
~~ Best

Available

~~ Copy

AD-772 5009

RECURSIVEDATA STRUCTURES

C. A. R. Hoare

Stanford University

;

Prepared for:

Advanced Research Projects Agency
National Science Foundation

October 1973

DISTRIBUTED BY: i

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE

5285 Port Royal Road, Springfield Va. 22151

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY |
| MEMO A IM-223

STAN-CS-73-400 }

| RECURS IVE DATA STRUCTURES
2 I

3 ye BY

Ny C. A. R. HOARE]
De

=
SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 2494 |

| PROJECT CODE 3D30 4

OCTOBER 73

COMPUTER SCIENCE DEPARTMENT |

| School of Humanities and Sciences ;

| STANFORD UNIVERSITY |

A

Recursive Data Structures

C. A. R. Hoare

Abstract. The power and convenience of a programming language may

] be enhanced for certain applications by permitting data structures to |
be defined by recursion. This paper suggests a pleasing notation by :

; which such structures can bs declared and processed; it gives the
] axioms which specify their properties, and suggests an efficient

implementation method. It shows how a recursive date structure may be

| used to represent another data type, for example, a set. It then

discusses two ways in which significant gains in efficiency can be made

by selective updating of structures, and gives the relevant proof rules :

and hints for implementation. It is shown by examples that a certain }
range of applications can be efficiently programmed, without introducing i

the low-level concept of a reference into a high-tevel programming

| language. :

The work on this paper was supported in part by National Science i
Foundation under grant number GJ 3047%X and ARPA Research Contract |
DAC 15-73-C=-0435.,

2 1

pura ; TT - ro | - ul oltehodiic fa oo § Udipes the itrALY PT = TTR J Tet

EE A EE EE Ey a, di he F A ob hil y

a. |

2: ih Introduction]

In a language such as ALGOL 68 [1] or PL/I [2], a central role is }
played by the concept of a reference or POINTER. In AILGOL 68, the

f reference underlies the treatment of ordinary variables, result parameters, 1
data structuring, dynamic storage allocation, indirect addressing, etc., j

23 and iu PL/I they are also used for value parameters, and even for
EE 1 input/output. However there are many reasons to believe that the E

1 introduction of references into a high-level language is a seriously |

{ retrograde step: J(1) It reintroduces the same unpleasant confusion between addresses ;

| ! and their contents which afflicts machine code programmers. y(2) In ALGOL 68, corfusion is doubly confounded by complex coercion i

| and balancing rules. i| {5 Rain PL/I the explicit allocation and deallocation of storage :

{ t affords unbounded scope for complexity and error. :
1 (4) The variables subject to change by a program statement are no |

| longer manifest from the form of the statement. For example, if x and
§ y are reference variables

! X1=Y;

obviously changes x , but a statement in AIGOL 68 like |

A HE RL

| may change a , or b , or any other variable of appropriate type: one

t variable it can't possibly change is x ! :
(5) It is possible to retain a reference value to an area of local |

workspace which has been deallocated. In PL/I this can cause disaster
without warning; in ALGOL 68 certain rather complex rules ensure that

' the danger can sometimes (but not always) be averted by a compile-time |

check. This is known as the problem of the "dangling reference". |

(6) In distinction from values of all normal types (integers, reals,

| ! arrays, strings, files,...) the value of a reference can never be input
! BB, to a program, nor output from it (except possibly in a total post mortem

dump) .

1 (7) The use of references reduces the efficiency of execution on §

| machines with instruction lookahead, data prefetch, pipelines, slave |yi ' stores or paging systems, counteracting all these laudable attempts by

| hardware to make a machine seem faster or larger than it really is.

J . i

(8) When data is to be held permanently or temporarily on backing

store (e.g. files on tape or disk), the use of references can create |

t insuperable difficulties to implementor, user, or both.
1 (9) Proof methods for dealing with a language which permits

i general pointers are significantly more complicated, whether the pointers 1

1 are used or not. ;

t There appears to be a close analogy between references in data and :

Jumps in a program. A jump is a very powerful multipurpose tool, present :

in the object code produced by compilers for almost every machine. But

it 1s also an undisciplined feature, which can be used to create wide | 3
: interfaces between parts of a program which appear to be disjoint. That]

is why a high level programming language like ALGOL 60 has introduced a

i range of program structures such as compound statements, conditional

| statements, while statements, procedure statements, and recursion to |
replace many of the use: of the machine code jump. Indeed perhaps the

only remaining purpose of the jump is to indicate irreparable breakdown

in the structure of the program. Similarly, if references have any role :

in data structuring it may be a purely destructive one. It would there- 3

| fore seem highly desirable to attempt to classify all those special

purposes to which references may be put, and to replace them in a high 1
: level language by more structured principles and notations. In this id

: task, it is encouraging that ALGOL 60 [3] has already isolated two such }
uses, namely the procedure parameter and the variable length array, and x

i has dealt with them without introducing the reference concept. Iurther- I
| more ALGOL W [4] and PASCAL [5] have introduced references as represen- 1]

tations of many-one relationchips in a relational neiwork, and have done

] so in a manner which mitigates many of the disadvantages mentioned 4

3 above (ac compared with (say) ALGOL (8 or PL/I). if
4 One of the main reasons for using stored machine addresses is that 3
: the amount of storage that will be required by an item of data is not i]

| known to the compiler. In this paper we will consider a class of data +
| structures for which the amount of storage required can actually vary id

| during the lifetime of the data; and we will show that it can be 1

satisfactorily accommodated in a high level language ucing solely high j
1 level problem-oriented concepts, and without the introduction of references.

2. Concepts and Notations

The method Of specifying the cet of values of a data space by

recursion has long been familiar to modern logicians. For example, the

i DRL Ions treated in conventional propositional calculus may be y
defined by the following four rules:

: ' 1b All proposition letters are propositions.

| 2. It p is a proposition then 50 is —p . ;
5. If p and gq are propositions, tnen so are |

: (p& a) and (pva) . |

: All propositions can be obtairied from proposition letters by :

a finite number of applications of the above rules. x
1 When the set of propositions as defined above is treated as an object

of mathematical study, it is known as a "generalized arithmetic"; and |
an additional axion is postulated:

ar Two propositions are equal only if they have been obtained

by the same rule from equal components. |

Exactly the same idea is familiar to programmers in the use of the

BNF notation for the definition of programming language grammars. Hor }

example, propositions could be defined:]

(proposition) ::= (proposition letter)|

| — (proposition)| 3
| ((proposition) & (proposition})| |

| ((proposition) Vv (proposition))
{proposition letter) ::= (letter)

4 Both these methods of defining data not only specify the abstract r
structure of the data, they also state how any value can be represented

as a linear stream of characters, for example:

(F& (—-PvVvQ)) .

However, we wish to abstract from the external appearance of the |
data, and concentrate on its structural properties. This abstraction

: is familiar to an algebraist, who calls the resulting data space a word J

] algebra on a given finite set of generators. A generator is a function i

: which maps its parameter(s) onto the larger structure of which they are .

f immediate components. A generator with no parameters is known as a !

constant. In the Case of propositions, our generators are required:
t i

(1) prop: letter - proposition; :

which converte any letter inte a proposition letter (logicians orten

ure a different Lype font for this). |

' (2) neg: proposition — proposition; 3

which constructs the negation of its argument.

(5c onl, sn disijt NN propositioniiproeposition i=iproposition; f

which takes two arguments and whose result is their conjunction or |

dir junction respectively.

1 In symbolic manipulation programs, it is common to deal with

variables, parameters, and [unctions whose values range over data

| 4 spaces such as logical propositions. In a language like PASCAL, |

which permits and encourages the programmer to define and use his own :

data tyres, it seems reasonable to permit him to use recursive definitions

when necessary. A possible notation for such a type definition was

‘ sugeested by Knuth [6]; it is a mixture of BNF (the | symbol) and the
PASCAL definition oT a type by enumeration: :

type proposition = (prop (letter) | neg (proposition) | E
conj, disj (proposition, proposition)); |

xX

! It is assumed thet the type "letter" has been predefined, for example as |

] a subrange of characters E

type letter = 'A' ..'Z’

The effect of this type definition is threefold:

| (1) it introduces the name of the type; |

(2) it ‘introduces the names of its generators;

(3) it jjives the number and types of the argument(s) of the 4

} venerators (if any).

Type definitions of this cort were suggested by McCarthy in Nill!

The type 1 intended to be used to declare variables, parameters

(and functions) ranging over the type, e.g.:

! PY Ra ronosition;

5

: :

|
2 and the generators can be used to detine values of the type, e.g., the

: t sequence of instructions: |
Pl := prop ('P');

| P2 := neg (Pl); |
P2 := dis (P2, prop ('Q')); |

! P2 := conj (Pl,F2); |

would leave as ithe value of P2 a proposition which would normallybe |
written:

| . (P& (mPvVvQ)) - |
In most languages with references, the use of recursive type]

definitions is permitted only if the recursive components of each 4
i structure are declared as references. This seems to be a rather low)

: | level machine oriented restriction; after all, we do not insist that ,
recursive calls of a procedure should be signalled by such special |
notations. It is true that a recursive data structure which is held in

a conventionally addressed main store will usually be represented by

references, but it seems a good idea that the programmer should be |
encouraged to ignore the machine-oriented details of the representation :
(just as he ignores details of the implementation of recursive procedures), 8

1 and should concentrate on the more pleasant abstract properties of the

: structure. The implementor should also have the freedom to use a

different representation, for example, when the data is held on a backing 3

| store. Thus the programmer may, if he wishes, imagine a machine which |
q allocates a fixed amount of space to nold the current value of a

| variable of recursive type; and if it is called upon to fit in a larger
value, it adopts the came expedient that we do -- it merely writes |

smaller! :

: In defining operations on a data structure, it is usually necessary

i to enquire which of the various forme the structure takes, and what are
its components. Por this, I suggest an elegant notation which has been ' 8
implemented by [Fred McBride in his pattern-matching LISP [8]. Consider |]

| for example a function intenced to count the number of &s contained in 13
4 a proposition. Like many functions operating on recursively defined |

| data, it will be recursive: i

go : Er Er rT ay ;

r

H fib) function andcount (p: proposition): integer; :
t (3) andcount i= cages p ob

1 (3) (prop(c) — |
| § (4) neg(q) —andcount(q)|

| (5) conj(q,r) — andcount(q)+ andcount (r)+1| ? (6) disj(q,r) — andeount(q)+ andcount(r)) ;

i Line (1) declares andcount to be an integer-valued function of one |
1 proposition, known as p in the body of the function.

§ Line (2) states that the result of andcount is assigned by computing

i the following expression. This is a "case expression" whose
1 effect will depend on the value of p .

Line (%) states that if the value of p is a proposition letter c ,

1 the result is zero.
¥ Line (4) states that if the value of p is a negation, let q be the
1 rregated proposition and the result is found by computing the
& andcountRo TEs.

1 Line (5) states that if the value of p is a conjunction, let q and
1 r be the names of its components, and the result is one more

than the zum of the ancounts for 4q. and =x .

Note that the identifiers c¢ , q , r are like formal parameters: they |

1 arc declared by appearing in the parameter list to the left of the

1 arrow, and their scope is confined to the right hand side of the arrow,

| only as far as the vertical bar. Their types are determined by the

| types given in the declaration of the corresponding generator, e.g.,

c is a letter, and gq and r are propositions. We shall insist, for

| the time being, that the programmer shall not make assignments to these
i variables.

| The language feature deccribed above is evidently capable of
4 Lpressing all the functional aspects of LISP, and many of the

procedural aspects as well. For example, the list structure of LISP

| can be defined: |

19 type list = (unit (identifier) | cong Ei DEE)

| where the type identifier is assumed to be predefined. The function

‘ : BE a LB BB Gy

AEE A TE ey ER; TT, i 4

¥

cons is defined as part of this declaration. The other LISP basic

- functions can be programmed: 1

functiomicarSiZiit ist hata |

: car := cases { of (atom (id) — error|
| consm{lell,Nrishh =e £EN

 { : funciionlicdrillip: 13atsEaLL simi Lar BN, 3

| function atom (2: list): Boolean;

atom := cases £ of (unit (any) — true | cons (x,y) — false); |
function equals (11,22): Boolean;

t equals := cases £1 of

| (unit (idl) - cases £2 of (unit (id?) - idl = id2| |

cons (x,y) — false) 1
cons (xl,yl) — cases 22 of (unit (id2) - false] 1

} cons (x2,y2) -

equals (x1,yl) & equals (x2,v2)));

In practice, the casec notation will often be found more convenient, clear, |
' and less prone to error than the functions car , cdr , and stom . For 1

example, the familiar append function may be written:

function append(f1l,£2: list): list; ;

} append := caseg £1 of

(unit (id) — if id = NIL then £2 else error]

cons (first, rest) — cons (first, append (rest, £2)));

3 Just as LISP can be embedded in any language which permits recursive \

: data structures, :o can all recursive data structures be represented as :
! LISP lists, and processed by LISP functions. Tor example i

conj ('P',disj(neg('P'),'Q"))

: can be represented (in S-exrression form):
oY

; (ICONS aPRRDT! TARE HPV ON)

1 An andcount function for propositions represented in this way would be:

andcount := (atom(f2) -O, :
a car(?) = 'NEG — andcount(cadr(f)), 1

4! car(f) = 'CONJ — andcount(cadr(2))+ andcount(caddr(f)) + 1,
a car(f¢) = 'DISJ —andcount(cadr(f))+ andcount(caddr(2)));: |

r Note the arrows in this program are LISP conditionals. This example
} s1lustrates some of the advantages of the type declaration for recursive

| data structures: |

1 (1) The check against the error of applying the function to a structure :
i Tr which is not a proposition can be made more rigorous, and can occur |
k at compile time rather than run time.

(2) It is easier to check that all cases have been dealt with.

] i (3) The formal parameters seem to be more readable and perspicuous
than the abbreviations car , cadr , caddr , etc. 1

1 Tn the next section it will be shown how a compiler can sometimes
take advantage of the extra information suppliedby a type declaration

to secure more compact representations and more efficient code than is
EF usually achieved in LISP.

To summarize the notational conventions introduced in this section, i

{ here are the syntax specifications of recursive type declarations and
case expressions:]

(type declaration) ::= type (type identifier) = ((generator 1ist)) |
| {generator list) ::= (zenerator) | (generator){or symbol) (generator list)

1 (or symbol) ::= | (i.e., vertical stroke)
a {gecnerator) ::= (generator identifier) | (generator identifier)((type list)) 1

(type list) ::= (type)| (type), (type list) :

(case expression) ::= cases (expression) of { {case list)) |
{case list) ::= (case clause)| (case clause) {or symbol){case list) }

) {case clause) ::= (pattern) —(expression) |

| (pattern) ::= (generator identifier)((formal parameter list))]
g | (generator identifier)

1 (formal parameter list) ::= (formal parameter) |
1 (formal parameter), (formal parameter list)

(formal parameter) ::= (identifier)

nN) ;

5. Implementation

The normal method of representing a recursive data structure for

processing in the main store of a computer is as a tree using machine 3

addresses to link the nodes, and a small integer, called a tag, in each

: node (or with the address) to indicate which of the generators was used]
i to define this node. Each node. contains as components the values of |

the arguments of the generator, which may be themselves addresses of]

other nodes, or many be just simple values. E

For example, in the case of a proposition, the name of the generator :
is represented by an integer between O and 3 . If the node 1s a

proposition letter (tag 0), this will be followed immediately by a :
representation of the letter. If it is a negation, the tag 1 is |
followed by the address of the negated proposition. In the remaining

two cases, the code 2 or 5 is followed by a pair of locations,

| pointing to the components of the conjunction or disjunction. Thus the

} value

| (P& (= PvQ)) |

would be represented as: |

Of course, this example is untypically simple. A picture of a more |
{ realistic proposition would explain why the programmer may prefer not

3 tor shinkhinitermdioR rel ar ericess :

: On many machines it will be possible to pack the tag in with one of
the components of the node, or pack two addresses in a single word, :

] $ thereby saving a word of storage on that node. It can be seen that when

ET 10

 §

: nodes have more than two canponents it is possible to use less space

| 4 than the standard LISP representation for the same information. :
The call of a (non-constant) generator involves the dynamic +

acquisition of a few words of contiguous main storage, and planting ;
in them the values of its simple parameters, and the addresses of its ;

' recursive parameters. The value returned by the generator is the |
address of the new node. There is no need to make a fresh copy of the

recursive components, since it is quite permissible for two separate J

variables to "share" the same components, thus: |

“y

|

: In this picture Pl has value Q & (PV @Q) and P2 and P53 have the

same value P & (-~ Pv Q) . However, this shared use of storage is
entirely invisible to the programmer, who has no means of finding out

whether it has occurred or not. This is because the prohibition on the

: selective updating of components of a structure prevents the programmer

from changing a node on one tree, and testing to see whether the change |

| has affected the other. The same restriction also prevents the
establishment of cyclic structures, like: |

}

]

hil

3 Sueh a structure would appear to have the "infinite" value:

(Pa (Pas (P&... VQ) VA) ,

and this would fail to satisfy the axiom of finite generation. Thus the

prohibition on selective updating seems to be a vital means of preserving

the integrity of recursive data structures, as well as permitting a morc |
i . . ;

cconomic "shared" representations. |

The tree reprecentation using addresses ic not the only possible

representation of recurcive data structures. It hestructurelisit ole ;
held on backing store, it should be converted to a linear stream,

replacing every addrecs by the ctreum representing the tree to which it

points. In this reprecentation, the cxample P & (=P vQ) would appear:

BREBRREN
This, of course, will require copies to be taken of all shared branches,

thereby usually occupying more space; but in general the elimination of

addresses will compensate for this. Of course, on reinput of the

structure, it would be advisable to reestablish as much sharing as

possible; before acquiring a new node to accommodate given valucs, if a node
: already containing these values is already present in store, it should :

be used instead. Indeed, the reuse of existing storage in this way may

| be adopted as general policy, which can be effective in certain kinds of
application -- for example, it makes test of ecquality very cheap; in any

case, it is entirely invisible ac far as the logic of the program is

concerned. In a conventional non-ascociative store a hashing technique

ki

sis: chBA A a PARR AL AR ERE \ ad .

f
f
§ 1
|

is recommended for finding a node with given contents; henee in LISE

it 15 known as ‘ithe hashing cons” [9].

*{ sharing is used, it is no longer possible to reciaim ull the

J storu,e alloeated to a variable on exit frum the block in which the

variuole was deelured. since its components may also be components

of the vulue of some variable global to that block. In order to recluim

storage when it rune out (and it soon will) it is necessary 1o use a

sean-mark warbage collector invented by McCarthy for this purpose [10].

This will be more complicated than the standard LISP garbage colleetor,

! sinee it will have to deal in blocks of different size, and it will have :

J to lmow the type of each node and the relative position of each address

within it. In many applications, the ilze of the nodes do not vary too

wildly; so the problem of fragmentation should not be signifieant. The

eogt per node of parvage eolleetlion should be no greater than in LISD,

| and il nodes are larger thun two words, some saving in time may be

possibile:

The case expression can be compiled into highly effielent code. The

value bein: considered may be loaded into an index register. The tag is

then used to do an indexed jump leading to the portion of Objeel eode

: dealing with that particular ease. There ic no need to eheek the range

of the index; it is logieally impossible for it to be wrong! Ir there :

are more than two alternatives thic eould be more eompact and effieient

than a sequenee of tests. The left hand side of the arrow generates no |

| eode at 21l. In eompiling the right hand side, the formal parameters of
this case ean be uecesced by means of a single reverse indexed instruetion :

- (Rose [11]) requiring a single store aceess. In accessing the third or

subsequent eomponent of a node this will be more compact and ci’fielent

than the LISP use of cadr , eaddr , etc. :

With reasonable cooperation from the programmer, this implementation

p would. seem to offer a significant improvement on the effieieney of

compiled LISP, perhaps even 2 faetor of two in spaee x cost ror sultable

applieations. But even more significant may be the fact that normal

operations on numbers. characters, bits, ete., ean be carried out with

3 ££ direet machine code instruetions, without the preliminary run time type eheck
3 which can be go eumbersome in eompiled implementations of LISP. Thus the

| overall improvement might sometimes approach an order of magnitude.
155

: ’ ; PRR TI RNY di ig Bic iliesi pai 4.)

L. Axioms |

The axioms for a recursive data type are “locely modelled on the 3

corresponding informal definition of the type as given in the]

beginning of Section 2. Note that the fourth axiom is expresved quite

informnily: in its normal formalization it appears as a principle of

"structural induction". Consider any predicate (q) , which we wish to

prove true of all propositions q , i.e., we wish to prove

Yq: proposition.p(q) :

The principle of structural induction ctates that this can be established

by proving the theorem for all the ways in which a proposition q can ’

be pencrated; and furthermore in these proofs ££ may be assumed true of

all propositional components of q . Thls may be expressed in the prool |
| rule:

Ye: letter. p(prop(c))

Vp: proposition. n(p) = o(neg(p)) |
: “hod

¥p,q: proposition. P(p) £°(q) = P(coni(p,q)) &P(disj(p,q)) :

Yq: proposition. fq)

The first three lincg of this rule are the antecedents, and the last line

] is the conclusion of the deduction.

he fifth axiom, dealing with equility, is most easily formalized |

. by giving axioms defining the meaning of the cases expression. 4
Tor propositions the axiom takes the form:

C

5. cases prop(d) of (Lt pronde) mie lhi = eq s

% cases neg(p) of (...|neg(q) ~e|...) = c
| YS

& cases conj(p,q) of (...|conj(r,s) - allli} h= eh ;:) 1

. Sa oo id
% cases dis,j(p,q) of (aisle is) - gf 2) =e’
ey ii D,q

| where e, means the expression formed from e by replacing all free
; ¢ sccurrences of the variable x by the expression y (with appropriate |

| modifications of bound variables when necessary).

 § 1h |

The question now arises, arc these axioms suffieiently powerful to

prove everything we need to know about recursive data structures? Of

course, this question is nni precise enough to permit a definitive

answer; but our confidence in the power of the axioms can be established ;

by showing their close analogy with the Peano axioms for natural numbers, 3

y which have been found adequate for all practical purposes of arithmetic.

: ['or they too can be deflined as recursive data structures:

type NN = (zero, succ(liN)); |

and the cases notation permits the traditional method of definingSon

: recursive functions, for example:
|

function plus (m,n: NN): NN; i

i plus := cases n of (zero -» m|suce(p) — suec(plus(m,p)));

1 The axioms for natural numbers defined as a recursive data structure

are |

: {EN zcrokiizRananN |

(SHE ni s lan NN, sok slilsucc in] i

(3) P(zero) |
Yn: NN.P(n) = P(succ(n

Yn: NN. £(n

(4) cases zero of (zero —e|suce(n) = f) =e

2 cases suce(m) of (zero — e| suce(n) — Ff) = £ |

: Axioms (1) and (2) are the same as Peano's. Axiom (3) is the principle

gE | of mathematical induction. From Axiom (4) we can readily prove thc |
fl L 3 b

remaining two Peano axioms:

| aR succln)N zero

| 7 Proof by contradiction: assume succ(n) = zero :

| .. cases succ(n) of (zero -true| succ(n) — false)

| = cases zero of (zero — true | suce(n) — false)
| |

3 | S. false = true by axiom 4.

i 15

; dad fF) " s Bib fda.Sd fm bi) ds

2. suce(m) = suce(n) = m =n

} » Proof: assume the antecedent.

hence cases succ(m) of (zero — zero| suce(m) — m)

= cases succ(n) of (zero — zero | suce(m) - m)
: I m

1m n

It is worthy of note that when none of the generators have parameters,

the recursive data structure reduces to a PASCAL type definition by

enumeration, and the axioms till remain valid. For example, the Boolean

| type may be defin-d: |

type Boolean = (true| false);
[J

and the axioms are: :

(1) true and false are Booleans, |
(2) N(True)

P(falee)

Vb: Boolean. P(b)

: (3) cases true of (true ~ el false ~f) = e :

cases false of (true — e| false » £) = f |

If desired, the notation " if B then e else f " may be regarded ac an

abbreviation for " cages B of (true —e | false ~~

& |

| iE
Eo

H

i . i v a - r a : i : 3 ang pa. y ol bic i E j = fii ar

|
E

Many interesting alyrebras are not word algebras -- for example,

finite sets and finite rappingy (sparse arrays). However, thoy can
be represented ug subsetr of « word alyebra, consisting of clements

satisfying come additional property ‘known as an invariant for that type.
| A type which is a subget of a word nlgebra will be called a class. In

: order to ensure that ctch newly pererated value of the typeiwiilNactun dy
satisfy the invariant, the prosramer must have the ability to specify :

1 (1) The initial value of any declared variable of the class.

; (2) The function(s) which are to be used to renerate all other values
] ofthelcliagsh

A programming language should ensure that the actual generators for the

recursive class are never ured outside the bodies of the function(s). In

| this way, by proving thal there [functions preserve the invariant (whenever
their parameters saticty it), it is possible to guarantee that all values

ever generated will be within the desired subset. This idea was expounded
in [12].

As an exarple, consider the representation of a set of integers. lor

this purpoce we shall use a sincle-chained list of integers, which |
possesses the additional invariant property of being sorted. The

operations required for a vet are (ray) insertion of a possibly new

| clement, deletion of a possibly present element, and a test of membership
of a possible element. A suggested form for the class declaration may be |

: 1h 2»

(1) class intset = (empty | lisi(intset, integer)) :

3 (2) begin function insertion(s: intset, i: “integer): intset; |

| insertion := case: ¢ of
1 (empty - list(empty,i)] |

41 list(rest,j) ~ if 1 = J then s |

| else if 1 > J then list(insertion(rest,i),J) :

{ else list(s,1));
function deletion(s: intset, 7: integer): intset;

deletion := cajeg s of 1
| (empty - empty]]

list(rest,j) —» if i = J then rest 3

| else if 1 > J thenlist(deletion(rest,i),j)]
| else 5); 1

function has(s: intset, i: integer): intset;

has := cases & OF

1 (empty — false] |
| list(rest,j) — if 1 = j then true |
x elseif 1 > j then has(rest,i) |

| else false); t
: (3) intset := empty

| end intset; i

| (1) Introduces the class name intset , and declares that it will be a

x subset of the recursive type with generators empty and list. The

| scope of these generator names is confined to this class declaration. 3

| (2) The boly of the class declaration. as in [12], has the form of a |
block, in which are declared thoce procedures and functions which are i

1 to be used by the programmer on values of the class, namely the

b | functions insertion and deletion and has . :
(3) The body of the block specifies the initial value of all declared |

 § variables of the class. The name Of the class itself is used for

1 this purpose. |
IK

4 ,

| oT |

Ee ————————————————————————Aa iio 5. pr roan nm.

1t is the intention that a elas: can be used in the same way ac a 7

type, for example:

declaration 3

| (ineluding initialization to empty): R,S: intset; :

assignment: R :~ insertion(S,37) |

| S := R; R := deletion(R,56); ;

test: if has(R,37) then ...

As suggested in [12], the criterion of correctness of a class can

be expressed in terms of an invariant and an abstraction function. A

: The abstraction function which mapc cach list onto the set which it

| represents cen be defined by recursion |

! d(4: intset) =, cases ! of :
(empty — null sev

list(£1l,1) - {i} U (21); |

and the invariant can be expressed :

sorted(2: intse*) =p Cases I of :
: (empty — truc] |

Iabe1, AN =i =0 min (ZEN
2 ;

The correctness of the insertion funetion can now be formally

] expressed. :

3 sorted(s) {body of insertion} sorted(insertion)& #(insertion) = {i} Ud(s) i

Since insertion is a recursive function, the proof of this will require

assumption of the correctness of the rccursive call, namely:

" insertion{rest,i) ¥. This hypothesis may be cxpressed: |

| | [sorted(rest) =] sorted(insertion(rest,i)) & FE
& d(insertion(rest,i)) = {i}JUd(rest) ... hypothesis

| in which the antecedent is true for all intsets, and may be omitted.NE: Using the rule of assignment, and distributing function application

| through the cases, we obtain the following lemma: E

sorted(s) = cases s of
4 (empty — sorted{list(empty,i)) &@(list{empty,i)) = {i} uag(c) (1) :

list(rest,J) — if 1 = then sorted(s) &(s) = {1JUg(s) (2)

| else if 1 >] then sorted(list(insertion(rest,i),Jj)) (5)

| % 7(1ist (insertion{rest,1),3)) = (ius) (4)

x i else gsorted(list(s,)) (5) |

2 7(list(s,1)) = {1} Vals) (6)

Tach casc can be readily proved from the definition of #7 and sorted ;

' no further inductions are required. 1

: £4

| z i]

20

:

6. Memo Funcuions]
A In this section, we shall explore a particular case of sclective]

updating of components of a recursive data structure, which enables the :

i programmer to secure the advantages of the memo function advocated by Michie [13].
3 Consider the old example of differentiation of symbolic expressions.

]

The simplest implementation is to define cxpressions as a type:
|

type expression = (constant(real) | veriable(identifier) |

| minus (expression) | |
sum, product, quotient(expression, expression)); :

:

: and dcfine the derivative as follows: |
f function deriv(e: expression, t: identifier): expression; i

| deriv := cases c¢ of i

: (constant(any) ~ constant(0) | f
variable(x) — if x = t then constant(1) 3

else constant(0) |

minus(u) - minus(deriv(u))| :

sum(u,v) — sum(deriv(u),deriv(v))] :

] produc hin, l= sum(product (u,deriv(v)), product (v,deriv(u))) | |
quotient (x,y) -

h quotient (sum(deriv(u), product (minus(e),derivi{v))),v)):

1 Using these declarations we may writc:

1 position, speed, acceleration: exprecasion; 2

| | position := quotient(constant(3),variable('t')); :

’ speed := deriv(position,variable('t'));

| acceleration := deriv(speed, variable('t')) . |

But this implementation can involve heavy penalties both in space
and time: j

| (1) A large amount of space will be wasted in storing expressions
of the form :

SAO MNLE eel Bl 120] Suachol. h

v This may be mitigated by declaring expressions as a class, in which the

generation of such rcdundant cxpressions is inhibited, by thc use of

programmed functions. x il

1 . 21 |]

1

(2) Tf an expression is to be differentiated repeatedly with |
: P respeet to the same variable, much time and space can be spent on |

; re-evaluating the derivatives of the subexpressions; this time could be
saved if the previously computed derivative were stored as & third |

component of each node representing a sum, a produet or a quotient.

% The value of this eomponent (known as a memo component) starts off as

: "unknown", but when the derivative of this subexpression is eomputed, |
it is stored here; and if the derivative ic required again, the stored

value is used instead of being recomputed. |
{ For the sake of simplicity, in the following program we have

| assumed that all derivatives are taken with respect to the variable Ao

also, the funetions perform only the most trivial of simplifications. :
A In a serious symbolie manipulotion program, all these functions would

: be much more complicated. |

class expression - (veriable(identifier) |eonstant(real) |mi(expression) | 3
su, pr, qu(expression, expression, (unlnown, known (expression))))

| (1) begin constant zero = eonstant(0), one = constant(l) ;
function sun(left, right: expression): expression;

1 sum :=: if left = zero then right elseif right = zero then left
| else su(left,right,unknown);

function minus(e: expression): expression;

minus := cases e of (eonstant(x) - eonstant(-x)]

1 (2) mi(f) - f| else mi(e));
funetion prowuct(left, right: expression): expression; |

produet := if left = zero v right = one then left |

: else Tiright=Ns erodvillcfii=None then right

slse pr(left,right, unknown); |

function quotient(left,right: expression): expression;

: quotient := if left = zero Vv right = one then left

: else qu(left,right,uninowm)

22 |

T+

| function dbydt(e: expression) — expression; :

| (variable(id) - dbydt := if id = 't' then one else zero]constant (ary) ~ dbydt := zero

mi(u) — dbydt := minus(dbydt(u))| 4

| su(u, v,deriv) — cases deriv of |
(known (f) ~ T ;

| unknown — {dbydt := sum(dbydt(u),dbydt(v));
| (3) (&) deriv := known(dbydt)})| |

pr(u,v,deriv) ~ cases deriv of

: (known (f) — £| 1
| unknown — {dbydt := sum(product(u,dbydt(v)), ;

product (v,dbydt(u))) ;

] deriv := known(dbydt) }) |
qu(u, v,deriv) — cases deriv of |

: (known (£) ~ f]
unknown — {dbydt := quotient (sum(dbydt(u),

minus (product (e,dbydt(v)))),v); 1
deriv := known (dbydt)1)): }

expression := Zero]

end expression; |

1 (1) The PASCAL constant declaration can here be used to save :=pace and :
time and trouble. :

(2) It seems a convenience to write else to stand for all the cases not 3

explicitly mentioned.

| (3) It is also convenient to use the name of a function as a variable :

inside its body (except, of course, when it has actual parameters).

: (4) {1 are used for begin end.

: The correctness of this class obviously depends on the preservation

of the invariant that if e¢ hes the form su, pr, or qu , then its

memo component either contains the value unknown or Inown(dbydt(e)) ; |

| or, more formally: 1

| Ve,u,v,d: expression. e = su(u,v,known(d)) ve = pr(u,v, known(d))

ve = qu(u,v,known(d)) = d := dbydt(e)) . 1

| 25

 §

Furthermore the abstraction functicn for the elass must not mention

| the memo component. It 1s Lhis that nakes the existence of the third

y component logically invisible to Lhe user of the class, although one
hapes that he notices the gain jn efficiency.

it is noteworthy that the use of seleclive updating immediately

permits establishment of cyclic structures, but because of ils logical

: invisibility, this does not scem tO matier. or example, alter a series

of assignments like those shown on page 21,

| position, speed, acceleration: expression;
| position := quotient(constanl(3),variable('t'));

| speed := dbydt(position);

acceleration := dbydt (speed);

| AsdingramofStheNsioredial ructures wi llliiber

position: p= lconctant

|

| Ce

1 |

(Notie:Eliiposih ion se i/t :
i - » = 2

speed - -position/t - - 5/4 |

| (- speea) + (=~ speed) SLT + 5/4 §| acceleration = : = = +1W t g)
(¥

{ |

The use or nemo components doet not invalidate the sharing of]

: subtrees, again because ol the invisibility of the updating. Indeed,

its main benefits are directly duc to the preservation of charing, and |

can be increased by increasing the amount of sharing. If the memo function

method is widely used, it becomes very attractive to choose the "hashing" |

technique of storage allocation. However, in the use of this technique, ;
it would be desirable to ignore the contents of the memo component, so

A; that if a newly generated cxpression wag ldentical to one in which the

memo component was already lnown, they would still be correctly identified,

and the derivative of the newly generated exprecsion would be available

"for free". Tor this reason, it would seem to be a good idea for a 9

programming language to insist that a programmer single out a memo ;

component by a special form of declaration, say by prefixing it by the

word memo . A cimilar method has been used Successfully in some large
theorem proving svstems [1h].

The language feature defined here places on the programmer lhe

1 responsibility for correct maintenance of a memo component; and it helps |

! him in this only by supplying an wppropriate proof method. This has
i

the advantage that tiie programmer can readily control the nature and

amount of information to be memorized. For cxample, if partial derivatives

are required with respect to exactly three variables, three memo . |
components can be declared. If the identity of the controlled variable |

is not known in advance, it can also be stored in a memo component, so |
| that repeated differentiation with respect to the same variable will :

always be efficient, although when ao different variable is used, the |

memoryis overwritten. Or ithe programmer can maintain a small list of

such variable/value pairc, choosing to "forget" certain of them when the]

| list gets too long. Finally, he cin choose which nodes will have mar 1
components and which will not. This gives the programmer much betfer

| - control of efficiency in time and storage than the automatic technicue

suggestedin [17], although at a cost of requiring correct programming.

§ oince efficiency its the sole objeelive of the memo technique. perhaps f

this iis not too high a price.

4 The implementation of this memc technique perhaps constitutes one of

| rheibatiteridizeinlinediusesiof thel controversial ISP fimct ions -RPTACAY and |

| RPLACD.

————————— a li A ep kta Arse at art emer een

: f{

l Non~-gharcd Representations
BASLE EM I ANE SUN

In the previous sections we have ;miven examples for which an

implementation using shared substructures would give significant savings

1 in storage space and time. Ilowever, the use of storage charing hag sume

Significant penalties: |

(1) when updating any component of any node of a structure, a new copy i
: must be made of that node and all nodes through which it was

accessed,

(2) storage which goes out of use, either because of updating or because

OY block exit, camnot be immeaiately rcclaimed for other uses;

(5) the programmer tends to lose control of the efficiency of use of ane

] Of his most precious assets, main clorage;

(4) the programmer has no control over addressing vagrancy, which is

necessary for successful use of paging systems or backing stores;

(5) the time spent in scan-mark parbage collection can be the heaviest

gingleicost in theleecution of an icfficiently compilcd program,

) These aisadvantages will be particularly acute in cases where little

advantage can be taken ol sharing. |

Consider Tor cxample a progran operating on intsets (as defined in

| Section 5) which only ever necds one such set; or if it necds scveral, it

only cver update: the sets by assignments of the form

STN: =Rinsertion (STRcni;

2 r=deletIo BS2 05,

and never pe: forms 4 "cross-assigrnment'” of the fom:

| Sez RS):

82 := insertion(si,57).

In such a program, the two sects would never in practice come to share

1 any subcomponent. Liven if the program did make an occasional cross-

L assignment, the charing patierns would be rapidly dissipated by subsequent

updating of either set. Jo in this program a non-shared representation |

| would be much belier. :

tf i

“

pa hc i f TT LL :

| 4

IT it is known that Lherd is nd sharing, the proprivmer must be

4 cneouraged to use selective updating of components of his structure Ly

meas of procedures operating upon the structure, rather than functions

producing potentially large structured values. As suggested in [12], i

we shall declare procedures local to the clasa:

procedure insert(i: integer):

procedure delete(i: integer);

These procedures are regarded as being "components" of cvery variable of |

; the class, and can be invored by naming the variable followed by the
'

procedure call (separated by a dot):

E.Snscendsn:

S2.delete{93); |

| which arc intended to be equivalent to the vpdating assignments

Sd. =aincertion gil, 57: |

32eedel etion(320501, :

The writer of thesc procedures sometimes witches to refer Lo the yet |

wninown variable to which it is being applicd. [For this purpone, we will 1

: use the name of the class itself. In some clrcumstances, it 18 necessary

1 to define a completely new value of this variable by means of 4 generator.

For this purpose, 1 suggest a facility used in many lenguages to specify

the result of uo functian, namely:

zesuiitiic |

which has the effect of assigning ee as the resull of the procedures, and 9

immediately exiting Cran the procedure. She code for Lhe updating version |

ofuintset sis shown tli iable 1.]

Whon the rejult of a procedure is given by vesult , purt Hr all of

the store used by the value of the variable being updated can often be

] immediately recluimed -- a technique which has been called "compile time

garbage collection” (15). An exuwnmple of this is marked (2).

One condequence of a non-shared reprogentation is that whenever a

structure 1s used as an argument Lo a wenerator, a complete copy of that

y gtyuctiure mustibe made. An excephitn to thid is in the case ofia single

occurrence of the class nene within an expression which is being used ac |

¥ |
TUES MI HAANile UII HAR ILIA v

| G
| class intset = (empty|list(intset,integer))

'

| begin procedure insert(i: integer);® | cases intset of (empty — recult list (empty,i) | :
a | = YT

list(rest,j) — if 1 > j then rest. insert(i)

bo) else if 1 < j then result list(intset,i)): (1) 4
i procedure delete(i: integer); :

© cases intset of (empty — do nothing |

1 list(rest,j) — if i = j then result rest (2) :

ir else if 1 > j then rest. delete(i)); J
| function has(i: integer): Boolean;

cases intset of (empty — result false]

list rest,.j) —» if 1 = J then result true

; else if 1 > j then result rect. has({i)); 4
intset := emply

end;]

| Table 1.

| hy

|

4 »

rr TrTT. :

i

| 4 resull. In thie cuse, the rune address can be used instead of the

 § ¢ address of a [Tesh copy; and of course, the storage occupied would not
i he reclaimed. An esample of thie is marked (1).

| After these two oplimizutions have been made, the outstanding

causes of inefficiency are the recursive calls, with their associated

i overhead of stack munipulalion and parameter passing. Since these will
| occur «8 the lust ctatement of the procedure body,an obvious optimization

would be to replace them by a jump back to the beginning of the procedure :
P| body, having made appropriate adjustment {or the left hand parameter OF

‘ the procedure. :
| After these optimizations have been made, the resulting program may

in certain applications be several orders of magnitude more efficient ;

than the purely functional clasc described in Section 5. :

| ¢ It 1s unfortunate that the lan;uage reature described here relies
| 50 heavily on optimization to secure highest efficiency. The great

1 danger of optimization is that a emall change to a program (e.g. insertion
Of n:=ntl ofter, instead of before, a recursive call) will give rise to

3 : an unpredictable and unacceptable loss of efficiency. A second danger is
that it can make an implementation, large, slow, unreliable, and late.

: Finally, it has the unfortunate effect of removing from the programmer
the feeling of responsibility and control over cificiency, which was the

rr main reason Tor introducing celective updating anyway!

Consequently, it may he desirable to introduce into a language 3
come special notations for cipressing the three special cases which are

susceptiblelt slisvlinmilzation.

3

| 7]
Rl |

k\

| Conclusion

] This paper hag described a number LY Old programing Lechnigués

| and new notations to express them. The objective has been tc izolule

Zinunberiofiusefuiliand efficient ainmplescasaes ofthe, usesol references,

which are susceptible Of relatively simple prouf techniques, and give |

notations and syntactic conventions which guarantee their validity. |

In all cases it has proved possible to achieve this without invroducing

: the concept of a reference into the algorithms. Of course there must :

remain a number of applications. {or example when dealing with rclational |

structures, when the explicit uce oi references seems unavoidable or

even desirable; and I'>r this purpose. something like the record class 1

of AIGOL W g£till scems {0 be the bett solution.

However, il a general-purpose programming language contains a

record class concept, this can zerfainly be used to program all the

representations described in this paper. 830 the question ariscs, 1s it

worth while to incorporate these notations and facilities into such a 3]

lansuage? The answer £9 this probably depends on the intended applichtion :

of the language. In a special purpose language for symbol manipulation |

it would be interesting to try out some of these ideas; but in a general 3

language or implementing software (e.;;. operating systems), the reliance

on gZecneral garbage collection seems quite inappropriate. |

ven 11these ideas are not embodied in a programming language, 1 hope

they will be found to be useiul as an aid to reliable program design and

documentation. An algcrithm can be designed using the suggested

facilities, and can perhaps even proved using the suggested proof

techniques; the programmer can then manually translate his absiract
1 procram into some lower level language with explicit pointers, using the

suggested Implemenlation techniques. This is, of course, the general

metnod recomended in structured programming: [16]. |

24

: References

y [1] ed. van Wijngaarden. "Report on the Algorithmic Language ALGOL 8,"
1 Num. Math. 14 (1969), 70-218.

| [2] "PL/I Language Specifications," TBM Order Number GY3¥-600%-2.
[5] ed. P. Naur. "Report on the Alsorithmic Language ALGOL 60," 3

| Nun. Math. (1900), 10n-17u.
| [4] N. Wirth and C. A. R. Hoare. "A Contribution to the Development |

of ALGOL," Comm. ACM 9, © (June 1966).

ISR NLEY rthtPhe Frogramming Language PASCAL," Acta Informatica 1, 1 i

| (1971), 35-(:.
[6] D. E. Knuth. "A Review of Structured Programming," STAN-CS-74-571

(June 1973).

[7] J. McCarthy. "A Basic for a Mathematical Theory of Computabion i? :

in Computer Programming and Formal Systems, (ed. Braffort znd

Hirschberg), North Holland (19435), 3

[8] ¥. Vv. McBride, D. J. T. Morrison, R. M. Pengelly. "A Symbol |

1 Manipulation System," Machine Intelligence 5. Edinburgh University :
| Press (1970). |

[9] LISP folklore. |
ba

[10] J. McCarthy. "Recursive Functions of Symbolic Expressions and bheir]

| Computation by Machine," Comm. ACM 3, 4 (April 1960), 184-195.

: [11] D. T. Ross. "A Generalized Technique for Symbol Manipulation and 1
NumeriealRCalculat ion, LBC omnlaeAlY (March 1961). E

[12] C. A. R. Hoare. "Proof of Correctness of Data Reprecentations, |

Acta Informatica 1 (1072), 271-281. |

; [13] D. Michie. 'Mcmo Functions: a [language Feature with Rote Learning |

Properties," DMIP Memorandum MIP-R-29 (November 1967). |

| [1%] R. Waldinger and ¥. N. Lovibt. "Reasoning about Programs," Proceedings E
; of ACM Sigact/Sigplan Symposium on Principles of Programming Language ;

Design, Boston, 1973. |

a |

i

: ia

L [15] J. Darlington and R. M. Burstall. "A System which Automatically |

¢ Improves Programs," Proceedings of Third International Conference

 X on Artificial Intelligence, Stanford, 1973. :

[1A] E. W. Dijkstra. "Notes on Structured Programming,” in Structured

| Programming, Academic Press (1972).
i

1

|

, L]
gE

%

| 2

