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Abstract

The method of conjugate gradients for solving systems of linear

equations with a symmetric positive definite matrix A is given as a |

logical develomment of the Lanczos algorithm for tridiagonalizing A .

This approach suggests mmerical algorithms for solving such systems

when A is symmetric but indefinite. The new methods can be applied

to linear least squares problems with or without constraints, with

simplifications when there are no constraints. These methods have :

advantages vhen A is large and sparse. Fortran subroutines are

included. |
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l. Introduction

Here some methods are considered for solving |

| (1.1) AX = b

vhen the nxn real symmetric matrix A is large and sparse. The

special case that arises when a linear least squares problem is trans-

formed to a larger problem of the form (1.1) is alsc examined. Unlike

matrix factorization, the methods given here for solving (1.1) regard A

8s an operator and only require matrix-vector products, buildingup x

"a8 a cambination of vectors derived from a Krylov sequence. Some basic

theory for different methods of this type is given in Section 2. |

An example of this type is the method of conjugate gradients [2],

vhich 1s often useful for solving such problems when A 1s positive

definite [11]. Although rounding errors cause the conjugate gradients

method to depart significantly from its ideal path, it can still be very

effective when regarded as an iterative method, and the solution can often

be found to the required accuracy in far less than n steps.
. The method developed by Lanczos (kk) for tridiagomalizing A is

directly related to the conjugate gradients method, as is explained in |
[5] and [3], and the rounding error properties of both methodsare

closely related. A description of the Lanczos process is given in

Section3, and the method of conjugate gradients is developedfrom it in

Section b. This gives computational insights into the method, and leads
to two nev algoritims that may be used vhen A has both positiveand

negative eigmvalues; these are described in Section 5 and 6. The method

in Section 6 can also be used if A 4s singularand (1.1) is nota

consistent set of equations, and some properties of this method are

developed in Section 7. | |
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When linear least squares problems are put in the form (1.1), as |

in equation (8.2), the symmetric matrix A will be indefinite with some

zero sub-blocks. Tris is true for unconstrained problems [12], and

also for problems with lines equality comstraints [1]. If these problems

are large and sparse then the new methods given here can be used. When

there are no constraints the algorithms can be simplified to take

advantage of the special form of A , saving storage and computation.

The algorithm in Section 5 is extended to take this into account in

Section 8, wher. the resulting algorithm is shown to be closely related

to that given in [10, Bection 4].

| Computational results for the new algoritims are discussed in

Section 9, indicating that they give accurate results; but vhile the

methodscan often take much less than n steps, there are cases vhere
they take a great deal more. A roundingerror analysis of these

algorithms will be given in a later report.

Fortran subroutines for the new method in Section 5 and its

extension to the least squares problem in Section 8 are given in the

Appendix.

The methods given here for symmetric indefinite systems would

appear to be superior to those suggested by Luemberger (T7], [8], as

the latter present some difficult unsettled questions whem routine ]

practical application is considered. These particular problems do not

arise here, since the development of the algoritims from the lLancsos

process allows a good understandingof their mmerical properties, amd

80 some possible mmerical instabilities have been avoided.
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In the text upper case Roman letters denote matrices, lower case

oman denote vectors, and lower case Greek denote scalars. The

exceptions are ¢ and s used to denote cosine and sine. The

syabol ||. aenctes the 2-nom of a vector or matrix.
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2. General Theory

Given the set of equations

(2.1) r+Ax =b , Ar =0

where A is a real nxn symmetric matrix whichsay be both indefinite

and singular, we will consider computing various approximations to x

of the form V.y , V = [vysvpr eer] ; where the v, area given set

of linearly independent vectors. In particular we will look for

solutions x, = Vy vhich give stationary values to

(2.2) f(y) = (Avy -b)B(AVy -D)

where B is some symmetric matrix; thus £,.(¥) will be a norm of the
residual if B 1s positive definite. Note that this is just a theoretical

tool that will lead to different methods, and that B will not be

required explicitly.

The function f(y) has a stationary value at y, if

(2.3)  ViABAV,y, = V,ABD
that is 1f

(2.8) VABr, = 0 , r = DbeA
and the methods to be considered will essentially try to solve (2.3).

~ 8ince the second derivative of f(y) is 2VLABAV, , it follows that
1 ABA is positive definite there is a unique y that minimises £,(y) .

If ABA is only positive semidefinite then the minimizing y is not

necessarily unique, vhileif ABA is indefinitewe only have a

stationary point of £,(y) . In any case Xx. is sn approximationto -

the solution in the sense that the residual is restrictedto the mull
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space of VAAB , and Vy can be chosen to reduce the dimension of this
oll space with increasing k .

An obvious choice for B is A" for some integer m , and we vill

restrict ourselvesto this case. Choosing m = -2 would essentially

requirea knowledge of x on the right hand side of (2.3), and for

m < -2 solving (2.3) would appear to require at least as much

Inowledge as solving the original problem. The choices ma = -1,0

appear to be the most useful, and will now be considered.

Case (a). Taking m = -1 would give B = Al, but to allow for the

more general case of singular A,va take Bs A , where A isa

gmeralised inverse of A such that AA~ 1s the orthogomal projector

onto R(A) , the rangeof A . With this choice we have from (2.1)

AAD = AA'PT+AAAX = AX

and (2.3) becomes

(2.5) Vz AVY = VAX = Vib-Vir ,

vhich cannot be solved directly for [8 unless a value for vr is
mown. We vill only considerthe case Vy r = 0 , 50 the method will

(2:6) VAY,= Rd x = Ny,

gives a stationaryvalues of (2.2) with BsA” . If the columsof

V, em R(A) then we have the least squares solution of minimum
league:-
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Case (b). Taking m=0 gives D =I and we can minimize |r ||

by solving .

(2.7)  VEAvu = VLAD, x = Vu

where y has been replacedby u to avoid confusion with (2.6).

Furthermore, if v,,...,v, span R(A) then x, is the minimum
length least squares solution of (2.1). We will call methods based

| on (2.7) minimum residual methods. A possible danger with these is

that if A is poorly conditioned for solutions of equations, then the

condition of the problem (2.7) can be much worse. Values of m > 0

would lead to more poorly conditioned problems still, and will not de

examined here.
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3. The lanczos Vectors

If the vectors VisesosVy in Section 2 are computed by the Lanczos

algoritm [4], then some important and computationally useful simplifi-

cations result. In particular, algorithme arise which are useful for

| large sparse matrices: for example the method of conjugate gradients.

The initial vector we will use in the Lanczos algoritim will be

(3.1) vv, =%/B, , By = IPI

there are indications that this choice, and possibly v, = Ab/ [Ab] ,

are the most computationally viable omnes for solving large problems of

the form (2.1), and there is also some theoretical justification for (3.1)

but this has not been shown rigorously. If we have an initial approxi-

mation x, to x in (2.1) then we change the problem to

r+Ag =I, * b-Ax, , Ar = 0 , X = X,*g

snd proceed as before. With the choice of v; in (3.1) we restrict

ourselves to the case of r = 0 in Section 2, case (a), though there

18 no such restriction cn case (b).

A satisfactory computational variant of the Lanczos algorithm, [9],

has as its j-th step, defining Vo ® 0,

. = -Q - Aq, = v(3:2) ByuyVped = AVy-OyVy Biya 0 Uy = VyAY

with B,, >0 chosen 50 that vga =1. After the k-th step

| ]
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| 8 g

Avy = VT * Bre Vie 1% » I ® 2 2 5 ’
Pr %

(3.3)

The process will be terminated at the first zero Py , 80 from now on

we can assume that B, FO, JI =1.005k.
Prom (3.3) and (3.1) we have V AV, =T, and Vb = Be,

and with this choice of vectors in Section 2(a) equation (2.6) becomes

ec , |
(38) Ty = B% 0 He TV

where the superscript c¢ indicates that it is the solution that would

be obtained using the method of conjugate gradients, as will now be

explained. |
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Lk. Derivation of the Conjugate Gradients Method from the Lanczos Process

The conjugate gradients method [2] can be developed in a straight-

forward mammer from the Lanczos process. The purpose of giving this

development here is to divide the conjugate gradients method into

separate computational algorithms whose mumerical properiles are more

clearly understood; this leads to some new and useful methods.

If A is positive definite then 50 18 T, = Vi AV, in (3.4),
and hence the Cholesky factorization

CREE MER

exists. Here J 1s diagonal with positive elemets and fis unit
lower bidiagonal, and these can be developed as k increases.

Unfortunstely y, in (3.4) changes fully with each increase in k,

and s0 Vy, cannot be accumulated as k increases. This difficulty
= -T

can be overcome if we define p= Ly, and Cy ® Vi so that (5.4)
becomes

o

(2) LBP = Be » Xi =O

The columns of Cx can be found in ascending order by solving
T

for the rows of Co , and since p, cin be developed similarly from (k.2),

it follows that x = Cp, oan be accrmmulated as the algorithm progresses

snd the columns of Ve and Coe neednot be kept once they have been

used in the Lanczos algorithm and in forming X, . The columns of C,

are A-conjugate, since |

aT -1 -T

| 10



and a comparison with [3] shows that this method is mathematically

equivalent to the method of conjugate gradients. The approach here is

computationally a little different, for example involving unnecessary |

normalization of the Lanczos vectors, but the advantages are that it

emphasizes how the method is based on the Lanczos algorithm, with the

eigenvalues, and therefore the spectral condition number, of Ty

approaching those of A as k increases. Furthermore the role of the

Cholesky decomposition becomes apparent, with the subsequent need for A

to be positive definite to ensure numerical stability.

If A is an indefinite symmetric matrix, tbem the factorization (L.1)

can still be tried, often with success, but it does not always exist

and can no longer be relied upon numerically. |
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5. An Algorithm for Indefinite Symmetric Systems

The possible failure of the method of conjugate gradients in

provlems involving indefinite symmetric matrices leaves a need for a

numerically stable method based on the Lanczos vectors. Several such

methods are possible, using various stable factorizations of TI in

(3.4), but the method we found to be most theoretically and numerically

satisfying is that based on the orthogonal factorization |

- T _

with L lower triangular. The bar is used to indicate that L differs

from the kxk leading part of Lo in the (k,k) element only. As

before y, “in (3.4) need not be computed; instead, if we define
- - T

- T

then (3.4) becomes

- - Cc - -

(5.8) Lg = Bye; » Xx =W3I

and it turns out once more that the vy and wv, can be formed, used,

and discarded one by one. This gives mathematically the same solution

| as does conjugate gradients, but here the factorization is nmerically

| stable even when Ty is indefinite.

The factorization (5.1) is best obtained by a series of orthonormal

matrices Q $41 each of which differs from the unit matrix only in theb 4

elements Qu, = ~Quy 343 = C3 ZC08 9 5» Ay 44 "Uyeg,q = 8 = BRE,
Thus |



8 7 |
T -

(5:5) Type TTR =p =| 65 85 7g 2

€) 8, 7x

where in the next step we compute

1/2

In the following discussion we will use 1, to demote L with Ty
replaced by 7, . Similarly, following (5.2) and (5.3), we define

Z, = (Cpseees ly) and Wy = [wys0cesm] » Where z, is found from

so from (5.4) and (5.6)

finally from (5.2) and the form of QU x1 in (5.5) we have

- “x %k - -

fx “x

| The algorithm defined by (5.1) to (5.4) should not be implemented

| directly, since it is wasteful to update x fully each step *n (5.4),
while if L is singular in (5.4) then 2, is undefined. Insteadwe

see from (5.5) and (5.6) that L, 1s nonsingular if Bey #05 0 =

is defined in (5.7), and rather than updating x each step ve update



(5-0) xp = Wz, = x4 Ce

where L indicates we are using L_ rather than L . Since (5.4) |
and (5.10) show that

c - |

(5.1) x = +l

ve are always able to obtain x... if it is needed. Becsuse L,_ has
better condition than L , solving (5.7) will probably also give
better mmerical results than solving (5.4).

In theory the Lancsgos iteration will stop with some Brel = 0,

and then xt =x =x, but in practice it 1s rareto have evena very
mall B,. , and some other stopping criterion must be used; here x
apd x’ will be different, and the cme which gives ihe smaller residual
would usually be chosen. x is often a much better approximation to x

than x’, and 80 (5.11) 1s usually carried out at the end of the
iteration; there is no facility for doing this in the version of our

algorithm describedby Lawson [6], but it is included in the Fortran

subroutine SYMMIQ in this report. Note that Ww has orthonormal columns,
s0 that if |

then al , but not 4° , must decrease in 2-norm every step. Thus x
is the best approximation to x lying in the space spammedby

WiseeosWy » and is monotonically increasing in size every step;

apparently this space is usually not as good an approximation space

as that spanned by LSTRERFL SRYL

1k



For the algorithm using (5.7) and (5.10) to be theoretically well

defined it is still necessary to show that there is no possibility of Ly,
being singular. Now from the discussion following equation (2.5) and

| the choice of v, in (3.1), ve see that methods based an (3.4) will -
only be usefulwhen r = 0 in (2.1), in which case (3.2) shows that

v, €R(A) sy 1=1,...,k ; but the only possibility of L being"

singular is if p,., =O, giving AV, = VI in (3.3), from which we

see that I, cannot be singular. We see then that L =L =a
cennotbe singular in (5.7), and therefors 3, = 3, mustbe well

definedat the final step, even if Prey = © .

In any practical computation we will be interested in monitoring

the sizeof the residual, usually to decide vhen t0 texminate, so vhen

L, 1s nonsingular ve see from (3.1), (3.4), snd (3.3), that

(5.13) ry ®obeAx = BV,-AVY,
T

all 6 Tl Rl FOL TELE (id WO)TR]

vhere Ney is the k-th element of (WE The vector £8 is not

directly available in the computation, but since T, = T3 = QL ,
equation (3.4) gives

(5.8) Ey, = P1%e)
and from the last element of each side

(5:15) 7Thy = By8y8p con,

so with (5.6)

(5.16) ry - -(8,8,8, cos 8. / eV .
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fms [ri] 1s directly available without ever forming x, , end in
fact it will be shown in a later paper that whem rounding errors are

present the norm of the residual using (5.16) is within O(e)||A} lil

of ths true reridusal norm correspondingto the computed x vhere ¢
specifies the relative accuracy of floating-point computation.

A slightly longer algebraic manipulation shows that

(5:07) © = b-AG = 7G Tlie
so that

CERNE ER RET ~
is directly available during the computation, and may be used to decide

Whetherto exit with x3 or x . Finallyit is thearetically
interesting to compare these two approximations to x . Prom (5.11),

(5.10), and (5.8) it follows that

SR SIACWENLA

but from (5.9) v, = cv,+ he » giving

¢ -

(539) x3 = q+(Gy/ ody

and since from (5.2) A =0 we see from (5.10) that Yel and
2 are orthogonal, so that

(5.200 igh < ili -
For later reference ve shall call the method of this section

Algoritim SMA.

16



6. The Minimum Residual Method

We will now examine the simplifications that result when we use

the Lanczos vectors in the minimum residualmethod described in

| Section 2 (b). From (3.3) we see that

2 2 T

(6.2) ViAD = ByVi Avy = BT, |

The matrix in (6.1) is pentadiagonal and at least positive semidefinite,

and 80 could be used directly in (2.7) with the Cholesky decomposition,

in a very similar manner to the method of conjugate gradients. Forming

the matrix in (6.1) and then factorizing would lead to an UNMECeSsary

loss of accuracy, but fortunately there is a simpler approach.

If we carry out the orthogonal factorisation in (5.5) and use (5.6)

we see that :

2 T 2 T T

(63)  Terehang = LLtel 0% bh

so that we have the Cholesky factor directly from I, . In (2.7) we

then have to solve

(6:8)  Lljuw = elle,

Put since from (5.5) and (5.6)

and since L_ is non-singular, (6.k) gives

T T
(6.6) Lu, = B,D Qe, * (Ty veer) oJ

17



(6.7) T, RBS, os TE OBis.s,...81C , i =2,...,k ,

00 there is minimal error in computing Liu . Clearly w cannotbe
found until the algorithm is completed, but it is not really needed;

insteadve form

(6.8) MW = [my,...m] = VL]

: column by comm (cf. (k.3)), and then in (2.7)

(6.9) 2% = Vy = v Ly Liu - Wty

where t, is developed in (6.7), and the superscript MN shows this is
the vector which gives the minimum residual. Again it can be seen that

previous vectors need not be held, and this is ideal for very large

sparse matrices.

Note that much of the ill-conditioning suggestedby (2.7) bas deen

avoided, but nevertheless, as k increases the condition mmber of L

in (6.8) approachesthat of A , so thatif A is ill-conditionedthen

some of the vectors =m arisingin (6.8) could be very large and

scmevhatin error, leadingto errors in 2 in (6.9). In fact this
ainimm residual method has been found to suffer a little computationally

on very poorly conditionedproblems, whereas no such trouble has been

found vith the method in Section 5. This is probably because the

vectors «, in (5.10) are theoretically orthonormal.
The minimum residual method could also have been derived by |

considering solving (3.4) using a QR factorization of T . Por since

18



c = TT

apd a small change to make the computation slightly fasterby using (6.5)

leads to

(6.1) x = VILT(BDRe) |

In fact x; could be found from (6.10), or via (6.11), but neither |
vay is as accurate as the method in Section 5, for the same reasons

that the minimum residual method is suspect.

The minimm residual methcd will later be referred to as method

MINRES.
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7. Same Properties of the Minimum Residual Method

The minimum residual method described in Section 6 does not give

as accurate results as the method in Section 5 when the problem is

very ill-conditioned, but it still appears to give very good results in

other cases. It can also be used for inconsistent equations whereas

| the method as described in Section 5 cannot. Furthermore, as the only

vay we have of deciding when to terminate the iteration is by testing
C

the size of the residual, the method which minimizes this is likely to

take fewer iterations than other methods. The other methods occasionally

took a significant percentage more iterations than the minimm residual

method, and 50 it will be of interest to examine the latter further.

It 1s straightforward to compare xX with x, , for (3.h) and (6.8)
give

¢ -T.T T

Te = Vly Le¥y = GLY,

QT, = Lv = BRE;

so with (6.5) and (6.6)

c -1-T =?
(7.1) x = MD Ly, = MD tb,

=2 2

= +  (C) “lm, = x + (8, /¢)) m ‘

Note that Xx: can easily be obtainedduring the computation of 2,
but the reverse is not true. The m, and w, are related in a simple

mamner, for if the Lanczos process stops with Boel = 0 , then AV = Volm ’
-T

T, = LO and M=VI s 80

20



(7.2) AM = VTLS = VQ =V oo.

Using this result with (7.1) gives |

M - M 2

(13) Teor) = Ag mx) = fla /e) vy

go that with (5.16) and (6.7)

ry sb - Ad = P86, coe 8, (8,0, =v.) / ey

but from (5.9) wv, = 8, = CW , 80 |

which shows clearly how the residual norm decreases each step. Also

using (5.16)

eC

(7.5) Well = lel lizgll < Holl :

except at the last step, where theoretically By = 0.

Tt is interesting to note from (5.16) and (7.4) that the size of

the residuals r. end vf are given directly by the size of © and
© the Iq decomposition of T,, , and so are immedietely available

whichever of these algoritims is used. Equatimn (5.18) shovs that

| r | 4s also available if (5.7) is solved.

21



8. The Linear least Squares Problem

For general matrices A and C , the constrained least squares

problem |

min 11’ - Axi},
subject to

Cx = 4

can be converted to the symmetric indefinite system of linear equations

I A  o b

(8.1) cil ¢ =}! ad

aT cf x 0

vhere r is the vector of residuals and ¢ is the set of Lagrange

. . maltipliers. If A is mxn and C is pxn , system (8.1) has a unique

solution if rank(C) =p and reai{ }) =n . In this case the procedure
| SYMMIQ can be applied directly, and should be efficient if the matrices

A and C are large and sparse.

If there are no constraints, system (8.1) reduces to

8.2) I A r b( 2 =
AT. x 0

vhich again could be solved by SYMMIQ given any starting point (rgr%o) .
However, computation and storage requirements can be halved by using a

special choice of ry 8s follows. If we define

To = b = Ax,

for any given x, , then the solution of (8.2) is given by |

r = rotor

X = Xt 8x

e2



where

I A 3r 0

(8.3) = = .

Al Ox Ar,
0

When the Lanczos process is started with the vector of (8.3)
T

A To

it can readily be shown that the orthogonal matrix V has zeros alter-

nately in the top and bottom halves of its columns, while tn~ tridiagonal

matrix T has alternately O and 1 on its diagonal. The resulting

simplification in the Lanczos process leads directly to the bidiagomaliza-

tion procedure used by Paige [10, Section Lk]. A corresponding simplifi-

cation occurs in the factorization T = IQ as performed in SYNMIQ, and

this leads to a new algorithm for solving the least squares problem.

Without loss of generality we shall henceforth take x, = 0,

ry = b . The bidiagonalization procedure, using Alo as initial
vector, is defined as follows:

(a) 8 = ATb V, = :"1 ’ XQvy = My
(8.4)

T

(b) Byy = AV 3% Wy 2 %yVy =m My -ByYyL

(1 t 2,3, +005k) »

The scalars a, >0, B; >O0 are chosen so that lhglly = lvgll, = 2.
It is shown in [10, Section 2] that if

U= [u,, soerthy ] 9 & Bs

Gs Bs

J = LJ Ld J

| %-1 Px

23 :



then

vty = vv = I J

AY WB) Br

and in [10, Section 4] it is shown that none of the a, can be zero,
and that the minimum-length least squares solution of (8.2) is given

by the equations

8.6) Jy = Bye, » Jp=y , x=Up , rTab-Vy

where k 4s the first integer for which Brey = 0 in (8.5). with

(5) (7) this also solves equations (8.3). Now the elementsox x

of y can be computed as the bidiagonalization proceedsbut p camnot

be found similarly. In [10, Section 4] Paige computed successive

columns of N= Wl by forward substitution, giving the algoritim implied
by the following equations:

Algoritim LSCG

Here x is built up progressively as a linear cambination of the

columns of M , the k-th approximation x. mininizing the 2-nom of

the residual r, ®b-Ax, over all vectors x lying in the space
spannedby the first k colummsof U .

L8CG is very straightforwardand economical, and lawsonin his survey

of algoritims of this type [6] has indicated his intent to test it more

widely. It does have one possible failing, and that is 4f J in M =!

is poorly conditioned then the columns of M could bs very large, and

2k



serious cancellation could occur in forming x = My . This iz the same

sort of trouble that occurred with the use of algorithm MINRES in

Section 6, and led us to favor SYMMIQ for symmetric systems. For

similar reasons, SYMMIQ adapted for least squares may well be more

numerically stable than ISCG, 80 it will be examined further.

The simplification resulting vhem SYMMQ is applied to the least

squares problem leads us to the orthogonal factorization |

8.8) J=18 , QQ=I , L lower-bidiagomal ,

and hence to the algorithm implied by the following equations:

Algoritim 1810

(8.9) Ty = 8. , Le=y , WEW , xeWs
where x cen still be built up from the columns of W as the algorithm

progresses. This algorithm takes a little more storage and computation

per step than algorithmLCG, but it has the advantagethat WW= I

which ensures that there is negligible cancellation in forming x = Ws .

The quantities involvedin the k-th step of algorithmISIQ are

exactly analogous to those given in equations (5.1), ..., (5.11). We

have

25



4 6 |

% Ps

Ig = SE = bly

D1 Py

 %

4]

8 7;

5, 7
3 73

(8.10) 5 Tx

T T

| f = U3fax 0 HG tT

Uy = [us «conn gs] ’

| a SL rx = [vp ecw] Oly

wy = [v,, ress Wply? wl ’

end L_ is definedas the kxk leading part of A The system

is solved by forward substitution, and the points that would be computed

by algoritim 18CG in (8.7) are given uy

(8.12) LE, =n + 5 = Bi
but as with SYOURQ it is more efficient to work viththe sequence defined by
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(8.13) Loy = % » Xo = Wisk

since x can be obtained cheaply from x’. asin (5.10). At all
stages it is possible to move from x; to x, as in (5.11).

In order to find a stopping criterion it is naturel to define

c c L

pEb-AG Te beAx

and to monitor the size of the vectors Ars ’ I - ¥rom equations
(8.4%), (8.10), ..., (8.13) we can show that

Tc

Ary = “Bay

ATP. yu - 8 Ck-1 ~ %x7x Cx "Pr Ox Cx-1 Nea

vhere y, ® (T),...,N)" and £ ® (Cpyeeesly 108)T 5 so that

(8.24) (TS CN La

(8.15) i RE CI A LRNNA La
There is no obvious relationship between (8.1%) and (8.15), but both can

be readily calculated at the (ktl)-st stage of ths bdidiagomalisation.

The final requirement is to estimate a reasonable size for these |

quantities, given that the computation will be carried cut with some

finite machine precision ¢ . In the case of SYMURQ (Sectiom 5) we

would expect the vector x! to be an acceptable spgroximstionto the
solution of Ax =b if b-Ax] were smaller then [jalfixjjc . Since
VAV, =T, end xX’ =W.z vith V, and W, orthogonal, we can use
le,ll ana [is|| as estimates of [A] and |x| respectively, and in

practice we terminate if either I= or les, , (as estimated from
(5-13), (5.18)) is smaller than [ir ll, lizdle -
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Similarly with 1SIQ, the residuals for system (8.5) involve Ax

and Aer , Where the approximations to 8r are ory = ary =. “Vi Vy ‘

Since VAL =J end KL =Wz with U,V, ad W orthogonal,
we Can use

SE I TR
to estimate

respectively. In practice we terminate if either IAT} or IATzC 1

(as estimated from (8.15), (8.1hk)) is smaller than

2 p42

lly(br 2 + li122 e
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9. Computational Experience

Algoritms SYMMIQ, MINRES and LSIQ have been programmed and tested

on various systems of equations in order to obtain an impression of their

mmerical properties. A comparison has also beeen made in some cases

| with Reid's version 2 of the conjugate gradients method (CGM) [11]. We

make the following observations.

(1) On symmetric positive definite systems, SYMMIQ gives essentially

the same results as CGN. For example, the problem involving the laplacian

matrix of order h080 (15x16x17 grid) was solved with SYR under the

same conditions as described by Reid (11) for CGM, vis. single precision

on the TBM System/360. A graph of x - x] lagged markedly behind the
curve for CGM shown in (11, Figure 3], but SYMMIR terminatedat the same

point as CGM by takinga final step from x. to Xv, as in equation (5.11).
For test purposes all points xX vere computed from the points x, end
the quantities lx - xl were seen to follow the curve in [11, Figure 3]
almost exactly.

(2) Although SNMEOR obtains the same final point as CGM, it is clear

that for positive definite systems CGM is to be preferred as it is more

efficient.

(3) The variant of CGM described in Section b gave almost identical

results for positive definite matrices as CGM in [1]. This confirms that

the derivation of CGM from the Lanczos vectors and the Cholesky factori-

sationof 7, is computationallysimilar to CGM, aside from their
mathematical equivalence.

(M) Algorithm MINRES has behaved well on some examples involving the

2-dimensional Laplacian matrix, giving a rapid and very smooth decrease
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in both || ana xo . on other very 111-conditionea problems
the estimate of [rh in (7.4) decreased steadily but departed from the
true [2 and thus caused premature termination. In such cases it vas
also observed that if iterations were continued, the true |r| stayed
essentially constant while the true error |jx-xi| continued to decrease
until it reached quite an acceptably low level.

(5) An excellent application of SYMMIQ and MINRES is in solving symmetric

systems of the form (A-yI)x = b in the style of inverse iteration,

sinceif , is near an interior eigenvalue ) of A , the matrix

A-yuI 4s indefinite. If u is sufficiently close to A and b is

chosen appropriately then the computed x will de a good approximation
to an eigenvectorof A , and in practiceit appears that the mmberof

iterations required by SYMMIQ or MINRES is very small.

(6) Figure 1 illustrates the behavior of SNR on a symmetric system

(BP -uI)x = d of order n = 50, vhere pu =/3 is not near an eigenvalue
of 3° but was chosen to makes the system indefinite. The matrix B is

tridiagonal with typical non-serc row elements (-1, 2, -1) , so that BZ

is pmtaciagomal with typical row (1, -4, 6, =k, 1) . Computation was

performed on a Burroughs BETO0 with floating-point precision

gE = g-12 = 1.h5S x10” .

Estimates of the size of the residual vectors ry, Tp and Tr. are |
all available from SYMIAQ, and these vere used to give estimates of

log, lirkil » 20s, lirfll » ogy lll which are plotted in Figure 1 against
iteration omber k . Of interest is the sharp reduction in residuml

obtained by taking a final step from x to the CGM point x, (see
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dotted line in Figure1). Note also the sharp jumps in jirS| at
k=11 and 2k . These indicate regions of instabilityin the COM

sequence x) , as described more fully in the next section,and if the
standard method of conjugate gradients were used to compute the points

x; it 1s tobe expected that the iterates |rlj would diverge from the
path shown.

The final residual norm obtained was 7.83 x10™2 , while the computed

estimate of |iry,||vas 7.65x1077 . his sllustretes that the computed
estimate of lS remains a good measure of the residual for the computed

point x] , in spite of the fact that the computed points are significantly
different from those that would be obtained with exact computation. The

same is trus of the computed estimate of [|r] , and similarlyfor the
estimates of |A'ry|| , [WTr}]l in algoritim LAIR.

(7) Algoritim LSIQ has been tested on least squares problems of the form

WEENL 4 XxX =

ry D| b,

vheare D = diag(d,) isan nxn diagonal metrix with 4, = (4/n)?
for some integer p > 0 . The simple form of the problem allows the

condition mmber nP to be altered easily, and the exact solution to be

found from Dx = (b, +b,)/2 . The system 1s compatibleiff b, = b, ,
but incompatibility has no computational effect since the bidiagonalisation

is essentially the same as if the problem were the compatible system

20x = b, +b,

On a series of problemswith n = 20 and p = 34,...,8 the mmber

of iterations taken by LSIQ (machine precision ¢ = 10° epproximstely)

were 78, 79, 77, 71, 6h, 60, which shows a Qistinct decrease as the
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condition number increases from 10% to 10%0 . This may or may not be

typical of realistic problems, but it illustrates a tendency of the

algoritm to ignore singular values which are smaller than 2 (in

this case, to ignore any d, < 1077 ), and to converge on the minimum-
length solution of a modified problem of correspondingly lower rank. This

effect has also been observed by C. L. Lawson (private cawmmnication). In

the above sequence of problems the number of negligible d, was increasing
steadily, and it could be expected that the number of iterations should.

decrease with the effectively decreasing rank.
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10. Summary

We can now distinguish two reasons why the method of conjugate

gradients (CGM) nay fail to solve the symmetric system Ax =Db if A is

not positive (or negative) definite. Recall that CGM attempts to compute

a sequence of approximations {x} ) satisfying

(10.1) x: = v, Tl p.e; , Kk =1,2 005m

for same m > 0 , vhere VV, = I ’ VAY, = Ty and the matrices Ty
are tridiagonal, with Toe having T, as its kxk principal submatrix.
Recall also that CGM effectively computes the Cholesky factorization of

each T, . The basic problem we must contend with is the following:

If A is indefinite, it is possible for some I,

to be singular or nearly singular (k <m) , even

if T. is well conditioned.

Now if T, is nearly singular it happens that the Cholesky factorization

of Ty i8 poorly determined numerically for all J > k . Even more

seriously, if T, 1s singular the corresponding point x; in (10.1) is
not properly defined. Thus we see that CGM's use of equation (10.1) is

doubly doomed to failure.

The main features of algorithms SYMMIQ and MINRES can now be put into

perspective. First of all, the orthogonal factorization T, = Lo, is

well defined regardless of amy near=-singularities in Ty for J <k.
In fact, as equations (5.11) and (5.19) show, we could compute the CGM

sequence of points using

(20.2) x = Bet CpCeaa/opa)
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without the aid of the Cholesky factorization, but the more fundamental

difficulty remains that x, does not exist if T, and hence I are
singular. In such cases Ce in (10.2) is undefined.

Secondly, then, instead of using L to compute the CGM sequence x ,

we define two new sequences x0 and 0 in terms of a matrix Le which
is the kxk principal submatrix of Le and is guaranteed to be

non-singular. By this means we effectively step around any irrelevant

intermediate singularities in the CGM sequence (10.1). Some near-

singularities are shown by the peaks in |r| in Figure 1. We see fram

(5.6) and (7.5) that llr - ie 17, | / [7] 80 we vill get a large
jump in liz when T_ is nearly singular but A is not.

| Pinally we note that the CGM points x, are not to be discarded
completely, since at least half of them are well defined by (10.1).

This can be seen from the fact that if both Ty and Tyeq OTe singular

then 30 are all I » J 2k : hence if A is non-singular there cannot
be two singular T,'s in a row. (In fact the limiting case is attained

vhen A is the symietric least squares matrix in (8.3), since in this |

case only the even rambered matrices TpsT)s-.. are non-singular.) Thus

in algorit'ms SYMMIQ and 1SIQ provision is made to terminate iterations

at a CAM point whenever advantageous.
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Figure 1. Solution of an indefinite symmetric system of equations |

| (8° -pl)x =D , using subroutine SYMMIQ.

Notes :

1. Dimension of system 18 n = 50 ; pu is not closeto an eigenvalue of B°.

2. r ’ r, ’ r are residual vectors for iteration paths taken by algorithms
SYMMIQ, CGM, MINRES respectively. Eetimates of the norms of these

quantities are all camputed by subroutine SYMMIQ.

3. Note large jumps in the size of liz » reflecting intermediate |
near-singularities which would cause the standard method of conjugate

gradients to break domm. |
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Appendix

The following are listings of Fortran subroutines SYMMIRQ and ISI1Q,

along with subroutine NORM which is used by both. These routines were

developed an a Burroughs B6700 at the Victorial University of Wellington.

For machines with shorter word-length the routines should preferably be

converted to double precision. This can be achieved by changing REAL to

REAL*8 or DOUBLE PRECISION, ABS to DABS, and SQRT to DSQRT throughout .

As noted in the listings, it is assumed that subroutines ATIMES and

ATRARS are available for computing products of the form Au and Aly

a respectively. These subroutines could be included as parameters to SYMMIR

and 18IQ, with appropriate use of the EXTERNAL statement in the calling

program.

A positive value of the parameter ISTOP indicates that iteration was

terminated at a point x; (see text). A negative value indicates that :
the final solution is a point x’ . iN
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SUBROUTINE SYMMLO( NoXsBsPoV1oV2oNsMACHEPSACCYsJTNMAXS ISTOP )
INTEGER N» ITNMAX, 1ISTOP :
REAL XCN)s BEND» PCN)» VI(NDs V2(N)» WIN)» MACHEP» ACCY
REAL ALPHA» BETA» GAMMA» DELTA» EPSLN» CS» SN» 01, D2» 2»

* GBAR, DBARs» Z8AR» OLO8» EPS» EPSAe EPSX» $» tT
J NORMA, NORMX2:, LONORMs CGNORM» QRNORM» BESTAM

C Ppp puppy TTY LX XI TSI LLL LLL PLL DDL LL LD LL LL Ll
C ) :

| C SOLVES THE SYSTEM OF LINEAR EQUATIONS
C AeX = 8

C WHERE A IS AN NeN MATRIX WHICH IS SYMMETRIC
C BUT NOT NECESSARILY POSITIVE OEFINITE.

¢ FOR EFFICIENCY A SHOULD BE SPARSE.
C PARAMETERS?
c

C N THE DIMENSION OF Aa
c . X AN N=VECTORe CONTAINING AN INITIAL APPROXIMATION
C TC XxX ON ENTRY CUSUALLY X = 0)s AND THE FINAL
C APPROXIMATION TO X ON EXITe
C 8 AN N=VECTOR CONTAINING THE RMS VECTOR 8.
C PovVioV2rW | )

I - N=VECTORS FOR WORK=SPACE,
C MACHEP THE MACHINE PRECISION. |
¢ ACCY A USER=SPECIFIED TOLERANCE: ITERATION IS
C TERMINATEDIF IT APPEARS THAT NORN(R) <® ACCY,

: 4 WHERE R IS THE RESIOUAL VECTOR B = Ards
¢ TTNMAX LIMIT ON THE NUMBER OF ITERATIONS.
C 1870P INDICATES THE REASON FOR TERMINATION.
¢ ABSCISTOP) RETURNS ONE OF THE FOLLOWING VALUES!
C 1 > NORM(R) WAS REDUCED BELOW THE TOLERANCE ACCY,
C 2 8> NORM(R) WAS REDUCED TO A REASONABLE LEVELe -
c 3 o> THE LIMIT ON ITERATIONS WAS REACHED BEFORE THE

¢ PREVIOUS CRITERIA wERE SATISFIED.
¢ THE STATEMENT
~ CALL ATIMESC Xo» Po» NN) |
+ SHOULD GIVE THE PRODUCT
(= Ps Aede *
¢ ppp pnpnpprgnpgnpugneser rr YY reo YY LT LD DD DL DDL LLL Dl ll hdd tt ddd
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C

C

WRITECG,» 1000) WN

c EPS = 8,0oMACHEP
[ o " .
¢ COMPUTE RESIDUAL VECTOR 8 = AeX

: AND INITIATE THE LANCZ0S PROCESS
CALL ATIMESC Xx» Po _N )
DO 10 I = 31» N

vicl) s BC) = PCI)

10 CONTINUE ho |
CALL NORMC Vie Ns EPS» 01 DO
ORNORM = D1

¢ |
 - SECOND ITERATION OF LANCZ20S
€

CALL ATIMESC V1» Ps» N)
ALPHA = 0,0
00 20 [ = 1, WN

Nel) s VIi(]) '
| ALPHA 8 VI(I)eP(l) ¢ ALPHA

¢ 20 CONTINUE
00 30 I = 1» N

V2¢1) = PCI) = ALPHA®YI(])
30 CONTINUE

c CALL NORMC V20 No EPSs BETA )
[4

4 INITIALIZE OTHER QUANTITIES
¢
| GBAR = ALPHA

DAR s BETA

02 = 0:0 r

NORMX2 = 0.0 °
NORMA = ABS(ALPHA) + BETA
EPSA = NORMAEPS
EPSK = EPSA
IT ® 0
J$TOP = 0
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C

C CY YY JF YI ry JI EiExrrrrrrrrrxryxxyxrorxxrr yy rl YIrPrYYTYTIYIFrYQrorr zr tof J [|

o MAIN ITERATION LOOP
C CT ryJy yrry>ryryJyryyxrrrrrrJirrrrrrrryryrerrr ort 2 2 LI

c

c rr :

: TEST FOR CONVERGENCE
90 LONORM = SQRT(O1222 ¢ D2%e2)

CGNORM = QRNORNeBETA/(AUS(GBAR)¢*EPSBA)

BESTNM = AMINLICLONORMs, CGNORM)
IF CITN ¢EQe¢ ITNMAX) ISTOP = ) |
IF CBESTNM oLE¢ EPSX) ISTOP = 2
IF (BESTNM LE: ACCY) ISTOP = |}
IF (ISTOP «NEW 0) GO TO 100

c WRITEC(S, 1010) ITN» XC12» LONORM, CGNORM
o

¢ COMPUTE THE NEXT COLUMN OF V (LANCZOS)
CALL ATIMESC V2, Pr NN)
ALPHA = 0,0
00 60 I = 1,» N

ALPHA ® V2(I)eP(L) ¢ ALPHA

c 60 CONTINUE
| 00 70 I = 1, N

Ts v2(1)
V2(I) s PCL) = ALPHACTY = BETAevi(])
Viti) = 7

70 CONTINUE |

OLDB = BETA J |

c CALL NORMC V2» No» EPSA» BETA)
C

: COMPUTE PLANE ROTATION
GAMMA = SORT(GBARe22 ¢ OLD?)
CS = GOAR/GANMA

SN = OLOB/7GAMMA

DELTA = CSeDBAR ¢ SNe ALPHA
GBAR = SNeDBAR = CBeALPHA
EPSLN = SNeBETA
OBAR = =CS+BETA
QANORM = SN*ORNORM Co
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C

¢

: UPDATE APPROXIMATION TO X
Z = DI/7GAMMA
S » 2«CS$

| T = ZeSN
DO 60 I = 1, N

XCI) = (w(f)eS © VICI)eT) ¢ X(I)
HCI) » NCI)eSN © Y1C1)aCS

| 00 CONTINUE ’
(«

C

: ESTIMATE NORMCA)» GO ROUND AGAIN
S » OLDB ¢ ABSCALPHA) + BETA
IF (NORMA :LTe S)? NORMA = §
NORMX2 = Zee2 + NORMX2
EPSA = NORMAEPS

EPSX = SORTI(NORMX2)esEPSA
01 = D2 = JELTVAeZ
D2 = =EP3ILNeZ

. ITN = ITNel
* 60 TO SO

C ;
CY 1 rT YT rT YI ry IIxlrrrxrr:>r>rolrrrr rrrrIrryrrrirrryrrolor)

C END OF MAIN ITERATION LOOP
¢ C1 rr;ryrryyJr1J1j Jj Jrrrryrrry11 ry rillrrrrrrryrrrryrtoiJ:rzrirtrrzJ

C

+
| ¢ TESY FOR MOVE TO CG POINT

[4
100 IF CLONORM LE« CGNDRM) ISTOP = =1STOP :

IF (ISTOP «LTe OO) GO TO 120
ZOAR = D1/GBAR .
00 110 I = 1» NWN

XC1) © NCI)eZBAR ¢ XC)
110 CONTINUE
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¢

(2

¢ DISPLAY STATUS AT END OF ITERATIONS
120 WRITEC6, 1010) ITN» XC1)» LONORM» CGNGRM oo -

NRITECG, 1020) ITN» ISTOPs ACCYs EPSXs BESTNM
WRITEC6, 1030) CGNORMs LONORMs ORNORM
RETURN |

I

¢
| 1000 FORMATE 7» ' SYMMLO DIMENSION OF SYSTEMEYs Lbs 77 )

1010 FORMATC 18, 1PE20¢310» 1PGELIS:S ) |
1020 FORMAT "1,

¢ /» * NOs» OF ITERATIONS! ‘> 18X» 110»
* Zo * STOPPING CONDITION wWASS®» 18Xs 310,
* /» * NORM OF RESIDUAL WAS REQUIRED T0 BEs'» L1PELSSs
®  /» ' ESTIMATE OF REASONABLE NORMS 's LIPELS.S»
* /o ' ESTIMATE OF NORM ACTUALLY OBTAINED! *» 31PEL13eS )

1030 FORMAT( 'OESTIMATES OF NORM OF FINAL RESIDUALSI',»
» Zo ' COMPLETED LOY, 1PELSS»
* Zo * INCOMPLETE LOY» IPE1S.S»
* Jo ' ORS 's 1PE1%eS )

C Sy

¢ END OF SYNNLO
END i
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SUBROUTINE NORMC Vs» No EPS» BETA
INTEGER NWN

c REAL VEN)» EPSs BETA, S
(~ NORMALIZES THE VECTOR V AND RETURNS THE NORM
¢ AS BETA¢ CALLED BY SUBROUTINES SYMMLO AND LSLOe

S$ 8 0,0
DO 101 = 1» WN

S 8» V(l)ee2 ¢ §

10 CONTINUE :
BETA = SQRT(S)

. IF CBETA oLTe EPS) BETA = EPS#0:S
) $S 3 1,0/BETA
00201 = 3s N

VCI) = YC1)eS

20 CONTINUE :

RETURN
¢ :
(~ END OF NORM

END

Lk



SUBROUTINE LSLOC MsNsXsBsPsVaUrnsMACHEPIACCYsITNMAXS ISTP )
INTEGER Ms» Ns» LTNMAX, ISTOP

REAL XCN)» BEM)» PUM)» VE(M)Is UCN), win)» MACHMEP, ACCY
REAL ALPHA» BETA» GAMMA, DELTA» CS» SN,» Dls D2s Yo 2»

* : GBAR,» ZBAR» EPS» EPSA» EPSX» S$» 1»

BE NORMA» NORMX2, LONORM» CGNORM» BESTNM
C CL Lr rT TY TY ry ry Yr I I TY II Ir I Ir I I rrr rrr lI rrrIrrryryry

C

¢ SOLVES THE LINEAR (EAST SQUARES PROSLENM
c MINIMIZE R'R» Re BB = Ae} |

: WHERE A IS AN MeN MATRIX, M>aNs AND SHOULD BE SPARSE.
: PARAMETERS? |
C Ms N DIMENSIONS OF THE MATRIX A

¢ X AN N*VECTORs CONTAINING AN INITIAL APPROXIMATION
¢ TO X ON ENTRY CUSUALLY X = 0)» AND THE FLNAL
» APPROXIMATION TO XxX ON EXIT.

(» a AN MeVECTOR CONTAININGTHE RMS VECTOR Be
(» Pr V TWO M=VvECTORS FOR WORK=SPACE
c Us NW TWO N=VECTORS FOR wORKeSPACE,
C ' MACHEP THE MACHINE PRECISION.
¢ ACCY A USER=SPECIFIED TOLERANCE. ITERATION IS

¢ TERMINATED IF IT APPEARS THAT NORMIA'RN) <= ACCY,
C TTNMAX A LIMIT ON THE NUMBER OF ITERATIONS TO 8€ DONE

¢ IS$T0P INDICATES THE REASON FOR TERMINATION.
C ABSCISTOP) RETURNS ONE OF THE FOLLOWING VALVUESS
c 1 > NORMCA'R) WAS REDUCED BELOW THE TOLERANCE aCCYs
C 2 => NORMCA'R) WAS REDUCED TO A REASONABLE LEVEL. :
C 3 o> THE LIMIT ON ITERATIONS WAS REACHED BEFORE THE
C PREVIOUS CRITERIA WERE SATISFIED.
(S

C THE STATEMENTS :
€ CALL ATINESC Us Ps Mo NN)
¢ CALL ATRANSC VY, Ps Mr N )

y ¢ SHOULD GIVE THE PROOUCTS
C Ps Any
¢ P 8 ACTRANSP(OSE)sy

¢ RESPECTIVELY. .
[4 bl Ll DL LL LL LL LL Ll lll Dll Dol ded bd ddd hdd dd blll dd Dd Ld dd
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C

C

WRITECG, 1000) No WN

c EPS = 8,0=+MACHEP
C

1 COMPUTE RESIDUAL VECTOR 8 = AeX

- AND INITIATE THE BIOTAGUNALIZATION
CALL ATIMESC Xo Pr Mo NN)
00 10 I = ty) MN ’

PCI) @ BCI) =» P(])

‘ 30 CONTINUE
| CALL ATRANSC Ps Us Ms N)

CALL NORMC Us No» EPS» BETA )
SE ~

CALL ATIMESC Us» Vy Mp NN)

CALL NORMC Vo Mo EPS» ALPHA )
C

 -

c INITIALIZE OTHER QUANTITIES
* 00 201 = 3,» N

NCI) &» UCT)

20 CONTINUE |
| GBAR © ALPHA

: Y = BETA/ALPHA
| D} os VY

02 © 0.0

NORMX2 = 060
NORMA = ALPHA

EPSA & NORMACEFS
EPS = EPSA

IThn © ©

JSTOP ®» 0
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C

C FEY I ITY yyy yyy yr yyy rrrrrryrryrrrreryr yyy D0 0 DT DT Ll .

c MAIN ITERATION LOOP

~

C

C FIND NEW COLUMN OF VU
¢

80 CALL ATRANSC Vs Pr Ms N)
00 60 1 = 1» N

UCI) » PCI) = ALPHA*U(])

60 CONTINUE i»
CALL NORM( Us No EPSAs BETA )

¢

C |
C TEST FOR CONVERGENCE
~

LONORM us SQGRTC(C(ALPHASD1)e22 ¢ (BETA2D2)ee2)
CONORM = ABSSCBETA=Y)
BESTNM = AMINICLONORM, CGNORM)
IF CITN +EQ¢ ITNMAX) ISTOP = 3
IF CBESTNM oLEe EPSX) 1ISTOP = 2
IF CBESTNM oLEe ACCY) 1ISTOP = |

- 3F C3ISTOP oNEe 0) 60 TO 100
WRITECG6, 1010) ITNs XC1)s LONORM, CGNOAN

Cc

¢

C FINO NEW COLUMN OF V

¢
CALL ATIMESC Us Ps Mp N )
D0 70 1 = 1» M

V1) = PCI) = BETAeV(]) ’
70 CONTINUE |

CALL NORMC Vs ds EPSAs ALPHA I
c

¢

[4 COMPUTE PLANE ROTATION
(»

GAMMA = SQRT(GBARee2 ¢ BETARe2)
CS = GBAR/GAMNMNA

SN 8 BETA/GANNA

DELTA ® SN*ALPHA |
GBAR = «C3 ALPHA

7



c |
C

: UPDATE APPROXIMATION TO X
2 = DI/GANMA
S$ » Zeo(S |
T ss eSN

00 00 1 = 1,» WN
X01) 8 (NC1)eS © UCI)eT) o XN{I)
WEI) = W(l)eSN = Y(l)+CS

80 CONTINUE ’
C

C
C ESTIMATE NORMCA), GO ROUND AGAIN :
¢

IF CNORMA oLTe ALPHACBETA) NORMA = ALPHA®BETA
NORMX2 = Yan2 ¢ Zae2 ¢ NORMX2

EPSA = NORMASEPS |
| EPSX = SOQRT(NORMX2)*EPSA

Y ss BETA Y/ALPHA
02 = DELTAeZ
Df = ¥ =» D2

ITN ®& [TNed
+ @0 TO SO

3 peppery y rrr rr LLY LLL LLL LL LLL LL Ll dd ddd hd ddd
ENO OF MAIN ITERATION LOOP

C Ppp eye r ry TT TY LL PL LL XT LLL LT DLL DLT LL LoL LLL LL ld ddd
~

6 |
C YESY FOR MOVE T0 CG POINT
4

100 IF CLONORM oLEs CGNORN) [STOP ® ©[3TOP
IF C1STOP oLTe 0) GC TO 120 |
Z8AR = D1/7GHAR | ‘

DO 110 I = 1s N
XC1) © WCI)eZBAR © X(])

110 CONTINGE

L8



c

c

¢ DISPLAY STATUS AT END OF ITERATIONS
| 120 WRITECG6, 1010) ITNs XC1)» LUNORMs CGNORM |

© WRITECG» 1020) ITNs 1STOPs ACCYs EPSXs BESTNM
RETURN

¢

c

¢

1000 FORMATS /» * LSLQ¢- OIMENSIONS OF SYSTEMS's 210s // )
1010 FORMATS 18s 1PE20410s 1PGELSeS )
1020 FORMATS '1°»

* fo ' NOs OF ITERATIONS! 's 18Xs 110»

« /» ° STOPPING CONDITION wASS'» 18Xs [10s
®« /» * NORM OF A(eeT)R WAS REOC TO BES *» APE1S5:5»

® /s ' ESTIMATE OF REASONAGLE NORMS i» APE13eSe
* /» ' ESTIMATE OF NORM ACTUALLY OBTAINEL: |» 1PE1S:S )

c

¢ ENDO OF LSLO

END |

Lo


