- Best
Available
Copy

AD-772 509
RECURSIVE DATA STRUCTURES
C. A, R, Hoare

Stanford University

Prepared for:

Advanced Research Projects Agency
National Science Foundation

October 1973

D'STRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

.

i a e il s e B ' . o u Lt A 8 B e

STANFORD ARTIFIC IAL INTELLIGENCE LABORATCRY

MEMO A IM-223

STAN-CS-73-400

AD772509

RECURS IVE DATA STRUCTURES
BY

C. A. R. HOARE

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 2494
PROJECT CODE 3D30

OCTOBER 73

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

" uced by
“NATIONAL TECHNICAL

INFORMATION SERVICE

iy JUN o

Recursive Data Jtructures

C. A. R. Hoare 1

_F Abstract. The power and convenience of a programming language may

: be enhanced for certain applications by permitting data structures to
be defined by recursion. This paper suggests a pleasing notation by
which such structures can b: declared and processed; it gives the

axioms which specify their properties, and suggests an efficient

e b

implementation method. It shows how a recursive data structure may be
used to represent another data type, for example, a set. It then

discusses two ways in which significant gains in efficiency can be made

by selective updating of structures, and gives the relevant proof rules
and hints for implementation. It is shown by examples that a certain
range of applications can be efficiently programmed, without introducing
the low-level concept of a reference into a high-level programming

language.

The work on this paper was supported in part by National Science
Foundation under grant number GJ 3647%X and ARPA Research Contract
DALIC 15-73-C-0435.

Sl e ol soramad
-

TR
-

R .

] Introduction

In a language such as ALGOL 68 [1] or PL/I (2], a central role is
played by the concept of a reference or POINTER. In ALGOL 68, the
reference underlies the treatment of ordinary variables, result parameters,
data structuring, dynamic storage allocation, indirect addressing, etec.,
and iu PL/I they are also used for value parameters, and even for
input/output. However there are many reasons to believe that the
introduction of references into a high-level language is a seriously
retrograde step:

(1) It reintroduces the same unpleasant confusion between addresses
and their contents which afflicts machine code programmers.

(2) In ALGOL 68, corfusion is doubly confounded by complex coercion
and balancing rules.

(3) 1In PL/I the explicit allocation and deallocation of storage
affords unbounded scope for complexity and error.

(4) The variables subject to change by a program statement are no
longer manifest from the form of the statement. For example, if x and
y are reference variables

X:=Y;
obviously changes x , but a statement in AIGOL 68 like

7% = ndLg
may change a , or b , or any other variable of appropriate type: one
variable it can't possibly change is x !

(5) It is possible to retain a reference value to an area of local
workspace which has been deallocated. In PL/I this can cause disaster
without warning; in ALGOL 68 certain rather complex rules ensure that
the danger can sometimes (but not always) be averted by a compile-time
check. This is known as the problem of the "dangling reference'.

(6) In distinction from values of all normal types (integers, reals,
arrays, strings, files,...) the value of a reference can never be input
to a program, nor output from it (except possibly in a total post mortem
dump) .

(7) The use of references reduces the efficiency of execution on
machines with instruction lookahead, data prefetch, pipelines, slave

stores or paging systems, counteracting all these laudable attempts by

hardware to make a machine seem faster or larger than it really is.

S A e mm———— - g ra— - A TR T LT ——— il —

(8) When data is to be held permanently or temporarily on backing
store (e.g. files on tape or disk), the use of references can create
t insuperable difficulties to implementor, user, or both.

(9) Proof methods for dealing with a language which permits

4 general pointers are significantly more complicated, whether the pointers

are used or not.

t There appears to be a close analogy between references in data and

Jumps in a program. A jump is a very powerful mu’tipurpose tool, present

in the object code produced by compilers for almost every machine. But
it is also an undisciplined feature, which can be used to create wide
interfaces between parts of a program which appear to be disjoint. That
! is why a high level programming language like ALCOL 60 has introduced a
i range of program structures such as compound statements, conditional

i statements, while statements, procedure statements, and recursion to
replace many of the usec of the machine code jump. Indeed perhaps the
only remaining purpose of the jump is to indicate irreparable breakdown
in the structure of the program. Similarly, if references have any role
in data structuring it may be a purely destructive one. It would there-
fore seem highly desirable to attempt to classify all those special

purposes to which referencec may be put, and to replace them in a high

level language by more structured principles and notations. In this
task, it is encouraging that ALGOL 60 [3] has already isolated two such
usesg, namely the procedure parameter and the variable length array, and
has dealt with them without introducing the reference concept. Further-
more ALGOL W [4] and PASCAL [5] have introduced references as represen-
tations of many-one relationchips in a relational neiwork, and have done
£0 in a manner which mitigates many of the disadvantages mentioned

above (ac compared with (say) ALGOL (8 or PL/I).

One of the main reasons for using stored machine addressec is that
the amount of storage thal will be required by an item of data is not
known to the compiler. In this paper we will consider a class of data
structures for which the amount of storage required can actually vary
during the lif'etime of the data; and we will show that it can be

satisfactorily accommodated in a high level language using solely high

level problem-oriented concepts, and without the introduction of references.

Concepts and Notations

The method of specifying the cet of valuec of a data space by
recursion has long been familiar to modern logicians. For example, the
ﬁropo&itions treated in conventional propositional calculus may be
defiﬁed by the following four rules:

L, All proposition letterc are propositions.

N

It p 1is a proposition then o is —p .

2

g If p and q are propositions, tnen so are
(p&aq) and (pva)
b, All propositions can be obtairied from proposition letters by
a finite number of applications of the above rules.

When the set of propositions as defined above is treated as an object
of mathematical study, it is known as a '"generalized arithmetic"; and
an additional axiom is postulated:

5 Two propositions are equal only 1if they have been obtained

by the same rule from equal components.

Exactly the same idea is familiar to programmers in the use of the
BNF notation for the definition of programming language grammars. Ior

example, proposcitions could be defined:

(proposition) ::= (proposition letter)|
—1(proposition)|
({proposition) & (proposition})|
({proposition) Vv (proposition))
{proposition letter) ::= (letter)

Both these methods of defining data not only specify the abstract
structure of the data, they also state how any value can be represented
as a linear stream of characters, for example:

(P& (- PVQ))

However, we wish to abstract from the external appearance of the
data, and concentrate on its structural properties. This abstraction
is familiar to an algebraist, who calls the resulting data space a word
algebra on a given finite set of generators. A generator is 2 function

which maps its parameter(s) onto the larger structure of whi:h they are .

Rk b e i o e e

immediate components. A penerctor with no parameters is known as a

constant. 1In the cace of proposilions, four generators are required:

(1) prop: letter - proposition;
which converts any letter intc a proposition letter (logicians often

use a different type font for this).

(2) neg: proposition — proposition;

which constructs the negation of its argument.

(3} conj, disj: proposition x proposition — proposition;
which takes two arpguments and whose result is their conjunction or

dir junction respectively.

In cymbolic manipulation programs, it is common to deal with
variables, parameters, and [unctions whose values range over data
cpaces such as logical propositions. 1In a language like PASCAL,
which permits and encourapges the programmer to define and use his own
data tyres, it seems reasonable to permit him to use recursive definitions

when necegsary. A possible notation for such a type definition was

sugeested by Knuth [6]; it is a mixture of BNF (the I symbol) and the

PASCAL definition of a type by enumeration:
type proposition = (prop (letter) | neg (proposition) i

conj, disj (proposition, proposition));

It is assumed thet the type "letter" has been predefined, for example as
o subrargze of characters

type letter = 'A' ..'Z’
The effect of this type definition is threefold:

it introduces the name of the type;
it introducer the names of its generators;

it ;zives the number and types of the urgument(s) of the

penerators (if any).

Type definitions of this sort were suggested by McCarthy in [7].
The type ie intended Lo be used to declare variables, parameters
(and functions) ranging over the type, e.g.:

PLl, P2: proposition;

{

and the generators can be used to detine values ot the type, e.g., the

sequence of instructions:

Pl := prop ('P');

P2 i=ineg (PL);

IR e falklak) (192 qewets) (A 5
P2 := conj (PL,P2);

would leave as the value of P2 a proposition which would normally be
written:
(P& (~PvaQ))

In most languages with references, the use of recursive type
definitions is permitted only if the recursive components of each
structure are declared as references. This seems to be a rather Iow
level machine oriented restriction; after all, we do not insist that .
recursive calls of a procedure should be signalled by such special
notations. It is true that a recursive data structure which is held in
a conventionally addressed main store will usuully be represented by
references, but it seems a pgood idea that the programmer should be
encouraged to ignore the machine-oriented details of the representation
(just as he ignores details of the implementation of recursive procedures),
and should concentrate on the mcre pleasant abstract properties of the
structure. The implementor should also have the frecedom to use a
different representation, for example, when the data is held on a backing
store. Thus the programmer may, if he wishes, imagine a machine which
allocates a fixed amount of space to hoiﬁ the current value of a
variable of recursive type; and if it is called upon to fit in a larger
value, it adopts the same expedient that we do -- it merely writes
smaller!

In defining operations on a data structure, it is usually necessary
to enquire which o1 the various forms the structure takes, and what are
its components. Vor this, T suggest an elegant notation which has been
implemented by [Fred MeBride in his pattern-matching LISP [8]. Consider
for example a funclion intenced to count the number of &s contained in
a broposition. Like many functions operating on recursively defined

data, it will be recursive:

)

L

s

=PI

(lN) function andcount (p: proposition): integer;

(2) andcount := cases p oL

(3) (prop(e) — |

(k) neg(q) — andcount(q) |

(5) conj(q,r) — andcount(q) + andcount(r)+1]
(6) disj(q,r) — andeount(q) + andcount(r));

Line (1) declares andcount to be an integer-valued function of one
proposition, known as p in the body of the function.

Line (2) states that the result of andcount is assigned by computing
the following expression. This is a '"case expression" whose
effect will depend on the value of p .

Line (%) states that if the value of p is a proposition letter c¢ ,
the result is zero.

Line (4) states that if the value of p is & negation, let g be the
repgated proposition and the result is found by computing the
andcount of q

Line (5) states that if the value of p is a conjunction, let q and
r be the names of its components, and the result is one more

than the sum of the ancounts for q and v .

Note that the identifiers ¢ , q , r are like formal parameters: they
arc declared by appearing in the parameter list to the left of the
arrow, and their scope is confined to the right hand side of the arrow,
only as far as the vertical bar. Their types are determined by the
types given in the declaration of the corresponding generator, c.g.,
¢ is a letter, and q and r are propositions. We shall insist, for
the time being, that the programmer shall not maxkc assignments to these
variables.

The language feature deccribed above is evidently capable of
w«pressing all the functional aspects of LISP, and many of the
procedural aspects as well. For example, the list structure of LISP

can be defined:

type list = (wnit (identifier) | conc (1ist, list))

where the type identifier is assumed to be predefined. The function

cons

is defined as part of this declaration. The other LISP basic

functions can be programmed:

il likers @i (8 dlsily) o AiEg

car := cases { of (atom (id) - error|
Sofars (1At apaitedenn)) =3 AlEainhe
iiraeivilorn sk [Aisigle SLERE s o EElnniehd o o

function atom (£: list): Boolean;
atom := cases ! of (unit (any) — true | cons (x,y) - false);
function equals (£1,£2): Boolean;
equals := cases f1 of
(unit (1dl) - cases 2 of (unit (id2) - idl = id2|
cons (x,y) — false)|
cons (x1,yl) — cases 22 of (unit (id2) - false|
cons (x2,y2) —
equals (x1,yl) & equals (x2,y2)));

In practice, the casecs notation will often be found more convenient, clear,

and lesc prone to error than the functions car , edr , and atom . For

example, the familiar append function may be written:

data
LISP

function append(fl,£2: list): list;
append := casesg f1 of

(unit (id) - if id = NIL then £2 else error|

cons (first, rest) - cons (first, append (rest, #2))):

Just as LISP can be embedded in any language which permits recursive
structures, :o can all recursive data structures be represented as

lists, and processed by LISP functions. Tor example

conj ('P',disj(neg('P'),'Q'))

can be represented (in S-expression form):

(*CONJ 'P ('DIZT ('NEG 'P) 'Q))

An andcount function for propositions represented in this way would be:

e s e S TN PR TG o

T RS AT T — S T

L

andcount := (atom(2) - O,
car(#) = 'NEG - andcount(cadr(£)),
car(#) = 'CONJ —~ andcount(cadr(£)) + andcount(caddr(¢)
car(f) = 'DISJ — andcount(cadr(¢))

)
)

+ andcount (caddr(?)

s

Note the arrows in this program are LISP conditionals. This example
illustrates some of the advantages of the type declaration for recursive

data structures:

(1) The check against the error of applying the function to a structure
which is not a proposition can be made more rigorous, and can occur

at compile time rather than run time.

—
o
~

It is easier to check that all cases have been dealt with.

—
i
f—

The formal parameters seem to be more readable and perspicuous

than the abbreviations car , cadr , caddr , etc.

In the next section it will be shown how a compller can sometimes
take advantage of the extra information supplied by a type declaration
to secure more compact representations and more efficient code than is
usually achieved in LISP.

To summarize the notational conventions introduced in this section,
here are the syntax specifications of recursive type declarations and

case expressions:

(type declaration) ::= type (type identifier) = ((generator list))

{generator list) ::= (generator)\(generator)(or symbol){generator list)

(or symbol) :: | (i.e., vertical stroke)

{generator) ::= {generator identifier)\(generator identifier)((type list))
(type list) ::= (type)|{type), (type list)

(case expression) ::= cases (expression) of ({case list))

{case list) ::= (case clause) | (cace clause){or symbol){case list)
{case clause) ::= (pattern) - {expression)
(pattern) ::= (generator identifier)((formal parameter 1ist))|
{(generator identifier)
(formal parameter list) ::= (formal parameter)l
(formal parameter), (formal parameter list)

(formal parameter) ::= {identifier)

-+ l,

- Implementation

The normal method of representing a recursive data structure for
processing in the main store of a computer is as a tree using machine
addresses to link the nodes, and a small integer, called a tag, in each
node (or with the addrese) to indicate which of the generators was used
to define this node. Each node.contains as components the values of
the arguments of the generator, which may be themselves addresses of
other nodes, or many be just simple values.

For example, in the case of a proposition, the name of the generator
is represented by an integer between O and 3 . If the node is a
proposition letter (tag 0), this will be followed immediately by a
representation of the letter. If it is a negation, the tag 1 is
followed by the address of the negated proposition. In the remaining
two cases, the code 2 or 3 is followed by a pair of locations,
pointing to the components of the conjunction or disjunction. Thus the
value

(P& (- Pva))

would be represented as:

P2 " 2 3 1 __-;ch-)_

p
(@)

lQl

Of course, this example is untypically simple. A picture of a more
realistic proposition would explain why the programmer may prefer not
to think in terms of references.

On many machines it will be possible to pack the tag in with one of
the components of the node, or pack two addresses in a single word,

thereby saving a word of storage on that node. It can be seen that when

nodes have more than two canponents it is possible to use less space

than the standard LISF representation for the same information.

The call of a (non-constant) generator involves the dynamic

acquisition of a few words of contiguous main storage, and planting

in them the values of its simple parameters, and the addresses of its

recursive parameters. The value returned by the generator is the

address of the new node. There is no need to make a fresh copy of the

recursive components, since it is quite permissible for two separate

variables to "share" the same components, thus:

12,5) 2
. 1
P2 o— 2 4
e 0
s tpt
P3: — 3 0

IQV

In this picture Pl has value § & (W Pv Q) and P2 and P35 have the

same value P & (- P v Q) . However,
entirely invisible to the programmer,
whether it has occurred or not. This
selective updating of components of a

from changing a node on one tree, and

this shared use of storage is

who has no means of finding out
is because the prohibition on the
structure prevents the programmer

tecting to see whether the change

has affected the other. The same restriction also prevents the

establishment of cyclic structures, like:

@
1

Such @& structure would appear to have the "infinite" value:
Y

(Pa (P& (P& ---VQ)) VQ) ,
and this would fail to satisfy the axiom of finite generation. Thus the
prohibition on selective updating scems to be a vital means of preserving]
the integrity of recursive data structures, as well as permitting a more
cconomic "shared" representations.
The tree reprecentation using addresses i not the only possible

representation of recursive data structures. If the structure is to be

held on backing store, it should be converted to a lincar stream,

replacing every addrecs by the ctreum represeniing the tree to which it

points. In this representation, the example P& (-Dv Q) would appear:

(_‘2 () IP' N l 0O IPI O ‘lQl

T, oif EemEREEy WALl rcquire‘copies +o0 be taken of all shared branches,
thereby usually occupying more space; but in general the elimination of
addresses will compensate for this. Of course, on reinput of the
structure, it would be advisable to reestablish as much sharing as

possible; before acquiring a new node to accommodate given valucs, if a node

already containing these values is already present in store, it should
be used instead. Indeed, the reuse of existing storage in this way may
be adopted as general policy, which can pe effective in certain kinds of
application -- for example, it makes tect of equality very cheap; in any
case, it is entirely invisible ac far as the logic of the progrum is

concerned. In a conventional non-ascociative store a hashing technique

].1_

is recommended tor finding a node with given contents; henee in LISE
it is known as '"the nashing cons” [9].

" sharing is used, it is no longer possible to reclaim all the
storuyse alloeated to a variable on exit frum the block in which the
varisple was deelured. since ite components may also be eomponents
of the vuelue of some variable globul to that block. TIn order to reclaim
storage when it rune out (and it soon will) it is necessary to use a
sean-mark carbage collector invented by McCarthy for this purpose [10].
This will be more complicated than the standard LISP garbage colleetor,
sinee it will have bto deal in blocks of different size, and it will have
to lmow the type of each node and the relative position of each address
within it. In many applicationg, the size of the nodes do not vary too
wildly; so the problem of fragnentation should not be signifieant. The
eost per node of parbage eolleetion should be no greater than in LISE,
and if nodes are larger than iwo words, some saving in lime may be
possible.

The case expression can be compiled into highly effieient code. The
value beingc considered may be loaded into an index register. The tag is
then used to do an indexed jump leading to the portion of Objeel eode
dealing with that particular ease. There i¢ no need to eheek the range
of the index; it is logieally impossible for it to be wrong! If there
are more Lhan two alternatives thic eould be more eompact and effieient
than a sequenee of tests. The left hand side of the arrow generates no
code at 21l. In eompiling the right hand side, ilhe tormal paramecters of
this case ean be uecessed by means of a single reverse indexed instruetion
(Rose [11]) requiring a single store aceess. In accessing the third or
subsequent eomponent o a node thir will be more cowpact and et fieient
{than the LISP use of cadr , euddr , etc.

With reusonable cooperation from the programmer, this implementation
would seem to offer a signifieant improvement on the effielieney of
eompiled LISP, perhaps even a faetor of two in spaee x cost for suitable
applieations. But even more significant may be the fact that normal
operations on numberg. characters, bits, cte., ean be earried out with
direet maehine code instruetions, without the preliminary run time type eheck

which can be go eumbersome in eompiled implementations of LISP. Thus the

overall improvement might sometines approach an order of magnitude.

L. Axioms

The axioms for a recursive data type are losely modelled on the
corresponding informal definition of the type as given in Lhe
beginnine of Section 2. Note that the fourth axiom is expresved quite
informitily: in ite nommal formalization it appears as a principle of
"styuctural induction". Consider any predicate (q) , which we wish to
prove true of all propositions ¢q , i.e., we wish to prove

Yq: proposition.p(q)

The principle of structural induction states that this can be established
by proving the theorem for all the ways in which a proposition q can
be pencrated; and turthemmore in these proofs £ may be assumed true of
all propositional components of ¢ . This may be expressed in the proofl
rule:

Ye: letter. p(prop(c))
¥p: proposition. o(p) = 2(neg(p))

¥p,q: proposition. N(p) &olq) = P(coni(p,a)) %P(disj(p,q))

Yq: proposition. f(q)

The first three lince of this rule are the antecedents, and the last line
is the conclugion of the deduction.

The fifth axiom, dealing with equ.lity, is most easily formalized
by piving axioms defining the meuning of the cases expression.

Tor propositions the axiom takes the form:

5. cases prop(d) of (TR DC) IR = & .
% cases neg(p) of (...|neg(q) - e|...) = eg
& cases conj(psa) of (...|conj(r,s) - e|l...) = e;’:
)
& cases disj(p,q) of (...‘disj(r,s) - e|...) oF e
=7 bq

where e; means the expression formed from e Dby replacing all free
sccurrences of the variable x by the expression y (with appropriate

modifications of bound variables when necessary) .

1k

The question now arises, arc these axioms suffieiently powerful to
prove everything we need to know sbout recursive data structures? Of
course, this question is nat precise enough to permit a definitive
answer; but our confidence in the power of the axioms can be established
by showing their close analogy with the Peano arxioms for natural numbers,
which have been found adequate for all practical purposes of arithmetic.

For they too can be deflined as recursive data structures:
type NN = (zero, succ(NN));
and the cases notation permits ithe traditional method of defining
recursive functions, for example:
function plus (m,n: NN): NN;
plus := cases n of (zero - mlsucc(p) - suec(plus(m,p)));

The axioms for natural numbers defined as a recursive data structure

are

(1) zcro is an NN
(SN EE I N E I NI S CRGIS NS T C cl(in))
(3) P(zero)
¥n: NN.2(n) = p(succ(n))
¥n: NN. o(n)

(4) cases zero of (zero — e |suce(n) - f) = e

% cases suce(m) of (zero - e | suce(n) = f) = fﬁ

Axioms (1) and (2) are the same as Peano's. Axiom (3) is the principle
of mathematical induction. TFrom Axiom (4) we can readily prove thc

ranaining two Peano axioms:

Loy GGl [)

Proof by contradiction: assume suce(n) = zero

cases succ(n) of (zero - true| suce(n) — false)

= cases zero of (zeiro — true | suce(n) - false)

false = true by axiom L.

15

2. suce(m) = suce(n) = m =n
Prcof's assume the antecedent.

hence cases succ(m) of (zero — zero | suce(m) — m)

= caseg succ(n) of (zero - zero | succ(m) - m)

m m .
it 4 = 4 do@ag I = W
m n
It is worthy of note that when none of the generators have parametcrs,
the recursive data structure reduces to a PASCAL type definition by
enumeration, and the axioms still remain valid. TFor example, the Boolean

type may be defin-d:
type Boolean = (true | false);

and the axioms are:

(1) true and false are Booleans,
(2) P(true)
P(falece)

Yb: Booleun. P(b)

P
\ O

g
e
)
(2]
1)
[4]

true of (true — e| false - f) = e

cases false of (true - e | false - f) = f

If desired, the notation " if B then e else f " may be regarded ac an

12
=

b]

abbreviation for " cage

of (true - e | false - f) ".

R | ik ol

B Clasgses

Many interesting alpebras arc not word algebras -- for example,
finite sets and finite wappings (spurse arrays). HHcwever, they can
be represented us subsets of o word alyebra, consisting of clements

satisfying some additional property knowm as an invariant for that type.

A type which is a subcet of a word tlgebra will be called a clags. TIn

order to ensure that cach newly pererated valuc of the type will actua’ly

satisfy the invarviant, the programmer must have the ability to specify

(1) The initial value of any declared variable of the class.
(2) The function(s) which are to be used to renerate all other values

of the class.

A programming lunguagse should ensure that the actual generators for the
recursive class arc never uced oubside the bodies of the function(s). 1In
this‘way, by proving that thece functions preserve the invariant (whenever
their parameters satisty it), it is possible to guarantee that all values
ever generated will be within the desired subset. This idea was expounded
el L1 ff

As an exarple, consider the represcentation o a set of intesers. Ior
this purpoce we shall use a sincle-chained list of integers, which
possesses the additional invariant property of being sorted. The
operations required for a set are (ray) insertion of a bossibly new
clement, deletion o' a possibly present element, and a test of menbership

of a possible element. A suggested form for the class declaration may be

N

(1) class intset = (empty | list(intset, integer))
(

2) begin function insertion(s: intset, i: *integer): intset;

insertion := cases ¢ of
(empty -+ list(empty,i)]
Listi(rect),)N RERE = it hen s
elee if 1 > j then list(insertion(rest,i),;)
else list(s,i));

function deletion(s: intset, i: integer): intset;

deletion := cases s of

(empty - empty|
list(rest,j) — if i = j then rest

else if 1 > j then list(deletion(rest,i),j)

else s);
function has(s: intset, i: integer): intset;

has := cases g of

(empty — false|
list(rest,j) - if i = j then true

else if i > j then has(rest,i)

else false);
(3) intset := empty

end intset;

Notes

(1) Introduces the class name intset , and declares that it will be a
subset of the recursive type with generators empty and list. The
scope of these generator names is confined to this class declaration.

(2) The boly of the class declaration., as in [12], has the form of a
block, in which are declared thoce procedures and functions which are
to be used by the programmer on values of the class, namely the
functions insertion and deletion and has .

(3) The body of the block specifies the initial value of all declared
variables of the class. The name of the class itself is used for

this purpose.

1t is the intention that a clag:s can be used in the same way as a

type, for example:

deelaration
(ineluding initialization to empty): R,S: intset;
assignment: R := insertion(S,37)
S := R; R := deletion(R,56);
test: if has(R,37) then ...

As suggested in [12], the criterion of correctness of a class can

be expressed in terms of an invariant and an abstraction funetion.

The abstraction funetion which maps cach list onto the set which it

represents cen be defined by recursion

d(t: intset) cases £ of

i
(empty — null eet]

ALeEl Al sh). = R U A) 4
and the invariant can be expressed

sorted(£: intse%) =._. cases 1 of

df
(empty — truc|

EEREN ket)] = S = i)l

The correctness of the insertion funetion ecan now be formally

expressed.

sorted(s){body of insertion} sorted(insertion) &7(insertion) = {i}Uda(s)
Since insertion is a recursive function, the proof of this will regquire
assumption of the correctness of the rccursive call, namely:
" insertion(rest,i) ". This hypothesis may be cxpressed:
[sorted(rest) =] sorted(insertion(rest,i)) &
& d(insertion(rest,i)) = {i}Ud(rest) ... hypothesis
in which the antecedent is true for all intsets, and may be omitted.

Using the rule of assignment, and distributing funetion application

through the cases, we obtain the following lemma:

sorted(s) = cases s of
t (empty — sorted(list(empty,i)) &@(list(empty,i)) = {i}ua(c)
list(rest,j) — if 1 =4 then sorted(s) &£q(s) = {i}Ua(s)
else if i >j then sorted(list(insertion(rest,i),j))
% q(list(insertion(rest,1),J)) = {1} Ua(s)
1 else sorted(list(s,1))

% 7(1ist(s,1)) = {1} Ua(s)

Tach casc can be readily proved from the definition of 4 and sorted ;

' no further inductions are recquired.

(2)
(2)
(3)
(1)
(5)
(6)

e s B i

——

e~ S

i

6. Memo Functuions

In this section, we shall explore a particular case of sclective 1
updating of components of a recursive data structure, which enables the

programmer to secure the advantages of the memo function advocated by Michie [13]. 1

Consider the old example of differentiation of symbolic expressions.

The simplest implementation is to define cxpressions as a typc:

type expression = (constant(real) Ivariable(identifier)l

minus (expression) |

e B

sum, product, quotient(expression, expression));
and define the derivative as follows:

function deriv(e: expression, t: identifier): exprcssion;
deriv := cases c of
(constant(any) - constant(0)|
variable(x) — if x = t then constant(1)
else constant(0) |
minus(u) - minus(deriv(u)) |
sum(u, v) - sum(deriv(u),deriv(v))|
proiuct(u,v) - sum(product (u,deriv(v)), product (v,deriv(u))) |
quotient(x,y) -

quotient(sum(deriv(u), product(minus(e),deriv{v))),v));

Using these declarations we may writc:

position, speed, acceleration: expression;

position := quotient(constant(3),variable('t'));

speed := deriv(position,variable('t'));

acceleration := deriv(speed, variable('t')) .

But this implementation can involve heavy penalties voth in space

and time:

[

(1) A large amount of space will be wasted in storing expressions

of the form

Bv@ 5 Gwll 5, ARQ 5 *EHEs
This may be mitigated by declaring expressions as a class, in which the
generation of such rcdundant cxpressions is inhibited, by thc use of

programmed functions.

21 18

(2) Tr an exprecsion is tu be dillerentiated reprvatedly with
P respeel Lo the same variable, much time snd space eun be spent on
re-evaluating the derivatives o' the subeipressions; this time eould be
saved if the previously computed derivative were stored as & third
eomponent of' each node representing a sum, a produet or o quotient.

The value of this eomponent (known as a memo eomponent) starts off as

"unknown", but when the derivative of this subexpression is eomputed,
it is stored here; and if the derivative is required again, the stored
value is used instead of being recomputed.

{ For the sake ol simplicity, in the following program we have |
assumed that all derivatives are taken with respect to the variable 't!
also, the funetionc perfomi only the most trivial of simplifiecations.

L In a serious symbolie manipulotion program, all these functions would

f ’ be much more complieated.

] g
5 ;
i class exprescion - (variable(iduntifier)\constant(real)lmi(expression)\ 1
4 Su,pr,qu(exprescion, expression, (unknown, knowm(expression))))

4

| (1) begin eonstant zero = eonstant(0), one = eonstant (1) ;]

function swn(left,right: expression): expression;

sum := if left = zero then right else if right = zero then left
else su(left,right,uninown);
function minus(e: expression): expression;
Ininus := cases e of (eonstant(x) - constant(-x)]|
(2) mi(f) - £ | else mi(e));

funetion proluect(left,right: expression): expression;

’ produet := if left = zero v right = one then left

else if right = zero V left = one then right

slse pr(left,right,wnknown);
function quotient(left,right: expression): expression;
quotient := if left = zero V right = one then left

else qu(left,right,unknown);

e " | TR Py

function dbydt(e: expression) — expression;
cases e of

(variable(id) — dbydt := if id = 't' then one else zero

constant(ary) ~ dbydt := zero|
mi(u) - dbydt := minus(dbydt(u))|
su(u, v,deriv) — cases deriv of
(known(f) ~ |
unknown - {dbydt := sum(dbydt(u),dbydt(v));
deriv := known/dbydt)}) |
pr(u,v,deriv) - cases deriv of
(known(f) - £|
unknown - {dbydt := sum(product(u,dbydt(v)),
" product(v, dbydt(u)));
? deriv :=known(dbydt) }) |
qu(u,v,deriv) - cases deriv of
(known(£) ~ r|
unknown - {dbydt :=quotient(sum(dbydt(u),
minus(prodvct (e, dbydt(v)))),v);
deriv := known(dbydt)})):

Ve S
SN
N
P
=
g

expression := zero

end expression;

Notes

(1) The PASCAL constant declaration can here be used to save zpace and
time and trouble.

(2) It seems a convenience to write else to stand for all the cases not
explicitly mentioned.

(3) It is also convenient to use the name of a function as a variable
inside its body (except, of course, when it has actual parameters).

(4) {1} are used for begin end.

The correctness of this class obviously depends on the preservation
of the invariant that if e hes the form su, pr, or qu , then its
memo component either contains the value wunknown or known(dbydt(e)) ;

or, more formally:

Ve,u,v,d: expression. e = su(u,v,known(d)) ve = pr(u,v, known(d))

ve = qu(u,v,known(d)) = d := dbydt(e))

R Ll e i i m b

Murthermore the abstraction funciicn for the elass must not mention

the memo component. 1t is Lhis that makes the existence of the third

" component logically invisible to the user of the class, wlthough one
! hopes that he noticer the pain in ct'licieney.
' it is noteworthy that the use of scelective updating immediately
1 permits establishment of cyclic structures, but because of its logical
g invisibility, this does not seem to matter. or example, after a series
of assignments like those shown on page 21,
position, cpeed, acceleration: expression;
position := quotient(eonstant(3),variable('t')):
speed := dbydt(position):
! acceleration := dbydt(speed);

A diagram of the stored structures will be:

position: —-—-—J—ﬁlﬂ_‘ —s[constant |

. i
S
e variable
speed: Il o— au
~ s mi
acceleration: G- Aﬁﬂi qu
P su mi
o= C— o
unknown P
unknown > mi
’

(Note: position /L
¢peed - position/t - - %/LQ

(- speed) + (- speed) j/tgi-ﬁ/te R
) £ o

acceleration =

G

24

B T T RS PP QT e pe—n—— i -

]
«

The use of manv components doer not invalidate the sharing of
subtrees, apain because ol the invisibility of the updating. Indeed,
its main benefits are directly due to the preservation of' charing, and
can be increased by inereasing the amount of sharing. If the memo function
method is widely used, it becomes very attractive to choose the "hashing"
technique of rctorage allocation. However, in the use of this technique,
it would be desirable to ignore the contents of the memo component, so
that if a newly gencrated cxpression was identical to one in whiel the
memo component was already lknown, they would still be correctly identified,
and the derivative ol the newly generated exprevsion would be available
"for free". TFor this reason, it would seem 1o be a good idea for a
programming language to insist that a programmer single out a memo
component by a special form of declaration, say by prefixing it by the
word memo . A cimilar method has been used successfully in some large
theorem proving systems [1b].

The language feature defined here places on the programmer lhe
responsibility for correcct maintenance of a memo component; and it helps
him in this only by cupplying an wppropriate proof method. This has
the advantage that the programmer can readily control the nature and
amount of information to be memorized. TFor example, if partial derivatives
are reguired with respeet to exactly three variables, three memo .
components can be declared. If the identity of the controlled variable
is not known in advance, it can also be stored in a memo component, s
that repeated differentiation with respect to the same variable will
always be efficient, although when o different varieble ic ased, the
memory is overwritten. Or ihe programmer can maintain a small list of
such variable/value pairs, choosing to "forget" certain of them when the
list gets too long. Finally, he cen choose which nodes will have memn
components and which will not. This gives the programmer much bether
control of efficiency in time and storage than the automatic technicue
suggested in [13], although at a cust of requiring correct programming.
Since efficiency is the sole objeclive of the memo technique, perhaps
this 1s not too high a price.

The implenentation of this memc {echnique perhaps constitutes one of

ithe better diseciplined uses of the controversinl LISP functions RPLACA and

RPLACD .

om0

Sl ol Nl I . i W —

e

o Non-sharced Representationg
¥

In the previous sections we have piven examples for which an
implementation using shared substructures would give significant savings
in storage space and time. However, the use of storage sharing has same

significant pecnaltics:

(1) when updating any component of any node of a structure, a new copy
must be made of that node and all nodes through which it wae
accessed; |
(2) storage which goes oub of use, either becausc of updating or because
o1 block exit, camnot be immediately rcclaimed for other uses;
(3) the programmer tends to lose control of the efficiency of use of ane
of his most precious ussets, main clorage;
(4) the programer has no control over addressing vagrancy, which is
necessary for successful use of paging cystems or backing storcs;

(5) the time spent in scan-mark parbage collection can be the heaviest

m

ingle cost in the execution of an cifficiently compilcd program.

These disadvantages will be particularly acute in cases where littlc
advantage can be taken ol sharing.

Consider {or cxample a programn opcrating on intsets (as defined in
Section 5) which only ever necds one such set; or if i1t necds scveral, it

only cver updatec the cets by assignments of the form

SO S el NG T

S2 := deletion(S2,9%);

and never pc: forme u "cross-ascignment" of the form:

Sl := 82;
S2 := insertion(sl,57).

In such a program, the two sets would never in practice come to sharc
any subcomponent. liven if the program did make an occasional cross-
assigmment, the sharing patterns would be rapidly dissipated by subsequent

updating of either sct. Co in this program a non-shared representation

would be much beluier.

Wl dhie - ynnwn Lhat Lhere ju no sharimgs, the propramncr must be
encouraged to use gelective updating of components of his structure Ly
mea s of procedurer operating: upon the structure, rather than functions
producing potentially large structured valuecs. As suggested in [12],

we shall declare procedures local to the class:

procedure insert(i: integer):

procedure delete(i: integer);

There procedures wre regarded as being "components'" of every variable of
the class, and can be invored by naming the variable lollowed by the

procedure call (ceparated by a dot):

T pobavsreamt(V7)) 2

S2.delete{93);

which are intended to be ecquivalent to the updating assipnments

@0

Sil s i n sertn S S, S

SEeim deletion(82, 9700

The writer of thesc procedures sometimes wishes to refer to the yet
unknown variable to which it is being applied. I'or Lhis purpose, we will
use the name ot the clasy itself. 1In some clrcunstances, it is necessary
to define a completely new value of this variable by means of a generator.
F'or this purpose, T vugpest a facility used in many lenguapges to specify
the snesult ol astunctiuan, nanels:

KRESTAGRCE
which has the effect of wecipning e as the rvesull of the procedure, and
immediately exiting Lrom the procedure. ‘he code for Lhe updating veruion
of Hintisel fis: slown i Tables 1.

When the result of a procedure is given by tesult , part or all of
the store used by the value of the variable being updated can often be
immediately reclaimed -- a technique which has been called "compile time
garbage collection' [151. An example of this is marked (2).

One condegquence of o non-shared reprecentalion is that whenever a
structure iu used ws an aravient Lo a gsencrator, a complete copy of that
structure must be made. An exception to this is in the case of a single

occurrence of the class niuie within an expression which is being used ac

2

I Y G ey

A

.

W ——— o wapa— Lk i — - -

class intset = (empty|list(intset,integer))

begin procedure incert(i: integer);

cases intset of (empty — result list(empty,i)|

list(rest,j) — if i > j then

else if i < J then

procedure delete(i: integer);
cases intset of (empty — do nothing|
list(rest,J) —» if i = j then

else if i > j then

functiou has(i: integer): Boolean;
cases intset of (empty — result false
list(rest,j) — if i = j then

aliske dn ks gl e

intset := emply

end;

Table 1.

rest. insert(i)

result list(intset,i))s; (1)

result rest (2)

rest. delete(i));

result true

result rest. has(i));

e

& resull. In thie cuse, the swme addrecs can be used instead of the
address of a [resh copy; and of course, the storage occupied would not
be reclaimed. An exwnple of thir iz marked (1).

After these two oplimizutions have been made, the outstanding
causer of ineflficiency are the recursive calls, with their associated
overhead of stack munipulation and parameter passing. Since these will
occur as the lust ctutement of the procedure body, an obvious optimization
would be to replace them by o jump back to the beginning of the procedure
body, having made appropriate adjustment for the left hand parameter of
the procedure.

After these optimizations have been made, the resulting program may
in certain appliculions be several orders of magnitude more efficient
than the purely functionzl clasc described in Section 5o

It 1s unfortunate that the lan;uage reature described here relies
50 heavily on optimization to secure hignest efficiency. The great
danger of optimization is that a small change to a program (e.g. insertion
of n:=ntl oafter, instead of before, a recursive call) will give rise to
an unpredictable and unacceptable losg of efficiency. A second danger 1is
that it can make an implementation, large, glow, unreliable, and late.
Finally, it has the unfortunate effect of removing from the programmer
the feeling of responsibility and control over cificiency, which was the
main reason for introducing sclective updating anyway!

Consequently, it may he desirable to introduce into a language
cone special notations for cupreseing the three special cases which are

susceptible to optimization.

Conclusion

This paper hac described a number of old programming technigues
and new notati ns to express them. The objective has been tc isolute
& number of useful and efficient simple cases of the use of ref'erences,
Wnich are susceptible of relatively simple proof techniques, and give
notations and syntactic conventions which puarantee their validity.

In all cases it has proved possible 10 achieve this without inuvroducing
the concept of a reference into the alporithms. Of course there must
remain a number of applications, {or example when dealing with rclational
structures, when the explicit uce oif references seems unavoidable Dr

even desirable; and 1Hr this purpose. something like the record clacse

of AIGOL W ¢till scems to be the bect solution.

However, if a general-purpose programming language conlains a
record cluss concept, this can certainly be used to program all the
representations deveribed in this paper. So the question arises, is it
worth vhile to incorporate these notations and facilities into such a
language? The angwer to this probably depends on the intended application
of the language. In a special purpose language for symbol manipulation
it would be interescting to try out some of these ideas; but in a general
language [or implementing software (e.;. operating syctems), the reliance
on general garbage collection seems quite inappropriate.

Fiven i1 thece ideas are not embodied in a programming lanpguage, T hope
they will be found to be useiul as an aid to reliable program desipgn and
documentation. An algerithm can be designed using the suggested
fucilities, and can perhaps even proved using the suggected proof
techniques ; the.progrmmner can then manually translase his abstract
program into some lower level language with explicit pointers, using the
suggested implementation technigues. This Is, of course, the general

metnod recommended in structured programming [16].

References

1 [1] ed. van Wijngaarden. "Report on the Algorithmic Language ALGOL #8,"
Num. Math. 1k (1969), 79-218.

[2] "PL/I Language Specifications," TBM Order Number GY3%-600%-2.

[3] ed. P. Naur. "Report on the Alygorithmic Language ALGOL 60, "
Num. Math. (1960), 1O6-1%u.

Ay

N. Wirth and C. A. R. Hoare. "A Tontribution to the Development
of ALGOL," Coma. ACM 9, © (June 1966).

|
—
=
g

! {5] N. Wirth. "The Programming Language PASCAL," Acta Informatica iy 4
; (1971), B5-£3:

{ (6] D. E. Knuth. "A Review of Structured Programming," STAN-CS-7%->71
(June 1973).

g

[7] J. McCarthy. "A Basic for a Mathematical Theory of Computaticn,"
in Computer Programming and Formal Systems, (ed. Braffort and

Hirschberg), North Holland (1943).

(S DR S I [B it A TR T Morrison, R. M. Pengelly. "A Symbol
Manipulation System," Machine Intelligence 5. Edinburgh University
Press (1970).

[9] LISP folklore.

(10] J. McCarthy. "Recursive Functions of Symbolic Expressions and their
] Computation by Machine," Uomn. ACM 3, 4 (April 1960), 184-195.

E FLTTE DAL BRosSs, | WA Generalized Technigue for Symbol Manipulation and

N-merical Calculation," Comm. ACM (March 1961).
[12] C. A. R. Hoare. "Proof of Correctness of Data Reprecentations,"

i Acta Informatica 1 (1072), 271-281.

[13] D. Michie. "Mcmo Functions: a lansuage IFeature with Rote Learning

Properties,'" DMIP Memorandum MIP-R-29 (November 1967).

(1L] R. Waldinger and K. N. Levitt. "Reasoning about Programs," Proceedings

3 of ACM Sigact/Sigplan Symposium on Principles of Programming Language

D Csran), S BOSTerTs 19/ .

{15] J. Darlington and R. M. Burstall. "A System which Automatically

Improves Programs,'" Proceedings of Third International Conference

cn Artificial Intelligence, Stanford, 1977.

E. W. Dijkstra. "Notes on Structured Programming," in Structured

Programming, Academic Press (1972).

