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ANALYSIS OF ASSOCIATIVE RETRIEVAL ALGORITHMS

by
Ronald Linn Rivest

Abstract

This thesis examines various methods of performing associative
searches of a random-access file. An abstract model of the retrieval
process is used to evaluate the different techniques.

For partial-match queries, both generalized hash-coding and trie
algorithms are analyzed. An exact lower bound is derived for the
required average number of buckets examined by hash-coding algorithms,
and the optimal hash funetions are precisely éharacterized. A new
class of combinatorial designs, called associative block designs, is
introduced which have excellent worst-case behavior as well as optimal
average retrieval time when employed as hash functions. Tries are
found to be about as efficient as the optimal hash functions on the
average., In general, the time required to answer a partial match
query is found to decrease approximately exponentially with the amount
of information specified in the query. The efficiency gains achievable
through storing records in several locations are also examined.

For answering best-match queries, a hash~coding algorithm due

to Elias based on error-correcting codes is shown to be optimal.

This work was supported by the National Science Foundation under grant
GJ-331-T0X.
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QUOTATIONS

Oh where, oh where, has my little dog gone?
Oh where, oh where can he be?
With his tail cut short, and his ears cut long,
Oh where, Oh where can he be?

[Nursery rhyme]

You must look where it is not, as well as where it is.

[Gnomoiogia - Adages and Proverbs.

by T. Fuller (1732)]
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in this thesis we examine algorithms for “associatively" searching a direct-
access file to determine their optimal form and achievable efficiency. This
chapter presents an abstract model of the file and query specifications, and we
analyze the search algorithms within this framework. Chapter 2 discusses the
historical development of the "associative search" problem, and reviews
previously published search algorithms. Chapters 3 and 4 examine partial—match
search algorithms, and chapter 5 studies a best-match search _algorithm.
| An information retrieval system must consist of at Ieas.t the following parts:
(i) a collection of information, called a file. An individual unit of this
collection is usually called a record. If records may be added to or deleted from
the file (that is, the file may be updated), the file is said to be dynamic, otherwise
it is said to be static. |
(ii) a storage or recording procedure by which to represent the file (in the
abstract) on some physical medium for future reference. This operation we call
the encoding of the file. The encoded version of the file must of course be

distinguishable from the encoded versions of other files. The medium used is




entirely arbitrary: for example, punched or printed cards, ferromagnetic cores,
magnetic tape or disk, holograms or knotted ropes. .There are clearly many
possible encoding functions, even for a given storage medium. To choose the
best one for an application is called the encoding or data structure problem.

(iii) a method by which to access and read (or decode) the encoded file.
The access method depends only on the storage medium used, while the encoding
function determines what interpretation should be given to the accessed data.
The encoded version of the file will in general consist of the encodings of its

constituent records, together‘with the encoding of some auxiliary information. If

(the encoded version of) any particular item of information can be independently

accessed with (approximately) unit cost, we say the file is stored on a direct-
access storage device. - Card files and magnetic disks are thus direct-access,
whereas magnetic tapes are not. The access cost usually consists of two
independent quantities: the physical access time needed to move a reading head
or some other mechanical unit into position, and the transmission time required fo
actually read the desired data. The transmission time is proportional to the
amount of information read, while the physical access time usually depends on the
relative location of the last item of information read. Devices such as core

memory have zero physical access time.

@



Y

(iv) a user of the system. This person 'r;s assumed to have one or more
queries (information requests) for the system..' The response to a query is
assumed to be a subset of the file - that is, the user expects some portion of the
records of the file to be retrieved and presented to him. If the user presents his
queries one at a time in an interactive fashion, we say that the retrieval system is
being used on-line, otherwise we say that it is being used in batch mode. In this
thesis we shall only consider on-line systems.

(v) a search algorithm. This is a procedure for accessing and reading part
of the encoded file in order to produce a response to a user’s query. It is of
course dependent, but not entirely, on the choice of storage medium and encoding
function. This algqrithm may be performed either by a computer or some
individual who can access the file (such as a librarian).

The above broad outline of an information rétrieval system needs to be
fleshed out with more detail in order to make precise the problem to be studied.
We now present some formal definitions required for the rest of this thesis.
These details restrict the model’s generality somewhat, although it remains a good

approximation to a large class of practical situations.



1. 1. ATTRIBUTES, RECORDS, AND FILES

A record R is defined to be an ordered k-tuple‘(rl,rz,. .. yrk) of values (that

is, each record contains exactly k keys, or attributes). We will assume that the

j-th key can have at most Vi values, for some:- finite Vi 25Vj<oo, so that
O« Fi<v; for 1<j<k and any record R. For simplicity we shall usually assume that
all the vj’s are equal to a particular value v. In addition, we will usually conéider

only the case v = 2, since any other record type can easily be encoded as a
binary string. Binary records are thus in a certain sense the most general case.
In this situation each record is a binary string (or word) of length k. Let R =

{R1, Ry, ...} denote the set of all valid records, so that |R| = ViVoreevk. We
also reserve the notation Ry for the set of all binéry words of length k. A file F

is defined to be any nonempty subset of R. We shall consistently use the letter
n to denote |F|, the number of records in the file being considered.

These conventions are not the most general possible. For example, |n the
model proposed by Hsiao and Harary [Hs70], a record is defined to be an arbitrary
collection of (attribute, value) pairs rather than a complete list of values for a
predetermined set of attributes. A study of the complexity of associative
retrieval in this more general setting, however, would certainly require many

additional assumptions about the file characteristics.
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~1.2. QUERIES

Let Q denote the set of queries the information retrieval system is

designed to handle. For a given file F, the proper response to a query Q; ¢ Q is

denoted by Qi(F') and is assumed to be a (perhaps null) subset of the records in

F.
The following sections give a framework within which to categorize query

types, and describe the particular query types to be considered in this thesis.

1.2.1. INTERSECTION QUERIES.

named after the defining characteristic of its response: a record in the file F is

to be retrieved if and only if it is also in a predetermined subset Q(R) of R,

so that

Q(F) =get F 0 Q(R). A | N$Y
The notation here is consistent since if F=R then (1) implies Qi(F) = Qi(R).
The sets Qi(R) completely characterize the functions Qi(F') for any file F by

the above intersection formula. Intersection queries enjoy the property that

whether some record ReE is in Q'i(F) does not depend upon the rest of the file

(that is, upon F-{R}), so that no "global" dependencies are involved. The class




of intersection queries contains many important subclasses which we present in a

hierarchy of increasing generality:

(1) Exact match qq_eries: Each QiR) contains just a single record of R .

An exact match query thus asks whether a specific record is present in

F.
(2) Single-key queries: Q(R) contains all records having‘a particular value for
a speéified attribute. For example, consider‘ the qué‘ﬁr'.y defined by
Q(R) = {RR [rg=1}. | | (2)
(3) Parti'al match queries: A "partial match query Q; with t keys specified”

(for some t < k) is represented by a record R¢R ~ with k-t keys

replaced by the special symbol "+" (meaning "unspecified"). If Qi = (g1,

gj2 -+ Qjk) then for t values of ‘j.' we have Osqij<vJ- and for the other

values of j we have g;j="+". The set Qj(R) is the set of all records
agreeing with Qi’ inlthe specified positions. Thus,

QiR) =v-{RéR | (Yj,1 sjsk)[(qij=*) v (qij=rj)]} . (3)
A sample application might be a cross-word puzzlle dictionary, where a
typical query could require finding all words of the form "BxT%%R" (that

is; BATHER, BATTER, BETTER, BETTOR, BITTER, BOTHER, BUTLER,

BUTTER). We shall use Q4 throughout to denote the set of all partial

match queries with t keys specified.

6
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(4) Range querics: These are the same as partial match queries except that a
range of desired values rather than just a single value may be specified
for each attribute. For example, consider the query defined by

QR) = { RER [(1srjs3) Al srp < 4) } -  (a

distance function d be defined on R . Query Q; will specify a record

Rci and a distance 3, and have
Qi(R) = { RR | d(R,RCi) S} (5)
Query Q; requests all records within distance 2; of the record Rci to be

retrieved. The distance function'd(R,R’) is usually defined to be the
number of attribute positions forA which R and R’ haQe different
values; this is the Hamming distance metric.

(65 Boolean queries: These are defined by Boolean functions of the
attributes. For example, consider the query Q defined by
QR) = {RR | (r] =0) virg=1) Alrg#3)} (6)
The class of Boolean queries is identical to the class of intersection
queries, since one can construct a Boolean function which is true only for

records in some given subset Q(R) of R (the characteristic function of

Qi{R)).



Note that each intersection query requires total recall, that is, _e;‘\_/g_u record
in F meeting the specification must be retrieved. Many practical applications
have limitations on the number of records to be retrieved, so as not to burden the

user with too much information if he has specified a query too loosely.

1.2.2. BEST-MATCH QUERIES.
A differehtv query type is the pure best-match query. A pure best-match
query Q; requests the retrieval of all the nearest neighbors in F of the record

Rj ¢ R using the Hamming distance metric d over R. Performing a pure best-

match search is equivélent to decoding the input word R into one bor more of the
“code words" in F, using a maximum likelihood decoding rule (see Peterson
[Pe72])). Thus we have

Qi(F) = {RelF | ~(3R" ¢F")(d(R" ,R;)<d(R,R))) } (7)

1.2.3. QUERY TYPES TO BE CONSIDERED.

In this thesis we shall only consider partial-match and best-match queries.
The justification for this choice is that these query types are quite éommon yet
have not been "solved” in the sense of having known optimal search algorithms to
answer them. In addition, these query types are the ones usually considered as

the paradigms of "associative” queries. The simpler intersection query types

S
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seem to already have adequate algorithms for handling them. The more general
situation where it is desired to handle any intersection query can be easily shown
to require searching the entire file in almost all cases, if the file is encoded in a
reasonably efficient manner. (Besides, it takes an average of |R| bits to specify
which intersection query one is interested -in, so that it would generally take
longer to specify the query than to read the entire file!) A practical retrieval
system must therefore be based on a restricted set of query types or detailed

knowledge of the query statistics.

1.3. COMPLEXITY MEASURES

The difficulty of performing a particular task on a computer is usually
measured in terms of the amount of time required. We shall measure the
_difficulty of performing an associative search by the amount of time it takes to
perform that search.

Our measure is the “on-line” measure, that is, how much timé it ltakes to
answer a single query. This is the appropriate measure for interactive retrieval
systems, where it is desired to minimize the user’s waiting time. Many
information retrieval systems can of course handle queries more efficiently in an

"off-line" manner - that is, they can accumulate a number of queries until it




becomes efficient to make a bass through the entire file answering all the queries
at once, perhaps after having sorted the queries. The practicality of designing a
retrieval system to operate "on-line" thus depends on tf\e relative efficiency with
which a single query can be answered. That is thus the study of this thesis.

When a file is stored on a secondary storage device such as a magnetic
disk unit, the time taken to search for a particular set of items can be measured
in terms of (i) the number of distinct accesses, or read commands, issued, and (ii)
the amount of data transmitted from secondary storage to main storage. For most
of our modeling we shall consider only the number of accesses. Thus, for the
generalizations of hash-coding schemes discussed in §3, we count only the number
of buckets accessed to answer the query. |

Several measures are explicitly not considered here. The amount of
storage spéce used to represent the file is not considered, except in §3.3 to
show that using extra storage space may reduce the time_ taken to answer the
query. The time required to ubdate a particular file structure”is‘ éléo' nbt

considered - this can always be kept quite small for the data structures

examined.
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1. 4. RESULTS TO BE PRESENTED

A brief exposition of the historical development of the subject is presented
in §2.

In §3 generalized hash functions are.studied as a means for answering
partial match queries. A lower bound on their achievable performance is proved,
and the class of optimal hash functions is p:;ecisely characterized. A new class of
combinatorial designs, called associative block designs, is then introduced.  When
interpreted as hash functions, associative block desighs are found to have
excellent worst-case behavior while maintaining optimum avérage retrieval times.
We also examine a method for utilizing storage redundancy (that is, we examine
the achievable efficiency gains obtainable from storing each record in more than
one place).

In 84 we study tries as a means for responding to partial match queries.
"Tries” (plural of "trie") are a particular kind of tree in which”bragching decisions -
are made only according to the specific record being inserted or searched for, and '
not according to the results of comparisons between that record and others in the
tree. Their average performance turns out to be nearly the same as the optimal

hash functions of §3.

11 -




The results of §3 and §4 seem to support the following.

Conjecture: There is a positive constant ¢ such that for all positive

integers n, k, and t the average time required by any algorithm to answer a single

partial match query Q ¢ Q4 must be at least
c ntk=t)/k
- where the average is taken over all queries Q ¢ Q¢ and all files F of n k-bit
records which are represénted efficiently on a direct-access storage device.
(That is, no more than snk bits of storage are Used, for some small constant s.)
In §5 we again consider hash functions, this time as a means for .answering

best-match rather than partial-match queries. An algorithm due to Elias is proved

to be optimal.

12



CHAPTER 2
HISTORICAL BACKGROUND

2. 1. ORIGINS IN HARDWARE DESIGN

The class of associative search problems was first discussed by people
interested in building ‘associative memory devices. Accordihg to Slade [SI64] the
first associative memory design was proposed by Dudley Buck in 13955. Many
other designs soon appeared in the literature (see Slade & MacMahon [SI57] or
Kiseda [Ki61]). These memories could perform arbitrary partial match searches,
as well as searching for the maximum or minimum record stored, or finding all
records between specified limits (interpreting a record as a number in radix v
notation. ) |

The hoped-for technological breakthrough allowing large - assoclative
memories to be built che_aply has not (yet) occurred, however. Small associative
memories (on the order of 10 words) have found applications - most notably in
"paging boxes" for virtual memory systems (see [De70]). The only large

associative processor available commercially is the STARAN S, introduced by

13




Goodyear Aerospace Corp. in 1971 [Ru72]. This 8500,000 system has 512
256-bit words o.f_ associative memory (as well as 24K of random access core
mernory). An associative search for a partial match query takes 150 nanoseconds
per bit specified. STARAN is cost-effective only for applications demanding very
high data raté processing in real time - such a; air traffic controlling.  Minker
[Mi72] has written an excellent survey of the development of associative

processors up to the appearance of STARAN.

2.2. EXACT MATCH ALGORITHMS

New algorithms for performing searches on a conventional computer with
rand_om—access memory Were also being rapidly discovered at the same time.
The first problem studied (since it is an extremely important prac_tical problem)
was the problem of searching for an exact match in a file of single-key records.
Binary searching of an ordered file was first proposed by Mauchly [Ma46]. The
use of binary trees for searching was invented in the early 1950’s according to
[Kn72], with published algorithms appearing around 1960 (see for example
Windley [Wi60] - there were also many others).

-Tries were first ‘described about the same time by Rene de la Briandais

[de58]. These are similar to binary trees, except that the i-th key or bit of a

14
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record R is used to make the i-th branching decision, instead of using a
comparision between all of R and the record associated with the current tree
node (treating them as binary numbers). Tries are roughly as efficient as binary
trees for exact-match searches. We shall examine trie algorithms in chapter 4
for performing partial match searches.

Hash-coding (invented by Luhn around 1953 according to Knuth [Kn72,
vol. 3]) seems to provide the best solution for many applications. Given b
storage locations {with b > n) in which to store the records of the. file, a hash

function h: R - {1, 2,...,b} is used to compute the address h(R;) of the storage
location at which to store each record R;. The function h is chosen to be g

suitably "random" function of the input - the goal is to have each record of the

file assigned to a distinct storage location. Unfortunately this is nearly impossible

to achieve (consider gencralizations of the "birthday .phenomenon"‘ as in Knuth
[Kn72,86.4]), so a method must be used to handie “collisions” (two .records
hashing to the same address). Perhaps the simplest solution (separate chainin_g)

maintains b distinct lists, or buckets. A record R is stored in bucket Bj

(where 1 = j < b) iff KR;) = j. Each bucket can now store an arbitrary number

of records, so collisions are no longer a problem. To determine if an arbitrary

record Ri¢R is in the file one need merely examine the contents of bucket

15




Bh(Ri) to see if it is present there. Since the expected number of records

prese-nt in each bucket is small, very little work need be done. Chaining can be

implemented easily with simple linear linked list techniques (see [Kn72,§6. 4]).

5.3, SINGLE-KEY SEARCH ALGORITHMS

The next problem to be considered was that of single-key retrieval for
records having more than one key (that is, k > 1). This is often called the

problem of “retrieval on secondary keys". L. R Jphnéon [JoB1] proposed the

use of k distinct hash functions h; and k sets of buckets Bij -forl sick
<j<b. Record R, is stored in k k ; i
and 1 <jsb ecor m s stored in buckets - bucket Bhi("mi) for

1 «i< k. This-is an efficient suntion, although storage and updating time will
gn?ow with k. Prywes and Gray suggested a similar solution - called Multilist - in
which each attribute-value is assigned a unique bucket through the use of indices
(search trees) instead of hash functions to compute bucket addresses (see [Gr59],
[Pr63]). Davis and Lin [Da65] describe another variant in which list techniques
are replaced by compact storage of the record addresses relevant to each
bucket. The above class of methods are often called inverted list technviques
since a separate Iiét is maintained of all the records having a particular attribute
value, thus mépping attribute to records-rather than the reverse as in an ordinary

file.
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2. 4. PARTIAL-MATCH SEARCH_ALGORITHMS

Inverted list techniques, while adequate for single-key retrieval of multiple
key records, do not work well for partial match queries unless t, the number of .
keys specified in the query, is small. This is because the response to a query is
the intersection of t - buckets of the inverted list system. Thus the amount of
work required to perform this intersection grows with the number of keysv given,
while the.expected number of records satisfying the query decreases! One would
expect a "reasonable” algorithm to do an amount of work that decreases with

E(Qj(F)]), the expected size of the answer. One might even hope for an amount

of work proportional to the number of records in the answer. Unfortunately, no
such "linear" algorithms have been discovered that do not use exorbitant amounts
of storage. The algorithms presented in chapters 3 and 4, while non.-linear, easily
outperform inverted list techniques. These algorithms do an amount of work that
decreases approximately exponentially with t, the number of bits specified in the
query. .When t=0, the whole file must of course be searched, and when t=k unit
work must be done. In between, log{work) decreases linearly with t.

J. A. Feldman’s and P. D. Rovner’s system LEAP [Fe69] allows complete
generality in specifying a partial match query. LEAP handles only 3-kéy records,

however, so that therc are at most eight query types. This is not as restrictive
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as might seem at first, since any kind of data can in fact be expressed as a
collection of "triples": (attributename, objectname, value). While arbitrary
Boolean queries are easily p.rogrammed, the theoretical retrieval efficiency is
equivalent to an inverted list system.

Several authors have published algorithms for the partial match problem
different from the inverted list technique. One approach is to create a very large
number of tiny buckets so that the response to each query can always be
constructed as the union of some of the buckets, instead of an interseétion.
Wong and Chiang [Wo71] discuss this approach in detail. Note, however, that the
requisite number of buckets is at least |R] if the system must handle all partial
match queries (since exact match queries are a subset of the partial match
queries)! Having such a large number of buckets (most of them empty if n<<|R| ,
as is usual) is not practical. A large number of authors (C. T. Abraham, S. P.

Ghosh, D. K. Ray-Chaudhuri, G.G. Koch, David K. Chow, and R. C. Bose - see

references for titles and dates) have therefore considered the -case where t is

not allowed to exceed some fixed small value t’ (for exampie, t’ =3). It is easy
to see that the number of buckets required is now at most

Lsipseosip sk VipYigttVip)

A

< Clot) (max vt . (8)

18

“

-

-

)

e



(Here Cikt’) denotes the binomial coefficient "k choose t'".) This is achieved by
reserving a bucket for the response to each query with the maximal number t’
of keys given; the response to other queries is then the union of existing
buckets. Note that each record is now stored in C(kt’) buckets, however! The
papers reférred to show how to reduce the number of buckets used and record
redundancy somewhat, by the clever use of combinatorial designs, but another
approach is really needed to escape combinatorial explosiqn.

The first efficient solﬁtion to an associative retrieval problem is described
by Richard A. Gustafson in his Ph.D. thesis [Gu69,Gu71]. "Gustafson assumes

that each record R, is an unordered list {rj1,rjp, ..} of at most k' attribute

values (these might be keywords, where the records represent documents). Let
w be chosen so that C(w,k’) is a reasonable number of buckets to have in the
éystem, and let a hash function h map attribute values into thé range {1, 2, ...,
w}. Each bucket is associated with a unique w-bit word having exactly k’
ones in it, and each record R is stored in the bucket associated v;/ifh the Wo}d :

having ones in positions h(rq), hro), ..., Kres).  (If these are not all distinct

positions, extra ones.are added randomly until there there are exactly k” ones.)

A query specifying attributes ay, ap, ..., at (with t<k’) need only examine the

C(w-t,k’ -t) buckets associated with words having ones in positions h(ay), h(ap),

19




..., h(ap). The amount of work thus decreases rapidly with. t . Note that the

' respohse to the query is not formed merély by taking the union of the relevant

buckets, since records not satisfying the query may also be stored in these
buckets. We are guaranteed, however, that all the relevant records are stored in
the examined buckets. In essence Gustafson reduces the number of record types
by creating w attribute classes, a record being filed according to which attribute
classes deisc'ribe it. His method has the following desirable properties:

(a) each record is stored in énly one bucket (so updating is easy), and

(b) the expected amount of work required to ahswer a query decreases

approximately exponentially with the number of attributes specified.

" His definition of a record differs from the one used here, however, so that the

allowable queries in his system correspond to a proper subset of our partial
match queries - those having no zeros specified. (Convert:  each of his records
into a very long bitstring having ones in exactly k' places - each bit position
corresponding to a permiésible keyword in the system. ) |

‘Terry Welch, in his Ph.D. thesis [We71], studies the achievable
performance of file structures which include directories. His main result is that
the size of the directory ié the critical component of such systems. He briefly

considers directoryless files, for which he derives‘ a lower bound on the required
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average time to perform a partial match search with hash-coding methods that is
much smaller than the precise answer given in §3. He also presents Elias’

algorithm for handling best-match queries without proof of optimality.
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CHAPTER 3
HASHING_ALGORITHMS FOR PARTIAL MATCH QUERIES

The problem is: given a universe R of possible records, and a number b
of lists (buckets) desired in g filing schems, construct a goad hash function h: R
= 11,2, ..., b} so that partial match queries can be answered efficiently (either

on the average or in the worst case). A record R ¢ F is stored in bucket Bj iff
h(R)=j, with collisions handled by separate chaining. In a notation analogous to
that used for the responses to intersection queries, we define

Bj(R,h) = {RR | h(R)=j}, o (9)

BJ(F,h) = BJ-(R,h) nF, forany F ¢ R. (10)
When a barticular hash function h is understood from context, we shall usually
omit it from the argument list of Bj. The set Bj(R,h) we call the extent, and
Bj(F‘,h) the g:_qr_v,t__ents_, of bucket j. This notation is consistent sin;;é (10) is an
identity when F' = R. We shall often denote the extent Bj(R) of a bucket by

the notation Bj s When no confusion can arise. The sets Bl, vy By form g

partition of R since they are disjoint sets whose union is R. A hash function is
said to be balanced if lle = |R|/b for 1<j<b. To answer a query Q ‘e Q , the
contents of the buckets whose indices range over

MQ)) =gef 1 | (Bj n Q(R)) # null } (11)
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or equivalently,

Q) = Upegqmy IR 1)

must be examined to find the response to Q (that is, Q(F)). Here we make the

natural extension of h onto the domaih Q.

Here we present the basic retrieval algorithm:

procedure SEARCH({B{,B2,. - - BphhQ)
comment SEARCH finds the response to query Q¢Q, given that the file FeR is
stored in the buckets By, ... ,Bp Using the hash function h. |
begin integer i record R;
for eacvh.i ¢ hQ) do
for each R ¢ Bi{F,h) do

if Re¢Q(R) then print( R )

end SEARCH;

The difficulty of computing the set h(Q) depends very much on the nature
of the hash function h. it is conceivable that for some pseudo-random hash-
functions it is more time-consuraing to determine whether j¢h(Q) than it is to

read BJ?(F) from the secondary storage device! (For some hash functions the

relation (12) is the only way to compute Q) .) Such hash functions are of course
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useless, since one would always skip the computation of Q) and read the entire
file in order to answer a query. We will restrict our attention to hash functions
h for which the time required to compute WQ) is always negligible in
comparison with the time required to read the required bucket contents.

We shali Qse the following notation for the average and worst case costs of

using various hash functions to answer a partial match query with t keys

specified:
) =qef ( EQ‘Qt Q) / 1@t (13)
Alht) =def maxQ(Qt [hQ)| ' ‘ (14)

These are the average and worst-case number of buckets 'e*amined by SEARCH
to answer a query Q ¢ Q4 ‘as a function of the hash function h wused. If the
sédond argument is omitted from the function «, we assume that the average is
taken over all queries in Q: |

) =gat ( Zqq INQI 7 Q1 (15)

We shall also use the following notation for the best possible cost of any
hash function:

AlkW,t,v) =gef ming «(ht) | - (16)

where h ranges over all balanced hash functions mapping R - {1,...,b}. This is

the minimum pbssible average number of buckets examined by SEARCH to answer
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a partial match query Q¢Qy, over all balanced hash functions h. We assume that

the file contains k-key records, and that b = 2% buckets are used. All the v’s

are assumed to be equal to the v given, with the convention that if v is omitted,
v = 2 is assumed.

Note that the number of buckets examined in either case does not depend
at all upon the particular file F being searched, but only upon the particular

hash function h being used.

3. 1. CONSIDERATION OF THE AVERAGE SEARCH TIME

For some applications it is easy to construct an efficient hash function. For

example, suppose we wish to construct a "crossword puzzle" dictionary for six-

fetter English words. Let b = 212 pe the number of buckets used. Given a

word (for example, "SEARCH") we can construct a 12-bit bucket address by

forming the concatenation

h(llSEARcH")=é(llS") g(llEll) g(llA") g("Rll) g(“c’l) g(llH") (17)
of six two-bit values; here g is an auxiliary hash function mapping the alphabet

into two-bit values. For a query with t letters given we have
«(ht) = a(ht) = 2122t (18)

This approach is clearly feasible as long as b 2 2k | since one or more bits of the
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bucket address can be associated with each attribute position. A similar
technique has been proposed by M. Arisawa [Ar71] in which the i-th key
determines, via an auxiliary hash function, the residue class of the bucket address

modulo the i-th prime (see also [Ni72]).

3.1. 1. THE OPTIMAL SHAPE OF A BUCKET FOR BINARY RECORDS.

When k > w, where b = 2W | it is not immediately clear what should be"
done. Terry Welch in [We71] suggests, but does not prove, that extracting the
first w keys of each record for a bucket address may be optimal. His
conjecture is correct for binary records; in this section we give a broof of this
fact.

We will say that two buckets B and B’ have the same "shape" if there
exists a permutationbof the bit positions, followed by the complementation of bits
in certain positions, which transforms every record of B into a record of B’. In
other words, B and B have the same shape if there is an automorphism of R
which carries B into B . |

We introduce the notation &(B) to denote the number of queries in @
which examine a bucket B. " More precisely,

$(B) =gef H Q¢ Q | ®R) n B # null }] . | (19)

Let n(s,k) denote the minimum possible number of queries in @ which examine

26



any bucket B with an s element extent chosen from the record space Ry. More
precisely,
m(s,k) =gef Ming #(B), _ (20)

where the minimum is taken over all s-element subsets B of Ry. Let n(sk) =

if s > 2k, and let n(1,0)=1, n(0,0)=0. The characteristics of an s-element

bucket B chosen from Ry which achieves the minimum &(B) = n(s,k) will be

those of an optimal bucket. We will investigate individual s-element buckets to
find what characteristics they must have in order be optimal. Then we may
construct an optimal balanced hash function by selecting b optimal buckets which

cover Ry (if possible), since

wf(h) = (2 @ hQpl) / 1Q]

Q

= (number of pairs Bj,Q; such that BjnQ;##) / |Q/

= ( Elsjsb #(B;)) / Q|

» b Ry J/bk)/IQ] . (@

We require that the hash function be balanced in order to avoid the
degenerate solution having all the records in a single bucket (costing one bucket
per search). If we also counted the cost of reading each record, by arguments of

symmetry we would find a balanced hash function to be optimal, once the
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expected cost of reading a bucket becomes commensurate with accessing it.

Furthermore, the physical constraints imposed by a particular storage device, such

as magnetic core, sometimes make a balanced hash function the only reasonable

model.

Theorem 1. Let s = 2Y for some integer u, 1 < u < k, and let B be an

s-element subset of Ry. Then #(B) = n(sk) if and only if B is a "subcube" of

R; that is, if and only if B is a cartesian 'product

B=D1xD2x...ka'

where each D; is a nonempty subset of {0,1}.

- (22)

Proof: Let T(sk) denote the s-subset of Ry consisting of those records

which have binary value less than s when interpreted as binary numbers. In -

other words, .T(s,k) consists of the s "tiniest" k-bit numbers (for those who like

mnemonics).  We will first prove that T(s,k) is an optimal bucket for'_a_n_y s, not

just s a power of two. This will imply the "jf" part of our thevorem', since T(s,'.k')

is a subcube of Ry whenever s is a power of two. We will then examine the

proof a little more closely to derive the "only if" part of the theorem.

We first need to derive ¢(T(sk)). We will do this by defining an auxiliary

function A(x), then proving that #(T(sk))=a(x) if x is the record in T(sk) with

largest binary value. (The binary value of x will of course be s-1.) Define 2

by the following recurrence relations:
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Canully =1, - (23)
AMOx) =2ax),and _ | - (24)
AMIx) =2 a1+, (25)

Here we treat A’s argument as a string of O’s and I’s, and define » in terms of

shorter stfings. We denote the length of x by |x|, so that the notation 1xl
represents a string. of |x| 1’s. The notation Ox (or 1x) stands fﬁr the
concatenation of O (or 1) and the string x. Let <x> denote the binary value of
the string x.

Lemma. &(T(s,k)) = A(x) if x is the record in T(s)k) with the largest binary
value.

" Proof: By induction on |x| = k. It is clearly true for k = 1, since A(0) = 2
and A({1) = 3 are correct. It is true for x = Ox’ by (24) since all of the records
in T(sk) will have a O in first position. Thus any query ‘which‘ examines
Tts,k-1) = T(<x'>+1,[x'|) may be preceded by either a "0" or a ";{."; to asfain a
query which examines T(sk). On the other hand, if x = 1x’ then T(s,k)
contains two different kinds of records: 2X~1 will begin with a zero and finish up
in all possible ways, and the remaining s - k-1 will begin withva' 1 and finish

up identically to the records in T(s-2%"1 k-1) = T(<x’'>+1k-1). The first term of
(25) thus counts all queries beginning with a "0" or a "+", while the second term
counts all queries beginning with a "1"1 This completes the proof of the lemma.
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The tightmost column of the following table gives the value of A(x) for

some small strings x. (The rest of the table shall be used later.)

| At (x) | a(x)
X |t=0 1.2 3 |

nal i ] 1 1
o] 1 1 | 2
1] 1 2 | 3

0] 1 2 1 | a4
o] 1 3 2 | 6
100. 1 4 3 | 8
1] 1 4 4 | 9
00| I 3 3 1 | 8
01| 1 4 5 2 | 12
10| 1 5 7 3 | 18
oit| 1 5 8 4 | 18
100 | 1 6 10 5 | 22
101 1 6 11 & | 24
110 1 6 12 7 [ 26
1| 1 6 12 7 | 27

Figure 1. Table of values for A(x) and At(x)

We must now show that a(x) = n(s,k) (again, assuming that x is the record
of T(sk) with largest binary value). To do this, we must first prove the
recurrence

n(s,k) = min [ r(max(fg,f{),k-1) + m(fok-1) + n(fq,k-1)], (26)

where the minimum is taken over all pairs of nonnegative integers fo, f1 such that

fo + f| = s. Suppose a bucket B cont_aining $ records has fy records which
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begin with a zero and f{ records which begin with a 1. Then n(fg,k) + n(fy,k)

is the number of queries which examine B which begin with a digit. The number
of queries which examine B which begin with a "+" is clearly at least

r(max(fg,f1),k). Furthermore, it can be held to this value by requiring that the

number of distinct k-1 tuples ocurring in positions 2 through k of the records of B

be held to this number. Thus, if fg>f; and ly ¢ B (for some string y, |y|=k-1),

we would require that Oy ¢ B as well. This proves (28).
We will need the following two lemmas.
Lemma.
a{x1) = 3 alx), for any s'tring x of 0’s and 1’s. (27
Proof: If A(x) = #(T(s\k)), then AMx1) = #(T(2s,k+1)). For each query q
counted in ®(T(s,k)), the queries g0, gl and g* are counted in ®(T(2s,k+1)), since
x ¢ T(s,k) implies that xO and x1 are both in T(2s,k+1).
Let p(x) denote 21, where j is the number of zer.os in the string x.
Lemma.
A{x) - Alx - 1) = p{x), for any string x of 0’s and 1’s, <x> # 0. (28)
~ Here x - 1 denotes the string y of length |x| such that <y> = <x> - 1.
.E’(ogf: By induction on |x|. By inspection of Figure (1) it is true for |x| s 3.

For larger values of [x| it will be true from the inductive hypothesis and the
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definition of x when x and x - 1 begin with the same digit. The exceptional

fl

case occurs when x = 1 Ok'l, x-1=01k-1 But here we have

Xx) = x(x=1) = (2« gk k1) 5, gk-1 o pk-1 (29)
since x(Ok"l) = 2k-1 This proves the lemma.
To prove A(x) = nt(sk), it now suffices by (26) to prove that
AMx) = 2 AMy) + Az), (30)
for any pairs of strings y, z such that |y| = 2l = x| - 1, <y> + <z> + | = <x>,
and <y> > <z since X0) = n(1,1) = 2 and A(1) = ™2,1) = 3. The proof is by
induction on |x] = k, although it goes from the right end of x to the left, instead of
the other way around. | |
The proof of (30) now proceeds by a four-part case analysis, depending on
the right-most digits of y and z. It will also be an inductive proof, so we
assume that (30) holds for all strings x’ shorter than the current x. The last
three cases will have two subparts as we reduce (30) in two different ways using
the lemmas. In each case at least one of the two reductions must be true.
Case 1:y=y'1, z=2'l, and x=x"1.
Here (30) is implied directly by the inductive hypothesis, since it is
equivalent in this case to:
3}.()(’) s 6 XMy’") + 3 A2), (31)

With <x’'> = <y’> + <2’> + |, and y’ 5 2'.
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Case 2: y=y’'0, z=2' 1, and x=x’0. _
Here we reduce (30) to the two inequalities:
Iax' 1)+ 2p(x) <6y -1)+4ply)+3xn2) and (32)
3a(x ) - p(x’) < 6y )-2ply)+ 3 az). (33)
Since <x'-1> = <y’-1> +<Z>+ 1 and <X'>=<y'>+<Z>+ 1, we may
reduce these two equalities using the inductive hypothesis to the statements
p(x’) < 2ply’) and p(x')22ply’") atleast one of which must be true.
Case 3: y=y' 1, z=2'0, and x=x'0,
in this case we get (30)‘reducing to:
3 A(x -1) + 2p(x') < B Ay") + 3 A2’ -1) + 2 p(z’), and (34)
3 ax) - plx') < 3Xy") + 3 Az2) - p(2). (35)
Using the inductive hypothesis we get that (34) and (35) are equivalent to
p(x") < p(z") and p{x") 2 p(z’), at least one of which must be true. There is the
exceptional case when <z’'>=0, where (34) is sufficient (if we define >\(z’-1)_ .to
be zero), since x'-1=0y" and p(z’ 2p(x"). |
Case 4: y=y' 0, z=2'0, and x = x" 1._

In this case (30) can be reduced to the two inequalities:

3a(x’) < 6 Aly)-2ply)+3az'-1) + 2 p(z'), and (36)
3alx') < 6 Ay -1)+ 4ply)+3az) + plz'). . (37)
33
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Since <x’> = <y’> 4+ <2’-1> + | = <y’-1> + <2’> + 1, we invoke the inductive
hypothesis twice to obtain pl(y’) < p(z’) and ply’) 2 p(z’)/4. These can not
both hold simultaneously so one of these reductions will suffice to prove (30) in
this case. This argumeﬁt must be amended to consider two exceptional
conditions: when <2’>=0, so that 3 a{z’-1) is undefined in {(36), and when y’ =2’
so that the condition y’-132’ does not hold for the inductive hypothesis used on
(37). In the first condition we have Oy’ =x’, and that (30) is equivalent to

3 a(x') < 6 aly’) - 2ply’) + 2p(2'). (38) |
The other exception to this argument occurs when <y’ >=<z2'>#0, so that the
inductive hypothesis can not be invoked to reduce (37). Here though we have
ply’ )=p{z’), so the proof follows from (36).

This completes the proof of the "if" portion of the theorem, since for any
bucket B such that |B|=s, we will have #(B) = #(T(s)k)) if B has the same "shape"
as T(s,k).

The "only if" part of the theorem shall again be proved by an induction on
|x|=k, using the previous analysis as a foundation. What needs to be proved is

that if s is a power of two then (30) will hold with equality only if y = 2. Here

we have s = 2Y, so that x = OK=U Y. It is clear that equality does obtain when
y = z. It needs then to be shown that (30) holds with equality only wheny = z.

This is equivalent to
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300 1U7ly < 22 + 0 1U=1y 4 a(+j + 0 1U-1), (39)
for all i, 1si<2Y=1-1. This reduces directly to

x(lU‘1)<A(i—1)+x(1U‘1 - (40)
It is in fact easier to prove the general statement:

A(X) < Ay) + A(2), : (41)
for [x|=lyl=|z|=k, <y> + <2> + 1 = <x>, and <y> > <z>. We shall prove this by an
induction on k. If x=0x", then y=0y’ and z=0z’, so that the theorem follows
directly from (24). Similarly, if x=1x" and y=1y’ then we may turn both of these
initial 1's into O’s and lose an equal amount from each side of (41). The remaining
case is when x=1x", y=0y’, and z=0z'. Divide y and z into two pieces each so

that <y|> + <yp> + 1 = <y> <z1> + <zp> =z, and |y|]| = lyo| = |z1| = |z5| = k, and
furthermore such that <y(> + <z;> + 1 = <0 1k-1>, so that <yp> + <2 + 1 =
<x’> as a consequence. This can be done in such a fashion that the k-bit
representations of y|, yo, z1, and z5 all begin with a 0. (There is a trivial

exceptional case when <y> = <z> = 0,)

Then we can derive

A0 1K1y < a(yq) + Alzg), and (42)
Ax") < Myo) + x(2p), yielding (43)
A(X) < Ay) + A(z), immediately. (44)

This proves the "only if" portion of the theorem.
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Our theorem implies the following corollary.

Corollary: For binary records, the hashing function which extracts w of the
key-bits to use as a bucket-address, where w = logo(b), minimizes the expected
number of buckets examined over all balanced hash functions, assuming that each
partial match query is equally likely.

Note that there may be other optimal hash functions with respect to the
expected search time. In fact, we shall examine others in the following sections.

The preceding theorem gives a good characterization of the bucket shapes
which will minimize #(B), the number of queries in @ which will examine B. We
shall next prove that the same shapes are optimal when the queries are

restricted to @4, for some t, O<t<k. The "only if" portion of the preceding

theorem shall not again be proved, however.

Let 4(B), and mni{s,k) denote the functions & and n{(sk) restricted to
counting queries in @y rather than Q. The following theorem makes the relevant
assertion.

Theorem 2. . Let s = 2Y for some u, | < u <k and let B be an s-

element subset of Ry. Then #y(B) = my(sk) if B is a "subcube” of Ry; that is,

if B is a cartesian product
B=Dy xDpx... xDy | ‘~ _ (45)

where each D; is a nonempty subset of {0,1}.
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Proof: This proof is almost identical to the preceding one, so only the
changes necessary shall be indicated.

Let x4(x) be defined by the recurrence relations (here |x|=k):

A0fx) =def 1, forall x. (46)
a(null) =gef O, for tal. ? ' . (47)
AMOx)  =gef xt‘(lk) + At-1(x), for t21 and all x. | (48)
A(1x) =gef M(1K) + a4 1(1K) + ap_1(x), for t21 and all x. (49)

The values of A(x) for some small values of t and x are displayed in the table.

The following lemma we state without proof, as it is essentially identical to the
proof of the corresponding lemma of the preceding theorem.

Lemma. &¢(T(s,k))=at(x) if x is the record in T(sk) with largest binary

value.
Again, the following identity can be proved in a manner similar to the proof

of its corresponding identity in the preceding theorem.

my(sk) = min [ mmaxtfo,f)k) + mp_1{fo,k) + mpo 1 (f,k)], (50)

where the minimum is taken over all pairs of nonnegative integers fg, f{ such that
fo + f1 =s.
To prove that At(x) = my(s,k), where x is the largest record in T(sk), by

(50) it is only necessary to show that

A(x) s Aly) + 2o g (y) + ap-1(2), (51)
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where yl=|z|]=|x|-1=k-1, <y> + <z> + | = <x>, and <y> > <2>, since A(X)=m(s,k)
for x=0 and x=1. This proof will again use induction on |x|, proceeding from the
right end of x to the left. The following two lemmas will be used instead of the
corresponding lemmas of the last theorem.

Lemma.

Ap(x1) = 2‘ A-1(x) + Apdx). (52)

Proof: For each query q counted in ap_1(x)=#4.1(T(s,k)), wé have queries:

g0 and gl counted in A(x1)=¢4(T(2s,k+1)). In addition, "for each query q counted
in 24(x)=#4(T(s,k)) we have the qury g* also in A(x1).

Let p(x,t) denote the value C{(j,|x|-t), where j is the number of zeros in the
string x. Then the following lemma can be easily proved by induction on k (proof
omitted here):

Lemma.

Ap(x) = Ap{x-1) = p(xt), for Ost<k, xeRy, <x>#0. ; . {53)

‘The rest of the proof follows the same four-part case analysis as the proof
of the Theorem 1. It shall be omitted here as there it is merely a variation on‘

the preceding analysis, using At for A and p(x,t) for p(x).

This theorem can not be proved in the "only if" direction for all t, since it is
not true for the cases t=0 or t=k.

Q E. D
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3.1.2. THE OPTIMAL SHAPE OF A BUCKET FOR GENERAL RECORDS.

It turns out that binary records are in fact the most difficult case to
analyze. In this section we derive the optimal bucket shape for nonbinary
records. Let

R =gof X 0, ..., vi-1} (54)

§
l<ick '
be the record space under consideration, where v{ < vp < «e¢ < vy, and let
n(s,{vl, ..., vk}) be the minimum possible number of queries in @ which examine

a bucket B consisting of s records chosen from R. Corlresponding to (26) we have
the definition:

T($,{V1y .-y V1) = min [ m(max; f,,{va,. .., vk}

* ey, Whilvar o vid) ] (55)

where the minimum is taken over all sets of nonnegative integers fg, ..., fv1—1

such that 205i<v1 fi =s. .

Here we can perform the analysis by passing to the continuous case. The
analog of (55) would then be:

7 ($,{V]) VK1) =def inff [",(SUpOSXSVIf(x)'{VZ" )]

+ fovl ",(f(x)a{VZV . .,Vk})dx (56)
where the infimum is taken over all nonnegative functions f(x) such that
jovl fix) dx = s. If we let n’{s,null)=1 for O<s<1, n'(s,null)=e0 for s>1, and

n’ (s,nullj=0 otherwise then (56) turns out to have the solution:
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(V. vih) =0 if s=0,
= (sl/k & 1)k if 0<ssv1k,
= (Vl + 1) "'(s/vls{VZr e ’Vk})

if vlk‘< S S V] ser Vv,

= if vy ees vy <s, ‘ (857)
The function 7’ is obviously a lower bound for n. The optimal function f(x)

is then a step function which is equal to s/s’ for Osx<s’ and O otherwise, where
s’ =def min(vl,sl/k). This proves the following theorem.

Theorem 3. If R = Xy jck 10,...,vj-1} then ®(B)=rt(s,{vy, ..,v }) if

B = X<k D (58)

where each D; ¢ {0, ..., v-1}, Hlsiék I0jl = s and there is an integer z,

2<zc max; vj, such that for all i, 1 <ic k, we have |Dil <z apcj -furth’_e:rm_ore,

IDj} < z implies |D;] = v;.
The theorem says then that our crossword-puzzle hashing scheme of §3. 1
is in fact optimal, as long as the function g divides the alphabet into four exactly

equal pieces. (This is not possible for a 26-letter alphabet, but we conjecture

that four nearly equal pieces are optimal in this case.)
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3. 1. 3. NUMBER OF BUCKETS EXAMINED.
What then is the behavior of such an optimal hashing scheme for the
"classic" case of retrieving k-bit words for partial match queries with t bits

given? Let w =q4o¢ logo(b) (and assume this is integral), and let our optimal

bucket system use (say) the first w bits of a record as the bucket address. We

then have

Alkwt) = Clk)™L E 1 Clwi) Clk-wit-i) 2+
= b C(k,¢t)~! T it CWiD) Clk-wit-i) 2 _ (59)

The number of buckets examined satisfies the following inequality, for all b = 2W
(with k> w), andallt, 0 <t < k:

Alkwit) 2 bl-t/k | (60)
This inequality is a special case of a well-known mean valge theorem [Ha59:Thm

86], which says . .
EOsist i #(x;) 2 MEOsistq‘ i)y (61)
for any positive numbers g which sum to one and any continuous convex

function ¢(x). Here we have

x; = iy (62)
g = Clkt)™1 Clwi) Clk-wt-i), and |  (63)
plx) =27% (64)
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The inequality (60) will be strict unless k = w, in whicﬁ case cquality holds.
Figure 1 graphs (60) for k =50 and w =5, 25, and 50. The value A(k,w,t)
is an achievable lower bound on the performance of a balanced hashing scheme
for binary records. Note that performance similar to Gustafson’s is obtained, i. e. |
each record is stored only once, but sea:ch) time decreases approximately
exponentially with the number of bits given in the query.

Theorem | adequately characterizes the optimal "shape” of a single bucket,

but does not tell us what the best number of buckets is. This question can be

answered by using an accurate model of the particular storage device used.
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3.1.4. A SAMPLE APPLICATION.
Let us consider a particular application in detail, in order to illustrate the °
preceding sections and to show how one would proceed to select the proper

number of buckets for a hashing scheme.

Suppose we have a file of n = 220 100-byte records, each having k =
32 one-bit keys, which we wish to store on an IBM 2314 disk storage device.

Let us determine the optimal number, b , of equal-sized buckets for this device,

assurning that all partial match queries are equally likely to occur. Let b = 2w,
for some w, 1<w<32, and let a record be stored in the bucket whose address is

the first w of the one-bit keys. If i of the first w bits are specified in a

query, then only 2W-1 puckets need to be examined to answer the query. The
time required to access these buckets is composed of three parts: head access
time, rotational delay, and data transfer time. The head access time is at most
the minimum of - 75 milliseconds per bucket, or 25 milliseconds per cylinder
required to store the entire file (1440 records can be stored per cylinder), since
each seek is at most 75 ms., but the time to access an adjacent cylinder is only

25 ms.  The rotational delay is 12.5 milliseconds per bucket accessed. The
data transfer time will be .32051 n 271 milliseconds on the average (where i is
defined as above). Let cli,w,n) be the time required to access QW-i buckets,

as computed using the above information. Thus we have:

44




~ caliw,n) = min(5n/288,75.2W1) + 27i(12.5.2W+. 32051 n).

The expected time to answer a query with t bits given is then:
i) = o . Clwi) Clk-wit=i) Clot)™h cqliwyn).

The average time to answer any partial match query is then

wlh) = g Clkb) 283K thty

Oc<t

(65)

(66)

(87)

Figure 3 shows «(h) plotted against w. The optimal value of w is seen to be

13 , with an average response time of 5.123 secs. This compares very

favorably with the 336 secs. required to read the entire file if it is stored

compactly. Figure 4 gives o(ht) plotted against t, for w = 8, 13, and 20, and

for O<t<k.
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3.2. ANALYSIS OF WORST-CASE SEARCH TIME

The hashing functions of the previous section, while providing good average
response time to a query with t keys given, tend to have disastrous worst-case
behavior. The entire file may be searched if none of the keys given are used by
the hash function to compute the bucket address. We will show how the worst -
case performance can be made to approach the optimal expected time of the
previous section by using either more complicated hash functions, or by using
some storage redundancy.

First, let us conside‘r the non-redundant case - that is, each record will be
stored in a single bucket. Section 3.3 will consider the storage redundancy case.
Our hash function

hR=-{1,2...,b} (68)
must now depend on all of the keys of a record, so that each key specified
contributes approximately equally to decreasing the search time.. This is simple

when ksTlogx(b)1, so we shall assume that k>rlogo(b)1 from ﬁow on. We shall

furthermore assume for simplicity that each record is g k-bit word (that is,

vi =2 for ls<i<k).

There is one other assumption we shall make: that the buckets are shaped

the same as in the optimal average search time case - that is, each bucket will
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contain |R|/b records which agree in w = logx(b) bits and vary in the other k-

w bits. Each bucket is thus a Boolean sub-cube of dimension k-w of R. The
justification for this assumption is that this minimizes the average retrieval time,
which is of course a lower bound on the worst-case time. We have no proof,
however, that these bucket shapes are optimal in the worst-case haéh function.

The reader may be wondering if we aren’t studying exactly the same hash
functions as be'fore, where we extract w bits to use as é bucket address.
Indeed, these are still candidates for the best worst-case hash function, but there
are others. Consider the hash function of Figure 5, withl k=4and b = 8.

2 3 4 « bit position
0

bucket

1
| O
| 1
| %
address | 1
| 1
| O
| x
| O

CONOYUI DHWN —
H# Or—r—~H* —= OO0
QO r—r— ¥ — OO #*
—_—— = OO *

Figure 5. A Hash Function

Here one row is given for each bucket describing the records that can be
stored there (where "+" is a "don’t care" character, as before). Thus h0110) =
6 and h1110) = 4. It is simple to verify that each record is assigned a unique
bucket by h . This function waé first painted out to me by Donald E. Knuth, and

can be interpreted as a perfect matching on the Boolean 4-cube (see Figure 6).
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0100

00009

Figure 6. A perfect matching on Ry

How well does this hash-function perform? The symmetry of this design
decreases the amount of work done in the worst case. For example, any query
with 2 bits specified need only examine 3 buckets {e. g query "1x0x" requires

only buckets 2, 3, and 5). Figure 7 gives the relevant statistics for each cése,

t 10 1 2 3 4
ACh, t) |8 5 3 2 1
rAC4, 3,t)1 |8 5 3 2 |

Figure 7. Buckets examined per query bit given

This is clearly as good as one can hope to do, since the worst-case time

must be at least as big as A(4,3,t).
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3.2.1. FORMAL DEFINITION OF ABD’S

.

Let us call a hash function presented in tabular form as above an

"associative block design with parameters k and w" (where b = 2W), or an
"ABD(k,w)" for short. More precisely, an ABD(k,w) will be such a hash function

that is "uniform" with respect to each key.

Definition: An ABD{k,w) is a table with b = 2% rows and k columns with entries
over {0, 1, x} such that
(i) each row contains exactly w digits and k - w. *’s,
(ii) given any two rows, there exists at Ieést one column in which the two
rows contain differing digits, and
(iii) each column contains the same number b-(k-w)/k of *’s.
Condition (ii) guarantees that distinct buckets are disjoint, while condition (i)

ensures that each bucket is of the same size. Each record will be associated

with a unique bucket since the disjoint buckets contain a total of 2k records,
Condition (iii) restricts ABD’s to hash functions having at least some uniformity
with respect to how each individual bit-affects the bucket address computations.
This ensures that an ABD will have minimal worst-case search timé for queries
with one bit specified (that is, t = 1). Since each row of the ABD represents a

bucket which is actually a subcube of Ry by condition (i), an ABD is guaranteed to

have minimal average search time as well.
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The construction of ABD’s of arbitrary size is a difficult combinatorial design
problem, comparable to the construction of balanced incomplete biock designs (see
[Co52]). In fact, an ABD will be a group-divisible incomplete block design of 2k
objects (one object type for each digit type of each column) each replicated
wb / 2k times in b blocks of size w, where there are k groups (the
columns) with two objects in each group, and where rtwo objects of the same

group never occur together in the same block, if there is a number A5 such that
each pair of objects of differing groups appear in exactly 2o blocks together

(see [Bo52]). This requirement is an additional constraint, which may exclude
many valid ABD’s. In addition, not every group-divisible incomplete block design
of the proper type will be an ABD, since the definition of a group-divisible
incomplete block design does not guarantée that condition (ii) above will be met.
Thus the question of the existence of ABD’s of arbitrary size does not seem to be

answered be any previous results of combinatorial design theory.

3.2. 2. CHARACTERISTICS OF ABD’S.
~ The following lemmas give some additional details on the characteristics of
ABD’s.
Lemma 1. There must be an equal number of O’s and 1’s in each column of an

4

ABD.
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Proof: There are an equal number of vectors in Ry having a O in a given column

as there are having a 1 . Furthermore, each row with * in that column

contributes an equal number of each type. Finally, there are an equal number of

+’s in each row so a digit in a column always contributes exactly 2K-W  vectors
of that type. |

Corollary. The value of bw/2k must be integral (this is the number of O’s or 1’s in
each column).

Lemma 2. The number of rows having u bits in common with any given record,
for 0 < u < w, is exactly Clw,u).

Proof: Let z, be the number of rows having u bits in common wfth the given
record. We must have

z, = Clk,u) - ZO 2, Clk~w,u-v) (69)

sv<u
to cover all the vectors in Ry having exactly u bits in common with the given

record. This equation is satisfied, uniquely by induction on u, by
z, = Clw,u). (70)
In particular, this lemma tells us how many rows there are having exactly u zeroes

(or u ones).
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3.2.3. CONSTRUCTION THEOREMS FOR ABD’S.

The following theorem, due to Ronald Graham, establishes the existence of

an infinite class of simple ABD’s.

Theorem 4. An ABD(2™M,2M-1) exists for all m » 2.
Proof:
We shall use an extended notation for an ABD, using the symbol "-" in

addition to the usual symbols of "0", "1", and "x". A row having 's "5 will

represent 2% actual rows of the ABD, obtained by independently replacing each

of the row with a "0" or a "1".

The construction consists of two parts:

(i) The first m+1 rows have "-"s in positions m+2 through k = 2M. The
i-th of these rows has a "+" in position i. The other positions are filled
in with digits in such a fashion as to satisfy condition (i) of the definition
of an ABD. This is easy to do; the rotations of the string « 1 om-1
will work, for example.

(i) The remaining rows are divided into k-m-1 pairs. The rows of the i-th

"o

pair have s in positions m+2 through k except for a "+" in
position m+1+i. The first m+] positions are filled in with digits in a

manner consistent with the definition of an ABD; this is simple to do.
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it is easy to verify that this yields an ABD(2M,2M-1).
Q. E D
To illustrate the above construction, here is an ABD(8,7) constructed by

Graham’s method (that is, this is the construction for" m= 3)%

st et e s s O OO~ OO N
——_.— 0O~ — O OO % —

Figure 8. An ABD(8,7)

This general idea, of dividing the columns into two groups and filling in each

part seperately, can be carried a little further; the following figure gives an

ABD(16,13), alsc discovered by Graham.
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Figure 9. An ABD(16,13)

The designs of Theorem 4 are not useful hash functions, however, with the
possible exception of the ABD(4,3), since the ratio k/w of key bits to bucket
address bits approaches 1 as the designs get larger. What is really desired is a
way to construct large designs with fewer buckets. The following theorem gives
a basic upper bound on the ratio k/w achievable for a given k (:hat is, given a
nurmber of keys, it gives a lower bound on the number of buckets required for an
ABD(k,w) to be possible).

Theorem 5.

k < (w2/2)«(2W/(2W-1)). : (71)
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Proof: Between cach pair of rows of an ABD there must be at least one column in
which they contain differing digits. There must be at least C(b,2) such row-row-
column differences. On the other hand, there are only wb/2k 0’s and 1’s per
column. Thus we must have
k (wb/2k)2 3 C(b,2) (72)

which directly yields our theorem. o

Q. E. D

As a consequence of the above theorem and lemma 2 of §3.2.2, we can

tabulate the nontrivial pairs (k,w) for which ABD(k,w)’s may exist, for small k.

_k | Permissable values of w, w#k_

4 | 3 :

8 | 4, 5 6 7

10 | 5 '

12 | 6 9

14 | 7 _

16 | 6 7,8 9, 10, 11, 12, 13, 14, 15
18 | 6 9 12, 15

20 | 10, 15

Figure 10. Permissable values of (k,w)
One can also show, by an extension of theorem 5 that an ABD(8,4) is also
impossible.
The following theorem gives a basic way of creating larger ABD’s from

smaller ones.
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Theorem 6. (Concatenation) It is possible to construct an ABD(k+k’ JWHW’)

from an ABD(k,w) and an ABD(k",w"), if k/w =k’ /w’,

Proof: Form the set of all 2%W*W' rows of length k+k’ obtained by concatenating
each row of the second design onto the end of each row of the firs: design. It is
easy to see that this is an ABD(k+k’,w+w").

Q.E.D.

Thus we can form an ABD(8,6) or an ABD(12,9) from the design of Figure
5 Figure 11 gives the ABD(8,6) so constructed.

12345678 12345678 12345678 12345678
1| 00+000#0 17] «10000%0 33] 11x100%0 49] x01100%0
2] 00+0100x 18] «100100% 34 11x1100x 50/ x011100x
3] 00%0: 100 19] %*100%100 35/ 11x1%x100 511 *x011%x100
4 00%01%10 20} #1001%10 36 11x11x10 52] 011110
5] 00+011x1 21 %10011#*1 37 11x111%1 53] #01111%1
6] 00x0011x 22| *100011% 38} 111011 54 x011011x
7] 0004011 23] #100x011 39| 11x1x011 55 *011%011
& 00+00x01 24] +«1000%01 40} 11x10+01 56 *x0110%01
G| 100+00+0 25| 1%1000+0 41} 011x00x0 57 0x0100«0

10} 100+ 100: 26| 1+10100x 42| 011%x100+ -~ 58 0%01100%
11} 1004100 27| 1x10#100 43] Ol1*x100- "+59-'0x01%100°
12} 100«1%10 28] 1x101%10 44| O0l1x1x10 60" 0x011%10
13] 100#11%1 29| 1x1011=x1 45| Olix11x1 611 O«x0111x1
14] 100401 1% 30| 1+10011% 46] O011x011% 62] 0%01011x
15 100%+011 31] 1x10%011 471 0Ol1xx011 63| 0+x01x011
16/ 100:0+01 32| 1x100%01 48] 011x0«01 64| 0«010+01

Figure 11. An ABDX(8,6)

Theorem 6 does not allow wus to increase the achievable record
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length/bucket address length (k/w). One might suspect that 4/3 is perhaps an
upper bound for k/w. The following theorem shows that arbitrarily large ratios
are possible.

| Theorem 7. (Insertion) It is possible to_construct an ABD(kk’,ww’) from an
ABD(k,w) and an ABD(K" ,w").
Proof: We will construct the larger ABD by independently replacing each digit of
the first ABD by a row from the second, and each "+" of the f.irst‘ABD by a string

of k¥ "+"s. If the digit being replaced is a zero, we choose a.row from the top

half of the second ABD (that is, from the first 2w -1 rows) to replace it. If the
Idigit being replaced is a one, we use a row from the bottom half of the second
ABD. (Actually, any division of the second ABD into two halves may be used.)

Each row of length k thus generates 2W -1)W rows of length kk’ , so that

oWW'  ows are generated altogether. Each such row has w(k’-w") + (k-w)k’ =
kk/ - ww’ ""s. Each pair of rows generated will differ in at. least one. place,
since rows used to replace differing digits differ, or if the tvs;o fows were
generated from the same row of the first design, then one of the digits replaced
will have been replaced with different rows from the second design, which must

differ in at least one place. Finally, the number of "x"™s in each column is

(2W =W ((kew)2W /Ky + (w 2% 1 e -w ) 2% pigew -hw-l o (73)

= 2WW' (kK - ww’) [ KK . (.74)
59
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Thercfore this construction yields a valid ABD(kk’ ,ww’ ).
Q E. D
The above theorem allows us to form ABD’s with arbitrarily large ratios

k/w. For example, we can now construct an ABD(16,9) or an ABD(64,27) (in

general, an ABD(4M,3™M) for my1) from the ABD(4,3) of Figure 5. The following
figure illustrates the rows generated for an ABD(16,9).

00«0 - 000004 0% xxx 00 0
00x 000+ Oxx+x 100«
00+ 000+ 0xx%+xx 100
00000+ 0x*xx1x 10
00x0100xxxxx 0040

~ 100% - 11+ 100% 000 Ox %+ %
111000+ 100*xx#+
115100501 10% %«

001 - O0xOxxxx00%x01 1% 1]
00 Ox %% 00x001 1%
O0%Oxx++00x 0% 011

ABD( 4, 3) rows - ABD(16, 9) rows

Figure 12. Rows of an ABD(186,9)
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3.2.4. ANALYSIS OF ABD SEARCH TIMES.

How well do these ABDs perform as hash functions for associative retrieval
of binary records? Let use derive the worst-case behavior of ABDs constructed
by concatenation and insertion. |

Let us consider the concatenation of an ABD(k,w) with an ABD(k’,w’). Let
Algt) and g{g’,t) be the respective worst-case number of buckets examined in

each case for a query Q ¢ Qy, and let A(ht) be the same function for the

resultant ABD. Since g, g' and h are fixed, we are considering the associated
functions g as functions of t only. We can then easily derive

Alht) = maxypy=t Agu) A W), (75)
for Os<t<k+k’, usk, v<k’. For example, concatenating an ABD(4,3) with itself

yields an ABD(8,6) with worst-case retrieval times:

ot pbbo 1t 2 3 .4 5 6 7 8
Alh, t) | 64 40 25 16 10 6 4 2
racg, 6,t)1 | 64 40 25 15 S 6 4 -2 1

—

Figure 13. Performance of an ABD(8,6)

Also shown are the values of rA(8,6,i)1, which is a lower bound for g(ht). The
ABD(8,6) is seen to do nearly as well as possible. The exact asymptotics for the
worst-case behavior of the repeated concatenation of an ABD with itself are

quite simple to figure out for given values of k and w. Suppose we concatenate
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an ABD(k,w) with worst-case behavior A(gt) with itself m times, yielding an

ABD(mk,mw). = Consider a partial match query Q ¢ Q4. Let y; be the number of

k column blocks which have exactly i specified bits, for Oxi<k, so that

ZogiYi =M | | (76)

and

z =t (77)

O<izk Y
We also have, of course, the condition that

y; 2 0 for Osick. (78)

The worst-case behavior a(ht) of the resultant ABD(mk,mw) is defined by

Aty = max T, . alg)” (79)

<izk
where the maximum is taken over all sets of integers yq, ..., yx satisfying (77) -

(79).  Let g'(ht) = loglatht)) and 4 (gt) = log(algt)) for all t. Then (79)

becomes

A (ht) = max EOsisk B (&) Yis (80)‘

transforming the above into a integer programming problem in k+1 dimensional
space. Since we are considering the asymptotic behavior as m-, the solution to

the corresponding linear programming problem, in which each y; is replaced by the
corresponding fraction x; = y;/m, will give us the asymptotic behavior. The

problem to be solved is thus:

maximize 4’ (ht) = zOsisk B (&) X _ (81)
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subject to:
ZOsisk xi =1, (82)
: EOsisk i x; =t/m, and (83)
xj 2 0 for Osisk. . (84)

We must have at least k-1 of the x;’s equal to zero in the optimal solution, since

there are only k+3 constraints for this problem in k+1 dimensions. Let x; and X;

J
be the two nonzero values, with.i<j. {f g’ (gt) is a concave function we have
i=Lt/mi=j-1 | (85)
and
A'ht)y = " (giXi-t/m)/Ci-j) + A (g,j)j-t/m)/(j=i). (86)

This is the general solution. When t/m is a multiple of l/k, then only Xtk /m is

nonzero, and it is equal to one. This solution does not apply when g’ (g,t) is not
concave. (For example, the ﬂ’(g,t} for our ABD(4,3) is not quite concave, since
A(g,3)=2 is a little too large. This convexity is the cause of the discrepancies 6f
Fig. 13). One can show, by a combinatoriél argument, that if (g,t)=A(k,w,t) for
O<t<k, then /.s’(h,t)=A(ﬁwk,mw,t) for Ost<mk as well. Thus co.ncatenation of ABD’s
can be expected to preserve near-optimal worst-case baHévior.

The behavior of an ABD constructed by insertion is more difficult to work

out. It seems the worst-case here occurs when the specified bits occur together
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in blocks corresponding to the digits of the first ABD used in the construction
(that is, the one whose digits were replaced). (I have no proof of this.) Figure
14 gives the worst-case behavior of an ABD(16,9) constructed by inserting the
ABD(4,3) of Figure 5 into itself, (computed using the assumption that the worst-
case behavior occurs with the queries having the specified bits occurring in

blocks). Shown below the worst-case behavior s(ht) for the above design are

the values of A(16,9,t), which are a lower bound for the number of buckets that

must be exarined in the worst case.

Ao 1.2 3. 4 5. 6.7 8
ACh, t) | 368 272 224 176 116 76 56 36
rAC16, 9,t)1 | 368 263 186 131 91 63 43 30
trooo 98 10 11 12 18 14 15 16
ACh, t) | 33 24 16 8 5 3 2 1
rAC16, 9,t)1 | 20 14 9 6 4 3 2 1

Figure 14. Behavior of the ABD(16,9)

We see the the lower bound is nearly achieved, that is, the worst-case
behavior of this hashing - scheme approximates the average time. On the other
hand, it is quite likely that even better designs for an ABD(16,9) exist - the
regular fashion in which this one was constructed probably degrades its worst-
case performance somewhat. An exhaustive search by computer for better

designs appears to be infeasible, so that a better construction method is needed.
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(I was unable to determine whether an ABD(8,5) exists or not, using one hour of

compufer time and a sophistitated backtracking procedure. )

3.2.5. IRREGULAR ABD’S.

The difficulty of cdnstructing ABD’s leads one to attempt simpler, less
tightly constrained hash functions. Such ad hoc hash functions are easy to
construct for small values of k and w. For example, consider the case k = 3,
w = 2 {(which does not satisfy the divisibility constraint of the corollary to Lemma
1, so that an ABD(3,2) can not exist). The folloWing “design" yields reasonably

good worst-case performance.

Figure 15. An "irregular" (3,2) design
Here bucket 4 contains both records 010 and 101. This Hash function has worst-

case behavior:

0. 1.2 .3

t
Aht)y | 4 3 2 1

Figure 16. Behavior of the previous design
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Concatenating this function with itself will yield larger "designs" having a k/w
ratio of 3/2 and having good worst-case retrieval times. Another "design"

yields the k/w ratio of 2

.1 .2 3 4
1 0 0 x =
2] x 1 % 0
3] = 1 1 1

[ 1 0 1 =
4|1 x 1 0 1

| 1 0 0 =«

Figure 17. An "irregular" (4,2) design

The above hash function has wors_t-case behavior:

t 1..0.
4

_ 3 4
Alh, t) | 2

4 3 1

Figure 18. Behavior of the irregular (4,2) design

3.2.6. CONCLUSIONS ON ABD’S.

Associative block designs will have exactly the same average retrieval time
as those hash functi‘on discussed in section 3.1, where w ‘key-bits were .'
extracted to use as bucket address bits, since the buckets have the same shape.
But by appropriately permuting the entries in each row, we can drastically reduce
the worst-case time without affecting the average retrieval time. The recursive

or iterative nature of the ABD construction theorems lends itself to simple
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implementation. In summary, we see that the worst-case performance of hashing

schemes can be nearly minimized without increasing the average retrieval time or

the amount of storage used.
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3. 3. BENEFITS OF STORAGE REDUNDANCY

The pérhéps difficult problems involved in constructing an ABD for a
particular application can be circumvented if the user can afford a moderate
amount of storage redundancy to achieve good worst-case behavior. By
moderate | really mean moderate - the redundancy factor is not subject to
combinatorial explosion as in the designs of Ghosh et al. Furthermore, both the
worst-case and average behavior is even slightly improved over the designs of
§ 3.1 and the ABD’s of § 3. 2.

The technique is actually quite simple, and will be illustrated by an

example. Suppose we have a file of n = 220 100-bit records (that is, each
record consists of 100 one-bit keys). The method of the previous section would
have required the construction of an ABD(100,w), for w near 20 - a difficult

task. Let us instead simply create five (= 100/20) bucket systems, and let each

record be filed once in each system. Each bucket system will 'havé 220
buckets. The first system will use the first 20 bits of each record as its bucket
address, the second bucket system will use the second 20 bits of the record, and
SO on.

Now suppose we have a query Q ¢ Q. At least one of the five bucket

“systems will have at least rt/51 bits specified for its bucket address - so we can
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use this bucket system to retrieve the desired records. The number of buckets
searched is no more than 220-Tt/57 4t worst.

in general, if b =2W is the numbe‘r of buckets per bucket system, and we
have k-bit records to store (records with non-binary keys can of course always
be encoded into binary), we will establish m = k/w distinct bucket systems,
divide the record into ‘m w-bit fields, and use éach field as a bucket address in
one of the systems.

The worst-case behavior of this scheme follows a strict geometric

inequality:

alhty < 2w-Twt/ka (87)
This surpasses even the best achievable average behavior of hash functions with

no storage redundancy, although not by very much. If half of the bits are given in

a query ( i.e. t = k/2), then only sqrt(b) = 2W/2 puckets at most need be

searched. The average behavior of this scheme is difficult to compute, but it -

seems likely ihat it will approach the worst-case behavior, ‘especially if w is
large.

The above idea can be generalized further. Instead of taking each of the
m subfields of the record and using it directly as an address, one can treat each

subfield as a record and use an ABD(k/m,w) or ‘some other method {(such as the
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trie algorithm of §4) to calculate an address from each subfield. The efficiency of

this composite method will of course depend on the efficiency of the the methods

chosen for each sub-field.
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CHAPTER .

TRIE ALGORIT HMS FOR PARTIAL MATCH QUERIES

Theorem 1, which states that an optimal bucket shape for a hash table is a
subcube of R, suggests that another data structure might be preferable to hash
tables. A trie also has the property that the set of records under consideration
at any point of the trie is a subcube of R, which is recursively split into smaller
subcubes at each level. Tries might thus behave like the best hash functions.
They have the advantage that the data is structured all the way down to the
terminal nodes (the records), in contrast with hash tables, where each bucket
merely contains an unordered list. In this section we will try to estimate the
average search time for a partial match query when the file F is maintained in

random-access storage as a trie.

4.1. DEFINITION OF TRIES

“Tries" were first described by Rene de la Briandais [de59] and were
elaborated on by E. Fredkin in [Fr60] (see also [Kn72,§6. 3]).
Definition. A trie is a tree such that

(i) Records are its terminal (external) nodes.
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(ii) Each internal node N specifies an attribute position j, such that attribute
j has not been specified on any node on the path from the root of the trie to N.
in a standard trie the attribute po§ition specified is always j, where j is the level
of the node N in the trie. Nonstandard tries were first introduced by G.
Gwehenberger [Gw68]. Each internal node is said to be associated with all of
“the records of its corresponaing subtrie, and

(i) if node N specifies attribute j, then node N has vj subtries, one for

each possible value of attribute j. The records associated with node N are each

placed into the subtrie of N corresponding to their value for attribute j. |
Two kinds of tries will be considered. A full trie will have all records at

‘ level k+1 (where the root is at level 1). Any subtrie associated wi.th zero

records will be a special null node at some level fess than k+1. A compact trie

will place the terminal node cdrresponding to a record at the uppermost level -

possible. In other words, a compact trie has a terminal node whenever the

corresponding node in the full trie is associated with only one record, and all of
the ancestors of the node in the full trie are associated with more than one
record. Figure 19 and 20 illustrate full and compact tries for the file of three-bit

records F' = { 000, 100, 101, 111 }.
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Figure 19. A full trie.

\
\
NULL
=0

73

]
\ =1
\
\
| bit 3|
=0/ =1
/ \
/ \
| bit 2| | bit 2|
/ \ =1 / =0 \ =1
\ / \
\ / \
NLL | 1ot | | 111




| bit 1|
=0/ \ =1
/ \
/ \
| 000 | | bit 3|
=0/ \ =1
/
/ \
| 100 | | bit 2|
=0/ \ =1
/ \
/ \
| 101 | | 111 |

Figure 20. The corresponding compact trie

4.2. ALGORITHM FOR SEARCHING TRIES

To perform an associative search of a trie is quite simple. Given a partial
match query Q the search algorithm works as follows:
Associative Search of a Trie

Step 1. Set pointer p to the root of the trie.
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Step 2. If p points to a terminal node, print the associated record if it

satisfies Q and return. |

Step 3. (Here p points to an internal node N specifyfng attribute j). |If

attribute j is specified in the query, search the corresponding subtrie
of N, otherwise search all subtries of N. (These recursive searches
use this algorithm beginning at step 2).

What is the average running time of this algorithm? Let the time be the
average number of nodes (both internal and external) examined by the algorithm.,
We shall use a slightly different assumption about the file, in order to make the
mathemétics easier. Instead of letting our file F be a randomly chosen subset
of ¥ of size exactly n, let us instead assume that each record R ¢ R is chosen to
be in F independently with probability p = n/|[R|. Thus E(F]) = n, but F
may also have some other size. There will be no significant bias in our results

due to this change in assumption. The following notation denotes our cost

“ measure:

f(k,t) = the average number of nodes examined by the above algorithm

to answer a partial match query Q ¢ Qy, where the file F

consists of (approximately) n distinct records, each having k

one-bit keys.
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There is an interesting optimization problem resulting from the use of
nonstandard tries. The problem is to seléct the attributé positions with which tvo
label each internal node in such a fashion as to minimize the expected number of
nodes examined for any partial match query. The interesting point here is that it
will be the most unbalanced trie which will have the minimal search time, since
nodes deep in the trie are seldom examined. To actually determine the optimal
trie seems to be a difficult optimizationv problem, and we shall not remark upon it

further. In fact, we shall restrict our attention to standard tries.

4.3. UPPER BOUND ON THE SEARCH TIME

The close relationship between tries and hash functions which extract bits

to use as a bucket address allows an upper bound on f(k,t.) to be derived very
simply. |

We first note that the probability #i(N) that a particular node N will be
examined is basically a function of the level KN) of N in the trie: |

By(N) = Clt)™ 1 T, CN-1,) Clk-KN)+1,t-0) 2"

<ig
= 27 MN)+1 A IN)-1,0). (88)
As noted above, since #{(N) decreases so rapidly with KN), of all the n-node tries

it will be the most balanced tries which have the highest average retrieval time.
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Thus we derive an upper bound for (k) by only considering the most balanced
tries of n nodes. Thus it is very simple to derive the bound:

flkt) < 2 Alkyjit), (89)

I<jsTlogoin)?

since there are 2J=1 nodes on each level j of the most balanced trie except
possibly the last. The dominant term in this sum will generally be the last one,
corresponding to the highest level. Thus we see that tries will not generally do
worse than the best hashing functions which use about n buckets. In the next

section we will see that they do not perform significantly better, either.

4. 4. LOWER BOUND ON SEARCH TIME

We shall here assume that the file is stored as a full trie and not a compact
trie. While a practical implementation would certainly use compact tries, we shall
examine the full trie case since the rﬁathematics is a little simpler. Compact tries
are more efficient by a factor of at most

k/logoln) =1 - (logolp)/logp(n)). ‘ (90)
This approaches 1 in the limit if we keep p fixed and let n-w. We shall
proceed with our analysis with the understanding that compact trees could be
more efficient by this amount.

We now prove our basic theorem for this section, which says that the
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expected search time for a trie is bounded below by a exponentially decreasing
function of the amount of information specified in the query.
Theorem 8. |
f(k,t) » nik-H/k = plk-t)/k 2k—tA o (91)
Proof: The basic recurrence for f(kt) is the following:

fkot) = 1+ (1-¢ 02 f(k=-1,tXk=t)/k + f(k-1,t-1) t/k ), for k>1. (92)

Here we define

| k
% =def (1-P)° | (93)

to be the probability that F is empty. The value (k-t)/k is the probability that
the bit named at the root ’of the trie is not specified in the query, and t/k is the
probability that it is specified in the query. The 2 is in the first term because if
the bit named in the roct is not specified in the query, then we have to search
both subtries, otherwise we only have to search one. |

We will prove (91) by induction on k, using (32). The baéic'inducti've step
we need to prove is therefore the following inequality.

p(k-t)/k k-t
< 1+ 2Kt (1 - qtk-tyk) plkt=D/k=1) 4 i plk=0/(k=1)y (g4

If we prove (94), and also prove a basis for the induction, then (91) follows.

Defining z to be:

2 =gt PRAD/RD) ((k-tyk + t/k p1 /(-1 | (95)

78

-

T

-

e

.



we then get that (94) is equivalent to:

oy 2Kt plketifk -1 - g 2)) | (96)
If we can show that

z » plk-/k | . (97)
then (96) reduces to showing that

D k-t plk-t)/k (98)
So we will first prove (97), and then (98). Now (87) is equivalent to the

following.

plk=t/Kk ¢ (kety/k plkt=D)/tk=1) 4tk plk=t)/(k=1) (99)
This is the same as

ot/K(k-1) ¢ (ketyyk + t/k pl/(k=1) | (100)
But this is just an instance of a well-known mean-value thecrem [Thm. 37,Ha59].

We shall now prove (98). This is equivalent to
13 2k p(2pl/kt (101)
Since ¢, is independent of t we may set t=k if 2 pl/k < 1 to maximize the right

hand side, reducing (101l) to a trivial statement. Otherwise we set t = 0.
Differentiating the resultant right-hand side with respect to p, we find that it

reaches a maximum at

po =1/ 2k+1) (102)
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But since 2 pol/k < 1 we only need to prove (101) for 2 p!/K = 1, in which
case it is again trivial. |

Therefore (91) is proved except for the basis for the. induction, But for
k =1, (91) reduces to

f(1,0) 2 2 p, _ (103)
and

f(1,1y > 1 . ‘ ' (104)
Equation (104) is certainly true, since the root node must always be examined.
Equation (103) requires computing the average work for a file of 1-bit records

for a query with no keys specified. There are four possible files: F={0,1},
F={0}, F={1}, and F={}, which occur with probabilities p2, p(1-p), p(1-p), and
(l-p)2 respectively. The number of nodes examined in each of these cases is

3, 2, 2, and | respectively. Equation (103) thus reduces to proving the

following.

2p < 3p2 +2p(l~p)+2p(1-p)+(1-p)2=1+2p (105)
Q. E. D.
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CHAPTER 5

HASHING ALGORITHMS FOR BEST-MATCH QUERIES

The task of searching a file for all best matches to a query has probably
been more extensively studied than the the task of searching for all partial
malches, due to the fundamental nature of identification problems .when only
partial and perhaps incorrect attribute data is available. Finding the best-match.
for a lransmitted message is the crux of the decoding'prob'lem, for example.
Nevertheless, only very recently has significant theoretical progress been made on
this problem. As late as 1969 Marvin Minsky conjectured that

"Even for the best [algorithms], the speed-up value of large memory
redundanéies is very small, and for large data sets with long word lengths
there are no practical alternatives to large searches that inspect large

parts of the memory. " [Mi69,p. 223]

We shall see that the situation is not that bad, and that best-match searches may
often be made extremely rapidly, requiring the examination of only the smallest

fraction of the file.
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5. 1. THE ALGORITHM

The method is due originally to Peter Elias, according to [We71), although

Burkhard has apparently independently discovered the idea more recently [Bu73].
The algorithm is a variant of the hash-coding scheme, with slightly different
hash functions. We shall therefore use the same notation as §3. We divide the

space R of records into b regions B(R,h), Bo(R,h), ..., Bp(R,h) as before.

Given an input record Q for which we want to find the best-match, we hope to
limit our examination of the file to just a few buckets. To do this we need to find
an appropriate hash function.

Due to the nature of the problem, it seems likely that the buckets should
be "neigbborhoods" or "spheres” of R rather than subcubes. This conjecture is
proved later on. One simple method of dividing R up into neighborhoods is to
choose a set of "reference” records R’_ = {R'{, Rp ..., Rp}, and then to
associate one bucket with each reference record. A record is placéd in the
bucket(s) corresponding to the nearest reference record(s) using the Hamming
distance metric d. Thus,

Bj(R) =gef { RER | ~(31 <i<b)[(#DAAR RI<R’ jR)]}. (106)
Note that a record may belong to more than one bucket under this scheme.

Clearly the reference records can be chosen in different ways. A large
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amount of research going Qnder the name of "cluster analysis” is directed at
choosing the reference records to be records of F near the centers of naturally
occurring “clusters" in F (for example, see [Ja71]). This method has the
advantage of being tailored to the particular file in question, but has difficulties in
terms of maintaining this structure while the file is being modified and in terms of
organizing the search, since it is hard to determine whether a given bucket needs
to be searched (that is, whether it could possibly -contain a record closer to R
than the closest found so far in the search).

For the purposes of this discussion, we will assume that the file F' is a
randomly chosen subset of size n of R. Thus it is unlikely to expect the records
of F to be nicely clustered in any way. How should the reference records be
chosen in this situation” One would suspect that they should be rather evenly
distributed throughout R.

For the case of binary records, R’ can be easily chosen if b is a power of

two, so that b = 2%, and there exists a perfect (k,w) error-correcting code, with

minimum distance 2 x + 1. Then R” will be the set of codewords, and BJ-(B) will

be the set of all k-bit words which would be interpreted under the decoding rule

to be R’j. (While it has been shown (see [Ti73]) that there are no unknown

perfect codes, in those cases where a perfect code does not exist one can do

nearly as well by using a quasi-perfect code [Pe72], or the best code available. )
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To perform a best-match search, the following algorithm is performed.

Essentially the buckets are examined in order of increasing distance of their

. centers from the query until all the closest records are found.

procedure SEARCH2({B], ..., BohhQ:A)

comment SEARCH2 finds all records stored in buckets By, ..., By, which

are nearest to the record (query) Q.
The value » is the minimal value such that every record is within distance
2 of a reference record.; '

begin set W, W, Y;integer m, m', i, j;
m «~ oo; W « null; Y<—{1,2,.‘.,b};.
while Y # null do
begin
jemin {16 eY) A dRIQ) = miney dRLQ)E
if Bj(F) # null then
begin
m « mi“Rij(F) d(R,Q);
W’ « {R¢ BJ(F) | dRQ)y=m" };
ifm =mthen WeWUW
else if M < mthen
begin W« W ;mem end
end;
Y« {i]ldRQ <m+x}nY=-{j} -
end;
print{ W, m )
end SEARCH2;

5.2. A SAMPLE APPLICATION

Let us consider a particular application. Suppose we have a file of n=215
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23-bit words which we wish to organize for best-match searching. We can make
use of the Golay perfect (23,12) code (see [Pe72, §5. 2)) in our hash function.
We will thus have 4086 buckets, each containing about 8 records on the average.
The Golay code is capable of correcting all patterns of up to three errors, so that
the minimum distance between codewords is 7.

To derive the average time needed to answer a best-match query, plroceed

as follows. Let p be the probability that a particular record is in F (here p =

215/223 = .00390625), and let «(h) be the expected number of buckets

examined. Then
- N oo=-11 : ‘o
«(h) = ZOsiSB C(23, i) 2 205j523 pelj) nb(i,j) (107)

where pe(j) is the probability that the nearest record to a "typical" query is at
distance j. This is an average, taking as separate cases the distance i of the

query from the center of its bucket. That is
pej) = (1-p)V(23-1) (1 - (1-p)C(23, j)), (108)
where V(k,j) is the volume of a sphere with radius j in binary k-space, that is,

Vik,j) = £ < S (109)

O<i
The quantity nb(i,j) in (107) denotes the average number of buckets that need
to be examined to find all words within distance j of R for a typical word ReR

where the distance from R to the nearest code-word is i. The values of nb(i,j)
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for O<i<3 and 0<j<23 were determined with a computer program. Figure 21

plots «(h) versus p. For our application (p = 215/223), we see that no more than

37 buckets need be examined on the average.
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Plot of «{h) versus p
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5.3. ANALYSIS OF ASYMPTQTIC RUNNING TIME

How well does the above algorithm perform? The expected number of
records examined will be at most p C(km+x), where m is the distance from the
query to the nearest record in F, and 2 is the common radius of the buckets.
For m+x small in relation to k, this will be a negligible fraction of the file.

To consider the asymptotic performance, let k =  and w » « proportional
to ‘k.- This corresponds to the case where p, the file density, remains fixed.
Then it is well-known that there are codes such that the minimum distance of

these codes will increase in proportion to k. The fraction of the file examined is

at most C(k,m+x)2'k. This fraction goes to zero as k goes to infinity, since the

expected value of m goes to (1-p) and A remains a fixed fraction of k.

5. 4. OPTIMAL BUCKET SHAPES

The above algorithm has been previously published, as ;not;d before. The
following theorem demonstrates its optimality. |

.Theorem 9. For answering best-match queries from a file of binary
records, «(h) is minimized over all balanced hash functions h having a given

number b of buckets if each bucket is shaped like a "sphere" -- that is, if each
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bucket Bj(Rk) consists of a center point (record) R’j and all records within a
distance X of R’j.
Proof: Since we are considering balanced b-bucket hash functions, «(h) will be

minimized if each individual bucket of size 2k/b has a minimal probability of being
examined, over all buckets of the same size. A bucket must be examined if it
contains any records as close to the input record as the closest record found

previously in the search. There are 2K pos#ible input queries. For a given
query, there is a probability of (l-p)v(k’d'l) that the nearest record to the input
query will be at a distance of at least d. For a given bucket B let S(B,d) be the
set of records in R_k which are at distance d from the nearest record in B(Rk).
The chance that B must be examined is then:

¥(B) =qgf 27K gk 1SBAI (1-p)Vikid-1) (110)
since if the query is in S(Bd), B is only examined if the sphere of radius d-1
around the query contains no records in F. This sum is minimized by making the

values of |[S(B,d)| as small as possible for small values of d, since (l-p)V(knd‘l)
is a decreasing function of d. In fact, if we are given two buckets B and B, then
¥(B) will be less than ¥(B’) if and only if the vector (IS(B,O)I,IS(B,I)I, o IS(Bk)))

is lexicographically less than the corresponding vector for B’, since

¥(B) - ¥(B) = 27K I . (IS8 ,i)l-IS(B,i))(1-p)VCki-1), (111)

Assume that |S(B,i)|=|S(B’,i)| for O<i<j, and that [S(B,))I<|S(B’,j)|. Since
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we have

(B - ¥@) = 2K T | (S@HISEH-p VD (113)

> 27K (158" j)l-Is@ N L-p) V= D(1-pVikid)y  (114)

20 - (119)

For twa buckets of the same size, B will be examined less frequently than B’ if

IS(B,1)| is less than 'IS(B’,i)I. Note that |S(B,1)| is the discrete analog of the

surface area of a region B, so that wHat we are about to show is that a sphere
has minimal surface area.

Consider- the mapping- R = Ry_1, obtained by dropping the first bit of

each record in Ry The set of records in B may be divided into two subsets

according to their first bit. Dropping the first bit, we get two subsets Bg, By of

R corresponding to the set B in Ry. Using [S(Bg,1)| and |S(By,1)| te denote

the surface area of the sets Bg and By in Ry..1, we have the relationshipgz
Bl - Bol+ Biland (116)
IS(B,1)] = |S(Bg,1)| + |S(B1, 1)
~+|Bp - (By US(B,INI + By - (Bg USBoINl (117)

The problem of selecting the optimal set B from R is thus reduced to the problem

of selecting the proper sets Bg and By from Ry_1.
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Consider a given bucket B’ (or rather, its corresponding sets B’y and B’ 1
in Ry_1). Let us "deform” this bucket into a new bucket B by making By and B
be sels of the same size as B’ and B’ | but which are spheres centered at the
origin of Ry_1. We will show that

IS(B, 1] < |S(B”, 1), (118)

using an inductive proof on the dimension k; thus [S(Bo,1)| and IS(B{,1)| can be
assumed to be minimal over all buckets in Ry._ of the same sizes.

We may assume that |Bg| 2 IBy] without loss of generality. Thus the last
term of (117) will be zero since By s Bp. It is now clear that IS(B,1)] is minimal
over buckets B such that [Bol=1Bg’ | and [B1l=IB1’], since any decrease in the
term |Bg - (B U S(By,1))| could only come at the expense of a corresponding
increase in the term [S(By,1)l.  That is, either Bo - (’Bl U S(By,1))| is zero (in
which case |S(B,1)] is obviously minimal) or else By v S(By,1) « Bp. In the latter
case there will exist several choices for By which will minimise S(B,1) (in fact, any
B will do which maintains By US(By,1) e Bp), one of which is a sphere.

Thus a sphere will have minimal surface area of any bucket of size IB” ],
since a sequence of the above deformations using each of the k bit positions in
turn will transform any bucket B’ into a sphere. Although other shapes may also

have minimal surface area, the sphere will also have the minimal expected chance

g1




of being exarmined, since B U S(B,l). is also a sphere when B is, so that the vector

(IS(B, 1)}, IS(B,2)], ..., IS(B,k)]) is lexicographically minimal by induction on the index

j of the S(B,j)’s .
Q. E D
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CHAPTER 6

APPENDIX - NOTATION

The following notation is used consistently throughout:

SYMBOL

Alk,w,t)

Q

MEANING

The minimal number of buckets examined to answer a query
with t bits given out of k, with b = 2W buckets in the system.
Number of buckets used in a hash-coding scheme.

The binomial coefficient "m choose n".

The expected value of the variable x.

The c.urrent file.

A hash function mapping R - {1,2,...b}.

"if and only if"

The number of keys in a record.

The number of records in the file F.

The universe of legal queries.

A query in Q.

A query in Q, or a f.unction mapping subsets F of R into

subsets of F' (that is, Q{(F') is the response to query Q;, given

F).
93




IX|
Fx1
Lx. |
Xi Ai

x<<y

o(h)

The set of all partial match queries having exactly t keys

given.
The universe of legal records.

The set of all binary words of length k.

A record of R.

The i-th record of the file F.
The j-th key of record R;.

The number of keys specified in a partial match query..

The number of values the j-th key of a record can have.
The comrnon value of all the vj’s, if it exists.

The number of points in binary k-space within distance i of the
origin.

The value logo(b).

The cardinality of the set X.

The least integ.er.greater than or equal to x.

The greatest integer less than or equal to x.

The cartesian product of sets A,

The value of x is "very much less" than the value of y.
The average number of buckets examined by SEARCH when

using hash function h to answer a partial match query Q ¢ Q.
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«(ht)

Ahh

$(B)

¢4(B)

The average number of buckets examined by SEARCH when

using hash function h to answer a partial match query Q ¢ Qj.

The worst case number of buckets examined by SEARCH when

using hash h to answer a partial match query Q ¢ Q.

The number of queries in Q which examine bucket B.

The number of queries in Q¢ which examine bucket B.
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