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Lower Estimates for the Errorof Best Uniform Approximation

- by

Gunter Meinardus and G. D. Taylor

Abstract

1 In this paper the lower bounds of de La Vallée Poussin
and Remes for the error of best uniform approximation from a

| linear subspace are generalized to give analogous estimates
based on k points, k =1,...,n .



Introduction. In this paper we shall generalize the lower bounds of

de La Vallee Poussin and Remes [2,p.82] for the error of best uniform

approximation from a linear subspace. Precisely, let Cl[a,b] denote

the space of all continuous real valued functions defined on the closed

interval {a,b} with norm £]|= max{ | f(x) | : xe[a,b]l} . Then, the

— above two results are

- Theorem1. (de La Vallée Poussin) Let V be an n dimensional Haar

subspace of C[a,b] and let fe Cla,b] . Let he V and suppose that

— there exist n+l poigtsx <q . . < X40 < b such that the error function
e(x) = £(x) - h(x) satisfies

-

i 1, e(x,) # 0, i=1,...,n+1,

I 2. sgn e(x;, 4) = —sgn e(x, ) , 1 =1,...,n .
Then,

min le(x,)] < p(f) = inf l£-pl| .
O<i<n+1 peV

Theorem 2. (Remes) Let m, r denote the set of all algebraic polynomials

- of degree < n-1 and let. fe C[a,b] . Let h em , and suppose that there

exist n+l points a < Xp .+ «+X ,, Z bsuch that the error function
) e(x) = f(x) - h(x) satisfies

1. e(x;) # 0 , 1 = 1,...,n+]

2. sgn (xy) = -sgn e(x;) , 1 =1,...,n .



-

Then,

min 3( [e(x.)| + |e(x, )| <p (fF) .

| 1 <i<n + F170 =n
In what follows we shall generalize these results to alive analogous

estimates based on k points, k =1,.,.,n . For the special cases

k = 1,n our estimates will simply be the de La Vallée Poussin estimate

and the error of approximation on the points x .....x respectively177° 72%n+!

For the case k = 2 , we will have a slight generalization of the Remes

estimate in that we do not require the approximants to be algebraic

| polynomials. Our precise generalization is given in section 4. 1p the
next two sections we develop the necessary tools to prove our generaliza-

L tion.

2. Decomposition Theorem. Fix n+! distinct points a < x, < x, CL
<X,,, <b ~~ Foreack k, 1<k<g<mn and v, 1 <v <n-k+1 define

Mn by Mx = {x Xp meerX 0d Let Vo = (@y50050 be a fixed

Haar subspace of Cla,b] and for each j , | <j <n, set Vv. = (Py seeesp.)- J J

(i.e., Ve 1s the subspace of C([a,b] spanned by the functions Proecesp,
J)

tv, (k= 1,...,n) satisfies the Haar condition, then using the standard

theory of Haar subspaces [2, p.19], a linear functional LS based on
Mow can be defined by

v+k
k vk

(hn LGR) = 2, Af(x.) fe Clap],= dd J
J=v

vk vk 7 ~-

where Bo satisfy Ay > Q , ALE 7 0 for Vv < Jj < vtk , sgn 3 = (-1)Y Vo,
V+k V+k

Vk vk

DIREY: | = 1 and RY Pixs) = 0 for 4 = 1,...k . The existence and=v J = J J



] VK hg vk
uniqueness subject to A, > 0 and IRL = 1 , of such a linear

1 functional 1s well known, as well as, that

k

(2) |2,(£) | = inf { max If(x) - h(x) |} i
| h eV X eM

For consistency of notation we shall write 1(f) = f(x ) throughout this—_ \V4

paper. Using this notation, we now turn to proving our decomposition theorem.

Theorem 3. Fixk , 1 <k<n,r, 0<r<kand v, 1 < v < n-kt+1 , and

assume that ve satisfies the Haar condition for j = l,...,vr and k
(if r =0 , then we only assume this for 7 = k ). Then there exists a

unique decomposition of the linear functional rf in terms of the linear
: Vv

L functionals Ly ry J =V yee.,VFk-r :
V+R=-1

k VK _ri (3) L,(£) = 2 A, TD), fe Cla,b],
J=V

\ where the real numbers A are all different from zero, sgn hi: = (=1)]*Y
Vt+k-r I

jr
J=V

Proof. This theorem is valid for r = 0 by our remarks concerning the properties

of Haar subspaces. Thus, we shall assume r > 1 . Since Ls 1s not the
~ \'

zero linear functional, there exists a function © € Cl[a,b] for which 150) = 1,
V

Now on the point set Mok the functions Pr, o wosPy are linearly
independent. Thus,

(4) £( ’f(x) = o x) +

where « , @ , . . ,¥ are unique. We must show, since ( =1



L

d LS = 0 = 1
atl v(@,) Bh r = T,,..k , that there exist numbers , VE

ir uniquely
determined, which satisfy

ViK=-1 K
(5) AVE pT - }& gr by (9)= 0 HT ek

Te KAY 17 (0) = 1
j=v JT J

Since, by definition of L ’
V+Kk-r K
y ASL (0) = 0
iS dr TI Te

- foru=1,,,. vk Co CL

| . ’ ;r. and every choice of Mir » 1t 1s necessary and sufficient
| to show that the (k-r+1)X(k-r+1) matrix

r
I r

(0 1 © Pytep (Ppp)

| ,
I, r
Jo) oo. Lop (@)
r

I, r
VOI (ep)

T

1s nonsingular. To do this, we consider the transposed matrixB and,

with any fixed vector b = (b_,...,b T | |
V Vtkeg) » the system of linear equations

:

(6) Ba = Db

her = '
WHERE a = (reer 0) represents a solution (if one exists).
(6) can be rewritten as

(7) 1: :Lo + — .

5 \) 2. @.Q ; - b, > J = Vyeeo ,VEK=7 ,1=1+]



p)

Thus, we wish to exhibit a function Y in Ppsg s e505) for which

(8) L: (Y) = b J =Vye..,vtk=r

1s satisfied. Using the representation (1) of each L , J = V,ee.,Vtk-r ,
we have that (8) is equivalent to

(9) c¥= pb

~~ y ~ T awith ¥ = ( (x) eee ¥x 0) atl

— vr vr

A, . . . AN. 0 . . 0

0 LJ LJ

— C = [J .

LJ 0

V+k-r,r v+k-r,r
0 0 Atk op . ) Mork

Since Chas maximal rank k-r+1 (as A > 0 for all p = V,...,Vv+k) ,
the existence of values ¥(x) sy pb =vVv,...,Vvtk satisfying (9) 1s guaranteed.

Since (950005050) forms a basis for Mok ;, we can find coefficients,

a, Ayseee, SO that

. .

Y(x) = ao (x) + o x¢ (x) L 20 (%)h=

'satisfies ¥(x, = (x, ) , 1 = v,. ..,vtk . Thus, the function
k

= +

(x) = ao (x) +0(x)
MW=r+1

satisfies (8) as desired and its coefficients are a solution of (6). Hence,

T

by the Fredholm alternative, the matrix B is not singular as it maps

kK-r+1 K-r+]
R onto RT . From this follow the existence and uniqueness of

the numbers \ UK
jr .
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All that remains to be done 1s to prove the remaining assertions

vk vk

about the numbers Ay . Let us begin by showing that Mir Z 0 and
vk j+v : : vk

sgn Ap = (-1)9 , J=V,...,vtk-r . Now 1f r = k , then clearly Mok = 1 .
We shall prove the general result using an induction argument on decreasing

r . Thus, let us assume that

vtk-r
k vk _Tr

I, = 2. Ai. Ls
— j= J J

vk j+V

for fixed r , 0 <r < k where sgn hiv = (-1)Y . Consider the
relation

[I _ Vr rel, vr =
Vo wr 17 vithr-' Tvl

Using the representation (1) of each linear functional of this expression

and operating on fe Cla,b] where fx) =0,, » we find that A, = Ay rary
: V, r=] CL

implying that Ao , > 0 , since both A and A)" are positive.,T -

Likewise, applying this expression to g ¢ Cla,b] where g(x) = Ny. wo
. Vr B vr v+1,r-1

gives Morr Marl, r-1 Morr

— vr r vt] ,r-1 r-1
Since sgn Mir = (-1) and sgn A. = (=1) , it follows that

vr

— sgn ANTE = -1 . Therefore,

v+k-r

LS = 5 AE Lt
is, dr

- vk vr r-1 vrE-r vk J=1,r vk Jr r-1
= Ls: A SAE Sa I,Aor Ay, r-1y 3 ( J=-1,r J,r-1 Mir A po) J

J=v+i

vk V+K-r, 1 r-1

* Atk, TV Hk-r+], 1-1 Pr koT +H] )

k | r-1

Uniqueness of the representation ols in terms of L. gives



Vk vk. Mr
A = -

V,r-] Ar No > 0,

| vk vk Fo :

| Jel J=1,r J,r-1 Mop AS po) = (-1) > JF VFL, viker
and

vk
sgn A = gs vk Vtk-r,r K p+

v K-r,r-1 en Aotkar, Mork rar pe = (-1) r+,

which completes the inductive argument. | Vtk-r K
. Finally, to show that Yay | = 1

take ge Cla,b] so that L(g)# 0 . j=v ELA
V Let h €V, be the best approximation

to g on the point set Mi . From the standard theory of Haar subspaces
we have that

.

= h = = bFv k

| glx) (x) ) L g) > KH =V,...,v+k

i Thus, forv < J < vtk-r ,
Jjrr

r r

L;(g-h) = ) A (g(x _ n(x))

_ k v IIT ir
: = Le) (-1)" FT IC

H=J

J+

= (-1)Y VIX (g)
\Y

Hence,

_ v.k, VIET :
fe) = (1) (eg) ¥ XS (-1)

j=v

or

v+k-r
k . v+k-r

2 Aip(1)7Y = ) AVE] —

as desired, completing the proof of the theorem. B
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3. Recursive computationof the linear functionals 1K . In this section
EEE ——————————— AY,

we shall give a recursive scheme for constructing the values of the linear

k

functional L, applied to a given function f . In order to accomplish

this, we must first observe that 15 (@,) is never zero and has a constant
sign as a function of v , 1< v < n-k+2 , provided Vi satisfies the Haar
condition.

Lemma?. For each k [1«<« k<n and v ,1< V 7 n-k+2 | 1 (9) # 0—_— — — — Vv

and sgn 1510 ) = sgn 15 ) V = 1,...,n-k+1V k vt 1 k 4 Jee

Cia a _ k-1

| Proof. This 1s elearly true for k 1 . For k > 2 in (p,.) | equals
the minimal deviation 1n approximating Pp by v, on the point set-1

| My k-1 If this were zero, then there would exist Ted, r , equal to
¢, at the k points of M/ x 7 + Since Pp £ Vy , , the difference would

: then be a function in Vie having k zeros which 1s not identically zero,

contradicting the Haar condition. rT that 1E-1 _ k-1
o prove that sgn Lj=" (gp) = sgn I 1(a) ,

one uses the continuous dependence of 107 (9, ) on the points to show
that a new selection of points could be made 1n the event sgn LET ) =v Px

1! (9) ( vo) i K-sen L.. (9) (some on which L, (op, ) = 0 holds. Thus, the above
arguments preclude this occurring. B

Using these facts, we can give a recursive scheme for calculating

kK, A

L,( £) , £ecCla,p], 7<k <n, 1<v<n-kt! This scheme is displayed

in Table1 where

0

m= m-1 m-1 m

11) 3 Liq (0p) Tym (£) = L(g) L, (£)= Jt nm J 0004 000m Jr _ .

J Pm J+ Pm



L()

9) 1
Lop(£) Lo(f)

0 1 2
Lota) Ly (T) L,(f)

0 1 2 k
Lp (T) Lost(F) Ig o(6) + L,(f)

Table 1

In the next section, the values L.(£) for fixed m and J = 1, | .,,n-m+
L ,

play a key role in generalizing the Theorems of de La Vallee Poussin and

i Remes. With this in mind, we would like to discuss the actual computation
of L5(1) in some more detail. In an actual computation one must compute

§ and store the values Li (o,) forv = 1,2,...,k, rr = 0,1,...,v-1 and
| J = Vys..,vtk-r , in addition to the values L3(f) ;y, J = V,...,vtk in

order to calculate LS(£) . Thus, instead of Table 1 we should have possibly

i written

0) 0
Lie) ID)

1 0 | 0 1L

CRE) Ile) I(0) Te)
1 0 9) 1

Lor (P) Tole) no(6) ©, (f)

k-~1 LJ LJ

k-1

Lo) ...... 1 0 0 1 k

Table 2
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The above procedure can be interpreted in terms of the process of

Gaussian elimination. Indeed, consider the following system of linear

| equationsLl m i |
Loy) + (=1)"\ = fx) ys B= 1... ,04]

in the unknowns Wy seees 5A . If one applies Gaussian elimination (no

pivoting) with the constraint that the coefficient of A 1s (-1)H in

the p-th row in each step, then after (k-1) steps the last n-k+

rows are

Ske k-1

| Lot (0 )+ (=D= 15) p=... Sn-kety= v V V

_ Before proceeding to our desired theorem, we would like to relate the

above table with the notion of generalized divided differences with respect

| to a Haar system. In [1] the k-th divided difference of f at Xiseoo,Xx. ,J Jt

with respect to the Haar subspace V, = (Pyseeespy) is defined by

(x.) X.). + » T(x. . .Pq (x, Py _q { 5) (25) P(x) co. 7, (%)
12 oon = ) ‘ ‘ oe ’ ‘(12) ALE, Xs pie) : “

0; . LJ LJ - [J - .Py (gag) Oy Gey) FlagJE ey (xg) Py)

Observe that the k-th divided difference (12) 1s simply a linear functional,

A , based on the points Kiseoer Xs annihilating V, = (o.. ® i) and

normalized by the requirement that 8p, ,)=1 The assumption that V,,.
is a Haar subspace implies that 4 is uniquely determined.

Now suppose that Vi = (P50 +00.) is a Haar subspace of Cla,b] for

k =1,...,n. Because of the uniqueness of 4 it is easily shown that
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L(f)
1 A coe =

V Pict

for k = 1,2,...,n1. In particular, with the formulas

f(x)

Pq (x)

and

L _AEx se eenx LL) - ACF, x seeeox LL)
(15) Af,x ee. xy, )s—VVTv vikel

V =1,...,n , k=1,...,n=-v+] 3
-

. one can construct a generalized divided difference table with respect to

given points and a given Markoff system in precisely the same manner that

L the standard divided difference table 1s constructed. For the special

| case that P(x) = x" , this is the standard divided difference table, and
= +. ain this case one has that CNIPPS SFPPPPE SAPD x,t. ® «*X so that

| 1t 1s not necessary to calculate the differences occurring in the denomi-
~ nation of (15). This, incidentally, reduces the operation count of multi-

i plications and divisions from O(r) for the general case to 0(n°) for

| this special case. In a future paper we intend to discuss the use of these
general divided differences for interpolation.

L. Main Theorem. We now turn to proving the desired lower estimate. This

L shall be done using the decomposition theorem on L, ,

n 8 pn om
i L(f) = § Am L5(E)

J=1

} wherem is a fixed integer satisfying O <m <n . In order that the
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results of Theorem 3 apply, 1t 1s only necessary to assume V.. = {o, seeesP)

i is a Haar subspace of Cla,b] for r=1,...,m and n .

Theorem 4. Let fe Cla,b] , h eV, and suppose V, is a Haar subspace of

Cla,b] for r = 1,...,m and n where 0 < m <n . If there exists a set

of n +1 points, a < X,<X, <... <x 00S b , such that the error function

e(x) = f(x) - h(x) satisfies

{, L.(e) £0 , §=1,.0.,n-m+1 ,

m m :

2. sgn Ls(e) = —sgn Liye) , J = 1lyee.,n-m

where the linear functionals L, ;y, J =1,...,n-m+*1 are based on the points
— Xyreoer spn . Then

- min m < — inf _

Proof. It is known that | (£)] < p, (f) . Thus,

| n n

= p(8) > T()| = |i (£-n) |
n-mt

In m

= 1) A, Lde)|
321 J J

nomh gg m

J=1

min m

_ SU HOT

- Corollary 1. Suppose P,seee5® form a Markoff system in Cla,b] , £ € Cla,Db]

and heV, . If there exists a set of ntl points, a <x < X,, <LLL<x of] b ,
a

such that the error function e(x) = f(x) - h(x) satisfies
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1. e(xi) #0, i =1,...,n0+,

2. sgn e(x,) = —sgn e(x,,,) yy 1 =1se..5n

Then

min min 1 1
- - - 2 & 90 < LJ

- This 1s easily proved with repeated applications of the decomposition theorem.
: -

Observe that for the special case of ?,(x) = x" Vv =1,...,n and
m = 1 , Theorem 4 is precisely the Remes estimate. Also, Theorem 4 is

-— weaker than the de La Vallée Poussin estimatefor p, (f) (m = 0 case)

since one need only assume that V, 1s a Haar subspace for this result.

| 5. The Polynomial Case. Theorem 4 is even new in the case that ?,,(%) al ,[_—

Vv = 1,...,n . Therefore, 1t may be of interest to briefly outline a second

proof of the decomposition theorem for this case. This proof uses Cauchy's

integral formula and 1s the method first used in this study.

Thus, let A be a region in the complex plane containing the closed

: interval [a,b] . Let f be holomorphic in A and real on [a,b] and let

C be a simple closed rectifiable path in A oontaining [a,b] in its

_ + interior. Integrating in the positive direction, set

ok
Eee) _ Y[ f(z)dz

<

where a <x) < Xo Co CTX op <b 2

v+k J\ =
k = V
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Ww Zz) = - “oe -kc ) (z x) (z Xi) .

k

Clearly, [| is a linear functional on A[a,b] , the linear space of

functions holomorphic in A and real on[a,b] , which annihilates Moy

_ Using the residue theorem, one gets that

v+k f(x.)
k Lk J

5 Foe) =; L +

- This relation can be considered to be a continuation of - to Cla,b] .

To prove the decomposition theorem for functions in Afa,b] , one must

prove first a somewhat unusual partial fraction decomposition. Namely,

Lemma 2. Let r be a nonnegative integer, r < k . Then, there exists

a unique partial fraction decomposition

: ET ay9 (16) 5(2) - 5 (2)Pol? = J=V Jr 2

where the (real) numbers dy are all different from zero and
’ k j+v+rtk

L (17) sgn dX, = (-1)¢ J = Vy...,VFk-T

” . Proof. Multiplying (16) by Wel z) and comparing the coefficients of the

powers of z leads to an inhomogeneous system of k-r+1 linear equations

for the k-r+1 unknowns dy - The corresponding homogeneous system 1s
_ equivalent to the decomposition of the zero function. It 1s easily seen

that this system has only the trivial solution. Therefore, the numbers

k

doy are uniquely determined. For r = k-1we have
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VK Vk

L _ dy k-1 + dy ,k=1
02) ey (2) Ce(2)

Thus, °°. < 0 and 4.7, 'X. > 0 hich ds to (17) InductENE an vik 1, 0 7 which corresponds to . nduction

completes the argument.

Multiplying (16) by cle (z) and integrating, gives Theorem 3 with
kK

C|

rk _ rk “nd \ Vk V q vk
v V Jr oF jr

J

6. A Numerical Example. Let X =x; PX, = an ; 1 = 0,1... ,64} , f(x) = tan x ,

P(x) = ot! e” , 1=1,...,5. We shall use the above techniques in conjunction
Co with Remes multiple exchange for finding the best approximation to f(x) = tan x

from V = (e”, xe”, te® on X= (x, PX = Tr , 1 = 0,1,...,64} . Taking

Xq X, 89 ANE Xz 67 X) 5 and Xc), as our 1nitilal guess, we find that

| n(x) = .00277¢* + .96068xe™- .80272x°¢* +.375610e" + L0314exte® is the
-

best approximation to f on this set from V with error .000074. Performing

Co the multiple exchange gives new extreme points Xs Xq)0 Xp X37 X52 Xg),

where | £(xg),) - h, (xg, | CE - h, || . Applying our lower estimates to

= f - h, at these points, gives the table (see Table 1):

. 000140 -.001601

-.000075 .000111 -.000875

. 000094 -. 000084 . 000099 -.000509

-.000280 .000179 -.000131 . 000114 -.000%315

_ .01L0k42 -.006412 . 002629 -.001227 . 000607 000452

Table 3

Thus, .000075 < .000084 < .000099 < 000114 < .000%315 < .000452 < dist (f,V) <
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.01402 .  Continuingwe get after the segendngéhat .00045 <

.00049 < .00061 < <O0LO0069 < .0009k <  (divy < .0027 ; after

the third exchange that .009% < .00094% - .00094 < .0009% .000978 <

| .001005 < dist (f,V) < .001250 showing that we now are within ,0Q00245of the error of approximation with hy (a relative error of less than

21%). At the end of the fourth exchange, we find that .00010059 < .00010059 <

00010066 < .060001009% .00010087 Kist (f,v) < .00010192

so that we are now within ,000001 of the error of approximation with hy,

(a relative error of less than 1%). The Remes algorithm terminated after

— the fifth exchange.

\

i

\
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