly, as in Figure 1l.4b. More formally, if

breaking one arc leaving a TEST node breaks the only path from that

node which eventually latches back to the top of the loop, then the

other arc .eaving the TEST node is a loop exit arc and that TEST node

is an exit test. [Also see Appendix A, Example 10.]

In analyzing the effects of loops (described in Chapter L), we

may find it convenient to permute the nodes inside each loop (Figure 1.5)

so that all the exit tests are at the tcp of the loop, thus making it

easier to consider the degenerate case of zero iterations. If a loop

has multiple exit tests, this modification is not always possible, so

the best we can do is permute the loop 80 that one ¢f the exit tests

is at the top. [See Appendix A, Examples L, 7, and 10.]

One final step in the preliminary processing of the flow graphs

is to order the nodes so that when we later examine them one at a time

to gather information and prove accertions, all of the appropriate

predecessor nodes will have been already examined. We use the following

rules to order the nodes:

13

Chapter 1. Flow Graphs

| |

| oO |]

| : | = |(8) (©) latchback . 5 * latch-
| arc . (3) . ; back. N . . arc

| L © . : :
| OJON

| latchback | Loop exit EN A :
| arcs (6) arc : (>) :

| | loop exitarc

©

Figure l.ka. A single loop Figure 1.4b. The same graph

as seen by interval after forcing each path

analysis. The interval around a loop to go through

is indicated by dashed an exit test. The two

lines and may contain termination issues of getting

more nodes below E . to node C and getting to

node E are separated now

into two different loops,

| indicated by their loophead

nodes and by dotted lines.

Note that, in contrast to

intervals, node E and its

successors are not in the

| | loops. [See also Appendix A,

Example 10.]

Chapter 1. Flow Graphs

A

B

exit

exit

Figure 1.5a. A loop without Figure 1.5b. The same loop

leading exit tests. permuted so that the exit

test is at the top.

Chapter 1. Flow Graphs

(1) Reduce each loop in the program to a single node.

(2) Topologically sort [Knuth 1973b, p. 258] the nodes in the reduced

graph, using the directed arcs as the ordering.

(2) For each node in the reduced graph which represents a loop,

topologically sort the nodes within the loop, ignoring all

latchback arcs, then insert these nodes in the main topological

ordering as a single group, sO that all the nodes in the loop

precede any nodes which followed the loop in the reduced ordering.

(4) Apply Step 2 until all loops have been expanded.

A discussion of this ordering and its properties appears in

[Earnest et al. 1972].

16

Chapter 2. Generation of Semantic Error Assertions

This chapter discusses the generation of assertions which state

that "no semantic error occurs if the following node is executed".

This is a very local, operator-driven process. These assertions are

attached to each of the entry ares for the node, as in Floyd's original

description of the inductive assertion technique [Floyd 1967].

oemantic errors occur whenever an operation gives an undefined result ;

as specified in the language definition or in a set cf implementation

restrictions for a particular compiler/computer combination. The

examples are given in terms of Algol 60 programs running on a machine

which gives undefined results for underflow/overflow, assigmment or

any other use of uninitialized values, subscripts out of range, etc.

The machine is also assumed to perform mathematically correct

comparisons of, say, i and Jj even when J-i would overflow/underflow.

Machines (such as the CDC 6600) which violate this last assumption

are discussed below, and in [Sites 197k].

Assertion generation for value parameters is straightforward,

but name parameters are handled strictly according to the copy rule,

making & separate copy of a procedure for each call.

The symbols Lin and 1Imax ore introduced as notations for

the smallest and largest representable integers on the target machine.

The symbol @ is introduced to denote the undefined value. . |
After forming a modified flow graph, as described in Chapter 1,

we attach to its arcs various assertions stating that the operations

in each node are well-defined. For each node in the flow graph, we

Chapter 2. Semantic Errors

mechanically form a set of assertions describing restrictions on the

program variables which must be true upon entry to the node in order

for each operation in the node to produce well-defined results. We

then attach this set of assertions to each of the entry arcs for that

node.

In most of the examples which follow, we shall assume that

programs are written in Algol €0 and are run on a compiler/computer

system which has the following implementation restrictions.

1. No real numbers.

2. Integer overflow. The binary operations i+j , i-J, ixj,

and 1+), give the mathematically correct resuit if and only

if 1 and J have defined values and the result is in the range

Isn to I ax inclusive; otherwise the result is undefined.

Division by zero produces a result outside of the range Lin

to I ax . It is assumed that Lin <0 and Lax >0 . As

an example, for the PDP-8 with 12-bit 2's complement integer

arithmetic, I in = -2048 , I ox = +2047 .
A program can be analyzed using only symbolic values for

Lin and Lox » in which case we may be able to state maximum

and minimum values for them, respectively, drawn fram the values

of the smallest and largest integer constants in the program.

Alternately, a program can be analyzed with only lnose bounds

on Lin and I ax s Such as Lin S -1200 , Lax = 1000 .
This will save some work in checking that the small integer

constants often encountered in programs are within thc representable

range. Alternately, the exact values of Loin and IBAX for some

18

Chapter 2. Semantic Errors

varticular machine can be supplied, in order to answer the

question, "Will tlLis program generate any overflows when run on

this particular machine?" Most of the examples below assume

Tin S «1000 and I ax > 1000 .

3. Representable constants. All integer constants must be in the

renge I. to 1 ax inclusive.

Lh. No use of uninitialized variables, including simple assigmments.

No right-hand-side expression is allowed to use an uninitialized

variable. In particular, the operation 1i:=J will assign the

value of Jj to i if and only if J has a defined value;

otherwise a semantic error occurs. It ls possible to write

programs which violate this restriction and still give meaningful

results, but more often a violation of this condition indicates

an error which is best caught as soon as possible.

Algol 60 semantics for local variables starting out undefined at

the beginning of a block are modelled by putting into the flow graph,

at the start of each block, special assignments of the undefined

| value, ® , to each local variable. The program proper is not allowed

| to use W .

5. Mathematically correct comparison. The relations i<j, i<j,

| i>3J, 1i>3, 1 £3, 1=J produce the proper value true

or false, even in cases where j-i would produce an overflow.

For a machine which does not have this property, such as the

CDC 6600, programs must be transformed 80 that every comparison

is done as a subtraction and a sign test. All such subtractions

will then be checked for overflow in the normal way. Two

19

Chapter 2. Semantic Errors

representations of zero are allowed if tle implementation gives

jdentical results for each.

These restrictions are in addition to those specified in the

Alzol 60 Report [Naur 1963], such as requiring each subscript to be

within the declared bounds of an array.

The examples presented here do not directly address the issues of

a program executing in a given amount of memory or a given amount of

time. The only guarantees about space and time are that both require-

ments are finite: the memory required is finite because no recursion

is allowed, and because the bounds for individual arrays are limited

by Iin and I ax ; the time required is finite if all loops are

proved ta terminate. : |

Typical assertions generated are: |

Node Assertion generated |

Afi] :=j+k JEW AKFOANT, SPST A

LFw AA Sich . (A, and A are |
the lower and upper bounds for the array A .)

1 < 3+5 LfFwAJEOANL,<5<I AL, <

5 <Ix (Since Ij, 1s assumed tobe <O,

the condition I, <5 is clearly true.)

i=] JFw. |

Afi) := A[11+1 LEw AA SISA AAI AT, <

1S Tpax AN Ipgn SARL <1 AL fw0A |

A, <1 <A - (The last two terms come from
the left-hand A[i] .)

20

Chapter 2. Semantic Errors

Standard technijues can be used 10 simplify the assertions»

including removing terms which are clearly true, removing duplicat:.

| terms, and removing terms which are implied by other terms
(1 <5 A1<8A1412 reducesto 1 <5). One way to

remove redundant terms mechanically from a set T of n tems

ic to eliminate any term for which the theorem

{T -t;} >ti

is true. ({T ty} represents the set of all terms except t, .)
In most cases, the generation of semantic error assertions is

quite straightforward, but some complications arise in handling

procedure calls. Arguments passed to value parameters are treated

like the right-hand side of an assignment statement at the roint of

call, i.e., the argument expression must be well-defined when evaluated

betore the call. In contrast, procedures with name parameters must

be handled strictly according to the copy rule, makin: a unique copy

of the procedure for each call and logically substituting the body of

the procedure for the CALL node. This use of the copy rule is one way to

reflect properly the side effects which can result from tricky use of

name parameters, but is also a reason that we do not handle recursion.

Procedures with array arguments have the problem that the

procedure does not specify the legal lower and upper bounds for

| subscripts. Either of two strategies can be adopted for generating

and proving assertions about subscripts for such arrays: symbolic

names like A, and A, can be used in all the assertions, and the

proof techniques can try to push back to the entry point of the

procedure any assertions (restrictions) which must be true on entry

Chapter 2. Semantic Errors

in order to avoid subscript range errors; alternately, the programmer

can supply an extra statement to the proof system, describing the bounds

for each such array. If the programmer has definite assumptions about

array bounds in his mind, it is better to state them to the proof |

system. Not doing so forces the system to try to synthesize equivalent |

information, a much harder process.

oo i

Chapter 3. Generation of Loop Termination Assertions

This chapter describes the generation of assertions which are true

if and only if the loops in a program terminate after a finite number of

iterations. For many practical cases, the assertions generated lend

themselves to direct proof. For loops which have obscure reasons for

termination, the assertions have equally obscure reasons for being true

(of course, in general, proving loop termination is theoretically

unsolvable; we shall not solve the halting problem here). For many |

loops which do not terminate, the corresponding assertions can be

proven definitely false and the user alertea to the bug, perhaps with a

counterexample.

The basic form of the assertions generated is, "There exists a k

such that on the k-th iteration of the loop, one of the exit arcs

will be taken." For many loops involving monotonic expressions in

their exit tests, or simple searches, or movement through a linked

list, these assertions are easy to prove. ®

Loop termination assertions are harder to generate than semantic

error assertions because the goal is much more abstract. For semantic

errors, the assertions generated are a straightforward function of the

scurce language definition and compiler/camputer implementation

restrictions. For loop termination, however, synthesizing an appropriate

assertion may well be harder than proving it true.

Generation of temination assertions can be "driven" by a variety

of goals. One technique is to insert a counter in each loop and assert

that the count is bounded; however, such a statement doesn't lend

itself? to direct proof -- having a counter doesn't give any insight

into its behavior. Another technique is to require all loops to

Chapter 3. Loop Termination

be FOR loops or PO loops in which the step and limit are evaluated

exactly once and the iteration variable cannot be changed inside the

loop; such loops terminate by definition (if a zero step is prevented).

In between these extremes, we need to find a strategy for

generating assertions which are related to the intended reasons for

loop termination that the programmer had in his mind when he wrote the

loop. Without searching for these reasons, we will have a hard time

mechanically proving the termination of subtle loops whose termination

properties may be perfectly clear to a human. In unannotated programs,

the best evidence we have for the intended termination of loops is

in thelr exit tests. For a given loop to terminate, one of its exit

tests eventually must be satisfied (i.e., branch to a loop exit arc).

Often the tests themselves present the reason for loop termination,

while sumetimes the preceding logic (which sets the values of the

variable{s) in the test) embodies the reason for termination.

For example, in a loop such as:

while £ <r do

if p(2) then 2 :=1+1

else r:=r-1

where p 1s an unspecified predicate, the exii test {! <r provides

us with the proper driving goal: prove r-f 1s monotonically

decreasing. If we try to prove that the loop terminates because

either t or r 1is monotonic, we will fall; tne relevant monotonic

expression involves both r and f and appears only in the exit test.

As a second example, consider the loop:

oh

Chapter 3. Loop Termination

comment this program is a subset of an example in {Ashcroft and

Manna 1972];

t :=trues

while t do

begin

if q(x) then

begin

x :=b(x);

if s(x) then

x :=c(x)

else begin

X :=1(x)3

t :-false

end

end

else begin

X i= (x);

t := false

znd

end.

Here, the exit test of t offers no direct enlightenment, but as we

shall see in Chapter 4, the flow graph for this loop will be mechanically

modifed by test elision so that the manipulations of t are ignored,

the assignments +t :=false are immediately followed by branches out of

the loop, and the assigmment x :=c(x) 1s immediately followed by a

branch to the test if g(x) ... as in this modified program:

25

Chapter 5. Loop Termination

loop: if q(x) then

begin

Xx :=b(x);

if s(x) then

begin

x 1=c(x);

goto loop

end

else begin

x :=£(x);

goto exit

end

end

else begin

Xx :=g(x);

goto exit

end
exit: ...

Thus q(x) and s(b(x)) become exit tests, and we are now more |

directly confronting the reasons for the loop's temination. |

For loops with leading tests, such as those we tried to form by the

manipulations described in Chapter 1, it is straightforward to generate

an assertion that there exists a k > 1 such that on the k-th

iteration of the loop, an exit arc will be taken. For the original

while t ... loop above, the assertion would be:

& >1 s.t. ~ 12%

where the subscript k indicates "the value of the variable at the

beginning of the k-th iteration," i.e., the value of a variable at the

LOOMMEAD node, before any nodes inside the loop have been executed the

k-th time. The termination assertion for the modified loop above

would be:

26 |

Chapter 3. Loop Termination

dk >1 s.t. ~q(x) v (q(x) A~s(b(x))]

Note that we describe the exit test s(x) in terms of x
the value cf x at the top of the loop, as modified by the assignment

x :=b{x) . In general, a multiple-exit loop may have exit tests which

are preceded by enough computation that the values of the variables in

the exit test cannot be described in terms of the values at the top of

the loop. In this case, we will have to abandon the top-of-the-loop

bindings and state an assertion like:

ik > 1 s.t. ~ a(x) V ~ s(x)

where the primed x signifies the value of x upon entry to the

test node s(x) , in the middle of the k-th iteration of the loop.

All we are really doing is delaying the analysis of the behavior of

Xp until we actually try to prove the assertion true. This is

appropriate, since we may find that the stronger theorem

dk >1 s.t. ~ a(x;

is true, or we may find that the flow graph for the loop (and hence

the termination assertion) is completely changed during the information-

gathering and proving process described in Chapter 4. [A simple

multiple-exit loop is in Appendix A, Example 4.]

While assertions such as those above can be mechanically

generated from any loop, it is in general an unsolvable problem to

prove that the assertions are true. However, a small variety of

techniques based on monotonic expressions, finite sets, and searches |

can prove the termination of most loops encountered in practical

programs. Also, this strategy of generating a Jk... assertion

27

Chapter 3. loop Termination |

sometimes allows a proof system to stat: that a loop definitely never

terminates. If the final 1 :=i+1l were left out of the loop:

while A[i] > 0 do

begin |

i:=1i+1

end |

and no other statements inside the loop changed the value of i or

A[i] , then the loop termination assertion,

Ik >1 s.t. Ali] <0

could te shown to be invariant over k , and the quantifier dropped: |

Ali} <0 .

If this assertion is true, the loop terminates irmediately; if it is

false, the loop never terminates. |

The next chapter discusses proofs of the mechanically generated

semantic error and loop termination assertions. You may want to |

review Appendix A, Example 1, at this point. |

Chapter 4. Proofs

This chapter is the heart of the thesis; it describes an algorithm

for examining the nodes of a flow graph in forward topological order

(detailed in Chapter 1), and at each node (1) trying to prove all its

entry assertions, (2) performing extra processing for 1OOPHEAD and

TEST nodes, and (3) developing the given information for its exit

arcs (to be used in subsequent proofs). In trying to prove an assertion,

there can be five answers: a) true; b) false; c¢) maybe, but more

information will be mown later; d) maybe, but a refinement of the

given information is available; e) or just plain maybe. In the last

case, the user will have to decide if the program contains a bug or if

the proof system just isn't powerful enough. |

when a LOOPMEAD node is encountered, & first pass is made through

all of the nodes in the loop gathering recurrence relations about how

the values of the variables at the beginning of the ktlst iteration

are related to values at the begimning of the k-th iteration. Then an

induction routine tries to describe the set of values each variable

takes on during all iterations. Finally, a second pass is made through

the loop, proving assertions and processing nodes in the normal way.

When a TEST node is encountered, an attempt is made to elide the test:

to prove that along some entry path(s), the test is either always true

or always false. If such a path is found, then it is separated from

other paths (perhaps causing node splitting), and re-routed around

the test. The topology of the flow graph is then re-analyzed. This

sametimes has the effect of mechanically synthesizing an appropriate

lexicographic ordering on a pair of variables, when a single loop is

changed into a pair of nested loops.

29

Chapter L.1. Proofs

After the entry assertions and the node itself have been processed,

the new given information for the exit arcs is synthesized. This

synthesis involves merging the entry given information, the entry

assertions, and the results of tests, then modifying this information

to reflect any assignments inside the node.

There 1s no backtracking in the node processing algorithm, but

some nodes are visited more than once: a) Since two passes are made

through each loop, a node inside a nest of n loops will be visited 2"

times, although only n+l of these visite will do any work. b) If a

test is elided, the graph is re-analyzed and re-processed from the

beginning of the outermost loop containing that test.

The notation " -—€ " is introduced tc specify an initial subset of

an ordered set. [See AppendixB for a summary of the procedure for

processing nodes.|] ?

Given a modified flow graph with assertions attached, as described

in Chapters 1-3, we will now process the nodes one at a time, proving

| assertions and developing information for the proofs at later nodes.

Starting with the graph for the outermost procedure, we examine each node

in topological order, performing the following operations on it as we go.

1. Prove Assertions

First, we try to prove the assertions on the entry arc(s). If

the node is a LOOPHEAD ..ode, we temporarily ignore the assertions on

the latchback arc(s), and just treat the initial entry arc(s). Each

arc has attached to it two sets of information: the giveninformation

developed on exit from the predecessor node, and the assertions to be

proved. (The given information for START and PROCEDURE nodes is null.)

50

Chapter 4.1. Pruofs

We simply call a theorem prover for each assertion on an arc, asking it
to prove

glven Oo assertions .

The possible answers true, false, and maybe are explained in detail
below:

a) If the answer is true, then we mark the assertion true and

never bother proving it again.

b) If the answer is false, then the program contains a definite

error. At this point, we can state to the user that the assertion

was false and go on, but we can often be more helpful than that.

First, the theorem prover may have Supplied a counterexample, a set

of values for program variables which make the assertion false. In

this case, we tell the user the counterexample. Second, a false

assertion may be an indication of an error much earlier in the program,

$> it would be helpful (but entirely optional) for us to "push back"

the assertion as far as possible toward the start of the program. 1In

moving such false assertions toward the start of the program, we may

find related assertions moved to a common point from many different

nodes of the program. In this Case, we can give a single error message,

instead of "discovering" the same bug in, say, three different places.

To the extent that this merging of related or identical false assertions

is successful, we also guide the user to the most appropriate place in

the program to fix the error. If an assertion is false on the very

first iteration of a loop, then we may be able to move it outside of the

loop entirely, thus directly indicating an error in loop initialization,
not (necessarily) in the inductive properties of the loop. [See

Appendix A, Examples 1 and 2.] Any false assertions which are pushed

31

Chapter L.1. Proofs

all the way back to a START or PROCEDURE node represent entry

restrictions for the whole routine, and should be both documented

and explicitly tested. Thus, although this movemen’ of false assertions

is not logically required, it enables our system to encourage a

programming style which includes explicit, executable tests for all

entry conditions, perhaps coupled with the printing of a user's error

message and the returning of an "undefined »ver the given inputs" value

for the result of a function. Alternately, we may encourage a style

which e*ends the meaning of a procedure to include all possible inputs,

thus removing the restrictions. In either case, the user is encouraged

to make his program more reliable without his engaging in a tedious and

often incomplete analysis of degenerate cases.

c) If the answer from the theorem prover is maybe, but we are on

the first, information-gathering pass around a loop (using dummy bindings

of variables), then we simply reserve judgment until the second pass.

It would be possible to attempt no theorem proving at all during the

first pass through a loop, but that has the general effect of delaying

the discovery of information and lemmas which are useful in analycing

the loop. So, as & somewhat arbitrary choice, we try proving all

assertions on the first pass through a loop, dropping those for which

we are successful, and trying again on the second pass for the others.

d) If the answer from the theorem prover is maybe, but the given

information has come from a merging of several different paths and is

marked "a possibly useful refinement of this information is available”,

then we can break the proof down into several cases, for different

paths leading to the node being processed. A "refinement" mark is

22

Chapter 4.1. Proofs

i>9 i>1 1>9 i>1

12>9 i>9 1>1

0 (Refinement) 0 o>
i>9 i129 i>1

(Refinement)

if 10 Ci A100,
TN |

¥

i=10 i41C

E BD a

Figure L.la. At node C, the Figure 4.1b. Because the
two relutions about 1 are refinement is useful at

merged by taking the one the test, nodes C and D

implied by both, the weaker: have been split to

(1>11) > (1 >9) and separate the two paths.
(1 >9) 2 (1 >9) . The dotted arrow indicates

the subsequent elision of

the test.

Figure 4.1. Example of node splitting to separate paths associated
with a useful refinement of given information.

r & J

Chapter 4.2. Proofs

created when two arcs in the flow graph merge and they contain different

given information, as described in detail later in this chapter. If a

: refinement of the given information exists, and we can prove the

assertion in question conclusively true or false for some of the cases

in the refinemer.t, then we make separate paths for those cases in the

flow graph, possibly making copies of some nodes, as shown in |
Figure 4.1. [Also see Appendix A, Examples 8 and 10.]

e) If the answer from the theorem prover is maybe, then either

the program contains an error or our proof system isn't good enough

to discover that the theorem is in fact true.

We have covered the five cases involved in proving assertions on

entry arcs. We now look at the processing of the node itself.

“a. LOOPHEAD Nodes

If we are examining a LOOPHEAD r:de, then we have Just

reached the beginning of a loop. To prove the various assertions

inside the loop, we need to synthesize the ranges of possible values

that all variables can take on in the body of the loop. Essentially,

if we can describe the complete set of values that a variable takes on

al the loophead node, be it the first iteration or the k-th, then we are

in a good position to prove all of the assertions inside the Joop which

depend on this set of values.

Our method for discovering the ranges of variables in a loop is

to take one pass through the nodes in the loop symbolically developing

the value of each variable after one iteration of the loop in terms of

the value of all variables at the beginning of that iteration. For

pL

Chapter L.2. Proofs

example, starting with the symbolic bindings (2) in Figure 4.2, ome

pess through the loop body gives the following recurrence relations:

(3) i, £100 A

i = 1,11 A

Jer = EAN

"etl © Px

W2 then feed these induction relations and the set of initial entry

relations (1) to an induction routine, which synthesizes the complete

set of values that each variable takes on at the loophead node. The

synthesized sets of values for 1 , j , and n at tke LOOPHEAD node

would then be:

(4) i, #w A 1) <i A

0 < J A

n = 1,-1 [)

vhere i, represents the value off 1 at the READ statement. Note

that it is wrong to deduce that

i < 111

at the LOOBEAD node. This is only true after going around the loop

one or more times, but is not true on the first iteration if the value

read in for 1 is, sary, 347 . As discussed later in this chapter,

the relations for i and Jj would actually be marked "a refinement

exists", so that the two cases of first iteration and subsequent ones

could be distinguished later if necessary. The details of the loop

induction routine will be discussed later in this chapter.

35

Chapter 4.2. Proofs

»

(1) entry relations

1 fw A

J =0 A

n = i-1

(3) recurrence
(2) symbolic bindings relations

Leer 7

Js = Ix

eel T Px

(L) synthesized
range of values

F

Figure 4.2. Sample loop for showing loop induction information.

Chapter 4.2. Proofs

After the initial pass around the loop and call of the induction

routine, we attach the synthesized relationships and set of variable

values Lo the exit arc of the LOORHEAD node as given information for

subsequent nodes. We than take a second pass around the loop,

processing nodes and proving assertions in the normal way, proving

the assertions on the latchback arcs just before processing nodes

which topologically follow the loop. [For examples of loop processing,

see Appendix A, Examples 1, 7, 9, and 10.]

2b. TEST Nodes

If the node we are examining is a TEST node, then we try to elide

the test. We check to see if ihe test is always true or always false

along some incoming path by making assertions out of the test and its

negation and trying to prove tiiese assertions. Our normal refinement

and path-separating mechanism described above will then separate out

any incoming path for which the test can be elided. If so, we re-route

that path to the appropriate true or false exit node. This re-routing

may change the structure of the loops in the program, either creating

new loops [example below and Appendix A, Example 8] or destroying an .

exicting loop [Appendix A, Example 10], so we must re-analyze the

structure of the program, as described in Chapter 1. Actually, we

only need to re-analyze starting with the outermost loop containing

the re-routed arc. After the re-structuring, we start over at that

outermost loop, gathering information and proving assertions. This

elision of redundant tests is an important tool for separating

loop-termination issues. For example, in the program:

1

Chapter 4.2. Proofs

while p £ A do

if info(q) > info (p) then q :=1ink(q)

else p :=1ink(p);

sametimes we make progress toward the end of the list P , and sometimes

we don't. We can see in the flow diagram, Figure U4.3, that after

setting gq :=1link(q) , the test p # A is always true since p is

unchanged, so we can elide it, giving the program:

while p £ A do

begin

while info(q) > info(p) do
q :=1ink(q);

P := link(p)

end;

In this modified program, the two loop termination issues are

separated: it 1s now fairly easy to prove that the outer loop

terminates (if the inner loop dces and assuming that we have an

appropriate model of single-linked lists), and the inner loop may

or may not terminate, depending on what else we know about q ,

info(q) , and info(p) . In some sense, the effect of our creating

two nested loops 1s to synthesize an appropriate lexicographic ordering

on (p,q) pairs.

38 |

| Chapter L.2. Proofs

F T

info(q) > info(p)

P := link(p) q :=1link(q)

Figure L.5. An example of eliding a test and thus changing one
loop to two nested loops, separating the termination

issues, and synthesizing a lexicographic ordering
on p and q .

39

Chapter 4.3. Proofs

3. Develop Given Information for Exit Arcs

Before leaving a node and going on to process the next one, we

must attach the appropriate given information to all of the node's

exit arcs. We synthesize this by merging the given information from

the node's entry arcs, adding the assertions on those arcs (the

assertions must be true or the program will terminate uncleanly at

that node and never traverse the exit arcs), and modifying everything

to reflect any assigmments within the node. Also, if the node is a

TEST node, we add the tested condition and its negation to the true
and false exit arcs respectively.

Simple as the preceding paragraph may sound, there are some

very camplicated issues involved in this step. The first complication

arises when a node has multiple entry arcs with different given

information, as in Figure 4.4. We could simply use the disjunction

of the two cases for the exit are:

(i210 Am=1) v (1>11A m=0)

but this has the drawback that all proofs based on this information

will have to consider two separate cases. Since we would be creating

multiple cases whenever two ur more arcs merge in the program, we

can be faced with 20 cases after n merges, as in Figure L.S5,

where the given information on the exit arc for C includes

[(AAL1=2Am=4) V(~AA 1=1Am=1)] A

[(BAL' =3AmM =9A§=5 V (~BAJ=TAL' =iAm =m].

This is an unwieldy premise for proving a later assertion like

i* >0 ,

where the only relevant information is that

i'=1,2, 0r 3 .

Chapter L.3. Proofs

given: given:

1i>10 Am=1 1>11 Am=0

?

Figure ".L. Merging of different given information.

41

Chapter 4.3. Proofs

i:=1]:a2 |
m:=1 m cml

i:=3

J:=5

?

Figure 4.5. Cascaded merges can result in as many &s four different |
cases to consider at node C . |

42 |

Chapter 4.3. Proofs

Often, it 1s unnecessary to keep track of the interplay between

i, J, m, the testin node A , andthe test in node B ; it can

be sufficient just to remember

(1<4<3) A m=2b0r9) A (J=50rT7)

on exit from node C .

We would like to avoid disjuncts as much as possible,

mimicking the human trait of finding useful lemmas which cover all

cases simultaneously. Yet we also don't want to lose any inter-

relationships (such as npg = 1°) if they are in fact required in a

later proof. One strategy is to record a set of weak relations

which are true on all arcs being merged, and to mark that a refinement

of these relations exist, l.e., that by going back to the point of

merging, the exact disjunction can be formed if necessary. We try to

use the weak, disjunct-free relations to prove subsequent assertions,

and only if the stronger, more exact information is needed do we

construct it. In the example of Figure 4.4, we would synthesize

{(1 >19) A (0 <m<1)] (Refinement)

as the given information for the exit arc. In the example of Figure L.5

we would attach

((L<i1 <2) A (m=1, 4, or9) A (j=50or7T)] (Refinement)

to the exit arc at C .)

We can develop weak relations fram the following rules:

(1) Assume that information from n arcs numtered 1 to n is

being merged, that the information on each arc is a set of |

conjuncts, C, = {R)4 A Ryy ARzy «ov A Re} and that we want
to protuce a set of conjuncts. |

| bs

Chapter 4.3. Proofs

(2) For each conjunct A on each of the n arcs, add A to the

result set if that clause is implied by the information on

each arc, i.e., ir |

Y1<ic<n C; DA |

(3) Form disjuncts of clauses which occur on different arcs, but |

which contain the same set of variables (like J<k v J>kt2),
but avoid forming cross-product disjuncts of clauses with no

variables in ccmmon (like i =1 v n =4).

(L) As a special case of (3), change expressions like

(n =14 vns=1+tl v n = 1+2) to (1 <n <i+2) . Change

expressions like (i =n v 41 >n) to (1 >n) .

The above rules are by no means "optimal", but they offer a useful

heuristic for what information to keep around and what information to |
reconstruct only if needed to prove a particular assertion. [For use

of these heuristics, see Appendix A, Examples 3 and 6.]

The crucial issue here is to make the system appropriately |
goal-driven: to develop high-payoff relations always, but generally |

not to synthesize any complex relations until the goal of proving a |

specific assertion demands the creation of those complex relations. :

Thus, we do not make all possible deductions from a set of relations

(like deducing that 1 <k from 1<j A J<k), but insteadwe |
wait until some goal or driving force makes a particular deduction

relevant (for instance, we may have to prove the assertion i fk).

One of the beneficial side effects of rule (2) above is that it

provides a driving force for discovering loop invariants: for each

Chapter L.3. Proofs

relation on an initial entry arc of a LOOFHEAD node, we will try to

prove that that relation is implied by tne information on the

latchback arcs. If the implication holds, then we have discovered

a relation which is true on all iterations of the loop, as shown in

Figure L.6.

After merging information from multiple e:try arcs, we add all of

the assertions on the entry arcs to the given information we are

building. We cannot cleanly exit the current node if an assertion is

false, so all assertions will be true if we in fact reach an exit arc

during an actual execution.

We have now formed a set of given information that needs to be

transformed to reflect any assignments inside the node being processed,

then attached to all the exit arcs. We will call the untransformed

information G , and its transformation G' . For scalar essigmments,

i := expression ,

the recording of the new equality

i - expression

in C¢' is straightforward. However, for assignments to aggregates,

such as to elements of an array or fields of a node in a list structure,

we have to investigate the possibility of aliases: assignments to

A[i] can change A[j] if 1 can equal Jj . So if the node we are

processing contains an assignment

Ali] := x ,

we must look at G and for every subscript, 8s , of A in a relation R,

we try to prove that either s =i or s f i , based on the information

fn G . If s =1, then we reflect the assignment A[s] := x , and add

L5

Chapter L.3. Proofs

(1) given: 1 4 J

(2) given: ier = iy
(3) given: 11 = j+l

(4) synthesized by
rule (2) on
p. bl:

Figure 4.6. Synthesis of loop invariants. When we try to merge
| the information labeled (1) and (3), we find that

141= 31 > i #3, eo by rule 2 on page bk, we add
the relation i £ Jj to the set of information (4) which
is true on all iterations of the loop.

LE |

Chapter 4.3. Yroofs

the appropriate R' (which may be just the empty clause) to G*' .

If 8 fi, then the s-th element of the array is unchanged, so

we copy R to G' unchanged. If we don't have enough information

to prove uny relationship between s and i , then we add to G' :

(s #1 AR) v (8s =1 AR" .

We can avoid this disjunct if RO R' or R' DR , by adding only

the weaker relation (R' or R respectively) to G' , marked of

course "refinement exists". We could also use the weaker disjunct

Rv R' (Refinement)

ignoring the interaction between i , s , R and R' . Alternately,

we could drop the relation involving A[s] entirely and add nothing

to G' . [See Appendix A, Example 6.]

After transforming G to G' to reflect the assigmments in the

node, we attach G' to each of the node's exit arcs. If the node is

a TEST node, we also add the test expression or its negation to the

given information on the appropriate: exit arc. This campletes the

processing at a node, so we can now move on to the next node.

: L7

Chapter L.L. Proofs

L. Details of Loop Induction.

On the first, information-gathering pass around a loop, we try

to generate a set of recurrence relations, expressing the value of each

variable at the beginning of the k+l -st iteration of the loop in

terms of the values of all variables at the beginning of the k-th

iteration. We do this by inserting a set of dummy given information

on the exit arc for the LOOPMEAD r..de, a set of equalities of the

fom:

Viel = Vi ’

for each variable v in the program. We then process the nodes in

the loop in exactly the way described above, proving assertions y merging

information, and, most importantly, changing the Vier1 expressions
to reflect ascignments. The only difference between the first and

second passes through a loop is the given information attached to the

LOOPHEAD exit arc, and a flag which says "don't worry if some assertions

cannot be proved on the first pass".

At the end of the first pass, we call the loop induction routine

with two sets of information: (1) the initial condition of

the program's variables upon entry to a loop, and (2) the

recurrence relations between the values of all variables

at the beginning of the k-th iteration of a loop and their values at

the beginning of the ktl -st iteration. The loop induction routine

has the responsibility for synthesizing a description of the range of

vaiues taken on by each variable within the loop.

In general, it is an unsolvable problem to state the exact set of

values that a variable takes on within a loop, since deciding whether

18

Chapter 4.4. Proofs

the set of values for t is {true} or {true false] in

t i=trueH

Mile t do
cos}

is equivalent to solving the halting problem. However, there are a

few useful special cases which are applicable to a large number of

practical programs.

The discussion below will be in terms of variables which take on

integer values, although many of the ideas can be extended to

character values, list pointers, and perhaps floating-point numbers.

As shown in Figure 4.7, we will focus on a variable v , with initial

value Vo on entry to the loop, with the recurrence relation

Vie1 © F(v,) (vhere v represents all the program variables and F
is an arbitrary function), and with perhaps a set of relations

between v and constants or other program variables.

Case1. Invariant.

If the recurrence relation is Vier1 = Vy » them v is invariant

inside the loop, so its value there is Vo

Case 2. Monotonic relationships.

If either Vier 1 > Vi OT Vig < Vi is implied by the recurrence

relations, then v is elther monotonically nondecreasing or nonincreasing

inside the loop. For simplicity, we assume the first case. The

possible values of v therefore are a subset of the infinite set

(vy Votls Vot2, ...} . If the recurrence relations also include an

inequality like Vib] <x , where x is invariant in the loop, then
we can bound the infinite set:

v C Vo Votl, Vote, .eep x}.

La

Chapter 4.4. Proofs |

(1) initial value: v = Vo

(2) dummy bindings:

Viel = Vk

(3) recurrence relations:

Vie = FV)
(4) synthesized set of k+l) k

values within loop: {v, Rv orc}Vv = 9 k

a Vier1 R Vk or c}
Figure 4.7. Model for loop induction on variable v .

50

Chapter L.b. Proofs

If Vierl = vere » where ¢ is a positive constant, then

v C {vy Vote, votac, ...] and v is strictly increasing. If v

is increasing uniformly and bounded by x (invariant), them v

takes on all of the values in a set:

V = {vos Votes «eo v}

where y is the largest element of the set that satisfies the bound x . |

If the bound on v 18 v f x instead of v < x , then the

analysie is more complicated. Given

Vv C {Vo Votes Votae ...]
and

v £ x ,

then the values v takes on are bounded by x if and only if x is

an element of the set: |

i.e., v = [vy vote, vot2e, ... x}

Otherwise the restriction v £ x is meaningless and can be thrown

away. Note that x can fail to be in the set either because X=V,

is not a multiple of ¢ , or because x < Yo *

Case 5. Searching.

The last case above is perhaps better viewed as a search, not

as a bound: v takes on various values in a set, while searching for

Vv =X . We encounter a more general kind of search when v is a

subscripted reference:

Vv C {Al4,], Ald tel, A[1 +2c] coe)
and v f& x .

In thie case, the set is finite if and only if the search is satisfied,

l.e.,

51 |

Chapter L.4. Proofs

Xe (ali,], Ali +c], A{iy+2c] vor)
or equivalently,

dn e {1 ite, ite ...} s8.t. An] =x .

Some search loops terminate on a forced match, as in:

Almax]) :=x; i :=1;

while Ali] # x do 1 :=1+1; .

In our analysis of such a loop, the initial conditions include:

i=1

A[lmax] = x ,

and the recurrence relations include:

hep = Ht

pel 7 Rx

Are TM

AdL Ax

Combining these, we attach the following given information to the exit

arc for the LOOPHEAD node:

Xx 1s invariant in the loop

A (the whole array) is invariant

Almax] = x

i -¢ {1, 2, 3, _— .

(The notation -¢ means "takes on each of the values in a subset

consisting of the first n elements of the ordered set, for some

n >1.") With no other driving goal, this is the end of our analysis.

However, when we try to prove the loop termination assertion,

”

Chapter L.4. Proofs

we first remove the subscripts k on the invariant variables:

Jk > s.t. Ald] =X ,

then we look at the initial entry given information and find that

Almax] = x ,

Following the reasoning above,

Almax] ¢ {A[1], A[2], A[3], ...}

if maxe (1,2, 3, ...} .

Since max 1s alsc invariant in the loop, we may push this relation

outside the loop as an initial entry condition:

- the search loop terminates if max > 1 .

[For other search loops, see Appendix A, Example 1, and the program

SELECT in [Sites 197L].]

In summary, we have discussed a disciplined way of gathering

information for proving assertions attached to a flow graph, including

ideas for eliding tests, merging information into useful lemmas, and

proving the termination of search loops.

53 |

Chapter 5. Related Literature

Highlights of related literature include Floyd's original paper

on Inductive assertions [Floyd 1967]; theses by James King [King 1969],

Susan Gerhart [Gerhart 1972], and 1. Peter Deutsch [Deutsch 1973); surveys

by Bernard Elspas [Elspas et al. 1972b], and Ralph London [London 1972);

the comprehensive, but now somewhat out of date bibliography of Ralph

London [London 1970a]); and the camplete conference proceedings from

the Symposium on Semantics of Algorithmic Languages (see [Hoare 1971b1]),

and from the Las Cruces conference on Proving Assertions about Programs
(see [Manna et al. 1972]).

®

Since the publication of Floyd's original paper or the inductive

ascertion method [Floyd 1967], many people have worked on mechanizing

the creation and proof of verification conditions, given as input an

annotated flow chart of the program.

James King bullt a program verifier [King 1969] which would accept

simple Algol-like programs as input and produce proofs of their

correctness with respect to a set of inductive assertions supplied by

the user. The assertions are specified by ASSERT statements at

appropriate points in the program. There must be enough assertions

supplied to brea all paths around loops, and more than the minimum

number of such assertions may be useful for helping the verifier to

distinguish the different cases involved in multiple paths around a

loop. King's system can synthesize an input assertion if none is

supplied, essentially stating "these input conditions are necessary

Tor the other assertions to be true." King's work was the original

inspiration for the present thesis.

ch

Chapter 5. Related Literature |

Susan Gerhart described a system for verifying AFL programs

[Gerhart 1972], in which the user supplied inductive assertions as

comments. Since APL can express vector operations without explicit

loops, the proofs were much shorter than for equivalent Algol-like

programs. The system is capable of synthesizing and proving same

assertions from the mown semantics of APL operations such as asserting

that the left operand of some operator must be a scalar, then proving

that that will always be true because the left operand is in turn the |

result of some other operator which always returns a scalar value. |

This parallels our interest here in proving that a program containg no |
semantic errors. Gerhart also suggests a broader view of verification, |

including various forms of semantic checking of programs in lieu of |
debugging. She introduces the tem formal debugging, which means |
obtaining information about & program fram the structure or semantics of
a& program without executing it. Again, this parallels our interest here |

in giving a user feedback on the inherent internal self'-consistency

or Inconsistency of a program. |
Peter Deutsch built an interactive program verifier [Deutsch 1973], |

which in some sense represents a second generation of verifiers. Tt

accepts input in a form quite similar to King's, but uses more

sophisticated proof techniques to do all of King's examples, plus

same harder ones. Richard Waldinger and Karl Levitt discuss a similarly-

ambitious proof system running at SRI [Waldinger and Levitt 1973].

The emphacis of both systems is to extend the coordination between |
theorem provers and the kinds of theorems which occur when verifying |
programs. |

55 |

Chapter 5. Related Literature

All four of the above systems bypass the problem of proving

that programs terminate. Donald Good also did a related thesis [Good 1970].

various issues of theorem prover heuristics and refinements are

discussed in [Wegbreit 1974], [Elspas et al. 1972s, Db), [London 15721,

and [Smith 1972). Smith refers to the problem that "... we cannot

prove correctness of programs in the mathematical sense as suggest.ed

by McCarthy, more due to our inability to state what we are trying to

prove than to our inability to find actual proof methods.”

Hoare describes the development of an axiomatic approach to

proving correctness of programs, with successive extensions to include

programs with function calls and programe with jumps [Hoare 1969, 1971b] |

[Clint and Hoare 1972]. It is instructive to compare the various |

proofs of the correctness of the program FIND (Hoare 1961] found in

[Hoare 1971a}, [Waldinger snd Levitt 1973], [Deutsch 1973], and |

[Igarashi et al. 1973].

Manna has explored the formal basis for induction on recursive

program sche.ata, using first and second order predicate calculus

[Manna 1969). An excellent survey of the various kinds of induction oo

can be found in [Manna et al. 1972]. In [Manna and Pnueli 19731,

total correctness of a program (i.e., proof of termination and correctness |
with respect to the assertions) 1s discussed, but only in terms |
of well-founded monotonic sequences supplied by a human user. Manna's

199 article also discusses total correctness. Total correctness is

also mentioned in [Burstell 1970], but his proof of termination for |
a program to calculate oh fails to state the necessary restriction |

that n > 0 . |

eC

Chapter 6. Extensions and Related Topics

This chapter discusses extensions of the techniques presented to

cover a larger class of programs and to increase the proportion of

successful proofs. Also, these techniques are related to issues in

language design, to optimizing compilers, and to the current

controversy about GO TO statements. ®
Extensions

The major extension of the work described here would of course

be an implementation. Machines are much better than reading committees |

and referees at keeping one honest. Many of the parsing, flow graph |

manipulation, and theorem proving pieces of such a system exist, but |

it remains to pull them all together and build a coherent whole. It is

important in such a system to build in heuristics, tuning, and biases

Lo make decisions similar to those of a human about what information

and lemm&s in a program are important. For instance, in Example 7 of

Appendix A (bubble sort), it takes a complicated deduction about the

crdering of elements in the array to prove that eventually no inter-

changes are required and that the program therefore terminates. However, |

in a somewhat similar program, keeping track of the possible relationships
between elements of an array might be wasted effort which does not

contribute at all to the proof of some assertion. |

A second major extension would be the inclusion of pointers, lists,

and trees as data objects.

The system could also be extended to allow the user to state same

extra assertions that he would like proved along with all the

synthesized ones. These extra assertions could be merely to provide

useful lemmas to the theorem prover, but they alsc could be used to

describe the data structure that the program operates on, and to ask
: or

Chapter 6. Extensions

the system to prove that that data structure is preserved ly the

program under all possible circumstances. Extra assertions could

also be used to describe simple consistency checks on the intermediate

data or results of a program. While preserving consistency checks is

only a small step toward a program's being certified "totally correct”,

such checks are often easy to state and have a high payoff in detecting

simple errors.

One particularly useful check is to prove that for some set

(array, linked list, tree, etc.), no elements of that set are "lost"

during the execution of the program. For instance, in a sorting program,

it is useful to prove that the output is a permutation of the input.

An alternate way to state this, which may te easier to prove, is that

all of the elements of the input set are elements of the output set.

If the set is an array belng sorted in place, them it is only

necessary to prove the local condition that whenever an element of

the array is destroyed, by assigment to it, a copy of that element

must exist either somewhere else in the array or in another program

variable. If the cteady state 1s that all elements are somewhere in

the array, then the proof system would only have to keep track of those

(typically) one or two variables which contain copies of elements

being manipulated, and to detect the point in the program when the

steady state 1s reached again. In keeping track of copies of array

elements, it would be necessary to re-assign the "unknown" value

to all local variables upon leaving a block, to reflect the possibility

of "losing" an element exactly at block exit. A similar technique

could be used in programs which manipulate list structures, asking

the system to prove that no node in an input structure is lost by

50

Chapter 6. Extensions |

ending up with nothing pointing to it. With a model of the steady

state of the structure, the proof system must keep track of the few

link fields and pointer variables which do not match the model midway

in the execution of a valid change to the data structure. For such

programs, it is necessary for the user to use a declaratim-like

language to describe the intended steady state of his data structure.

Some of the concepts in [Dahl and Hoare 1972) might be useful in defining

such a language.

The system can also be extended to include programs which |

operate on floating-point numbers. Although this is a difficult area, |

sufficient tools are becoming available to treat floating-point

computations very precisely. For example, [Malcolm and Palmer 1974] |

treat an algorithm for solving tridiagonal equations in terms of |

computer arithmetic instead of real number arithmetic. [Good nnd |

London 1970] give Algol procedures for interval arithmetic designed |
to use camputer arithmetic and prove that they work. [Hull et al. 1972]

combines Floyd assertions with backward error analysis. [Yohe 1970) |

discusses floating-point arithmetic, using case analysis and assertions.

In the system presented, there are weak areas which need more

refinement and sophistication. These areas include “he rules to be |
applied during loop induction, the rules to be applied when merging

given information, and the rules for deciding to move a false assertion

to an earlier place in the program. Extending the current system to

recursive programs may not be easy.

29 |

Chapter 6. Extensions

Language Design

As Gerhart has pointed out in her thesis [Gerhart 1972], one of

the difficulties in mechanically analyzing a program is to model the

effect of a loop on a set of data. For example, it is hard to

mechanically deduce from

i:=1;

loop: A[i] :=0;

1:=1+1; |

if § <n then goto loop; |
that

All) =0 and V2<t2<n, Aft} =0 .

(The programmer may well have either "known" or assumed that n > 1,

but the proof system has to entertain other possibilities.) It is

much easier to mechanically deduce what happens in the APL statement

A =-npO ,

where, among other things, it is not possible for some of the elements

~¢ A to be left undefined. From considerations such as the above,

jt is easy to conclude that, to the extent that a language can express

operations without explicit loops, it will be easier to prove properties

about programs in that language.

As part of our proposed style of explicitly stating all of the

restrictions on the inputs of a program, it would be useful for a

language to have an assert statement. The form of the statement

could be:

assert boolean expression

and its meaning would be:

if boolean expression then comment OK;
else terminate uncleanly

60

Chapter 6. Extensions

Such a construct was added to the Stanford Algol W compiler by

Ed Satterthwaite in 1970 [Sites 1972, p. 49]. The statement could

either compile into executable code or not, depending on the user's

choice of faster execution versus complete checking, but in either

case, the proof system can assume that the expression is true, and

prove that the program terminates cleanly with respect to the stated

assumptions. Perhaps most importantly, the statement serves as

documentation embedded in the source code of the program, so that

anyone reading the program immediately knows the assumptions which

need to be satisfied for correct operation.

Optimizing Compilers

Most of the techniques presented here attempt to gather the same

kind of information about a program that an optimizing campiler does.

While optimizing compilers often generate code which executes quickly

and which completely ignores run-time error checking, it is possible

to have both fast execution and careful error checking. For instance,

the compiler can logically generate subscript bounds checking code

for every array access, then use techniques like those presented here

to prove that many of the tests are unnecessary, either because the

subscript expression is inherently in range (perhaps generated by a

containing for loop), or because the same expression is used in an

earlier reference and need be checked cnly once.

Ir a language like APL, the same idea can be used tc prove that

the interpreter need not bother with some conformability checks, and

can perhaps be used to prove that the shape, size, and type of

variables used in some statements are static enough that the statements

could be compiled instead of interpreted.

61

Chapter 6. .Ixtensions

Another issue which occurs in optimizing compilers is safety, the

question of whether a calculation can be moved to a less-frequently

executed place without introducing semantic errors which would not

have occurred in the original location. The classic example is:

if x #£ 0 then

| y :=1/x;

| in which some external consideration suggests moving the calculation

| of 1/x to a place in front of the test. This move is unsafe if x

| could equal zero at the new place. The information gathered by the

| system described here to prove that 1/x does not produce a semantic

error is exactly the information needed by an optimizing compiler to

decide if the movement of 1/x is safe.

The GOTO Controversy

One of the classic examples to support the argument that eliminating

£0 to's can introduce redundant computation is this search loop fram

[Knuth and Floyd 1971]:

for1 := 1 step 1 until n do

if Afi] = x then go to found;

notfound: n := i; A[i] := x; B[1i] := 0;

found: B[1i] := B[1i]+1;

which can be modified to:

| 1 := 15

while 1 <n and A[i) # x Qo
1 := itl;

if 1 > n then

begin n := 1; Ai] := x; B[1] := 0 end;
| B{i] := B[1]+1;

i

unapuer o. Extensions

which has a redundant test i >n Just below the loop. The test

elision technique described in Chapter 4 will eliminate the redundant :
test, as shown in Figure 6.1, thus making the 80 to -less form just
as efficient as the £0 to form (admittedly, requiring a smarter

compiler).

| 63

viiapver oO. LALENS1I0NE

”

y T
/ \

/
Con |

Fy /
/

n:=1

Ali] :- x

Bi] :=0

B{i] :=B[1i]+1

| Figure 6.1. Test elicion makes this goto -less search loop

potentially as efficient as its goto form.

| 6h

Chapter 7. Conclusion

it is my hope that eventually a system will be built which

will be better than a human programmer at taking an unknown

program and discovering what it does and how it can fail. Perhaps

the ideas in this thesis will form a small piece of the foundation

of that system.

"T would rather write programs

to help me write programs than

write programs."

65

Appendix A. Examples

This appendix contains ten examples worked out in various levels

of detail: King's nine examples, and McCarthy's 91 function. Two

other examples appear in [Sites 197k]: Floyd's TREESORT3, and

Rivest'c SELECT (a linear-time median-finder). To my knowledge,

SELFCT has not been examined formally before. Proofs of partial or

total correctness of the other programs can be found in the following

references: King's examples [King 1969], [Deutsch 1973]; the 91

function [Manna et al. 1972].

As ua reference aid, the outline below summarizes the issues

discussed in each example.

Example 1. Multiplication.

First and second passes through a loop.

Sequ-nce of four stages of loop given information.

Termination of search for y = 0 .

Infinite loops vs. overflow detection.

Pushing invariant assertion out of loop, false assertion toward

front of program.

Example 2. Division

Proof .f partial correctness vs. proof of clean termination.

Distinction between first iteration given information and
subsequent iterations.

Pushing invariant assertion out of loop.

Correlation between usage of two variables in proving that

overflow can't occur.

Example :. Exponentiation.

Integer divicion model.

Loop termination for absolute value approaching zero.

Merging given infomation and forming refinement.

66

Appendix A. Examples

Example 4. Primality.

Multiple exit tests.

Overflow assertion actually proved.

Termination proof unrelated to what program does.

Example 5. Zeroing.

Arrays, subscript bounds.

Union of sets and " —¢ " notation used in careful description
of values of i .

Example 6. Maximum.

Alias problem for arrays.

Forward vs. backward analysis.

Lemma discovery during merging of given information.

Proof of no overflow only on second pass through loop.

Example 7. Bubble Sort.

Failure to prove termination.

Permutation for leading tests.

Two nested loops.

Example 8. Multiplication via increment/decrement.

Use of refinement of merged information.

Test elision forces node splitting.

Re-analysis of loop structure mares two parallel loops.

Mechanical removal of invariant test from loop.

Example 3. Selection Sort.

Termination proof unrelated to what program does.

Two nested loops, with successively more useful given information
on four passes through inner loop.

67

i

Appendix A. Examples

Example 10. The 91 Function.

Transformation of single interval into two nested loops.
Permutation for leading tests.

Two nested loops, with successively more useful given information
on four passes through inner loop.

Use of refinement of merged information.

Test elisjon removes an inner loop.

| Partial correctness plus proof of clean termination gives total
correctness.

68

Example 1: King's Example 1. Multiplication.

This example 1s worked out in camplete detail, to give a cohesive,

concrete example of the whole process discussed in Chapters 1 - Lk.

Subsequent examples will only pick out highlights. All of the first

nine examples are modifications of the nine examples in King's thesis.

The modifications consist of assigning the undefined value w to all

variables at the beginning of a program, and inserting READ statements

for those variables which are essentially input parameters. Also, the

inductive assertions which King supplied are stripped out.

Figures Al.1 through Al.7 are selr-explanatory. The commentary

picks up again after Figure Al.7.

69

Example 1. Multiplication

F

Figure Al.l1. Input flow graph for program to calculate x =a¥b

by successive additions. Nothing else is supplied

by the human user.

70

Example 1. Multiplication

[]

| B |

| |

RE pers

S EE
L — =1—_ _lI

Her» |
| ? |

| 0 |EE

B |
|
{63

A _]

Figure Al.2. Interval analysis of flowgraph Al.l1. The nodes are

labeled for reference.

71

Example 1. Multiplication

rT

[aE | LL LJ LJ =

| LOOFHEAD 41 |
| S&T».
| F T |

L |

Figure Al.5. The graph of Figure Al.2 after insertion of the LOOPHEAD |

node and identification of the loop exit are from node F to node I.

All loop exit arcs will be shown with double lines. Every path

around the loop goes through an exit test (node F) and all exit

tests are just after the LOOPHEAD node. Topological sorting of the

nodes ylelds the following order for subsequent processing: A-E,

LOOFHEAD 41, F-I. This graph represents all the modifications

described in Chapter 1.

Example 1. Multiplication

Node Operator |} Assertion

A. START -- --

B. X,y,a8,b :=W ¢= -

C. Read a,b Read --

D. x:=0 t= -—

E. y:=b := dD fw

LOOFHEAD #1 -- --

F. YFO g Y FO

G. X:=x+a + XAWA afwA Lyn SX <I

H. y:=y-1 - yF® A Ign SY1<T x

Figure Al.l. Generation of semantic error assertions. Assertions

for small constants (0 fw, 1< Tay’ are ignored.

Loop Exit test Assertion

#1 YAO Tx>1 st. y=0

Figire Al.5. Generation of loop termination assertion.

(F;

Example 1. Multiplication

2aa

assert b fw

=

LOOPHEAD #1 |

assert Tk > 1 s.t. y,_=0 |

assert y fw

FT assert xAWAa fwA |
nin <

3 ST
assert y fw A |

<1 <

Ham TS ea
Figure A1.6. Flow graph Al.3 with semantic error and loop termination |

assertions attached. If all of these assertions are |
proved true, then the program always terminates cleanly.
We will in fact find that there is nothing to prevent

the overflow in node G, and that the loop wan't terminate

1f bd is negative. We will thus synthesize King's input |
assertion that b > 0 . This graph represents all the :

processing described in Chapters 1 - 3.

Example 1. Multiplication

Node Input "given" info Auer ons to Output "given" info

a=WA b=w

C: Read a,b X=WAyYy=WA -— X=WAY=WA

a=WwWAb=w afwAdiw
(Semantics of Read
say that a and b
are defined, there-

fore between Imin

and I ax , but
nothing else.)

D: x:=0 X=WAYy=WA -- X=0Ay=mA

afwAbEiw afwA bfw

BE: y:=Db X=0Ay=WmA b fw x=0Ay=bA

afwAbfw True. afwA btw

LOOPHEAD: #1 X=0Ay=bA -- First pass thru
loop: Attach

afwA bi the following
symbolic info
to exit arc of

LOOFHEAD node:

Xv = ¥ A

Vier = Vic A

841 = 8

Perl = Pk

Figure Al.7T. Proof processing of nodes A-E , and first pass thru

loop# 1, nodes F-H .

75

Example 1. Multiplication

Node Input “given” info Asserions to Output "given" infoove

F: yfO Xipy =X A Gk >1 s.t. y, = 0 | True arc:
Vip = Vx y Fo Yel = Xx °
8, = 8 A Neither proven Veer = Ye A

_ Test elision: = AOpel = x Try to prove fl 7 Ck
that y =0 bey =P A
or y #0 on
some incoming ¥y £0

| path, but no
luck. False arc: same,

except last term

G: X:=x+a | X , =XA XFLA BafWA Xpe1= Xt 8 A

Bel = Bc NM *x*8 < Inax feel= 8 A
bl = b, A None proven. Del = by, A
Vg FO Ye FO

He: yi=y-1 Kipp = Foy A YEW A Loin < Xipq = Xo A

81 =o A Last part, fel= Og A
= y-1 < I ’ -Le] b, A max bel b, A

yy £0 is true. Yi ko

Figure Al.7 (continued). Proof processing of nodes A-E , and
first pass through loop # 1 , nodes F-H .

76 |

Example 1. Multiplication

After the first pass through the loop with the symbolic variables

X41? Xp 0 etc., we have developed a set of recurrence relations

for the values of all variables at the beginning of the ktl -st

iteration of the loop in terms of their values at the beginning of

the k-th iteration. From these recurrence relations on the latchback

arc, and the initial entry conditions on the arc from node E to the

LOOPIEAD node, we now must synthesize expressions for the values of

all variables during all iterations of the loop, as shown in

Figure Al.8.

7

emma =r raemm vagea———aves

MN = A =) x=0 3) Typ = Xt ey A
= b = -y A Viel = Yi 1A

w A =8 f er = 2 A

b fw LOOREAD #1 Der= Py A
Vy FO

Viel = Yi A y =¢ {b, b-l,b=2, ...}

+1 = 2 A a fo A

bos = b, b fw A
a,b invariant

Figure Al.8. Loop induction, using all facts except y, FO to
detect variables invariant within the loop and to

synthesize infinite sets which encompass the cats

of values for x and y . The notation —¢ means

"for same n > 1 , takes on each of the alues in the

subset consisting of the firct n elements of the

. ordered set".

78

Example 1. Multiplication

If the exit test for the loop were

y >0

instead cf

YFO ,

then we could easily conclude at this point that

0<y<b |

inside the loop. But, given the comparison for exactly zero, we must

work a little harder to synthesize a range of values for y inside

the loop.

If Oc¢ {b, b-1, b-2, ...} (i.e., b >0), then the set of

values y takes on is finite and bounded by zero:

y = {bs b-1,b-2, ..., 0} ,

where the equality sign means that y must necessarily take on the

value of each and every member of the set exactly once.

If 0f{b, b-2.b-2, ...} (i.e., bP <0), then the set of

values y takes on is essentially infinite. In reality, the set of

values for y is bounded by Lin » but we discover this fact by
assigning y the infinite set, then falling to prove that underflow

never occurs in the statement

yi=y=-1 .

In our induction processing we try to decide if the values of y

are a finite or infinite set by examining the initial value of b and

asking if b >0 (i.e., if Oc«¢ {b, b-1, b-2, .++}). We find no

answer to Lhis questicn, only the information that b FW. So we

give up; knowing nothing else about b » the best we can say about vy
ic that

y =¢ {b, b=1, b-2, ...} .

79

rr—pra at PMAVE PAGS UAV

With the ranges of values synthesized in Pigure Al.8, we proceed

| to take a second pass through all the nodes of the loop, using the

| ranges to prove assertions and to develop new given information on
| subsequent arcs. The first assertion we try to prove is the loop

termination assertion:

ik >1 s.t. Yi =0 .

Now the groundwork of the above discussion about synthesizing the

range of values of y becomes useful: we discovered above that y

| will take on the value zero iff b > 0 , so the loop termination

assertion is equivalent to asserting that, on the exit arc of the

LOOBEAD node,

b>0 .

| Since b is invariant in the loop, we can push this assertion back to
the initial entry are of the ~oop, and then as far back as the Read

| node, as in Figure £..9. Figure A'..10 details the remaining proofs,

| during the cecond pasc through the loop, plus any subsequent nodes.
| The camplete process leaves us with two unproved assertions:

| b >0 before node D
and I in < xta < Inax before node GG .

If the user can guarantee that these two assertions are always true,

| then the program terminates cleanly. If the user cannot guarantee
| that these assertions are always true, then they describe the only

two ways in which the program can "blow up" during execution:

if b <0, then loop #1 never terminates

and if lin > X+a Or x+8 > lax » then an overflow oceurs at
node G .

The user is assured that there is no other wLy (such ac an overflow

in node H) for the program to blow up.

80 Lo

(4) assert b > 0

(%) assert b >0

LOOPHEAD $1

(1) assert dk > 1 :

s.t. Yy = 0

(2) assert > 0

Harr»
*/

/

l [E

Ler>

Figure Al.9. Steps in synthesizing the input assertion b > 0 .
(1) Original .ocop termination assertion, generated from exit test.
(2) Equivalent loop termination assertion, generated from analysis

of the set of values y takes on inside the loop.

(3) Ascertion moved back, outside of the loop, because it is
invariant in the loop and must therefore be true on entry.

(L) Assertion moved back as far as possible, in this case, to
the exit arc of the Read statement. Note that this is the
best place for the user to insert an executable test that
the value read for b is in fact non-negative.

31

Example 1. Multiplication

Node Input "given" info Asseriions to Output "given" info !

LOOFHEAD #1 -- -- Second pass thru

| loop: Attach} synthesized
"given" info:

x -¢ {0,0+8,0+2a,...} 7

v = {b,b-1,b-2,...,0} A

' afw A b>0

F:y #0 x ~¢ {0,0+a,0+28,...} A |y £ ® true True exit:

afwAb>0 y=0 maybe | ¥={bb=1,b-2,...,1} A:
yO maybe | 8 F® ADO

| False exit: |

a fwAb>C

G: x:=x+a | x—¢ {0,8,2a8,...}A xfwA afwA | x-¢ {a,28,38,...}A :

a fwAb>0 xta <I afwAb>0 |

First two are

true, and
last one is

maybe |

| H: y:=y-1 x=€ {a,2a,%8,...} A y Fw A x —¢ {a,2a,%,...} A

nfwADb>0 Both are true afwAbd>O0

Figure A.J..10. Proof processing of second pass through loop, nodes F-H .

82

Example 2. King's Example 2. Division.

This example exposes some of the complications in actually proving

a loop termination assertion when same input assumptions which were in

the programmer's mind are not stated, and hence need to be synthesized

by the proof mechanism. King assumed the restrictions that a >0 A bd >0

and then proved that the program is partially correct in generating the

proper quotient and remainder, but he failed to note that the program

never terminates if b = 0 . To confront this termination issue

directly, we state no assumptions about a and b , and see what

restrictions can be automatically synthesized. (If, however, we used

King's restrictiong, our system would still complain about the bb =0

case.) The starting point for this and most subs-quent examples is the

modified flow graph of the program annotated with assertions (Figure A2.1).

In this and all subsequent examples, we will ignore the "undefined

variable" assertions, since their proofs are all essentially trivial.

After processing nodes A -D and taking a first pass through

the loop, we have gathered the following information for the loop

induction.

Initial entry: qQq=0AT=a

Recurrence relations: B41 = By A bl S b, A

CS BR AWS a

Tx 2 Pk

rom this information, it is straightforward to synthesize the ranges:

a invariant

b invariant

gq =¢{71,2,...}

r -¢ {a, a-b, a-2b, ...}

re > b or, equivalently, Ti+ >0 .

85

Example 2. Division

Hl preys

ClPeres

r:=a

assert §k>1

s.t. r, < by

F

rt I

- asse nin <gtl < Lax A
* = 1 -

q:=g¢ Ign STP <I ox
r :=r=b

/

Or

Figure A2.l. Mechanically annotated, modified flow graph for

King's Example 2. Since we are working with little

or no human assistance, King's assumptions that

8&8 >0 and b >0 are not supplied. The crux of

this example 1s to synthesize appropriate restrictions

on a and b .

84

We now want to prove the loop termination assertion:

ik >1 s.t. r, <b, ’

or, since bd is invariant in the loop,

Ik >1 s.t. r <b ‘

The assertion is not always true (e.g. if a =2 and b = -1),

and none of the techniques discussed in Chapter 4 will help synthesize

appropriate restrictions on a and b which would make the assertion

true. So the proof system would simply give up and direct the human

user to supply appropriate restrictions on a and b .

There is, however, a useful heuristic for an automatic proc system

to use: separate the case of zero iterations of the loop from the case

of one or more iterations. To prove that re <b, we can try ito prove

that either ry <b or that r is strictly monotonically decreasing.

Cnly by explicitly considering r, asa special case can we pick up

all the degenerate situations which result in zero executions in the

100].

Since r, = a , the condition

a<hb

guarantees that the loop terminates (by never executing at all).

In the general case, r is monotonically decreasing if

Tal < r .

From the recurrence relation Fiyy = r, ~b , we have

r, -b < rr.

or

-b <0

or

0 <b .

85

Example 2. Division

Thus, we find that the loop terminates iff

(8 <b) v (0 <b) .

Since this relation is invariant inside the loor and must therefore

| be true on entry, we can push it outside the loop and then back to the

READ node.

Examining the overflow assertions for node F , we find that the

first of these, Lin < q+tl , is clearly true, because adding a

positive constant can never create a sum which is too negative. The

second, q+tl <I, cannot be proved, and must be tossed back to
the user with a "maybe". As described, our system cannot make any

correlation between q and r , such as: gq wil’ be incremented as

many times as r is decremented, 80 gq camot in fact overflow,
if the loop terminates at all. For & slightly different loop with

r := +b instead of r := r~t in node F , the values a = Lax ’

b = -1 would result in q overflowing. So any attempt at correlating

the overflow possibilities of one expression with the number of times

another expression is executed must consider such factors as size

of increment and total range covered by each expression.

The assigmment r := r-b in node F camnot overflow if b > 0

because

b>0 oO r-b < 1 ex

and

b>0 A r>b > r-b >0 >1 sr .

The same assignment cannot overflow if a <b because it is never

executed.

The flow graph in Figure A2.2 represents the final r«sult of our

analysis.

| 86

n START

2 maa

assert

(a <b) v (0 <b)

0 q:=0
r:=a

F assert g+l <I9 max

Q :=q+l

Yi=r=b

DE»
Figure A2.2. Finai result of analysis of flow graph in Figure A2.1:

the loop terminates iff the restriction on a and b

is true after the Read ; the system is not powerful
enough to prove that q will never overflow. Note

that the synthesized restriction (a < b) v (0 <b)
allows some cases (such as a negative and b positive)
that King's assumption (a >0) A (b >0) does not
allow, and that our restriction excludes the infinite

loop case (a >0) A (b = Nn)

31

Example 5. King's Example 3. Exponentiation. |

In this example, the two interesting issues are tne treatment

| of division In y :=y+2, and the merging of information from the

conditional assignment gz := z *x .

In the analysis of integer division, we will use these axioms:

Ip+a| <Ipl for |a|>1 and p fo

Ip + al = |p] for Jal= 1 or (Ja|> 1 and p= 0)

lp + q] = undefinedfor q = 0 .

Figure A5.1 shows the flow graph for this example with all the

non-trivial assertions attached. As usual, the overflow assertions,

Lin < expression < Lax » cannot be proved, and hence they represent
definite problems for the user to consider.

The induction for the value of y at the LOOPHEAD node uses

the initial value information

y :=b

ard the recurrence relation

Viel = YT 2 Ay FO .

From y_ #0 and [2] >1, we can use the first axiom to conclude
that

yey] < iv]

and hence that y is a subset of the range <b to b : | |
y © lb], =ipf+1,.... jb|}

To prove the loop termination assertion, |
4k >1 s.t. Y, =0, |

we can use the fact that the absolute value of y 4s strictly

monotonically decreasing, and hence will eventually equal zero. Thus, ;

| 88 | |
|

1D. X:=a
y:=b

2 :=1

assert Jk > 1

s.t. Yi = 0 a

: assert

j G | I <z¥x <1
assert EEE min = #7 5 fan

¥*
Ipin S**% = Inax / assert

*

/ X:=X¥*X |

Hem»
Figure A3.1. Tlow graph for King's third example, with all mechanically

generated assertions except those of the form v fo,

for any variable v . We can prove that the loop terminates,

tut cannot prove the absence of overflows in nodes G

and H .

89

Example >. Exponentiation

we can prove that for all values of a and b , positive, zero, or

negative, the loop terminates. Of course, if b 1s negative, the

program doesn't compute a? , but our proof of clean termination

(if no overflows occur) can be combined with King's proof of

| correctness under the restriction that b >0 to prove the total

correctness of this program. ’

A second issue in the analysis of this program 1s the merging

of information required at node H . On the first pass through

the loop, the given information on the two entry arcs for node H

includes

| arc ¥ -H: 2141 = Px arc G-H: 2141 = z, *X, .

As discussed in Chapter 4, this information is merged to form the

disjunct

2ys1 = 2x V Fel = 2, *X (Refinement),

ignoring; the interaction between y mod 2 and z , but marking the

disjunct "refinement exists", so that if necessary in a subsequent

proof, the complete interaction can be reconstructed:

((y, mod 2) =1 A 2,4" Z, *V,) v ((y, mod 2) £1 A Zasy = z,) .

| In this particular example, information about z 18 not needed tc

prove clean termination. If we were just interested in loop termination,

all variables which have no effect on branching could be stripped cut

of the program early in its analysis.

Example 4. King's Example 4. Primality.

In this example, we encounter multiple exit tests and a proof of

no overflow based on the fact that a defined variable has a

representable value. Also, the proof of termination has absolutely

nothing to do with what the program does.

The loop induction information for 1 includes the initial value

i=2

and the recurrence relation

Leer = 4

so the values of i are an initial subset of {2,3,4,...} , and are

strictly monotonically increasing.

To prove the loop termination assertion,

Tk >1 s.t. (i, >a) V ((1, <a) A (a, mod i =0)) ,

we try the simpler clause first. We find that a is invariant in the

loop and that i 1s strictly increasing, so

1 >a

will eventually be true and we have proved the loop termination without

examining the second clause. Note that the loop terminates even if

a<2.

For the overflow assertion, we need to prove that

(i1<a AafgwAaamdif0) O (41 <L) -

Since a # Ww means that a has same representable value,

Toin <8 SI, » it follows that

(1<aAax<IJ OD (+l <a <1) po) (+1 <I.) .

91

Example L. Primality

0«>

|

assert 3k >1

s.t. (4, > a) \Y

(1, <a A 0a
a mod i, = 0) Ci<a 3

Smt 1
/

7, § T assert
Ul sri Tnin S 31STp,

Ham

Figure Ak.1l. Flow graph for King's fourth example, with only the

non-trivial assertions attached. There are two loop

exit arcs, so we have a camplex loop termination

assertion (whose first clause is true). The overflow

assertion Lin <irl < SI is true because

(1 <a) > (it1 <a) Do (i+1 < 1 , since whatever
value 1s stored in a 18 representable, and hence

a < I ax .

92

Example 5. King's Example 5. Zeroing.

Arrays are introduced in this example, presenting some new

complications in describing the intended range of value subscripts,

and in synthesizing an appropriate description of the values

stored in the array.

As indicated by the annotations cn the flow graph, Figure A5.1,

the bounds for the array A must be supplied. In some Program.ing

languages (like Fortran), declarations of bounds are required for

all arrays. For such languages, it is easy to insert the needed

annotation mechanically. In other programming languages (like

Algol 60), declarations of bounds are not required for arrays which

are parameters of subprograms. For such languages, the human user

must supply ‘he needed annotation. In either case, the semantic

acsertion routir.e then uses these bounds to create subscript range

assertions, like 1 <1 < n, -

The loop induction step uses the following information:

jnitial values: A = (the whole array)

i =1

recurrence relations: 141 = irl

Merl = Pk

Ager) = ©

ve £3, A421] = AL]

i < n,

From thie information, we can deduce that:

93

Example 5. Zeroing

B DECLARE All: nq)
A,yi,n =

assert dk > 1

s.t. 1, > n

F
assert 1 <i <n

{ [= oT
Afi] :=0

| assert

Figure A5.1. Flow graph for King's Example 5, & program to zero
out sn array. The declaration of A 1s an annotation
added by the user, signifying that the valid bounds |

on A are 1 to n, , where n, is the value read
in for n . This binding of n, is to allow for the
possibility that the value of n changes during
execution.

gl

Example 5. Zeroing

n is invariant

i-¢ {1,2,5...] A i <ntl

50 i ={11uf{2,3,4,...,0¢1}

where the second set is empty if n <O

Yete{l,2,3,...,n} , A[2] =0 .

The deduction about n 1s straightforward. The deductions about 1

need some careful attention to detail: the i -e¢ ... notation

implies that the actual set of values for i contains at least one

element. Now, if n <0 , the set {1,2,3,...,n*1l} can be strictly

construed as the empty set, so to properly reflect the fact that 1

always has its initial value at the LOOPHEAD node, we adopt the union

of sets notation. The set {2,3,L4,...,nt1l}] reflects all the

subsequent values of i , it is properly empty if n <O (and hence

tiie loop is never traversed), and n+l is in fact an element of the

set {2,%,4,...}] if n >1 . (If the step size for i were not one,

but ¢ , we would heave to entertain the third possibility that n+l

ic not in the set {1, Lec, 142¢, ...} at all.)
In subsequent processing, we can easily prove the loop termination

assertion,

Zk >1 s.t. i >n

since i is strictly increasing. The subscript range assertion,

1<i1<n,

is true because n is invariant, hence equal to n, » l1<i<ml

at the IOOFHEAD, and 1 <i <n on the true branch from node E .

The overflow assertion,

Loin SHI <I x

95

Example 5. Zeroing

cannot be proved, and the program in fact generates an overflow if

n= I ax . The user is asked if this velue of n is possible.

96

Example 6. King's Example 6. Maximum.

This program to find the largest element of an array by successive

interchanges shows how the recurrence relations express an interchange

as a simultaneous assignment to two elements of the array, how aliases

are handled, and how lemmas can be discovered. The flow graph for the

program is in Figure AG.1.

In Figure A6.2, we show the given information gathered on the first

pass through the loop. Most of this processing is straightforward, but

there are some couplications after node I . In reflecting the

assignment A[i-1)] := x , we must check for aliases (as explained in

Chapter 4) to see if that assignment changes an element of A that we

also know under some other name in our set of given information. In this

example, Aaql i] is referred to in the given information on the entry

arc for node 1 , 50 we try to prove the two theorems

i, = 1.1

and i, Ail

If the first is true, then Aeqliy] is an alias for Apeqliy-1]
and both would be equal to x on exit fram node I . If the second

is true, then the assignment to Aq! i,-1] cannot affect the value

of Ali] , 80 there is no alias problem. In the current example,

of course, 1, f i,-1 , 80 there is no alies problem. In the more

reneral case of successive assigmments to A[1] and A[J] , we try to

prove that either i =j or i # J, + If we cannot prove either
theorem, then we must allow for both possibilities:

(1, = 3 A Al0 = AG8D) v (4, £3 A AL [1] = 0ld value).

on

Example 6. Maximum

Aam

C. Assume A fo,
0 <n, DECLARE Al1l:n,]

n:=n,
y:=2

asgert Ik >1

s.t. i > n, B
Fi

| F assert

| Casa | ee STEl1<i-1<n
I F - = 0

| Sram) tstsnAll) :=A[1-1]

H Ali-1] :=x

AR assertRV; Lin SLT...

Dem
Figure A6.1. Flow graph for King's Example 6, with explicit assumptions

about A and n in nodes C and D, and with an annotation

describing the subscript bounds for A . Only the significant
assertions are shown.

08

Example 6. Maximum

given:

Leer = ryn =n 4
k+1 k

Apel = Ay given:
1 ohhd
i, <n, ny plus others above.

given:

Keel = Aly]
H | Plus others above.

Ali] := 4[i-1)

given:
i = 1

kel _ a given:

Agel = A plus others above.
rel T *x H :
i <n Ali-1] := x
k-="k

Ali m1] < Ala] given:
() hee = I

given: kel Tk
is =1, Agen [dy) = A (1, -1]
no, oem Aer) = x = ALL)

Yi £141, i-1 tL] = 2

Maal] = AIL] or A [1-1] Fi,) Bena I= Ade]n

Ager ldy-1] = Alay -1] or A [4] rE oy [1]. - >

Ve Fd, 4-1 A, [2] = A [1] a" Aly
X41 = Xp OF Ald]
1 < n,

Agen 4-1] < A [4]

Figure A6.2. Gathering of given information on the first pass through
the body of the loop. All deductions are straightforward, except
for the last merged one on the arc leading to node J ’

Aq (1-1) < Ali] - The text explains the derivation of this
lemma. The dummy node just before J was inserted for clarity of
expression.

We may then weaken this expression to avoid the cross-product ¢erms
relating 1 to A:

Aq [1] =X, Or Aeqlig] =0l1d value (Refinement) .

IT it later becomes necessary to use the exact relationship, it can
be reconstructed.

Jim King discusses the alias issue on pages 77-82 of his thesis

[King 1969], and again on pases 132-140. In the latter section, he

discusses the problem of working backwards through a program,

generating expressions for all possibilities of subscript aliasing.

A series of four assignments can easlly generate an exprescion

containing 16 different cases.

The problem with working backward through a program is that, |
for a sequence like |

i= je;

Ali] := 3;

AlJ] := 4; |
there is no information about the relationship between 1 and J

when the assignment to A[1] is processed. Thus, King must generate

an expression like

(1 =j A Ali) is changed by both assignments) v

(1 #3 A Ali] is changed only by the first) , | |
and later try to decide which case applies. By working forward, our

system has seen the assignment |

1 := j+2

before processing the array assigments, so enough information is

available for the theorem prover to be called to answer the alias

question:

Example 6. Maximum

(1 =32) o> (143) 2 (Al4] =3 A Al§T = 1b) |

There are two problems in working forward. (1) The process is

not goal-directed; in contrast to working backward, there 1s no

definite assertion or verification condition to be proved, so it 1s

possible either to discerd crucial information or to retain useless

verbiage. (2) The information required to prove theorems such as

i #3 inside a loop may depend on assignments near the bottom of the

loop, making it impossible to prove the theorem on a single forward

Pass.

The techniques presented in Chapter I try to mitigate these two

problems by (1) using a set of heuristics to merge information into

“useful” lemmas, while still retaining access to the unmerged (refinement)

information in case it is crucial to a later proof, and (2) processing

loops in two passes, where sometimes an alias theorem can be proved on

the first pass because it is true independently of subsequent assignments,

and sometimes an alias theorem can be proved only on the second pass,

after ranges of value: for program variables and the invariant

relationships between them have been determined.

After that somewhat lengthy discussion, we return to our example

and the merging of given information at the dummy node in Figure A6.2.

The left arc includes the information:

Al i,-1] < A i] and

The right arc includes the information

Ald -1] > ALi] and

Maqligl] = Aly] and

Maal) = Addl

101

Exsmple 6. Maximum

In merging this information, we try to find an expression which is

implied by the information on both arcs. We start with the expressions

that already attached to the incoming arce, trying unsuccessfully to

prove that:

right arc info DO left arc info

or left arc info DO right arc info .

This strategy works in merging, say, 11 = i, at the dummy node,

but fails to produce any common information about A . If there 1s |

no common information in the relationships between the old values |

(subscript k) of variables, perhaps there 1s some common relationship

between the new values (subscript k+l); perhaps the whole point of |

the separate paths which are now merging was to create some useful

relationship between the new values of variables. |
To discover useful lemmas about the relationship between the new

values of A , we modify any old relationships on each path to reflect |

the assignments on that path, giving

Ay liym1) S Aga) |

on the left arc, since Aq = A, on that arc, and giving

Agalie] > Ag [3-1] |

on the right arc, since Apoq(3,] “ A (1, -1] and Ap, (1,-1] = Ali] .

We again try to find an expression which is implied by the |

information on both arcs:

left arc info DO right arc info

1.e., Reali] SAL ILT 2 Ag lh] > A, 14-10

102 |

Example 6. Maximum

The strictly greater than relation is not the weaker, so we try to

prove: .

right arc info ODO left arc info

i.e., Aerli) > Agr [ip-1] i’ Apeqli 1] < Ayqliy] .
This implication is true, so we have Just discovered the lemma we

are seeking: the inequality

Mera ligo1) < Aggy [1y]

is true on both arcs, so we attach it as part of the merged information

on the entry arc to node J .

In our current example, this mechanically synthesized lemma ir

not needed to prove any of the assertions in the program, but a

slmiiar process is crucial in the loop termination proofs in SELECT |

[Sites 1974]. In fact, all the assertion proofs on the second pass

through the loop in our current example are straightforward. The

loop terminates because 1 is monotonically increasing. The

subtraction 1-1 does not overflow because i 22, a fact which

we could not know on the first pass through the loop, since it depends

not only on the initialization at node D » but also on the assigmment

at node J . The subscripts are all in range, and the assignment

at node J may in fact overflow. Note that the human user could

remove the overflow problem by including in node C the assumption

(restriction) that n, < Tax ‘ |

103

Example 7. King's Example 7. Bubble Sort.

This is the first example in which we cannot prove that the

program terminates. It is also the first example in which we have

two nested loops. Following the process in Chapter 1, we do the

interval analysis of the flow graph, find the loops, and then try

to put them in leading test form. Figure A7.l shows the flow graph

before this last transformation; the inner loop is in leading test

form, but the outer is not. Figure A7.2 shows the change in structure

required to put the outer Joop in leading test form also. Then it is
easy to synthesize the loop termination conditions:

31 >1 s.t. J, = 0 for loop #1,

dk> 1 s.t. i, >n, for loops#2 and #2°'.

Loops 2 and 2' are essentially the same as Example 6, and terminate

for the same reason -- 1 1s monotonically increasing. The rest

of this discussion therefore centers on the behavior of J . ©Since

loops 2 and 2' are identical, we shall concentrate on the nested

pair, 1 and 2. The reader cen fill in the details of the degenerate

case of an initially completely sorted array, when loop 2' exits

with j = O and hence loop 1 never iterates.

Figure AT.3 shows the details of the multiple passes over the

nested loops to find out the range of values for J during all

possible iterations. The assignment to Jj in node D turns the

outer loop induction into & degenerate case: J+1 does not depend

at all on J g ? 8° the second outer pass contributes no new information
after node D . Eventually however, we find that the range of values

for j at node J is O or 1, and that there are no reasons

104

that J must sometimes equal 1 . Therefore, we cannot prove that

the outer loop terminates. The human user will have to look at this

loop and convince himself that the loop does in fact terminate

(because humans "mow" that eventually no interchanges will take |

place and therefore the assigment at node H will not be executed). |
It is possible in this example to split up the inner loop 80

that if the interchange never takes place, the inner loop exits

directly to node K , but that turns out not to help us prove loop

termination, because ve still cannot prove that eventually no

interchange will occur. |

105 | |

Example 7. Bubble Sort

START

Llwry

Assume DECLARE A{1l:n]
Afgw,n >0

LOOFHMEAD #41

D x=
| j:=0

Inner loop Aexit arc | Cal1-1] > ALL

[3 x :=A[i-1)
dE» Ali-1] :=A[1)
F T All) :=x

Outer loop |

rit see ——<F Ere

Figure A7.1. Flow graph for King's bubble sort. We will permute the
nodes so that the loop exit node for the outer loop, J, 18 just
after the LOOFHEAD #1 node. We will not be able to prove that the
outer loop terminates, since its temination depends on no further
interchanges taking place in the inner loop.

1NA

Example 7. Bubble Sort

m2
i:=2

J:=0 (100 #2!)

(_100P #2) 100FHRAD $1

Figure A7.2a. Structure of Figure AT.2b. Structure of

the nested loops in the nermuted nested loops
Figure A7.1. The outer from Figure A7.2a. We
loop is not in leading have mede copies of the

test form, so we permute initial assignments to
the nodes inside the loop i and j , and of the

uncil it is, as described entire immer loop.
in Chapter 1.

107 |

| Fxample 7. Bubble Sort

1. given: (from loop 2!)
J=0or1l1

LOORMEAD $1 |
2. given: (1st outer

loop pass) Jpe1 = 9)
9. given: (2nd outer

loop pass) j=0 or 1 |

assert 32 > 1 s.t.

Jp =0 |

H > 3. given: (lst outer |

F | loop pass) |
| = 0i:=2 pel
| :=0

L. 11. given: (1st and] | O. glven: (2nd cuter
rd passes) | loop pass) j =0
Jel TJ

‘« 13. given: (2nd and
ok oi

th passes) | $2 (1st and 3rd
J =00or1l passes)

= orassert 4k > 1 | Jer x
Jjry = 1

ILE

&. given: (1st outer F) I
loop pass)

J =0 orl Xx :=A[1i-1]+1 h .

. Ali] :=x (2nd pass)
15. given: (2nd outer - J =0 or 1

loop pass) § = O +1

or 1 A A
1k. given:

1] (4th pass)
j=0Oorl

n |

Figure A.7.2. Details of gathering information about J « We take

two passes through the outer loop, first looking (continued next page)

108

Figure A7.> (continued)

At the symbolic values Jos and J, . On this first pass
through the outer loop, we take two passes over the inner loop,

first with Jie to find out that it can remain the aame or
becomes 1 , and second with Fe = 0 as the initial value.
After the first cuter pass, we find that j = 0 or 1 for all

jterations of the cuter loop. During the second pass through

the outer loop, we again traverse the inner loop twice (passes

5 and 4). Pass 3 is exactly identical to pass 1 and can clearly

be implemented to take advantage of this; pass 4 uses Jj = 0 as

the initial value, instead of the symbolic induction variable

Jp from the outer pass 1. In this example, passes 2 and &
are identi.al, but only because of the assigment to J in

node D . In general, pass 2 would have found less specific

information.

109

Example B. King's Example 8. Multiplication via increment/decrement.

In this example, we use a refinement of some merged information

to restructure a loop into two simpler loops. This particular

restructuring turns out to be a classical program optimization

transformation of taking invariant tests out of loops.

The three loops in this example (Figure A8.1) all have the

identical structure, so we will just consider the stripped-down

version in Figure A8.2. Ais that loop is written, it elther counts

x down to zero if x is positive, or counts it up to zero if x is

negative. It may be a good heuristic to say that if a loop termination

test is a comparison for exactly zero, then look at the absolute value

of the expression involved. Such a heuristic would allow us to prove

that | x| is monotonically decreasing and hence that the loop will

terminate. However, by doing some node splitting to accese a

refinement of the merged information about x at the loophead node,

we can restructure the program, as in Figures A8.3 and A8.4, into

two loops, one for x positive, and one for x negative, then easily

prove that each ioop terminates, without using the absolute value

heuristic.

110

Example 8. Multiplication

A komm >
B a,b,y,xb tx

8pry

Bry

LOOFHEAD #1

F T

I= | = F

0 B x
y i=y+l yi=y-1l | y i=y=-1 Yiayrl
xb :=xbtl xb :=xb-1{{1H | xb :=xb+1 xb :=xb~l

11}

B ryeren

Figure A8.1. Flow graph of King's Example 8, which has three loops
with identical structure and identical termination problems. We

will break each loop into two; ome to count a positive variable
down to zero, and cme to count a negative variable up to zero.

caanipie ©. Multiplication

Akomar>

n

given: x £ Ww

given: Kiel =X, .
given: Xel = x A T I. given: Xe1 = %k A<0

he koro ooSETa | Hy
o) F q x >0

given: Xp = Xi" A

on x) >0
given: Xa > Xt A

Xe <0

Figure AB.2. Essential structure of the loops in Figure A8.l1, with

given informulion from the first analysis pass attached. In

merging the value information Xiel = x -1 and Xerl ™ x +l at
the LOOPHEAD node, we find only that x. , # x, - In looking
for common relationships between the new (subscript k+l) values

of x , we findon one arc that Xe 20 , and on the other
Xir 1 <0 . The only common thing implied by these two expressions
is that x_. fw . Thus, the range for x that we use on the
second pass through the loop is

x fw (Refinament) .

112

Dar» Wt «I» 0<I
 /
7

A’
(Ex>0 2
S-

eT
0 HALT

Figure AB.3. First step in restructuring loop in Figure A8.2 is
to try to elide tests along some paths by proving that they
are always true or always false on that path. The test at
node D is inconclusive along all paths, so we cannot elide

it. The test at node E » however, is always trvea along the
rath F-D-E, so we split out that path, making a copy of
node D in the process, and then elide the test as shown by
the dotted line. Similarly, the test at node E is always
false along the path G -D ~-E » 80 we split out that path
(making another copy of D) and elide the test. We must now |
re-analyse the loop structure of the program, starting at
the LOOBHEAD node.

115 |

| Example 8. Multiplication

T

0 errrI prey

IOOPHEAD #2 LOOFHEAD $1

Serre WCwT

Bmss

Figure AB.L. The loop in Figure A8.3 after re-analysing the loop

structure and permuting the loops so that they have leading

tests (thus forcing copies of nodes G and F). It is now

fairly easy to prove that each loop terminates, without resorting

to any arguments about absolute value. Note also that a careful

programmer could have written the original program in this

two-loop form, in order to avoid the redundant test of x > 0

inside the loop.

11k

Example 9. King's Example 9. Selection Sort.

In this example (Figure A9.l), there is very little overlap
between the information gathered to prove that the program terminates

cleanly and the information gathered by King to (attempt to) prove that

the program correctly sorts an array. The two nested loops have the same

structure ceen in earlier examples and it is easy to prove that they

terminate, that all the variables are defined on use, and that no overflows

occur because we anticipated the problem and assumed that the size of |

the array is less than Lax . The only difficulty is proving that the

subscripts are in range in nodes H and KX , so we will examine the

information gathered about 1 , J , k, and n more closely. To

avoid confusion in the notation, p and q are used as iteration

subscripts in the recurrence relations for loop #1 and loop 42

respectively.

Figure A9.2 shows the first few steps 1n collecting information

about i, J, k, and n : symbolic names (subscript p and pl)

are used to develop recurrence relations about how the values of

variables change once arcund the loop. In the midst of this first

pass outer loop processing, two passes are made through the inner

loop, as shown in Figure A9.5. The results of A9.3 are passed as

given information to node K in the first outer loop pass. This

nested processing allows us to discover, for example, that n is

invariant in the inner loop, and hence to discover a little later

that n is invariant in the outer loop.

After the first pass through the outer loop, we use the recurrence

relations gathered (attached after node L) and the initial values

115

sXmmpie Y. Selection sort

l=1, J=w, k=w, nfgw

to synthesize a range of values for each variable at the LOOPHEAD $1

node during all iterations of the outer loop:

n is invariant and n f |

i={1}u{23,...,n) |

J=W or Jo>n

k=w or xc {1,2,...,n] .

We then take a second pass through the outer loop, using these

ranges to prove assertions. At nodes F and KX, it is now clear

that 1 12 in the proper subscript range: 1 <1 <n . When we

encounter the inner loop, we use the new initial value information

(as it stands on exit from node F) with the old inner recurrence

relations (subscripts q and q+l) to synthesize a tighter set of

ranges for variables inside the inner loop. In this example, the

ranges attached to the exit arc of the LOOFHEAD 42 node are:

n is invariant and n fw

i= {1,2,...,n-1}

J = {1+1, 1+2, ..., n+1}

kc {1, i+1, ...,n} .

Following the test in node G , we can prove that j is in the proper

subscript range innodes H and I: 1<j<n. On this third

pass through LOOP #2, we can also prove that Jj = ntl on exit to

node K . On previous passes, we did not know anything about the

relationship between j and n , 80 we had to allow for an initial

cage like j = 342 and n = 12 , in which we could only state that

J >n on exit, not that J = ntl . However, now ve know that the

»

maximum initial value of j is n , hence the inner loop always

iterates at least once and Jj = n+l on exit. (Note that our analysis

system would actually use the fact that Jj <n initially at

LOORFAD #2 to elide the test in node G for the first iteration of

the loop, forcing a complete copy of the nodes in the loop to be

used to reflect the unconditional first iteration. We will ignore

this complication.)

Following the third pass through IOOP #2 , we arrive at node K

with the following given information:

ntow

i=1{1,2,...,n-1}

Jj = ntl

kc {i, 1+1, ..., n} .

This is sufficient to prove that the subscripts i and k are

always in the proper range (1 <i <n, 1<k <n) at node KX.

We have thus proved, through a somewhat tedious process, that all

subscripts are ir range in this program, during all iterations of both

the inner and outer loops.

117

|

Assume
0<n, <I

0 max

By

LOOPHEAD #1

/ H J s=14l
] x :=A[1]

k:=1

f
/

oy sm 2
assert i <1K< n, J assert

- —_ 1<j<n
asrert 1 <k <n, H «TD = 0

/ Alk] :=A[1] x :=A[J) ;
| Ali] :=x k:=) |

Figure A9.1. Flow graph for King's last example. We will only consider

the proofs of the three assertions shown, since the other proofs are |
similar to those in earlier examples. To prove clean terminationm,

| we need never consider vhat is happening to A, i.e., that it is |

being sorted. |

118 |

1) given:
i=1AJjJ=wWA

k=A ngw

LOOPHEAD #1

2) given:

i L=1 A given: . ,=i Al _<n_A

P =J_ AK =k_ Aek A Ipr1=3p A Fp =p
ptl Pp n_.,=n
n =n pt P
ptl Pp

E41<n OD
L) given: y

1 ={1Ju{2,3,...4n} A |
n is invariant A 1 [FP
(j=wvVv j>n) A Ji=1+1
(k=wVv kc {1,2,...,n}) x :=A[1) given:

k:=1 1 =i Ai _<n_A

_ Br N 1 of P i=41 +1 A = A

pr =p MN Fp tp
n =n

prior

given:
i =i Ai _<n_A

X TTR wl Pp PP| = >n A

All) :=x Ra A {olen) A
prl Ppp
n =n

P="

3) given:
pt =1 +1 i. < A

exit Pl pp "p>n

Jpe12Tp
Kr Cc (1,,1¢1,...,n,] A

=n

“pr1 Tp

Figure A9.2. Gathering of given information for i, j,k, and n on

first pass through outer loop. The processing of the inner LOOP $2

on this first pass is detailed in Figure A9.3. The induction step

between the first pass and the second pass through the outer loop

determines the synthesized information labeled 4) . Rote that J

| does not have a particularly useful value at the LOOPHEAD #1 node;
| it is the assignment in node F that is important.

119

1) initial

given: 11 =1, A i, <n, A
Joel = +1 A
Kor: =1p A Noel >,

2) given: l+1=3g A
Jae =I A

Ke+1 =k A 0q+ =By dE» given: above plus

Cx SATSgiven: a“:ove plus / given: ea]
*q > Agldg) /wih q- qqX:=A[J]

given: above plus

given: j >n 3) given: Ll = 1, A
_— i

gl q Yq"

Mq+1 = Bg A
| dq £0

Figure A9.5. Gathering of given information for i , Js, k, and n in

inner loop, during first pass through cuter loop. The recurrence |
relations attached after node J show that i and n are invariant

in the loop, that Jj 4s monotonically increasing, and that Xk is

some subset of the values that j takes on. Combining these
recurrence relations with the initial input conditions from the first

pass through the outer loop, we find that, at the LOOPHEAD #2 node:

Wig =i, Ad <n An =n A | |
pr = 18,4, 142, ..., ntl} A
Koel Cc (1, 1+1, «vey n.} .

120 |

Example 10. The 91 Function.

The program we consider is a derivative of the recursive 91 function.

The iterative version we deal with requires most of the graph transfor- |

mations described in Chapter 1 and most of the merged information

mechanisms described in Chapter 4 for the successful proof of its

termination.

As stated in [Manna et. al. 1972, pp. 32 and 43], the 91 function

is

F(x) <= if x > 100 then x-10 else F(F(x+1ll1)) . |

This function returne x-10 if x > 100 and 91 otherwise. The |
jnitial form we use comes from a mechanical transformation of the
recursive definition intu an iterative one using an explicit stack. The

stack index is k , and the only content of the stack is how many calls

of F are still to be done, 80 k | jtself is used as this counter.

We shall concentrate on proving that the loops in this program

terminate, and shall ignore the other issues, such as overflow. The

reader may wish to convince himself that i does not overflow, and

that k might.

Figure A10.1l gives the initial, user-supplied flow graph. Using

the methods described in Chapter 1, this graph is transformed into the

one in Figure A10.2. The first loop in this graph terminates because

{ is monotonically increasing, and hence will eventually exceed 100 .

The figure shows the given information available on initial entrance

to the major loop, LOOP #2.

Using p and q as the iteration subscripts in loops §2 and $5

respectively, we find on the first pass through 100P $2 , that we

enter the LOOFPHEAD #5 node with:

121

Example 10. 91 Function

START

Hyer

: T

i:=1+11 F {:=4-10 ’
K:=k+l

F

tl«>

Figure Al10.1. Flow graph of the 91 function before any of the

Chapter 1 graph manipulations have been performed. We will

make the loof E-I-E into an inner loop with exit to F, |
then make the loop E-F-G-H-E intoan outer loop with |
exit to J . We will then permute the nodes of the outer loop

80 that it has a leading exit test. |

122

A

Rea©

Olror

LOOFHEAD 41

assert iq > 1 s.t. 3 > 101

given: T ia

| given:

i>91 A k>0

assert 3p > 1_
s.t. ky <0

0«CE»
I

| 0rye=y

assert dq > 1 /
s.t. 1 > 101 /

T

ti&™"

Figure A10.2. Structure of the flow graph in Figure A10.1 after

separating the loops and putting them in leading test form. The

loop termination assertions are shown, along with the initial

entry conditions for 100P #2 .

123

lw = 1, A kop = Kol A ky, >0 .

The subsequent induction step for LOOP #3 is shown in Figure Al0.3.

We then apply our knowledge that

) > i A Koel 2 K-1 A Ky >0

tonoddes E and I on a second pass through I1OOP #3 , and then exit

to node F , carrying the information:

ip 2 1, A Kor 2 Kp-1 A k, > 0 A 1, 2101 .
Passing through node ¥ , we find that:

pp 24,710 A 4, >91 A Kop 2K,71 A ko 0

The induction step for the outer loop (LOOP #2) is shown in

Figure Al0.h. We discover there that 1 > 91 at the IOOPHEAD 42 |
node during all iterations of the outer loop. With this tighter |

information abouvr i , we start a third pass through LOOP #3 by |
re-doing the loop induction, as shown in Figure A10.5. We discover |
that 1 >91 at the LOOPHEAD #3 node. We combine this information |

with the test i > 101 to find that on entry to node I ,

91 <1 <100 A k>0 , |

and hence after node I , that

102<1 <111 A k>1 .

This tight restriction on 1 during all but the first iteration of

LOCP #5 allows us to elide the test 1 > 101 and in fact get rid of

LOOP #3 entirely, as shown in Figures Al0.6 and AlO.T.

On exit from node I in this newly-structured graph, we know

that k > 1, s0 we can merge this with the k > 0 on the arc from

E to F to get

k >0 (Refinement)

12)

initial

glven: given:
= 1 i = +11

lpe1 P A qtl 1 1 A=k - k =k +

Kpr1 p+ qtl =~ q N°
Xk >0 i <100
Pp q =

LOOPHEAD ¢3

syntheiszed
given:

141 = 1, 1+1, vee} A

k >1

B oo

Figure A10.3. Induction step in LOOP $3 . Since we are within

the first pass through IOOP #2 , we are developing ranges for

the outer loop induction variables. Since we know nothing at

this point about i, » we cannot say that 4pl < 111 inside
LOOP #5 ; even though that is true when coming around the loop,

it may not be true on initial entry.

125

initial 1:-1-10 |

given: ~~ given:
1 >91Ak>0 i >1 -10 A

i > Ql A
l ~*

k >k =1A
p12 5p
p21

synthesized
given:

1>9 A k>0

Dae } i

Figure A10.4k. Induction step in LOOP $2 . The fact that 1 > 91
inside the loop will be crucial in our third-pass processing of
LOOP #3 .

initial |

given: given:
1>91 A k>0 11 = iH A

k =k +1
qtl = °q - A

i < 100
LOOPHEAD #3 a

synthesized
given:

| 1>91 A k>0

Figure Al0.5. Loop induction for starting the third pass through

LOOP #3 . Now for the first time we know that 14 > 91 at the
LOOFHEAD #2 node on all iterations of LOOP #3 .

126 |

given:

i>091

LOOPHEAD #3

given:

i1>091

H i:=1+11 given:
K = lotl 102 <i<ll

-— —
--

Figure Al0.6. Elision of the test i > 101 along the path E-I-E .

Since 102 <i when coming around the loop, the test of 1 > 101
is always true on the second iteration.

given:

i>01
K>0

LOOFHEAD #2

OH«ED»
F f

oT
glven:

1>91Ak>0

given: 1:=4+11
101 <1 A ks=lktl

given:

k 20 I) 102<i<1 Ak>1

exit

Figure A10.7. New structure of LOOP $2 after elimination of

LOOP #5 . We now can elide the test of k on the path I-F-G .

127

on exit from node F , the refinement being that on ome path we know

the stronger condition k > 1 . We can now attempt to elide the test

at node G , and find the attempt successful along the path I-F-G,

as shown in Figure Al0.8, where the node F has been copied. Figure Al10.9

ghows the resulting nested loop structure, both of whose loops are easily

seen to terminate.

We have now proved that all the loops in the iteratlve program

for the 91 function terminate, by using only mechanical transformations

of the flow graph and some simple theorem proving. The iteretive

program and its mechanical transformation from the recursive form are

due to Donald Knuth, and have the property that if the itera%iive form

terminates, so does the recursive one.

Combining any of the standard proofs of partial correctness of

the 91 function with our proof of termination gives a proof of total

correctness, with the only exposure being that k may overflow (or in

the recursive form, the stack may overflow).

(I don't know if it is just a fluke that the mechanical test

elision process was able to create an inner loop with k invariant,

but it was certainly quite suspenseful the first time I worked all the

way through this example. Originally, this was to be my example of

how the thesis techniques could fail to prove loop termination.)

128

given: k > 0

BEAD 42

: Fp

|

| given: k > 0 |

T

: (2 i:=1+1l
: k:=ktl

given:

F k>1

given:

k >0

exit

Figure A10.8. Elision of the test k > 0 along one path. When the
structurs of this new flow graph is analysed, we will have a nev

loop nested inside IOOP 42 . We have now made some significant
progress, because k is invariant inside this inner loop.

129

F T

T

H j:=3i+1]
k :=ktl

hw) Hew
er

exit

Figure A10.9. Final structure of nested loops $2 and $4. We cannot
combine nodes I-F"-H into a single 1 := i+1 , unless we can

prove that no overflows occur. However, we do find the
recurrence relations in IOOP #b :

atl Nal Ba |
Thus, LOOP #4 terminates because i 1s monotonically increasing.
Since k is invariant in I0OP $+ , we find in the re-analysis

of LOOP $2 that Kkorl = k-1 , and hence that I1OOP §2 terminates
because k is monotonically decreasing.

130

Appendix B. Node Visiting Algorithm from Chapter L.

procedure VISIT (firstnode, lastnode);

for n := firstnode to lestnode do

begin

1) for each i in INCOMINGARCS(n) do
PROVE (GIVEN(1) = ASSERTIONS(1));

2a) if NODE(n) = LOOPHEAD then

begin

GIVEN (EXITARC(n)) := DUMMY BINDINGS Vy , = Vy3
VISIT (FIRSTNODEINSIDELOOP(n), LASTNODEINSIDELOOP(n));

GIVEN (EXITARC(n)) := INDUCT (GIVEN (INITIALARCS(n)),

GIVEN (LATCHBACKARCS(n)))

end

else begin

2b) if NODE(n) = TEST then

for each i in INCOMINGARCS(n) do
begin

PROVE (GIVEN(i) D TESTEXPRESSION(n)) ;

PROVE (GIVEN(i) D not TESTEXPRESSION(n))

if either is true then
elide the test and re-analyze the graph

end

3) g := MERGE (GIVEN(i) for each i in INCOMINGARCS(n));
g := MERGE (g, ASSERTIONS(1) for each i in INCOMINGARCS(n));
gprime := REFLECTASSIGNMENTS(g);

if NODE(n) = TEST then

begin

GIVEN (TRUEEXIT(n)) := MERGE (gprime, TESTEXPRESSION(n)) ;

GIVEN (FALSEEXIT(n)) := MERGE (gprime, not TESTEXPRESSION(n))

end

else

GIVEN (EXITARC(n)) := gprime

end

end

131

Bibliography

Page

referenced

[Allen 1970] ces ee ma h,9
Frances E. Allen, "A Basis for Program Optimization,"

IBM Research Report RC3138, T. J. Watson Research Center,

Yorktown Heights, N. Y., November 1970, pp. 3-6.

(Allen and Cocke 1972] ch ee eee h, 7, 9
Frances E. Allen and John Cocke, "Graph-Theoretic Constructs

for Program Control Flow Analysis,” IBM Research Report RC3923,

T. J. Watson Research Center, Yorktown Heights, N. Y., July 1972,

p. 28ff. -
(Ashcroft and Manna 1972] Ce ee eee 7, 25

Edward Ashcroft and Zohar Manna, "The Translation cf 'Go To!

Programs to 'While' Programs," Information Processing 71,
North-Holland Publishing Company, 1972, pp. 250-255.

[Brent 1973] ce ee ee a 5

Richard P. Brent, "Reducing the Retrieval Time of Scatter

Storage Techniques,” C.ACM 16, February 1973, pp. 105-109.

[Burstall 1970] Cee ee ee 56
R. M. Burstall, "Formal Description of Program Structure and

Semantics in First Order Logic," Machine Intelligence 5,
Edinburgh University Press, 1970, pp. 79-98.

[Clint and Hoare 1972] ce ee eee 56

M. Clint and C. A. R. Hoare, "Program Proving: Jumps and

Functions,” Acta Informatica 1, 1972, pp. 21he22k.

[Cocke and Schwartz 1970) Ce ee eee 9
John Cocke and Jacob T. Schwartz, "Programming Languages and

Their Compilers: Preliminary Notes," Courant Institute of

Mathematical Sciences, New York University, K. Y., April 1970,

pp. Lb2-b61.

[Dahl and Hoare 1972] c «eo es o a so » 59
Ole-Johan Dahl and C. A. R. Hoare, "Hierarchical Program

Structure,” in Structured Programming, Academic Press,
New York, 1972, pp. 175-220.

132

[Deutsch 1973) « ««.. 54 55 86, 66
L. Peter Deutsch, "An Interactive Program Verifier,"

Ph.D. Thesis, Computer Science Department, University of

Califormia Berkeley, June 1973.

[Earnest et al. 1972] Ce eee eee 16
C. P. Earnest, K. G. Balke, and J. Anderson, "Analysis of

Graphs by Ordering of Nodes," J.ACM 19, January 1972, pp. 23-b2.
[Elspas et al. 1g72a] ‘ae re se 56

Bernard Elspas, M. W. Green, Karl N. Levitt, and

Richard J. Waldinger, "Research in Interactive Program-Proving

Techniques,” S.R.I., Menlo Park, Calif., May 1972.

(Elspas et al. 1972p) ce eee- « «+ 54, 56
Bernard Elspas, Karl N. Levitt, Richard J. Waldinger, and

Abraham Waksmarn, "An Assessment of Techniques for Proving

Program Correctness," Computing Surveys 4, June 1972, pp- 97-147.
[Floyd 196k] ee ee ee as 5

Robert W. Floyd, "Algorithm 245 -- Treesort 3," C.ACM 7,

December 1964, p. TOl.

[Floyd 1967) UE lvSO
Robert W. Floyd, "Assigning Meanings to Programs,” Proceedings

of a Symposium on Applied Mathematics, American Mathematical
Society 19, 1967, pp. 19-32.

[Floyd and Rivest 1973] Ce ee ee es 5
Robert W. Floyd and Ronald L. Rivest, "Bounds on the Expected

Time for Median Computation," Combinatorial Algorithms, edited

by Randell Rustin, Algorithms Press, 1973, pp. 69-76. |
[Fritech et al. 1973] Chee eee 5

F. N. Fritsch, R. E. Shafer, and W. }. Crowley, "Algorithm Lh3

-- Solution of the Transcendental Equation ve' = Xx Pa

C.ACM 16, February 1973, pp. 123-12k.
{Gerhart 1972] Ce ee es. Sk,55 €0

| Susan IL. Gerhart, "Verification of APL Programs,” Ph.D. Thesis,

Carnegie-Mellon University, November 1972, 216 pp.

155

[Good 1970] ct 4 4 4 ss aoa 56
Donald I. Good, "Toward a Man-Machine System for Proving

Program Correctness,” Ph.D. Thesis, University of Wisconsin.

Also Computation Center Memo TSN-1ll, University of Texas,

Austin, Texas, June 1970, 179 pp.

[Good and London 1970] ¢ 4 5 see hes 59
Donald I. Good and Ralrh L. London, "Computer Interval

Arithmetic: Definition and Proof of Correct Implementation,”

J.ACM 17, October 1970, pp. 603-612.
[Hoare 1961] che eee ea 56

C. A. R. Hoare, "Algorithm 65, FIND," C.ACM k, July 1961,

PD. 321-322.

[Hoare 1969] ce eee eee 56
C. A. R. Hoare, "An Axiomatic Basis for Computer Programming,"

C.ACM 12, October 1969, pp. 576-580, 58%.

{Hoare 1971a] ees a ee a ee 56
C. A. R. Hoare, "Proof of a Program: FIND," C.ACM 1k,

January 1971, pp. 39-LS.

[Hoare 1971b] cc oe ss «es «+ Sk 56
C. A. R. Hoare, "Procedures and Parameters: An Axiomatic

Approach,’ Symposium on Semantics of Algorithmic Languages,

Springer-Verlag, 1971, pp. 102-116.

[Full et al. 1972] Ce eee eee 59
T. E. Hull, W. H. Enright, and A. E. Sedgwick, "The Correctness

of Numerical Algorithms," Proceedings of an ACM Conference on

Proving Assertions About Programs, SIGPLAN Notices, January 1972,
pp. 66-73. (Also SIGART Notices, January 1972.)

[Igarashi et al. 1973] ce eee eee 56

| Shigeru Igarashi, Ralph I.. London, and David C. Luckham,
"Automatic Verification of Programs I: A Logical Basis and

| © Implementation," Computer Science Department Report CS 365,

AIM 200, Stanford University, May 1973, 55 pp. |

Bibliography

[King 1969] . +. . 3,5 54 66, 100
James C. King, "A Program Verifier," Ph.D. Thesis, Carnegie-Mellon

University, National Technical Information Service, Springfield,

virginia 22151, #AD 6992L8, September 1919, 255 pp.

[Knuth 1973a] eee ee ee 5
Donald E. Knuth, "A Review of 'Structured Programming’,”

Computer Science Department Report C8371, (Clearinghouse #

FB 223572/A), Stanford University, June 1975, 25 pp-

[xnuth 1973b] Ce eee ae 5, 16
Donald E. Knuth, The Art of Computer Programming, Volume 1 =

Fundamental Algorithms, Addison-Wesley, Reading, Mass., 1973.

[Knuth and Floyd 1971] ce ee ee ee 62
Donald E. Knuth and Robert W. Floyd, "Notes on Avoiding

'Go To! Statements,” Information Processing Letters 1, 1971,

PP. 23-31, 177. :

[London 1970s] bara Sh
Ralph L. London, "Bibliography on Proving the Correctness of

Computer Programs," Machine Intelligence 5, Edinburgh University

Press, 1970, pp. 569-580.

[London 1970b] Ce ee eee 3,5

Ralph L. london, "Certification of Algorithm 2h5[Ml}
Treesort 3: Proof of Algorithms -- A New Kind of Certificatiom,”

C.ACM 13, June 1970, pp. 371-372. (Also see [Redish 1971].)
[London 1972] « + + +s a «as.Sh, 56

Ralph L. Londom, "The Current State of Proving Programs

Correct,” Proceedings of ACM National Conference 27:1, ACN,

August 1972, pp. 39-Lé.

[Malcolm and Palmer 197k] cee ee eee 59

Michael Malcolm and John Palmer, "A Fast Method for Solving

a Class of Tridiagonal Linear Systems," C.ACM 17, January 197k,

pp. 1lh-17.

[Manna 19€9) ce ee ee ee 56
Zohar Manna, "The Correctness of Programs,” Journal of Computer

and System Sciences 3, May 1969, pp. 119-127.

155

(

[Manna et al. 1972] . «+ «+ 5, 54, 56, 66
Zohar Manna, Stephen Ness, and Jean Vuillemin, "Inductive

Methods of Proving Properties of Programs," Proceedings of an

ACM Conference on Proving Assertions About Programs, SIGPLAN

Notices, SIGART Notices, January 1972, pp. 27-50. (Las Cruces,

New Mexico, Conference.)

[Manna and Pnueli 1973] Cee ee eee 56
Zohar Manna and Amir Pnueli, "Axiomatic Approach to Total

Correctness of Programs," Computer Science Department Report

CS 382 (Clearinghouse $#AD 767335), Stanford University,

July 1973, 25 pp.

[Naur 1963] ee eee eae 20

Peter Naur (Editor), "Revised Report on the Algorithmic

Language ALGOL 60," C.ACM 6, January 1963, pp. 1-23.

[(Redish 1971) c + a a a a a» 3

K. A. Redish, "Comment on London's Certification of

Algorithm 245," C.ACM 13, January 1970, pp. 50-51.

[Reingold 1973] Ce eee eee 5

Edward M. Reingold, "A Nonrecursive List Moving Algorithm,”

C.ACM 16, May 1973, pp. 305-307.

[Sites 1972] s+ + + st vos oe 61
Richard L. Sites, "Algol W Reference Manual,” Computer

Science Department Report CS 230 (Clearinghouse $#FB 203601),

Stanford University, February 1972, 141+ pp.

© [Sites 197h) . «3 5 17, 53, 66, 103
Richard L. Sites, "Some Thoughts on Proving Clean Termination

of Programs," Computer Science Department Report CS L17,

Stanford University, May 1974, approximately 60 pp.

[Smith 1972] bu mae 56
J. Meredith Smith, "Proof and Validation of Program Correctness,”

The Computer Journal i5, pp. 130-131.

[Waldinger and Levitt 1973] Ce eee eee 55

Richard J. Waldinger and Karl N. Levitt, "Reasoning About

Programs," ACM Symposium on Principles of Programming languages,

ACM, October 1973, pp. 169-182.

136

LavalEL BLE

[Wegbreit 1974) co se ve we 56

Ben Wegbreit, "The Synthesis of Loop Predicates,” C.ACM 17,

February 1974, pp. 102-112.

[Yohe 1970] ce ee ee ee 59

J. M. Yohe, "Best Possible Floating-Point Arithmetic,"

Mathematics Research Center Summary Report No. 1054, University

of Wisconsin, March 1970.

137

Aliases 45rfr, 98ff |
Arrays Lh, 5, 20, 21, 22, Ls, 93ff
Backward Analysis 100

Certification >

Clean termination 1£f

Correctness 1, 3, 5, 56

Correlations between variables 86

Counterexample 9, 23, 31

Exit test 13, 24, 25, 26, 91

Forward analysis L, 29, 100, 101

Goal-driven 23, 2h, uh, 52

Goto 62

Halting problem 23, 27, 48, L9
Heuristics

Absolute value 110

Loop induction 59

lcop termination 89

| Merging given info 43, 5g, 101
Permuting loops 13, 122

Pushing back assertions 31, 59

Interval Analysis 7, 9, 12, 1k

Language design 60

Latchback arc 9

Leading tests 7, 13, 26, 27

Lemma formation L3ff, 101ff, 112

| Lexicographic order 4, 29, 38
List processing 5, 38, 39, 49, 57, 58, 59

| [oop exit arc 9

Loop induction 29, 3urf, LBff

| Machine model 18
Memory bound 20

Merging given info 33, hort
Monotonic expression 4, 24, 27, kg, 110, 121

128

Nested loops 30, lohfe

Node splitting 7, 9, 11, 29, 33, 34, 1l0ff

Optimizing compilers 61

Partial correctness 3, 83

Procedure calls L, 5, 7, 21, 30

Pushing back assertions 21, 31, 81
Recurrence relations 29, 35, 49

Recursion 4, 8, 20, 59

Refinement 29, 32, 33, 37, L3ff, 90, 110f¢
Safety 62

Search loops 5 27, 51ff, T9rf

Small machines 2, >

Subscript bounds 20, 21, 22, 93ff

Termination, Proof of 3, 23ff, 56, 10k

Test elision L, 25, 29, 30, 34, 37f£f

creating new inner loop 38, 39, 129

creating new parallel loop 113, 11k

deleting inner loop 127

Time bound 20

Total correctness 56, 58, 90

Notation

® End of chapter summary. Vi

» Undefined value. 17, 19

I Smallest representable
mit ynteger. 17, 18

lax Largest representable
integer. 17, 18

~€ Non~-empty initial subset
of an ordered set. 320, 52, 78, 95

159

