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Lower Estimates for the Error of Best Uniform Approximation

by

Ginter Meinardus and G. D. Taylor

Abstract

In this paper the lower bounds of de La Vallée Poussin
and Remes for the error of best uniform approximation from a
linear subspace are generalized to give analogous estimates

based on k points, k =1,...,n
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Introduction. In this paper we shall generalize the lower bounds of

de La Vallee Poussin and Remes [2,p.82] for the error of best uniform

approximation from a linear subspace. Precisely, let C[a,b] denote
the space of all continuous real valued functions defined on the closed
interval [a,b] with norm Hf“z ma.x“f(x)l : xe[a,b]} . Then, the

above two results are

Theorem 1. (de La Vallée Poussin) Let V be an n dimensional Haar
subspace of Cl[a,b] and let fe Cl[a,b] . rLet h ¢ V and suppose that
there exist n+l poi<tsx <1 - < Xn+2 < b such that the error function
e(x) = £(x) - h(x) satisfies

L. e(xi) £0 , 1 =1,...,n+1,

2. sgn e(xiﬂ) -sgn e(xi) , 1=1,...,n
Then,

min |e(xi)| < p(f) = inf “f-‘p“ .

0<isn+1 pev

Theorem 2. (Remes) Let T

n ' denote the set of all algebraic polynomials

of degree < n-1 and let fe Cla,b] . Let h €. and suppose that there
exist n+! points a < 7 e e 7 X 47 _ b-such that the error function
e(x) = £(x) - h(x) satisfies

1. e(xi)?fO , i =1,...,nt1

2. sgn e(x -sgn e(x.) , 1i=1,...,n

i+1) - i



Then,

inz}%(le(xi)l + !e(Xi+]), <p (F)

In what follows we shall generalize these results to @}ve analogous
estimates based on k points, k =1,..,,n . For the special cases
k = 1,n our estimates will simply be the de La Vallée Poussin estimate

and the error of approximation on the points XyseensX , respectively.

n+1
For the case k = 2 , we will have a slight generalization of the Remes
estimate in that we do not require the approximants to be algebraic

polynomials. Our precise generalization is given in section 4. 1 the

next two sections we develop the necessary tools to prove our generaliza-

tion.
2. Decomposition Theorem. Fix n+1 distinct points a < x, < X
< X <b Foreack k, 1<k <n and v, 1 < v < n-k+1 define
\ N .
N%k by ka = {Xv’ xv+1""’xv+ﬁ Let Vn = (@1,.“,@n) be a fixed
Haar subspace of C[a,b] and for each j , | <j<n, set Vv, = (w],...,@,>
- - d d

_(i.e., VU is the subspace of ([a,b] spanned by the functions Prseeesp, -
J)
£ v, (k= 1,...,n) satisfies the Haar condition, then using the standard

theory of Haar subspaces [2, p.19 ], a linear functional Lf based on

M, can be defined by

vk
vtk
k vk
() LO(f) = ), Aif(x.) , f e Cla,bl,
\Y < dd J
J=v
vk . vk j-
where Ab satisfy A~ >0, K;k 70 for v < j< vtk , sogn ng = (-1,

P Vik
}E A [ =1 and E:A” @&x.) =0 for u =1,...k . The existence and
=0 PO I



- 3
vk vk k
uniqueness subject to xv > 0 and Z lk; l = 1 , of such a linear
J=v

functional is well known, as well as, that

(f)l = inf { max If(x) - h(x)|}

h er X eka

For consistency of notation we shall write Lg(f) = f(x ) throughout this
- v

paper. Using this notation, we now turn to proving our decomposition theorem.

Theorem 3. Fix k , 1<k<n,r , 0 <r<kandv,1 < v < n-k+1, and
assume that V:] satisfies the Haar condition for j = 1,...,r and k
(if r =0, then we only assume this for j = k ). Then there exists a

. o . . k
unique decomposition of the linear functional L, in terms of the linear
)

L functionals L§ ; J =V yeeeyVFker :
v+k-r
k vk _r
|. (3) L,(£) = {]S:v Mg (6 £ ¢ Cla,b],

where the real numbers XV]; are all different from zero, sgn ;}r\; = (-1)j+V

- j=v ,...,vtk-r and }: I)\

Proof. This theorem is valid for r = 0 by our remarks concerning the properties

of Haar subspaces. Thus, we shall assume r >1 . Since Lk is not the
- v

k

zero linear functional, there exists a function ¢ e C[a,b] for which 7 () =1,
v

Now on the point set M, the functions ¢, ¢ o wos @ are linearly

1 1

independent.  Thus,

=
S~—
H
]
]

k
@p (x) + ug_‘ Q'MCP“(X) ’ XQM\)k

where @ , o, , . .. )@, are unique. We must show, since L\lj(cp) =1



k
and L\)(@p) =0/, W=7,k , that there exist numbers ,Vvk ,
A.. , uniquely

determined, which satisfy Jr
(5) vkr i
' 3§; Yr by o) =0 B0,k

v+§—r }\vk -

& Jr 73 (@) =1

Since, by definition of L§ '

V+k-r K
Y AL (o) =0
= 9 .

foru=1,,.,. i vk L o
. »+-w;r. and every choice of }\jr » it is necessary and sufficient
to show that the (k-r+1)X(k-r+1) matrix

r
W) - Pt (Ppiy)

B =
r
I r
Vo) Ty (®)
r r
Lip) . . . L p(®)
. . T
is nonsingular. To do this, we consider the transposed matrix B and,
with any fixed vector b = (b ,...,b T . .
v ’ V+k-r) » the system of linear equations
T
(6) Ba =D
wher = T
ere g = (arH""’ak’a) represents a solution (if one exists).

Now
(6) can be rewritten as

(1) )
7) LJ.(QQJ -+ Z Q/_:? i) = b

i=r+]

j > J T Voo, viker



Thus, we wish to exhibit a function Y in (@r+1,,,,,¢k,@) for which

(8) L:jY) = bj J=V,ee.,Vtk-r

is satisfied. Using the representation (1) of each L§ r ] = V,...,vik-r ,

we have that (8) is equivalent to

(9) c¥= p

A ~ N T
with ¥ = (¥(x ),...,¥(x ) and

vr vr
Xv . . kv+r 0 0
0 . .
c = .
. 0
V+k-r,r v+k-r,r
0 0 Kv+k-r . : Xv+k

Since Chas maximal rank k-r+1 (as kgr‘> 0 for all p = V,...,V+k) ,
the existence of wvalues Y(xp) s P =vV,..., vtk satisfying (9) is guaranteed.
Since (@1,...,®k,w) forms a basis for M, , we can find coefficients,

o, Fpyeee,y SO that

k
k
¥(x) = + o
(x) ? (x) Z; u@u(x)
W=
'satisfies ?Kxi = Y(xi) , 1 = v,...vk . Thus, the function
k
¥xy) = @p () + oo (x)
M=r+l

satisfies (8) as desired and its coefficients are a solution of (6). Hence,

T
by the Fredholm alternative, the matrix B is not singular as it maps

k-r+1 k-r+1 , . .
R onto R . From this follow the existence and uniqueness of

the numbers ka
jr



All that remains to be done is to prove the remaining assertions
vk . , vk
about the numbers gr. Let us begin by showing that Kjr # 0 and
vk j+v . . vk
sgn Ajr = (-1)J , J=V,...,vtk-r . Now if r = k , then clearly Xvk =1
We shall prove the general result using an induction argument on decreasing

r . Thus, let us assume that

vk j+v .
for fixed r, 0 < r < k where sgn xjr = LJ)J . Consider the

relation
T vr r-1 vr r-1
I = + A ,
Y V=17V v+1, r- v+

Using the representation (1) of each linear functional of this expression

yr V,r-1

. vr
, we find that Kv = Xv,r-1 N

and operating on fe Cla,b] where f(xu) = GVN
, >0 , since both K:r and X:’r-1 are positive.

implying that X:f

Likewise, applying this expression to g € C[a,b] where g(xu) = 6

vtr
. vr _ vr Vv+1,r-1
gLves Aorr = xv+l,r—l Motr
+1,r-1 r-1 .
Since sgn X:f]= (—l)r and sgn x3+r’ = (-1) , it follows that
vr
sgn lv+1,r-1 = -1 . Therefore,
vtk-r
SR S
j=v J J
v+k-r . .
_ ,Vvk _vr .r=1 + ( vk j-1,r + vk Jjr ) Lr-1
vr “v,r-1"v 5=V j-1,r j,r-1 Jr “j,r-1 J
+ XVk vt+k-r,r r-1 .

v+k-r,r vtk-r+i,r-1"v+tk-r+i

k r-1 .
Uniqueness of the representation oﬂJv in terms of L.J gives



sgn AUk 1 sgn ()\\"k J=T,r 4 WUk dr i v
r J=1,r " j,r-1 jr j,r-]) - (-7) >y J = VH, oL vtk 5
and
vk
sgn A = 8 vk Vtk-r,r K-r+
v k-r,r-1 en (}‘\Hk-r,r v+k—ri1,r_1 = (-1)5T
which completes the inductive argument. Finall c n that Vﬂ%{j—rl vk
inally, to show tha 1 Izl’
take ge Cla,b] so that Ll\j(g) 0 . ji=v T

Let h €Vk be the best approximation

to g on the point set M,  pron the standard theory of Haar subspaces

we have that

-h (o7 )MV k
g(XM) (XM) (-1) LV 8) 5 W o=V,...,vtk

Thus, for v < j < vtk-r ,

r 2T gy
Lj(g—h) = 3:?\ " (g(x - h(x))

I SRAC I
ERACUSS IR
=y

= (1))

Hence,

V+k-r

ife) = (-1Vi¥e) 3 VK (L)
j=v T
or
r . . -

vk
J=v }\jrl -t

as desired, completing the proof of the theorem. .
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3. Recursive computation of the linear functionals Lk . In this section
v

we shall give a recursive scheme for constructing the values of the linear

. k . .
functional L\) applied to a given function f . In order to accomplish

this, we must first observe that 1,
v

cpk) is never zero and has a constant

sign as a function of v, 1< v < n-k+2 , provided V, satisfies the Haar

condition.

Lemma?. For each k ;1 < k<n and v ,1< v < n-kt2 | Lk-1(
_— = = - - v

k-1
v+1(tpk) !

o) # 0

and sgn 16-1(@k) = sgn L v =1,..,,0n-k+1

o _ k-1
Proof. This is clearly true for k = 1 . ¥por k > 2, IL\) (cpk) | equals

the minimal deviation in approximating P by Vk on the point set

-1

M If this were zero, then there would exist e , , equal to

v, k-1 .
¢, at the k points of M/ k . - Since ® £V, » , the difference would

then be a function in Vi having k zeros which is not identically zero,
contradicting the Haar condition. T that 1E-1 - k-1

O prove at sgn L, (q)k) sgn Lv+1(q)k) s
one uses the continuous dependence of Ll\j-1(cpk) on the points to show

that a new selection of points could be made in the event sgn LK'T(CP ) =
\Y k

k-1

k-1
~sgn L (CPK) (some v ) on which L, (cpk) = 0 holds. Thus, the above

v+1
arguments preclude this occurring. .

Using these facts, we can give a recursive scheme for calculating
k
(

L

J(f) s feclap], 7<k<n, 1<v<nk+tl  This scheme is displayed

in Table 1 where

0
(10) () = £(x;) , i = v,v+1,. . vtk

m . .
(11)Lj(f)= - B m:l"..’k;jzv,“.’v+k_m



()

0 1

Ly () L)

0 1 2

Lv+2(f) Lv+1(f) Lv(f)

0 1 2
L k

Table 1
In the next section, the values L?(f) for fixed m and j =1, ., ., ,n-m+

’
play a key role in generalizing the Theorems of de La Vallee Poussin and
Remes. With this in mind, we would like to discuss the actual computation
of Lﬁ(f) in some more detail. 1In an actual computation one must compute

and store the values Lg(@v) for v=1,2,...,k , r = 0,1,...,v-1 and

j = V,s..,v¥k-r , in addition to the values Lg(f) , J = V,...,vtk in
order to calculate Lt(f) . Thus, instead of Table 1 we should have possibly
written
0 0
L (o, ) L, (f)
1 0 0 1
L, () Loer (@) Lo (£) L (£)
1 0 0 1
by (9p) Iop(o) 1o () I, (8)

1

IS (o, ) L (@) 12
Va1 P/ e e e e vi-1(®2) Logle))  To, () Lo, (0) .. L L(e)

Table 2



The above procedure can be interpreted in terms of the process of
Gaussian elimination. Indeed, consider the following system of linear

equations

1L H' v
(04 + (- = =
v; T D I

in the unknowns « ..,an)K . If one applies Gaussian elimination (no

1°°
pivoting) with the constraint that the coefficient of \ is (4)“ in

the p-th row in each step, then after (k-1) steps the last n-k+1

rows are
2 k-1 v k-1
- -1 = - = -
\,zz avLu (cpv)+ (-1)™\ Ly (f) ,w=T,0.. ,n-k+1

Before proceeding to our desired theorem, we would like to relate the
above table with the notion of generalized divided differences with respect

to a Haar system. In [1] the k-th divided difference of f at Xiseoo,x

J Jt+k
with respect to the Haar subspace Vk = (@1,...,@k> is defined by
¢1(Xj) @k-1<xj)' .. f(xj) @1(xj) . ... @k(xj)
12 = | " ‘ s t
(12) Ajf,xj,...,xj+k) = | t . i .
C.D] (Xj"’k) C;Dk_.)(xj_‘_k)- ‘ f(xj+k) q)-l (xj+n) ¢ q)k(x‘j+n)

Observe that the k-th divided difference (12) is simply a linear functional,

4 , based on the points xj”"’x annihilating Vk = Qpr ® ) and

g
normalized by the requirement that A(®k+1)=1' The assumption that Vk+1

is a Haar subspace implies that & is uniquely determined.

Now suppose that V, = <¢1""’@k> is a Haar subspace of Cla,b] for

k =1,...,n. Because of the uniqueness of 4 it is easily shown that



r—
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L(f)
1 oee = -
( 5) A(fyxo )Xv-l-k) Lk( )
v\ Pie1
for k = 1,2,...,n-l. In particular, with the formulas
f(xv)
(14) A(f,xv)= 5 0V = 1,...,n0+]
P, (%)

and

- A(f,xv,...,x )

_ A(f,xv+1,...,x kot

v+k)

)

(15) A(f:X\);" . X\)+k
X

vik) " A(¢k+1’xv)-":x

A(q)kﬂ SNSRI vtk-1 )

v=1...,n, k=1,...,n-v+1 3

one can construct a generalized divided difference table with respect to
given points and a given Markoff system in precisely the same manner that
the standard divided difference table is constructed. For the special
case that wi(x) = XI , this is the standard divided difference table, and

13X se.05X )=X+' o .*t so that

in this case one has that A(@k+1 N ik ] v X kel
vHk—

it is not necessary to calculate the differences occurring in the denomi-
nation of (135). This, incidentally, reduces the operation count of multi-
plications and divisions from o(r ) for the general case to O(n2) for
this special case. In a future paper we intend to discuss the use of these

general divided differences for interpolation.

L. Main Theorem. We now turn to proving the desired lower estimate. This

shall be done using the decomposition theorem on L? s

n o AL TR
L(£) = 3 221ie),
o dm

where m 1is a fixed integer satisfying O <m < n . In order that the
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results of Theorem 3 apply, it is only necessary to assume Vr = (cp1 ,...,q)r)

is a Haar subspace of Cla,b] for r=1,...,m and n .

Theorem 4. Let fe Cla,b] , h eV, and suppose V. is a Haar subspace of

Ccla,b] for r = 1,...,m and n where 0 < m <« n . If there exists a set
of n +1points, a<x, < X, < ... <X < b , such that the error function
e(x) = £(x) - h(x) satisfies
1. L?(e) F0 , j=1,ee.,n-m+1 ,
m _ m . _
2. sgn Lj(e) = -sgn Ljﬂ(e) s J = Vyee.,n-m
where the linear functionals Lrjn ;, J =1,...,n-m+1 are based on the points
Xj""’xj+m . Then
min m — inf
Lejenmii(@)] <p(£) = p€anlf ol .

Proof. It is known that |L(f)| < p, (£) . Thus,

p(£) > 1 L(E) | = |Li(£-n) |

n-m+1
= 1}_:1 AL L.(e)
nomt | n m
J:
min le(e)I . '

1<i<n-m+ 3

v

Corollary 1. Suppose cp1,...,cpn form a Markoff system in C[a,b] , f ¢ C[a,b]

and heVn . If there exists a set of n+l points, a<zx < Xp < <X

such that the error function e(x) = f(x) - h(x) satisfies

<b,
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1o e(xi) 70, i =1,...,0¢1,

2.  sgn e(xi) = -sgn e(xiﬂ) y 1= 1ye.0,n
Then
min min 1 1
1§j§n+1le(xj)' S 1§j§n|Lj(e)‘ s cee f_ an(e)l S pn(f) .

This is easily proved with repeated applications of the decomposition theorem.
Observe that for the special case of cpv(x) = xv'I ., v =1,...,n and

m =1 , Theorem 4 is precisely the Remes estimate. Also, Theorem h is

weaker than the de La Vallée Poussin estimatefor p, () (m = 0 case)

since one need only assume that Vn is a Haar subspace for this result.

5. The Polynomial Case. Theorem 4 is even new in the case that cpv(x) = x\)_1

v = 1,.see,n . Therefore, it may be of interest to briefly outline a second
proof of the decomposition theorem for this case. This proof uses Cauchy's
integral formula and is the method first used in this study.

Thus, let A be a region in the complex plane containing the closed
interval [a,b] . Let f be holomorphic in A and real on [a,b] and let
( be a simple closed rectifiable path in A containing [a,b] in its

- interior. Integrating in the positive direction, set

k
rk(f) _ _V f(Z)dZ
v 2ni d¢ kaizi’

where a < x < X < < X4k <b,
v+k J\ -1
-1 v
C\) = .Z l( ) (—‘]) )
j=v o (x.)

4
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w k(z) = (z - xv)... (z - x_,.) .

V+k

k . , , .
Clearly, r"v is a linear functional on A[a,b] , the linear space of
functions holomorphic in A and real on [a,b] , which annihilates LA
Using the residue theorem, one gets that
v+k f(x.)
k k J
rv(f) = C Z 14

Visv e (x))
vk

. . . k
This relation can be considered to be a continuation of r~u to Cla,b]

To prove the decomposition theorem for functions in A[a,b] , one must

prove first a somewhat unusual partial fraction decomposition. Namely,

Lemma 2. Let r be a nonnegative integer, T < k . Then, there exists

a unique partial fraction decomposition

1 v+§fr d;i
(16)
kaizi = 5= wjrizi
where the (real) numbers dgi are all different from zero and

(_1)j+v+r+k ,

k .
(17) sgn d?r = J = V,...,V+k-T

Proof. Multiplying (16) by ka( z) and comparing the coefficients of the

powers of z leads to an inhomogeneous system of k-r+1 linear equations

for the k-r+1 unknowns dgi. The corresponding homogeneous system is
equivalent to the decomposition of the zero function. It is easily seen

that this system has only the trivial solution. Therefore, the numbers

dgi are uniquely determined. For r = k-1 we have
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dvk vk
1 Vv, k-1 + v+1,k-1

(B 0, k=102 Oy i (2)

. vk ... Vk . .
Thus, dv K, 1__< 0 and de K 1,> 0 , which corresponds to (17). Induction

completes the argument.

Multiplying (16)

Ck
rk . and Ayk= D gvk
4 v T . ar

k
by Cvf(z) and integrating, gives Theorem 3 with

e B

6. A Numerical Example. Let X :{Xi DX = EIE ;1= 0,1,...,61+} , £(x) = tan x ,

i-1 x

cpi(x) =x € , 1i=1,...,5. We shall use the above techniques in conjunction
with Remes multiple exchange for finding the best approximation to f(x) = tan x
from V = <ex, xex,, . ..x4ex) on X=(x.l DXy o= 61[: s 1= 0,1,...,64} . Taking

x9, X197 ¥p7s }%6, XHS and X5h— as our initial guess, we find that

b, (x) = .00277€" + .96068xe™ - .80072xPeX + 3756106 + .031hoxte®  is the
best approximation to £ on this set from V with error .000074. Performing
the multiple exchange gives new extreme points Xy X0 Xppo xj(), XSO’ Xg),
where If(x6h) - h, (x6h)| . Hf - h1” . Applying our lower estimates to

f - h1 at these points, gives the table (see Table 1):

-.00277h4
.000140 -.001601
-.000075 .000111 -.000875
. 00009k -. 00008k .000099 -.000509
-.000280 .000179 -.000131 .000114 -.000%15
.014042 -.006412 .002629 -.001227 .000607 .000452

Table 3

Thus, .000075 < .000084 < .000099 < 000114 < .000315 < .000k52 < dist (f,V) <
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.0'402 . Continuingme get after the segehdngéhat .00045 <

.00049 < .00061 < <O0LO0069 < .0009% <  (di¥y < .0027 ; after

the third exchange that .009% < .0009% - .00094 < .0009% .000978 <

.001005 < dist (£,V) < .001250 showing that we now are within ,000245

of the error of approximation with h3 (a relative error of less than

21%). At the end of the fourth exchange, we find that .00010059 < .00010059 <
00010066 < 060001009k .00010087 &ist (f,v) < .00010192

so that we are now within ,000001 of the error of approximation with by

(a relative error of less than 1%). The Remes algorithm terminated after

the fifth exchange.



—
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