Stanford Artificial Intelligence Laboratory July 1973
Memo AIM-228

Computer Science Department
Report No. STAN-CS-74-409

FINAL REPORT

The First Ten Years of Artificial Intelligence Research at Stanford

Edited by
Lester Earnest

ARTIFICIAL INTELLIGENCE PROJECT
John McCarthy, Principal Investigator

HEURISTIC PROGRAMMING PROJECT
Edward Feigenbaum and Joshua Lederberg,
Co-principal Investigators

Sponsored by
ADVANCED RESEARCH PROJECTS AGENCY

ARPA Order No. 457

COMPUTER SCIENCE DEPARTMENT
Stanford University







Stanford Artificial Intelligence Laboratory July 1973
Memo AIM-228

Computer Science Department
Report No. STAN-CS-74-409

FINAL REPORT

The First Ten Years of Artificial Intelligence Research at Stanford

Edited by
Lester Earnest

ARTIFICIAL INTELLIGENCE PROJECT
John McCarthy, Principal Investigator

HEURISTIC PROGRAMMING PROJECT
Edward Feigenbaum and Joshua Lederberg,
Co-principal Investigators

ABSTRACT

The first ten years of research in artificial intelligence and related fields at Stanford University
have yielded significant results in computer vision and control of manipulators, speech
recognition, heuristic programming, representation theory, mathematical theory of computation,
and modeling of organic chemical processes. This report summarizes the accomplishments and
provides bibliographies in each research area.

This research runs supported by the Advanced Research Projects Agency of the Department of
Defense under Contract SD-183. The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Advanced Research Projects A gency or theU.S. Government.






TABLE OF CONTENTS

Section

1. INTRODUCTION

2. ARTIFICIAL INTELLIGENCE

PROJECT

2.1 Robotics

2.2

23

24

25

2.6

2.7

2.1.1 Manipulation
21.2 Vision

Theoretical Studies

2.2.1 Mathematical Theory of
Computation

2.2.2 Representation Theory

22.3 Grammatical Inference

Heuristic Programming

2.3.1 Theorem Proving

23.2 Automatic Program
Generation

2.3.3 Board Games

2.3.4 Symbolic Computation

Natural Language
2.4.1 Speech Recognition
24.2 Semantics

Programming Languages
2.5.1 LISP
2.5.2 FAIL
2.5.3 SAIL

Computer Facilities
2.6.1 Early Development
2.6.2 Hardware

2.6.3 Software

Associated Projects

2.7.1 Higher Mental Functions
2.7.2 Digital Holography
2.7.3 Sound Synthesis

2.7.4 Mars Picture Processing

Page

10

10
15
16

17
17

19
19
20

22
22
24

27
28
29
29

30
31
32

35
35
36
37
38

Sect ion Page
3. HEURISTIC PROGRAMMING
PROJECT 39
3.1 Summary of Aims and
Accomplishments 39
3.2 Current Activity 40

3.3 Views Expressed by Others
Concerning DENDRAL 41

Appendices
A. -ACCESS TO DOCUMENTATION 47
B. THESES 49
C. FILM REPORTS 53
D. EXTERNAL PUBLICATIONS. 55

E. A.1. MEMO ABSTRACTS 67






1. INTRODUCTION

Artificial Intelligence is the experimental and
theoretical ~ study of perceptual and
intellectual processes using computers. Its
ultimate goal is to understand these processes
well enough to make a computer perceive,
understand and act in ways now only
possible for humans.

In the late 1950s John McCarthy and
Marvin Minsky organized the Artificial
Intelligence Project at M.I.T. That activity
and another at Carnegie Tech (now
Carnegie-Mellon University) did much of the
pioneering research in artificial intelligence.

In 1962, McCarthy came to Stanford
University and initiated another A. I. Project
here. He obtained financial support for a
small activity (6 persons) from the Advanced
Research Projects Agency (ARPA) beginning
June 15, 1963.

A Computer Science Department was formed
at Stanford in January 1965. By that time
there were 15 people on the Project,
including Edward Feigenbaum who had just
arrived. Shortly, a decision was made to
expand the activities of the Project,
especially in the area of hand-eye research.
Additional support was obtained from
ARPA and a PDP-6 computer system was
ordered. Lester Earnest arrived in late 1965
to handle administrative responsibilities of
the expanding Project.

By the summer of 1966, the Project had
outgrown available campus space and moved
to the D. C. Power Laboratory in the
foothills -above Stanford. The new computer
system was delivered there. Arthur Samuel
and Jerome Feldman arrived at about this
time and D. Raj. Reddy joined the faculty,
having completed his doctorate on speech
recognition as a member of the Project.
Several  faculty —members from other

departments affiliated themselves with the
Project, but without direct financial support:
Joshua Lederberg (Genetics), John
Chowning and Leland Smith (Music), and
Anthony Hearn (Physics).

By early 1968, there were just over 100
people on the Project, about half supported
by ARPA. Kenneth Colby and his group
joined the Project that year, with separate
funding from the National Institute of
Mental Health. Other activities subsequently
received some support from the National
Science Foundation and the National
Aeronautics and  Space Administration.
Zohar Manna joined the Faculty and the
Project, continuing his work in mathematical
theory of computation.

In June 1973, the Artificial Intelligence
Laboratory (as it is now called) had 128
members, with about two-thirds at least
partially ARPA-supported. Other Computer
Science Faculty members who have received
such support include Robert Floyd, Cordell
Green, and Donald Knuth.

The Heuristic Dendral Project (later changed
to Heuristic Programming) was formed in
1965 under the leadership of Edward
Feigenbaum and Joshua Lederberg. It was
initially an element of the A. I. Project and
consisted of five or so people for several
years.

The Heuristic Dendral Project became a
separate organizational entity with its own
ARPA budget in January 1970 and also
obtained some support from the Department
of Health, Education, and Welfare. It has
had 15 to 20 members in recent months.

The following sections summarize
accomplishments of the first 10 years (1963-
1973). Appendices list external publications,
theses, film reports, and abstracts of research
reports produced by our staff.



2. ARTIFICIAL INTELLIGENCE

PROJECT

The work of the Stanford Artificial
Intelligence Project has been basic and
applied research in artificial intelligence and
closely related fields, including computer
vision, speech recognition, mathematical
theory of computation, and control of an
artificial arm.

Expenditures from ARPA funds over the ten
years beginning June 15, 1963 have
amounted to $9.2 million. About 43% of this
was for ‘personnel (salaries, wages, benefits),
26% for computer and peripheral equipment
(purchase, replacement parts, and rental), 8%
for other operating expenses, and 23% for
indirect costs.

Here is a short list of what we consider to
have been our main accomplishments. More
complete discussions and bibliographies
follow.

Robotics

Development of vision programs for finding,
identifying and describing various kinds of
objects in three dimensional scenes. The
scenes include objects with flat faces and also
curved objects.

The development of  programs  for
manipulation and assembly of objects from
parts. The latest result is the complete
assembly of an automobile water pump.

Speech Recognition

Development of a system for recognition of
continuous  speech, later transferred to
Carnegie-Mellon University and now being
expanded upon elsewhere.

Heuristic Programming

Our support of Hearn’s work on symbolic
computation led to the development of
REDUCE, now being extended at the
University of Utah and widely used
elsewhere.

Work in heuristic programming resulting in
Luckham’s resolution theorem prover. This
is currently about the best theorem prover in
existence, and it puts us in a position to test
the limitations of current ideas about
heuristics so we can go beyond them.

Representation Theory

Work in the theory of how to represent
information in a computer is fundamental
for heuristic programming, for language
understanding by computers and for
programs that can learn from experience.
Stanford has been the leader in this field.

Mathematical Theory of Computation

Our work in mathematical theory of
computation is aimed at replacing debugging
by computer checking of proofs that
programs meet their specifications.
McCarthy, Milner, Manna, Floyd, Igarashi,
and Luckham have been among the leaders
in developing the relevant mathematical
theory, and the laboratory has developed the
first actual proof-checking programs that can
check proofs that actual programs meet their
specifications.  In particular, Robin Milner’s
LCF is a practical proof checker for a
revised version of Dana Scott’s logic of
computable functions.

Research Facilities

We have developed a laboratory with very
good computer and program facilities and
special instrumentation for the above areas,
including a timesharing system with 64
online display terminals.



ARTIFICIAL INTELLIGENCE PROJECT

We developed a mechanical arm well suited
to manipulation research. It is being copied
and used by other laboratories.

We designed an efficient display keyboard
that has been adopted at several ARPAnet
facilities. We invented a video switch for
display systems that is being widely copied.

In the course of developing our facilities, we
have improved LISP, developed an extended
Algol compiler called SAIL, and created a
document compiler called PUB (used to
produce this report).

Our early Teletype-oriented text editor called
SOS has become an industry standard and
our new display editor "E" is much better.

We have written utility programs for the
PDP- 10 and made numerous improvements
to time-sharing systems. Many of our
programs, particularly LISP, SAIL, and SOS,
are. used in dozens of other computer centers.

We designed an advanced central processor
that is about 10 times as fast as our PDP-10.
In support of this work, we developed
interactive design programs for digital logic
that have since been adopted by other
research and industrial organizations.

Trairring

In the 1963-1973 period, 27 members of our
staff published Ph.D. theses as Artificial
Intelligence Memos and a number of other
graduate students received direct or indirect
support from the A. I. Project.

The following subsections review principal
activities, with references to published
articles and reports.

2.1 Robotics

The project has produced several substantial
accomplishments: an automatic manipulation
system capable of assembling a water pump,
a laser ranging apparatus, and programs
which form symbolic descriptions of complex
objects. We have now focused a major effort
on robotics in industrial automation.

2.1.1 Manipulation

In 1966, we acquired and interfaced a
prosthetic arm from Rancho Los Amigos
Hospital. Although it had major mechanical
shortcomings, the software experience was
valuable. A program was written for point
to point control of arm movements.
Computer servoing was used from the
beginning and has proven much more
versatile than conventional analog servoing.
A simple system that visually located blocks
scattered on a table and sorted them into
stacks according to size was operational by
the spring of 1967 [Pingle 1968]1.

In order to move through crowded
workspaces, a program was written to avoid
obstacles while carrying out arm movements
[Pieper 19681. That program was fairly
general but rather slow, since it used a local
and not very smart search technique to inch
its way around obstacles.

A hydraulic arm was designed and built
according to stringent criteria of speed and
strength. Kahn developed a minimum-time
servo scheme, which is close to a bang-bang
servo [Kahn f 97 f]. The effect was impressive
(even frightening) but hard on the
equipment.

The next arm was designed with software in
mind [Scheinman 19691. It was completed in
December 1970, and has proved a good
research manipulator; several other groups
have made copies.




Arm control software for the new arm was
split into a small arm-control servo program,
which ran in real time mode on our PDP-6
computer, and a trajectory planning program
[Paul 197 1}, written in a higher level
language and running on a timeshared
PDP- 10.

The arm servo software contained several
new features: a) feedforward from a
Newtonian dynamic model of the arm,
including gravity and inertial forces; b)
feedback as a critically damped harmonic
oscillator including velocity information from
tachometers; c¢) trajectory modification facility
in the servo program, which allows
considerable change from planned
trajectories to  accomod ate  contingency
conditions. Compare this control mechanism
with the usual analog servo; the kinematic
model and computer servo allow changes of
several orders of magnitude in the equivalent
servo constants, to account for variations in
gravity loads and inertial effects.

The arm was designed so that solution for
joint angles from position and orientation is
simple and rapid. The techniques apply to a
wide range of arms; thus our work has
significance for industrial and other robotics
applications.

The MOVE-INSTANCE capability [Paul
1971] shows a simple form of automating
some manipulation procedures. The routine
chooses a best grasping and departure for a
class of known objects. Models of these
objects are stored in order to choose all
possible grasping positions -- parallel faces, a
face and a parallel edge, etc. The full range
of possible departure and approach angles is
investigated and a solution chosen, if
possible, which allows manipulation in a
single motion, Otherwise, a solution is chosen
which uses an intermediate position to
regrasp the object. Thus, this facility
provides a method for grasping general
polyhedra in  arbitrary position and

ARTIFICIAL INTELLIGENCE PROJECT

orientation, provided we have a model of the
object.

Arm planning is based on making complete
motions, e.g. picking up an object and
putting it down. If we pick up an object
arbitrarily, without thought for putting it
down later, we may not be able to put it
down as desired and may need to grasp it
again. Complete trajectories are pieced
together from various segments, e.g. grasp,
departure, mid-segment, approach, release.
Trajectories are specified by the user in an
interpretive hand language (HAL) in terms
of macros at the level of inserting a screw.
Endpoint positions and orientations are often
specified by positioning the arm itself in the
proper position and recording joint angles, a
form of “learning by doing”. The language
provides facilities for control using touch and
force sensing.

Pump Assembly

Our first major task was assembly of an
automobile water pump. A film which shows
the process in detail is available for
distribution [Pingle and Paul, “Automated
Pump Assembly”]. We describe the task in
some detail to show the level of
programming.

The pump parts include pump base, cover,
gasket and screws. We chose a plausible
industrial environment with tools in fixed
places, screws in a feeder, and pump body
and cover on a pallet. It is located by vision,
then moved by the arm to a standard
position, up against some stops. Pins are
inserted into screw holes in the pump body
to guide alignment of gasket and cover. If
necessary the hand searches to seat the pins.

The gasket is placed over the guide pins and
visually inspected for correct placement. The
cover is expected to be within about a
quarter of an inch of its fixed place on the
pallet. After locating the cover by touch, the



ARTIFICIAL INTELLIGENCE PROJECT

hand places the cover over the guide pins.
The hand then picks up a hex head power
screwdriver, picks up a screw from the feeder
and inserts the screw and, if necessary,
searches to seat the screw. A second screw is
inserted. The hand then removes the two
pins and inserts four more screws, completing
the assembly. Finally, it tests that the pump
impeller turns freely.

Three forms of feedback are used, visual,
tactile, and force. The visual feedback is
provided by strictly special purpose programs
which have no general interest. We plan to
generalize visual feedback capabilities and
include them in a system like that used to
program the rest of the task.

The manipulation parts of the assembly were
programmed in the hand language, HAL.
The actual program follows:

BEGIN PUMP

ALIGN salign pump base at stops
PINPLHL sput pin Pl at hole HL
‘PIN P2 H2 sput pin P2 at hole H2
GASKET

TOP

SCREW1 sput in first 2 scrows

UNPIN HIPLHIR remove pin Pl from hols Hl
UNPIN H2 P2 H2R ;remove pin P2 from hole H2
SCREW2 s insert last 4 screus

TEST

END

Each of the commands is a macro. The task
was performed in a general purpose hand
language with a control program which could
be readily adapted to other manipulators.
Thus the system is more than a special
purpose demonstration.

2.1.2 Vision

During the past two years our vision effort
has shifted from scenes of blocks to outdoor
scenes and scenes of complex objects. In
both cases, interpretation has made use of
world models.

A crucial part of our work with complex
objects is our development of suitable
representation of shape. This is an area
closely connected with industrial applications
of research, since representation of shape is
important in programming of robots, design,
display, visual feedback, assembly, and
symbolic description for recognition.

Wichman assembled the first robotics visual
feedback system [Wichman 19671. It was
deficient in several ways: only the outer edges
of the blocks were observed, the hand had to
be removed from view when visual checking
was done, and the technique was limited in
its domain of objects.

Gill then improved these aspects by
recognizing hand marks and internal edges
of blocks [Gill 19721. The system was model
driven in that specifying the projected
appearance of a corner in a small window
programmed the system for a new task. But
the system was limited to tasks with
polyhedra, e.g. stacking blocks and inserting
blocks into holes.

A class of representations of shape has been
applied to symbolic description of shapes of
toys and tools [Agin 1972, Nevatia 19731.
The representation depends on a part/whole
description of objects in terms of parts which
may themselves be composed of parts. The
success of any part/whole representation
depends on the utility of the primitive parts;
within the  representation, dominant
primitives are “generalized cones”,
originating from a formalization called
“generalized translational invariance”. These
primitives are locally defined by an arbitrary



cross section and a space curve called the
ax is, along which the cross sections are
translated normal to the axis.

We have developed laser depth ranging
hardware which has been operative since
January 1971. The device is very simple
and can be replicated now for less than
$1000, assuming that a suitably sensitive
camera tube such as a silicon vidicon or solid
state  sensor is available. ~ From that
experimental data, we have obtained
complete descriptions of a doll, a toy horse, a
glove, etc., in terms of part/whole descriptions
in the representation just described. The
same techniques could be used for monocular
images, with considerable benefit, in spite of
the added difficulty of using only monocular
information. We are now writing programs
which match these graph descriptions for
recognition.

The work on visual feedback depends on
display  techniques which have been
developed here and elsewhere. An
interactive program GEOMED [Baumgart
1972a] was developed to allow description of
objects by building them up from a set of
geometric primitives. The usually tedious
task of input of descriptions of complex
objects is much simplified. For our purposes,
a symbolic line drawing output is necessary; a
fast hidden line elimination program with
symbolic line output structure has been
written.

Working with outdoor scenes introduces new
difficulties: surfaces are textured, line finders
etc., have been specialized to scenes of
polyhedra. ~ We have made substantial
progress by incorporating new visual
modules such as color region finders with a
world niodel. The first of these efforts
[Ba jcsy 1972} included a color region finder
and Fourier descriptors of texture. Textures
were described by directionality, contrast,
element size and  spacing. These
interpretations from the Fourier transform

ARTIFICIAL INTELLIGENCE PROJECT

are useful but not always valid, and a
discussion of the limitations of Fourier
descriptors was included. Depth cues were
obtained from the gradient of texture. The
results of color and texture region growing
were shown, and a simulation made of
combining these various modes with a world
model. An interesting conclusion was that
three dimensional interpretations and cues
were the most semantic help in scene
interpretation.

A second project has dealt with outdoor
scenes [ Yakimovsky 1973). Yakimovsky
made a region-based  system  which
sequentially merges regions based on
semantics of familiar scenes, using two-
dimensional image properties. The system
has an initial stage which is very much like
other region approaches, merging regions
based on similarity of color and other crude
descriptors, except that it eliminates weakest
boundaries first. The second stage introduces
a world model and a means of estimating the
best interpretation of the scene in terms of
that model. The semantic evaluation
provides much better regions than the same
system without the semantics. It has been
demonstrated on road scenes, for which
rather good segmentations and labellings
have been achieved. An application was also
made to heart angiograms.

In human and animal peception, stereo and
motion perception of depth are important.
Several of these mechanisms have been
programmed.  Nevatia [1973] evaluated
motion parallax of a moving observer for
scenes of rocks. That program tracked by
correlation subsequent images in a series of
images with small angle between images.
The technique allows large baselines for
triangulation.  Another approach to stereo
has been carried out on outdoor scenes
[Hannah unpublished].

An edge operator [Hueckel1971] gives a
good indication, based on local brightness, of



ARTIFICIAL INTELLIGENCE PROJECT

whether or not there is an edge near the
center of a neighborhood. If there is an edge,
its position and location are relatively well
determined.

Differencing techniques have been used to
find changes in scenes [Quam 19721. Color
region growing techniques have been used.
Accomodation of camera parameters to
optimize image quality for each task has
been extensively used.

A focussing module allows automatic
focussing: Color identification modules have
been written; the latest incorporates the
Retinex model of Land to achieve a certain
color constancy, independent of the variation
of illuminance spectrum from scene to scene
(sunlight, incandescent, xenon arc,
flourescent) or within a scene (reflections from
colored objects). Calibration modules allow
maintaining a system in a well-calibrated
state to maintain reliability, and increase
reliability by self-calibration.

Programs have been written to understand
scenes of blocks given line drawings. An
early version recognized only outlines of
isolated objects. A later program, [Falk
1972), arrived at segmentations into objects
by techniques which were extensions of
Guzman’s, but using lines rather than
regions. This dealt more effectively with
missing and extraneous edges. The system
used very limited prototypes of objects, using
size in an important and restrictive way to
identify objects and their spatial relations.
Missing edges were hypothesized for a line
verifier program to confirm or reject.

Still another model-based program [Grape
1973] used models of a parallelipiped and a
wedge to perform the segmentation into
objects corresponding to models. It is able to
handle a variety of missing and extraneous
edges.

The thrust of all these efforts is the use of
models for perception.

Bibliography

[Agin1972]) G. Agin, Description and
Representation of Curved Objects, PhD
Thesis in Computer Science, Stanford A.
I. Memo AIM- 173, October 1972.

[Bajesy 19721 R. Bajcsy, Computer
Identification of Visual Texture, PhD
Thesis in Computer Science, Stanford A.
I. Memo AIM- 180, October 1972.

[Baumgart 1972a] B. Baumgart, GEOMED -
A Geometric Editor, May 1972.
Stanford A. I. Lab., SAILON-68, 1972.

[Baumgart 1972b] Baumgart, Bruce G.,
Winged Edge Polyhedron
Representation, Stanford A. 1. Memo
AIM- 179, October 1972.

[Binford 1973a] T. Binford, Sensor Systems
for Manipulation, E. Heer (Ed), Remotely
Manned Systems, Calif. Inst. Tech.,
Pasadena, 1973.

[(Binford 1973b] T. 0. Binford and Jay M.
Tenenbaum, Computer Vision,
Computer (IEEE), May 1973.

[Earnest 19671 L. D. Earnest, Choosing an
Eye for a Computer, Stanford A. L.
Memo AIM-51, April 1967.

[Falk 197 1] G. Falk, Scene Analysis Based
on Imperfect Edge Data, Proc.1JCAl,
Brit. Comp. Soc., London, Sept. 197 1.

[Falk 1972] G. Falk, Interpretation of
Imperfect Line Data as a Three-
Dimensional Scene, J.Artificial
Intelligence, Vol 3, No. 2, 1972.

[Feldman 19691 J. Feldman, et al, The
Stanford Hand-Eye Project, Proc.1JCAl,
Washington D.C., 1969.

[Feldman 1970] J.A.Feldman, Getting a



Computer to see Simple Scenes, [EEE
Student Journal, Sept. 1970.

[Feldman 197 la] J. Feldman and R. Sproull,
System Support for the Stanford Hand-
Eye System, Proc. [JCAI, British
Computer Soc., London, Sept. 1971.

[Feldman 1971b] J. Feldman, et al, The Use
of Vision and Manipulation to Solve
the Instant Insanity Puzzle, Proc.1JCAl,
Brit. Comp. Soc.,, London, Sept. 1971.

[Feldman 1972] J. Feldman, et al, Recent
Developments in SAIL -- An Algol-
Based Language for Artificial
Intelligence, Proc. FICC, 1972.

[Gill 1972] Aharon Gill, Visual Feedback
and Related Problems in Computer-
controlled Hand-eye Coordination, PhD
Thesis in EE, Stanford A. I. Memo AIM-
178, October 1972.

[Grape1973] Gunnar R. Grape Model-Based
(Intermediate-Level) Computer Vision,
PhD thesis in Comp. Sci., Stanford A. 1.
Memo AIM-201, May 1973.

[Hueckel 19711 M.H. Hueckel, An Operator
Which Locates Edges in Digitized
Pictures, Stanford A. I. Memo AIM-105,
December 1969, and /. ACM, Vol. 18,
No. 1, January 1971.

[Kahn 19713 M. Kahn and B. Roth, The
Near-Minimum-time Control of Open-
Loop Articulated Kinematic Chains,
Trans. ASME, Sept 1971.

[Kelly 1970) Michael D. Kelly, Visual
Identification of People by Computer,
PhD thesis in Comp. Sci., Stanford A. 1.
Memo AIM-130, July 1970.

[McCarthy 1970] J. McCarthy, Computer
Control of a Hand and Eye, Proc. 3rd
Al-U nion Conference on Automatic Control

ARTIFICIAL INTELLIGENCE PROJECT

(Technical Cybernetics), Nauka, Moscow,
1967 (Russian).

[Montanari 1969] U. Montanari, Continuous
Skeletons from Digitized Images, J.
ACM, October 19609.

[Montanari 1970a] U. Montanari, A Note on
Minimal Length Polygonal
Approximation to a Digitized Contour,
Comm. ACM, January 1970.

[Montanari 1970b] U. Montanari, On Limit
Properties in Digitization Schemes, /.
ACM, April 1970.

[Montanari 1970c] U.Montanari, Separable
Graphs, Planar Graphs and W’eb
Grammars, Information and Control, May
1970.

[Montanari 1970d] U. Montanari,
Heuristically Guided Search and
Chromosome Matching, A rtificial
Intelligence, Vol 1, No. 4, December 1970.

[Montanari 1971] U. Montanari, On the
Optimal Detection of Curves in Noisy
Pictures, Comm. ACM, May 1971.

[Nevatia 1973] R.K.Nevatia and
T.O.Binford, Structured Descriptions of
Complex Objects, P roc. IJCAI, Stanford
University, August 1973.

[Paul 19691 R.Paul, G.Falk, J.Feldman, The
Computer Representation of Simply
Described Scenes, Proc 2nd Illinois
Graphics Con.., Univ. Illinois, April 1969.

[Paul 197 I]R. Paul, Trajectory Control of a
Computer Arm, Proc. [JCAI Brit. Comp.
Sci., London, Sept. 197 1.

[Paul 1972] R. Paul, Modelling, Trajectory
Calculation and Servoing of a
Computer Controlled Arm, PhD thesis
in Comp. Sci., Stanford A. I. Memo AIM-
177, Sept. 1972.



ARTIFICIAL INTELLIGENCE PROJECT

[(Pieper 1968] Donald-L. Pieper, The
Kinematics of Manipulators under
computer Control, Stanford A. 1. Memo
AIM-72, October 1968.

[Pingle 19681 K. Pingle, J. Singer, and
W.Wichman, Computer Control of a
Mechanical Arm through Visual Input,
Proc. IFIP Congress 1968.

[Pingle 1970] K. Pingle, Visual Perception
by a Computer, in A utomatic
Interpretation and Classification of

Images, Academic Press, New York, 1970.

[Pingle 1972] K. K. Pingle and J. M.
Tenenbaum, An Accomodating Edge
Follower, Proc.l]JCAl, Brit. Comp. Soc.,
London, 1971.

[(Quam1972] L. H. Quam, et al, Computer
Interactive Picture Processing, Stanford
A. 1 Memo AIM-166, April 1972.

[Scheinman 1969] V. D. Scheinman, Design

of a Computer Manipulator, Stanford A.

I. Memo AIM-92, June 1969.

[Schmidt1971] R. A. Schmidt, A study of
the Real-Time Control of a Computer-
Driven Vehicle, PhD. thesis in EE,
Stanford A. I. Memo AIM-149, August
1971.

[Sobel 1970] Irwin Sobel, Camera Models
and Machine Perceptiorr, Stanford A. L.
Memo AIM-121, May, 1970.

[Tenenbaum 1970] J. M. Tenenbaum,
Accommodationin Computer Visiorr,
Stanford A. I. Memo AIM- 134,
September 1970.

[Tenenbaum 19711 J. M. Tenenbaum, et al,
A Laboratory for Hand-Eye Research,
ProclF IP Congress 1971.

[Wichman 1967 W. Wichman, Use of

optical Feedback in the Computer
Control of an Arm, Stanford A. I. Memo
AIM-56, August 1967.

[Y akimovsky 1972] Y. Y akimovsky and J. A.
Feldman, A Semantics-Based Decision
Theoretic Region Analyzer Proc.l JCAl,
Stanford U., August 1973.

FILMS

Gary Feldman, Butter-finger, 16mm color
with sound, 8 min., March 1968.

Gary Feldman and Donald Pieper, Avoid,
16mm silent, color, 5 minutes, March
1969.

Richard Paul and Karl Pingle, Instant
Insanity, 16mm color, silent 6 min.,
August 1971.

Suzanne Kandra, Motion and Vision, 16mm
color, sound, 22 min., November 1972.

Richard Paul and Karl Pingle Automated
Pump Assembly, 16mm color, Silent,
Tmin, April 1973.



10

2.2 Theoretical Studies

Members of our project have pioneered in
mathematical  theory of  computation,
representation  theory, and grammatical
inference. This work is not a proper
subcategory of artificial intelligence in that it
deals with problems that are basic to all of
computer science.

In addition to ARPA sponsorship of this
work,  the  mathematical theory of
computation activities received some support
from the National Aeronautics and Space
Administration and the  grammatical
inference group has received a grant from
the National Science Foundation.

2.2.1 Mathematical Theory of
Computation

The idea that computer scientists should

study computations themselves rather then

just the notion of computability (i.e. recursion
theory) was suggested in 1963 by McCarthy

[ 1,2) These early papers suggested that

mathematical methods could be used to

prove (or disprove) the following properties
of programs:

1. a program is correct,

2. a program terminates,

3. two programs are equivalent,

4. a translation procedure between two
languages is correct, (i.e. it preserves the
meaning of a program),

5. optimized programs are equivalent to the
original,

6. one program uses less resources than
another and is therefore more efficient.

These are simply technical descriptions of a
programer’s day to day problems. The
notion of correctness of a program is just --
“How do we know that a particular program
solves the problem that it was intended to?”
The usual way of putting it is: “Does my
program have bugs in it”. A correct
mathematical description of what this means

ARTIFICIAL INTELLIGENCE PROJECT

is a central problem in MTC and is a
genuine first step in any attempt to
mechanize the debugging of programs. The
equivalence of programs is similar in that
until there are clear ways of describing what
a program does, saying that they “do” the
same thing is impossible. These technical
problems are now well enough understood so
that serious attempts to apply the results to
“real” programs are beginning.

Attempts to formalize these questions have
proceeded along several lines simultaneously.
In [4, 6] McCarthy and Mansfield discussed
new languages for expressing these notions
were considered. [4] considered a first order
logic which contained an “undefined” truth-
value. This was one way of explaining what
was meant by computations which didn’t
terminate. [5] used a traditional first order
logic to describe a subset of ALGOL.

In [3] McCarthy proposed that computers
themselves might be used to check the
correctness of proofs in formal systems, and
was the first to actually construct a program
to carry this out. This suggests that one
could check or possibly look for solutions to
the above problems (in the form of proofs in
some formal system). As a result a series of
proof checkers has been built. The first is
reported in [7).

In 1966 Floyd [8] published his now well
known method of assigning assertions to the
paths in a flowchart, in order to find
verification conditions the truth of which
guarantee the “correctness” of the original
program.

McCarthy, Painter and Kaplan [9, 10, 11, 12,

13, 14] used the ideas in [4,8] to prove:

1) the correctness of a compiler for arithmetic
expressions,

2) the correctness of several compilers for
algal-like programs,

3) the equivalence of some algorithms.



ARTIFICIAL INTELLIGENCE PROJECT

Kaplan also gave some completeness results
for a formal system which talks about
assignment statements [10], and discussed the
equivalence of programs [13, 141. During this
time another proof checker was written by
W. Weiher [15].

In a series of articles Z. Manna extended and
expanded Floyd’s original ideas. With A.
Pneulli [16,17] he discussed the relationship
between the termination, correctness and
equivalence of recursively defined functions
and the satisfiability (or unsatisfiability) of
certain -first order formulas. In [17] they
work out an example using the 91 function.
In [18] Manna extended his ideas to non-
deterministic programs. E. Ashcroft and he
did a similar thing for parallel programs in
(211

P. Hayes [18] again attacked the problem of
a three-valued predicate logic, this time with
a machine implementation in mind. This
coincided with a paper of Manna and
McCarthy [19], which used this logic.

About this time (1969) several important

developments occurred which allowed the

above questions to be reexamined from
different points of view.

1. In [22]1Z. Manna showed how to
formulate the notion of partial correctness
in second logic.

2. C. A. R. Hoare [24] published a paper
describing a new formalism for
expressing the meanings of programs in
terms of input/output relations.

3. S. Igarashi [23] gave an axiomatic
description of an ALGOL-like language.

4. D. Scott suggested using the typed lambda
calculus for studying MTC and first
described IN 1970 a mathematical model
of Church’s lambda calculus.

These together with McCarthy’s axiomatic
approach now represent the most important
directions in MTC research. They express
different points of view towards the
meanings (or semantics) of programs.

Manna (following Floyd) describes the effects
of a program by showing what kinds of
relations must hold among the values of the
program variables at different points in the
execution of the program. In particular
between the input and the output. In [3 11
Floyd suggests an interactive system for
designing correct programs. These ideas are
systematized and expanded by Manna in
[34]). He and Ashcroft show how to remove
GOTO statements from programs and
replace them by WHILE statements in [33].

Hoare shows how properties (including the
meaning) of a program can be expressed as
rules of inference in his formal system and
how these rules can be used to generate the
relations described by Floyd and Manna.
This puts their approach in a formal setting
suitable for treatment on a computer. Work
on this formal system is at present being
aggressively pursued. Igarashi, London, and
Luckham [39] have increased the scope of
the original rules and have programed a
system called VCG (for verification condition
generator) which takes PASCAL programs
together with assertions assigned to loops in
the program and uses the Hoare rules to
automatically generate verification conditions,
the proof of which guarantee the correctness
of the original program. These sentences are
then given to a resolution theorem prover
[26] which tries to prove them.

There is also a project started by Suzuki
under the direction of Luckham to develop
programs to take account. of particular
properties of arithmetic and arrays when
trying to prove the verification conditions.
London also produced an informal proof of
two Lisp compilers [35].

Igarashi’s formal system [23] differs from
Hoare’s in that the rules of inference act
directly on the programs themselves rather
than properties of such programs.

Scott’s work assumes that the most suitable



12

meaning for a program is the function which

it computes and essentially ignores how that

computation proceeds. The other approaches
are more intentional in that:

1) they may not necessarily mention that
function explicitly although it might
appear implicitly.

2) they can (and do) consider notions of
meaning that are stronger than Scott’s.

For example programs might have to have
“similar”  computation  sequences before
considering them equivalent [25]).

A computer program LCF (for “logic for
computable functions”) has been
implemented by Milner [26]. This logic uses
the typed lambda calculus to defines the
semantics of programs. Exactly how to do
this was worked out by Weyhrauch and
Milner [28, 29, 30). In conjunction Newey
worked on the axiomatization of arithmetic,
finite sets, and lists in the LCF environment.
This work is still continuing. In addition
Milner and Weyhrauch worked with Scott on
an axiomatization of the type free lambda
calculus. Much of this work was informally
summarized in [32].

McCarthy attempts to give an axiomatic
treatment to a programming language by
describing its abstract syntax in first order
logic and stating properties of the
programming language directly as axioms.
This approach has prompted Weyhrauch to
begin the design of a new first order logic
proof checker based -on natural deduction.
This proof checker is expected to incorporate
the more interesting features of LCF and will
draw heavily on the knowledge gained from
using LCF to attempt to make the new first
order proof checker a viable tool for use in
proving properties of programs.

This work is all being brought together by

projects that are still to a large extent

unfinished. They include

1. a new version of LCF including a facility
to search for proofs automatically;

ARTIFICIAL INTELLIGENCE PROJECT

2. the description of the language PASCAL
in terms of both LCF and in first order
logic (in the style of McCarthy) in order
to have a realistic comparison between
these approaches and that of Floyd,
Hoare, et al;

3. a continuation of Newey’s work;

4. the discussion of LISP semantics in LCF
and an attempt to prove the correctness
of the London compilers in a formal way
(this is also being done by Newey);

5. the design of both special purpose and
domain independent proving procedures
specifically with program correctness in
mind;

6. -the design of languages for describing
such proof procedures;

7. the embedding of these ideas in the new
first order checker.

In addition to the work described above,
Ashcroft, Manna, and Pneuli [36], and
Chandra and Manna [37] have published
results related to program schemas. Manna’s
forthcoming book [37) will be the first
general reference in this field.

Some of these references appeared first as A.
I. memos and were later published in
journals. In such cases both references
appear in the bibliography.

Bibliography

(1] McCarthy, John, A Basis for a
Mathematical Theory of Computation,
in Biaffort, P., and Herschberg, D., (eds.),
Computer Programming and Formal
Systems, North-Holland, Amsterdam,
1963.

[2] McCarthy, John, Towards a
Mathematical Theory of Computation,
Proc.IFIP Congress 62, North-Holland,
Amsterdam, 1963.

[3] McCarthy, John, Checking
Mathematical Proofs by Computer, in



ARTIFICIAL INTELLIGENCE PROJECT

Proc. Symp. on Recursive Function T heory
(1961), American Mathematical Society,
1962.

[4] McCarthy, John, Predicate Calculus with
‘UNDEFINED’ as a Truth-value,
Stanford A. I. Memo AIM-1, March 1963.

[5] McCarthy, John, A Formal Description
of a Subset of Algol, Stanford A. L.
Memo AIM-24, September 1964; also in
Steele, T., (ed.), Formal Language
Description Languages, North Holland,
Amsterdam, 1966.

(6] Mansfield, R., A Formal System of
Computation, Stanford A. I. Memo
AIM-25, September 1964.

[7) McCarthy, John, A Proof-checker for
Predicate Calculus, Stanford A. I. Memo
AIM-27, March 1965.

(8] Floyd, R. W., Assigning Meanings to
‘programs, Vol. 19, American
Mathematical Society, 19-32, 1967.

[9] McCarthy, John, and Painter, J.,
Correctness of a Compiler for
Arithmetic Expressions, Stanford A. 1.
Memo AIM-40, April 1966; also in
Mathematical Aspects of Computer
Science, Proc. Symposia in Applied
Mathematics, Amer. Math. Soc., New
York, 1967.

[10] Painter, J., Semantic Correctness of a
Compiler for an Algol-like Language,
Stanford A. I. Memo AIM-44, March
1967.

( 11] Kaplan, D., Some Completeness Results
in the Mathetnatical Theory of
Computation, Stanford A. I. Memo
AIM-45, October 1966; also in J.ACM,
January 1968.

[12] Kaplan, D., Correctness of a Compiler

13

for Algol-like progratns, Stanford A. I.
Memo AIM-48, July 1967.

[18] Kaplan, D., A Formal Theory
Concerning the Equivalence of
Algorithms, Stanford A. 1. Memo
AIM-59, May 1968.

[14] Kaplan, D., The Formal Theoretic
Analysis of Strong Equivalence for
Elemental Programs, Stanford A. 1.
Memo AIM-60, June 1968.

[15] Weiher, William, The PDP-6 Proof
Checker, Stanford A. I. Memo AIM-53,
June 1967.

[16) Manna, Zohar, and Pnueli, Amir, The
Validity Preblem of the 91-f unction,
Stanford A. I. Memo AIM-68, August
1968.

[17] Manna, Zohar, and Pneuli, Amir,
Formalization of Properties of
Recursively Defined Functions, Stanford
A. I. Memo AIM-82, March 1969; also in
J-ACM, Vol. 17, No. 3, July 1970.

(18] Hayes, Patrick J., A Machine-oriented
Formulation of the Extended
Functional Calculus, Stanford A. L.
Memo AIM-86, June, 1969.

(19] Manna, Zohar, and McCarthy, John,
Properties of Programs and Partial
Function Logic, Stanford A. I. Memo
AIM- 100, October 1969; also in Meltzer,
B. and Michie, D. (eds.), Machine
Intelligence 5, Edinburgh University
Press, Edinburgh, 1970.

[20] Manna, Zohar, The Correctness of Non-
detertninistic Programs, Stanford A. 1.
Memo AIM-95, August 1969; also in
Artificial Intelligence, Vol. 1, No. 1, 1970.

[21] Ashcroft, Edward, and Manna, Zohar,
Formalization of Properties of Parallel




14

Programs, Stanford A. I. Memo

AIM- 110, February 1970; also in Machine
Intelligence 6, Edinburgh University
Press, Edinburgh, 1971.

[22] Manna, Zohar, Second-order
Mathematical Theory of Computation,
Stanford A. I. Memo AIM-1 11, March
1970; also in Proc. ACM Symposium on
Theory of Computing, May 1970.

[23] Igarashi, Shigeru, Semantics of Algol-
like Statements, Stanford A. I. Memo
AIM-129, June 1970.

[24]Hoare, C.A.R., An Axiomatic Basis for
Computer Programming, Comm. ACM
12, No. 10, pp.576580, 1969.

[25] Milner, Robin, An Algebraic Definition
of Simulation between Programs,
Stanford A. I. Memo AIM-142, February,
197 1; also in Proc.!JCAl, British
Computer Society, London, 1971.

[26] Allen, John and Luckham, David, An
. Interactive Theorem-proving Program,
Stanford A. I. Memo AIM-103, October
1971.

[27] Milner, Robin, Logic for Computable
Functions; Description of a Machine
Implementation, Stanford A. I. Memo
AIM-169, May 1972.

[28] Milner, Robin, Implementation and
Applications of Scott’s Logic for
Computable Functions, Proc. ACM Conf.
on Proving Assertions about Programs,
ACM Sigplan Notices, January 1972.

[29] Milner, Robin and Weyhrauch, Richard,
Proving Compiler Correctness in a
Mechanised Logic, Machine Intelligence
7, Edinburgh University Press,
Edinburgh, 1972.

[30] Weyhrauch, Richard and Milner, Robin,

ARTIFICIAL INTELLIGENCE PROJECT

Program Semantics and Correctness in
a Mechanized Logic, Proc. USA -Japan
Computer Conference, Tokyo, 1972.

[31] Floyd, Robert W., Toward Interactive
Design of Correct Programs, Stanford
A. I. Memo AIM-1 50, September 1971;
also in Proc. [FIP Congress 1971.

[32] Manna, Zohar, Ness, Stephen, and
Vuillemin, Jean, Inductive Methods for
Proving Properties of Programs,
Stanford A. I. Memo AIM-154,
November 197 1; also in ACM Sigplan
Notices, Vol. 7, No. I, January 1972.

[33] Ashcroft, Edward, and Manna, Zohar,
~ The Translation of ‘GO-TO’ Programs
to ‘WHILE’ Programs, Stanford A. L.
Memo AIM-138, January 1971; also in
Proc. IFIP Congress 1971.

[34]) Manna, Zohar, Mathematical Theory of
Partial Correctness, Stanford A. I. Memo
AIM- 139, January 1971; also in J.Comp.
and Sys. Sci., June 1971.

[35] London, Ralph L., Correctness of Two
Compilers for a LISP Subset, Stanford
A. I. Memo AIM- 15 1, October 197 1.

[36] Ashcroft, Edward, Manna, Zohar, and
Pneuli, Amir, Decidable Properties of
Monadic Functional Schetnas, Stanford
A. 1. Memo AIM-148, July 1971.

[37]) Chandra, Ashok, and Manna, Zohar,
Program Schetnas with Equality,
Stanford A. I. Memo AIM-158, December
1971.

[38] Manna, Zohar, Introduction to

M athematical Theory of Computation,
McGraw-Hill, New York, 1974 (to

appear).

[39] Igarashi, Shigeru, London, Ralph,
Luckham, David, Automatic Program



ARTIFICIAL INTELLIGENCE PROJECT

Verification I: A Logical Basis and its
Implementation, Stanford A. I. Memo
AIM-200, May 1973.

2.2.2 Representation Theory

When we try to make a computer program
that solves a certain class of problem, our
first task is to decide what information is
involved in stating the problem and is
available to help in its solution. Next we
must decide how this information is to be
represented in the memory of the computer.
Only then can we choose the algorithms for
manipulating this information to solve our
problem. Representation theory deals with
what information we need and how it is
represented in the computer. Heuristics 1is
concerned with the structure of the problem
solving algorithms.

In the past, much work in artificial
intelligence has been content with a rather
perfunctory approach to representations. A
representation is chosen rather quickly for a
class of problems and then all attention is
turned to devising, programming, and testing
heuristics. The trouble with this approach is
that the resulting programs lack generality
and are not readily modifiable to attack new
classes of problems.

The first goal of representation theory is to
devise a general way of representing
information in the computer. It should be
capable of representing any state of partial
information necessary to solve it. In 1958,
McCarthy posed the problem of making a
program  with  “common  sense” in
approximately these terms and suggested
using sentences in an appropriate formal
language to represent what the program
knows [1} The advantage of representing
information by sentences is that sentences
have other sentences as logical consequences
and the program can find consequences
relevant to the goals at hand. Thus,
representation of information by sentences
allows the following.

15

1. A person can instruct the system without
detailed knowledge of what sentences are
already in memory. That is, the
procedures for solving a problem using
information in sentence form do not
require that the information be in a
particular order, nor even a particular
grouping of information into sentences.
All they require is that what to do is a
logical consequence of the collection of
sentences.

2. Similar considerations apply to
information generated by the program
itself.

3. Representing information by sentences
seems to be the only clean way of
separating that information which is
common knowledge (and so should be
already in the system) from information
about a particular problem.

On the other hand, because each sentence
has to carry with it much of its frame of
reference, representation of information by
sentences is very voluminous. It seems clear
that other forms of information (e.g. tables)
must also be used, but the content of these
other forms should be described by sentences.

In the last ten years, considerable progress
has been made in the use of the sentence
representation.  In the heuristic direction,
theorem proving and problem solving
programs based on J. Allen Robinson’s

-resolution have been developed by both

Green and Luckham, among others [see
Section 2.3.1 ]  The theory of how to
represent facts concerning causality, ability,
and knowledge for artificial intelligence has
been developed mainly by McCarthy and his
students.

The early work in this project revolved
around McCarthy’s “advice taker” ideas [2-7).
McCarthy and Hayes [8] restructured the
problem and connected this work to the
subject of philosophical logic.



16

Later related work includes Becker’s semantic
memory  system [9, 10),  Sandewall’s
representation of  natural  language
information in predicate calculus [ 1 11, and
Hayes’ study of the frame problem [12].

Bibliography

(1] John McCarthy, Programs with
Common Sense in Proc. 1958 Teddington
Conf. on Mechantsation of Thought
Processes, Vol. 1, pp 77-84, H. M.
Stationary Office, London, 1960;
reprinted in M. Minsky (ed.), Semantic
Information Processing, MIT Press,
Cambridge, Mass., 1968.

[2] John McCarthy, Situations, Actions, and
Causal Laws, Stanford A. I. Memo
AIM-Z, July 1963.

[3] F. Safier, ‘The Mikado’ as an Advice
Taker Problem, Stanford A. I. Memo
AIM-3, July 1963.

(4] John McCarthy, Programs with
Common Sense, Stanford A. I. Memo
AIM-7, September 1963.

[5] M. Finkelstein and F. Safier,
Axiomatization and Implementation,
Stanford A. I. Memo AIM-15, June 1964.

(6] John McCarthy, Formal Description of
the Game of Pang-ke, Stanford A. L.
Memo AIM- 17, July 1964.

[7] Barbara Huberman, Advice Taker and
GPS, Stanford A. I. Memo AIM-33, June
1965.

[8] John McCarthy and Patrick Hayes, Some
Philosophical Problems front the
Standpoint of Artificial Intelligence,
Stanford A. I. Memo AIM-73, November
1968; also in D. Michie (ed.), Machine
Intelligence 4, American Elsevier, New
York, 1969.

ARTIFICIAL INTELLIGENCE PROJECT

[9] Joseph Becker, The Modeling of Simple
Analogic and Inductive Processes in a
Semantic Memory System, Stanford A.
I. Memo AIM-77, January 1969; also in
Proc.1]CAl, Washington D. C., 1969.

[10] Joseph Becker, An Information-
processing Model of Intermediate-level
Cognition, Stanford A. I. Memo
AIM-1 19, May 1970.

[11] Erik Sandewall, Representing Natural-
language Information in Predicate
Calculus, Stanford A. I. Memo AIM-128,

_July 1970.

[12] Patrick Hayes, The Frame Problem and
Related Problems in Artificial
Intelligence, Stanford A. 1. Memo
AIM-153, November 1971.

2.2.3 Grammatical Inference

Professor Feldman and a small group have
been  investigating the problem of
grammatical inference. That is, given a set
of strings which has been chosen in a
random way from a formal language such as
a context-free language, to make a
“reasonable” inference of the grammar for
the language.

Feldman has studied a very general class of
complexity measures and shown that the least
complex choice of grammar from an
enumerable class of grammars (which are
general rewriting systems), can be found, and
he gives an algorithm for discovering it [3).
This approach is also being applied to the
inference of good programs for producing
specified input-output behavior.

Bibliography
(1] Jerome A. Feldman, First Thoughts on

Grammatical Inference, Stanford A. I.
Memo AIM-55, August 1967.



ARTIFICIAL INTELLIGENCE PROJECT

[2]1Jerome A. Feldman, J. Gips, J. J.
Horning, S. Reder, Grammatical
Complexity and Inference, Stanford A.
I. Memo AIM-89, June 1969.

[3] Jerome A. Feldman, Some Decidability
Results on Grammatical Inference and
Complexity, Stanford A. 1. Memo
AIM-93, August 1969; revised May 1970;
also in Information and Control, Vol. 20,
No. 3, pp. 244262, April 1972.

(4] James Jay Horning, A Study of
Grammatical Inference, Stanford A. L.
Memo AIM-98, August 1969.

(5] Alan W. Biermann, J. A. Feldman, On
the Synthesis of Finite-state Acceptors,
Stanford A. I. Memo AIM-1 14, April
1970.

[6] Alan W. Biermann, On the Inference of
Turing Machines from Sample
Computations, Stanford A. I. Memo

. AIM- 152, October 1971; also in Artificial
Intelligence J., Vol. 3, No. 3, Fall 1972.

(7] Alan W. Biermann, On the Synthesis of
Finite-state Machines from Samples of

their Behavior, /EEE Trans. Computers,
Vol. C-2 1, No. 6, June 1972.

[8] Jerome A. Feldman, A. W. Biermann, A

Survey of Grammatical Inference, Proc.

Int. Congress on Pattern Recognition,
Honolulu, January 1971; also in S.
Watanabe (ed.), Frontiers of Pattern:
Recognition, Academic Press, 1972.

[9] Jerome A. Feldman, Paul Shields, Total
Complexity and Inference of Best
Programs, Stanford A.I. Memo
AIM-1 59, April 1972.

[10] Jerome A. Feldman, Automatic
Programming, Stanford A. I. Memo
AIM- 160, February 1972.

17

2.3 Heuristic Programming

Heuristic programming techniques are a core
discipline of artificial intelligence. Work on
theorem proving, program generation, board
games, and symbolic computation make
particularly heavy use of these techniques.
An excellent general reference is the book by
Nilsson [1]. Nilsson, of SRI, was supported
in part by our project while writing it.

2.3.1 Theorem Proving

The basis of the theorem-proving effort has
been the proof procedure for first-order logic
with equality, originally developed by Allen
and Luckham[2]. This has been extensively
modified by J. Allen in recent months; the
basic theorem-proving program has been
speeded up by a factor of 20, an input-output
language allowing normal mathematical
notation has been added, and the program
will select search strategies automatically if
the user wishes (we refer to this as automatic
mode). As a result it is possible for the
program to be used by a person who is
totally unfamiliar with the theory of the
Resolution principle and its associated rules
of inference and refinements. A user’s
manual is now available [10].

This program has been used to obtain proofs
of several different research announcements
in the Notices of the American Mathematical
Society, for example, [7, 8, and 8] More
recently (July 1972), J. Morales learned to
use the program essentially by using it to
obtain proofs of the results stated in [9] as
an exercise. In the course of doing this he
was able to formulate simple ways of using
the prover to generate possible new theorems
in the same spirit as [9], and did in fact
succeed in extending the results of [9].
Furthermore, he was able to send the authors
proofs of their results before they had
actually had time to write them up [R. H.
Cowen, private correspondence, August 9,
19721. Currently, Morales has been applying



18

the theorem-prover to problems in geometry
(11, 12] that have been the subject of recent
publications in the proceedings of the Polish
National Academy of Sciences. He has been
able to give elementary proofs of some results
to clarify inaccuracies and omissions. This
work is continuing in correspondence with
the authors. The prover is also being used
as part of the program verification system
[see Section 22.1 ).

A version of the prover, with user
documentation [10], has been prepared for
distribution to other research groups. The
addition of a language in which the user can
specify his intuition about how a proof of a
given statement might possibly be obtained,
is in progress. J. Allen has already
programmed a very preliminary version of
this “HUNCH” language, and has completed
the systems debugging necessary to get a
compiled version of Sussman’s CONNIVER
language running here. HUNCH language
may be implemented in CONNIVER, but
discussions on this point are not yet complete.
Initially, it is expected that HUNCH will be
useful in continuing with more difficult
applications in mathematics.

An alternative approach to theorem proving
was developed in Cordell Green’s Thesis on
QA3. His work was done at SRI and his
dissertation was published here [5]

Bibliography

[1] Nils Nilsson, Problem-solving M ethods in
Artificial Intelligence, McGraw-Hill, New
York, 1971.

(2] John Allen and David Luckham, An
Interactive Theorem-proving Program,
Machine Intelligence 5, Edin burgh
University Press, Edinburgh, 1970.

[3] Richard B. Kieburtz and David
Luckham, Compatibility and
Complexity of Refinements of the

ARTIFICIAL INTELLIGENCE PROJECT

Resolution Prirrciple, SIAM J.Comput.,
Vol. 1, No. 4, December 1972.

(4] David Luckham and Nils . Nilsson,
Ex tracting Information f roin
Resolution Proof Trees, A rtificial
Intelligence, Vol. 2, No. 1, pp. 27-54,
Spring 1971.

[5] Cordell Green, The Application of
Theorem Proving to Question
Answering Systems, Ph.D. Thesis in E.
E., Stanford A. I. Memo AIM-96, August
1969.

(6] J. Sussman and T. Winograd, Micro
Planner Manual, Project MAC Memo,
MIT.

[7] Chinthayamma, Sets of Independent
Axioms for a Ternary Boolean Algebra,
Notices Amer. Math. Soc., 16, p. 654, 1969.

[8] E. L. Marsden, A Note on Implicative
Models, Notices Amer. Math. Soc., No.
682-02-7,p. 89, January 197 1.

[9] Robert H. Cowen, Henry Frisz, Alan
Grenadir, Some New Axiomatizations
in Group Theory, Preliminary Report,
Notices Amer. Math. Soc., No. 12T-112, p.
547, June 1972.

[10] J. R. Allen, Prelimivary Users Manual
for an Iuterative Theorem-Prover,
Stanford Artificial Intelligence Laboratory
Operating Note SAILON-73, 1973.

[11] L. Szcerba and W. Szmielew, On the
Euclidean Geometry Without the Pasch
Axiom, Bull. Acad. Polon. Sciences, Ser.
Sci. Math., Astronm, Phys., 18, pp. 659-
666, 1970.

(12] Szcerba, L. W., Independence of Pasch’s
Axiom, ibid. [3], pp. 491-498.




ARTIFICIAL INTELLIGENCE PROJECT

2.3.2 Automatic Program Generation

This work is an outgrowth of an attempt to
extend the applicability of the theorem-
prover to problems in artificial intelligence,
and makes use of a particular notion of a
problem environment (called a “‘semantic
frame”) which was designed for that original
purpose. However, the system as it now
stands, is independent of the theorem-prover,
and is best thought of as a heuristic problem-
solver for a subset of Hoare’s logical system.
It has been implemented in LISP by J.
Buchanan using the backtrack features of
Micro-Planner.

It accepts as input an environment of
programming methods and a problem and, if
successful, gives as output a program for
solving the problem. At the moment, the
output programs are composed of the
primitive operators of the environment,
assignments, conditional branches, while
loops, and non-recursive procedure calls.
This system has been used to generate many
programs for solving various problems in
robot control, everyday advice-taking and
planning, and for computing arithmetical
functions. It is an interactive facility and
incorporates an Advice language which
allows the user to state preferences affecting
the output program and heuristics for
speeding the problem-solving process, and
also to make assumptions.

The system is intended to permit a user to
oversee the automatic construction of a
program according to the current principles
of structured programming. There is also a
library facility and the system  will
incorporate library routines into the program
under construction. The details of its
implementation will be available in Jack
Buchanan’s Ph.D. Thesis (in preparation).

19

2.3.3 Board Games

Computer programs that play games such as
chess or checkers are deservedly important as
research vehicles. A Russian computer
scientist has said [1] that chess plays the role
in Artificial Intelligence that the fruit fly
plays in genetics. Just as the genetics of
Drosophila are studied not to breed better
flies but to study the laws of heredity, so we
write chess programs, not because it is
important that computers play good chess,
but because chess provides a rather clear
basis for comparing our ideas about
reasoning processes with human
performance. Weaknesses in the
performance of the program tell us about
human mental processes that we failed to
identify.

John McCarthy supervised the development
of a chess program at MIT. He brought it
here when he came and subsequently
improved it a bit. In 1966, a match was held
with a program at what was then Carnegie
Tech. Neither program played especially
well, but Carnegie eventually resigned. The
Stanford program played several games in
1967 with a program at the Institute for
Theoretical and Experimental Physics in
Moscow. Again, both blundered frequently,
but ours made some of the worst moves. By
prior agreement, the games were not
completed because both programs were
known to have essentially no end-game
capability.

Barbara Huberman developed a program
that handled certain important end game
situations and published her dissertation in
1968 (5]

Some early work on the game of Kalah
produced a program that played rather well
(2,31.

Arthur Samuel continued his long-standing
development of a checkers program when he




20

arrived in 1966 [4) His program is
apparently still the best in the world. It does
not defeat the best human players, but plays
fairly ~ well  against  them. Samuel
subsequently decided to apply the “signature
table learning” scheme that he had developed
for checkers to speech recognition problems
[see  Section 24.1].

Jonathan Ryder developed what was (and
probably still is) the best Go program to date
[6]. It plays better than a beginning human,
but it is still quite weak by the standards of
experienced players.

Since 1971, we have done very little work on
board games.

Bibliography

[ 11 A. Kronrod, The Computer becomes
More Intelligent, /svestiya, March 15,
1967, translated in Soviet Cybernetics:
Recent News Item, No. 3, Rand Corp.,
Santa Monica, Calif., April 1967.

[2] R. Russell, Kalah -- the Game and the
Program, Stanford A. I. Memo AIM-22,
September 1964.

[3]R. Russell, Improvements to the Kalah
Program, Stanford A. I. Memo AIM-23,
September 1964.

[4]) Arthur Samuel, Some Studies in
Machine Learning using the Game of
Checkers, II -- Recent Progress, Stanford
A. 1. Memo AIM-52, June 1967; also in
IBM Journal, November 1967.

[5) Barbara J. Huberman, A Program to
Play Chess End Games, Ph.D.
Dissertation in Computer Science,
Stanford A. I. Memo AIM-65, August
1968.

(6] Jonathan L. Ryder, Heuristic Analysis
of Large Trees as Generated in the

ARTIFICIAL INTELLIGENCE PROJECT

Game of Go, Ph.D. Dissertation in
Computer Science, Stanford A. 1. Memo
AIM- 155, December 197 1.

2.3.4 Symbolic Computation

The use of computers to manipulate
algebraic expressions and solve systems of
symbolic ~ equations  potentially offers
substantial improvements in speed and
reduced error rate over pencil-and-paper
methods. As a consequence, it becomes
possible to tackle problems that are out of
the range of practical human capabilities.

Beginning in 1963, Enea and Wooldridge
worked on the central problem of algebraic
simplification [1,2). By 1965, Korsvold had
developed a working system [3].

At about this time, Hearn became interested

in the problem because of potential

application to problems in particle physics.

He developed a system called REDUCE,

which was written in LISP [4,5]. Its initial

capabilities included:

a) expansion and ordering of rational
functions of polynomials,

b) symbolic differentiation,

¢) substitutions in a wide variety of forms,

d) reduction of quotients of polynomials by
cancellation of common terms,

e) calculation of symbolic determinates.

REDUCE has been used for analysis of
Feynman Diagrams and a number of other
problems in physics and engineering [6, 7,
12). It has been extended in a number of
ways [8- 11, 13, 14] and is still under
development by Hearn at the University of
Utah.

George Collins spent a sabbatical year here
(1972-3) developing his computational system
(15, 163.



ARTIFICIAL INTELLIGENCE PROJECT

Bibliography

(1] Enea, H. and Wooldridge, D. Algebraic
Simplication, Stanford A. I. Memo
AIM-5, August 1963.

(2] Wooldridge, D., An Algebraic Simplify
Program in LISP, Stanford A. I. Memo
AIM- 11, December 1963.

(3] Korsvold, K., An On Line Algebraic
Simplification Program, Stanford A. I.
Memo AIM-37, November 1965.

[4) Hearn, A., Computatiou of Algebraic
Properties of Elementary Particle
Reactions Using a Digital Computer,
Comm. ACM 9, August 1966.

[5] Hearn, A., REDUCE Users’ Manual,
Stanford A. 1. Memo AIM-50, February
1967.

(6] Brodsky, S. and Sullivan, J., W-Boson
. Contribution to the Anomalous
Magnetic Moment of the Muon, Physics
Review, 156, 1644, 1967.

[7] Campbell, J., Algebraic Computation of
Radiative Corrections for Electron-
Proton Scattering, Nuclear Physics Vol.
B1, 1967.

(8] Hearn, A., REDUCE, A User-Oriented
Interactive System for Algebraic
Simplification, Proceeding5 for ACM
Symposium on Interactive Systems for’
Experimental Applied Mathematics,

August 1967.

[9] Hearn, A., REDUCE, A User-Oriented
Interactive System for Algebraic
Simplification, Stanford A. 1. Memo
AIM-57, October 1967.

[10] Hearn, A., The Problem of
Substitution, Proceedings of IBM
Summer Institute on Symbolic
M athematics by Computer, July 1968.

21

(11]Hearn, A., The Problem of
Substitution, Stanford A. I. Memo
AIM- 170, December 1968.

(12] Hearn, A. and Campbell, J.A., Symbolic
Analysis of Feynman Diagrams by
Computer, Stanford A. I. Memo AIM-91,
August 1969; also in Journal of
Computational Physics 5, 1970.

(13] Hearn, A., Applications of Symbol
Manipulation in Theoretical Physics,
Comm. ACM, August 197 1.

[14] Hearn, A., REDUCE 2, Stanford A. I.
Memo AIM- 133, October 1970.

(15) Collins, George, The Computing Time
of the Euclidean Algorithm, Stanford A.
I. Memo AIM-187, January 1973.

[16] Collins, George, and Horowitz, Ellis, The
Minimum Root Separation of a
Polynomial, Stanford A. I. Memo
AIM- 192, April 1973.



22

2.4 Natural Language

We have worked on two aspects of natural
language understanding that are still quite
distinct, but may be expected to interconnect
eventually.

2.4.1 Speech Recognition

Efforts to establish a vocal communication

link with a digital computer have been

underway at Stanford since 1963. These
efforts have been primarily concerned with
four areas of research:

1) basic research in extracting phonemic and
linguistic information from speech
waveforms,

2) the application of automatic learning
processes,

3) the use of syntax and semantics to aid
speech recognition, and

4) speech recognition systems have been used
to control other processes.

These -efforts have been carried out in
parallel with varying emphasis at different
times.

The fruits of Stanford’s speech research
program were first seen in October 1964
when Raj Reddy published a report
describing his preliminary investigations on
the analysis of speech waveforms [1]. His
system worked directly with a digital
representation of the speech waveform to do
vowel recognition.

By 1966 Reddy had built a much larger
system  which  obtained a phonemic
transcription and which achieved
segmentation of connected phrases utilizing
hypotheses  testing [2].  This  system
represented a significant contribution towards
speech sound segmentation [3]. It operated
on a subset of the speech of a single
cooperative speaker.

In 1967 Reddy and his students had refined

ARTIFICIAL INTELLIGENCE PROJECT

several of his processes and published papers
on phoneme grouping for speech recognition
(4], pitch period determination of speech
sounds [5), and computer recognition of
connected speech [6).

1968 was an extremely productive year for
the Speech group. Pierre Vicens developed
an efficient preprocessing scheme for speech
analysis [7). Reddy and his students
published papers on transcription of
phonemic symbols [8], phoneme-to-grapheme
translation of English [9], segmentation of
connected speech [10], and consonantal
clustering and connected speech recognition
[11). A general paper by John McCarthy,
Lester Earnest, Raj Reddy, and Pierre
Vicens  described  the  voice-con trolled
artificial arm developed at Stanford [12].

By 1969 the speech recognition processes
were successfully segmenting and parsing
continuous utterances from a restricted
syntax [ 13, 14, 18] A short film entitled
“Hear Here” was made to document recent
accomplishments.

In mid 1970, Prof. Reddy left Stanford to
join  the faculty of Carnegie-Mellon
University and Arthur Samuel became the
head of the Stanford speech research efforts.
Dr. Samuel had developed a successful
machine learning scheme which had
previously been applied to the game of
checkers [16),[ 171. He resolved to apply
them to speech recognition.

By 1971 the first speech recognition system
utilizing Samuel’s learning scheme was
reported by George White [18). This report
was  primarily  concerned  with  the
examination of the properties of signature
trees and the heuristics involved in their
application to an optimal minimal set of
features to achieve recognition. Also at this
time, M. M. Astrahan described his
hyperphoneme method [19], which attempted
to do speech recognition by mathematical




ARTIFICIAL INTELLIGENCE PROJECT

classifications  instead of the traditional
phonemes or linguistic categories. This was
accomplished by nearest-neighbor
classification in a hyperspace wherein cluster
cen ters, or hyperphonemes, had been
established.

In 1972 R. B. Thosar and A. L. Samuel
presented a  report  concerning  some
preliminary experiments in speech
recognition using signature tables [20]. This
approach represented a general attack on
speech  recognition  employing learning
mechanisms at each stage of classification.

The speech effort in 1973 has been devoted
to two areas. First, a mathematically rigorous
examination and improvement of the
signature table learning mechanism has been
accomplished by R. B. Thosar. Second, a
segmentation scheme based on signature
tables is being developed to provide accurate
segmentation together with probabilities or
confidence  values for the most likely
phoneme occuring during each segment.
This process attempts to extract as much
information as possible and to pass this
information to higher level processes.

In addition to these activities, a new, high
speed pitch detection scheme has been
developed by J. A. Moorer and has been
submitted for publication [22].

Bibliography

(11 D. Raj Reddy, Experiments on
Automatic Speech Recognition by a
Digital Computer, Stanford A. I. Memo
Al M -26, October 1964.

(2] D. Raj Reddy, An Approach to
Computer Speech Recognition by
Direct Analysis of the Speech
Waveform, Stanford A. I. Memo AIM-43,
September 1966.

(3] D. Raj Reddy, Segmentation of Speech

23

Sounds, J.Acoust. Soc. Amer., August
1966.

[4] D. Raj Reddy, Phoneme Grouping for
Speech Recognition, /. A coust. Soc.
Amer., May, 1967.

(5] D. Raj Reddy, Pitch Period
Determination of Speech Sounds, Comm.
ACM, June, 1967.

[6]1 D. Raj Reddy, Computer Recognition of
Connected Speech, J.Acoust. Soc. Amer.,
August, 1967.

(7] Pierre Vicens, Preprocessing for Speech
Analysis, Stanford A.I. Memo AIM-71,
October 1968.

{8] D. Raj Reddy, Computer Transcription
of Phonemic Symbols, /. Acoust. Soc.
Amer., August 1968.

[9] D. Raj Reddy, and Ann Robinson,
Phoneme-To-Grapheme Translation of
English, IEEE Trans. Audio and
Electroacoustics, June 1968.

[10] D. Raj Reddy, and P. Vicens,
Procedures for Segmentation of
Connected Speech, J. Audio Eng. Soc.,
October 1968.

[11)D. Raj Reddy, Consonantal Clustering
and Connected Speech Recognition,
Proc. Sixth International Congress of
Acoustics, Vol. 2, pp. C-57 to C-60,
Tokyo, 1968.

[12] John McCarthy, Lester Earnest, D. Raj
Reddy, and Pierre Vicens, A Computer
With Hands, Eyes, and Ears, Proc.
FICC, 1968.

[13] Pierre Vicens, Aspects of Speech
Recognition by Computer, Stanford A.
[. Memo AIM-85, April 1969.




24

[14] D. Raj Reddy, On the Use of
Environmental, Syntactic and
Probabilistic Constraintsin Vision and
Speech, Stanford A. 1. Memo AIM-78,
January 1969.

(15] D. Raj Reddy and R. B. Neely,
Contextual Analysis of Phonemes of
English, Stanford A. I. Memo AIM-79,
January 1960.

[16] A. L. Samuel, Some Studies in Machine
Learning Using the Game of Checkers,
IBM' Journal 3, 21 1-229, 1959.

[17] A. L. Samuel, Some Studies in Machine
Learning Using the Game of Checkers,
IT - Recent Progress, IBM Jour. of Res.
and Dev., 11, pp. 60 1-6 17, November
1967.

(18] George M. White, Machine Learning
Through Signature Trees. Applications
_to Human Speech, Stanford A. I. Memo
AIM- 136, October 1970.

(19] M. M. Astrahan, Speech Analysis by
Clustering, or the Hyper-phoneme
Method, Stanford A. I. Memo AIM-124,
June 1970.

[20]1R. B. Thosar and A. L. Samuel, Some
Preliminary Experiments in Speech
Recognition Using Signature Table
Learning, ARPA Speech Understanding
Research Croup Note 43, 1972.

[21]R. B. Thosar, Estimation of
Probability Densities using Signature
Tables for Application to Pattern
Recognition, ARPA Speech
Understanding Research Group Note 81.

[22]1]. A. Moorer, The Optimum-Comb
Method of Pitch Period Analysis in
Speech, Stanford A. I. Memo AIM-207,
July 1973.

ARTIFICIAL INTELLIGENCE PROJECT

FILM

23. Raj Reddy, Dave Espar, Art Eisenson,
Hear Here, 16mm color with sound, 1969.

2.4.2 Semantics

We have two sub-groups working within the
general area of machine translation and
natural language understanding. They are
the Preference Semantics group (Wilks et al.)
and the Conceptual Dependency group
(Schank et al.)

Both groups stress the centrality of meaning
representation  and  analysis, and the
inferential manipulation of such
representations, for the task of natural
language understanding. Again, both assume
the importance of context, and of the
expression of meaning in terms of a formal
system of meaning primitives, while at the
same time denying the centrality of
syntactical analysis in the conventional
linguist’s sense. Both have capacity for
combining  linguistic =~ knowledge  with
knowledge of the real world, in order to solve
problems of interpretation during the course
of analysis. The two basic formalisms were
set ‘out definitively in [11 and 14], and the
theoretical basis for systems of this sort has
been argued in [9, 11, 13).

The differences between the sub-groups are
largely concerned with the ordering of
research goals: the PS [Preference Semantics]
group emphasises an immediate task as a
criterion of  successftul  understanding,
interlingual machine translation in the
present case, while the CD [Conceptual
Dependency] group emphasises independence
from any particular task. A particular
example of the difference is provided by
machine translation, where, from a given
semantic representation a PS program always
constructs some particular output string for
that representation, whereas a CD program
would want the freedom to construct one of a
number of possible representations.



ARTIFICIAL INTELLIGENCE PROJECT

Another, more philosophically motivated
difference of approach between the groups,
concerns the time at which inferences are to
be made from semantic representations. In
the PS approach, no more inferences are
made than is necessary to solve the problem
in hand, and the representation is never
made any “deeper” than necessary. In the
CD approach, a large number of inferences
is made spontaneously.

Lastly, the two approaches both aim
essentially at machine translation as the
fundamental test of a language understander,
but the CD approach emphasizes the
treatment of human dialogue while the PS
approach emphasizes the treatment of small
texts as the definition of a context.

We believe that these approaches are
complementary rather than exclusive, and
that the parallel testing of different sub-
hypotheses in this way, within an overall
semantics-oriented project, can be stimulating
and productive.

Both sub-groups have had pilot systems
running on the computer since 1970, but in
the last year both have implemented much
stronger running programs. During the last
year the PS implementation has been
enlarged from a basic mode to an extended
mode of the on-line English-French
translator. It accepts small paragraphs of
English, outputs the semantic representation
it derives, and then the French translation.
Since it is semantics, rather than syntax,
based, the English input need not even be
grammatically correct.

The basic mode of Preference Semantics will
cope with the problems presented by
sentences like “Give the bananas to the
monkeys although they are not ripe, because
they are very hungry”; that is to say, of
attaching the two “they"s correctly on the
basis of what it knows about bananas and
monkeys (which have different genders in
French, so the choice is important).

25

The extended mode is called when
referential problems in a paragraph require
the manipulation of stronger partial
information about the real world, as in “The
soldiers fired at the women and I saw several
fall”, where the referent of “several” depends
on our relatively unreliable knowledge of
how the world works. This is done by
extracting inferential information from the
basic representation with common-sense
inference rules, that are themselves expressed
within the semantic notation.

During the last year, the CD group has
brought together three programs to
implement MARGIE: Meaning Analysis,
Response Generation and Inference on
English. MARGIE is a prototype system,
presently undergoing concurrent development
here at Stanford, and at the Istituto per gli
studi semantici e cognitivi in Castagnola,
Switzerland.

MARGIE’s three component programs
(analyzer, memory/inferencer, generator) (a)
analyze English utterances in context into
graphs in the deep conceptual base
prescribed by Conceptual Dependency, (b)
generate inferences spontaneously from the
graphs and build relational networks which
demonstrate an ability to understand what
was said, and (c) generate responses,
constructed in this deep conceptual base,
back into surface (syntax) networks, and
finally back into syntactically correct English
sentences. In addition, the analyzer and
generator may be run coupled directly
together, providing a paraphraser which
paraphrases the meaning of an English
sentence rather than simply its syntactic form.

For example, from the input “John killed
Mary by choking Mary”, the paraphraser
will return with a number of sentences
examples of which are “John strangled
Mary” and “John choked Mary and she died
because she could not breathe”.




26

In the “Inference mode” the MARGIE system
takes input such as “John gave Mary a
beating with a stick” and produces a number
of inferred output sentences such as “A stick
touched Mary”, “Mary became hurt " and so
on.

Bibliography

. Goldman, N., Riesbeck, C., A
Conceptually Based Sentence
Paraphraser, Stanford Artificial
Intelligence Memo AIM-196, May 1973.

2. Goldman, N., Computer Generation of
Natural Language from a Deep
Conceptual Base, Ph.D. Thesis in
Computer Science, Stanford University
(forthcoming)

3. Herskovits, A., The generation of French
from a semantic representation,
Stanford Artificial Intelligence Memo
AIM-2 12, October 1973.

4. Rieger, C., Conceptual Memory: A
Theory for Processing the Meaning
Content of Natural Language
Utterances, Ph.D. Thesis in Computer
Science, Stanford University
(forthcoming).

5. Riesbeck, C., Computer Analysis of
natural Language in Context, Ph.D.
Thesis in Computer Science, Stanford
University (forthcoming).

6. Schank, R., Goldman, N., Rieger, C.,
Riesbeck, C., Primitive Concepts
Underlying Verbs of Thought, Stanford
Artificial Intelligence Memo AIM- 162,
Feb. 1972.

7. Schank, R., Goldman, N., Rieger, C.,
Riesbeck, C., MARGIE: Memory,
Analysis, Response Generation and
Inference on English, Advance Papers of
the Third International Joint Conference

ARTIFICIAL INTELLIGENCE PROJECT

on Artificial Intelligence, Stanford U.,
August 1973.

8. Schank, R., Rieger, C., Inference and the
Computer Understanding of Natural

Language, Stanford Artificial Intelligence
Memo AIM-197, May 1973.

9. Schank, R., Wilks, Y., The Goals of
Linguistic Theory Revisited, Stanford
Artificial Intelligence Memo AIM-202,
May 1973.

10. Schank, R., Finding the Conceptual
Content and Intention in an Utterance
in Natural Language Conversation,
Advance Papers of the Second
International Joint Conference On
Artificial Intelligence, British Comp. Soc.,
London, 1971.

11. Schank, R., Conceptual Dependency: a
Theory of Natural Language
Understanding, Cognitive Psychology,
Vol. 3, No. 4, 1972.

12. Schank, R., The Fourteen Primitive
Actions and Their Inferences, Stanford
Artificial Intelligence Memo AIM- 183,
February 1973.

13. Wilks, Y., Deci’dability and Natural
Language, Mind, December 197 1.

14. Wilks, Y., Grammer, M eaning and the
M achine Analysts of Language,
Routledge, London, 1972.

15. Wilks, Y., The Stanford Machine
Translation and Understanding Project,
in Rustin (ed.), Natural Language
Processing, New York, 1973.

16. Wilks, Y., An Atrtificial Intelligence
Approach to Machine Translation,
Stanford Artificial Intelligence Memo
AIM-161, February 1972; to appear in
Schank and Colby (eds.), Computer



ARTIFICIAL INTELLIGENCE PROJECT

Models of Thought and Language, W. H.
Freeman, San Francisco, 1973.

17. Wilks, Y., Understanding Without
Proofs, Advanced Papers of the Third
international Joint Conference on
Artificial Intelligence, Stanford U., August
1973.

18. Wilks, Y., and Herskovits, A., An
Intelligent Analyser and Generator for
Natural Language, Proceedings of the
International Conference on
Computational Linguistics, Pisa, 1973.

19. Wilks, Y., Preference Semantics,
Stanford Artificial Intelligence Memo
AIM-206, July 1973; also in E. Keenan
(ed.), Proc. 1973 Colloguium on Formal
Semantics of Natural Language,
Cambridge, U.K., 1974 (to appear).

27

2.5 Programming Languages

There is a strong connection between what
you can say and the language in which you
say it. Advances in artificial intelligence, as
well as other branches of computer science,
are frequently linked to advances in
programming languages. We have found it -
advantageous to invest a part of our effort in
language development and the corresponding
compilers and run-time packages.

We have already discussed the development
of a “hand language” in support of robotics
research [Section 2.1.11.  This section
discusses ~ more  general  programming
language developments that have taken place
in our laboratory.

Feldman and Cries published an analytical
survey of translator (e.g. compiler) writing
systems in 1968 [3]. Donald Knuth
continued publication of a series of texts on
computer programming that has become the
standard reference in the field [4, 5, 6). He
also published reports on language definition
schemes [7], a study of “real world”
programming practices [8, summarized in 9]
and an interesting historical study [10].

Bibliography
[11J. Hext, Programming Languages and

Translation, Stanford A. I. Memo
AIM- 19, August 1964.

(2] D. Raj Reddy, Source Language

Optimization of FOR-loops, Stanford A.
[. Memo AIM-20, August 1964.

[3] Jerome Feldman and David Cries,
Translator Writing Systems, Comm.
ACM, February 1968.

[4] Donald E. Knuth, The Art of Computer
Programming, Vol. 1, Fundamental
Algorithms, Addison-Wesley, Menlo Park,
Calif,, 1968.



28

(5] Donald E. Knuth, TAe A rt of Computer
Programming, Vol. 2, Seminumerical
Algorithms, Addison-Wesley, Menlo Park,
Calif., 1969.

(6] Donald E. Knuth, The Art of Computer
Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, Menlo Park,
Calif,, 1973.

[7] Donald E. Knuth, Examples of Formal
Semantics, Stanford A. I. Memo
AIM-126, July 1970.

(8] Donald E. Knuth, An Empirical Study
of Fortran in Use, Stanford A. I. Memo
AIM- 137, November 1970.

[9] Donald E. Knuth, An Empirical Study
of Fortran Programs, Software --
Practice and Experience, Vol. 1, 105- 133,
1971.

[IO] Donald E. Knuth, Ancient Babylonian
© Algorthms, Comm. ACM, July 1972.

2.5.1 LISP

LISP is the most widely used language in
artificial intelligence research. The overall
design of this programming system was
defined in John McCarthy’s 1960 article [11].
LISP 1.5, developed initially at MIT [12],
became available on nearly every major
computer and remains so today.

Of course, the various versions of “LISP 1.5”
turned out to be not quite compatible. Even
so, Tony Hearn devised a LISP subset that is
fairly portable [17).  This facilitated
distribution of his REDUCE system for
symbolic computation [see Section 2.3.4).

There was an early attempt to design an
advanced language called LISP 2 [13, 161.
The implementation of a compiler was to be
done by a group at System Development
Corperation.  Unfortunately, they elaborated
it to death.

ARTIFICIAL INTELLIGENCE PROJECT

Stanford LISP 1.6 was initially developed in
1966 from an MIT PDP-6 system. Our staff
essentially rewrote the system several times
since [18] and have distributed it through
DECUS. It is currently in use at dozens of
PDP-6 and PDP- 10 installations.

A group at U. C. Irvine has substantially
augmented Stanford LISP in the direction of
BBN LISP. The result is a very convenient
and powerful ‘system [ 191.

One of our groups developed the MLISP
compiler [20, 21, 22, 231, which offers an
ALGOL-like syntax on top of all the
standard LISP features. This language is in
use by investigators in artificial intelligence
in various parts of this country and at least
one place in Europe.

More recently, the same group has been
working on a powerful new language called
LISP70 [24) It allows pattern-directed
computation and extensibility, i.e. the user
can add his own rewrite rules for new
functions, which will automatically be merged
and ordered in the existing rules.

Bibliography

[11] John McCarthy, Recursive Functions
of Symbolic Expressions, Comm. ACM,
April 1960.

[12] John McCarthy, et al, LISP 1.5
Programmer’s Manual, MIT Press, 1962.

[13] John McCarthy, Storage Conventions
in LISP 2, Stanford A. I. Memo AIM-8,
September 1963.

[14] S. R. Russell, Improvements in LISP
Debugging, Stanford A. I. Memo
AIM- 10, December 1963.

[15] J. Hext, An Expression Input Routine
for LISP, Stanford A. I. Memo AIM-18,
July 1964.



ARTIFICIAL INTELLIGENCE PROJECT

[16] R. W. Mitchell, LISP 2 Specifications
Proposal, Stanford A. I. Memo AIM-21,
August 1964.

[17] Anthony C. Hearn, Standard LISP,
Stanford A. I. Memo AIM-90, May 19609.

(18] Lynn Quam, Whitfield Diffie, Stanford
LISP 1.6 Manual, Stanford A. I. Lab.
Operating note SAILON-28.7, 1973
(originally published in 1966).

(19]R. J.Bobrow, R. R. Burton, D. Lewis,
UCI LISP Manual, U. C. Irvine
Information and Computer Science
Technical Report No. 2 1, October 1972.

[20] David C. Smith, MLISP Users’ Manual,
Stanford A. I. Memo AIM-84, January
1969.

[21] David C. Smith, MLISP, Stanford A. I.
Memo AIM-1 35, October 1970.

[(22] David C. Smith, Horace Enea, MLISP2,
Stanford A. 1. Memo AIM-195, May
1973.

(23] David C. Smith, Horace Enea,
Backtracking in MLISP2, Advance
Papers, International Joint Conf. on
Artificial Intelligence, Stanford U., August
1973.

[24] L. G. Tesler, Horace Enea, David C.
Smith, The LISP70 Pattern Matching
System, Advance Papers, International
Joint Conf. on Artificial Intelligence,
Stanford U., August 1973.

29

2.5.2 FAIL

FAIL is a fast one-pass assembler for
PDP-10 and PDP-6 machine language. It
was developed initially by Phil Petit in 1968
[25] and the fourth revision of the manual
will be published soon [26].

Compared with MACRO-IO, the standard
DEC assembler, FAIL uses substantially more
memory, but assembles most programs in
about one-fifth the time. FAIL assembles the
entire Stanford A. L. timesharing system (two
million characters) in less than 4 minutes of
CPU time on a KA-10 processor.

FAIL provides more powerful macros than
MACRO and has ALGOL-like block
structure, permitting local names to be reused
in various parts of a program without
conflict.

Nearly all our system and utility
programming is done in FAIL. It is
distributed through DECUS and is widely
used elsewhere.

Bibliography

[25] P. M. Petit, FAIL, Stanford A. I. Lab.
Operating Note SAILON-26, 1968.

[26] F. H. G. Wright, FAIL, Stanford A. L.
Memo, in preparation.

2.5.3 SAIL

Members of our staff began work on an
ALGOL compiler for the PDP-6 in 1967.
Work continued intermittently through
December 1968, when Dan Swinehart put up
GOGOL 11T [28]).

Feldman subsequently guided the
development of an extensively revised
version that included his LEAP constructs
[29,80). The resulting system, now called
SAIL, has undergone  a number  of



30

subsequent revisions- (e.g. [31]) and a new
manual has been written [32]. SAIL is now
a rather sophisticated programming system,
offering coroutining, backtracking, context
switching, and a number of other features.

The development of SAIL has been heavily
influenced by the needs of our robotics
research. SAIL is in use in a number of
activities here and at many other installations
on the ARPA network.

Bibliography

[27] John McCarthy (with 12 others),
ALGOL 60, Comm. ACM, May 1960 and
Jan. 1963; Numerische M athematik,
March 1960.

[28] Dan Swinehart, COGOL III, Stanford
A. 1. Lab. Operating Note SAILON-48,
December 1968.

[29] Jerome Feldman, Paul Rovner, The
- Leap Language Data Structure, Proc.
IFIP Congress, 1968.

[30] Jerome Feldman, Paul Rovner, An
ALGOL-based Associative Language,
Stanford A. I. Memo AIM-66, August
1968; also in Comm. ACM, August 1969.

[3 11 Jerome Feldman, J. Low, D. C.
Swinehart, R. H. Taylor, Recent
Developments in SAIL, an ALGOL-
based language for Artificial
Intelligence, Proc. FICC, 1972.

[32] Kurt VanLehn (ed.), SAIL User
Manual, Stanford A. I. Memo AIM-204,
July 1973.

ARTIFICIAL INTELLIGENCE PROJECT

2.6 Computer Facilities

In support of our research program, we have
developed a very efficient display-oriented
timesharing system. The basic hardware is a
PDP-10/PDP-6 dual processor system with
256K words of core memory, a Librascope
swapping disk, an IBM 3330 disk file with 85
million word capacity, and 64 display
terminals.

The system is up essentially 24 hours per
day, every day; it is not taken down for
preventive maintenance. It comfortably
supports forty-some jobs with a monitor that
is functionally similar to DEC’s TOPS- 10,
though quite different inside.

The high performance of the computer
facility results in part from a number of
technical innovations, both in hardware and
software, and a great deal of hard work. We
have consistently invested about one-third of
our total funding in development of the
computer system, and consider that ratio to
be about right.

Equipment acquisition costs have been kept
relatively low by not restricting choices to
devices that are ‘“compatible” with our
existing hardware. Instead, we have selected
on a performance/cost basis and usually done
our own interfacing. The resulting total cost,
including engineering and technician time, is
often as low as one-third the price of “turn-
key” devices, particularly for memories. Of
course, the resulting system has a “mosaic”
quality, with elements representing nearly
every manufacturer. Nevertheless, it works
rather well.

Our current system has the following
features.

1. It successfully combines real time service
(e.g. control of mechanical arms) with
general timesharing [9, 13, 141. We were
the first to do this.



ARTIFICIAL INTELLIGENCE PROJECT

2. Everyone in our laboratory has a display
terminal with full graphics capability in
his office. This was made possible by
their low average cost (about $2K per
terminal). We employ a video switch to
share a limited number of display
generators among a larger number of
displays [19). This idea is being copied
in a number of new display systems
elsewhere.

3. Our display keyboard design uses
multiple shift and control keys to provide
both touch-typing of a large character set
and powerful interactive control of
editors and other system functions. This
keyboard is now in use at MIT,
Carnegie-Mellon University, and the
University of Utah, and other groups are
considering it.

4. Our teletype text editor, called SOS, was
written some time ago (1968), but still is
unsurpassed in its class [11] It was
recently adopted as a standard by the
DECUS PDP-10 users group.

5. Our new display editor, called “E”, is even
better. Words can’t describe it, but see
(21, 223.

6. We have a geometric editor, called
CEOMED, for drawing 3-D objects
interactively and viewing them from any
perspective [ 181.

7. Another family of drawing editors ‘are
used to design and check digital logic
circuits and the corresponding printed
circuit cards [23). This family of
programs has been adopted by MIT,
CMU, and DEC.

8. We have developed a news information
retrieval service called APE [30] Our
computer has a connection to an
Associated Press newswire and maintains
a file of storys from the last 24 hours.

31

These storys are indexed under the
words they contain, so that a person can
ask for all the stories that mention, say,
“Egypt” and have them displayed
immediately. This service has proven to
be very popular with people on the
ARPA Network.

9. We have a document compiler called
PUB that handles text justification with
multiple variable-width fonts [20). If
asked, it will automatically handle section,
page, and figure numbering, keep cross-
references straight, generate a table of
contents and a sorted index, and other
wonderful things. Pub is in use at nearly
all sites that have acquired Xerox
Graphics Printers.

2.6.1 Early Develop men t

The concept of a general purpose
timesharing system was first proposed by
John McCarthy when he was at MIT. That
proposal led to the systems developed in
Project MAC. McCarthy also participated in
the development of an early timesharing
system at BBN [ 11.

Shortly after arriving at Stanford in 1962,
McCarthy undertook the development of a
display-oriented timesharing system, with
support ~ from  the National  Science
Foundation. That system had 12 display
terminals connected to a PDP-1, with a link
to an IBM 7090 [6]. An entertaining film
report summarizes the capabilities of the
system [7].

The PDP-1 timesharing system was used for
some early hand-eye experiments with a
rather crude television camera interface [3,4]
and a donated prosthetic arm. The staff who
developed the PDP-1 system became the
nucleus of the A. I. Project computer group
in 1966, which gave us a head start on the
new system.



32

2.6.2 Hardware

Over ten years, total direct expense for
computer and experimental equipment (not
including salaries for construction or
maintenance) was $2.4 million. Of this,
about $1.6 million was for capital equipment
purchases, $400K for interfacing and spare
parts, $200K for IBM disk rental, and $200K
for outside computer time.

Equipment acquisition highlights are as
follows.
Date online Equipment
1966 June PDP-6, 64K core, 8 Dectape
drives, 8 Teletypes
Oct.  Vidicon camera, Rancho Arm
1967 Nov. Librascope Disk
1968 Jan. 6 III Displays
Aug.  Ampex Core (64K)
Sept. PDP-10 (KA-10 processor)
969 Feb. IBM 2314 Disk
970 Jun. 3 IMLAC displays
971 Mar. Data Disc displays (58
eventually)
May Scheinman (Stanford) Arm
July? BBN IMP
1972 Jan.  IBM 3330 replaces 2314
April Ampex core (128K)
May Video Switch
1973 Jan.  Xerox Graphics Printer

Beginning in the summer of 1970, we also
undertook the design of a new high speed
processor, known locally as “Foonly”, which
was to be ten times as fast as our PDP-10.
The design was completed in early 1973 and
featured a 2K word cache memory, a
microcode store that was to be accessible by
timeshared users, and a “Console Computer”,
which was to be a minicomputer with display
and keyboard. The Console Computer was
to take -the place of the traditional console
lights and switches and, since it was to
control the registers and clock of the big
machine, could be used to monitor and
debug the latter.

ARTIFICIAL INTELLIGENCE PROJECT

The processor was not fabricated, but some
of the ideas in it may be expected to appear
in commercial equipment. The digital logic
design programs mentioned earlier were
developed in support of this effort.

2.6.3 Software

Our Arst PDP-6 timesharing monitor was the
DEC 1.3 Monitor. Since then, we have
rewritten essentially all of the system, some

parts more than once. We have mostly

added features; a number of these have
found their way back into later DEC
monitors. Thus, we are semi-compatible with
current TOPS- 10 monitors.

An area of major revision in our system is
keyboard and display service. We devised a
“line editor” for displays, that facilitates rapid
entry and modification of lines of text. Using
the keyboards, we can also control various
formatting parameters of the display and can
even switch to television, to watch televised
seminars on the Stanford campus. This
service is a fringe benefit of using standard
TV monitors for displays together with a
video switch.

In support of the display service, we had to
restructure the monitor to provide free
storage allocation for display data. This free
storage feature has proven useful for a
number of other system functions.

We developed a display-oriented debugging
package called RAID [16]. Its purpose is
similar to DDT, but the display permits more
powerful interaction, such as maintaining
displays of selected locations.

When we received the PDP- 10 in 1968, we
devised a dual processor system that permits
the PDP-10 to be used for both realtime and
general timesharing service and the PDP-6 to
be used for realtime only, such as control of
arms and (recently) raster generation for the
Xerox Graphics Printer.




ARTIFICIAL INTELLIGENCE PROJECT

We completely rewrote the disk file system in
the Monitor, adding redundancy and read-
before-write checking. Disk files are backed
up by a tape archiving system that gives
excellent protection against both operating
and programming errors (24l We have
never had a major file loss attributable to
system hardware or software failure since our
file system was installed in 1969.

We have developed a resource reservation
and allocation system, called RSL [29], that
allows users to “purchase” reservations for
subsystems and a service level (a percentage
of CPU cycles). Reservation costs vary with
the time of day and are stated in a reusable
pseudo-currency, barns, whose abundance is
controlled administratively. The reservation
transactions, enforcement, and accounting are
all performed automatically by programs.
This permits persons who need assured
services to have them without worrying
about how many other people climb on the
system.

An IMP was installed fairly early in the life
of the ARPA Network and we wrote a telnet
. program to talk to it. At this point we
discovered that the extra core memory
needed to support this service caused serious
system performance degradation. As a
consequence, chose not to support network
services until after we had a full 256K words
of memory, in the spring of 19’72 [25,26].

Overall we think that our system has yielded
excellent returns on the investment, though it
suffers from chronic overloading. CPU time
is the principal bottleneck.

Bibliography

Note that SAILONs listed below are
Stanford A. I. Lab. Operating Notes, which
are generally written for laboratory internal
use. The text of most SAILONS is kept in
disk files in our [S,DOC] area. Working
Notes are even less formal than SAILONs

33

and usually are kept only in the form of text
files on the disk. Even so, these files are
public and can be accessed over the ARPA
Network [see Appendix Al.

(1] John McCarthy, S. Boilen, E. Fredkin,
J.CR. Licklider, A Time-Sharing
Debugging System for a Small
Computer, Proc. AFIPS Con.. (S JCC),
Vol. 23, 1963.

[2] John McCarthy, F. Corbato, M. Daggett,
The Linking Segment Subprogram
Language and Linking Loader
Programming Languages, Comm. ACM,
July ‘963.

[3] P. Carah, A Television Camera
Interface for the PDP-1, Stanford A. I.
Memo AIM-34, June 1965.

(4] . Painter, Utilization of a TV Camera
on the PDP-1, Stanford A. I. Memo
AIM-36, September 1965.

(5] John McCarthy, Time-sharing
Computer Systems, in W. Orr (ed.),
Conversational Computers, Wiley, 1966.

(6] John McCarthy, D. Brian, G. Feldman,
J. Allen, THOR -- A Display Based
Time-sharing System, Proc. AFIPS
Conf.(F JCC), Vol. 30, Thompson,
Washington D. C., 1967.

[7] Art Eisenson, Gary Feldman, Ellis D.
Kropotechev and Zeus, his Marvelous
Time-sharing System, 16mm film, black
and white with sound, 15 minutes, March
1967.

[8] Richard Cruen, W. Weiher, Rapid
Program Generation, Proc. DECU S
Symposium, Fall 1968.

[9] J. A. Moorer, Dual Processing for the
PDP-6/10, Decuscope, Vol 8, No. 3, 1969.




34

[ 10] William Weiher, Loader Input Format,
SAILON-46, October 1968.

[11] William Weiher, S. Savitzky, Son of
Stopgap, SAILON-50.3, also in disk file
SOS.LES[S,DOCI.

[12] William Weiher, R. Gruen, RPG --
Rapid Program Generator, SAILON-51,
1968.

[13] ]. A. Moorer, Stanford A-I Project
Monitor Manual: Chapter I - Console
Commands, SAILON-54.2, September
1970 (revision in preparation).

[14]]. A. Moorer, Stanford A-I Project
Monitor Manual: Chapter II - User
Programming, SAILON-55.2, September
1970 (revision in preparation).

[15] Ted Panofsky, Stanford A-I Facility
Manual, SAILON-56, May 1973.

[16] Phil Petit, RAID, SAILON-58.1,
February 1970.

[17] Richard P. Helliwell, Copy,
SAILON-61.1, May 1971.

(18] Bruce Baumgart, GEOMED -- A
Geometric Editor, SAILON-68, May
1972.

[19] Lester Earnest, Video Switch,
SAILON-69, May 1972.

[20] Larry Tesler, PUB, the Document
Compiler, SAILON-70, September 1972.

[21] Dan Swinehart, TV -- A Display Text
Editor, Working Note in disk file
TVED.DCS[UP,DOC], December 1971.

[22] Fred Wright, Differences between ‘E’
and ‘TV’, Working Note in disk file
TV2EF W [UP,DOC].

/

ARTIFICIAL INTELLIGENCE PROJECT

[23] Richard Helliwell, Stanford Drawing
Program, Working Note in disk file
W([F,RPH]

[24] Ralph Gorin, DART -- Dump and
Restore Technique, Working Note in
disk file DART.REG[UP,DOC],
November 1972.

[25] Andy Moorer, Telnet Program,
Working Note in disk file
NET. JAMIUP,DOC].

(26] Dan Swinehart, FTP -- File Transfer
_Protocol, Working Note in disk file
FTP.DCS(UP,DOC].

[27] Ralph Gorin, Spooler System
Documentation, Working Note in disk
file SPOOL.REG{UP,DOC]. February
1971. ‘

(28] Ralph Gorin, Spelling Checker,
Working Note in disk file
SPELL.REG[UP,DOCI.

[29] Jim Stein, Automatic Service Level
Reservation, Working Note in disk file
RSL. JHS[UP,DOC].

[80] Martin Frost, Reading Associated Press
News, SAILON-72, July 1973.



ARTIFICIAL INTELLIGENCE PROJECT

2.7 Associated Projects

Our ARPA-sponsored research program has
benefited from interaction with several

associated but separately supported projects.
In addition to intellectual interchange, there
has been some resource sharing among the
projects.  For example, some computer
equipment purchases and rentals have been
shared on a quid pro quo basis.

2.7.1 Higher Mental Functions

The Higher Mental Functions Project, under
the leadership of Kenneth Colby, is
supported by the National Institutes of
Health. The overall objectives are to aid in
the solution of certain problems in psychiatry
and psychotherapy.

One line of research involves a computer
model of paranoia, called PARRY, which
responds to natural language inquiries [6].
Another involves computer-based treatment
of language difficulties in nonspeaking
children [9]. (For this research, the principal
investigator  received the 1973 Frieda
Fromm-Reichmann Award  from  the
American Academy of Psychoanalysis.)

Bibliography

(1] Colby, K. M., and Smith, D. C.,
Dialogues between Humans and
Atrtificial Belief Systems, Stanford A. I.
Memo AIM-97, August 1969; also in Proc.
International Joint Conference on
Artificial Intelligence, 1969.

[2] Colby, K. M., Tesler, L., and Enea, H. J.,
Experiments with a Search Algorithm
on the Data Base of a Human Belief
Structure, Stanford A. I. Memo AIM-94,
August 1969.

[3] Colby, K. M., Hilf, F. D., and Hall, W. A.,
A Mute Patient’s Experience with
Machine-Mediated Interviewing,

35

Stanford A. I. Memo AIM- 113, March
1970.

[4] Colby, K. M., Mind and Brain, Again,
Stanford A. I. Memo AIM-1 16, March,
1970; also in Mathematical Biosciences
Vol. 1 1, 47-52, 1970.

(5] Colby, K. M., and Smith, D. C.,
Computer as Catalyst in the Treatment
of Nonspeaking Autistic Children,
Stanford A. I. Memo AIM-120, April
1970.

(6] Colby, K. M., Weber, S., and Hilf, F. D.,
-Artificial Paranoia, Stanford A. I. Memo
AIM-125, July 1970; also in A rtificial
Intelligence Journal Vol. 2, No. 1, 1972.

[7] Colby, K. M., Hilf, F. D., Weber, S., and
Kraemer, H. C., A Resemblance Test for
the Validation of a Computer
Simulation of Paranoid Processes,
Stanford A. I. Memo AIM-1 56,

November 1971.

(8] Colby, K. M., Hilf, F. D., Weber, S., and
Kraemer, H. C., Turing-like
Indistinguishability Tests for the
Validation of a Computer Simulation
of Paranoid Processes, Artificial
Intelligence Journal Vol. 3, No. 1, Fall
1972.

[9] Colby, K. M., The Rationale for
Computer-based Treatment of
Language Difficulties in Nonspeaking
Autistic Children, Stanford A. I. Memo
AIM- 193, April 1973; also in Journal of
Autism and Childhood Schizophrenia, Vol.
3, 254-260, 1973.

[10] Colby, K. M. and Hilf, F. D.,
Multidimensional Analysis in
Evaluating a Simulation of Paranoid
Thought, Stanford A. I. Memo AIM- 194,
May, 1973.




36

[ 11] Enea, H. J., and Colby, K. M., Idiolectfc
Language-Analysis for Understanding
Doctor-Patient Dialogues, Advance
Papers of the Third International Joint
Conference on Artijicial Intelligence, 278-

284, 1973.

(12] Hilf, F. D., Colby, K. M., Smith, D. C.,
Wittner, W., and Hall, W. A., Machine-
Mediated Interviewing, Journal of
Nervous and M ental Disease, Vol. 152,
No. 4, 1971.

[13]Hilf, F. D., Non-Nonverbal
Communicationand Psychiatric
Research, Archives of General Psychiatry,
Vol. 27, November 1972.

[ 143 Hilf, F. D., Partially Automated
Psychiatric Iuterviewiug -- A Research
Tool, Journal of Nervous and M ental
Disease, Vol. 155, No. 6, December 1972.

[15] Schank, R. C., The Fourteen Primitive
Actions and Their Inferences, Stanford
A. 1. Memo AIM-183, February 19°73.

[16] Schank, R. C., and Rieger, C. J. III,
Inference and Computer Understanding

of Natural Language, Stanford A. I.
Memo AIM-197, May 1973.

[17] Schank, R. C., and Wilks, Y., The Goals
of Linguistic Theory Revisited,
Stanford A. 1. Memo AIM-202, May
1973.

(18] Schank, R. C., The Development of
Conceptual Structures in Children,
Stanford A. 1. Memo AIM-203, May,
1973.

[19] Scfank, R’. C., Goldman, N., Rieger, C.
J. III, and Riesbeck, C., Margie: Memory,
Analysis, Response Generation and
Inferenceon English, Advance Papers of
the Third International Joint Conference
on Artificial Intelligence, 255-26 1, August
1973.

ARTIFICIAL INTELLIGENCE PROJECT

[20] Schank, R. C., Identification of
Couceptualizatious Underlying Natural
Language, in R. Schank and K. Colby
(eds.), Computer M odels of Thought and
Language, W. H. Freeman, San
Francisco, 1973.

[21] Schank, R. C., and Colby, K. M., (eds.),
Computer M odels of Thought and
Language, W. H. Freeman, San
Francisco, 1973.

[22] Smith, D. C., and Enea, H. J., MLISP2,
Stanford A. I. Memo AIM-195, May
1973.

(23] Smith, D. C., and Enea, H. J.,
Backtracking in MLISP2, Advance
Papers of the Third International Joint
Conference on Artijicial Intelligence, 677-

685, August 1973.

[24] Tesler, L., Enea, H. J., and Colby, K. M.,
A Directed Graph Representation for
Computer Simulation of Belief
Systems, M athematical Biosciences, Vol.
2, 1968.

[25] Tesler, L. G., Enea, H. J. and Smith, D.
C., The LISP70 Pattern Matching
System, Advance Papers of the Third
International Joint Conference on
Artificial Intelligence, 67 1-676, August
1973.

2.7.2 Digital Holography

In a project lead by Joseph Goodman of the
Electrical Engineering Department and
sponsored by the Air Force, certain
techniques for converting holograms into
photographic images were investigated, with
potential applications to satellite
photography.

One interesting byproduct of this work was
the creation of the world’s first photograph
taken without lens or pinhole [2). A



ARTIFICIAL INTELLIGENCE PROJECT

hologram was formed directly on the surface
of a vidicon television tube, which was
connected to our computer through a
digitizer. The digitized hologram was then
converted into an image of the original
object by computer methods and displayed
on a CRT.

Bibliography

(1] Joseph Goodman, Digital Image
Form ation f rom Electronically Detected
Holograms, in Proc. SPIE Seminar on
Digital imaging Techniques, Soc.Photo-
Optical Instrumentation Engineering,
Redondo Beach, California, 1967.

(2] Joseph Goodman, Digital Image
Formation from Electronically Detected
Holograms, A pplied Physics Letters,
August 1967.

[3] A. Silvestri and J. Goodman, Digital
Reconstruction of Holographic Images,
. 1968, NEREM Record, IEEE, Vol. 10,
pp. 118-1 19. 1968.

2.7.3 Sound Synthesis

John Chowning and Leland Smith of the
Stanford Music Department and their
students have developed computer techniques
for generating stereophonic and
quadraphonic sounds  that can be
programmed to move in two and three
dimensions with respect to the listener. The
met hod controls the distribution . and
amplitude of direct and reverberant signals
between loudspeakers to provide the angular
and distance information and introduces a
Doppler shift to enhance velocity information

(3.

Recently, Chowning made an interesting
discovery  that  frequency = modulation
techniques provide a simple but effective way
to synthesize certain kinds of sounds [6].

37

Leland Smith has developed a graphics
editor capable of handling musical notation,
among other things [7). A number of
commercial groups had previously tried and
failed to solve this problem.

Bibliography

(1] James Beauchamp (with H. Von Foerster)
(eds.), Music by Computers, John Wiley,
New York, 1969.

[2] John M. Chowning, The Simulation of
Moving Sound Sources, Proc. Audio
Engineering Soc. Convention, May 1970.

[3] James A. Moorer, Music arid Computer
Composition, Comm. ACM, January
1972.

[4] Leland Smith, SCORE -- A Musician’s
Approach to Computer Music, J.Audio
Eng. Soc., Jan/Feb. 1972.

(5] James A. Moorer, The Hetrodyne
Method of Analysis of Transient
Waveforms, Stanford A. I. Memo
AIM-208, June 1973.

[6] John M. Chowning, The Synthesis of
Complex Audio Spectra by means of
Frequency Modulatiou, J. Audio
Engineering Society, September 1973.

[7) Leland Smith, Editing and Printing

Music by Computer, J. Music Theory,
Fall 1973.



38

2.7.4 Mars Picture Processing

As in so many areas, John McCarthy was
among the first to examine potential
applications of artificial intelligence to
planetary exploration [1].

More recently, under the sponsorship of the
National Aeronautics and Space
Administration, Lynn Quam did a
dissertation on picture  differencing
techniques [2]). The particular set of pictures
he worked on was satellite photographs of
Mars containing various geometric and
photometric  distortions as well as several
kinds of noise. He successfully solved the
problem of detecting small changes in the
planet surface in the presence of all these
extraneous factors.

His system was subsequently applied to
pictures of Mars taken by the Mariner 9
spacecraft while the mission was in progress
[3,4, 5] A short film shows the interactive
display techniques [6].

Bibliography

1] John McCarthy, Computer Control of a
Machine for Exploring Mars, Stanford
A. 1. Memo AIM-14, January 1964.

(2] Lynn H. Quam, Computer Comparison
of Pictures, Stanford A. I. Memo
AIM-144, May 1971.

(3] Lynn H. Quam, et al, Computer
Interactive Picture Processing, Stanford
A. I. Memo AIM-166, April 1972.

(4] Carl Sagan, et al, Variable Features on
Mars: Preliminary Mariner 9 Television
Results, Icarus 17, pp. 346-372, 1972.

[ 53 Lynn H. Quam, et al, Mariner 9 Picture
Differencing at Stanford, Sky and
Telescope, August 1973.

ARTIFICIAL INTELLIGENCE PROJECT

(6] Larry Ward, Computer Interactive
Picture Procession, 16 mm color film
with sound, 8 min., 1972.



3. HEURISTIC PROGRAMMING
PROJECT

The  Heuristic  Programming  Project
originated in 1965 under the name Heuristic
DENDRAL. Its current title reflects a
broadening of scope to include several areas
of research related by the common theme of
developing  high-performance,  intelligent
programs for assisting scientific work.

3.1 Summary of Aims and
‘Accomplishments

Heuristic DENDRAL is one of the few
examples of a high-performance intelligent
system, sometimes achieving levels of
scientific problem solving not yet achieved by
the best human experts, often achieving
levels equal to that of good human
performance. However, the attention given
to the Heuristic DENDRAL performance
program as a successful application of
artificial intelligence research has tended to
obscure the more general concerns of the
project  investigators.  Our aims and
accomplishments have been:

1. To study and construct detailed
information processing models of processes of
scientific inference. By scientific inference we
mean the inferential process by which a
model is constructed to explain a given set of
empirical data. The Heuristic DENDRAL
system is such a model.

2. To study experifnentally the “operating
characteristics” and the effectiveness of
different  designs (strategies) for the
development of task-specific knowledge in a
scientific _area. ~ The  Planning Rule
Generator, a program which takes the theory
used in hypothesis verification and produces
rules for guiding hypothesis generation, is a
result of this concern [23]. The General
Planning Program is another example [28].

39

3. To develop a method for eliciting from
an expert the heuristics of scientific judgment
and choice that he is using in the
performance of a complex inference task.
We have designed our problem solving
systems so that the heuristics may be
separated from the programs which use
them. By restricting program design to this
table-driven form [16] new heuristics can be
easily incorporated. Heuristic DENDRAL,
Meta-DENDRAL, and the General Planning
Program employ this methodology.

4. To solve real problems in an area of
significance to modern science, and to do so
with-a level of performance high enough to
have a noticeable impact upon that area of
science. Chemists will agree we have reached
that stage. For example, the General
Planning Program has been used to analyze
mixtures of estrogenic steroids without the
need for gas-chromatographic separation
(32]. In the analysis of data for some classes
of compounds  Heuristic DENDRAL’s
performance matches or exceeds that of a
post-doctoral chemist.

5. To discover the heuristics that form the
basis of expert performance. The significant
problem is not so much tuning a specialist
with new sets of heuristics for new problems
as learning how to acquire these heuristics.
The problem of knowledge acquisition and
structuring by problem solving systems is
crucial, and is perhaps the central problem of
Al research today. In recent years we have
-made it the main concern of our project.
The work on automatic theory formation is
focussed on the development of a program
called Meta-DENDRAL for automatic
acquisition of a theory of fragmentation
processes in mass spectrometry [33, 34].

6. To study the representation of knowledge.
Much of Computer Science can be viewed as
a series of programming innovations by
means of which we are moving gradually
from a position of having to tell a computer



40

precisely how we want a problem to be
solved to a position of being able to tell a
problem-solving program what we wish done
by the computer. But, what the user wants
done always concerns some specific task
environment--some piece of the real world.
For the problem-solving program to interpret
for itself the what, it must have knowledge of
the specific task environment and its
behavior. In other words, the program needs
some kind of theory (formal, informal,
heuristic, etc.) of that environment in terms
of which to do its problem solving. We have
seen in our work that the form in which
knowledge about the (DENDRAL) world is
represented is crucial to effective problem
solving and to augmenting the knowledge
structure for improved performance. We
have found the production rule form of
knowledge representation to be flexible, easily
understood, manipulable by a computer
program, and capable of driving a complex
problem solving system [16, 17, 25, 261.

Survey Articles

The research leading to the implementation
of the Heuristic DENDRAL and Meta-
DENDRAL systems has been documented in
over thirty publications; a bibliography is
included at the end of this section. In
particular, C171 and [25] give fairly concise
summaries of the Heuristic DENDRAL
research up through 1970, and reference 29
reports on the status of Meta-DENDRAL as
of the middle of 1972.

Most Recent Accomplishments

Since 1970, the most significant

accomplishments of the DENDRAL research

effort have been the design and

implementation of

1) an exhaustive and irredundant generator
of topological graphs, thereby extending
Heuristic DENDRAL to cyclic structures
(30},

2) a General Planning Program which

HEURISTIC PROGRAMMING PROJECT

interprets high resolution mass spectral
data from complex, biologically
interesting molecules having a known
skeletal substructure [28,32],

3) the initial parts of a theory formation
program which has already been used to
infer a theory of mass spectrometry for a
particular class of molecules [33).

3.2 Current Activity

At the present time the Project members are
working in the following task areas:

1) Heuristic DENDRAL - Extensions to the
Heuristic DENDRAL program are aimed
at increasing its utility to practicing
chemists by extending its domain of
applicability to a wider class of molecules.
This work is now funded by the
Biotechnology Resources Branch of the
National Institutes of Health (Grant No.
RR-6 12-0 1).

2) Meta-DENDRAL - Within the domain of
mass spectrometry, a theory formation
program is under development. The goal
is to assist in the inference of the theory
of fragmentation of molecules in a mass
spectrometer,

3) Intelligent Control of Scientific Instruments
- The aim of this research is to develop
programs for intelligent control of a data-
collecting instrument. @~ The program
makes control decisions by reasoning in
terms of a theory of the instrumental and
physical process involved. This is a
problem of importance when time, band
width, or other constraints limit the
amount of data which can be gathered
for analysis. Candidate instruments are
mass spectrometers and nuclear magnetic
resonance spectrometers.

4) Application of Al to the task of computer
programming (Automatic Programming) -



HEURISTIC PROGRAMMING PROJECT

One of the aspects of programming being
worked upon is debugging. In a
DENDRAL-like fashion, evidence of
program malfunction (bugs)  is
“explained” in terms of a model of
commonly-observed program pathologies.
In another effort, the synthesis of portions
of systems programs is the subject of a
Ph.D.  thesis  project now  being
formulated.

5) Application of Al to a new complex task
domain of scientific interest, viz. protein
structure  determination  from  X-ray
crystallographic data - Work has recently
begun to develop heuristic programs that
will formulate 3-space models of the
structure of proteins. The expertise of
protein chemists in “fitting” complex
structures to poorly resolved and/or
incomplete data will be extracted from
experts and used by the program.

3.3 Views Expressed by Others
Concerning DENDRAL
The DENDRAL publications have
engendered  considerable discussion and
comment among computer scientists and
chemists. Professor H. Gelernter (SUNY,
Stony Brook), at an SJICC 1970 panel of the
use of computers in science gave an extended
discussion of the program, in which he said
that it was the first important scientific
application of artificial intelligence. Dr. W.
H. Ware (RAND Corporation) in a recent
article entitled “The Computer in Your
Future” in the collection Science and
Technology in the World of the Future (A. B.
Bronwell, ed., Wiley Press, 1970) said:
“Thus, much of engineering will be
routinized at a high level of
sophistication, but  what  about
science? An indication of what is
coming at a higher level of
intellectual performance is a. computer
program called Heuristic DENDRAL,
which does a task that a physical

41

chemist or biologist concerned with

organic chemistry does repeatedly.”
Professor J. Weizenbaum of MIT, in an
undergraduate computer science curriculum
proposal for MIT entitled “A First Draft of a
Proposal for a New Introductory Subject in
Computer ~ Science  (September 19 70)",
included Heuristic DENDRAL in his “group
4” series (three lectures) entitled Great
Programs; and he said recently (personal
communication), commenting on recent work
and plans,

“I see the work you are now

beginning as a step in the direction of

composing explicit models of just

such programs (that build expertise

in an area). The implications of a

success in  such an effort are

staggering. I therefore believe your

effort to be worthy of very

considerable investment of human

and financial resources.”
In his paper presented at the Sixth
International Machine Intelligence
Workshop, Professor Saul Amarel (Rutgers
University) used Heuristic DENDRAL to
illustrate a point about programs which use
theoretical knowledge. He wrote:

“The DENDRAL system provides an

excellent vehicle for the study of uses

of relevant theoretical knowledge in

the context for formation problems,”

from “Representations and Modeling

in Problems of Program Formation”,

Saul Amarel, in Machine Intelligence

6 (B. Meltzer and D. Michie, eds.)
. Edinburgh University Press (in

press).
Professor Donald Michie of the University of
Edinburgh includes a description of
Heuristic DENDRAL in his recent paper on
“Machines and the Theory of Intelligence”
(Nature, 24 1, pp. 507-512, February 23,
1973):

“Mass  spectrogram  analysis  was

proposed by Lederberg as a suitable

task for machine intelligence methods.

The heuristic DENDRAL program



developed by him and Feigenbaum
now outperforms post-doctoral
chemists in the identification of
certain classes of organic compounds.
The program is a rich quarrying
ground for fundamental mechanisms
of intelligence, including the
systematic conjecture of hypotheses,
heuristic search, rote learning, and
deductive and inductive reasoning.”
And, in the March, 1973, issue of Computing
Reviews (pp. 132-133), Robert Kling of the
University of Wisconsin begins his review of
reference 25 with this assessment of
DENDRAL.:
“This brief paper provides an
overview of one of the most
sophisticated applications programs in
artificial intelligence.”
Dr. T. G. Evans (Air Force Cambridge
Research Labs), President of the ACM
SIGART, in introducing a talk on Heuristic
DENDRAL at the 1970 FJCC meeting of
SIGART, called the program “probably the
smartest program in the world” (and followed
this with the interesting observation that this
program had probably received a more
sustained and intense effort than any other
single program in the history of the artificial
intelligence field).
At a practical level, a mass spectrometry
laboratory at the University of Copenhagen,
headed by Dr. Gustav Schroll, adapted the
program to his facilities there.

Bibliography

[1]J. Lederberg, DENDRAL-64 - A System
for Computer Construction,
Euurneration and Notation of Organic
Molecules as Tree Structures and Cyclic
Graphs, (technical reports to NASA, also
available from the author and
summarized in [12]).

(la) Part 1. Notational algorithm for tree
structures (1964) CR.57029.

(1 b) Part II. Topology of cyclic graphs
(1965) CR.68898.

HEURISTIC PROGRAMMING’PROJECT

(Ic) Part III. Complete chemical graphs;
embedding rings in trees (1969).

(2] J. Lederberg, Computation of Molecular
Formulas for Mass S pectrometry, Holden-
Day, Inc. ( 1964).

(3] J. Lederberg, Topological Mapping of
Organic Molecules, Proc. Nat. Acad. Sci.,
53:1, January 1965, pp. 134-139.

(4] J. Lederberg, Systematics of organic
molecules, graph topology and
Hamilton circuits. A general outline of
the DENDRAL system. NASA CR-
-48899 (1965).

(6] J. Lederberg, Hamilton Circuits of
Convex Trivalent Polyhedra (up to 18
vertices), Am. Math. Monthly, May 1967.

[6] G. L. Sutherland, DENDRAL - A
Computer Program for Generating and
Filtering Chemical Structures, Stanford
Artificial Intelligence Memo AIM-49,
February 1967.

(7] J. Lederberg and E. A. Feigenbaum,
Mechanization of Inductive Inference
in Organic Chemistry, in B. Kleinmuntz
(ed) Formal Representations for Human
Judgment, Wiley, 1968; also Stanford
Artificial Intelligence Memo AIM-54,
August 1967.

[8] J. Lederberg, Online Computation of
Molecular Formulas from Mass Number
NASA CR-94977, 1968.

[8] E. A. Feigenbaum and B. G. Buchanan,
Heuristic DENDRAL: A Program for
Generating Explanatory Hypotheses in
Organic Chemistry, in Proceedings,
Hawaii International Conference on
System Sciences, B. K. Kinariwala and F.
F. Kuo (eds), University of Hawaii Press,
1968.



HEURISTIC PROGRAMMING PROJECT

[10] B. G. Buchanan, G. L. Sutherland, and
E. A. Feigenbaum, Heuristic
DENDRAL: A Program for Generating
Explanatory ‘Hypotheses in Organic
Chemistry, in Machine Intelligence 4, B.
Meltzer and D. Michie (eds), Edinburgh
University Press, 1969; also Stanford
Artificial Intelligence Memo AIM-62, July
1968.

[ 11]E. A. Feigenbaum, Artificial
Intelligence: Themes in the Second
Decade. In Final Supplement to
Proceedings of the IFIP68 International
Congress, Edinburgh, August 1968; also
Stanford Artificial Intelligence Memo
AIM-67, August 1968.

[121]J. Lederberg, Topology of Molecules, in
The M athematical Sciences - A Collection
of Essays, Committee on Support of
Research in the Mathematical Sciences
(COSRIMS), National Academy of
Sciences - National Research Council,

. MLLLT. Press, 1969, pp. 37-51.

[13] C. Sutherland, Heuristic DENDRAL: A
Family of LISP Programs, to appear in
D. Bobrow (ed), LISP Applications; also
Stanford Artificial Intelligence Memo
AIM-80, March 19609.

[14]) J. Lederberg, G. L. Sutherland, B. G.
Buchanan, E. A. Feigenbaum, A. V.
Robertson, A. M. Duffield, and C.

D jerassi, Applications of Artificial
Intelligence for Chemical Inference I.
The Number of Possible Organic

Com pou nds: Acyclic Structures
Containing C, H, 0 and N. Journal of
the American Chemical Society, 9 1:11, May
21, 1969.

[15] A. M. Duffield, A. V. Robertson, C.
D jerassi, B. G. Buchanan, G. L.
Sutherland, E. A. Feigenbaum, and J.
Lederberg, Application of Artificial
Intelligence for Chemical Inference II.

43

Interpretation of Low Resolution Mass
Spectra of Ketones. Journal of the
American Chemical Society, 9 1: 11, May 2 1,
1969.

[16) B. G. Buchanan, G. L. Sutherland, E. A.

Feigenbaum, Toward an Understanding
of Information Processes of Scientific
Inference in the Context of Organic
Chemistry, in Machine Intelligence 5, B.
Meltzer and D. Michie, (eds), Edinburgh
University Press 1970; also Stanford
Artificial Intelligence Memo AIM-99,
September 1969.

[17] J. Lederberg, G. L. Sutherland, B. G.

Buchanan, and E. A. Feigenbaum, A
Heuristic Program for Solving a
Scientific Inference Problem: Summary
of Motivation and Implementation,
Stanford Artificial Intelligence Memo
AIM- 104, November 1969.

[18] C. W. Churchman and B. G. Buchanan,

On the Design of Inductive Systems:
Some Philosophical Problems, British
journal for the Philosophy of Science, 20,
1969, pp. 3 11-323.

[19]G. Schroll, A. M. Duffield, C. Djerassi,

B. G. Buchanan, G. L. Sutherland, E.
A. Feigenbaum, and J. Lederberg,
Application of Artificial Intelligence
for Chemical Inference III, Aliphatic
Ethers Diagnosed by Their Low
Resolution Mass Spectra and NMR
Data, Journal of the American Chemical
Society, 91:26, December 17, 1969.

[20] A. Buchs, A. M. Duffield, G. Schroll, C.

Dijerassi, A. B. Delfino, B. G. Buchanan,
G. L. Sutherland, E. A. Feigenbaum, and
J. Lederberg, Applications of Artificial
Intelligence For Chemical Inference.

IV. Saturated Amines Diagnosed by
Their Low Resolution Mass Spectra and
Nuclear Magnetic Resonance Spectra,
Journal of the American Chemical Society,
92, 6831, 1970.



44

[21] Y.M. Sheikh, A. Buchs, A.B. Delfino, G.
Schroll, A.M. Duffield, C. Djerassi, B.G.
Buchanan, G.L. Sutherland, E.A.
Feigenbaum and J. Lederberg,
Applications of Artificial Intelligence
for Chemical Inference V. An
Approach to the Computer Generation
of Cyclic Structures. Diff erentiation
Between All the Possible Isomeric
Ketones of Composition C6H100,
Organic Mass Spectrometry, 4, 493, 1970.

[22] A. Buchs, A.B. Delfino, A.M. Duffield, €.

D jerassi, B.G. Buchanan, E.A.
Feigenbaum and J. Lederberg,
Applications of Artificial Intelligence
for Chemical Inference VI. Approach
to a General Method of Interpreting
Low Resolution Mass Spectra with a
Computer, Chem. Acta Helvetica, 53,
1394, 1970.

[23] E.A. Feigenbaum, B.C. Buchanan, and

J. Lederberg, On Generality and
" Problem Solving: A Case Study Using

the DENDRAL Program, in Machine
Intelligence 6, B. Meltzer and D. Michie,
(eds.), Edinburgh University Press, 1971;
also Stanford Artificial Intelligence Memo
AIM- 13 1, August 1970.

(24] A. Buchs, A.B. Delfino, C. Djerassi, AM
Duffield, B.G. Buchanan, E.A.
Feigenbaum, J. Lederberg, G. Schroll,
and G.L. Sutherland, The Application
of Artificial Intelligence in the
Interpretation of Low-Resolution Mass

Spectra, Advances in Mass Spectrometry,
5, 314.

[25] B.G. Buchanan and J. Lederberg, The
Heuristic DENDRAL Program for
Explaining Empirical Data, Proc.IFIP
Congress 71; also Stanford Artificial
Intelligence Memo AIM- 14 1.

[26] B.G. Buchanan, E.A. Feigenbaum, and
J. Lederberg, A Heuristic Programming

HEURISTIC PROGRAMMING PROJECT

Study of Theory Formation in Science,
Advance Papers of the Second
International Joint Conference on
Artificial Intelligence, Imperial College,
London, September, 197 1; also Stanford
Artificial Intelligence Memo AIM- 145.

[27] Buchanan, B. G., Duffield, A.M.,
Robertson, A.V., AnApplication of
Artificial Intelligence to the
Interpretation of Mass Spectra, M ass
Spectrometry Techniques and A ppliances,
George W. A. Milne (ed), John Wiley &
Sons, 1971, p.121-77.

(28] D.H. Smith, B.G. Buchanan, R.S.
Engelmore, A.M. Duffield, A. Yeo, E.A.
Feigenbaum, J. Lederberg, and C.
Djerassi, Applications of Artificial
Intelligence for Chemical Inference
VIII. An approach to the Computer
Interpretation of the High Resolution
Mass Spectra of Complex Molecules.
Structure Elucidation of Estrogenic
Steroids, Journal of the American
Chemical Society, 94, 5962-597 1, 1972.

[(29] B.G. Buchanan, E.A. Feigenbaum, and
N.S. Sridharan, Heuristic Theory
-Formation: Data Interpretation and
Rule Formation, in Machine Intelligence
7, Edinburgh University Press, 1972.

(30] Brown, H., Masinter L., Hjelmeland, L.,
Constructive Graph Labeling Using
Double Cosets, Discrete Mathematics (in

press); also Stanford Computer Science
Memo 318, 1972.

[31]) B. G. Buchanan, Review of Hubert
Dreyfus’ What Computers Can’t Do: A
Critique of Artificial Reason, Computing
Reviews, January 1973; also Stanford
Artificial Intelligence Memo AIM- 18 1,
November 1972.

(32] D. H. Smith, B. G. Buchanan, R. S.
Engelmore, H. Aldercreutz and C.



HEURISTIC PROGRAMMING PROJECT

D jerassi, Applications of Artificial
Intelligence for Chemical Inference IX.
Analysis of Mixtures Without Prior
Separation as Illustrated for Estrogens.
Journal of the American Chemical Society

(in press).

[(33]D. H. Smith, B. G. Buchanan, W. C.
White, E: A. Feigenbaum, C. Djerassi
and J. Lederberg, Applications of
Artificial Intelligence for Chemical
Inference X. Intsum. A Data
Interpretation Program as Applied to
the Collected Mass Spectra of
Estrogenic Steroids. Tetrahedron, (in
press).

{341 B. G. Buchanan and N. S. Sridharan,
Rule Formationoa Non-Homogeneous
Classes of Objects, Advance Papers of
the Third International Joint Conference
on Artificiat Intelligence, Stanford,
Califorraa, August, 1973.



9



Appendix A

ACCESS TO DOCUMENTATION

This is a description of how to get copies of
publications referenced in this report.

External Publications

For books, journal articles, or conference
papers, first try a technical library. If you
have difficulty, you might try writing the
author  directly, requesting a reprint.
Appendix D lists publications alphabetically
by lead author.

Artificial Intelligence Memos

Artificial Intelligence Memos, which carry an
“AIM” prefix on their number, are used to
report on research or development results of
general interest, including all dissertations
published by the Laboratory. Appendix B
lists the titles of dissertations; Appendix E
gives the abstracts of all A. I. Memos and
instructions for how to obtain copies. The
texts of some of these reports are kept in our
disk file and may be accessed via the ARPA
Network (see below).

Computer Science Reports

Computer  Science  Reports carry a
“STAN-CS-” prefix and report research
results of the Computer Science Department.
(All A. I. Memos published since July 1970
also carry CS numbers.) To request a copy of
a CS report, write to:

Documentation Services

Computer Science Department

Stanford University

Stanford, California 94306

The Computer Science Department publishes
a monthly abstract of forthcoming reports
that can be requested from the above
address.

47

Film Reports

Several films have been made on research
projects. See Appendix C for a list of films
and procedures for borrowing prints.

Operating Notes

Reports that carry a SAILON prefix (a
strained acronym for Stanford A. 1. Lab.
Operating Note) are semi-formal descriptions
of programs or equipment in our laboratory
that are thought to be primarily of internal
interest. The texts of most SAILONS are
accessible via the ARPA Network (see
below). Printed copies may be requested
from:

Documentation Services

Artificial Intelligence Lab.

Stanford University

Stanford, California 94306

Working Notes

Much of our working documentation is not
stocked in hard copy form, but is maintained
in the computer disk file. Such texts that are
in public areas may be accessed from the
ARPA Network (see below). Otherwise,
copies may be requested from the author(s) -
at the address given above for Operating
Notes.

Public File Areas

People who have access to the ARPA
Network are welcome to access our public
files. The areas of principal interest and
their contents are a follows:
[BIB,DOC] bibliographies of various
kinds,
[AIM,DOC] texts of a few of our A. L.
Memos,
[S,DOC] many of our SAILONS,
[UP,DOC] working notes (quite informal),
[P,DOC] “people-oriented” files, including
the lab phone directory.



48

Network Access

To get into our system from the Network, say
"L NeT.cue", which logs you in as a “network
guest”. All commands end with a carriage
return. Our monitor types "." whenever it is
ready to accept a command. To halt a
program that is running, type <Control>C
twice.

If your terminal has both upper and lower
case characters, let the monitor know by
saying "TTY FuLL". If you are at a typewriter
terminal; you may also wish to type "r1y FILL”,
which causes extra carriage returns to be
inserted so that the carriage has time to
return to the left margin before the next line
begins.

To see the names of all the files in, say, the
[S,DOC] area (where SAILONS are stored),
type "bIr ts,00c1”. This will produce a list of
files and the dates they were last written.
Among others, it should list "INTRO.TES",
which is an introduction to our timesharing
system (usually obsolescent, alas), written by
the programmer whose initials are TES.

To type out the contents of a given file, such

as INTRO.TES, say
TYPE INTRO.TES(S,DOC]

and it will come spewing forth. To stop the
typout, say <Control>C twice and it will stop
after a few lines. To continue, type “coNt”. If
you wish to examine selected portions of text
files, use the SOS editor in read-only mode,
as described in SOS.LES[S,DOCI.

To log out when you are done, type
k <carriage return>

There may be some difficulty with files that
employ the full Stanford character set, which
uses some 26 of the ASCII control codes (0 to
37 octal) to represent special characters.

ACCESS TO DOCUMENTATION

File Transfer

Files can also be transferred to another site
using the  File  Transfer Protocol.
Documentation on our FTP program is
located on our disk file i n
FTP.DCS[UP,DOC]. No passwords or
account numbers are needed to access our
FTP from the outside.




Appendix B

THESES

Theses that have been published by the
Stanford Artificial Intelligence Laboratory
are listed here. Several earned degrees at
institutions other than Stanford, as noted.

D. Raj. Reddy, AIM-43
An Approach to Computer Speech
Recognition by Direct Analysis of the
Speech Wave,

Ph.D. Tliesis in Computer Science,
September 1966.

S. Persson, AIM-46
Some Sequence Extrapolating Programs: a
Study of Representation and Modeling in
Inquiring Systems,

Ph.D. Thesis in Computer Science,
University of California, Berkeley,
September 1966.

Bruce Buchanan, AIM-47
Logics of Scientific Discovery,

Ph.D. Thesis in Philosophy, University of
California, Berkeley,

December 1966.

James Painter, AIM-44
Semantic Correctness of a Compiler for an
A lgol-like Language,

Ph.D. Thesis in Computer Science,

March 1967.

William W ichman, AIM-56
Use of Optical Feedback in the Computer
Control of an Arm,

Eng. Thesis in Electrical Engineering,
August 1967.

Monte Callero, AIM-58
An Adaptive Command and Control
System Utilizing Heuristic Learning

P rocesses,

Ph.D. Thesis in Operations Research,
December 1967.

49

Donald Kaplan, AIM-60
The Formal Theoretic Analysis of Strong
Equivalence for Elemental Properties,

Ph.D. Thesis in Computer Science,

July 1968.

Barbara Huberman, AIM-65
A Program to Play Chess End Games,

Ph.D. Thesis in Computer Science,

August 1968.

Donald Pieper, AIM-72
The Kinematics of Manipulators under
Computer Control,

Ph.D. Thesis in Mechanical Engineering,
October 1968.

Donald Waterman, AIM-74
Machine Learning of Heuristics,

Ph.D. Thesis in Computer Science,

December 1968.

Roger Schank, AIM-83

A Conceptual Dependency Representation
for a Computer Oriented Semantics,

Ph.D. Thesis in Linguistics, University of
Texas,

March 1969.
Pierre Vicens, AIM-85
Aspects of Speech Recognition by
Computer,

Ph.D. Thesis in Computer Science,
March 1969.

Victor D. Scheinman, AIM-92
Design of Computer Controlled
-Manipulator,

Eng. Thesis in Mechanical Engineering,

June 1969.

Claude Cordell Green, AIM-96
The Application of Theorem Proving to
Question-answering System,

Ph.D. Thesis in Electrical Engineering,
August 19609.



50

James J. Horning, . AIM-98
A Study of Grammatical Inference,
Ph.D. Thesis in Computer Science,

August 1969.

Michael E. Kahn, AIM- 106
The Near-minimum-time Control of Open-
loop Articulated Kinematic Chains,

Ph.D. Thesis in Mechanical Engineering,
December 1969.

Irwin Sobel, AIM-121
Camera Models and Machine Perception,
Ph.D. Thesis in Electrical Engineering,

May 1970.
Michael D. Kelly, AIM- 130
Visual Identification of People by
Computer,

Ph.D. Thesis in Computer Science,

July 1970.

Gilbert Falk, AIM-132
Computer Interpretation of Imperfect Line
Data as a Three-dimensional Scene,

Ph.D. Thesis in Electrical Engineering,
August 1970.

Jay Martin Tenenbaum, AIM- 134
Accommodation in Computer Vision,

Ph.D. Thesis in Electrical Engineering,
September 1970.

Lynn H. Quam, AIM- 144
Com pu ter Com parison of Pictures,

Ph.D. Thesis in Computer Science,

May 1971.

Robert E. Kling, AIM- 147

Reasoning by Analogy with Applications
to Heuristic Problem Solving: a Case Study,
Ph.D. Thesis in Computer Science,

August- 1971.

Rodney Albert Schmidt, AIM- 149
A Study of the Real-time Control of a

Corn puter-driven Vehicle,

Ph.D. Thesis in Electrical Engineering,
August 1971.

THESES

Jonathan Leonard Ryder, AIM-155
Heuristic Analysis of Large Trees as
Generated in the Game of Co,

Ph.D. Thesis in Computer Science,

December 197 1.

Jean M. Cadiou, AIM- 163
Recursive Definitions of Partial Functions
and their Computations,

Ph.D. Thesis in Computer Science,

April 1972.

Gerald Jacob Agin, AIM-173
Representation and Description of Curved
Objects,

Ph.D. Thesis in Computer Science,
October 1972.

Francis Lockwood Morris, AIM- 174
Correctness of Translations of
Programming Languages -- an Algebraic
Approach,

Ph.D. Thesis in Computer Science,

August 1972.

Richard Paul, AIM-177
Modelling, Trajectory Calculation and
Servoing of a Computer Controlled Arm,

Ph.D. Thesis in Computer Science,
November 1972.

Aharon Gill, AIM-178
Visual Feedback and Related Problems in
Computer Controlled Hand Eye
Coordination,

Ph.D. Thesis in Electrical Engineering,
October 1972.

Ruzena Bajcsy, AIM- 180
Computer Identification of Textured

Visiual Scenes,

Ph.D. Thesis in Computer Science,

October 1972.

Ashok Chandra, AIM- 188
On the Properties and Applications of
Programming Schemas,

Ph.D. Thesis in Computer Science,

March 1973.



THESES

Gunnar Rutger Grape, AIM-204
Model Based (Intermediate Level) Computer
Vision,

Ph.D. Thesis in Computer Science,

May 1973.

Yoram Y aklmovsky, AIM-209
Scene Analysis Using a Semantic Base far
Region Growing,

Ph.D. Thesis in Computer Science,

July 1973.

51



Hx



Appendix C

FILM REPORTS

Prints of the following films are available for
short-term loan to interested groups without
charge. They may be shown only to groups
that have paid no admission fee. To make a
reservation, write to:

Film Services

Artificial Intelligence Lab.

Stanford University

Stanford, California 94305

Alternatively, prints may be purchased at
cost (typically $30 to $50) from:

Cine-Chrome Laboratories

4075 Transport St.

Palo Alto, California

(415) 321-5678

1. Art Eisenson and Gary Feldman, Ellis D.
Kroptechev and Zeus, his Marvelous
-Time-sharing System, 16mm B&W with
sound, 15 minutes, March 1967.

The advantages of time-sharing over
standard batch processing are revealed
through the good offices of the Zeus time-
sharing system on a PDP-1 computer. Our
hero, Ellis, is saved from a fate worse than
death. Recommended for mature audiences
only.

2. Gary Feldman, Butterfinger, 16mm color
with sound, 8 minutes, March 1968. .

Describes the state of the hand-eye system at
the Artificial Intelligence Project in the fall of
1967. The PDP-6 computer getting visual
information from a television camera and
con trolling an electrical-mechanical arm
solves simple tasks involving stacking blocks.
The techniques of recognizing the blocks and
their positions as well as controlling the arm
are briefly presented. Rated G.

finding and

53

3. Raj Reddy, Dave Espar and Art Eisenson,
Hear Here, 16mm color with sound, 15
minutes, March 1969.

Describes the state of the speech recognition
project as of Spring, 1969. A discussion of
the problems of speech recognition is
followed by two real time demonstrations of
the current system. The first shows the
computer learning to recognize phrases and
second shows how the hand-eye system may
be con trolled by voice  commands.
Commands as complicated as ‘Pick up the
small block in the lower lefthand corner’, are
recognized and the tasks are carried out by
the computer controlled arm.

4. Gary Feldman and Donald Peiper, Avoid,
16mm silent, color, 5 minutes, March
1969.

Reports on a computer program written by
D. Peiper for his Ph.D. Thesis. The
problem is to move the computer controlled
electro-mechanical arm through a space filled
with one or more known obstacles. T h e
program uses heuristics for finding a safe
path; the film demonstrates the arm as it
moves through various cluttered
environments with fairly good success.

5. Richard Paul and Karl Pingle, Instant
Insanity, 16mm color, silent, 6 minutes,
August, 1971.

Shows the hand/eye system solving the
puzzle Instant Insanity. Sequences include
recognizing  cubes, color
recognition and object manipulation. This
film was made to accompany a paper
presented at the 1971 International Joint
Conference on Artificial Intelligence in
London and may be hard to understand
without a narrator.




54

6. Suzanne Kandra, Motion and Vision,
16mm color, sound, 22 minutes,
November 1972.

A technical presentation of three research
projects completed in 1972: advanced arm
control by R. P. Paul [AIM-177), visual
feedback control by A. Gill [AIM-1781, and
representation and description of curved
objects by G. Agin [AIM- 173].

7. Larry Ward, Computer Interactive
Picture Processing, (MARS Project),
16mm color, sound, 8 min., Fall 1972.

This film describes an automated picture
differencing technique for analyzing the
variable surface features on Mars using data
returned by the Mariner 9 spacecraft. The
system uses a time-shared, terminal oriented
PDP- 10 computer. The film proceeds at a
breath less pace. Don’t blink, or you will miss
an entire scene.

8. Richard Paul and Karl Pingle,
Automated Pump Assembly, 16mm
color, silent (runs at sound speed!), 7
minutes, April, 1973.

Shows the hand-eye system assembling a
simple pump, using vision to locate the pump
body and to check for errors. The parts are
assembled and screws inserted, using some
special tools designed for the arm. Some
titles are included to help explain the film.

9. Terry. Winograd, Dialog with a robot,
16mm black and white, silent, 20 minutes,
(made at MIT), 1971.

Presents a natural language dialog with a
simulated robot block-manipulation system.
The dialog is substantially the same as that
in Understanding Natural Language (T.
Winograd, Academic Press, 1972). No
exptanatory or narrative material is on the
film.

FILM REPORTS



Appendix D

EXTERNAL PUBLICATIONS

Articles and books by Project members are
listed here alphabetically by lead author.
Only publications following the individual’s
affiliation with the Project are given.

1. Agin, Gerald J., Thomas 0. Binford,
Computer Description of Curved
Objects, Proceedings of the T hird
International Joint Conference on
Artificial Intelligence, Stanford
University, August 1973.

2. Allen, John, David Luckham, An
Interactive Theorem-Proving Program
in Bernard Meltzer and Donald Michie
(eds.), Machine Intelligence 5, Edinburgh
University Press, 1970.

3. Ashcroft, Edward, Zohar Manna,
Formalization of Properties of Parallel
Programs, Machine Intelligence 6,
Edinburgh Univ. Press, 1971.

4. Ashcroft, Edward, Zohar Manna, The
Translation of ‘Go To’ Programs to
‘While’ Programs, Proc. IFIP Congress
1571.

5. Ashcroft, Edward, Zohar Manna, Amir
Pnueli, Decidable Properties of Monedic
Functional Schemas, J ACM, July 1973.

6. Bajcsy, Ruzena, Computer Description
of Textured Scenes, Proc.T hird ht.
Joint Con.. on Artificial Intelligence,
Stanford U., 1973.

~

. Beauchamp, James, H. Van Foerster
(eds.), Music by Computers, John Wiley,
New York, 1969.

55

8. Becker, Joseph, The Modeling of Simple
Analogic and Inductive Processes ina
Semantic Memory System, Proc.
International Con.. on Artificial
Intelligence, Washington, D.C., 1969.

9. Biermann, Alan, Jerome Feldman, On the
Synthesis of Finite-state Machines from
Samples of Their Behavior, [IEEE
Transactions on Computers, Vol. C-21,
No. 6, pp. 592-596, June 1972.

10. Biermann, Alan, On the Inference of
Turing Machines from Sample
Computations, Artificial Intelligence J.,
-Vol. 3, No. 3, Fall 1972.

11. Binford, Thomas O., Sensor Systems
for Manipulation, in E. Heer (Ed.),
Remotely Manned Systems, Galif. Inst. of
Technology, 1973.

12. Binford, Thomas, Jay M. Tenenbaum,
Computer Vision, Computer (IEEE),
May 1973.

13. Bracci, Ciampio, Marco Somalvico, An
Interactive Software System for
Computer-aided Design: An Application
to Circuit Project, Comm. ACM,
September 1970.

14: Buchanan, Bruce, Georgia Sutherland,
Heuristic Dendral: A Program for
Generating Hypotheses in Organic
Chemistry, in Donald Michie (ed.),

M achine Intelligence 4, American
Elsevier, New York, 1969.

15. Buchanan, Bruce, Georgia Sutherland,
Edward Feigenbaum, Rediscovering
some Problems of Artificial Intelligence
in the Context of Organic Chemistry,
in Bernard Meltzer and Donald Michie
(eds), M achine Intelligence 5, Edin burgh
University Press, 1970.



56

16. Buchanan, Bruce, T. Headrick, Some
Speculation about Artificial Intelligence
and Legal Reasoning, Stanford Law
Review, November 1970.

17. Buchanan, Bruce, A. M. Duffield, A. V.
Robertson, An Application of Artificial
Intelligence to the Interpretation of
Mass Spectra, in Mass Spectrometry
Techniques and Appliances, George W.
Milne (ed), John Wiley & Sons, 1971.

18. Buchanan, Bruce, Edward Feigenbaum,
Joshua Lederberg, A Heuristic
Programming Study of Theory
Formation in Science, Proc. Second
International Joint Conference on Arijicial
Intelligence (21 JCAl), British Computer
Society, Sept. 197 1.

19. Buchanan, Bruce, Joshua Lederberg,
The Heuristic DENDRAL Program for
Explaining Empirical Data, Proc.IFIP
Congress 1971.

20. Buchanan, Bruce, E. A. Feigenbaum,
and N. S. Sridharan, Heuristic Theory
Formation: Data Interpretation and
Rule Formation, in Machine intelligence
7, Edinburgh University Press, 1972.

21. Buchanan, Bruce C., Review of Hubert
Dreyfus’ “What Computers Can’t Do’: A
Critique of Artificial Reason, Computing
Review, January 1973.

22. Buchanan, Bruce, N. S. Sridharan,
Analysis of Behavior of Chemical
Molecules: Rule Formation on Non-
Homogeneous Classes of Objects,
Proceedings of the Third International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

23. Buchs, A., A. Delfino, A. Duffield, C.
Djerassi, B. Buchanan, E. Feigenbaum,
J. Lederberg, Applications of Artificial
Intelligence for Chemical Inference VI.

24.

EXTERNAL PUBLICATIONS

Approach to a General Method of
Interpreting Low Resolution Mass
Spectra with a Computer, Helvetica
Chemica Acta, 53:6, 1970.

Buchs, A., A. Duffield, G. Schroll, Carl
Djerassi, A. Delfino, Bruce Buchanan,
Georgia Sutherland, Edward
Feigenbaum, Joshua Lederberg,
Applications of Artificial Intelligence
for Chemical Inference IV. Saturated
Amines Diagnosed by their Low
Resolution Mass Spectra and Nuclear
Magnetic Resonance Spectra, J Amer.

_Chem. Soc.,92:23, November 1970.

25.

26.

27.

28.

29.

Cadiou, Jean M., Zohar Manna,
Recursive Definitions of Partial
Functions and their Computations,
ACM SIGPLAN Notices, Vol. 7, No. 1,
January 1972.

Campbell, John, Algebraic
Computatiou of Radiative Corrections
for Electron-Proton Scattering, Nuclear
Physics, Vol. B1, pp. 238-300, 1967.

Campbell, Anthony Hearn and J. A.,
Symbolic Analysis of Feynman
Diagrams by Computer, Journal of
Computational Physics 5, 280-327, 1970.

Chowning, John M., The Simulation of
Moving Sound Sources, Proc. Audio
Engineering Soc. Convention, May 1970.

Chowning, John M., The Synthesis of
Complex Audio Spectra by means of
Frequency Modulation, /. Audio
Engineering Society, September 1973.

30. Churchman, C., Bruce Buchanan, On

the Design of Inductive Systems: Some
Philosophical Problems, British Journal
for the Philosophy of Science, 20, 1969, pp.
31 1-323.



EXTERNAL PUBLICATIONS

31.

32.

33.

34.

35.

36.

37.

38.

Colby, Kenneth, David Smith, Dialogues
between Humans and Artificial Belief
Systems, Proc. International Conference
on Artificial Intelligence, Washington,
D.C., 1969.

Colby, Kenneth, Larry Tesler, Horace
Enea, Experiments with a Search
Algorithm for the Data Base of a
Human Belief System, Proc.
International Conference on Artificial
Intelligence, Washington, D.C., 1969.

Colby, Kenneth Mark, The Rationale
for Computer-Based Treatment of
Language Difficulties in Nonspeaking
Autistic Children, Journal of Autism and
Childhood Schizophrenia, Vol. 3, 254-260,
1970.

Colby, Kenneth, Mind and Brain Again,
Mathematical Biosciences, Vol. 11, 47-52,
1970.

Colby, Kenneth, Sylvia Weber, Franklin

"Hilf, Artificial Paranoia, /. Arz. ht., Vol.

2, No. 1, 1971.

Colby, Kenneth, F. Hilf, S. Weber, H. C.
Kraemer, Turing-like
Indistinguishability Tests for the
Validatiou of a Computer Simulation
of Paranoid Processes, A rtijcial
Intelligence J., Vol. 3, No. 3, Fall 1972.

Colby, Kenneth M., The Rationale for
Com pu ter-based Treatment of
Language Difficulties in Nonspeaking
Autistic Children, Journal of Autism and
Childhood Schizophrenia, Vol. 3, 254-260,
1973.

Dobrotin, Boris M., Victor D.
Scheinman, Design of a Computer
C&trolled Manipulator for Robot
Research, Proc. Third Int. Joint Conf. on
Artijcial Intelligence, Stanford U., 1973.

39.

40.

41.

42.

43.

44.

45.

46.

57

Duffield, Alan, A. Robertson, Carl
Djerassi, Bruce Buchanan, G.

Sutherland, Edward Feigenbaum, Joshua
Lederberg, Application of Artificial
Intelligence for Chemical Interference
II. Interpretation of Low Resolution
Mass Spectra of Ketones, J. Amer.
Chem.Soc.,91: 1 1, May 1969.

Enea, Horace, Kenneth Mark Colby,
Idiolectic Language-Analysis for
Understanding Doctor-Patient
Dialogues, Proceedings of the Third
International Joint Conference on
Artificial Intelligence, Stanford
University, August 1973.

Falk, Gilbert, Scene Analysis Based on
Imperfect Edge Data, Proc.21 JCAl,
Brit. Comp. Soc., Sept. 1971.

Falk, Gilbert, Interpretation of
Imperfect Line Data as a Three-
dimensional Scene, Artificial Intelligence
J» Vol. 3, No. 2, 1972.

Feigenbaum, Edward, Information
Processing and Memory, in Proc. Fifth
Berkeley Symposium on M athematical
Statistics and Probability, Vol. 4, U.C.
Press, Berkeley, 1967.

Feigenbaum, Edward, Joshua Lederberg,
Bruce Buchanan, Heuristic Dendral,
Proc. International Conference on System
Sciences, University of Hawaii and IEEE,
University of Hawaii Press, 1968.

Feigenbaum, Edward, Artificial
Intelligence: Themes in the Second
Decade, Proc. IF1P Congress, 1968.

Feigenbaum, Edward, Bruce Buchanan,
Joshua Lederberg, On Generality and
Problem Solving: A Case Study using
the DENDRAL Program, Machine
Intelligence 6, Edinburgh Univ. Press,
1971.



47. Feldman, Jerome, D. Cries, Translator
Writing Systems, Comm. ACM, February
1968.

48. Feldman, Jerome, P. Rovner, The Leap
Language Data Structure, Proc./FIP
Congress, 1968.

49. Feldman, Jerome, Machine Intelligence,
review of Numbers I-II of the Machine
Intelligence series, /nformation and
Control, 14, 490-492, 1969.

50. Feldman, Jerome, Towards Automatic
Program ming, Preprints of NATO
Software Engineering Conference, Rome,
Italy, 1969. -

5 1. Feldman, Jerome, Paul Rovner, An
Algol-based Associative Language,
Comm. ACM, August 1969.

52. Feldman, Jerome, Gary Feldman, G.
Falk, Gunnar Grape, J. Pearlman, I.

" Sobel, and J. Tenenbaum, The Stanford
Hand-Eye Project, Proc.International
Conf. on Artificial Intelligence,
Washington, D.C., 1969.

53. Feldman, Jerome, Getting a Computer
to See Simple Scenes, IEEE Student
Journal, Sept. 1970.

54. Feldman, Jerome, Alan Bierman, A
Survey of Grammatical Inference, Proc.
International Congress on Pattern
Recognition, Honolulu, January 1971, also
in S, Watanbe (ed.), Frontiers of Pattern
Recognition, Academic Press, 1972.

55. Feldman, Jerome, Robert Sproull,
System Support for the Stanford Hand-
eye System, Proc. 21 JCAl, Brit. Comp.
Soc., Sept. 1971.

56. Feldman, Jerome, et al, The Use of
Visionand Manipulation to Solve the
‘Instant Insanity Puzzle, Proc.21JCAl,
Brit. Comp. Soc., Sept. 1971.

57.

38.

59.

60.

61.

62.

63.

64.

65.

66.

EXTERNAL PUBLICATIONS

Feldman, Jerome, Some Decidability
Results onGramimatical Inference and
Complexity, Information and Control,
Vol. 20, No. 3, pp. 243-262, April 1972.

Feldman, Jerome, ]. Low, D. Swinehart,
R. Taylor, Recent Developments in
SAIL, an ALGOL-based language for
Artificial Intelligence, Proc. Fall Joint
Computer Conference, 1972.

Floyd, Robert, Toward Interactive
Design of Correct Programs, Proc./F 1P
Congress 1971.

Garland, Stephan ], David Luckham,
Translating Recursive Schemes into
Program Schemes, ACM SIGPLAN
Notices, Vol. 7, No. 1, January 1972.

Garland, Stephan J.,David C. Luckham,
Program Schemes, Recursion Schemes,

and Formal Languages, J Computer and
System Sciences, Vol. 7, No. 2, April 1973.

Gips, James, A New Reversible Figure,
Perceptual & Motor Skills, 34, 306, 1972.

Goodman, Joseph, Digital Image
Formation from Electronically Detected
Holograms, Applied P Aysics Letters,
August 1967.

Goodman, Joseph, Digital Image
Formation from Electronically Detected
Holograms, in Proc.SPIE Seminar on
Digital Imaging Techniques, Soc.P hoto-
Optical Instrumentation Engineering,
Redondo Beach, California, 1967.

Gruen, Richard, William Wether, Rapid
Program Generation, Proc. DECUS
Symposium, Fall 1968.

Hearn, Anthony, Computation of
Algebraic Properties of Elementary
Particle Reactions Using a Digital
Computer, Comm. ACM, 9, pp. 573-577,
August, 1966.



EXTERNAL PUBLICATIONS

67.

68.

69.

70.

Hearn, Anthony, REDUCE, A User-
Oriented Interactive System for
Algebraic Simplification, Proc. ACM
Symposium on Interactive Systems for
Experimentai Applied M athematics,
August 1967.

Hearn, Anthony, The Problem of
Substitution, Proc. IBM Summer
Institute on Symbolic M athematics by
Computer, July 1968.

Heal-n, Anthony, Applications of
Symbol Manipulation in Theoretical
Physics, Comm. ACM, August 1971.

Hilf, Franklin, Kenneth Colby, David
Smith, W. Wittner, William Hall,
Machine-Mediated Interviewing, J.

Nervous & Mental Disease, Vol. 152, No.

4,1971.

7 1. Hilf, Franklin, Non-Nonverbal

Communication and Psychiatric
Research, Archives of General Psychiatry,

" Vol. 27, November 1972.

72.

73.

74.

75.

76.

Hilf, Franklin, Partially Automated
Psychiatric Research Tool, /. Nervous
and M ental Disease, Vol. 155, No. 6,
December 1972.

Hueckel, Manfred, An Operator which
Locates Edges in Digitized Pictures,
JACM, January 1971.

Hueckel, Manfred H., A Local Visual
Operator which Recognizes Edges and
Lines, /. ACM, October 1973.

Ito, T., Note on a Class of Statistical
Recognition Functions, IEEE Trans.
Computers, January 1969.

Kahn, Michael, Bernard Roth, The
Near-minimum-time Control of Open-
loop Articulated Kinematic Chains,
Trans. ASME, Sept. 1971.

77.

78.

79.

80.

81

82.

83.

84.

85.

86.

59

Kaplan, Donald, Some Completeness
Results in the Mathematical Theory of
Computation, ACM Journal, January
1968.

Kaplan, Donald, Regular Expressions
and the Completeness of Programs, /.
Comp.& System Sci., Vol. 3, No. 4, 1969.

Katz, Shmuel, Zohar Manna, A
Heuristic Approach to Program
Verification, Proceedings of the Third
International Joint Conference on
Artificial Intelligence, Stanford
University, August 1973.

Kieburtz, Richard B., David Luckham,
Compatibility and Complexity of
Refinements of the Resolution
Principal, SIAM J.Computr., 1972.

Kieburtt, Richard, David Luckham,
Com patability and Complexity of
Refinements of the Resolution
Principle, SIAM J.on Computing, 1-4,
1973.

Kling, Robert, A Paradigm for
Reasoning by Analogy, Proc. 21 JCAl,
Brit. Comp. Soc., Sept. 1971.

Knuth, Donald E., The Art of Computer
Programming, Vol. 2, Seminumerical
Algorithms, Addison-Wesley, Menlo Park,
Calif., 1969.

Knuth, Donald E., An Empirical Study
of FORTRAN Programs, Software --
Practice and Experience, Vol. 1, 105- 133,
1971.

Knuth, Donald E., Ancient Babylonian
Algorithms, Comm. ACM, July 1972.

Knuth, Donald E., The Art of Computer
Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, Menlo Park,
Calif., 1973.



60

87. Lederberg, Joshua, Hamilton Circuits

of Convex Trivalent Polyhedra,
American M athematical M onthly 74, 522,
May 1967.

88. Lederberg, Joshua, Edward Feigenbaum,

Mechanization of Inductive Inference
in Organic Chemistry, in B. Kleinmuntz
(ed.), Formal Representation of Human
Judgment, John Wiley, New York, 1968.

89. Lederberg, Joshua, Topology of

Organic Molecules, National Academy of
Science, The M athematical Sciences: a
Collection of Essays, MIT Press,
Cambridge, 1969.

90. Lederberg, Joshua, Georgia Sutherland,

9

Bruce Buchanan, Edward Feigenbaum,
A. Robertson, A. Duffield, Carl Djerassi,
Applications of Artificial Intelligence
for Chemical Inference I. The Number
of Possible Organic Compounds:
Acyclic Structures Containing C, H, 0,

“and N, /. Amer. Chem.Soc., 91:11, May
1969.

1. Lederberg, Joshua, Georgia Sutherland,
Bruce Buchanan, Edward Feigenbaum, A
Heuristic Program for Solving a
Scientific Iufereuce Problem: Summary
of Motivationand Implementation, in
M. Mesarovic (ed.), Theoretical
Approaches to Non-numerical Problem
Solving, Springer-Verlag, New York,
1970.

92. London, Ralph, Cerrectness of a

Compiler for a LISP Subset, ACM
SIGPLAN Notices, Vol. 7, No. 1,
January 1972.

93. Luck-ham, David, Refinement Theorems

in ‘Resolution Theory, Proc.]198IRIA
Symposium in Automatic Deduction,
Versailles, France, Springer-Verlag, 1970.

EXTERNAL PUBLICATIONS

94. Luckham, David, D. Park and M.
Paterson, On Fortnalised Computer
Programs, J.Comp.& System Sci., Vol.
4, No. 3, June 1970.

95. Luckham, David, Nils Nilsson,
Extracting Information from
Resolutioii Proof Trees, Artificial
Intelligence Journal, Vol. 2, No. 1, pp.
27-54,. June 1971.

96. Luckham, David C., Automatic
Problem Solving, Proceedings of the
Third International Joint Conference on
Artificial Intelligence, Stanford
-University, August 1973.

97. Manna, Zohar, Properties of Programs
and the First Order Predicate Calculus,
J-ACM, Vol. 16, No. 2, April 1969.

98. Manna, Zohar, The Correctness of
Programs, /. System and Computer
Sciences, Vol. 3, No. 2, May 19609.

99. Manna, Zohar, John McCarthy,
Properties of Programs and Partial
Function Logic in Bernard Meltzer and
Donald Michie (eds.), Machine
Intelligence 5, Edinburgh University
Press, 1970.

100. Manna, Zohar, The Correctness of
Non-Deterministic Programs, Artificial
Intelligence Journal, Vol. 1, No. 1, 1970.

101. Manna, Zohar, Termination of
Algorithms Represented as Interpreted
Graphs, AFIPS Conference Proc.(S JCC),
Vol. 36, 1970.

102. Manna, Zohar, Second-order
Mathematical Theory of Computation,
Proc. ACM Symposium on T heory of
Computing, May 1970.



EXTERNAL PUBLICATIONS

102. Manna, Zohar, Amir Pnueli,
Formalization of Properties of
Functional Programs, /. ACM, Vol. 17,
No. 3 July 1970.

104. Manna, Zohar, R. Waldinger, Toward
Automatic Program Synthesis, Comm.
ACM, March 1971.

105, Manna, Zohar, Mathematical Theory

of Partial Correctness, J. Comp. & Sys.

Sci., June 1971.

106. Manna, Zohar, S. Ness, J. Vuillemin,
Inductive Methods for Proving
Properties of Programs, ACM
SIGP LA N Notices, Vol. 7, No. 4,
January 1972.

107. Manna, Zohar, J. Vuillemin, Fixpoint
Approach to the Theory of
Computation, Comm. ACM, July 1972.

108. Manna, Zohar, Program Schemas, in
Currents in the Theory of Computing (A.
V. Aho, Ed.), Prentice-Hall, Englewood
Cliffs, N. J., 1973.

109. Manna, Zohar, Stephen Ness, Jean
Vuillemin, Inductive Methods for
Proving Properties of Programs, Comm.
ACM, August 1973.

110. Manna, Zohar, Autotnatic
Programming, Proceedings of the Third
International Joint Conference on
Artificial Intelligence, Stanford
University, August [973.

11 1. Manna, Zohar, Introduction to
Mathematical Theory of Computation,
McGraw-Hill, New York, 1974.

112. McCarthy, John, Towards a
Mathematical Theory of Computation,
in Proc. IFIP Congress 62, North-
Holland, Amsterdam, 1963.

61

113. McCarthy, John, A Basis for a
Mathematical Theory of Computation,
in P. Biaffort and D. Hershberg (eds.),
Computer Programming and Formal
Systems, North-Holland, Amsterdam,
1963.

114. McCarthy, John, S. Boilen, E. Fredkin,
J.C.R. Licklider, A Time-Sharing
Debugging System for a Small
Computer, Proc. A FIPS Conf. (S JCC),
Vol. 23, 1963.

115. McCarthy, John, F. Corbato, M.
Daggett, The Linking Segment
Subprogram Language and Linking
Loader Program ming Languages, Comm.
ACM, July 1963.

116. McCarthy, John, Problems in the
Theory of Computation, Proc./F 1P
Congress 1965.

117. McCarthy, John, Time-Sharing
Computer Systems, in W. Orr (ed.),
Conversational Computers, Wiley, 1966.

118. McCarthy, John, A Formal
Description of a Subset of Algol, in T.
Steele (ed.), Formal Language Description
Languages for Computer Programming,
North-Holland, Amsterdam, 1966.

119. McCarthy, John, Information,
Scientific American, September 1966.

120. McCarthy, John, Computer Control of
a Hand and Eye, in Proc. Third AU-
Union Conference on Automatic Control
(Technical Cybernetics), Nauka, Moscow,
1967 (Russian).

121. McCarthy, John, D. Brian, G. Feldman,
and J. Allen, THOR -- A Display Based
Time-Sharing System, Proc. AFIPS
Conf. (FICC), Vol. 30, Thompson,
Washington, D.C., 1967.



62

122. McCarthy, John, James Painter,
Correctness of a Conipiler for
Arithmetic Expressions, Amer. Math.
Soc., Proc. Symposia in Applied Math.,
Math. Aspects of Computer Science, New
York, 1967.

123. McCarthy, John, Programs with
Common Sense, in Marvin Minsky (ed.),
Semantic Information Processing, MIT
Press, Cambridge, 1968.

124. McCarthy, John, Lester Earnest, D.
Raj. Reddy, Pierre Vicens, A Computer
with Hands, Eyes, and Ears, Proc.
AFIPS Conf. (FICC), 1968.

125. McCarthy, John, Patrick Hayes, Some
Philosophical Problems from the
Standpoin t of Artificial Intelligence, in
Donald Michie (ed.), Machine Intelligence
4, American Elsevier, New York, 1969.

126. Milner, Robin, An Algebraic
Definition of Simulation between
Programs, Proc.21]CAl, Brit. Comp.
Soc,, Sept. 197 1.

127. Milner, Robin, Implementatiion and
Application of Scott’s Logic for
Computable Functions, ACM SIGPLAN
NOTICES, Vol. 7, No. 1, January 1972.

128. Milner, Robin, Richard Weyhrauch,
Proving Compiler Correctness in a
Mechanized Logic, Machine Intelligence
7, Edinburgh University Press, 1972.

129. Montanari, Ugo, Continuous Skeletons
from Digitized Images, JACM, October
1969.

130. Montanari, Ugo, A Note on Minimal
Length Polygonal Approximation to a
Digitized Contour, Comm. ACM, January
1970.

EXTERNAL PUBLICATIONS

131. Montanari, Ugo, OnLimit Properties
in Digitization Schemes, JACM, April
1970.

132. Moncanari, Ugo, Separable Crap hs,
Planar Graphs and Web Grammars,
Information and Control, M ay 1970.

133. Montanari, Ugo, Heuristically Guided
Search and Chromosome Matching, /.
Artificial Intelligence, Vol. 1, No. 4,
December 1970.

134. Montanari, Ugo, On the Optimal
- Detection of Curves in Noisy Pictures,
Comm. ACM, May 1971.

135. Moorer, James A., Dual Processing for
the PDP-6/10, Decuscope, Vol. 8, No. 3,
1969.

136. Moorer, James A., Music and
Computer Composition, Comm. ACM,
January 1972.

137. Nevatia, Ramakant, Thomas 0.
Binford, Structured Descriptions of
Complex Objects, Proceedings of the
Third International Joint Conference on
Artificial Intelligence, Stan ford
University, August 1973.

138. Nilsson, Nils, Problem-solving M ethods
in Artificial Intellegence, McGraw-Hill,
New York, 1971.

139, Paul, Richard, G. Falk, Jerome
Feldman, The Computer Representation
of Simply Described Scenes, Proc. 2nd
lllinois Graphics Conference, Univ.
Illinois, April 1969.

140. Paul, Richard, Gilbert Falk, Jerome
Feldman, The Computer Description of
Simply Described Scenes, in Pertinent
Concepts in Computer Graphics, J.
Neivergelt and M. Faiman (eds.), U.
Illinois Press, 1969.



EXTERNAL PUBLICATIONS

141. Paul, Richard, Trajectory Control of a
Computer Arm,Proc. 21 JCAl, Brit.
Comp. Soc., Sept. 197 1.

142. Pingle, Karl, J. Singer, and W.
Wichman, Computer Control of a
Mechanical Arm through Visual Input,
Proc.IF1P Congress 1968, 1968.

143. Pingle, Karl, Visual Perception by a
Computer, Automatic Interpretation and
Classijcation of Images, Academic Press,
New York, 1970.

144. Pingle, Karl, J. Tenenbaum, An
Accomodating Edge Follower, Proc.
21 JCAl, Brit. Comp. Soc., Sept. 1971.

145. Quam, Lynn, Robert Tucker, Botond
Eross, J. Veverka and Carl Sagan,
Mariner 9 Picture Differencing at
Stanford, Sky and Telescope, August
1973.

146. Reddy, D. Raj., Segmentation of
" Speech Sounds, J. Acoust. Soc. Amer.,
August 1966.

147. Reddy, D. Raj., Phoneme Grouping for
Speech Recognition, J. A coust. Soc.
Amer., May 1967.

148. Reddy, D. Raj., Pitch Period
Determination of Speech Sounds, Comm.
ACM, June 1967.

149. Reddy, D. Raj., Computer Recognition
of Connected Speech, /. Acoust. Soc.
Amer., August 1967.

150. Reddy, D. Raj., Computer
Transcription of Phonemic Symbols, J.
Acoust. Soc. Amer., August 1968.

15 1. Reddy, D. Raj., Consonantal
Clustering and Connected Speech
Recognition, Proc. Sixth International
Congress on Acoustics, Vol. 2, pp. C-57 to
C-60, Tokyo, 1968.

63

152. Reddy, D. Raj., Ann Robinson,
Phoneme-to-Grapheme Translation of
English, /EEE Trans. Audio and
Electyoacoustics, June 1968.

153. Reddy, D. Raj., Pierre Vicens,
Procedure for Segmentation of
Connected Speech, /. Audio Eng. Soc.,
October 1968.

154. Roth, Bernard, Design, Kinematics,
and Contral of Computer-controlled
Manipulators, Proc. 6th All Union
Conference on New Problems in Theory of
Machines & M echanics, Leningrad, Jan.

- 1971,

155. Sagan, Carl, ]. Lederberg, E. Levinthal,
L. Quam, R. Tucker, et al, Variable
Features on Mars: Preliminary Mariner
9 Television Results, Icarus 17, pages
346-372, 1972.

156. Samuel, Arthur, Studies inMachine
Learning Using the Game of Checkers,
II-Recent Progress, IBM journal,
November 1967.

157. Schank, Roger, Larry Tesler, A
Conceptual Parser for Natural
Language, Proc. International Joint
Conference on Artificial Intelligence,
Washington, D.C., 1969.

158. Schank, Roger, Finding the
Conceptual Content and Intention |
an Utterance in Natural Language
Conversation, Proc.21JCAl, Brit. Comp.
Soc,, 1971.

159. Schank, Roger, Conceptual
Dependency: a Theory of Natural
Language Understanding, Cognitive
Psychology, Vol 3, No. 4, 1972.

160. Schank, Roger C., Neil M. Goldman,
Theoretical Considerationsin Text
Processing, Conf.Proc. Computer Text



64

Processing and Scientific Research (1972),
O.N.R., Pasadena, Calif., March 1973.

161. Schank, Roger C., Neil Goldman,
Charles J. Rieger III, Chris Riesbeck,
MARGIE: Memory, Analysis, Response
Generation and Inference on English,
Proceedings of the T hird International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

162. Schank, Roger C., Kenneth Colby (eds),
Computer Models of Thought and
Language, W. H. Freeman, San
Francisco, 1973.

163. Schroll, G., A. Duffield, Carl Djerassi,
Bruce Buchanan, G. Sutherland,
Edward Feigenbaum, Joshua Lederberg,
Applications of Artificial Intelligence
for Chemical Inference III. Aliphatic
Ethers Diagnosed by Their Low
Resolution Mass Spectra and NMR
Data, J. Amer. Chem.Soc.,91:26,

" December 1969.

164. Sheikh, Y., A. Buchs, A Delfino, Bruce
Buchanan, G. Sutherland, Joshua
Lederberg, Applications of Artificial
Intelligence for Chemical Inference V.
An Approach to the Computer
Generation of Cyclic Structures.
Differentiation Between All the Possible
Isometric Ketones of Composition
C6H100, Organic Mass Spectrometry,
Vol. 4 pp.493-501, 1970.

165. Silvestri, Anthony, Joseph Goodman,
Digital Reconstruction of Holographic
Images, 1968 NEREM Record, IEEE,
Vol. 10, pp. 118-119. 1968.

166. Slagle, James, Carl Farrell,
Experiments in Automatic Learning
for a Multiputpose Heuristic Program,
Comm. ACM, February 1971.

EXTERNAL PUBLICATIONS

167. Smith, D. H., B. G. Buchanan, R. S.
Engelmore, A. M. Duffield, A. Yeo, E. A.
Feigenbaum, J. Lederberg, C. D jerassi,
Applicatioris of Artificial Intelligence
for Chemical Inference VIII. An
approach to the Computer
Iuterpretatiorr of the High Resolution
Mass Spectra of Complex Molecules.
Structure Elucidation of Estrogenic
Steroids, Journal of the American
Chemical Society, 94, 5962-597 1, 1972.

168. Smith, David Canfield, Horace J. Enea,
Backtracking in MLISP2, Proceedings of
_the Third International joint Conference
on Artificial Intelligence, Stanford
University, August 1973.

169. Smith, Leland, SCORE -- A Musician’s
Approach to Computer Music, J.Audio
Eng. Soc., Jan./Feb. 1972.

170. Smith, Leland, Editing and Printing
Music by Computer, J. Music Theory,
Fall 1973.

171. Sobel, Irwin, On Calibrating
Computer Controlled Cameras for
Perceiving 3-D Scenes, Proc. Third Int.
Joint Conf. on Artificial Intelligence,
Stanford U., 1973.

172. Sridharan, N., Search Strategies for
the Task of Organic Chemical
Synthesis, Proceedings of the Third
International Joint Conference on
Artificial Intelligence, Stanford
University, August 1973.

173. Sullivan, S. Brodsky and J., W-Boson
Contribution to the Anomalous
Magnetic Moment of the Muon, PAys
Rev 156, 1644, 1967.

174. Sutherland, Georgia, G. W. Evans, G.
F.W allace, Simulation V sing Digital
Computers, Prentice-Hall, Engelwood
Cliffs, N. J., 1967.



EXTERNAL PUBLICATIONS

175. Tenenbaum, Jay, et al, A Laboratory
for Hand-eye Research, Proc./FIP
Congress, 197 1.

176. Tesler, Larry, Horace Enea, Kenneth
Colby, A Directed Graph Represerrtation
for Computer Simulation of Belief
Systems, Math. Bio. 2, 1968.

177. Tesler, Lawrence G., Horace J. Enea,
David C. Smith, The LISP70 Pattern
Matching System, Proceedings of the
T hird International Joint Conference on
Artificial Intelligence, Stanford
University, August 1973.

1%. Waterman, Donald, Generalization
Learning Techniques for Automating
the Learning of Heuristics, J. A rtificial
Intelligence, Vol. 1, No. 1/2.

179. Weyhrauch, Richard, Robin Milner,
Program Sernautics and Correctnessin
a Mechanized Logic, Proc. USA -Japan
Computer Conference, Tokyo, 1972.

180. Wilkes, Yorick, Semantic
Considerations in Text Processing,
Conj. Proc. Computer Text Processing and
Scientific Research (1972), ON.R.,
Pasadena, Calif., March 1973.

181. Wilks, Yorick, The Stanford Machine
Translation and Understanding Project,
in Rustin (ed.) Natural Language
Processing, New York, 1973.

182. Wilks, Yorick, Understanding Without
Proofs, Proceedings of the T hird
international Joint Conference on
Artificial Intelligence, Stanford
University, August 1973.

183. Wilks, Yorick, Annette Herskovits, An
Intelligent Analyser and Generator of
Natural Language, Proc.Int.Conf. on
Computational Linguistics, Pisa, Italy,
Proceedings of the Third International

65

Joint Conference on Artificial intelligence,
Stanford University, August 1973.

184. Wilks, Yorick, An Artificial
Intelligence Approach to Machine
Translation, in Schank and Colby (eds.),
Computer M odels of Thought and
Language, W. H. Freeman, San
Francisco, 1973.

185. Yakimovsky, Yoram, Jerome A.
Feldman, A Semantics-Based Decision
Theoretic Region Analyzer, Proceedings
of the Third International Joint
Conference on Artificial Intelligence,

- Stanford University, August 1973.






Appendix E

A. I. MEMO ABSTRACTS

In the listing below, there are up to three
numbers given for each Artificial Intelligence
Memo: an “AIM” number on the left, a “CS”
(Computer Science) number in the middle,
and a NTIS stock number (often beginning
“AD...“) on the right. If there is no "" to the
left of the AIM number, then it is in stock at
Stanford at this writing and may be
requested from:

Documentation Services

Artificial Intelligence Laboratory

Stanford University

Stanford, California 94305

Alternatively, if there is an NTIS number
given, then the report may be ordered using
that number from:

National Technical Information Service

P. 0. Box 1553

Springfield, Virginia 22 15 1

If there is no NTIS number given then they
may or may not have the report. In
requesting copies in this case, give them both
the “AIM-" and “CS-nnn” numbers, with the
latter enlarged into the form "STAN-CS-yy-

nnn”, where "yy" is the last two digits of the
year of publication.

Memos that are also Ph.D. theses are so
marked below and may be ordered from:
University Microfilm
P. O. Box 1346
Ann Arbor, Michigan 48106

For people with access to the ARPA
Network, the texts of some A. I. Memos are
stored online in the Stanford A. L
Laboratory disk file. These are designated
below by “Diskfile: <file name>" appearing in
the header. See Appendix A for directions
on how to access such files.

67

AIM-1

John McCarthy,

Predicate Calculus with ‘Undefined’ as a
Truth-value,

5 pages, March 1963.

The use of predicate calculus in the
mathematical theory of computation and the
problems involved in interpreting their
values.

AIM-2

John McCarthy,

Situations, Actions, and Causal Laws,
11 pages, July 1963.

A formal theory is given concerning
situations, causality and the possibility and
effects of actions is given. The theory is
intended to be used by the Advice Taker, a
computer program that is to decide what to
do by reasoning. Some simple examples are
given of descriptions of situations and
deductions that certain goals can be
achieved.

AIM-3

Fred Safier,

‘The Mikado’ an an Advice Taker Problem,
4 pages, July 1963.

The situation of the Second Act of ‘The
Mikado’ is analyzed from the point of view
of Advice Taker formalism. This indicates
defects still present in the language.

*AIM -4

Horace Enea,

Clock Function for LISP 1.5,
2 pages, August 1963.

This paper describes a clock function for
LISP 1.5.



68

AIM-5

Horace Enea, Dean Wooldridge,
Algebraic Simplication,

2 pages, August 1963.

Herein described are proposed and effected
changes and additions to Steve Russell’s
Mark IV Simplify.

+AIM-6

Dean Wooldridge,
Non-printing Compiler,
2 pages, August 1963.

A short program which redefines parts of the
LISP 1.5 compiler and suppresses compiler
print out (at user’s option) is described.

AIM-7

John McCarthy,

Programs With Com mon Sense,
7 pages, September 1963.

Interesting ~ work is  being done in
programming computers to solve problems
which require a high degree of intelligence
in humans. However, certain elementary
verbal reaesoning processes so simple they
can be carried out by any non-feeble-minded
human have yet to be simulated by machine
programs.

This paper will discuss programs to
manipulate in a suitable formal language
(most likely a part of the predicate calculus)
common instrumental statements. The basic
program will draw immediate conclusions
from a list of premises. These conclusions
will be either declarative or imperative
sentences. When an imperative sentence is
deduced the program takes a corresponding
action. These actions may include printing
sentences, moving sentences on lists, and
reinitiating the basic deduction process on
these lists.

Facilities will be provided for communication
with humans in the system via manual

A. 1. MEMO ABSTRACTS

intervention and display devices connected to
the computer.

«AIM-8

John McCarthy,

Storage Conventions in LISP 2,
? pages, September 1963.

Storage conventions and a basic set of
functions for LISP 2 are proposed. Since the
memo was written, a way of supplementing
the features of this system with the unique
storage of list structure using a hash rule for
computing the address in a separate free
storage area for lists has been found.

*AIM -9

C. M. Williams,

Computing Estimates for the Number of
Bisections of an NxN Checkerboard for N
Even,

9 pages, December 1963.

This memo gives empirical justification for
the assumption that the number of bisections
of an NxN (N even) checkerboard is
approximately given by the binomial
coefficient (A, A/2) where 2A is the length of
the average bisecting cut.

AIM-10

Stephan R. Russell,

Improvements in LISP Debugging,
3 pages, December 1963.

Experience with  writing large LISP
progrrams and helping students learning
LISP suggests that spectacular improvements
can be made in this area. These
improvements are partly an elimination of
sloppy coding in LISP 1.5, but mostly an
elaboration of DEFINE, the push down list
backtrace, and the current tracing facility.
Experience suggests that these improvements
would reduce the number of computer runs
to debug a program a third to a half.



i

A. I. MEMO ABSTRACTS

AIM-I 1

Dean W oold ridge, Jr.,

An Algebraic Simplify Program in LISP,
57 pages, December 1963.

A program which performs ‘obvious’ (non-
controversial) simplifying transformations on
algebraic expressions (written in LISP prefix
notation) is described. Cancellation of
inverses and consolidation of sums and
products are the basic accomplishments of
the program; however, if the user desires to
do so, he may request the program to
perform special tasks, such as collect common
factors from the products in sums or expand
products.  Polynomials are handled by
routines which take advantage of the special
form by polynomials; in particular, division
(not cancellation) is always done in terms of
polynomials. The program (run on the IBM
7090) is slightly faster than a human;
however, the computer does not need to
check its work by repeating the simplification.

Although the program is usable -- no bugs
are known to exist -- it is by no means a
finished project. A rewriting of the simplify
system is anticipated; this will eliminate much
of the existing redundancy and other
inefficiency, as well as implement an identity-
recognizing scheme.

AIM-12

Gary Feldman,

Documentation of the MacMahon Squares
Problem,

4 pages, January 1964.

An exposition of the MacMahon Squares
problem together with some ‘theoretical’
results on the nature of its solutions and a
short discussion of an ALGOL program
which finds all solutions are contained
herein.

69

AIM- 13

Dean E. Wooldridge,

The New LISP System (LISP 1.55),
4 pages, February 1964.

The new LISP system is described.
Although differing only slightly it is thought
to be an improvement on the old system.

AIM-14

John McCarthy,

Computer Control of a Machine for
Exploring Mars,

6 pages, January 1964.

Landing a 5000 pound package on Mars that
would spend a year looking for life and
making other measurements has been
proposed. We believe that this machine
should be a stored program computer with
sense and motor organs and that the machine
should be mobile. We discuss the following
points:

1. Advantages of a computer controlled
system.

2. What the computer should be like.

3. What we can feasible do given the
present state of work on artificial
intelligence.

4. A plan for carrying out research in
computer controlled experiments that
will make the Mars machine as effective
as possible.

AIM- 15

Mark Finkelstein, Fred Safier,
Axiomatization and Implementation,
6 pages, June 1964.

An example of a typical Advice-Taker
axiomatization of a situation is given, and
the situation is programmed in LISP as an
indication of how the Advice-Taker could be
expected to react. The situation chosen is
the play of a hand of bridge.



70

AIM- 16

John McCarthy,

A Tough nut for Proof Procedures,
3 pages, July 1964.

It is well known to be impossible to tile with
dominoes a checkerboard with two opposite
corners deleted. This fact is readily stated in
the first order predicate calculus, but the
usual proof which involves a parity and
counting argument does not readily translate
into predicate calculus. We conjecture that
this problem will be very difficult for
programmed proof procedures.

AIM-17

John McCarthy,

Formal Description of the Game of Pang-
Ke,

2 pages, July 1964.

The game of Pang-Ke is formulated in a
first-order-logic in order to provide grist for
the Advice-Taker Mill. The memo does not
explain all the terms used.

AIM-18

Jan Hext,

An Expressiorr Input Routine for LISP,
5 pages, July 1964.

The expression input routine is a LISP
function, Mathread {] with associated
definitions, which reads in expressions such
as (A+3-F(X,Y,Z)). Its result is an equivalent
S-expression.  The syntax of allowable
expressions is given, but (unlike ALGOL’s) it
does not define the precedence of the
operators; nor does the program carry out
any explicit syntax analysis. Instead the
program parses the expression according to a
set of numerical precedence values, and
reports if it finds any symbol out of context.

A. I. MEMO ABSTRACTS

wAIM-19

Jan Hext,

Program ming Languages and Translation,
14 pages, August 1964.

A notation is suggested for defining the
syntax of a language in abstract form,
specifying only its semantic constituents. A
simple language is presented in this form
and its semantic definition given in terms of
these constituents. Methods are then
developed for translating this language, first
into LISP code and from there to machine
code, and for proving that the translation is
correct.

AIM-20

D. Raj. Reddy,

Source Language Optimization of For-
loops,

37 pages, August 1964.

Program execution time can be reduced, by a
considerable amount, by optimizing the ‘For-
loops’ of Algol programs. By judicious use
of index registers and by evaluating all the
sub-expressions whose values are not altered
within the ‘For-loop’, such optimization can
be achieved.

In this project we develop an algorithm to
optimize Algol programs in list-structure
form and generate a new source language
program, which contains the ‘desired contents
in the index registers’ as a part of the For-
clause of the For-statement and additional
statements  for  evaluating the  same
expressions outside the ‘For-loop’ This
optimization is performed only for the
innermost ‘For-loops’.

The program is written entirely in LISP.
Arrays may have any number of subscripts.
Further array declarations may have variable
dimensions. (Dynamic allocation of storage.)
The program does not try to optimize
arithmetic expressions. (This has already
been extensively investigated.)



A. I. MEMO ABSTRACTS

AIM-2 1

R. W. Mitchell,

LISP 2 Specifications Proposal,
12 pages, August 1964.

Specifications for a LISP 2 system are
proposed. The source language is basically
Algol 60 extended to include list processing,
input/output  and  language  extension
facilities. The system would be implemented
with a source language translator and
optimizer, the output of which could be
processed by either an interpreter or a
compiler. The implementation is specified
for a single address computer with particular
reference to an IBM 7090 where necessary .

Expected efficiency of the system for list
processing is significantly greater than the
LISP 1.5 compiler. For execution of numeric
algorithms  the systems should be be
comparable to many current “algebraic”
compilers. Some familiarity with LISP, 1.5
Algol and the IBM 7090 is assumed.

AIM-22

Richard Russell,

Kalah -- the Game and the Program,
13 pages, September 1964.

A description of Kalah and the Kalah
program, including sub-routine descriptions
and operating instructions.

AIM-23

Richard Russell,

Improvements to the Kalah Program
12 pages, September 1964.

Recent improvements to the Kalah program
are listed, and a proposal for speeding up the
program by a factor of three is discussed.

AIM-24

John McCarthy,

A Formal Description of a Subset of
ALGOL,

43 pages, September 1964.

71

We describe Microalgol, a trivial subset of
Algal, by means of an interpreter. The
notions of abstract syntax and of ‘state of the
computation’ permit a compact description of
both syntax and semantics. We advocate an
extension of this technique as a general way
of describing programming language.

AIM-25

Richard Mansfield,

A Formal System of Computation,
7 pages, September 1964.

We discuss a tentative axiomatization for a
formal system of computation and within this
system we prove certain propositions about
the convergence of recursive definitions
proposed by J. McCarthy.

AIM-26

D. Raj. Reddy,

Experimentson Automatic Speech
Recognition by a Digital Computer,
19 pages, October 1964.

Speech sounds have in the past been
investigated with the aid of spectographs, vo-
coders and other analog devices. With the
availability of digital computers with
improved i-o devices such as Cathode Ray
tubes and analog digital converters, it has
recently become practicable to employ this
powerful tool in the analysis of speech
sounds.

Some papers have appeared in the recent
literature reporting the use of computers in
the determination of the fundamental
frequency and for vowel recognition. This
paper discusses the details and results of a
preliminary  investigation conducted at
Stanford. It includes various aspects of
speech sounds such as waveforms of vowels
and consonants; determination of a
fundamental of the wave; Fourier (spectral)
analysis of the sound waves format
determination, simple vowel recognition
algorithm and synthesis of sounds. All were
obtained by the use of a digital computer.



72

AIM-27

John McCarthy,

A Proof -checker for Predicate Calculus,
7 pages, March 1965.

A program that checks proofs in J. A.
Robinson’s formulation of predicate calculus
has been programmed in LISP 1.5. The
program is available in CTSS at Project
MAC and is also available as a card deck.
The program is used for class exercises at
Stanford.

AIM -28

John McCarthy,

Problems in the Theory of Computation,
7 pages, March 1965.

The purpose of this paper is to identify and
discuss a number of theoretical problems
whose solutions seem feasible and likely to
advance the practical art of computation.
The problems that will be discussed include
the following:

l.  Semantics of programming languages.
What do the strings of symbols representing
computer programs, statements, declarations,
labels, etc., denote? How can the semantics of
programming  languages be described
formally?

2. Data spaces. What are the spaces of data
on which computer programs act and how
are they built up up from simpler spaces?

3. How can time
simultaneous processes be described?

4. Speed of computation. What can be said
about how much computation is required to
carry out certain processes?

5. Storage of information. How can
information be stored so that items identical

or similar to a given item can be retrieved?

6. Syntax directed computation. What is the

dependent’ and .

A. I. MEMO ABSTRACTS

appropriate  domain  for  computations
described by productions or other data
format recogn izers?

7. What are the appropriate formalisms for
writing proofs that computer programs are
equivalent?

8. In the view of Codel’s theorem that tells
us that any formal theory of computation
must be incomplete, what is a reasonable
formal system that will enable us to prove
that programs terminate in practical cases?

AIM-29

Charles M. Willtams,

Isolation of Important Features of a
Multitoned Picture,

9 pages, January 1965.

A roughly successful attempt is made to
reduce a multi-toned picture to a two-toned.
(line drawing) representation capable of
being recognized by a human being.

AIM-30

Edward A. Feigenbaum, Richard W. Watson,
An Initial Problem Statement for a
Machine Induction Research Project,

8 pages, April 1965.

A brief description is given of a research
project presently getting under way. This
project will study induction by machine,
using organic chemistry as a task area.
Topics for graduate student research related
to the problem are listed.

AIM-31

John McCarthy,

Plans for the Stanford Artificial
Intelligence Project,

17 pages, April 1965.

The following is an excerpt from a proposal
to ARPA and gives some of the project plans
for the near future.



A. L. MEMO ABSTRACTS

AIM-32

Harry Ratchford,

The 138 Analog Digital Converter,
9 pages, May 1965.

A discussion of the programming and
hardware characteristics of the analog to
digital converter on the PDP-1 is given;
several sample programs are also presented,

AIM-33

Barbara Huberman,

The Advice Taker and GPS,
8 pages, June 1965.

Using the formalism of the Newell-Shaw-
Simon General Problem Solver to solve
problems expressed in McCarthy’s Advice
Taker formalism is discussed. Some
revisions of the formalism of can and cause
described in AI Memo 2 are proposed.

AIM-34

Peter Carah,

A Television Camera Interface for the
PDP-I,

8 pages, June 1965.

This paper is a discussion of several methods
for the connection of a television camera to
the PDP- 1 computer. Three of these methds
are discussed in detail and have in common
that only a 36 bit portion of any horizontal
scanning line may be read and this
information is read directly into the working
registers of the computer. The fourth
involves a data channel to read information
directly into the core memory of the
computer, and is mentioned only in passing.
The major concepts and some of the details
of these methods are due to Marvin Minsky.

«AIM-35

Fred Safier,
Simple Simon,

17 pages, June 1965.

SIMPLE SIMON is a program which solves

73

the problem of finding an object satisfying a
predicate from a list of facts. It operates by
backward chaining. The rules of procedure
and heuristics are discussed and the structure
of the program is outlined.

AIM-36

James Painter,

Utilization of a TV Camera on the PDP-|,
6 pages, September 1965.

A description of the programming required
to utilize the TV camera connected to the
PDP-1 and of the initial collection of
programs.

+AIM-37

Knut Korsvold,

An on Line Algebraic Simplification
Program,

36 pages, November 1965.

We describe an on-line program for algebraic
simplification. The program is written in
LISP 1.5 for the Q-32 computer at System
Development Corporation in Santa Monica,
California. The program has in its entirety
been written and debugged from a teletype
station at Stanford University.

AIM-38

Donald A. Waterman,

A Filter for a Machine Induction System,
19 pages, January 1966.

This report contains current ideas about the
Machine Induction Research Project, and
attempts to more clearly define some of the
problems involved. In particular, the on-line
data acquisition problem, the filter, and the
inductive inference problem associated with
the filter are discussed in detail.

AIM-39

Karl Pingle,

A Program to Find Objects in a Picture,
22 pages, January 1966.




74

A program is described which traces around
objects in a picture, using the picture scanner
attached to the PDP-1 computer, and fits
curves to the edges.

AIM-40 CS-38 AD662880
John McCarthy, James Painter,

Correctness of a Compiler for Arithmetic
Expressions,

13 pages, April 1966.

This is a preprint of a paper given at the
Symposium of Mathematical Aspects of
Computer  Science of the  American
Mathematical Society held April 7 and 8§,
1966. It contains a proof of the correctness
of a compiler for arithmetic expressions.

*AlIM-4 1
Phil Abrams, Dianna Rode,
A Proposal for a Proof-checker for Certain

Axiomatic Systems,
10 pages, May 1966.

A proposed design for a proof-checker to
operate on many axiomatic domains is
presented. Included are descriptions of the
organization and operation of the program to
be written for the PDP-6.

AIM-42

Karl Pingle,

A Proposal for a Visual Input Routine,
11 pages, June 1966.

Some comments are made on the
characteristics believed desirable in the next
eye for the Stanford Artificial Intelligence
Project and a proposal is given for a
program to input scenes using the eye.
=AIM-43 - ¢s-49 55640-836
D. Raj Reddy,

An Approach to Computer Speech
Recognition by Direct Analysis of the
Speech Wave,

Thesis: Ph.D.in Computer Science,

144 pages, September 1966.

A. 1. MEMO ABSTRACTS

A system for obtaining a phonemic
transcription from a connected speech sample
entered into the computer by a microphone
and an analog-to-digital converter is
described. A feature-extraction program
divides the speech utterance into segments
approximately corresponding to phonemes,
determine pitch periods of those segments
where pitch analysis is appropriate, and
computes a list of parameters for each
segment. A classification program assigns a
phoneme-group label (vowel-like segment,
fricative-like segment, etc.) to each segment,
determines whether a segment should be
classified as a phoneme or whether it
represents a phoneme boundary between two
phonemes, and then assigns a phoneme label
to each segment that is not rejected as being
a phoneme boundary. About 30 utterances
of one to two seconds duration were analyzed
using the above programs on a n
interconnnected I B M 7090-PDP- 1 system.
Correct identification of many vowel and
consonantal phonemes was achieved for a
single speaker. The time for analysis of each
utterance was about 40 times real time. The
results were encouraging and point to a new
direction in speech research.

zAIM-44

James Painter,

Semantic Correctness of a Compiler for an
Algol-like Language,

Thesis: Ph.D. in Computer Science,

130 pages, revised March 1967.

This is a semantic proof of the correctness of
a compiler. The abstract syntax and
semantic definition are given for the
language Mickey, an extension of Micro-
algol. The abstract syntax and semantics are
given for a hypothetical one-register single-
address computer with 14 operations. A
compiler, using recursive descent, is defined.
Formal definitions are also given for state
vector, a and c¢ functions, and correctness of a
compiler. ~ Using these definitions, the
compiler is proven correct.



A.I. MEMO ABSTRACTS

AIM-45

Donald Kaplan,

Some Completeness Results in the
Mathematical Theory of Computation,
22 pages, October 1966.

A formal theory is described which
incorporates the ‘assignment’ function a(i, k,
psi) and the ‘contents’ function c(i, psi). The
axioms of the theory are shown to comprise a
complete and consistent set.
+AIM-46 cs-50 PB 176761
Staffan Persson,

Some Sequence Extrapolating Programs: a
Study of Representation and Modeling in
Inquiring Systems,

Thesis: Ph.D. in Computer Science,

176 pages, September 1966.

The purpose of this thesis is to investigate
the feasibility of designing mechanized
inquiring-systems ~ for  finding  suitable
representations of problems, i.e., to perform
the ‘creative’ task of finding analogies.
Because at present a general solution to this
problem does not seem to be within reach,
the feasibility of mechanizing a particular
representational inquirer is chosen as a
reasonable first step towards an increased
understanding of the general problem. It is
indicated that by actually designing,
programming and running a representational
inquirer as a program for a digital computer,
a severe test of its consistency and potential
for future extensions can be performed.

=AIM-47

Bruce Buchanan,

Logics of Scientific Discovery,

Thesis: Ph.D. in PhilosophyU.C. Berkeley,
2 10 pages, December 1966.

The concept of a logic of discovery is
discussed from a philosophical point of view.
Early chapters discuss the concept of
discovery itself, some arguments have been
advanced against the logics of discovery,

15

notably by N. R. Hanson, and S. E.
Toulmin. While a logic of discovery is
generally understood to be an algorithm for
formulating hypotheses, other concepts have
been suggested. Chapters V and VI explore
two of these: (A) a set of criteria by which a
hypothesis could be judged reasonable, and
(B) a set of rational (but not necessarily
effective) methods for formulating
hypotheses.

AIM-48

Donald M. Kaplan,

Correctness of a Compiler for Algol-like
Programs,

46 pages, July 1967.

A compiling algorithm is given which maps
a class of Algol-like programs into a class of
machine language programs. The semantics,
1. €., the effect of execution, of each class is
specified, and recursion induction used to
prove that program semantics is preserved
under the mapping defined by the compiling
algorithm.

AIM-49

Georgia Sutherland,

DENDRAL -- a Computer Program for
Generating and Filtering Chemical
Structures,

34 pages, February 1967.

A computer program has been written which
can generate all the structural isomers of a
chemical ~ composition. The  generated
structures are inspected for forbidden
substructures in order to eliminate structures
which are chemically impossible from the
output. In addition, the program contains
heuristics for determining the most plausible
structures, for utilizing supplementary data,
and for interrogating the on-line user as to
desired options and procedures.  The
program incorporates a memory so that past
experiences are utilized in later work.



76

AIM-50

Anthony C. Hearn,
Reduce Users’ Manual,
53 pages, February 1967.

REDUCE is a program designed for general
algebraic computations of interest to
physicists and engineers. Its capabilities
include:
1) expansion and ordering of rational
functions of polynomials,
2) symbolic differentiation,
3) substitutions in a wide variety of forms,
4) reduction of quotients of polynomials by
cancellation of common factors,
5) calculation of symbolic determinants,
6) calculations of interest to high energy
physicists including spin 1/2 and spin 1
algebra.

The program is written completely in the
language LISP 1.5 and may therefore be run
with little modification on any computer
possessing a LISP 1.5 compiler or interpreter.

AIM-51

Lester D. Earnest,

Choosing an eye for a Computer,
154 pages, April 1967.

In order for a computer to operate efficiently
in an unstructured environment, it must have
one or more manipulators (e. g., arms and
hands) and a spatial sensor analogous to the
human eye. Alternative sensor systems are
compared here in their performance on
certain  simple tasks.  Techniques for
determining color, texture, and depth of
surface elements are examined. Sensing
elements considered include the
p hotomultiplier, image dissector, image
orthicon, vidicon, and SEC camera tube.
Performance measures strongly favor a new
(and undemonstrated) configuration that may
be termed a laser jumping spot system.

A. I MEMO ABSTRACTS

AIM-52

Arthur L. Samuel,

Some Studies in Machine Learning Using
the Came of Checkers II - Recent Progress,
48 pages, June 1967.

A new signature table technique is described
together with an improved book learning
procedure which is thought to be much
superior to the linear polynomial method
described earlier. Full use is made of the so
called alpha-beta pruning and several forms
of forward pruning to restrict the spread of
the move tree and to permit the program to
look ahead to a much greater depth than it
otherwise could do. While still unable to
outplay checker masters, the programs’s
playing ability ,has been greatly improved.
Some of these newer techniques should be
applicable to  problems of economic
importance.

AIM-53

William Weiher,

The PDP-6 Proof Checker,
47 pages, June 1967.

A descrription is given for the use of a proof
checker for propositional calculus. An
example of its use as well as the M and S
expressions for the proof checker are also
included.

AIM-54

Joshua Lederberg, Ed ward A. Feigen baum,
Mechanization of Inductive Inference in
Organic Chemistry,

29 pages, August 1967.

A computer program for formulating
hypotheses in the area of organic chemistry
is described from two standpoints: artificial
intelligence and organic chemistry. The
Dendral Algorithm for uniquely representing
and ordering chemical structures defines the
hypothesis-space; ~ but  heuristic ~ search
through the space is necessary because of its
size. Both the algorithm and the heuristics



A. 1. MEMO ABSTRACTS

are described explicitly but without reference
to the LISP code in which these mechanisms
are programmed. Within the program some
use has been made of man-machine
interaction, pattern recognition, learning, and
tree-pruning heuristics as well as chemical
heuristics which allow the program to focus
its attention on a subproblem to rank the
hypotheses in order of plausibility. The
current performance of the program is
illustrated with selected examples of actual
output showing both its algorithmic and
heuristic aspects. In addition some of the
more important planned modifications are
discussed.

AIM-55

Jerome Feldman,

First Thoughts of Grammatical Inference,
18 pages, August 1967.

A number of issues relating to the problem
of inferring a grammar are disscussed. A
strategy for grammatical inference is
presented and its weaknesses and possible
improvements are discussed. This is a
working paper and should not be
reproduced, quoted or believed without the
author’s permission. .

AIM-56

William Wichman,

Use of Optical Feedback in the Computer
Control of an Arm,

Thesis: Eng. in Electrical Engineering,

69 pages, August 1967.

This paper reports an experimental
investigation of the application of visual
feedback to a simple computer-controller
block-stacking task. The system uses a
vidicon camera to examine a table containing
two cubical blocks, generating a data
structure which is analyzed to determine the
position of one block. An electric arm picks
up the block and removes it from the scene,
then after the program locates the second
block, places the first on top of the second.

77

Finally, the alignment of the stack is
improved by analysis of the relative position
error as seen by the camera. Positions are
determined  throughout by perspective
transformation of edges detected from a
single viewpoint, using a support hypothesis
to supply sufficient information on depth.
The Appendices document a portion of the
hardware used in the project.

AIM-57

Anthony C. Hearn,

REDUCE, a User-oriented Interactive
System for Algebraic Simplification,
69 pages, October 1967.

This paper describes in outline the structure
and use of REDUCE, a program designed
for large-scale algebraic computations of
interest to applied mathematicians, physicists,
and engineers. The capabilities of the system
include:
1) expansion, ordering and reduction of
rational functions of polynomials,
2) symbol differentiation,
3) substitutions for variables and
expressions appearing in other
expressions,
4) simplification of symbolic determinants
and matrix expressions,
5) tensor and non-commutative algebraic
calculations of interest to high energy ,

physicists.
In addition to the operations of addition,
subtraction, multiplication, division,
numerical exponentiation numerical

exponentiation and differentiation, it is
possible for the user to add new operators
and define rules for their simplification.
Derivations of these operators may also may
also be defined.

The program is written complete in the
language of LISP 1.5 and is organized so as
to minimize the effot required in
transferring from one LISP system to
another.



78

Some particular problems which have arisen
in using REDUCE in a time-sharing
environment are also discussed.

AIM-58

Monte D. Callero,

An Adaptive Command and Control
System Utilizing Heuristic Learning
Processes,

Thesis: Ph.D. in Operations Research,
161 pages, December 1967.

The objectives of the research reported here
are to develop an automated decision process
for real time allocation of defense missiles to
attacking ballistic missiles in general war and
to demonstrate the effectiveness of applying
heuristic learning to seek optimality in the
process. The approach is to model and
simulate a missile defense environment and
generate a decision procedure featuring a
self-modifying, heuristic decision function
which  improves its performance with
experience. The goal of the decision process
that chooses between the feasible allocations
is to minimize the total effect of the attack,
measured in cumulative loss of target value.
The goal is pursued indirectly by considering
the more general problem of maintaining a
strong defense posture, the ability of the
defense system to protect the targets from
both current and future loss.

Using simulation and analysis, a set of
calculable features are determined which
effectively reflect the marginal deterioration
of defense posture for each allocation in a
time interval. A decision function, a linear
polynomial of the features, is evaluated for
each feasible allocation and the allocation
having the smallest value is selected. A
heuristic learning process is incorporated in
the model to evaluate the performancee of
the decision process and adjust the decision
function coefficients to encourage correct
comparison of alternative  allocations.
Simulated attacks presenting typical defense
situations were cycled against the decision

A. I. MEMO ABSTRACTS

procedure with the result that the decision
function coefficients converged under the
learning process and the decision process
become increasingly effective.

+AIM-59

Donald M. Kaplan,

A Formal Theory Concerning the
Equivalence of Algorithms,

20 pages, May 1968.

Axioms and rules of inference are given for
the derivation of equivalence for algorithms.
The theory is shown to be complete for
certain subclasses of algorithms, and several
applications of the theory are illustrated.
This paper was originally presented at the
Mathematical Theory of Computation

Conference, ~ IBM  Yorktown  Heights,
November 27-30, 1967.
AIM-60 cs-101 AD672923

Donald M. Kaplan,

The Formal Theoretic Analysis of Strong
Equivalence for Elemental Programs,
Thesis: PA.D. in Computer Science,

263 pages, June 1968.

The syntax and semantics is given for
elemental programs, and the strong
equivalence of these simple ALGOL-like
flowcharts is shown to be undecidable. A
formal theory is introduced for deriving
statements of strong equivalence, and the
completeness of this theory is obtained for
various sub-cases. Several applications of
the theory are discussed. Using a regular
expression  representation  for  elemental
programs and an unothodox semantics for
these expressions, several strong equivalence
detecting procedures are developed. This
work was completed in essentially its present
form March, 1968.



A.1. MEMO ABSTRACTS

*AIM-6 1

Ta kayasu Ito,

Notes on Theory of Computation and
Pattern Recognition,

144 pages, May 1968.

This is a collection of some of the author’s
raw working notes during the period
December 1965 - October 1967 besides the
introduction. They have been privately or
internally distributed for some time. Portions
of this work have been accepted for
publication; others are being developed for
submission to journals. Some aspects and
ideas have been referred to and used,
sometimes without explicit references, and
others are developed by other researchers
and the author. Hence we have decided to
publish this material as a Computer Science
Technical Report, although the author is
planning to submit all of these works to some
journals, adding several new results (not
mentioned in this report), improving
notations, definitions and style of presentation
in _some parts and reformulating completely
in other parts.

AIM-62

Bruce Buchanan, Georgia Sutherland,
Heuristic Dendral: a Program for
Generating Explanatory Hypotheses in
Organic Chemistry,

76 pages, July 1968.

A computer program has been written which
can formulate hypotheses from a given set of
scientific data. The data consist of the mass
spectrum and the empirical formula of an
organic chemical compound. The hypotheses
which were produced describe molecular
structures which are plausible explanations
of the data. The hypotheses are generated
systematically within the program’s theory of
chemical stability and within limiting
constraints which are inferred from the data
by heuristic rules. The program excludes
hypotheses inconsistent with the data and
lists its candidate explanatory hypotheses in

79

order of decreasing plausibility.  The
computer program is heuristic in that it
searches for plausible hypotheses in a small
subset of the total hypothesis space according
to heuristic rules learned from chemists.

AIM-63

Donald M. Kaplan,

Regular Expressions and the Equivalence
of Programs,

42 pages, July 1968.

The strong equivalence of ALGOL-like
programs is, in general, an undecidable
property. Several mechanical procedures are
discussed which nevertheless are useful in
the detection of strong equivalence, These
methods depend on a regular expression
representation of programs. An unorthodox
semantics for these expressions is introduced
which appreciably adds to the ability to
detect strong equivalence. Several other
methods of extending this ability are also
discussed.

*AIM-64

Zohar Manna,

Formalization of Properties of Programs,
18 pages, July 1968.

Given a program, an algorithm will be
described for constructing an expression,
such that the program is wvalid (.e.,
terminates and yields the right answer) if
and only if the expression is inconsistent.
Similar result for the equivalence problem of
programs is given. These results suggest a
new approach for proving the validity and
equivalence of programs.

AIM-65 CS- 106
Barbara J. Huberman,
A Program to Play Chess end Games,
Thesis: Ph.D. in Computer Science,

168 pages, August 1968.

AD67397 1

A program to play chess end games is
described. The model used in the program is



80

very close to the model assumed in chess
books. Embedded in the model are two
predicates, BETTER and WORSE, which
contain the heuristics of play, different for
each end game. The definitions of BETTER
and WORSE were obtained by programmer
translation from the chess books.

The program model is shown to be a good
one for chess and games by the success
achieved for three end games. Also the
model enables us to prove that the program
can reach checkmate from any starting
position.  Insights about translation from
book problem solving methods into computer
program heuristics are discussed; they are
obtained by comparing the chess book
methods with definitions of BETTER and
WORSE, and by considering the difficulty
encountered by the programmer when doing
the translation.

=AIM -66

Jerome A. Feldman, Paul D. Rovner,
AnAlgol-based Associative Language,
31 pages, August 1968.

A high-level programming language for large
complex relational structures has been
designed and implemented. The underlying
relation al ~ data.  structure  has  been
implemented using a hash-coding technique.
The discussion includes a comparison with
other work and examples of applications of
the language. A version of this paper will
appear in the Communications of the ACM.
=AIM-67 AD680487
Edward A. Feigenbaum,

Artificial Intelligence: Themes in the
Second Decade,

39 pages, August 1968.

In this survey of Artificial Intelligence
research, the substantive focus is heuristic
programming, problem solving, and closely
associated learning models. The focus in
time is the period 1963-1968. Brief tours are

A.I. MEMO ABSTRACTS

made over a variety of topics: generality,
integrated robots, game playing, theorem
proving, semantic information processing, etc.

One program, which employs the heuristic
search paradigm to generate explanatory
hypotheses in the analysis of mass spectra of
organic molecules, is described in some detail.
The problem of representation for problem
solving systems is discussed. Various centers
of excellence in the Artificial Intelligence
research area are mentioned. A bibliography
of 76 references is given.

AIM-68

Zohar Manna, Amir Pnueli,

The Validity Problem of the 91-function,
20 pages, August 1968.

Several methods for proving the weak and
strong validity of algorithms are presented.

For proving the weak validity (i.e.,
correctness) we use satisfiability methods,
while proving the strong validity (i.e.,
termination and  correctness) we  use
unsatisfiability methods.

Two types of algorithms are discussed:
recursively defined functions and programs.

Among the methods we include known
methods due to Floyd, Manna, and
McCarthy.  All the methods will be
introduced quite informally by means of an
example (the 91-function).

*AIM-69 AD677588
John McCarthy, Edward Feigenbaum,
Arthur Samuel,

Project Technical Report,

90 pages, September 1968.

Recent  work of  Stanford  Artificial
Intelligence Project is summarized in several
areas:

Scientific Hypothesis Formation

Symbolic Computation

Hand-Eye Systems



A. I. MEMO ABSTRACTS

Computer Recognition of Speech
Board G ames
Other Projects
AIM-70 AD680072
Anthony C. Hcarn,
The Problem of Substitution,
14 pages, December 1968.

One of the most significant features of
programs  designed  for  non-numeric
calculation is that the size of expressions
manipulated, and hence the amount of
storage necessary, changes continually during
the execution of the program. It is, therefore,
usually not possible for the user to know
ahead of time whether the calculation will in
fact fail because of lack of available
computer memory. The key to keeping both
the size of intermediate expressions and
output under control often lies in the manner
in which substitutions for variables and
expressions declared by the programmer are
implemented by the system. In this paper
various methods which have been developed
to perform these substitutions in the author’s
own system REDUCE are discussed. A brief
description of the REDUCE system is also
given.
AIM-7 1 AD677520
Pierre V icens,

Preprocessing for Speech Analysis,

33 pages, October 1968.

This paper describes a procedure, and its
hardware implementation, for the extraction
of significant parameters of speech. The
process involves division of the speech
spectrum into convenient frequency bands,
and calculation of amplitude and zero-
crossing parameters in each of these bands
every 10 ms. In the software implementation,
a smooth function divides the speech
spectrum into two frequency bands (above
and below 1000 Hz). In the hardware
implementation, the spectrum is divided into
three bands using bandpass filters (150-900

81

Hz, 900-2200 Hz, 2200-5000 Hz). Details of
the design and implementation of the
hardware device are given.
«AIM-72 CS- 116 AD680036
Donald L. Pieper,

The Kinematics of Manipulators under
Computer Control,

Thesis: Ph.D. in Mechanical Engineering,

157 pages, October 1968.

The kinematics of manipulators are studied.
A model is presented which allows for the
systematic description of new and existing
manipulators.

Six degree-of-freedom manipulators are
studied. Several solutions to the problem of
finding the manipulator configuration leading
to a specified position and orientation are
presented. Numerical as well as explicit
solutions are given. The problem of
positioning a multi-link digital arm is also
discussed.

Given the solution to the position problem,
as a set of heuristics is developed for moving
a six degree-of-freedom manipulator from an
initial position to a final position through a
space containing obstacles. This results in a
computer program shown to be able to direct
a manipulator around obstacles.
+AIM-73 AD678878
John McCarthy, Patrick Hayes,

Some Philosophical Problems From the
Standpoint of Artificial Intelligence,

51 pages, November 1968.

A computer program capable of acting
intelligently in the world must have a general
representation of the world in terms of which
its inputs are interpreted. Designing such a
program requires commitments about what
knowledge is and how it is obtained. Thus
some of the major traditional problems of
philosophy arise in artificial intelligence.



82

More specifically, we want a computer
program that decides what to do by inferring
in a formal language that a certain strategy
will achieve its assigned goal. This requires
formalizing concepts of causality, ability, and
knowledge. =~ Such formalisms are also
considered in philosophical logic.

The first part of the paper begins with a
philosophical point of view that seems to
arise naturally once we take seriously the
idea of actually making an intelligent
machine. We go on to the notions of
metaphysically and epistemologically
adequate representations of the world and
then to an explanation of can, causes, and
knows, in terms of a representation of the
world by a system of interacting automata. A
proposed resolution of the problem of
freewill in a deterministic universe and of
counterfactual ~ conditional  sentences is
presented.

The second part is mainly concerned with
formalisms within which it can be proved
that a strategy will achieve a goal. Concepts
of situation, fluent, future operator, action,
strategy, result of a strategy and knowledge
are formalized. A method is given of
constructing a sentence of first order logic
which will be true in all models of certain
axioms if and only is a certain strategy will
achieve a certain goal.

The formalism of this paper represents an
advance over (McCarthy 1963) and (Green

1968) in that it permits proof of the -

correctness of strategies that contain loops
and strategies that involve the acquisition of
knowledge, and it is also somewhat more
concise.

The third part discusses open problems in
extending the formalism of Part II.

The fourth part is a review of work in
philosophical logic in relation to problems of
Articial Intelligence and discussion of

A. I. MEMO ABSTRACTS

previous efforts to program  general
intelligence from the point of view of this
paper. This paper is based on a talk given
to the 4th Machine Intelligence Workshop
held at Edinburgh, August 12-21, 1968, and
is a preprint of a paper to be published in

Machine Intelligence 4 (Edinb
University Press, 1969).
#AIM-74 CS-118 AD68 1027

Donald Waterman,

Machine Learning of Heuristics,
Thesis: Ph.D.in Computer Science,
? pages, December 1968.

The research reported here is concerned with
devising machine-learning techniques which
can be applied to the problem of automating
the learning heuristics.

#AIM-75

Roger C. Schank,

A Notion of Linguistic Concept: a Prelude
to Mechanical Translation,

2 1 pages, December 1968.

The conceptual dependency framework has
been used as an automatic parser for natural
language. Since the parser gives as output a
conceptual network capable of expressing
meaning in language-free terms, it is possible
to regard this as an interlingua. If an
interlingua is actually available how might
this interlingua be used in translation? The
primary problem that one encounters is the
definition of just what these concepts in the
network are. A concept is defined as an
abstraction in terms of percepts and the
frequency of connection of other concepts.
This definition is used to facilitate the
understanding of some of the problems in
paraphrasing  and translation. The
motivation for this abstract definition of
linguistic concept is discussed in the context
of its proposed use.

DESCRIPTORS: computational linguistics,
concepts research, computer understanding.

urgh



A. I. MEMO ABSTRACTS

::‘AIM-?S

Roger C. Schank,

A Conceptual Parser for Natural Language,
22 pages, December 1968.

This paper describes an operable automatic
parser for natural language. The parser is
not concerned with producing the syntactic
structure of an input sentence. Instead, it is a
conceptual parser, concerned with
determining the underlying meaning of the
input. The output of the parser is a network
of concepts explicating the conceptual
relationships in a piece of discourse. The
structure of this network is language-free;
thus, sentences in different languages or
paraphrases within the same language will
parse into the same network. The theory
behind this representation is outlined in this
paper and the parsing algorithm is explained
in some detail.

DESCRIPTORS: computational linguistics,

concepts,  linguistic  research,  computer
understanding.
AIM-77

Joseph D. Becker,

The Modelirrg of Simple Analogic and
Inductive Processes in a Semantic Memory
System,

21 pages, January 1969.

In this paper we present a general data
structure for a semantic memory, which is
distinguished in that a notion of consequence
(temporal, ““causal, logical, or behavioral,
depending on interpretation) is a primitive of
the data representation. The same item of a
data may at one time serve as a logical
implication, and at another time as a
‘pattern/action’ rule for behavior.

We give a definition of ‘analogy’ between
items of semantic information. Using the
notions of consequence and analogy, we
construct an inductive process in which
general laws are formulated and verified on

83

the basis of observations of individual cases.
We illustrate in detail the attainment of the
rule ‘Firemen wear red suspenders’ by this
process.

Finally, we discuss the relationship between
analogy and induction, and their use in
modeling  aspects of  ‘perception’ and
‘understanding’.

AIM-78

D. Raj. Reddy,

On the use of Environmental, Syntactic
and Probalistic Constraints in Vision and
Speech,

23 pages, January 1969.

In this paper we consider both vision and
speech in the hope that a unified treatment,
illustrating the similarities, would lead to a
better appreciation of the problems, and
possibly programs which use the same
superstructure. ~ We postulate a general
perceptual system and illustrate how various
existing systems either avoid or ignore some
of the difficult problems that must be
considered by a general perceptual system.
The purpose of this paper is to point out
some of the unsolved problems, and to
suggest ~some  heuristics  that  reflect
environmental, syntactic, and probabilistic
constraints useful in visual and speech
perception by machine. To make effective
use of these heuristics, a program must
provide for
I. An external representation of heuristics
for ease of man-machine communication
2. An internal representation of heuristics
for effective use by machine
3. A mechanism for the selection of
appropriate heuristics for use in a given
situation.

Machine perception of vision and speech,
thus, provides a problem domain for testing
the adequacy of the models of representation
(McCarthy and Hayes), planning heuristic
selection (Minsky, Newell and Simon), and




84

generalization learning (Samuel); a domain in
which (perceptual) tasks are performed by
people easily and without effort.
AIM-79 AD6856 11
D. Raj. Reddy, Richard B. Neely,
Contextual Analysis of Phonemes of
English,

71 pages, January 1969.

It is now well known that the acoustic
characteristics of a Phoneme depend on both
the preceding and following phonemes. This
paper provides some needed contextual and
probabilistic data about trigram phonemic
sequences of spoken English. Since there are
approximately 4013 such sequences, one must
discover and study only the more commonly
occurring  sequences. To this purpose, three
types of tables are presented, viz.,

a. Commonly occurring trigram sequences
of the form /abc/ for every phoneme
/b].

b. Commonly occurring sequences /abc/ for
every pair of phonemes /a/ and /c/.

c. Commonly occurring word boundary
sequences of the form /-ab/ and /ab-/
where /-/ represents the silence
phoneme.

Entries of the above tables contain examples
of usage and probabilities of occurrence for
each such sequence.
+AIM -80 AD6856 12
Georgia Sutherland,

Heuristic Dendral: a Family of LISP
Programs,

46 pages, March 1969.

The Heuristic Dendral program for
generating explanatory hypotheses in organic
chemistry is described as an application of
the programming language LISP. The
description emphasizes the non-chemical
aspects of the program, particularly the
‘topologist’ which generates all tree graphs of
a collection of nodes.

A. I. MEMO ABSTRACTS

+AIM-8 1

David Luckham,
Refinement Theorems in Resolution
Theory,

3 1 pages, March 1969.

AD6856 13

The paper discusses some basic refinements
of the Resolution Principle which are
intended to improve the speed and efficiency
of theorem-proving programs based on this
rule of inference. It is proved thxt two of
the refinements  preserve the logical
completeness of the proof procedure when
used separately, but not when used in
con junction. The results of some preliminary
experiments with the refinements are given.

Presented at the IRIA Symposium on
Automatic Deduction, Versailles, France,
December 16-2 1, 1968.

*AIM-82
Zohar Manna, Amir Pneuli,
Formalization of Properties of Recursively

Defined Functions,
26 pages, March 1969.

AD6856 14

This paper is concerned with the
relationship ~ between the  convergence,
correctness and equivalence of recursively
defined functions and the satisfiability (or
unsatisfiability) of certain first-order formulas.

+AIM-83 cs- 130

Roger C. Schank,

A Conceptual Representation for
Computer-oriented Semantics,

Thesis: Ph.D. in LinguisticsU. of Texas,
201 pages, March 1969.

Machines that may be said to function
intelligently must be able to understand
questions posed in natural language. Since
natural language may be assumed to have an
underlying  conceptual  structure, it is
desirable to have the machine structure its
own experience, both  linguistic  and
nonlinguistic, in a manner concomitant with



A.I. MEMO ABSTRACTS

the human method for doing so. Some
previous attempts at organizing the
machine’s data base conceptually are
discussed. A conceptually-oriented
dependency grammar is posited as an
interlingua that may be used as an abstract
representation of the underlying conceptual
structure. The conceptual dependencies are
utilized as the highest level in a stratified
system that incorporates language-specific
realization rules to map from concepts and
their relations, into sentences. In order to
generate coherent sentences, a conceptual
semantics is posited that limits possible
conceptual dependencies to statements about
the system’s knowledge of the real world.
This is done by the creation of semantic files
that serve to spell out the defining
characteristics of a given concept and
enumerate the possibilities for relations with
other concepts within the range of conceptual
experience. The semantic files are created, in
part, from a hierarchical organitatlon of
semantic categories. The semantic category is
part of the definition of a concept and the
information at the nodes dominating the
semantic category in the hierarchical tree
may be used to fill in the semantic file. It is
possible to reverse the realization ‘rules to
operate on sentences and produce a
conceptual parse. All potential parses are
checked with the conceptual semantics in
order to eliminate semantic and syntactic
ambiguities. The systtem  has  been
programmed; coherent sentences have been
generated and the parser is operable. The
entire systém..is posited as a viable linguistic
theory.
+AIM-84 AD691791
David Canfield Smith,

MLISP Users’ Manual,

57 pages, January 1969.

MLISP is a LISP pre-processor designed to
facilitate the writing, use, and understanding
of LISP progams. This is accomplished
through parentheses reduction, comments,

85

introduction of a more visual flow of control
with block structure and mnemonic key
words, and language redundancy. In
addition,  some ‘meta-constructs’ are
introduced to increase the power of the
language.

+AIM-85 CS- 127

Pierre Vicens,

Aspects of Speech Recognition by
Computer,

Thesis: PA.D. in Computer Science,
2 10 pages, April 1969.

AD687720

This thesis describes techniques ' and
methodology which are useful in achieving
close to real-time recognition of speech by
computer. To analyze connected . speech
utterances, any speech recognition system
must perform the following processes:
preprocessing, segmentation, segment
classification, recognition of words,
recognition of sentences.  We present
implemented solutions to each of these

problems which achieved accurate
recognition in all the trial cases.
((AIM-86 ADG69 1788

Patrick J. Hayes,

A Machine-oriented Formulation of the
Extended Functional Calculus,

44 pages, June 1969.

The Extended Functional Calculus (EFC), a
three-valued predicate calculus intended as a
language in which to reason about the results
of computations, is described in some detail.
A formal semantics is given. A machine-
oriented (axiomless) inference system for
EFC is then described and its completeness
relative to the semantics is proved by the
method of Semantic Trees. Finally some
remarks are made on efficiency.



86

=AIM-87 AD69 1789
John McCarthy, A.L Project Staff,
Project Technical Report,

98 pages, June 1969.

Plans and accomplishments of the Stanford
Artificial Intelligence Project are reviewed in
several areas including: theory (epistemology
and mathematical theory of computation),
visual perception and control (Hand-eye and
Cart), speech recognition by computer,
heuristics in machine learning and automatic
deduction, models of cognitive processes
(Heuristic DENDRAL), Language Research,
and Higher Mental Functions. This is an
excerpt of a proposal to ARPA.
~AIM-88 AD69 1790
Roger C. Schank,

Linguist ics from a Conceptual Viewpoint
(Aspects of Aspects of a Theory of Syntax),
22 pages, April 1969.

Some of the assertions made by Chomsky in
Aspects of Syntax are considered. In
particular, the notion of a ‘competence’ model
in linguistics is criticized. Formal postulates
for a conceputally-based linguistic theory are
presented.

AIM-89 cs- 125 AD692390
Jerome A. Feldman, J. Gips, J. J. Horning,
and S. Reder,

Grammatical Complexity and Inference,
100 pages, June 1969.

The problem of inferring a grammar for a
set of symbol strings is considered and a
number of new decidability results obtained.
Several notions of grammatical complexity
and their properties are studied. The
question of learning the least complex
grammar for a set of strings is investigated
leading to a variety of positive and negative
results. This work is part of a continuing
effort to study the problems of representation
and generalization through the grammatical
inference question.

A. I. MEMO ABSTRACTS

«AIM-90

Anthony C. Hearn,
Starrdard LISP,

33 pages, May 1969.

AD69 1799

A uniform subset of LISP L.5 capable of
assembly under a wide range of existing
compilers and interpreters is described.

AIM9 1

J. A. Campbell and Anthony C. Hearn,
Symbolic Analysis of Feynman Diagrams
by Computer,

73 pages, August 1969.

We describe a system of programs in the
language LISP 1.5 which handles all stages
of calculation from the specification of an
elementary-particle process in terms of a
Hamiltonian of interaction or Feynman
diagrams to the derivation of an absolute
square of the matrix element for the process.
Examples of significant parts of the programs
are presented in the text, while a detailed
listing of this material is contained in two
Appendices which are available on request
from the authors.

((AIM-92

Victor D. Scheinman,

Design of a Computer Controlled
Manipulator,

Thesis: Eng. in Mechanical Engineering,

53 pages, June 1969.

This thesis covers the preliminary system
studies, the design process, and the design
details associated with the design of a new
computer controlled manipulator for the
Stanford Artificial Intelligence Project. A
systems study of various manipulator
configurations, force sensing methods, and
suitable components and hardware was first
performed. Based on this study, a general
design concept was formulated. This concept
was then developed into a detailed
manipulator design, having six degrees of
freedom, all electric motor powered. The



A. I. MEMO ABSTRACTS

manipulator has exceptionally high position
accuracy, comparatively fast feedback servo
performance, and approximately human arm
reach and motion properties. Supporting
some of the design details and selections are
several examples of the design calculation
procedure employed.
AIM-93.1 AD693106
Jerome Feldman,

Some Decidability Results on Grammatical
Inference and Complexity,

3 1 pages, August 1969, revised May 1970.

The problem of grammatical -inference is
considered and a number of positive answers
to decidability questions obtained.
Conditions are prescribed under which it is
possible for a machine to infer a grammar
(or the best grammar) for even the general
rewriting systems.

This revision was motivated by the discovery
that our original definition of
approachability was too weak and could be
satisfied by trivial inference devices.
Definition 1.2 and the surrounding material
discuss this situation.

The theorems in Section 2 have been slightly
reordered and new proofs given. The
explicit use of a bounding function gives rise
to an important new result, Corollary 2.4.
Section 3 is changed primarily in the more
detailed discussion of mixed strategy
machines. .

AIM-94 AD69239 1
Kenneth Mark Colby, Lawrence Tesler,
Horace Enea,

Experiments With a Search Algorithm on
the Data Base of a Human Belief Structure,
28 pages, August 1969.

Problems of collecting data regarding human
beliefs are considered. Representation of this
data in a computer model designed to judge
credibility —involved paraphrasings from

87

natural  language into the  symbolic
expressions of the programming language
MLISP. Experiments in processing this data
with a particular search algorithm are
described, discussed and criticized.

wAIM-95
Zohar Manna,
The Correctness of Non-deterministic

Programs,
44 pages, August 1969.

AD69497 1

In this paper we formalize properties of non-
deterministic programs by means of the
satisfiability and validity of formulas in first-
order logic. Our main purpose is to
emphasize the wide variety of possible
applications of the results.

«AIM -96 CS- 138
Claude Cordell Green,
The Application of Theorem Proving to
Question-answering Systems,

Thesis: Ph.D. in Electrical Engineering,

166 pages, August 1969.

AD696394

This paper shows how a question-answering
system can use first-order logic as its language
and an automatic theorem prover based
upon the resolution inference principle as its
deductive mechanism. The resolution proof
procedure is extended to a constructive proof
procedure. An answer construction algorithm
is given whereby the system is able not only
to produce yes or no answers but also to find
or construct an object satisfying a specified
condition. A working computer program,
QA3, based on these ideas, is described. The
performance of the program, illustrated by
extended examples, compares favorably with
several other question-answering programs.

Methods are presented for solving state
transformation problems. In addition to
question-answering, the program can do
automatic programming (simple program
writing, program verifying, and debugging),
control and problem solving for a simple



88

robot, pattern recognition (scene description),
and pu zzles.

AIM-97 AD694972
Kenneth Mark Colby, David Canfield Smith,
Dialogues Between Humans and an
Artificial Belief System,

‘28 pages, August 1969.

An artificial belief system capable of
conducting on-line dialogues with humans
has been conntructed. It accepts information,
answers questions and establishes a
credibility for the information it acquires
and for its human informants. Beginning
with beliefs of high credibility from a highly
believed source, the system is being subjected
to the experience of dialogues with other
humans.

AIM-98 cs- 139 AD69540 1
James Jay Horning,

A Study of Grammatical Inference,

Thesis: Ph.D. in Computer Science,

" 166 pages, August 1969.

The present study has been motivated by the
twin goals of devising useful inference
procedures and of demonstrating a sound
formal basis for such procedures. The
former has led to the rejection of formally
simple solutions involving restrictions which
are unreasonable in practice; the latter, to the
rejection of heuristic “bags of tricks” whose
performance is in general imponderable.
Part 1 states the general grammatical
inference problem for formal languages,
reviews previous work, establishes definitions
and notation, and states my position for a
particular class of grammatical inference
problems based on an assumed probabilistic
structure. The fundamental results are
contained in Chapter V; the remaining
chapters discuss extensions and removal of
restrictions. Part III covers a variety of
related topics, none of which are treated in
any depth.

A. I. MEMO ABSTRACTS

AIM-99

Bruce G. Buchanan, C. L. Sutherland, E. A.
Feigenbaum,

Toward an Understanding of Information
Processes of Scientific Inference in the
Contex t of Organic Chemistry,

66 pages, September 1969.

The program called Heuristic DENDRAL
solves scientific induction problems of the
following type: given the mass spectrum of
an organic molecule, what is the most
plausible hypothesis of organic structure that
will serve to explain the given empirical
data. Its problem solving power derives in
large measure from the vast amount of
chemical knowledge employed in controlling
search and making evaluations.

A brief description of the task environment
and the program is given in Part I. Recent
improvements in the design of the program
and the quality of its performance in the
chemical task environment are noted.

The acquisition of task-specific knowledge
from chemist-‘experts’, the representation of
this knowledge in a form best suited to
facilitate the problem solving, and the most
effective  deployment of this body of
knowledge in restricting search and making
selections have been major foci of our
research. Part II discusses the techniques
used and problems encountered in eliciting
mass spectral theory from a cooperative
chemist. A sample ‘scenario’ of a session with
a chemist is exhibited. Part III discusses
more general issues of the representation of
the chemical knowledge and the design of
processes that utilize it effectively. The
initial, rather straight-forward,
implementations were found to have serious
defects. These are discussed. Part IV is
concerned  with  our presently-conceived
solutions to some of these problems,
particularly the rigidity of processes and
knowledge-structures.



A. I. MEMO ABSTRACTS

The paper concludes with a bibliography of
publications related to the DENDRAL effort.

AIM-100

Zohar Manna, John McCarthy,
Properties of Programs and Partial
Function Logic,
21 pages, October 1969.

We consider recursive definitions which
consist of Algol-like conditional expressions.
By specifying a computation rule for
evaluating such recursive definition, it
determines a partial function. However, for
different ~ computation rules, the same
recursive definition may determine different
partial functions. We distinguish between
two types of computation rules: sequential
and parallel.

The purpose of this paper is to formalize
properties (such as termination, correctness
and equivlance) of these partial functions by
means of the satisfiability or validity of
certain formulas in partial function logic.

This paper was presented in the 5th
Machine Intelligence Workshop held at
Edinburgh (September 15-20,1969), and will
be published in Machine Intelligence 5
(Edinburgh University Press, 1970).

+AIM-101

Richard Paul, G. Falk, J. A. Feldman,
The Computer Representation of Simply
Described Scenes,

16 pages, Gctober 1969,

This  paper describes the computer
representation  of scenes consisting of a
number of simple three-dimensional objects.
One method of representing such scenes is a
space  oriented representation  where
information about a region of space is
accessed by its coordinates.  Another
approach is to access the information by
object, where, by giving the object name, its
description and position are returned.

89

As the description of an object is lengthy, it
is desirable to group similar objects. Groups
of similar objects can be represented in terms
of a common part and a number of
individual parts. If it is necessary to
simulate moving an object then only the
individual information need be saved.

*AIM-102

Donald A. Waterman,

Generalization Learning for Automating
the Learning of Heuristics,

74 pages, July 1969.

This paper investigates the problem of
implementing machine learning of heuristics.
First, a method of representing heuristics as
production rules is developed which
facilitates dynamic manipulation of the
heuristics by the program embodying them.
Second, procedures are developed which
permit a problem-solving program employing
heuristics in production rule form to learn to
improve its performance by evaluating and
modifying existing heuristics and
hypothesizing new ones, either during an
explicit training process or during normal
program operation. Third, the feasibility of
these ideas in a complex problem-solving
situation is demonstrated by using them in a
program to make the bet decision in draw
poker. Finally, problems which merit further
investigation are discussed, including the
problem of defining the task environment
and the problem of adapting the system to
board games.

AIM-103

John Allen, David Luckham

AnlInteractive Theorem-proving Program,
27 pages, October 1969.

We present an outline of the principle
features of an on-line interative theorem-
proving program, and a brief account of the
results of some experiments with it. This
program has been used to obtain proofs of
new mathematical results recently announced



90

without proof in the Notices of the American
Mathematical Society.

AIM-104

Joshua Lederberg, Georgia Sutherland, B. G.
Buchanan, E. A. Feigenbaum,

A Heuristic Program for Solving a
Scientific Inference Problem: Summary of
Motivation and Implementation,

15 pages, November 1969.

The primary motivation of the Heuristic
DENDR AL project is to study and model
processes of inductive inference in science, in
particular, the formation of hypotheses which
best explain given sets of empirical data.
The task chosen for detailed study is organic
molecular structure determination using mass
spectral data and other associated spectra.
This paper first summarizes the motivation
and general outline of the approach. Next, a
sketch is given of how the program works
and how good its performance is at this
stage.  The paper concludes with a
comprehensive list of publications of the
project.

=AIM- 105

Manfred Heuckel,

An Operator Which Locates Edges in
Digitized Pictures,

37 pages, October 1969.

This paper reports the development of an
edge finding operator (subroutine) which
accepts the digitized light intensities within a
small disc-shaped subarea of a picture and
yields a description of any edge (brightness
step) which may pass over the disc. In
addition, the operator reports a measure of
the edge’s reliability. A theoretical effort
disclosed the unique best operator which
satisfies a certain set of criteria for a local
edge recognizer. The main concerns of the
criteria are speed and reliability in the
presence of noise.

A. I. MEMO ABSTRACTS

AIM- 106

Michael Edwin Kahn,

The Near-minimum-time Control of Open-
loop Articulated Kinematic Chains,

Thesis: Ph.D. in Mechanical Engineering,
171 pages, December 1969.

The time-optimal control of a system of rigid
bodies connected in series by single-degree-of-
freedom joints is studied.

The dynamical equations of the system are
highly nonlinear and a closed-form
representation of the minimum-time feedback
control is not possible. However, a
suboptimal feedback control which provides
a close approximation to the optimal control
is developed.

The suboptimal control is expressed in terms
of switching curves for each of the system
controls. These curves are obtained from the
linearized equations of motion for the system.
Approximations are made for the effects of
gravity loads and angular velocity terms in
the nonlinear equations of motion.

Digital simulation is used to obtain a
comparison of response times of the optimal
and suboptimal controls. The speed of
response of the suboptimal control is found
to compare quite favorably with the response
speed of the optimal control.

The analysis is applied to the control of
three joints of a mechanical manipulator.
Modifications of the suboptimal control for
use in a sampled-data system are shown to
result in good performance of a hydraulic
manipulator under computer control.

+AIM- 107

Gilbert Falk,

Soine Implications of Planarity for
Machine Perception,

27 pages, December 1969.

The problem of determining the shape and



A. I. MEMO ABSTRACTS

orientation of an object based on one or
more two-dimensional images is considered.
For a restricted class of projections it is
shown that monocular information is often
“nearly” sufficient for complete specification
of the object viewed.

AIM-108

Michael D. Kelly,

Edge Detection in Pictures by Computer
Using Planning,

28 pages, January 1970.

This paper describes a program for
extracting an accurate outline of a man’s
head from a digital picture. The program
accepts as input digital, grey scale pictures
containing people standing in front of
various backgrounds. The output of the
program is an ordered list of the points
which form the outline of the head. The
edges of background objects and the interior
details of the head have been suppressed.

The program is successful because of an
improved method for edge detection which
uses heuristic planning, a technique drawn
from artificial intelligence  research in
problem solving. In brief, edge detection
using planning consists of three steps. A new
digital picture is prepared from the original;
the new picture is smaller and has less detail.
Edges of objects are located in the reduced
picture. The edges found in the reduced
picture are used as a plan for finding edges
in the original picture.

.
<

«AIM- 109

Roger C. Schank, Lawrence Tesler, Sylvia
Weber,

Spinoza If: Conceptual Case-based Natural
Language Analysis,

107 pages, January 1970.

This paper presents the theoretical changes
that have developed in  Conceptual
Dependenty Theory and their ramifications
in computer analysis of natural language.

91

The major items of concern are: the
elimination of reliance on ‘grammar rules’ for
parsing with the emphasis given to
conceptual ~ rule based  parsing, the
development of a conceptual case system to
account for the power of conceptualizations;
the categorization of ACT’s based on
permissible conceptual cases and other
criteria. These items are developed and
discussed in the context of a more powerful
conceptual parser and a theory of language
understanding.

wAIM-110

Edward Ashcroft, Zohar Manna,
Formalization of Properties of Parallel
Programs,

58 pages, February 1970.

In this paper we describe a class of parallel
programs and give a formalization of certain
properties of such programs in predicate
calculus.

Although our programs are syntactically
simple, they do exhibit interaction between
asynchronous parallel processes, which is the
essential feature we wish to consider. The
formalization can easily be extended to more
complicated programs.

Also presented is a method of simplifying
parallel programs, i.e., constructing simpler
equivalent programs, based on the
“independence” of statements in them. With
these simplications our formalization gives a
practical method for proving properties of
such programs.

+AIM- 111

Zohar Manna,

Second-order Mathematical Theory of
Computation,

25 pages, March 1970.

In this work we show that it is possible to
formalize all properties regularly observed in
(deterministic and non-deterministic)
algorithms in second-order predicate calculus.



92

Moreover, we show that for any given
algorithm it suffices to know how to
formalize its “partial correctness” by a
second-order formula in order to formalize
all other properties by second-order formulas.

This result is of special interest since “partial
correctness” has already been formalized in
second-order predicate calculus for many
classes of algorithms.

This paper will be presented at the ACM
Symposium on Theory of Computing (May
1970). .

AIM-1 12

Franklin D. Hilf, Kenneth M. Colby, David
C. Smith, William K. Wittner,
Machine-mediated Interviewing,

27 pages, March 19°70.

A technique of psychiatric interviewing is
described in which patient and interviewer
communicate by means of remotely located
teletypes.  Advantages of non-nonverbal
communication in the study of the
psychiatric interview and in the development
of a computer program designed to conduct
psychiatric  interviews are  discussed.
Transcripts from representative —interviews
are reproduced.

«AIM-113

Kenneth Mark Colby, Franklin D. Hilf,
William A. Hall,

A Mute Patient’s Experience With
Machine-mediated Interviewing, -
19 pages, March 1970.

A hospitalized mute patient participated in
seven machine-mediated interviews, excerpts
of which are presented. After the fifth
interview he began to use spoken language
for communication. This novel technique is
suggested for patients who are unable to
participate in the usual vis-a-vis interview.

A. L. MEMO ABSTRACTS

»AIM- 114

Alan W. Biermann, Jerome A. Feldman,

On the Synthesis of Finite-state Acceptors,
3 1 pages, April 1970.

Two algorithms are presented for solving the
following problem: Given a finite-set S of
strings of symbols, find a finite-state machine
which will accept the strings of S and
possibly some additional strings which
“resemble” those of S. The approach used is
to directly construct the states and transitions
of the acceptor machine from the string
information. The algorithms include a
parameter which enable one to increase the
exactness of the resulting machine’s behavior
as much as desired by increasing the number
of states in the machine. The properties of
the algorithms are presented and illustrated
with a number of examples.

The paper gives a method for identifying a
finite-state language from a randomly chosen
finite subset of the language if the subset is
large enough and if a bound is known on
the number of states required to recognize
the language. Finally, we discuss some of the
uses of the algorithms and their relationship
to the problem of grammatical inference.

AIM-1 15

Ugo Montanari,

On the Optimal Detection of Curves in
Noisy Pictures,

35 pages, March 1970.

A technique for recognizing systems of lines
is presented, in which the heuristic of the
problem is not embedded in the recognition
algorithm but is expressed in a figure of
merit. A multistage decision process is then
able to recognize in the input picture the
optimal system of lines according to the given
figure of merit. Due to the global approach,
greater flexibility and adequacy in the
particular problem is achieved. The relation
between the structure of the figure of merit
and the complexity of the optimization




A. I. MEMO ABSTRACTS

process is then discussed. The method
described is suitable for parallel processing
because the operations relative to each state
can be computed in parallel, and the number
of stages is equal to the length N of the
curves (or to log2(N) if an approximate
method is used).

=AIM-116

Kenneth Mark Colby,
Mind and Brain, Again,
10 pages, March 1970.

Classical , mind-brain  questions appear
deviant through the lens of an analogy
comparing mental processes with
computational ~ processes.  Problems of
reducibility and personal consciousness are
also considered in the light of this analogy.

=AIM- 117

John McCarthy, et al,
Project Technical Report,
75 pages, April 1970.

Current research is reviewed in artificial
intelligence and related areas, including
representation theory, mathematical theory of
computation, models of cognitive processes,
speech recognition, and computer vision.

AIM- 118

Ugo Montanari,

Heuristically Guided Search and
Chromosome Matching,

29 pages, April 1970.

Heuristically guided search is a technique
which takes systematically into account
information from the problem domain for
directing the search. The problem is to find
the shortest path in a weighted graph from a
start vertex Va to a goal vertex Vz: for every
intermediate vertex, an estimate is available
of the distance to Vz. If this estimate
satisfies a  consistency  assumption, an
algorithm by Hart, Nilsson and Raphael is
guaranteed to find the optimum, looking at

93

the a priori minimum number of vertices. In
this paper, a version of the above algorithm
is presented, which is guaranteed to succeed
with the minimum amount of storage. An
application of this technique to the
chromosome matching problem is then
shown. Matching is the last stage of
automatic chromosome. analysis procedures,
and can also solve ambiguities in the
classification stage. Some peculiarities of this
kind of data suggest the use of an
heuristically guided search algorithm instead
of the standard Edmonds’ algorithm. The
method that we obtain in this way is proved
to exploit the clustering of chromosome data:
a h-near-quadratic dependence from the
number of chromosomes is obtained for
perfectly clustered data.  Finally, some
experimental results are given.

+AIM- 119

Joseph Becker,

An Information-processing Model of
Intermediate-Level Cognition,

123 pages, May 1970.

There is a large class of cognitive operations
in which an organism adapts its previous
experience in order to respond properly to a
new situation -- for example: the perceptual
recognition of objects and events, the
prediction of the immediate future (e.g. in
tracking a moving object), and the
employment of sensory-motor “skills”. Taken
all together, these highly efficient processes
form a cognitive subsystem which is
-intermediate between the low-level sensory-
motor operations and the more deliberate
processes of high-level ‘thought’.

The present report describes a formal
information-processing ~ model of  this
‘Intermediate-Level’ cognitive system. The
model includes memory structures for the
storage of experience, and processes for
responding to new events on the basis of
previous experience. In addition, the
proposed system contains a large number of



9%

mechanisms ~ for making the response-
selection process highly efficient, in spite of
the vast amount of stored information that
the system must cope with. These devices
include procedures for  heuristically
evaluating  alternative  su bprocesses,  for
guiding the search through memory, and for
reorganizing the information in memory into
more efficient representations.

+AIM- 120

Kenneth Mark Colby, David Canfield Smith,
Computer as Catalyst in the Treatment of
Nonspeaking Autistic Children,

32 pages, April 1970.

Continued experience with a computer-aided
treatment method for nonspeaking autistic
children has demonstrated improvement
effects in thirteen out of a series of seventeen
cases. Justification for this conclusion is
discussed in detail. Adoption of this method
by other research groups is needed for the
future development of computer-aided
treatment.

«AIM-121

Irwin Sobel,

Camera Models and Machine Perception,
Thesis: Ph.D. in Electrical Engineering,

89 pages, May 1970.

We have developed a parametric model for a
computer-controlled moveable camera on a
pan-tilt head. The model expresses the
transform relating object space to image

space as a function of the control variables -

of the camera. We constructed a calibration
system for measuring the model parameters
which has a demonstrated accuracy more
than adequate for our present needs. We
have also identified the major source of error
in model measurement to be undesired image
motion and have developed means of
measuring and compensating for some of it
and eliminating other parts of it. The system
can measure systematic image distortions if
they become the major accuracy limitation.

A. L. MEMO ABSTRACTS

We have shown how to generalize the model
to handle small systematic errors due to
aspects of pan-tilt head geometry not
presently accounted for.

We have demonstrated the model’s
application in stereo vision and have shown
how it can be applied as a predictive device
in locating objects of interest and centering
them in an image.

+AIM- 122

Roger C. Schank,

‘Semantics’ in Conceptual Analysis,
56 pages, May 1970.

This paper examines the question of what a
semantic theory should account for. Some
aspects of the work of Katz, Fillmore, Lakoff
and Chomsky are discussed. Semantics is
concluded to be the representation problem
with respect to conceptual analysis. The
beginnings of a solution to this problem are
presented in the light of developments in
conceptual dependency theory.

AIM-123

Bruce G. Buchanan, Thomas E. Headrick,
Some Speculation About Artificial
Intelligence and Legal Reasoning,

54 pages, May 1970.

Legal reasoning is viewed here as a complex
problem-solving task to which the techniques
of artificial intelligence programming may be
applied.  Some existing programs are
discussed which successfully attack various
aspects of the problem, in this and other task
domains. It remains an open question, to be
answered by intensive research, whether
computers can be programmed to do creative
legal reasoning. Regardless of the answer, it
is argued that much will be gained by the
research.



A. I. MEMO ABSTRACTS

AIM-124

M. M. Astrahan,

Speech Analysis by Clustering, or the
Hyperphoneme Method,

22 pages, June 1970.

In this work, measured speech waveform
data was used as a basis for partitioning an
utterance into segments and for classifying
those segments. Mathematical classifications
were used instead of the traditional
phonemes or linguistic categories. This
involved clustering methods applied to
h yperspace points representing periodic
samples of speech waveforms. The cluster
centers, or hyperphonemes (HPs), were used
to classify the sample points by the nearest-
neighbor technique. Speech segments were
formed by grouping adjacent points with the
same classification. A dictionary of 54
different words from a single speaker was
processed by this method. 216 utterances,
representing four more repetitions by the
same speaker each of the original 54 words,
were similarly analyzed into strings of
hyperphonemes and matched against the
dictionary by  heuristically  developed
formulas. 87% were correctly recognized,
although almost no attempt was made to
modify and improve the initial methods and
parameters.

=AIM-125

Kenneth Mark Colby, Sylvia Weber,
Franklin Hilf,

Artificial Paranoia,

35 pages, July 1970.

A case of artificial paranoia has been
synthesized in the form of a computer model.
Using the test operations of a teletyped
psychiatric interview, clinicians judge the
input-output behavior of the model to be
paranoid. Formal validation of the model
will require experiments involving
indistinguishability tests.

95

AIM- 126 CS- 169 AD71 1329
Donald E. Knuth,
Exatnples of Formal Semantics,

34 pages, July 1970.

A technique of formal definition, based on
relations between ‘attributes’ associated with
nonterminal symbols in a context-free
grammar, is illustrated by several
applications to simple yet typical problems.
First we define the basic properties of lambda
expressions, involving substitution  and
renaming of bound variables. Then a simple
programming language is defined using
several different points of view. The
emphasis is on ‘declarative’ rather than
‘imperative’ forms of definition.

AIM- 127 cs- 174 AD71 1395
Zohar Manna, Richard J. Waldinger,
Towards Automatic Program Synthesis,

54 pages, July 1970.

An elementary outline of the theorem-
proving approach to automatic program
synthesis is given, without dwelling on
technical details. The method is illustrated
by the automatic construction of both
recursive and iterative programs operating
on natural numbers, lists, and trees.

In order to construct a program satisfying
certain specifications, a theorem induced by
those specifications is proved, and the desired
program is extracted from the proof. The
same technique is applied to transform
recursively defined functions into iterative
programs, frequently with a major gain in
efficiency.

It is emphasized that in order to construct a
program with loops or with recursion, the
principle of mathematical induction must be
applied. The relation between the version of
the induction rule used and the form of the
program constructed is explored in some
detail.



96

AIM-128 cs- 166 AD713841
Erik J. Sandewall,

Representing Natural-language
Information in Predicate Calculus,

27 pages, July 1970.

A set of general conventions are proposed for
representing natural language information in
man y-sorted first order predicate calculus.
The purpose is to provide a testing-ground
for existing theorem-proving programs.
«AIM- 129 CS- 167 AD712460
S higeru Igarashi,

Semantics of ALGOL-like Statements,

95 pages, June 1970.

The semantics of elementary Algol-like
statements is discussed, mainly based on an
axiomatic method.

Firstly, a class of Algol-like statements is
introduced by  generalized  inductive
definition, and the interpretation of the
statements belonging to it is defined in the
form of a function over this class, using the
induction principle induced by the above
definition. Then a category of program is
introduced in order to clarify the concept of
equivalence of statements, which becomes a
special case of isomorphism in that category.

A revised formal system representing the
concept of equivalence of Algol-ii ke
statements is  presented, followed by
elemen tary metatheorems.

Finally, a process of decomposition of Algol-
like statements, which can be regarded as a
conceptual compiler, or a  constructive
description of semantics based on primitive
actrons, is defined and its correctness is
proved formally, by the help of the induced
induction principle.

A. I. MEMO ABSTRACTS

AIM-130 cs- 168

Michael D. Kelly,

Visual Identification of People by
Computer,

Thesis: PA.D. in Computer Science,
238 pages, July 1970.

AD7 13252

This thesis describes a computer program
which performs a complex picture processing
task. The task is to choose, from a collection
of pictures of people taken by a TV camera,
those pictures that depict the same person.
The primary purpose of this research has
been directed toward the development of new
techniques for picture processing.

In brief, the program works by finding the
location of features such as eyes, nose, or
shoulders in the pictures. Individuals are
classified by measurements between such
features. The interesting and difficult part of
the work reported in this thesis is the
detection of those features in digital pictures.
The nearest neighbor method is used for
identification of individuals once a set of
measurements has been obtained.

The success of the program is due to and
illustrates the heuristic use of context and
structure. A new, widely useful, technique
called planning has been applied to picture
processing. Planning is a term which is
drawn from artificial intelligence research in
problem solving.

The principal positive result of this research
is the use of goal-directed techniques to
successfully locate features in cluttered digital
pictures. This success has been verified by
displaying the results of the feature finding
algorithms and comparing these locations
with the locations obtained by hand from
digital printouts of the pictures. Successful
performance in the task of identification of
people provides further verification for the
feature finding algorithms.



A. I. MEMO ABSTRACTS

AIM-131 CS- 176 AD715128
Edward A. Feigenbaum, Bruce G. Buchanan,
Joshua Lederberg,

On Generality and Problem Solving: a Case
Study Using the Dendral Program,
48 pages, August 1970.

Heuristic DENDRAL is a computer program
written to solve problems of inductive
inference in organic chemistry. This paper
will use the design of Heuristic DENDRAL
and its performance on different problems
for a discussion of the following topics:
1. the design for generality;
2. the performance problems attendent upon
too much generality
3. the coupling of expertise to the general
problem solving processes,
4. the symbiotic relationship between
generality and expertnness of problem
solving systems.

We conclude the paper with a view of the
design for a general problem solver that is a
variant of the “big switch” theory of
generality.

=AIM- 132 CS- 180 AD715665
Gilbert Falk,

Computer Interpretation of Imperfect Line
Data as a Three-dimensiorral Scene,

Thesis: Ph.D. in Electrical Engineering,

187 pages, August 1970.

The major portion of this paper describes a
heuristic scene description program. This
program accepts as input a scene represented
as a line drawing. Based on a set of known
object models the program attempts to
determine the identity and location of each
object viewed. The most significant feature
of the program is its ability to deal with
imperfect input data.

We also present some preliminary results
concerning constraints in projections of
planar-faced solids. We show that for a
restricted class of projects, 4 points located in

97

S-space in addition to complete monocular
information are sufficient to specify all the
visible point locations precisely.

*AIM- 133 CS-181

Anthony C. Hearn,

Reduce 2,

Diskfile: REDUCE.ACH[AIM,DOC]),
85 pages, October 1970.

This manual provides the user with a
description of the algebraic programming
system REDUCE 2. The capabilities of this
system include:

1) Expansion and ordering of rational

-functions of polynomials,

2) symbolic differentiation of rational
functions of polynomials and general
functions,

3) substitutions and pattern matching in a
wide variety of forms,

4) calculation of the greatest common
divisor of two polynomials,

5) automatic and user controlled
simplification of expressions,

6) calculations with symbolic matrices,

7) a complete language for symbolic
calculations, in which the REDUCE
program itself is written,

8) calculations of interest to high energy
physicists including spin 1/2 and spin 1
algebra,

9) tensor operations.

*AIM- 134 CS- 182
Jay Martin Tenenbaum,
Accommodation in Computer Vision,
Thesis: PA.D. in Electrical Engineering,
452 pages, September 1970.

AD748565

We describe an evolving computer vision
system in which the parameters of the
camera are controlled by the computer. It is
distinguished from conventional picture
processing systems by the fact that sensor
accommodation is automatic and treated as
an integral part of the recognition process.



98

A machine, like a person, comes in contact
with far more visual information than it can
process. Furthermore, no physical sensor can
simultaneously provide information about
the full range of the environment.
Consequently, both man and machine must
accommodate their sensors to emphasize
selected characteristics of the environment.

Accommodation improves the reliability and
efficiency of machine perception by matching
the information provided by the sensor with
that required by specific perceptual functions.
The advantages of accommodation are
demonstrated in the context of five key
functions in computer vision: acquisition,
contour following, verifying the presence of
an expected edge, range-finding, and color
recognition.

We have modeled the interaction of camera
para meters with scene characteristics to
determine the composition of an image.
Using a priori knowledge of the
environment, the camera is tuned to satisfy
the information requirements of a particular
task.

Task performance depends implicitly on the
appropriateness of available information. If
a function fails to perform as expected, and
if this failure is attributable to a specific
image  deficiency, then the relevant
accommodation parameters can be refined.

This schema for automating  sensor
accommodation can be applied in a-variety
of perceptual domains.
AIM-135 cs- 179 AD7 16566
David Canfield Smith,

MLISP,

Diskfilee MLISP.DAV[AIM,DOC]

99 pages, October 1970.

MLISP is a high level list-processing and
symbol-manipulation language based on the
programming language LISP.  MLISP

A. I. MEMO ABSTRACTS

programs are translated into LISP programs
and then executed or compiled. MLISP
exists for two purposes: (I) to facilitate the
writing and  understanding of LISP
programs; (2) to remedy certain important
deficiencies in the list-processing ability of
LISP.

*AIM- 136 CS- 183
George M. White,
Machine Learning Through Signature
Trees. Applications to Huinan Speech,
40 pages, October 1970.

AD ‘717600

Signature tree ‘machine learning’, pattern
recognition heuristics are investigated for the
specific problem of computer recognition of
human speech. When the data base of given
utterances is insufficient to establish trends
with confidence, a large number of feature
extractors must be employed and ‘recognition’
of an unknown pattern made by comparing
its feature values with those of known
patterns. When the data base is replete, a
‘signature’ tree can be constructed and
recognition can be achieved by the
evaluation of a select few features. Learning
results from selecting an optimal minimal set
of features to achieve recognition. Properties
of signature trees and the heuristics for this
type of learning are of primary interest in
this exposition.

«AIM- 137

Donald E. Knuth,

An Empirical Study of Fortran in Use,
44 pages, November 1970.

A sample of programs, written in Fortran by
a wide variety of people for a wide variety of
applications, was chosen ‘at random’ in an
attempt to discover quantitatively ‘what
programmers really do’. Statistical results of
this survey are presented here, together with
some of their apparent implications for
future work in compiler design. The
principle conclusion which may be drawn is
the importance of a program ‘profile’, namely



A. I. MEMO ABSTRACTS

a table of frequency counts which record
how often each statement is performed in a
typical run: there are strong indications that
profile-keeping should become a standard
practice in all computer systems, for casual
users as well as system programmers. Some
new approaches to compiler optimization are
also suggested. This paper is the report of a
three month study undertaken by the author
and about a dozen students and
representatives  of the software industry
during the summer of 1970.
AIM-138 cs- 188 PB197161
Edward Ashcroft, Zohar Manna,

The Translation of ‘CO-TO’ Programs to
‘WHILE’ Programs,

28 pages, January 1971.

In this paper we show that every flowchart
program can be written without go-to
statements by using while statements. The
main idea is to introduce new variables to
preserve the values of certain variables at
particular points in the program; or
alternatively, to introduce special, boolean
variables to keep information about the
course of the computation.

The while programs produced yield the same
final results as the original flowchart program
but need not perform computations in exactly
the same way. However, the new programs
preserve the topology of the original
flowchart program, and are of the same order
of efficiency. :

We also show that this cannot be done in
general without adding variables.
AIM-139 CS- 189 AD717601
Zohar Manna,

Mathematical Theory of Partial

Correct ness,

24 pages, January 1971.

In this work we show that it is possible to
express most properties regularly observed in

99

algorithms in terms of partial correctness (i.e.,
the property that the final results of the
algorithm, if any, satisfy some given input-
output relation).

This result is of special interest since partial
correctness has already been formulated in
predicate calculus and in partial function
logic for many classes of algorithms.

«AIM- 140 cs-193

Roger C. Schank,

Intention, Memory, and Computer
Understanding,

59 pages, January 197 1.

Procedures are described for discovering the
intention of a speaker by relating the
Conceptual Dependence representation of the
speaker’s utterance to the computer’s world
model such that simple implications can be
made. These procedures function at levels
higher than that of structure of the memory.
Computer understanding of natural language
is shown to consist of the following parts:
assigning a conceptual representation to an
input; relating that representation to the
memory such as to extract the intention of
the speaker; and selecting the correct
response type triggered by such an utterance
according to the situation.

«AIM-141 CS-203 AD730506
Bruce G. Buchanan, Joshua Lederberg,

The Heuristic DENDRAL Program for
Explaining Empirical Data,

20 pages, February 1971.

The Heuristic DENDRAL program uses an
information processing model of scientific
reasoning to explain experimental data in
organic chemistry. This report summarizes
the organization and results of the program
for computer scientists. The program is
divided into three main parts: planning,
structure generation, and evaluation.

The planning phase infers constraints on the



100

search space from the empirical data input to
the system. The structure generation phase
searches a tree whose termini are models of
chemical models using pruning heuristics of
various kinds. The evaluation phase tests
the candidate structures against the original
data. Results of the program’s analyses of
some tests are discussed.
AIM-142 CS-205 AD731383
Robin Milner,

An Algebraic Definition of Simulation
Between Programs,

21 pages, February 1971.

A simulation relation between programs IS
defined which is quasi-ordering. Mutual
simulation is then an equivalence relation,
and by dividing out by it we abstract from a
program such details as how the sequencing
is controlled and how data is represented.
The equivalence classes are approximations
to the algorithms which are realized, or
expressed, by their member programs.

4 technique is given and illustrated for
proving simulation and equivalence of
programs; there is an analogy with Floyd’s
technique for proving correctness of
programs. Finally, necessary and sufficient
conditions for simulation are given.

~AIM 1493 cs-209 AD724867
John McCarthy, et al,

Project Technical Report,
80 pages, March 1971.

Anoverview is presented of current research
ar Stanford in artificial intelligence and
heuristic programming. This report is
largely the text of a proposal to the
Advanced Research Projects Agency for fiscal
years 19°72-3.

A.I. MEMO A&TRACTS

AIM- 144 cs-2 19

Lynn H. Quam,

Computer Coinparisori of Pictures,
Thesis: Ph.D. in Computer Science,
120 pages, May 1971.

This dissertation reports the development of
digital computer techniques for detecting
changes in scenes by normalizing and
comparing pictures which were taken from
different camera positions and under
different conditions of illumination. The
pictures are first geometrically normalized to
a common point of view. Then they are
photometrically normalized to eliminate the
differences due to different illumination,
camera  characteristics,  and  reflectance
properties of the scene due to different sun
and view angles. These pictures are then
geometrically registered by maximizing the
cross correlation between areas in them. The
final normalized and registered pictures are
then differenced point by point.

The geometric normalization techniques
require relatively accurate geometric models
for the camera and the scene, and static
spatial features must be present in the
pictures to allow precise geometric alignment
using the technique of cross correlation
maximization.

Photometric normalization also requires a
relatively accurate model for the photometric
response of the camera, a reflectance modei
for the scene (reflectance as a function of the
illumination view, and phase angles) and
some assumptions about the kinds of
reflectance changes which are to be detected.

These techniques have been incorporated tn
a system for comparing Mariner 197 1
pictures of Mars to detect variable surface
phenomena as well as color and polarization
differences. The system has been tested using
Mariner 6 and 7 pictures of Mars.

Although the techniques described in this



A.I. MEMO ABSTRACTS

dissertation ~were developed for Mars
pictures, their use is not limited to this
application. Various parts of this software
package, which was developed for interactive
use on the time-sharing system of the
Stanford Artificial Intelligence Project, are
currently being applied to other scenery.

:AIM- 145 cs-22 1 AD731729
Bruce G. Buchanan, Edward A. Feigenbaum,
Joshua Lederberg,

A Heuristic Programming Study of Theory
Formation in Science,

41 pages,, June 1971.

The Meta-DENDRAL program is a a
vehicle for studying problems of theory
formation in science. The general strategy of
Meta-DENDRAL is to reason from data to
plausible generalizations and then to
organize the generalizations into a unified
theory.  Three main subproblems are
discussed: (1) explain the experimental data
for each individual chemical structure, (2)
generalize the results from each structure to
all  structures, and (3) organize the
generalizations into a unified theory. The
program is built upon the concepts and
programmed routines already available in
the Heuristic DENDRAL performance
program, but goes beyond the performance
program in attempting to formulate the
theory which the performance program will
use.

AIM-146 CS-224 PB212183
Andrei P. Ershov, .

Parallel Program ming,

14 pages, July 1971.

This report is based on lectures given at
Stanford University by Dr. Ershov in
November, 1970.

101

«AIM- 147 CS-2 16 AD732457
Robert E. Kling,

Reasoning by Analogy with Applications
to Heuristic Problem Solving: a Case Study,
Thesis: Ph.D. in Computer Science,

191 pages, August 1971.

An information-processing approach to
reasoning by analogy is developed that
promises to increase the efficiency of heuristic
deductive problem-solving systems. When a
deductive problem-solving system accesses a
large set of axioms more than sufficient for a
particular problem, it will often create many
irrelevant deductions that saturate the
memory of the problem solver.

Here, an analogy with some previously
solved problem and a new unsolved problem
is used to restrict the data base to a small set
of appropriate axioms. This procedure
(ZORBA) is studied in detail for a resolution
theorem proving system. A set of algorithms
(ZORBA-I) which automatically generates an
analogy between a new unproved theorem,
TIA, and a previously proved theorem, T, is
described in detail. ZORBA-I is implemented
in LISP on a PDP- 10.

ZORBA-I is examined in terms of its
empirical performance on parts of analogous
theorems drawn from abstract algebra.
Analytical studies are included which show
that ZORBA-I can be useful to aid automatic
theorem proving in many pragmatic cases
while it may be a detriment in certain
specially contrived cases.

AIM- 148 CS-217 AD731730
Edward Ashcroft, Zohar Manna, Amir
Pneuli,

Decidable Properties of Monadic

Functional Schemas,

10 pages, July 1971.

We define a class of (monadic) functional
schemas which properly include ‘lanov’
flowchart schemas. We show that the



102
termination,  divergence  and  freedom
problems  for  functional  schemas  are

decidable. Although it is possible to translate
a large class of non-free functional schemas
into equivalent free functional schemas, we
show that this cannot be done in general.
We show also that the equivalence problem
for free functional schemas is decidable.
Most of the results are obtained from well-
known results in Formal Languages and
Automata Theory.
AIM-149 cs-231 AD 732644
Rodney .Albert Schmidt, Jr.,

A Study of the Real-time Control of a
Computer-driven Vehicle,

Thesis: Ph.D. in Electrical Engineering,

180 pages, August 1971.

Vehicle control by the computer analysis of
visual images is investigated. The areas of
guidance, navigation, and incident avoidance
are considered. A television camera is used
as the prime source of visual image data.

1 n the guidance system developed for an
experimental vehicle, visual data is used to
gain information about the vehicle system
dynamics, as well as to guide the vehicle.
This information is used in real time to
Improve performance of the non-linear, time-
varying vehicle system.

A scheme for navigation by pilotage through
the recognition of two dimensional scenes is
developed. A method is proposed to link this
to a computer-modelled map in order
make Journeys.

Various difficulties in avoiding anomolous
inciden ts  in  the automatic control of
automobiles are discussed, together with
suggestions for the application of this study
to remote exploration vehicles or industrial
automation.

to .

A. I. MEMO ABSTRACTS

+AIM- 150

Robert W. Floyd,

Toward Interactive Design of Correct
Program s,

12 pages, September 1971.

We propose an interactive system proving
the correctness of a program, or locating
errors, as the program is designed.

+AIM- 15| Cs-240
Ralph L. London,
Correctness of Two Compilers for a LISP
Subset,

41 pages, October 197 1.

AD738568

Using mainly structural induction, proofs of
correctness of each of two running Lisp
compilers for the PDP- 10 computer are
given. Included are the rationale for
presenting these proofs, a discussion of the
proofs, and the changes needed to the second
compiler to complete its proof.

=AIM- 152 CS-241
Alan W. Biermann,
On the Inference of Turing Machines from
Sample Computations,

3 t pages, October 197 1.

AD 732642

An algorithm is presented which when given
a complete description of a set of Turing
machine computations finds a Turing
machine which is capable of doing those
computations. This algorithm can serve as
the basis for designing a trainable device
which can be trained to simulate any Turing
machine by being led through a series of
sample computations done by that machine,
A number of examples illustrate the use of
the technique and the possibility of the
application to other types of problems.

«AIM- 153 CS-242
Patrick J. Hayes,

The Frame Problem and Related Problems
in Artificial Intelligence,

18 pages, November 1971.

AD738569



[

A. I. MEMO ABSTRACTS

The frame problem arises in considering the
logical structure of a robot’s beliefs. It has
been known for some years, but only recently
has much progress been made. The problem
s described and discussed.  Various
suggested methods for its solution are
outlined, and described ina uniform
notation. Finally, brief consideration is given
to the problem of adjusting a belief system in
the face of evidence which contradicts beliefs.
It is shown that a variation on the situation
notation of (McCarthy and Hayes, 1969)
permits an elegant approach, and relates this
problem to the frame problem.

+AIM- 154 CS-24 3 AD738570
Zohar Manna, Stephen Ness, Jean Vuillemin,
Inductive Methods for Proving Properties
of Programs,

24 pages, November 1971.

We have two main purposes in this paper.
First, we clarify and extend known results
about computation of recursive programs,
emp hasizing the difference between the
theoretical ~ and  practical  approaches.
Secondly, we present and examine various
known methods for proving properties of
recursive programs. We discuss in detail two
powerful inductive methods, computational
induction and structural induction,
illustrating their applications by various
examples. We also briefly discuss some other
related methods.

Our aim in this work is to introduce
inductive methods to as wide a class of
readers as possible and to demonstrate their
power as practical techniques. We ask the
forgiveness of our more theoretical-minded
colleagues for our occasional choice of clarity
over precision.

AIM-155 CS-245

Jonathan Leonard Ryder,

Heuristic Analysis of Large Trees as
Generated in the Game of Go,
Thesis: PA.D.in Computer Science,
300 pages, December 1971.

103

The Japanese game of Go is of interest both
as a problem in mathematical repesentation
and as a game which generates a move tree
with an extraordinarily high branching
factor (100 to 300 branches per ply). The
complexity of Go (and the difficulty of Go
for human players) is thought to be
considerably greater than that of chess. The
constraints of being able to play a complete
game and of being able to produce a move
with a moderate amount of processing time
were placed on the solution.

The basic approach used was to find
methods for isolating and exploring several
sorts of relevant subsections of the global
game tree. This process depended heavily on
the ability to define and manipulate the
entities of Go as recursive functions rather
than as patterns of stones. A general
machine-accessible  theory of Go  was
developed to provide context for program
evaluations.

A program for playing Go is now available
on the Stanford PDP- 10 computer. It will
play a complete game, taking about 10 to 30
seconds for an average move. The quality of
play is better than that of a beginner in
many respects, but incompletenesses in the
current machine-representable theory of Go
prevent the present program from becoming
astrong player.

AIM- 156 CS-246 AD740141
Kenneth Mark Colby, Franklin D. Hilf,
Sylvia Weber, Helena C. Kraemer,

- A Resemblance Test for the Validation of a

Computer Simulation of Paranoid
Processes,
29 pages, November 1971.

A computer simulation of paranoid processes
in the form of a dialogue algorithm was
subjected to a validation study using an
experimental resemblance test in which
judges rate degrees of paranoia present in
initial  psychiatric interviews of both



104

paranoid patients and of versions of the
paranoid model. The statistical results
indicate a satisfactory degree of resemblance
between the two groups of interviews. It is
concluded that the model provides a
successful simulation of naturally occuring
paranoid processes.

=AIM-157 cs-247

Yorick Wilks,

One Small Head -- Some Remarks on the
use of ‘Model’ in Linguistics,

17 pages, December 1971.

I argue that the present situation in formal
linguistics, where much new work is
presented as being a “model of the brain”, or
of “human language behavior”, is an
undesirable one. My reason for this
judgement is not the  conservative
(Braithwaitian) one that the entities in
question are not really models but theories.
It is rather that they are called models
because they cannot be theories of the brain
at the present stage of brain research, and
hence that the use of “model” in this context
is not so much aspirational as resigned about
our total ignorance of how the brain stores
and processes linguistic information. The
reason such explanatory entities cannot be
theories is that this ignorance precludes any
“semantic ascent” up the theory; i.e.,
interpreting the items of the theory in terms
of observables. And the brain items,
whatever they may be, are not, as Chomsky
has sometimes claimed, in the same position
as the “occult entities” of Physics like
Gravitation; for the brain items are not
theoretically unreachable, merely unreached.

I then examine two possible alternate views
of what linguistic theories should be
proffered as theories of: theories of sets of
sentences, and theories of a particular class of
algorithms. I argue for a form of the latter
view, and that its acceptance would also have
the effect of making Computational
Linguistics a central part of Linguistics,
rather than the poor relation it is now.

A. I. MEMO ABSTRACTS

I examine a distinction among ‘linguistic
models’ proposed recently by Mey. who was
also arguing for the self-sufficiency of
Computational Linguistics, though as a
‘theory of performance’. I argue that his
distinction is a bad one, partly for the
reasons developed above and partly because
he attempts to tie it to Chomsky’s inscrutable
competance-performance  distinction. I
conclude that the independence and self-
sufficiency of Computational Linguistics are
better supported by the arguments of this

paper.

AIM-158 CS-250

Ashok Chandra, Zohar Manna,
Program Schemas With Equality,
13 pages, December 197 1.

AD740127

We discuss the class of program schemas
augmented with equality tests, that is, tests of
equality between terms.

In the first part of the paper we illustrate the
‘power’ of equality tests. It turns out that the
class of program schemas with equality is
more powerful than the ‘maximal’ classes of
schemas suggested by other investigators.

In the second part of the paper, we discuss
the decision problems of program schemas
with equality. It is shown, for example, that
while  the decision problems normally
considered for schemas (such as halting,
divergence, equivalence, isomorphism and
freedom) are decidable for Ianov schemas.
They all become undecidable if general
equality tests are added. We suggest,
however, limited equality tests which can be
added to certain subclasses of program
schemas while preserving their solvable
properties.

AIM- 159 CS-253

Jerome A. Feldman, Paul C. Shields,
Total Complexity and Inference of Best
Programs,

40 pages, April 1972.



A.I. MEMO ABSTRACTS

Axioms for a total complexity measure for
abstract programs are presented. Essentially,
they require that total complexity be an
unbounded increasing function of the Blum
time and size measures. Algorithms for
finding the best program on a finite domain
are presented, and their limiting behavior for
infinite domains described.  For total
complexity, there are important senses in
which a machine can find the best program
for a large class of functions.
=AIM- 160 CS-255 AD740140
Jerome A. Feldman,

Automatic Programming,

20 pages, February 1972.

The revival of interest in Automatic
Programming is considered. The research is
divided into direct efforts and theoretical
developments and the successes and prospects
of each are described.
AIM-161 CS-264 AD741 189
Yorick Wilks,

Artificial Intelligence approach to Machine
Translation,

44 pages, February 1972.

The paper describes a system of semantic
analysis and generation, programmed In
LISP 1.5 and designed to pass from
paragraph length input in English to French
via an interlingual representation. A wide
class of English input forms will be covered,
but the vocabulary will initially be restricted
to one of a few hundred words. With- this
subset working, and during the current year
(197 1-72). it is also hoped to map the
interlingual ~ representation  onto  some
predicate calculus notation so as to make
possible the answering of very simple
questions -about the translated matter. The
specification of the translation system itself is
complete, and its main points are:

i) It translates phrase by phrase--with
facilities  for reordering phrases and

105

establishing essential semantic connectivities
between them--by mapping complex semantic
stuctures of “message” onto each phrase.
These constitute the inter-lingual
representation  to be translated.  This
matching is done without the explicit use of
a conventional syntax analysis, by taking as
the appropriate matched structure the ‘most
dense’ of the alternative structures derived.
This method has been found highly
successful in earlier versions of this analysis
system.

ii) The French output strings are generated
without the explicit use of a generative
grammar. That is done by means of
stereotypes: strings of French words, and
functions evaluating to French words, which
are attached to English word senses in the
dictionary and built into the interlingual
representation by the analysis routines. The
generation program thus receives an
interlingual  representation  that already
contains both French output and implicit
procedures for assembling the output, since
the stereotypes are in effect recursive
procedures specifying the content and
production of the output word strings. Thus
the generation program at no time consults a
word dictionary or inventory of grammar
rules.

It is claimed that the system of notation and
translation described is a convenient one for
expressing and handling the items of
semantic information that are essential to any
effective MT system. 1 discuss in some detail
the semantic information needed to ensure
the correct choice of output prepositions in
French; a vital matter inadequately treated
by virtually all previous formalisms and
projects.

*AIM- 162 CS-265 AD744634
Roger C. Schank, N. Goldman, C. J. Rieger,
C. K. Riesbeck,

Primitive Concepts Underlying Verbs of
Thought,

102 pages, April 1972.



106

In order to create conceptual structures that
will uniquely and unambiguously represent
the meaning of an utterance, it is necessary to
establish ‘primitive’ underlying actions and
states into which verbs can be mapped. This
paper presents analyses of the most common
mental verbs in terms of such primitive
actions and states. In order to represent the
way people speak about their mental
processes, it was necessary to add to the usual
ideas of memory structure the notion of
Immediate Memory. It is then argued that
there are only three primitive mental ACTS.

AIM-163 CS-266

Jean M. Cadiou,

Recursive Definitions of Partial Functions
and Their Computations,

Thesis: Ph.D. in Computer Science,
160 pages, April 1972.

A formal syntactic and semantic model is
presented for ‘recursive definitions’ which are
generalizations of those found in LISP, for
example. Such recursive definitions can have
two classes of fixpoints, the strong fixpoints
and the weak fixpoints, and also possess a
class of computed partial functions.

Relations between these classes are presented:
fix points are shown to be extensions of
computed functions. More precisely, strong
fixpoints are shown to be extensions of
computed functions when the computations
may involve ‘call by name’ substitutions;
weak fixpoints are shown to be extensions of
computed functions when the computation
only involve ‘call by value’ substitutions.
The Church-Rosser property for recursive
definitions with fixpoints also follows from
these results.

Then conditions are given on the recursive
definitions to ensure that they possess least
fix points (of both classes), and computation
rules are given for computing these two
fixpoints: the ‘full’ computation rule, which
leads to the least weak fixpoint. A general

A.1. MEMO ABSTRACTS

class of computation rules, called ‘safe
innermost’, also lead to the latter fixpoint.
The “leftmost innermost” rule is a special
case of those, for the LISP recursive
definitions.

AIM- 164 CS-272

Zohar Manna, Jean Vuillemin,
Fixpoint Approach to the Theory of
Computation,

29 pages, April 1972.

AD742748

Following the fixpoint theory of Scott, we
propose to define the semantics of computer
programs in terms of the least fix points of
recursive programs. This allows one not only
to justify all existing verification techniques,
but also to extend them to handle various
properties of computer programs, including
correctness, termination and equivalence, in a
uniform manner.

*AIM- 165 CS-280
D. A. Bochvar,

Two Papers on Partial Predicate Calculus,
50 pages, April 1972.

AD74275 1

These papers, published in 1938 and 1943,
contain the first treatment of a logic of
partial predicates. Bochvar’s treatment is of
current interest for two reasons. First, partial
predicate and function logic are important
for mathematical theory of computation
because functions defined by programs or by
recursion cannot be guaranteed to be total.
Second, natural language may be better
approximated by a logic in which some
sentences may be undefined than by a
conventional logic. Bochvar use of his
system to avoid Russell’s paradox is of
interest here, and in partial predicate logic it
may be possible to get more of an
axiomatitation of truth and knowledge than
in a conventional logic.

The papers translated are On a three-valued
logical calculus and its application to the
analysis of  contradictions, Recueil



A.I. MEMO ABSTRACTS

Mathematique, N. S. 4 (1938), pp. 287-308,
and On the consistency of a three-valued
logical calculus, ibid. 12 (1943), pp. 353-369.

We also print a review and a correction by
Alonzo Church that appeared in the Journal
of Symbolic Logic. The review was in Vol.
4.2 (June 1939), p. 99, and the additional
comment was in Vol. 5.3 (September 1940), p.
119.

AIM- 166 cs-28 1 AD-743598
Lynn H. Quam, S. Liebes, R. B. Tucker, M.
J. Hannah, B. G. Eross,

Computer Interactive Picture Processing,
40 pages, April 1972.

This report describes work done in image
processing using an interactive computer
system. Techniques for image differencing
are described and examples using images
returned from Mars by the Mariner Nine
spacecraft are shown. Also described are
techniques for stereo image processing.
Stereo processing for both conventional
camera systems and the Viking 1975 Lander
camera system is reviewed.
AIM- 167 CS -282 AD747254
Ashok K. Chandra,

Efficient Compilation of Linear Recursive
Programs,

43 pages, June 1972.

We consider the class of linear recursive
programs. A linear recursive program is a
set of procedures where each procedure can
make at most one recursive call. The
conventional ~ stack  implementation of
recu rsion requires time and space both
proportional to n, the depth of recursion. It
1s shown that in order to implement linear
recursion - so as to execute in time n one
doesn’t need space proportional to n : n¢ for
sufficiently small « will do. It is also known
that with constant space one can implement
linear recursion in time n? We show that
one can do much better: n**¢ for arbitrarily

107

small . We also describe an algorithm that
lies between thee two: it takes time n log(n)
and space log(n).

It is shown that several problems are closely
related to the linear recursion problem, for
example, the problem of reversing an input
tape given a finite automaton with several
one-way heads. By casting all these problems
into canonical form, efficient solutions are
obtained simultaneously for all.

AIM- 168 CS-287
Shigeru Jgarashi,
Admissibility of Fixed-point Induction in
First-order Logic of Typed Theories,
Diskfile: FIXPNT.IGR[AIM,DOC)]

40 pages, May 1972.

AD746146

First-order logic is extended so as to deal
with typed theories, especially that of
continuous  functions  with  fixed-point
induction formalized by D. Scott. The
translation of his forma.l system, or the A
calculus-oriented ~ system  derived  and
implemented by R. Milner, into this logic
amounts to adding predicate calculus features
to them.

In such a logic the fixed-point induction
axioms are no longer valid, in general, so
that we characterize formulas for which
Scott-type induction is applicable, in terms of
syntax which can be checked by machines
automatically.

AIM- 169 CS-288

Robin Milner,

Logic for Computable Functions:
Description of a Machine Implementation,
Diskfile: LCFMAN.RGM[AIM,DOC],

36 pages, May 1972.

This paper is primarily a user’s manual for
LCF, a proof-checking program for a logic of
computable functions proposed by Dana
Scott in 1969, but unpublished by him. We
use the name LCF also for the logic itself,



108

which is presented at the start of the paper.
The proof-checking program is designed to
allow the user interactively to generate
formal proofs about computable functions
and functionals over a variety of domains,
Including those of interest to the computer
scientist -- for example, integers, lists and
computer programs and their semantics. The
user’s task is alleviated by two features: a
subgoaling  facility and a  powerful
simplification mechanism. Applications
include proofs of program correctness and in
particular of compiler correctness; these
applications are not discussed herein, but are
illustrated in the papers referenced in the
Introduction.
AIM-170 CS-289 AD748607
Yorick Wilks,

Lakoff on Linguistics and Natural Logic,
Diskfile: LAKOFF.Y AW[AIM,DOC]

19 pages, June 1972.

The paper examines and criticizes Lakoff’s
notions of a natural logic and of a generative
semantics described in terms of logic, I argue
that the relationship of these notions to logic
as normally understood is unclear, but I
suggest, in the course of the paper, a number
of possible interpretations of his thesis of
generative semantics. I argue further that on
these interpretations a mere notational
vauiant of Chomskyan theory. I argue, too,
that Lakoff’s work may provide a service in
that it constitutes a reductio ad absurdum of
the derivational paradigm of modern
linguistics; and shows, inadvertently, that
only a system with the ability to reconsider
it: own inferences can do the job that Lakoff
sets up for linguistic enquirey -- that is to
say, only an ‘artificial intelligence’ system.
AIM-1Tt cs-290 AD746147
Roger Schank,

Adverbs and Belief,

20 pages, June 1972.

The treatment of a certain class of adverbs

A.1. MEMO ABSTRACTS

in conceptual  representation is  given.
Certain  adverbs are shown to be
representative of complex belief structures.
These adverbs serve as pointers that explain
where the sentence that they modify belongs
in a belief structure.

+AIM- 172 cs-299
Sylvia Weber Russell,
Semantic Categories of Nominals for
Conceptual Dependency Analysis of
Natural Language,
64 pages, July 1972.

AD 75280 1

A system for the semantic categorization of
conceptual objects (nominals) is provided.
The system is intended to aid computer
understanding of natural language. Specific
implementations  for  ‘noun-pairs’  and
prepositional phrases are offered.

*AIM- 173 cs- 305
Gerald Jacob Agin,
Representation and Description of Curved
Objects,

Thesis: Ph.D. in Computer Science,

134 pages, October 1972.

AD755139

Three dimensional images, similar to depth
maps, are obtained with a triangulation
system using a television camera, and a
deflectable laser beam diverged into a plane
by a cylindrical lens.

Complex objects are represented as structures
joining parts called generalized cylinders.
These primitives are formalized in a volume
representation by an arbitrary cross section
varying along a space curve axis. Several
types of joint structures are discussed.

Experimental results are shown for the
description (building of internal computer
models) of a handful of complex objects,
beginning with laser range data from actual
objects.  Our programs have generated
complete descriptions of rings, cones, and
snake-like objects, all of which may be



A.I. MEMO ABSTRACTS

described by a single primitive. Complex
objects, such as dolls, have been segmented
into parts, most of which are well described
by programs which implement generalized
cylinder descriptions.
<AIM- 174 cs-303 PB212827
Francis Lockwood Morris,

Correctness of Translations of
Programming Languages -- an Algebraic
Approach,

Thesis: Ph.D. in Computer Science,

124 pages, August 1972.

Programming languages and their sets of
meanings can be modelled by general
operator algebras; semantic functions and
compiling functions by homomorphisms of
operator algebras. A restricted class of
individual ~ programs,  machines,  and
computations can be modelled in a uniform
manner by binary relational algebras. A
restricted class of individual manner by
binary relational algebras.  These two
applications of algebra to computing are
compatible: the semantic function provided
by interpreting (‘running’) one binary
relational ~ algebra on another is a
homomorphism on an operator algebra
whose elements are binary relational
algebras.

Using these mathematical tools, proofs can be
provided systematically of the correctness of
compilers for fragmentary programming
languages each embodying a single language
‘feature’.  Exemplary proofs are given -for
statement sequences, arithmetic expressions,
Boolean expressions, assignment statements,
and while statement. Moreover, proofs of
this sort can be combined to provide
(synthetic) proofs for in principle, many
different complete programming languages.
One example of such a synthesis is given.

109

AIM-175 cs-307

Hozumi Tanaka,

Hadamard Transforim for Speech Wave
Analysis,

Diskfile: HADAM.HT([AIM,DOC],

34 pages, August 1972.

Two methods of speech wave analysis using
the Hadamard transform are discussed. The
first method is a direct application of the
Hadamard transform for speech waves. The
reason this method yields poor results is
discussed. The second method is the
application of the Hadamard transform to a
log-magnitude frequency spectrum. After the
application of the Fourier transform the
Hadamard transform is applied to detect a
pitch period or to get a smoothed spectrum.
This method shows some positive aspects of
the Hadamard transform for the analysis of
a speech wave with regard to the reduction
of processing time required for smoothing,
but at the cost of precision. A formant
tracking program for voiced speech is
implemented by using this method and ‘an
edge following technique used in scene
an al ysis.

«AIM- 176 CS-308 AD754109
Jerome A. Feldman, J.R. Low, D. C.
Swinehart, R. H. Taylor,

Recent Developments in SAIL -- an
ALGOL based Language for Artificial
Intelligence,

22 pages, November 1972.

New features added to SAIL, an ALGOL
based languaged for the PDP- 10, are
discussed. The features include: procedure
variables; multiple processes; coroutines; a
limited form of backtracking; an event
mechanism for inter-process communication;
and matching procedures, a new way of
searching the LEAP associative data base.



110

AIM-177 cs-3 11

Richard Paul,

Modelling, Trajectory Calculation and
Servoing of a Computer Controlled Arm,
Thesis: Ph.D. in Computer Science,

89 pages, November 1972.

The problem of computer contral of an arm
1s divided into four parts: modelling,
trajectory calculation, servoing and control.

In modelling we use a symbolic data structure
to represent objects in the environment. The
program considers how the hand may be
positioned to grasp these objects and plans
how to turn and position them in order to
make various moves. An arm model is used
to calculate the configuration-dependent
dynamic properties of the arm before it is
moved.

The arm is moved along time-coordinated
space trajectories in which velocity and
acceleration are controlled. Trajectories are
calculated for motions along defined space
curves, as in turning a crank; in such
trajectories various joints must be free due to
external motion constraints.

The arm is servocd by a small computer. No
analog servo is used. The servo is
compensated for gravity loading and for
configuration-dependent dynamic properties
of the arm.

In order to control the arm, a planning
program interprets symbolic arm control
Instructions and generates a plan consisting
of arm motions and hand actions.

The move planning program has worked
successfully in the manipulation of plane
faced objects. Complex motions, such as
locating a bold and screwing a nut onto it,
have also been performed.

A. I. MEMO ABSTRACTS

«AIM- 178 CS-312 AD754 108
Aharon Gill,

Visual Feedback and Related Problems in
Computer Controlled Hand eye
Coordination,

Thesis: Ph.D. in Electrical Engineering,

130 pages, October 1972.

A set of programs for precise manipulation
of simple planar bounded objects, by means
of visual feedback, was developed for use in
the Stanford hand-eye system. The system
includes a six degrees of freedom computer
controlled manipulator (arm and hand) and
a fully instrumented computer television
camera.

The image of the hand and manipulated
objects is acquired by the computer through
the camera. The stored image is analyzed
using a corner and line finding program
developed for this purpose. The analysis is
simplified by using all the information
available about the objects and the hand,
and previously measured coordination errors.
Simple touch and force sensing by the arm
help the determination of three dimensional
positions from one view.

The utility of the information used to
simplify the scene analysis depends on the
accuracy of the geometrical models of the
camera and arm. A set of calibration
updating techniques and programs was
developed to maintain the accuracy of the
camera model relative to the arm model.

The precision obtained is better than .1 inch.
It is limited by the resolution of the imaging
system and of the arm position measuring
system.

+AIM- 179 CS-320

Bruce G. Baumgart,

Winged Edge Polyhedron Representation,
46 pages, October 1972.

A winged edge polyhedron representation is



A. I. MEMO ABSTRACTS

stated and a set of primitives that preserve
Euler’s F-E+V=2 equation are explained.
Present use of this representation in Artificial
Intelligence for computer graphics and world
modeling is illustrated and its intended
future application to computer vision is
described.

=AIM- 180 CS-321 AD7597 12
Ruzena Bajcsy,

Computer Identification of Textured
Visual Scenes,

Thesis: Ph.D. in Computer Science,

156 pages, October 1972.

This work deals with computer analysis of
textured outdoor scenes involving grass, trees,
water and clouds. Descriptions of texture are
formalized from natural language
descriptions; local descriptors are obtained
from the directional and non-directional
components of the Fourier transform power
spectrum. Analytic expressions are obtained
for orientation, contrast, size, spacing, and in
periodic cases, the locations of texture
elements. These local descriptors are defined
over windows of various sizes; the choice of
sizes is made by a simple higher-level
program.

The process of region growing is represented
by a sheaf-theoretical model which formalizes
the operation of pasting local structure (over
a window) into global structure (over a
region). Programs were implemented which
form regions of similar color and similar
texture with respect to the local descriptors.

An interpretation is made of texture gradient
as distance gradient in space. A simple
world model is described. An interpretation
of texture regions and texture gradient is
made witb a simulated correspondence with
the world model. We find that a problem-
solving approach, involving hypothesis-
verification, more satisfactory than an earlier
pattern recognition effort (Bajcsy 1970) and
more crucial to work with complex scenes

11

than in scenes of polyhedra. Geometric clues
from relative sizes, texture gradients, and
interposition are important in interpretation.

«AIM-181 CS-325

Bruce G. Buchanan,

Review of Hubert Dreyfus’ ‘What
Computers Can’t Do’: a Critique of
Artificial Reason,

14 pages, November 1972.

The recent book “What Computers Can’t
Do” by Hubert Dreyfus is an attack on
artificial intelligence research. This review
takes the position that the philosophical
content of the book is interesting, but that
the attack on artificial intelligence is not well
reasoned.

+AIM- 182 CS-326 AD754107
Kenneth Mark Colby and Franklin Dennis
Hilf,

Can Expert Judges, using Transcripts of
Teletyped Psychiatric Interviews,
Distinguish Human Paranoid Patients
from a Computer Simulation of Paranoid
Processes?,

10 pages, December, 1972.

Expert judges (psychiatrists and computer
scientists) could not correctly distinguish a
simulation model of paranoid processes from
actual paranoid patients.

«AIM- 183 cs-344
Roger C. Schank,
The Fourteen Primitive Actionsand their

Inferences,
70 pages, March 1973.

AD759716

In order to represent the conceptual
information underlying a natural language
sentence, a conceptual structure has been
established that uses the basic actor-action-
object framework. It was the intent that
these structures have only one representation
for one meaning, regardless of the semantic
form of the sentence being represented.



112

Actions were reduced to their basic parts so
as to effect this. It was found that only
fourteen basic actions were needed as
building blocks by which all verbs can be
represented. Each of these actions has a set
of actions or states which can be inferred
when they are present.
«AIM-184 cs-330 AD758651
M aicolm Newey,

Axiotns and Theoretns for Integers, Lists
and Finite Sets in LCF,

53 pages, January 1973.

LCF (Logic for Computable Functions) is
being promoted as a formal language
suitable for the discussion of various
problems in the Mathematical Theory of
Computation (MTC). To this end, several
examples of MTC problems have been
formalised and proofs have been exhibited
using the LCF proof-checker. However, in
these examples, there has been a certain
amount of ad-hoc-ery in the proofs; namely
many mathematical theorems have been
assumed without proof and no
axiomatisation of the mathematical domains
involved was given. This paper describes a
suitable mathematical environment for future
LCF experiments and its axiomatic basis.
The  environment developed  deemed
appropriate for such experiments, consists of
a large body of theorems from the areas of
integet arithmetic, list manipulation and
finite set theory.
«AIM- 185 cs-333 AD’157367
Ashok K. Chandra, Zohar Manna,

On the Power of Programming Features,
29 pages, January 1973.

We  consider the power of several
prograniming features such as counters,
pushdown stacks, queues, arrays, recursion
and equality. In this study program schemas
are used as the model for computation. The
relations between the powers of these features
is completely described by a comparison
diagram.

A.I. MEMO ABSTRACTS

wAIM - 186
Robin Milner,
Models of LCF,

17 pages, January 1973.

CS-332 AD758645

LCF is a deductive system for computable
functions proposed by D. Scott in 1969 in an
unpublished memorandum. The purpose of
the present paper is to demonstrate the
soundness of the system with respect to
certain models, which are partially ordered
domains of continuous functions. This
demonstration was supplied by Scott in his
memorandum; the present paper is merely
intended to make this work more accessible.

+AIM- 187 cs-33 1
George E. Collins,
The Computing Titne of the Euclidean
Algorithm,

17 pages, January 1973.

AD757364

The maximum, minimum and average
computing times of the classical Euclidean
algorithm for the greatest common divisor of
two integers are derived, to within
codominance, as functions of the lengths of
the two inputs and the output.

»AIM- 188 CS-336
Ashok K. Chandra,
On the Properties and Applications of
Progratn Schettras,

Thesis: Ph.D. in Computer Science,
23 1 pages, March 1973.

AD 758646

The interesting questions one can ask about
program schemas include questions about the
‘power’ of classes of schemas and their
decision problems viz. halting divergence,
equivalence, etc. We first consider the
powers of schemas with various features:
recursion, equality tests, and several data
structures such as pushdown stacks, lists,
queues and arrays. We then consider the
decision problems for schemas with equality
and with commutative and invertible
‘functions.  Finally a generalized class of



A. 1. MEMO ABSTRACTS

:chemas is described in an attempt to unify
he various classes of uninterpreted and
:emi-interpreted schemas and schemas with
special data structures.
:AIM-189 cs-337 PB218682
James Gips, George Stiny,

Aest hetics Systems,

22 pages, January 1973.

The formal structure of aesthetics systems is
defined. Aesthetics systems provide for the
essential  tasks  of  interpretation  and
¢ aluation , in aesthetic analysis.
i olmogorov’s formulation of information
theory is applicable. An aesthetics system for
a class of non-representational, geometric
paintings and its application to three actual
paintings is described in the Appendix.
AIM-190 cs- 340 AD759714
M alcolm Newey,

Notes on a Problem Involving
Permutations as Sequences,

20 pages, March 1973.

The problem (attributed to R. M. Karp by
Knuth) is to describe the sequences of
minimum  length ~ which  contain, as
subsequences, all the permutations of an
alphabet of n symbols. This paper catalogs
some of the easy observations on the problem
and proves that the minimum lengths for
n=5n=6 and n=7 are 19, 28, and 39
respectively. Also presented is a construction
whichyields (for n>2) many appropriate

sequences of length n2-2n+4 so giving an
upper bound on length of minimum strings
which matches exactly all known values.
AIM-191 cs-34 1 AD 764272
Shmuel M. Katz, Zohar Manna,

A Heuristic-Approach to Program
Verification,

40 pages, March 1973.

We present various heuristic techniques for
use in proving the correctness of computer

113

programs. The techniques are designed to
obtain automatically the “inductive
assertions” attached to the loops of the
program which previously required human
“understanding” of the program’s approaches:
one in which we obtain the inductive
assertion by analyzing predicates which are
known to be true at the entrances and exits
of the loop (top-down approach), and
another in which we generate the inductive
assertion directly from the statements of the
loop (bottom-up approach).

AIM-192 cs-345

George E. Collins, Ellis Horowitz,
The Minimum Root Separation of a
Polynomi al,

13 pages, April 1973.

The minimum root separation of a complex
polynomial A is defined as the minimum of
the distances between distinct roots of A. For
polynomials with Gaussian integer
coefficients and no multiple roots, three lower
bounds are derived for the root separation.
In each case the bound 1s a function of the
degree, n, of A and the sum, d, of the
absolute values of the coefficients of A. The
notion of a semi-norm for a commutative
ring is defined, and it is shown how any
semi-norm can be extended to polynomial
rings and matrix rings,” obtaining a very
general analogue of Hadamard’s determinant
theorem.

AIM-193 CS- 346

Kenneth Mark Colby,

The Rationale for Computer Based
Treatment of Language Difficulties in
Nonspeaking Autistic Children,
Diskfile: AUTISM.KMC[AIM,DOC],
13 pages, March 1973.

AD759717

The principles underlying a computer-based
treatment method for language acquisition in
nonspeaking autistic children are described.
The main principle involves encouragement
of exploratory learning with minimum adult
interference.



114

AIM-194 cs-347 PB22 1170/4
Kenneth Mark Colby, Franklin Dennis Hilf,

Mult idimensional Analysisin Evaluating a

Simulation of Paranoid Thought,

10 pages, May 1973.

71 he limitations of Turing’s Test as an
evaluation procedure are reviewed. More
valuable are tests which ask expert judges to
make ratings along multiple dimensions
essential to the model. In this way the
model’s weaknesses become clarified and the
model builder learns where the model must
be improved.

AIM-195 CS-356 PB222 164
David Canfield Smith, Horace J. Enea,
MLISP2,

Diskfile: MLISP2.DAV[AIM,DOC],

4 1 pages, May 1973.

MLISP2 is a high-level programming
language based on LISP. Features:
1. The notation of MLISP.
-2. Extensibility -- the ability to extend the
language and to define new languages.
3. Pattern matching -- the ability to match
input against context free or sensitive
patterns.
4. Backtracking -- the ability to set decision
points, manipulate contexts and
backtrack.

“AIM-196 cs-357 AD762471
Nell M. Goldman, Christopher K. Riesbeck,
A Conceptually Based Sentence
Paraphraser,

Diskfile: MARGIE.NMG[AIM,DOC],

88 pages, May 1973.

This report describes a system of programs
which perform natural language processing
based -on an underlying language free
(conceptual) representation of meaning. This
system is used to produce sentence
paraphrases which demonstrate a form of
understanding with respect to a given
context. Particular emphasis has been placed

A. 1. MEMO A’BSTRACTS

on the major subtasks of language analysis
(mapping natural language into conceptual
structures) and language generation
(mapping conceptual structures into natural
language), and on the interaction between
these processes and a conceptual memory
model.

*AIM- 197 CS-358 AD762470
Roger C. Schank, Charles J. Rieger III,
Inference and the Computer Understanding
of Natural Language,

63 pages, May 1973.

The notion of computer understanding of
natural language is examined relative to
inference mechanisms designed to function in
a language-free deep conceptual base
(Conceptual Dependency). The conceptual
analysis of a natural language seentence into
this conceptual base, and the nature of the
memory which stores and operates upon
these conceptual structures are described
from  both  theoretical and  practical
standpoints. The various types of inferences
which can be made during and after the
conceptual analysis of a sentence are defined,
and a functioning program which performs
these inference tasks is described. Actual
computer output is included.

AIM-198 CS-364
Ravindra B. Thosar,
Estimation of Probability Density using
Signature Tables for Application to
Pattern Recognition,

37 pages, May 1973.

AD76361 1

Signature table training method consists of
cumulative evaluation of a function (such as
a probability density) at pre-assigned co-
ordinate values of input parameters to the
table. The training is conditional: based on
a binary valued ‘learning’ input to a table
which is compared to the label attached to
each training sample. Interpretation of an
unknown sample vector is then equivalent of
a table lookup, i.e. extraction of the function



A.1. MEMO ABSTRACTS

value stored at the proper co-ordinates. Such
a technique is very useful when a large
number of samples must be interpreted as in
the case of samples must be interpreted as in
the case of speech recognition and the time
required for the trainng as well as for the
recognition is at a premium. However, this
method is limited by prhibitive storage
requirements, even for a moderate number of
para meters, when their relative independence
cannot be assumed. This report investigates
the conditions under which the higher
dimensional probability density function can
be decomposed so that the density estimate is
obtained by a hierarchy of signature tables
with consequent reduction in the storage
requirement.  Practical utility of the
theoretical results obtained in the report is
demonstrated by a  vowel recognition
experiment.

AIM-199 cs-398 AD771300
Bruce G. Baumgart,

Image Contouring and Comparing,

52 pages, (in preparation).

A contour image representation is stated and
an algorithm for converting a set of digital
television images into this representation is
explained. The algorithm consists of five
steps: digital image thresholding, binary
image contouring, polygon nesting, polygon
smoothing, and polygon comparing. An
implementation of the algorithm is the main
routine of a program called CRE; auxiliary
routines provide cart and turn table control,
TV camera input, image display, and xerox
printer output. A serendip application of
CRE to type font construction is explained.
Details about the intended application of
CRE to the perception of physical objects
will appear in sequels to this paper.

AIM-200 CS-365

Shigeru Igarashi, David C. Luckham, Ralph
L. London,

Automatic Program Verification I: Logical
Basis and its Implementation,

50 pages, May 1973.

115

Defining the semantics of programming
languages by axioms and rules of inference
yields a deduction system within which
proofs may be given that programs satisfy
specifications. The deduction system herein
is shown to be consistent and also deductive
complete with respect to Hoare’s sustem. A
subgoaler for the deductive system is
described whose input is a significant subset
of Pascal programs plus inductive assertions.
The output is a set of verification conditions
or lemmas to be proved. Several non-trivial
arithmetic and sorting programs have been
shown to satisfy specifications by using an
interactive theorem prover to automatically
generate prrofs of the veification conditions.
Additional components for a more powerful
verficiation system are under construction.

+AIM-20 1 CS-2A6
Cunnar Rutger Grape,
Model Based (Intermediate Level) Computer
Vision,

Thesis: PA.D.in Computer Science,

256 pages, May 1973.

AD763673

A system for computer vision is presented,
which is based .. two-dimension al
prototypes, and which uses a hierarchy of
features for mapping purposes. More
specifically, ~we are dealing with scenes
composed of planar faced, convex objects.
Extensions to the general planar faced case
are discussed. The visual input is provided

by a TV-camera, and the problem is to -

interpret that input by computer, as a
projection of a three-dimensional scene. The
digitized picture is first scanned for
significant intensity gradients (called edges),
which are likely to appear at region- and
object junctions. The two-dimensional scene-
representation given by the totality of such
intensity discontinuities (that word used
somewhat inexactly) is referred to in the
sequel as the ‘edge-drawing’, and constitutes
the input to the vision system presented here.

The system proposed and demonstrated in



116

this paper utilizes perspectively consistent
two-dimensional models (prototypes) of views
of three-dimensional objects, and
interpretations of scene-representations are
based on the establish- ment of mapping
relationships from conglomerates of scene-
elements (1’ine-constellations) to prototype
templates. The prorotypes are learned by the
program through analysis of - and
generalization on - ideal instances. The
system works better than any sequential (or
other) system presented so far. It should be
well suited to the context of a complete vision
system - using depth, occlusion, support
relations, etc. The general case of irregularly
shaped, planar faced objects, including
concave ones, would necessitate such an
extended context.
AIM -202 CS- 368 AD 764396
Roger C. Schank, Yorick Wilks,

The Goals of Linguistic Theory Revisited,
44 pages, May 1973.

We examine the original goals of generative
linguistic theory. We suggest that these goals
were well defined but misguided with respect
to their avoidance the problem of modelling
performance. ~We developments such as
Generative Semantics, it is no longer clear
that the goals are clearly defined. We argue
that it is vital for linguistics to concern itself
with the procedures that humans use in
language. We then introduce a number of
basic human competencies, in the field of
language understanding, understanding in
context and the use of inferential
information, and argue that the modelling of
these aspects of language understanding
requires procedures of a sort that cannot be
easily accomodated within the dominant
paradigm. In particular, we argue that the
procedures that will be required in these
cases ought to be linguistic, and that the
simple-minded importation of techniques,
and that the simple-minded importation of
techniques from logic may create a linguistics
in which there cannot be procedures of the
required sort.

A. I. MEMO ABSTRACTS

AIM-203 CS- 369
Roger C. Schank,
The Development of Conceptual Structures
in Children,

31 pages, May 1973.

AD764274

Previous papers by the author have
hypothesized that is is possible to represent
the meaning of natural language sentences
using a framework which has only fourteen
primitive ACTs. This paper addresses the
problem of when and how these ACTs might
be learned by children. The speech of a
child of age 2 is examined for possible
knowledge of the primitive ACTs as well as
the conceptual relations underlying language.
It is shown that there is evidence that the
conceptual structures underlying language are
probably complete by age 2. Next a child is
studied from birth to age 1. The emergence
of the primitive ACTs and the conceptual
relations is traced. The hypothesis is made
that the structures that underlie and are
necessary for language are present by age 1.

AIM-204 cs-373

Kurt VanLehn,

SAIL Users Manual,

Diskfile: SAIL. KVL[AIM,DOC],
122 pages, July 1973.

AD765353

SAIL is a high-level programming language
for the PDP-10 computer. It includes an
extended ALGOL 60 compiler and a
companion set of execution-time routines. In
addition to ALGOL, the language features:
(1) flexible linking to hand-coded machine
language algorithms, (2) complete access to
the PDP-10 I/O facilities, (3) a complete
system of compile-time arithmetic and logic
as well as a flexible macro system (4) user
modifiable error handling, (5) backtracking,
and (6) interrupt facilities. Furthermore, a
subset of the SAIL language, called LEAP,
provides facilities for (1) sets and lists, (2) an
associative data structure, (3) independent
processes, and (4) procedure variables. The
LEAP subset of SAIL is an extension of the



A. I. MEMO ABSTRACTS

LEAP language, which was designed by J.
Feldman and P. Rovner, and implemented
on Lincoln Laboratory’s TX-2 (see [Feldman
& Rovner]). The extensions to LEAP are
partially described in ‘Recent Developments
in SAIL’ (see [Feldman]).

This manual describes the SAIL language
and the execution-time routines for the
typical SAIL user: a non-novice programmer
with some knowledge of ALGOL. It lies
somewhere between being a tutorial and a
reference manual.
AIM-205 cs-370 AD764288
N. S. Sridharan, et al,

A Heuristic Program to Discover Syntheses
for Complex Organic Molecules,

30 pages, June 1973.

Organic Chemical Synthesis is found to be a
suitable program for developing machine
intelligence. A previous paper described the
objective and global characteristics of the
project. The present article aims to describe
the program organization as a heuristic
search, the design of the Problem Solving
Tree and the search procedures in
considerable detail. Examples of syntheses
discovered and the problem solving tree
developed are given. The programs are
written mostly in PLI(F) applicable to an
IBM 360/67 and the timings (batch mode)
indicate that we have fast and efficient
practical systems.’
AIM-206 cs-377 AD 764652
Yorick Wilks,

Preference Semantics,

20 pages, July 1973.

Preference semantics [PS]is a set of formal
procedures -for representing the meaning
structure of natural language, with a view to
embodying that structure within a system
that can be said to understand, rather than
within what I would call the ‘derivational
paradigm’, of transformational grammar

17

[TG] and generative semantics [GS], which
seeks to determine the well-formedness, or
otherwise, of sentences.

I outline a system of preference semantics
that does this: for each phrase or clause of a
complex sentence, the system builds up a
network of lexical trees with the aid of
structured items called templates and, at the
next level, it structures those networks with
higher level items called paraplates and
common-sense inference rules. At each stage
the system directs itself towards the correct
network by always opting for the most
‘semantically dense’ one it can construct. |
suggest- that this opting for the ‘greatest
semantic density’ can be seen as an
interpretation o f Joos’ ‘Semantic Axiom
Number 1°.

I argue that the analysis of quite simple
examples requires the use of inductive rules
of inference which cannot, theoretically
cannot, be accomodated within  the
derivational paradigm. I contrast this
derivation al ~ paradigm of  language
processing with the artificial intelligence [A1]
paradigm.

AIM-207 CS-378
James Anderson Moorer,
The ‘Optimum-comb’ Method of Pitch
Period Analysis in Speech,

25 pages, June 1967.

AD767333

A new method of tracking the fundamental
frequency of voiced speech is descirbed. The
method is shown to be of similar accuracy as
the Cepstrum technique. Since the method
involves only addition, no multiplication, it is
shown to be faster than the SIFT algorithm.

AIM-208 cs-379
James Anderson Moorer,
The Heterodyne Method of Analysis of
Transient Waveforms,

25 pages, June 1973.

AD767334



118

A method of analysis of transient waveforms
is discussed. Its properties and limitations
are presented in the context of musical tones.
The method is shown to be useful when the
risetimes of the partials of the tone are not
too short. An extention to inharmonic
partials and polyphonic musical sound is
discussed.

ATM-209 CS-280 AD767695
Yoram Y akimovsky,

Scene Analysis using a Semantic Base for
Region Growing,

Thesis:. Ph.D. in Computer Science,

120 pages, July 1973.

The problem of breaking an image into
meaningful  regions is considered. A
probabilistic semantic basis is effectively
integrated with the segmentation process,
providing various decision criteria. Learning
facilities are provided for generating
in teractively the probabilistic bases. A
programming system which is based on these
ideas and its successful application to two
problem domarns are described.

NM-210 CS- 382 AD 767335
Zohar Manna, Amir Pnueli,

Axiomatic Approach to Total Correctness
of Programs,

25 pages, July 1973.

We present here an axiomatic approach
which enables one to prove by formal
methods that his program is ‘totally correct’
(1.e., it terminates and is logically correct --
does what it is supposed to do). The
approach is similar to Hoare’s approach for
proving that a program is ‘partially correct’
\1 €., that whenever it terminates it produces
correct results). Our extension to Hoare's
method- lies in the possibility of proving
correctness and termination at once, and in
the enlarged scope of properties that can be
proved by it.

A.1. MEMO ABSTRACTS



