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SECTION 1

Introduction

(

MLISPZ is a high-level, LISP-based programming language recently

= developed at the Stanford Artificial Intelligence Project. The
| anguage has been operational for: two years, and the deve | opmental

phase of it has been completed. This is a final report on the

| anguage.
-

| MLISPZ is specially tailored for writing translators for other
| anguages. To this end, two powerful control structures have been

. added to an ordinary LISP base: pattern matching and backtracking.
This report serves the dual purpose of explaining our particular

| version and use of these control structures, as well as serving gs ga
users’ manual for anyone wanting to write MLISPZ programs,

- Actually, MLISPZ is a transitional language. Laurence Tesler

and the authors are presently implementing a language called LISP70

which wil | include and (for most applications) supersede MLISPZ2,

MLISP and LISP. Therefore, perhaps it is worthwhile to briefly

justify the current report, Many of the concepts developed in MLISPZ

are being used in LISP70, though some of them are undergoing

extensive revisions. But more i mpor tantly, MLISPZ is an extremely
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effective transiator writing sys ten. it clearly isolates some

general principles that may profitably be incorporated in other

systems, This report concentrates on ihe nature of these principles,

how they are implemented, and how they are most ef fect ively used, |

Since this report emphasizes the research aspects of MLISPZ, the

users’ manualaspectnecessarilyissomenuhatincompl ete. This report

is not a complete description of the MLISPZ language. Rather it is a

supplement to the MLISP users’ manua | [8], and it only discusses in

depth the dif ferences (mainlyadditions) between MLISPZ and MLISP. _

Hi story —

MLISPZ2 is the latest in a continuing development o flist-

process i ng Programming languages. The progression, based on

capabili ties, is:

LISP =~ MLISP =» MLISPZ =~ (LISF78),

where LISP70 has not been completed at the timeof this writing.

MLISP [2,6] ie a programminglanguage based on L | SP [4]. MLISP

programs are translated to LISP and then executed or compiled to LAP,

The advantage of MLISP over LISP is primarily notational: the MLISP

no tat i oh makes iteasier to write andunderstand LISP programs. In

axiditiOn, certain | ist-processing deficiencies in LISP are remedied

( see the MLISP manual). TMMLISPZ is an extension of MLISP, originally

created for the fol locuwingreasons: oo



| Section 1 Introduction
\

- 1. To make the syntax of MLISP more easily modifiable.

2. To provide a vehicle for easily implementing compilers for other

Co | anguages.
| | 3. To add backtracking as a control structure, making MLISP a more

useful language for heuristic problems.

C The MLISPZ and MLISP languages are separate and have separate

capabilities. Since MLISP is simply a more convenient notation for

LISP, it is suitable for exactly the same tasks as LISP. MLISPZ

Co preserves the list-processing capabilities of LISP, but it has a

substantial ly modified and augmented environment tailored for

ef fecient backtracking and pattern matching, This extra overhead i s

C unnecessary for simple list-processing tasks.

MLISPZ is mostly upwardly compatible with MLISP; MLI SPZ

= differences are mainly in the form of additions to MLISP. We

\- classify the differences between MLISP2 and MLISP as either “major”

BN or “minor.” The major changes modify the control structure or

execution environment of MLISP: they substantially alter its

C capabi | i ties, For examp | e, the SELECT expression (backtracking) and

u the LET expression (extensibility) are major changes, The minor

changes are modifications to MLISP, hopefully in the form of

improvements, which do not substantially alter its capabilities but

hi ch make i t more convenient to use. For examp | e, the DOT notation

” and the RECOMPILE expression are minor changes.
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The main product i ons needed to understand the ML | SPZ language oo

are PROGRAM, EXPRESSION, FRIMARY, SIMPEX and BASIC. The main

pr oduc t i on needed to understand the extensibility mechanism in the To

language is LET. The main production needed to understand the Co

backtrackingfacili ty is SELECT. |
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— SECTION 2

gacktracking

<

L

MLISPZ makes heavy use of backtracking [3,7]. The pattern

& matcher (section 7) uses backtracking in its parsing algorithm. The
SELECT express i on (sect ion 81 provides a means for the user to

L incorporate back tracking into his algorithms. Therefore, it is

necessary to describe exactly what backtracking means in the MLISPZ
-_

| anguage.

i A s was pointed out inl7], there is no universal agreement on
4 the mean ing of back track i ng. Every implementation has produced a

slightly different interpretation, Our view most closely follows

[ Floyd's theoretical system[3] in its goals, though not in its
| implementatiOn. Typical ly in heuristic programs there are points

| where several alternative strategies might be tried, with no certain
know| edge of which one will be successful, In this situation the

~ programmer wants to be able to try one out; but if it is

unsuccessful; he wants to be able to pretend he had never tried it,

select another alternative, and try that out. In this way he will

| either find a successful strategy or run out of alternatives. This
i s data backtracking, the restoration of «changes to variables,

Bobrow points out [ll] that i t is alsosometimes useful to have
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control and data backtracki ng separate lyprogrammable, though MNLISPZ2

does NOt implement this.

Model

The state of a cOniputatiOn at any point Is cOnmnpletely

represented by a “state vector" consisting of the values of all

variables in the program, plus system variables [|ike the program

counter, [1/0 pointers, etc. Every time a computation is begun with

the same state vector, the results are identical. A “decision point”

is a Point in the computation at which a copy of the state vector is

saved (i nmemory or on secondary storage). |InMLISPZ not the entire

state vector is saved, just the “incremental state vector” - - those

values that have changed since the vector was last saved, The

process of restoring a copy of the state vector, thus wiping out al |

changes to variables since the copy was made, is called

“backtrack i ng“, The conplete state of a computation is restored to

its value at the decision point, just as if nothing had been executed

beyond that point. The oniy exception is that the program counter

may be changed. so that execution picks up at a different place in

the code.

The NLISF2 programmer may cause back track i ngby invoking the

intrinsic function FAILURE(). Executing FAILUREWi| i cause the state
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- vector to be restored to the value it had wuhenthe Jast decision

point was encountered. There is no failing to labels, as in some

a systems. Rather “fai lure” in MLISPZ means (loosely): “All | know is

) that | do not have the values [need to be successful. Therefore,
back up to the last guy who had a choice to make, and let him choose

_ some other alternative.” This is entirely consistent with our state

¢ view of backtracking. FAILURE asserts that a state which cannot
succeed has been reached. Unlike Floyd’s system, there is no SUCCESS

! function in MLISP2: success is the absence of failure.

a

There are two final elaborations that have to be made. We

i stated above that upon failure the state vector is restored to the
value it had whenthe last decision point was encountered. This is

L not entirely true. [tis possible to change the saved copy of the
state vector, thus changing the values that will be restored when a

” fai lure occurs. Imthisway, an unsuccessful alternative may pass
back to the decision point information that may be useful in trying

other alternatives, The MLISPZ notation for this is

| <variable> {<context>le« <value>
A small integer called a “context number” is associated with each

decision point. If no decision points have been set, the context

number i s zero. Every timea decision point is set, the context

number is incremented buy one. Every t i me a decision point is

deleted, the context number is decremented by one. The intrinsic
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function CONTEXT (J) returns the context number current ly in effect,

the “current context”. Thus contexts may be manipulated by

functions, For examp| e, )
X {CONTEXT ()-11 « 28

sets the value of Xto 280 and also sets the value X had in the last

copy of the state vector to 28. Therefore, as soon as a fai lure

occurs, the wvaiuethatwill be restored to X will be 20. Setting

variables in context actually sets the variableto the value in all

contexts from the current one back to the specified one, This value

willberestored to the variable whenaver a failure occurs, unless

the current context fal Is below the specified context, Therefore,

setting a variable in context zero is a global set, since the current

context can never become less that zero,

The other elaboration concerns implementatiOn. Much of the

discussion above is concept ual in nature and is not to be confused

with the wayMLISPZ implements it. The MLISPZ implementation is

discussed in detaili n 7], One point that should be brought out

here is that the amQOunt 0f space required to store backtrack i ng

con tex t s may become quite large if many decision points are set. To

manage this, an intrinsic function FLUSH{) is included in MLISP21t o

f tush old contexts out of the system, Whenever the program reaches a

point at whichit is certain itwil | not have to backtrack, it should

execute FLUSH. (This function should be used carefully, though, as —

it is possible to delete information that should have been saved.)
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‘

| The following are meta-linguistic symbols used in this report to

- present the syntax of MLISPZ.
«

SYMBOLS MEAN | NG
Bm

11= Standard BNF symbo | s.

(—_—

: ’ LITERAL. Any symbol preceeded by a quote mark or any
identifier standing alone is a literal, i.e. stands

— for i tself,

Examples of | i terals: IF THEN ELSE “10 '(’)

«

= <> NONTERMINAL. Any element enclosed in angled brackets
is a nonterminal, or in some cases a description In

English.
— Examp| es: <PROGRAM> <EXPRESSION> <PRIMARY>

¢

- [] x REPEAT. Elements enclosed in square brackets fol lowed
by a (Kleene) star may occur repeated ly.

_ Example: "[Alx" means “repeat A zero or more times”

Oo [] OPTIONAL. Elements enclosed in square brackets with
| no star or vertical bars are optional,

- Example: "[Al" means “optional ly A”

I ALTERNATIVES. Elements sepatated by vertical bars

C- inside of square brackets are alternatives, one of
which must be present.
Example: "[A|B [C]" means "A or B or C"

AI REPEAT OF ALTERNATIVES. This should be clear.

\

oo

¢
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[../..]% REPEAT WITH SEPARATORS. Ifthe repetition brackets
L]x contain a slash "/", then the elements before the

s1ash are repetition elements and the elements after

the slash arc; separators for them, At most one slash
Will occur.

example: “[A/’,]%" means “repeat zero or more A’s
separated by commas”
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SECTION 4

<PROGRAM?, <EXPRESSION>

C

= <PROGRAMS> ::1= [<EXPRESSION>';1% EOF _

L <EXPRESSION> ::= [<PREFIX>]% <PRIMARY>
C [<INFIX>[<PREFIX>)% <PRIMARY>]*

i <PREFIX> :+= <any id or delimiter declared a prefix> [’g]
3 <INFIX> i:= <any id, or any delimiter declared an infix> [’e]

| <10> i t= <gny identifier not marked as a LITERAL>

L
Suntax

i An MLISPZ PROGRAM is a sequence of expressions, each followed by
a semi ce lon, ending with the | i teral _EQOF_ (signifying end 4+ fjje).

[

An EXPRESSION is zero or more prefix operators, fol lowed by a

PRIMARY, followed any number of times by a triple composed of an
[3

infix operator, zero or more prefix operators, and another PRIMARY,

Prefix operators must be defined to be a prefix (seethe DEFINE

| expressioni, but any two-argument function may be used as an infix.
Prefix and infix operators may be fol lowed by the vector operator "e"

(see the discussion of vectors in the MLISP manual). An ID is any
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identifier uithich does not have the property LITERAL; identifiers yet

marked as LITERALs when they are used Without a quote mark ’ in

syntax patterns (section 7).

This is not the same as MLISP’s definition of a PROGRAM, so this —

in itself is one of the minor changes to MLISP. In MLISP, a program N

BEGIN [<EXPRESSION>";1% END". i
In MLISPZ the enclosing BEGIN-END has been eliminated, and the period i.
at the end has been replaced with the literal _EGQF_. oy

Execut ion -

When a program is parsed, each expression is translated and _o

immediately evaluated. The value of the expression (if it is non-

NIL) i sprinted On the te | etupe. Thus MLISPZ2 is a incremental, —

compi | e-and-execute type of translator, suitable for interactive 2

programming in at i me-shared environment. In fact one may regard To

MLISPZ as an elaborate terminal commandl anguage wh i ch will accept BN |

MLISPZ expressions one at a time from a teletype and execute them “on

the spot," printing out each resuit., A trivial application of this —

capabi li ty might be to use MLISPZ as an adding machine: type "3+2;" : |

and ituil | immediately print "5". _EOF_ may be typed at any time, gv

terminating the session. Incremental translation/execution is an

important capabil i ty in any time-sharing language. — |

= |
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= In addition to being incremental, MLISPZ2is also an extensible

| anguage. EXPRESSION makes use of an extensible production PRIMARY;

C at any time the programmer may enrich the MLISPZ | anguage by making
extensions to PRIMARY. Section 7 explains this in deta [.]n

add i tion, PRIMARY or any other production in MLISPZ may pe replaced

_ entirely, including PROGRAM itself. Replacing PROGRAM produces a

N completely neu language. In this way translators have already been
— produced for Engl ish, French, Logic [5], ALGOL, MLISPZ jtself and

others, some of them by programmers wi th no experience in translator

C- Writing, None of the MLISP? users have expressed much difficulty

ui th their translators: in every case they were able to devote the

bulk of their time to semantic applications (e.g. theorem proving |

L strategies) rather than to the mechanics of the translation process.

i Comments
>

| 1. One of the main reasons MLISPZ is successful as a translator

Wwriti ng tool is that it is an incremental extensible language, It

i fulfills Bobrow’s recommendation [1]: “Reading a particular
| statement should be able to change the grammar at that time, for

some def i ned scope." (his emphasis) The translators written in

| MLISPZ have al | developed in this way, by adding a few productions

at a time to the | anguage. These can often be debugged

. independently. [ILISP2 provides a rich environment for debugging

|
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(c.f, RECOMPILE expression), In this way,MLISP2 enables the

translator wri ter to easily subdivide the task of producing a

translator, Fur thermore, he always nas something working, making

progress easier to measure, When the set of productions |i s

complete, PROGRAM is redefined, producing the new translator. The

advantages of incremental programming are obvious to anyone who

has had to write an "ali or nothing” program, a large body of code

which al | had to be correct before anything would run.

~. MLISPZ is a successful extensible language because its syntax is

sinipleand concise. Given the above definitions of PROGRAM and

EXPRESSION, a programmer has |littletrouble comprehending the

effects of an extension to PRIMARY. While extensible languages

have been around for several years (and there is now a

proliferation), all too frequently the extension mechan | sm has

been couched in confusing notation and/or semantics, mak i ng them

not at all “self evident.” Self evident programming, the goal of

COBOL and a host of successors, remains elusive, and MLISPZ does

not attain it. Butit has beenthe guiding principle in the

design or MLISPZ, Above allelse, ue have tried to make MLISPZ

easy to use.
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— SECTION 5

<PRIMARY>

.

— <PRIMARY> ::= <any MLISP expression>
| <an expression which is an “major” change to MLISP>
| <an expression whichi s an “minor” change to MLISP»

OC

{

L Suntax

J The production PRIMARY is an extensible production (section 7),
and it is the principle means of extending the MLISP2 language.

i (BASIC is the other main extensible production.) In fact, Le
developed the MLISPZ language by first defining PRIMARY to be the

same as in MLISP, and then extending it from time to time as we

| thought up new features we would like to have! The MLISP? user may
do the same thing: if he comes up with a useful language feature, he

1 may add it at any time to PRIMARY or BASIC. The next few sections
discuss the extensions the authors have made.

S

The ma jor changes
[

<LET>

<SELECT>

The minor changes:

<SIMPEX>

<RECOMPILE>

<CASE>

<DEFINE>
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! SECTION B

<SIMPEX>, <BASIC»

C <SIMPEX> :3=  <BASIC> [<QUALIFIER>]x

<BASIC> ::=  <ID>

| (OCTAL]  <NUMBER>
| <STRING>

| ''  &-EXPRESSION>
L. | '< <ARGUMENTS> ’>

| '{ <EXPRESSION> ’)

<QUALIFIER> i:= '{ <ARGUMENTS> '})
| "[  <ARGUMENTS> I

| | <00T>
L | [' { <EXPRESSION> "}] '« EXPRESSION»

| <ARGUMENTS> ::= [<EXPRESSION> /’, 1x

Suntax

~ One of the alternatives of PRIMARY is SIMPEX, A SIMPEX (simple

expression)is a basic expression, followed by zero or more
qualifiers,

A BASIC expression is one of the following:

a. an ID (any identifier which is not a LITERAL)
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bh. a number (rea | or integer) opt.ionally preceeded by the | i teral

OCTAL

c. a str inglasequence o f characters enclosed in double quotes ")

d. a quote mark ' fo | lowediry a LISP s-expression

e. arguments enclosed in broken brackets<>

f. an express i on enc | osedin parentheses ()

A QUALIFIER is one of the following:

a. arguments enclosed in parentheses 0

b. argumentsenclosedinsquare brackets(]

c.a DOT expression

cd. an ass ignment arrou fol lowed by an expression, optionally

preceeded by an expression enclosed in braces {}.

ARGUMENTS are zero or more expressions separated by commas",".

SIMFEX

SIMPEX is a generalization of a production {aiso called SIMPEX)

inthe MLISP trans lator. The main difference is that in the MLISP2 —

versiOn any number of qualifiers may appear after a basic expression,

Lhereas in LISP only a fixed number are al lowed. Multiple -

qualifiers is just one of those constructions we thought it would be

nice to have, so ue added i t one day. -

Thus in MLISP2 oo)
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N

—— FN(A,B,C) (X,Y,2)

is allowed, whilein MLISP it noufd have to be wrijtten

oT LAMBDA (FN1); FN1(X,Y,Z); (FN(A,B,C})
|

The association of qualifiers is to the left: e.q.

<basic> <qualifierl><qualifier2><qualifier3>

_ translates to
«

(((<basic> <qualifierl>) <qualifier2>) <qualifier3>)

— or to be more concrete,

FN(A,B,C) (X,Y,Z2} (1,2,3)

“._
translates to

| (({(FN A B C} XYZ} 1 2 3),

" The other changes to SIMPEX are additions to the definition of
QUALIFIER. InMLISPZthe DOT expression (see the next section) is

| al lowed to be a qualifier, but not in MLISP. Also the brace notation

{} on the left of the assignment operator"«" is allowed, and means

L the assignment is to take effect in a certain backtracking context

| {section 2}. However, one restriction is that the vector operator
|
— "©" is not allowed to be used with the assignment operator "«", to

simplify backtracking.
|

| BASIC

~

BASIC is the other main extensible production in MLISPZ, besides

Lo

«
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PRIMARY. Intuitively, a basic expression is a "small unit” such as a

single identifier or number, a “kernel” used to bui | d | arger

express i ons. It is not as useful as PRIMARY because fewer

constructions intuitively seem primitive enough to be BASICs. But to

demonstrate the type of extension it is reasonable to make, suppose

you wanted to add complex numbers to the system, in the form

#<real part>,<imaginarypart>]

e.g. |

43,21

Then you cou | d type ——|

LET COMPLEX (x, REAL,x, IMAGINARY,*) BASIC = =
{ '# [NUMBER] ' , [NUMBER] I } ol
MEAN —

<whatever translation is desireds>. |

(This i s a example of a LET expression, explained in section 7.) A

Everything else in SIMPEX and BASIC is the same as in MLISP. |

PROGRAM, EXPRESSION, PRIMARY, SIfPeEX and BASIC form the heart of the Co

MLISPZ language. Understand them and you will have a good idea of i

what a legal MLISPZ program looks like, as wel | as how to change that oo

clef init ion. —
ne

.
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SECTION

<B0T>

‘

L
<QUALIFIER> ::=  <DOT>

¢ <DOT> r:= . [<IDENTIFIER> | <BASIC»>]

Suntax

One of the alternatives of QUALIFIER is the DOT expression. A

. DOT expression is a period ".", followed by either an identifier or a
basic expression. In the first case, the identifier is quoted by

)
L MLISPZ,wuhile in the second case the value of the basic expression is

| used unquoted.
This is a notation for handling property lists. Ordinari ly it

L means GET, but on the left side of an assignment operator "&" jt

| means PUTPROP, (Theva lue of the assignment operator is always the
value of the right hand side.) While the dot notation is a seemingly

| trivial change, our experience has shown that it is capable of
striking clarifications in a program.

_

[
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Examples

A,B trans | ates to (GETA (QUOTE B))
A.B« C (PUTPROPAC (QUOTE B}})
A.’B GET A (QUOTEB))

A.’Be C (PUTPROP A C (QUOTE B))
A. (B) (GET A B)

A. (Ble C (PUTPROF A C B)

A. (B+C) «1D (PUTPROPAD (PLUS B C))

Be careful about the association of gual ifiers!

AVENIX,Y.Z) translates to ((GET a (QUOTE FN) x v Z)
A. (FN{X,Y,Z}) (GET A (FNXY Z})
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SECTION 7

<LET>

.

- <PRIMARY> r= <LET>

<LET> r:= LET <IDENTIFIER> '{ <LET VARIABLES> ')

OC [<IDENTIFIER>] '="{ <PATTERN> '3
MEAN  <EXPRESSION>

<LET VARIABLES> ::= <LET VARI ABLE> | °, <LET VARIABLE>I%

& - ,
<LET VARIABLE> ::= «<ID> | "x

-— <PATTERN> $= [<PATTERN | TEM>1x |

\ <PATTERN ITEM> ::= I’!] ('H#] [ <LITERAL> |
— | <NONTERMINAL> |

| <INLINE EXPR>

| | <META> 1
-

C <LITERAL> vo=  <]DENTIFIiER>|"’ <TOKEN>
i

L

<TOKEN> ::= <IDENTIFIER> | <NUMBER> | <STRING> | <DELIMITER>
{

C <NONTERMINAL> t11= '< <IDENTIFIER>">

|

L <INLINE EXFPR> s:1= '[ <EXPRESSION> I

- <META> t1=  [<REP>| <OPT> |<ALT>]

L {} re= [{}] 01 <Anywhere braces{} may be used in
patterns, parentheses () may be used instead>

¢

C
L
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A LET expression is the literal LET, followedby an identifier

which sthe name of the production being defined, followed by a list

of LET variables enclosed in parentheses, optional ly fol lowed by a

secOnd identifier which represents the name of a production to which

this production wilibe added as an alternative, fo!lowedby an equal

sign"=", followed by a syntax pattern enclosed in braces {},

fol lowed by the litera: MEAN, and final ly fol lowed by an expression

which represents the sem3ntics towe evaluated if the syntax is

successful lymatched., A LET VARIABLE is either an ID or an aster i sk

A PATTERN i s zero or moretripies, each composed of an optional —

exc | mat i on point ol followed by an optional sharp sign "#",

fOl lowed by one of —

a. A literal: an identiiier, oracluctemark ' followed by any token da

(identifier, number, string or delii:iter), luentifiers not

preceededby the quote wnark are markedwiththe property LITERAL

(and become essential ly reserved words),

bb. A nonterminal:a n identifier enclosed in broken brackets <>,

representing acall on another production,

c. An in li he express i on: anyilL |1SF2 express i oh enclosed in square

brackets [ij.Une special convention: if the expression is just a
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| single identifier, e.g. [FOO], then it is taken as the name of 3

function of no arguments, FOOO, rather than as a variable, Thus

Co [FO0Jand [FOO()] are equivalent,
_ cd. Ameta expression: REP, OPT or ALT.

« Capabilities of the LET expression

8 The LET expression is composed of a syntactic pattern matcher

| and a semantic expression evaluator, It may be used to extend the
- | anguage, to define entirely new languages, or as a 1 imi ted pattern

| matcher, This is the core of the MLISPZ extensibi 1 i ty mechanism.
The recognition algorithm is top down, depth first, and uses

\ backtracking. The top-level production is PROGRAM. The pattern
matcher is powerful enough to handle any context free or sensi ti ve

| grammar. However, it is only capable of dealing with |inear input,
~ such as tokens from a fi le or from a linear t ist; it is not capable

| of handling structured input. It iS designed primarily as a
translator writing tool.

The LET expression, like all MLISPZ2 expressions, is fully

incremental; at any time the user may type a LET expression on line

and have it take effect immediately. The advantages of this for

debugging a translator should be obvious: | f the programmer discovers

a bug in a production, he can type in a corrected version and try jt
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out r i ght away. Fur thermore, if he desires to have a new language

construct ion in a program, the user simply includes the relevant

productions at the head of his program, and the MLISP2 language will

extend itself as his program isbeinag translated.

In order to extend the definition of some production P,

l. P must already exist and must be an extensible production. An

extensible production is any production whose syntax contains the |

meta expression ALT (section 7.4). "ALT" means that the syntax of

the production consists a set of alternatives. This set may be LL

extended at any ti me.

2. The production being added to the definition of P must contain the —

name of P in the identifier slot betiieen the LET variables and the

equal sign: e.g. -

LET FOO (X)P =

adds FOO to the definition of P. A production may only be added -

as an alternative to one production: e.g. FOO cannot now be added —
to another product i on’ s definition, However, an extensible

production P may have any number of alternatives added to its —

defini t ion.

Using ALT in an increniental manner is one of the most powerful — |

capabi | ities of any extensible | anguage. | 1 makes NMLISP2's

extensibility very flexible.
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Semantics

When a production is defined using LET, two functions are

\ declared: one for the syntax and one for the semantics, The name of

the syntax function is the production name with a sharp sign "#*

appended on the end. The name of the semantics function is the name

C of the product ion. For example, if the production is

LET FOO (X,%,Y) = {A6C} MEAN PRINT <X,Y>

then the tuo functions are named FUO# and FOO, The definition of the

C semantics function FOO is

(LAMBDA(XY) (PRINT (LIST X Y)))

. Note that the LAMBDA variables are the non-* LET variables. When

<FOO>i scalledi n a pattern, acall to the syntax routine FOO#i s

- compi led, The syntax routine always caiis the semantics routine FOO

| as part of its definition. In addition, either of the two functions
may be called |i ke any other function: e.g. FOOK()o r FOO (args).

| Thus the pattern matcher may be invoked from within an ordinary
function.

An impOrtant point hare is that many extensible languages

. interpret their patterns. MNMLISPZ cecnpiles its syntax into machine

| code, result ing in greater speed and code density. There arecertain

| technical difficulties with compiling a general, incremental syntax
processor. We hope to discuss our treatment of these problems in a

later paper.
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Execution

LET express i ons are executed i n three stages:

1. Match the syntax pattern against the input.

2. Bind the LET variables to the values of the pattern items.

3. Etvaluatethesemantics expression. This becomes the value of the

product | on.

In more cietai |,

1. The matching of a syntax pattern proceeds as follows:

a. Apnatternis matched from left to right,

b. Each i tem in a pattern interacts in a specified way with the

input. This is explained in the following sections for each

type of pattern iten. Genera | ly pattern i tems make some checks

on the content of the inputand cause the input pointer to be

advanced.

c. Each itemin a pattern returns a value.

r. After the pat tern has been completely matched, the LET variables

are bound on a one-to-one positionalbasis to the pattern values,

Wi th two except ions:

a. LET variablesuhich are asterisks "x" serve only as positional

place-holders and do not receive values. (Thus they are not

real ly variables at all.) If all of the LET variables are

asterisks, then all of the pattern values are thrown away. _
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: b. I f there are more pattern values than LET variables, the |gst

non-x variable is bound to a list of the remaining values.

\

3. After the entire pattern has been successfully matched against the

input and the LET variables have ail been bound, the semantics of

the product ion are evaluated. The semantics consist of the

L expression after the MEAN, together with the non-* | ET variables.

“— It is exactly equivalent to |

( {LAMBDA <variables> <expression>) <pattern values>)

( The value of this expression becomes the value of ihe production
and iI s returned to uhomevercal led i t.

Examples of variable hinding
|.

| (a) LET IF (x,El,%,E2,E3) =| { IF <EXPRESSION> THEN <EXPRESS| ON>

{OPT ELSE <EXPRESSION>) |
MEAN NIL:

this -throw away the Il F
- bincls El to the value of the first <EXPRESSION>

-throusauay the THEN
_ - binds £2 to the value of the second <EXPRESSION>

- binds E3 to the value of the OPT.

(b) L ET PROGRAM{x} =

{ {REP 8 M {<EXPRESSION> "+ 1} _EOF_ 1}
MEAN NIL:

this -throus anay al | the vaiues of the pattern items.
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(c) LET FOUI{X,Y¥,Z) =
{A B C DD E F GCG

MEAN NIL;

this - binds X to A

- binds Y to B

-hindsZ to (CD E FG . |

Example of LET semantics

(d)LET FO O {X,x,Y,%,Z) =
t AB C DD E FF ©} —

MEAN PRINT (X CONS Y CONS );

this -printsandhas as its value the list (AC E F GJ. —
-T h e cemantics functionis

(LAMBDA (XYZ) (PRINT (CONS X (CONS Y Z)})).

The best examples of LET expressions, and indeed of al | MLISPZ

expressions, are provided by the productions in t he MLISP2 HO

translator, which are i ncluded n the appendix. |
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SECTION 7.1

Suntax description language

\

There are four types of constructions which can be used in

C syntax patterns: titerals, nonterniinals, inline expressions gnd meta
express i ons. In addition, each of these constructions may be

preceeded by either/both/none of an exclamation point "!" and a sharp

| sign"#"., The meaning of each of these in a syntax pattern and the

¢ values they return will now be described in detail.

- Our approach to a syntax description | anguage is someuhat

4 different than other approaches, a necessary consequence of our
desire to make | anyuages incrementally extensible. Rather than

| working with traditionalBNF terms and analyzing grammars forma | | y
| (e.g. as precedence, operator precedence, LK{k), etc. grammars), we

L have isolated a small set of primitives powerful enough to specify

i any context free or sensitivegrammar and still maintain a good
degree of efficiency. We obtain this flexibility by a pattern

matching approach to language transiationThe extremely useful control

} structure of backtracking is used to resolve ambiguities: if one

syntax pattern wil | not match the input, the system is capable of

backing up and trying others, until either one finally succeeds or no

| pat terns are left (indicating a real syntax error). While it iS
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theoretically possible for this to require a time proportional to the

length of the input cubed, in practice the types of grammars one

wri tes for programming languages are almost always handled in linear -

ti me. In fact, even our grammar for English, a highly ambiguous _

| anguage, produced a | inear parser.

We believe that the primitives presented here: REP, OPT andALT. ~

together with 11 tera's.nontermninals and inl ine express i ons, are _

primitives that shoul dhe dncludec i _n any euntaxcri pti on

| anguage. —-
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To The exclamation point feature "!" in patterns is a way of

~ automatically generating error messages, An exclamation point in a

BN pattern item signifies “it had better be there!”; otherwise there is

an error. For exampl e, in the pattern

« IF <EXPRESSION> ! THEN

- theli feral THEN had bet ter occur in the input after the expression,

or the error message “MISSING THEN” wi | | be printed. The exclamation

N— point is actually a macro that expands to an ALT (section 7.4); e.g.

| | THEN

= expands to

C {ALT THEN |IERROR{"MISSINGTHEN") J}.

N This expansion should be remembered when dealing with the value of a

~ pattern i tem with an exclamation point in front of it. The value of

« the pattern item THEN is just THEN; the value of {THEN is (1 THEN),
— or an error.

oo #
§

The sharp sign feature "#" in patterns is a way of controlling

the scanning of the input. It real ly has a meaning only with

“ | | terals. If it is present, then after the | iI teral is matched, the

scanner uil | not advance over it. Ordinarily, after a literal in a

|
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pattern is matched by a token in the input, the scanner advances to

the next token automat ically, The "AH" feature is is useful if, for

some reason, it is desired to temporarily discontinue scanning, For

example, MLISPZ does not want to advance over the _EJF_ at the end of —

the program because there is nothing there to scan, so the pattern is

wr i t ten #_EOF_. Similady, MLISP2 wants to pause in scanning when it —-

sees the | i teral OCTAL ipreceeding an octal number) in order to

change the radix from 10 (decimal) to &{octal) before scanning the

number, so the octal pattern is written #OCTAL <OCTAL-NUMBER->.

LITERAL

Literals are constants in the syntax description | anguage. If

the next item in the pattern is a literal, then the next token in the

input must be thatliteral, or the pattern fai Is. _

VALUE = the literal.

NONTERM I NAL :

Nonterminals are the subroutine mechanism in the syntax

description language. If the next i tem in the pattern is a

nonterminal call on another production, then that producti on i s

evaluated as a subroutine.

VALUE = the value of the called production. '
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INLINE EXPRESSION

| Aninline expression is a piece of code evaluated “in | ine”,

~ during matching of a pat tern. If the next item in the pattern is an

inline expression, then that expression is immediately evaluated.

This is an unusualand powerful feature in a pattern matcher, It

\ provides a means for making a syntax context sensitive and g3|so for

_ increasing the its efficiency by making run-time tests,

To i llustrate these capabi | i ties, suppose a global variable FLAG

- ex istsin a program and a production P uses this variable to govern
i its execution:

LET P (X} ={{ALT [FLAG = "FOO OR FAILUREO1 ...

% | [FLAG = ‘BAZ OR FAILUREO3 . . .
tH} MEAN <whatevers

[ Then the matching of P is context sensitive. If the value of FLAG is
FOO, then the first alternative will be tried. Otherwise FAILURE is

executed, which causes processing to pass to the second alternative.

Similarity, if the value of FLAG is BAZ, then the second al ternative

- wi | | be tried. Otheruise processing skips to the third alternative,

and so on.

This illustrates the power of inline expressions in a syntax

description language. [It also i | lustrates how they «can be used to

increase the efficiency of pattern matching. Suppose the programmer
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knows that i fFLAG has certain values, the input can never match

certain patterns. Then making tests like the ones in the examp | e

above insure that these patterns uill never be tried. The patterns |

would have eventually fai led anyway;the inline expressions just

cause them to fai | at the earliest possible moment, with a minimum of

riork being clone.

VALUE = the value of the expression.

META EXPRESSIONS

Three meta expressions -- REP (repeat), OPT (optional) and ALT

Cal ternatives)-- are included in T[iLISPZto make it easier to

speci fy syntax. These construct i ons reduce the number of productions _.

required and make them clearer and moreconcise. Itis surprising

how much more powerful the syntax description language becomes with —

the inclusion of these three expressions. They make the | anguage far

more descriptive of the kinds of configurations to be expected in the oo

input.

By way of contrast, in the Backus-Naur form (BNF) if one wi shes i

to express the fact thatsomeitem imay occur repeatedly, he must

write

P s:= 1 <P>

P ::= <empty>

while in MLISPZ one uouldurite ~

_

J
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{REP 0 NM {I}

In the firstcasethe repetition is implicit, leaving the user to

figure out exactly what the product ions will handle; in the second

case the repetition is explicit. The same is true for OPT and ALT.

Cons i der

P ::= IF <E> THEN <E>»

FP ::= IF <E> THEN <E> ELSE <E>

Versus

IF <E> THEN <E>{0PT ELSE <E>}

In the first case it requires a production-by-production analysis to

discover that the ELSE clause of the IF expression may be |eft off:

in the second case it is explicitly stated. This distinction becomes

important when t he number and complexity of productions are | arge.

Expl ici t specification is very important in any “descriptive”

| anguage.

VALUE = the value of the meta expression.

\_

C
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- SECTION 7.2

<REP>

<META> s+= <REP>

oo. <REP> :t= '{ REP <INTEGER> [<INTEGER> | MI [’ x]
~ '{ <PATTERN> '} [<SEPARATORS>] ' }

- <SEPARATORS> i:=  <PATTERN>

—

Suntax

A REP is the | i teral REP, followed by two integers (the second |

.

— integer may be the | teralM}, optionally followed by an asterisk

"x", followed by a syntax pattern enclosed in braces f{}, and

— optional ly followed by any number of separators. This whole thing is

‘ enclosed in braces (i,

. Semantics |

The REP expression causes a pattern to be matched repetedly.

The number of times the pattern s matched depends on two things: (1)

how many times the pat tern occurs in the input, and (2) the values of
C-

the “repet i t ion control numbers” ihi ch come after the word REP. The

— <number>s must be non-negative integers. The first number js the

“_

C
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minimum number of times that the pattern must occur in the input; the

secOnd is the maximum number of tinies that it may occur.

Alternatively, the letter "M" may be substituted for the maximum and RB Ny

means “more”: if 11 is used, the pattern may be repeated any number of |

t i nies greater than or equal to the minimum number. For example, {REP

1M. ..I meand “repeatlormore times. "

If the minimumnumber of repetitions of the pattern does not

occur, the entire REP fails. REP aluays tries to match the maxi mum

number of repetitions possibie. In some cases too many repet i tions

may be matched, causing a later pattern to fail. In this case the

tokens from one «cycle of the pattern are returned to the input,

Pattern matching then proceeds with the new, shorter, REP list

(unless the number of repetitions fal Is below the minimum). More BN

than one repetiti on may have to be given back before later patterns

al | succeed. lf you uantto supress this step-by-step backup,

include the asterisk "x" in your REP, The aster i sk means “ei ther use —~ |
all the REP cycles you got or give them ALL back!” Any fai lure into

the REP after using this feature will cause al! tokens matched by all

cycles of the REP to be returnedto the input. The number of

repetition5 immedi ate | ybeconeszero., If the minimum for the REP was

greater than zero, the entire REP then fails, Otherwise the value of

the REP becomes NIL. This is useful when you are certain there is no

ambiguity betueen the REP pattern and later patterns, so that no REP
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cycles will have to be given back. The advantage of using the

asterisk is thatREPsare more efficient, since not as much

C backtracking information has to be saved.

a Separators may occur between repetitions of the REP pattern

1B Any pattern i tem or items may be used as separators. The value of a
¢ REP is a list of the values of the REP patterns: the values of the

a separators are discarded.

|
- Eva | uation

- Evaluation of REPs proceeds as follows:
r 1. When a REP is encountered, one of two things happens.

L a. I f the REP uses the asterisk "x" feature, then a single

| decision point (section 2) is created for the entire REP. The
first time this decision point is failed to, it deletes jtself.

Subsequent fai lures will fail t o whatever decision point

preceeded the REP.

b. If the REP does not use the asterisk feature, then ga decision

| point is created for each cycle which the REP makes, Each o f
these decision points behaves likel.a above, i.e. the first

time it is failed to it deletes itself. The di fference is that

there are many 0f these decision points, one for each cycle

through the REP. Therefore, each REP cycle can be backed up
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over one at a time, unereas wi th the asterisk feature ALL of

the REP cycles are backed up over at once.

<. Then the REP pat tern is matched against the input.

3. The maxi mum HKEF number i s now checked (unless i t i s M) to see if

the REP pattern has been matched the maximum number of times

al lowed. If so, the REP exits returning a list of the pat tern

va | ues matched.

4. If there are separators, they are matched against the input and

their values throunauay. Then step 2 is executed again,

5. Finally, either the maximum number of cycles is reached, or the

REP pattern or separators no longer match the input. Then the

minimum REP number i s checked. If the REP has not executed the

minimum number of cycles, then the entire REP fai Is. Ifthe

minimumhas been reached, the REP exits returning a list of the

pattern values matched. —

aN
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Examples

(a) {REP 1 3 {A B}}

A input: ABABABAB
value: ((A B) (A B) (A B))

left in input: A B

input: ACB
value: REP fai Is because minimum (1) was not achieved

“

(b) {REP 8 M {<IDENTIFIER>t 7,

input: Aj

“ value: ((A))
left in input:

input: A, B, C; 0, E, F
~ value: ( (A) (B) (C))

left in input: D0, E, F

> input:
value: NIL

left in input: (

«

«

C—

C_

C
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- SECTION 7.3

<OPT>

|

— <META> ::1=  <OPT>

— <OPT> i= { OPT <PATTERN> '}
«

Suntax

¢ —
An OPT is the literal OPT followed by a syntax pattern, al |

enclosed in braces {}.

¢ The OPT expression is just an abbreviation for (and a slightly

more effecient implementation of) the special REP case {REP 0 1 ,,.1},

LC l.e. “repeat zero or one time.” This is one of the most frequent

¢ REP cases.
Evaluation

L_

C Evaluation of OPTs proceeds as follows:

| 1. When an OPT is encountered, it creates a decision point, This
decision point may be fai led to only once. The first time it IS

C— fai led to, it deletes itself so that subsequent failures wil | fai |

| to the previous decision point.

‘_

C
L
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2. The OPT pattern is matched against the input. Two things might

happen:

a. The match is successful, in which case the OPT returns a list

of the pattern values (leaving the decision point intact).

b., The match is unsuccessful, i.e. one of the pattern | tems fai Is,

in uhich case the OPT deletes its decision point and returns

NIL.

3. If a later failure occurs, and if the OPT decision point is still

intact, thenfasin2.b above) the OPT deletes its decision point

and returns NIL,

Exanbles

(a) {OPT A Bl

input: ABC |
value: (A B)

left in input: ¢

input: ACB
value: NIL

left in input: ACB

(b)J{OPT <IDENTIFIER>'{ <IDENTIFIER> *)} —

input: CAR (A) .B
value: (CAR/( A /))

left in input: . B

input: CAR(1).B
value: NIL —

left in input: CARI{l}.B
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AN

BN RECTION

<ALT>

\

) <META> t1= <ALT>

- <ALT> s:= {ALT [<PATTERN> /’'|1x’}

Suntax

—

An ALT is the literal ALT, fol lowed by zero or more syntax

u patterns separated by vertical bars "|", al | enclosed in braces {}.

\ . .
— Senianti cs

_ ALT is the most interesting meta expression of MLISP2’s pattern

n matching system. It specifies that the input may be matched by any

- of a set of alternatives. The powerful aspect of ALTsis that the

set of alternatives may be <dynamicall y extended at execution time.

} If the alternative being augmented is part of the MLISPZ translator,
“

for example, then the effect is to extend the MLISPZ language. To

| i | lustratethis idea, consider the following pair of productions from

the MLISPZ translator,

LET PRIMARY (X)=

{ {ALTY }

— MEAN X [2];

.
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LET BEGIN {x%, VARS, EXS, x) PRIMARY=
{ BEGIN <DECLARATIONS> <EXPRESSIONS> |ENO 1}
MEAN

"PROG CONS VARS CONS EXS;

The first production defines a PRIMARY in MLISP2. |t says that

initial lyaFRIMNARY is an ALTwWith no alternatives, While this may

seem use | ess, it serves the important function of providing a (null)

set to which other productions may be added. For examp | e, the second

product ion def inesa BEGIN-END block. It further indicates that it

is to be added to the set of alternatives in the production PRIMARY,

i.e. BEGIN is now to be considered as an example of a legal PRIMARY.

So what ? So now instead of having to define all of the

alternatives in a static definition, the various parts of the

production may be defined individual ly and dynamically! Productions

which add themse lves to other productions may be included in any

prOgranm. | f you want some |anguage feature for your particular

program, you need only include a set of language extensions at the

beginning of it. Immediately you have a new language with a tai lor-

made feature!

One uWOrd Of caution: the syntax of MLISP2 is not context

sensit ive: additions to it should be unambiguous with the productions

a | ready there. In fact, they should probably be unambiguous in the

first symbol: don’t start any of your product ions with any of the

words that starts an MLISPZ production, such as
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\

BEGIN, IF, FOR, WHILE, UNTIL, DO, COLLECT, SELECT, . . .

This restriction growsout of our desire to provide good error

Co messages. If we start a production, such as BEGIN, and we get to a
_ point in it uhere we expect a literal to appear in the input, and the

| literal i sn’ t there, then we stop immediately and print an error

_ message. The alternative is to back up out of the production, see if

- any other production can handle the input, and if not give an error
— message | i ke “SYNTAX ERROR” or some such nonsense. Since the MLISP?

| anguage i sunambiguous, we can give much better error messages than

> that. Most PRIMARYs in MLISPZ begin with a unique LITERAL,

_ As mentioned above, only a productions containing an ALT is an

N extensible production. If the production contains more than one ALT,

= then there is an ambiguity as to which ALT is to be extended. To

resolve this ambiguity, the following rule applies:

a. The outermost ALT lexical ly is the only one that may be extended,

_ b. If severalALTs are at the same lexical level, then the last one

lexically is the only one that may be extended.

Evaluation

Evaluation of ALTsproceeds as follows:

— 1. When an ALT is encountered, it creates a decision point. Italso

creates the equivalent of a local oun variable; this variable is

|

-

g |
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initialized to zero and represents the number of the alternative

currently being tried.

2. To try the next alternative, the ait number is incremented by one,

and then the pattern for that alternative is matched against the

input.

3.1f the pattern is successfully matched, the ALT exits returning a

list of the pattern values with the alt number added to the front.

| f the pattern fails, the next step is executed.

4, lfthere are more alternatives tone tried, step 2 is executed

again. If there are no more al ternzti ves, the decision point is

deleted, and the whole ALT fails. NB

5. If a subsequent fai lure returns into the ALT, step 4 is executed,
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Examples

- (2) {ALT A | BI
-

input: ABC
— value: (1 A)

left in input: B C

_ input: BC
“ value: (2 B)

left in input: C

~ ‘input: C
value: Fai Is

“ —

(b)J{ALT A',B| <IDENTIFIER> "{ <IDENTIFIER> '}| CAR}

— input: A B,C
va | ue (1 A /,B)
left in input: , C

« P

— input: CAR(A).B
: value: (2 CAR /7(A/))
| leftin input:.B

input: CAR().B
C va | ue (3 CAR)

Co leftininput: 0.8

input: A: B; C |
| value: Fai Is |

©
L

LO

CC
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=ECTION 8

_ <SECT>

- <PRIMARY> ::1=  <SELECT>

<SELECT> t1= SELECT [<EXPRESS]ON>]

FROM [<]D>":]<EXPRESS] ON>
[SUCCESSOR <EXPRESSION>]
CUNLESS <&XPRESSION>]

[FINALLY <EXPRESSION>]

[-

| sun tax
[ A SELECT expression is the literal SELECT, optionally followed

(@ by an expression, fol loued by the | i tera! FROM, optionally fol lowed

[ by an ID and a colon, followed by an expression, optionally followed
by any or al | of the | iteral SUCCESSOR and an expression, the | i tera}

| UNLESS and an expression, and the literal FINALLY and an expression,

Four of the five expressions in the SELECT expression are

~ opt ional. If they are omitted, defaults are supplied. The default

for the first expression is CAR, for the second COR, for the third

NULL, and for the fourth FAILURE. Thus

SELECT FROM ' (ABC)

and-

SELECT CAR{L) FROM L:’ (ABC) SUCCESSOR CDR (L)

UNLESS NULL(L) FINALLY FAILUREO

are exactly equivalent,
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Semantics

The following explanation of SELECTs is largely reproduced from

a paper by the aut hors titled "Backtrackingi n MLISP2" [7].

Themeta expressions REP, OPT and ALT use backtracking in the

MLISPZ syntax description language. The SELECT expression is the

means fOr Incorporating back tracking into ordinary functions. The

logical form of the SELECT expressionis

SELECT <valuefunction> FROM «formal variable>:<domain>

SUCCESSOR<wuccessor functions

UNLESS <terminationcondition»>

FINALLY <termination function>

This is a generalization of Floyd’s CHOICE function [3], though the -

two are functional ly equivalent. However, the SELECT expression is a

| i ttiemoreversatileandeasyto use.

The four “functions” in SELECT are actually expressions which

serve as the bodies of LAMB0OA expressions having the fornial variable

as its LAMBDA variable:

(LAMBDA («formal var i ab i e>) <expression>)

The functions are defined as:

<value function> c <cdomai n> =» <va | ue>

<successor function> c <domain>-= <domain>

<termination condition> : <domain>=Tor NIL —

<termination function> : <domain> -»<value>
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- Evaluation

. The evaluation of a SELECT expression proceeds as follows:

C 1. Evaluate the domain expression to get an initial domain,

2. Set up a decision point,

3. Apply the termination condition to the domain, |f the value is

C TRUE (non-NiL}, delete the decision point and apply the
termination function to the domin., Exit with this value asthe

value of the SELECT. (The termination function may call FAILURE).

[- |f the value of the termination condition is FALSE (NIL), proceed

| to the next step.

L 4. Apply the value function to the domain, and exit with this value
as the value of the SELECT.

= 5. If a fai lure returns to the SELECT (the only way a SELECT may be

| reentered), apply the successor function to the domain to yield a
new clOmain.

| 6. Go to step 3.

Floyd's CHOICE function is uri tten:
~

EXPR CHOICE (N):

SELECT | FROMI:1 SUCCESSOR [+1

_ UNLESS | GREATERP N FINALLY FAILUREO;

CHOICE (18) gives ten choices. The initial domain is just the integer

1 (one). The value function is the identity function (LAMBDA (I}]),

The successor function isadditi on by one (LAMBDA (J) (PLUS 11})},
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The term i na t ion condition is a check if the maximum has been exceeded

(LAMBDA (1) (GREATERP 1 N) J). The termination function propagates the

failure (LAMBDA (1) (FAILURE)).

Examples

(a) SELECT FROM (ABC)

This is the most primitive version of the SELECT expression. It gets

and returns elements one at a time froni a | ist. Every ti me it IS

fai led to, it returns the next element in the | ist. [If the list -

hecOmes ex ti austeci, the fai lure propagates to the preceeding decision

point.

(hb) SELECT CAR(L) FROM L: "{ABC) SUCCESSOR CDR (L)
UNLESS NULL(L) FINALLY FAILURE 0

Thi s i s exact ly the same as (a). —

(c) SELECT FROM '(A B C) FINALLY NiL )

This is the same as (ajexcept that if the | ist becomes exhausted,

this wi | | return NIL instead of fai | ing.
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= SRN,

<FECUMPILES

w

— <PRIMARY> ::= <RECOMPILE>

L <recompile> ::= RECOMPILE <IDENTIFIER> I', <IDENTIFIER>]x
C IN <fiie> I<ppn>] [TO <file>]

- . ,
<file> ii= <file_spec> ['. <file_spec>]

|
C- <p (3n> t1= '[ <file_spec> ', <iile_specs ’]

. <file_spec: ri=  [<identifierr | <integers]

-

Suntax

A RECOMPILE expression is the literal RECOMPILE, followed by one

| or more identifiers representiny the names of functions or
product ions to be translated, followed by the literal IN and an input

r

3 file name, optional ly followed by the li teral TO and and output fi le
name. The input f i | e name may include a project-programmer area, but

the outputfile namemay not. The output maynotgo to another

project-programmer area to prevent the user from accidentally

: c | obber i ny someone e | se’s di sk area.

|



Section 3 <RECOHPILE> ope

The RECOMPILE expression is an extremely useful feature of

MLISPZ. It enables selected functions in a file to be quickly

translated. The functionsmay either be defined in core at once,

replacing any definitions that existed, or their translations may be

printed onto an output file. In either case, translation ceases as

soon as ail the functions in the list have all been translated,

without going all the way to the end of the fi le.

This feature substantially decreases debugging time by speeding

up the test/correct/recompiie/test loop. With the RECOMPILE feature,

you can edit your file, change the function or functions containing

the bug, and then recompi | e on | y those functions -- a much shorter

task usually than recompi | i ng your en ti re program. RECOMPILE will

find and translate any function or production beginning with LET,

EXPR, FEXPR, LEXPR or MACRO, It skips down to a specified function

at scanner speed, tr-ans lates the function, and then either exits or

ski ps on to the next function.

Examples

(a) RECOMPILE FNL IN IFILE;

(bh) RECOMPILE FNL1.FN2,FN3 IN IFILE.EXT:

(c) RECOMPILE FN1,FN2,FEN3 IN IFILE.MZ2{1,FO0) TO OFILE,LSP;
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SECTION 18

<CASE>

\

<PRIMARY > 11= <CASE>

C <CASE> :1= CASE <EXPRESSION> OF
BEGIN [<EXPRESSION> ’; 1x END

| s YN tax
- —

| The CASE expression is the |i teral CASE, followed by an
express i on wh ch must evaluate to a posit ive integer (the case

g index), fol lowed by the literals OF and BEGIN, fol lowed by zero or
more expressions each with a semicolon, followed by the | i teral END.

. The semicolon after the last expression is optional.

~ Semantics

Including this expression in MLISP2 remedies an obvious omission

of MLISP; every good language should have a case expression. The

MLISPZ2 version is pretty standard, The expression after the CASE

computes an i nteyer index, and then the corresponding expression

after the BEGIN (counting from one) is evaluated and returned &sthe

value of the case expression. Using an index greater than the number
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of express i ons ui| | result in a run-time error. Using an index less

that or equal to zero uill execute the first case expression (i.e. as

if “CASE 1 OF . . ." had been typed).

Exambles

(a) X« CASE 1 OF BEGIN ‘A; ‘B; ‘C END;

X gets. the value A.

(bh) CASE IF N=I THEN 2 ELSE 3 OF

BEGIN PRINT “CASE 1"; PRINT “CASE 2”; PRINT “CASE 3":;END;

This will print either “CASE 2"or “CASE 3" and return the string _

printed as its value. Case 1 ui li never be evaluated,

_

CL
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SECTION 11

<DEFINE>

{

<PRIMARY> t= <DEFINE>

CC <DEFINE> ::= DEFINE [<DEFINE CLAUSE> /', 1x

1 <DEFINE CLAUSE> = <I D> PREFIX [<TOKN>) [<NUMBER>)
| <ID> <NUMBER> <NUMBER>
| <ID> <TOKN> [<NUMBER> <NUMBER>]

-

<TOKN> ti= <any id or any delimiter except | or :>

r

Suni ax
L

| A DEFINE expression is the literal DEFINE followed by zero or
more define clauses separated by commas, A DEFINE CLAUSE is either

a. An id, fOllowed bythe literal PREFIX , optionally fol lowed by a

tokn and/or a number.

b. An id, folloued by two numbers,

c. An id, followed by a tokn, optional1yfoll owed by two numbers,

N A TOKNis any i d or any de {im i ter except comma “," or semi co | on ".;",
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Semantics

MLISPZ's DEFINE express ion is pretty much | ike MLISP's, al though

It i sslightiy | ess general. In MISP one could define any symbol to

be any Other symbol; inMLISFZ onlyIDe may be given alternate

clef ini tions. For example, in MLI SP

DEFINE 3 =

is legal andmeans "translate all future occurrences of "=2"to ";"in

the program." InMLISPZthe first symbol must be an ID. Example:

DEFINE APFEND e¢ _

translates all future occurrencesof "@"to APPEND. The DEFINE

express i on will be exp | ainedby exampl es, -

(1) DEFINE NOT PREFIX -1828

This defines ROT to be a prefix (sce sectionB):it defines the

symbol "="1 0 be an abbreviation for it; and i t def i nes its binding

bower 0 be 1880. Anytime "=" occurs hereafter, it will be -

translatedt o NOT. Like NMLISP MNMLISP2Z uses binding pouersto

implement its operator precedence hierarchy. Binding powers are

explained in the MLISPmanuallbl. Only right binding powers have to

be defined for prefix operators. Most prefixes have a binding power

of 188d; this is higher than the binding powero f any infix.

HOuever, one difference betueenMLISPZ a nd MLISPis that jn MLISP?
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. some prefixes (GO, RETURN, and all the print functions -- PRINT,

PRINTSTR, PRINTTY, PRINl, PRINC, TY0O) have a binding power of zero,

. This means, effectively, that they take a whole expression gas their
_ argument, rather than just a primary. Examp]| es:

PRINT CAR A CONS COR B

RETURN A+BxC/D-E

are translated to

~ (PRINT (CONS (CAR A) (CDR B)))

C (RETURN (BDI FFERENCE (PLUS A (QUOTIENT (TIMES B CID} IE} )

1 The advantages of defining a function to be a prefix are that it
may be usecl without parentheses around its argument, and it may be

C used with the vector operator "eo", For example, since CAR is a
prefix, CAR L, CAR(L},CARe L and CARs (L) are alllegal.

I
: (2) DEFINE CONS 450 480

L
This ciefines the left and right binding powers of CONS to be 450

| and 400 respectively. MLISPZ uses the same precedence system as
MLISP. The binding powers of any operator can be found in the MLISP

L manual, or by exam i ning the proper ty |ist for the indicators &LEFT
and &RIGHT. Then if youwant to give your operator a higher

= precedence, simply define ituith higher binding powers. Operators

FJithno &LEFT or &RIGHT properties use the values under the atom
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DEFAULT. Parentheses may be used to alter the precedence by grouping

arguments i n any des i red order.

-

—

—

— |

—
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(3) DEFINE APPEND & 450 400

This is just like example (2) above, except that it also defines

~ "@" to be an abbreviation for APPEND, Actually it defines "e" to be

an infix whose translation is APPEND, Any id may be used as an infix

without defining it as such: however, delimiters must be expl ici tly

C defined, TILISP2's pre-defined delimi ter infixes are (in their proper

hi erarchy):

x / (TIMES, QUOTIENT)
+ - (PLUS, DIFFERENCE)

¢- @ T | (APPEND, PRELIST,SUFLIST)
= 2 £ 2 ¢ (EQUAL, NEQUAL, LEQUAL, GEQUAL, MEMBER)
& AY (AND)

\ |v (OR)

The complete operator precedence hierarchy is in the MLISP manual,

9

I
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SECTION 12

\

<IDENTIFIER> i= <LETTER> [<LETTER>]| <DIGIT>]*

OC <LETTER> re (A]B|...[Z]alb]...|z|<underbars>|? <any characters]

<ID> t:= «<any identifier-not marked as a LITERAL>

L <NUMBER> #08 [<INTEGER>| <REAL>]

<INTEGER> se= <DIGI T> [<DIG] Tolx
t

1 <DIGIT> pr= [B]112]31415/6]7]8]8]
L

<REAL> ii= <INTEGER>’. <] NTEGER> [<EXPONENT>]

| | <INTEGER> <EXPONENT>
<EXPONENT> :t= E[+]|-]] <INTEGER>

<STRING> t= [<any character except % or"s]x’"

<COMMENT> © = '% «<any characters except %>'%
| | COMMENT <any characters except ; or

| unpaired Yor %>

<NULL> ::= [<blank> |<tab>]| <carriage returns> |<line feed>
| <vertical tab> | <form f e e d >| <altmode>]

<DELIMITER> ::= <any character except letters, digits, nulls or %»>
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These lowest level productions are virtually identical to

MLISP’'s definitions (with one exception), and they are repeated here

mere| y for the sake of reference. The one exception is that the

special characters colon":" and exclamation point")" are legal

letters in MLISP but not in MLISP2., The only special character that

is consi dereda letter in MLISPZ i s underbar “_". However, any

special character may be included in identifiers by preceeding them

with the "literally" character: a question mark "?",

IDENTIFIER, NUMBER, STRING and DELIMITER are pretty standard.

But remember that an ordinary variable or function name must be an

ID; that is, it must be an IDENTIFIER which is not marked With the

property LITERAL.
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SECTION 13

Runtime functions

\

i In addition to allthe MLISPruntime functions available to the
C user, MLISPZ adds several functions for dealing with input and for

| backtracking.
L

| PARSE
-

[ This function starts t he MLISP2 parser. It jpitializes all
necessary internal structure and then calls <PROGRAM>. This causes

1 the current definition 0fPROGRAM to be executed as explained in
section 7. There are several alternatives to the arguments to PARSE:

(PARSE )

This sets the input to the teletype. MLISP2 express i ons may now

| be typed and evaluated on line. Typing _EOF_ will exit gracefully
from this mode.

(PARSE SOURCE-FILE)

This sets the input to the specified file, MLISPZ expressions

willnow be accepted and evaluated from this file, The file should
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end i th EGF_. The source iilemay have an extension, in whichcase

it should be in the form (nane . ext], Otherwise the f ite name

shQuld be an atom. If the filename isNIL, then input will be

accepted from the teletype,just asin (PARSE), The source f i lemay

be preceeded by a project/programnmerspecification, which should be

in the form (projpreg). This is the same convention as for the LISP

l.6 INPUT function. Exanples:

(PARSE FOO)

(PARSE (FOO.M2))
(PARSE (1 DAV) FOU)

(PARSE (10AVI{FOO.NMZ))

(PARSE SOURCE-FILE DEST_FILE)

This sets the input to tiie source fi le, and also sets up g

destination file onto which the translation of the source filewill

be printed. Again the input fiieamay have an extension and may be

preceeded by a project/programmer specification. | f the source file

rs NIL, input willbe accepted from the te letype. The destination

filenamemust be an atom; the translation is printed onto <name> .LSP

. Againeach top- | evel expression in tneprogramis eva uated as it |

i s trans| ated. Exampies:

(PARSE FOO BAZ)

(PARSE (10AVI(FOC.M21BAZ)



: Section 13 Runt ime functions 66
\

-

(PARSE SOURCE-FILE DEST_FILE NIL)

— This is the same as the above case, except that evaluation of

, the translated expressions is inhibited. In this mode MLISP2 acts
-

like a compl erconipil er, translating and printing out the

translation without altering itself. This should be used whenever it
—

- is desired to print out a complete translator. Exampl es:

i (PARSE FOO BAZ NIL)
(PARSE (1DAV)(FOO0.M2) BAZ NIL)

—
( PARSE SOURCE-F I LE PEST-FI LE T)

L
This is the same as (PARSE SOURCE-FILE DEST_FILE}.

¢
—

‘

|

C

Ye

CC

«
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Input functions

There are five predicates for checking the type of the next

token in the input. These return T if the next token is of the is

specified type, NIL otherwise. The input is not changed, —

EXPR 1SIDENTIFIER() .
EXPR [SSTRING() —
EXPR I SNUMBER () ~/

EXPR ISDELIMITERO

EXPR ISSEXPRESSION() Lo

There are five corresponding functions for fetching the next

token in the input, after first checking its type. These return the

token i f i t is of the specified type, otherwise they execute FAILURE

(}. The input pointer is advanced over the token.

EXPR IDENTIFIERO 7

EXPR STRINGO

EXPR NUMBER () |

EXPR DELIMITERO

EXPR SEXPRESSION({) —

There are also several functions for manipulating the next token _

without regard to its type. oo

£XPR TOKEN () |

This returns a dotted pair in the form (next-token . type). The |

token type is a smal! integer betiieend and 4: hd
8 - identifier type

. - string type
Z = number type

3 - del imi ter type

l
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.

- 4 -sexpressiontype

The inputpointer is advanced over the token.

\

EXPR PEEK()

] This is the same as TOKEN except that it does not change the
- input. It just peeks ahead at the next token,

-

| EXPR NEXT (ATOM!
L-

This is a predicate. Its value is T if the next token jpn the

| input is EQ to its argument, otherwise NIL. The input is not
0 changed.
L

| EXPR PROPERTY (INDICATOR)
This checks if the next token in the input has a property under

- the specified indicator. If so, it returns the property, otherwise

NIL. This first checks to make sure the next token is not a number,

: since GET of a number causes an error in LISP 1.8. The input is not

| changed.
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Backtracking functions

EXPR FAILURE O

Thi s causes backtracking, as described section 2.

EXPR FLUSHO »

This f ushes old contexts out of the system, as described in or

section 2. Its value is NIL,

EXPR CONTEXT O

This returns the current backtracking context (a smal linteger).

This is useful In conjunction with the function below for

manipulating contexts.

EXPR SET-CONTEXT (ATOM, PROPERTY, i NOI LATOR, CONTEXT) _

Th isfunctionmaybe used to change the property | i st of an aton

in a given backtracking context, | f the indicator s VALUE, then the

ef fect iS to assign the property-iist variable a valtie in the

specified context. Actually, tne property is changed in all contexts

from the current one back to the specified one. That is to say, i f a

failure occurs, the property change will not be undone until the
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fai lure happens in an earlier context than the specified one.

Setting the propertyin context zero will insure that 4 jure never

undoes the change. The value ot SET-CONTEXT is the value of the
second argument.

‘

L

|
he

[9

ho

|
L

-
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Other routines

EXPR ERROR (STRING)

This is the standard MLISPZ error handler. It prints out the —

error message whichis its argument on the teletype, then enters the oo

incore editor. The incore editor, which prints instructions when oO

cal led, gives the user a chance to correct the input and resume oo

translating, without having to begin all over again. After the input

has been corrected, ERROR calls <PROGRAM> again. (This is not the 1

ideal solution, but it permits recovery from some types of errors.) ’

EXPR FATAL-ERROR (STRING)

This is for non-recoverable errors. After printing the error -

message on the teletype, this returns to the top level of LISP. — |

EXPR WARNING (STRING, X) -

This is just for warning the user about various conditions. It —

prints on the teletype first the string, then the second argument, i}

then returns the second argument as its value,
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EXPR PRINTTY(X)

: This prints its argument onto the teletype, no matter what
\

output file is currently selected. It does not change the selected

output f i le. [ts value is the value of its argument.

L FEXPR LAPIN (L)

This justcallsEVALIDSKIN CONSUL), Lfter first setting the
input radix to 8 (octal). Since the radix for numbers in MLISP2is

10 (decimal) but LAP files ({andsomelLISPfiles)are in octal, his

| is often useful. After doing the DSKIN, the input radix is reset to
its old value.
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SECTION 1s

HLISPincompatibilities

C

Things that worked in MLISP thatuit | not work in MLISP?2

«

The changes that MLISFZ makes to the syntax of MLISP are

o primarily in the form of additions. ?n genera |, any legal MLISP

EXPRESSION will be accepted by iILISPZ2, However, there are a few
~

MLISP syntactic constructions uhichuil | not be accepted by MLISPZ2,

- These have all been mentioned avove, but are summarized here,

« 1. A PROGRAM in MLISP is surrounded by a BEGIN- END pair and

terminated with a period. In MLISPZ2 there is no enclosing BEGIN-

END pa ir, and _EOF_ terminates the program.

‘ 2. MLISP2's DEFINE expression is slightly less general than MLISP’s.

3. Exclamation point"!"and colon ":"are not legal letters in :

C MLISP2Z. though they are in MLISP, However they may stillbe
| included in identi fiers,.as may any special character, by

preceeding them withthe "literally" character: a question mark

|P!

Co

4. The vec tor opera tore" may not be used with the assignment

operator "«" in MLISPZ,

’
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SECTION 15

. Appendix

C

% kxkxkxkkxxkik Complete definition of MLISP2 in MLISPZ ssskoskxxsk %

i
C

LE] PROGRAM (x) =

{ {REP 8 M x {<EXECUTED_EXPRESSION> :
C MEAN NIL: [FLUSH}t} '#_EOF_ 3

b- LET EXECUTED EXPRESSION (EX,%) =
{ <EXPRESSION> !#': 1

| MEANIF NULL EX THEN NIL

ELSE BEGIN

f IF 2 1DEFINE THEN TERPR! PRINT EVAL EX;
L IF ?!{PRINT THEN PUTOUT (EX, TJ;

END:

LET EXPRESSION (P,EX,L) =
{ <PREFI XES> <PRI MARY>

_ {REP 0 M x {<INFIX> <PREFIXES> <PRIMARY> }}
}

MEAN

IF P| L THEN HIER(P CONS EX CONS L, 9) [2] ELSE EX;

LET PRI MARY (X) =
{ {ALT} 1}

| MEAN X123:
|

LET SIMPEX (B,L)PRIMARY=

{ <BASIC> {REP 3 M x {<QUALIFIER>}1}}
MEAN

IF NULL L THEN B

ELSE FOR NEW! INL DOB « CASE CAR(] « ] [11) OF
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BEGIN

B CONS 113];

<'"?&INDEX, 6, 'LIST CONS | [3]>: —

<'GET, B, CASE I (3,110F

BEGIN <'QUOTE, 1(3,21>;11(3,2]1: END>;

IF ATOM B THEN

TSETQ((B,1{4], IF 112] THEN 1 [2,2] ELSE NIL)
ELSE IF | [2] THEN

IF B{1] EQ 'GET THEN

<'SET-CONTEXT, B[{2],11[4],BI(3],
1(2,2]>

ELSE <'SET_CONTEXT.B,[14], (QUOTE VALUE),
1(2,2]>

ELSE IF Bl] EQ 'GET THEN <'PUT, B[(2]1,11[4],BI[3]1>

ELSE IF BI1IEQ’?&INCEX THEN —
<'PROGZ, <'?&REPLACE, BI[2],BI[3], .

<’SET0,B« GENSYMO, [[4]>>,
E>

ELSE <'STORE, B,[ [4]>;
END:

LET BASIC (X) =

{ {ALT [ID]

| [NUMBER]
| [STRING
I: [SEAPRESS ION]

 '< <ARGUMENTS> !'> oo
|  '( <EXPRESSION> !")

| #OCTAL [BEGIN NEW [BASE;IBASE«8;SCANNER{) ;
RETURN NUMBERO:; END]

3 I

MEAN

IF XI1JEQ 3 THEN <'QUOTE, X[2]>

ELSE IF X [1] EQ 4 THEN <'QUOTE, XI[3]> _
ELSE IF X[1] EQ 5 THEN ‘LIST CONS X [3]

ELSE IF X11 EQ & THEN X [3]

ELSE IF. X [1] EQ 7 THEN Xi31

ELSE X [2];

LET QUALIFIER (Q) = ~
{({ALT'{ <ARGUMENTS> !")



Section 15 Appendix 77

|  '[ <ARGUMENTS>!"']

| '. {ALT [IDENTIFIER]| <BASIC>}

- | {OPT '{ <EXPRESSION> I } 'e«  CEXPRESSION>
C MEAN Q;

LET LET (x. ?!PROD, x, PARAM, x, ALT, x, %, SYNTAX, x, x, PRIMARY={ LET [IDENTIFIER] I’{ PARAMETERS THNTICS)
. {OPT [IDENITFIER])  i'= <LBR> <PATTERN> <RBR>

I "MEAN <EXPRESSION>'

5 MEAN
BEGIN NEW ARGS, NARGS, PUSHLIST, LAM, ?!PROD?#

| ?1CO0E, ?!RC, ?!LAST, LOC, CONLISJ, GEN. REMDB;%» Make a name for the syntax routine and check'it %
- ?!FROD?# « SYNAM{?!PROD, ?!PROD.?!PROD?#)

IF ? !PROD?#.SUBR THEN WARNING ("PRODUCTION REDEFINED", ?!PROD)

| ELSE CHECKDEF (?!PROD) ;IF 7! PROD MEM) ? {PRODUCTIONS THEN

WARNING ("PRODUCTION MULTIPLY-DEFINED" ?!PROO]
" ELSE ?!PRODUCTIONS 18} « 2'PROO CONS ? PRODUCTIONS:
L % Find the number of non-* arguments to semantics routine %NARGS «3;

FOR NEWP IN PARAM DO

i IFP[1,1]EQ 1 THENBEGIN

ARGS « (IF P[1,2] THEN SPECIALDEC(PI[1,3]}
ELSE P({1,3]}CONS ARGS;

NARGS «NARGS+1;
~ PUSHLIST « ' PUSH CONS PUSHLIST;

END

" ELSE PUSHLIST « NIL CONS PUSHLI ST;
» Syntax %
LAPST(? IPROD?4) ;

EPAT (SYNTAX, NARGS, LENGTH{(PARAM), REVERSE (PUSHLIST),
NARGS NEQ 8);

EM1 T(<'JCALL, NARGS, <’E,?!FR0OD>>};
LAPFN{?!PRCD?#),
?!PROD.CODE{B}« ?!COOE: |
IF ALT THEN ADALT(?!PROD,?!PROD?#, ALT «ALTI[1],

SYNAM(ALT, ALT.?!PROD?#));
% Semantics %

LAM« <' LAMBDA, REVERSE (ARGS), SEMANTICS>;
IF ?!DEFINE THEN ?!PROD.EXPR{8} « LAM

IF 7 /PRINT THEN PUTOUT (<’DEFPROP, ?!PROD, LAM spypn. 13,
PRINTTY ?!PROD; SE
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END;

LET PATTERN (L) =

{ (REP i IM =|

{OPT * 1}

{OPT "#t

(ALT [IDENTIFIER]
| |" [TOKEN]

| '< [IDENTIFIER] 1’>
| '[ <EXPRESSION> !']
|  <LBR> <META> <RBR>

brood

MEAN L:

LET META(X) =

{ALT "REP [NUMBER] {ALT [NUMBER] | MP {OPT ’x!
<LBR> <PATTERN> <RBR> {OPT <PATTERN>! |

| 'OPT  <PATTERN> |
| 'ALT {REP 0 M x [<PATTERN>} |]

bo

MEAN X _.

LET BEGIN (x, YARS,EXS, *x} PRIMARY =
{ BEGIN <DECLARATIONS> <EXPRESSIONS> [END

MEAN

'PROG CONS YARS CONS EXS:; —

LET IF (x,El,x,EZ,E3) PRIMARY = or
{ IF <EXPRESSION> | THEN {REP 1 M x i<EXPRESSION>} ALSO}

{OPT E L S EIREP 1 Mx {<EXPRESSION>} ALSO}}

MEAN

'COND CONS (El CONS MAPCAR(’CAR,E2))
CONS (IF -E3 THEN NIL

ELSE IF -CDR(ES «E3[2]}& -ATOM E3(1,1]
&E3(1,1,1) EQ 'COND THEN COAAR E3

ELSE <’'T CONS MAPCAR('CAR,E3}>);
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A

= LET FOR (L,D,EX,BE) PRI MARY =
| { {REP I M x

i { FOR {OPT NEW! I [ID)] {ALT "IN <EXPRESSION>

C | "ON <EXPRESSION>
| Ce <EXPRESSION> ! TO <EXPRESSION>

ig {OPT BY <EXPRESSI ON>1
bo}

) | {ALT DO|COLLECT|': [ID]} <EXPRESSION>

L {OPT {ALT WHILEJUNTIL} <EXPRESSION>);

C MEAN

: <' 7&FOR, <' QUOTE, MAPCAR(FUNCTION(LAMBDA (I): <

| IF I [2] THEN ' NEW ELSE ' OLD,"
I (3,2),
(1 «1 [4)) 12),

| iF 1 [1] EQ 3 THEN
r- <' 2&RANGE, 1 [3], 1151,

IF I [6] THENI [6,2] ELSE 1»
ELSE I (21s), Lb,

| <' QUOTE, CASE DI[2.1] OF'
BEGIN ' PROG2; ' APPEND, 01(2,3]:; END»,

<'" QUOTE, EX»,

C <'QUCTE, TF BE THEN
. IF BE{l1,1] EQ 1 THEN <'NOT, BEI[2]>

ELSE BE [2]

i ELSE NI L>>:
¢ LET WHILE (W,BE,D,EX} PRI MARY =
a { {ALT WHILE|UNTIL} <EXPRESSION>

| {ALT DO|COLLECT} <EXPRESSION>

| MEAN
L <'?8WHILE,

<"QUOTE, IF C0I(2,11 EQ 1 THEN 'PR0OG2 ELSE ' APPEND>,
<' QUOTE, IF W({1} EG 1 THEN BE ELSE <' NOT, BE>>,
<" QUOTE, EXss:

CC LET DO (D,EX,UW,BE} PRIMARY =
{ {ALT DO|COLLECT! <EXPRESSION>

| {ALT WHILEJUNTILY <EXPRESSION>
MEAN

<'?800, < QUOTE, IF Dl] EQ 1 THEN ' PRO® ELSE ' APPEND>,

C_

C
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<' QUOTE, EX»,
<'QUOTE, IF WI[2,1} EC 1 THEN <NOT, BE> ELSE BE>>;

LET FNDEF (TYP,NAME,LAM} PRI MARY =

{ [FUNCTION_TYPE] [ID] <LAMBDA- BODY> |
MEAN

BEGIN

CHECKDEF (NAME) ;
IF TYP EQ ' LEXPR THEN

IF LENGTH {LAM[Z2] ) EQ 1 THEN

LAM« <' LAMBDA, LAMI(Z,11, LAMI[3]>
ALSO TYP « '"EXPR

ELSE ERROR ("LEXPRS MUST TAKE ONE FORMAL ARGUMENT");
IF 7! DEFINE THEN NAME. (TYP) {8}! « LAM

IF 2! PRINT THEN PUTOUT (<’DEFPRGP, NAME, LAM TYP», T};
PRINTTY NAME;
END:

LET LAMBDA (x, LAM, ARGS) PRI MARY =

{ LAMBDA <LAMBDA- BODY> {OFT ’; ’'{ <ARGUMENTS> I’) }}
MEAN

IF ARGS THEN LAM CONS ARGS [3] ELSE LAM

LET CASE (x,EX,x,x,EXS,x) PRI MARY =

{ CASE <EXPRESS ION> OF BEGIN <EXPRESSI ONS> ' END}
MEAN

BEGIN NEW LABELS, L, LAB:
FOR NEWE IN EXS DO

PROGZ( LABELS « (LAB « GENSYM{)) CONS LABELS,
L « <'RETURN, E> CONS LAB CONS L);

RETURN ' PROG CONS NIL

CONS <'GO, <&INDEX, <' QUOTE, REVERSE LABELS>,
<'"LIST, EX>>>

CONS REVERSE (LJ;

END:

LET INLINE (x,L) PRIMARY=

{ #INLINE [SEXPR_LIST] |]
MEAN

BEGIN NEW GEN, CDNLIST, LOC, REMDB, FN;

—— !
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CHECKDEF(FN « LI[1,21);
IF ?IDEFINE THEN

BEGIN

— GEN « GENSYMO:  CONLIST+« <NIL>: LOC « BPORG:

C FOR NEW [IN CDR L DO
IF ATOM I THEN I &DEFSYM(I,LOC)

L ELSE DEPOSI T(LOC,GWD(I)) ALSO UPLOCO:
DEFSYM (GEN, LOC):

: FOR NEW I IN CDRCONLIST DO

| PROG2 (DEPOSI T(LOC, GWD(I}), UPLOC());| FN. (L[1,311{@8} « NUMVAL (BPORG) ;

¢ BPORG « LOG:
END:

[ IF ?IPRINT THEN
QUTC(T,NIL) ALSO BASE4 ALSO TERPRI MAPC (PRINT, L)
ALSO BASE40 ALSO OUTCI(NIL,NIL):

| PRINTTY FN:
—— END:

LET SELECT (x, VALFN, x, DOMAIN, SUCFN, TCOND, TERFN) PRIMARY =

: { SELECT I{OPT<EXPRESSION>!
C FROM {ALTIID]’: <EXPRESSION> |<EXPRESSION>}
— {OPT SUCCESSOR <EXPRESSION>}

{OPT UNLESS <EXPRESSION>}

{OPT FINALLY <EXPRESSION>}

-
MEAN

C BEGIN NEW VAR:

L CASE DOMAINI1]1OFBEGIN

PROGZ (VAR « <DOMAINI2)>,DOMAIN «DOMAINI4))
IF VALFN | SUCFN {TCOND | TERFN THEN

i ERROR ("VARIABLE NEEDED IN SELECT EXPRESSION")
C ELSE VAR «<INTERNGENSYM() > ALSO DOMAIN «DOMAINI2];

END:

[ RETURN <' ?8SLCT, DOMAIN,IF VALFN THEN <'FUNCTION, <'LAMBDA, VAR, VYALFNI1]>>

ELSE "(QUOTE CAR),

| IF SUCFN THEN <'FUNCTION, <'LAMBDA, VAR, SUCFNI[2]>>ELSE '(QUOTE CDR).
CC IF TCOND THEN <'FUNCTION, <'LAMBDA, YAR,TCONDI[2]>>

ELSE '(QUOTE NULL),

[ IF TERFN THEN <'FUNCTION, <'LAMBDA, VAR,TERFNI[2]>>ELSE ' (QUOTE FAILURE)>;
END:

[

CC

<

L
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LET RECOMPILE (%,FNS,%, |FILE,PPN,OFILE] PRIMARY =
{ RECOMPILE {REP 1 M{[IDENTIFIER]I} I

I"IN <FILE> {OPT * [ [TOKEN) tt’, [TOKEN] 1’ }
[OPT 'TO <FILE> }

}

MEAN

BEGIN NEW NFNS, N, ?{PRODUCTIONS, 2I/PRINT, ? DEFINE;
IF OFILE THEN

IF -'PPRINT.SUBRTHEN

ERR PRINTSTR TERPRI

"USE MLISP2.PRI FOR PRINTING"

ELSE QUTFILE (’DSK?:,
IF ATOM OFILE « OFILEI[2] THEN OFILE

ELSE CAR OFILE,

IF ATOM OFILE THEN NIL ELSE CDR OFILE)
ALSO ?!PRINT « T ALSO ?!BEFINE« NIL

ELSE ?!PRINT « NIL ALSO ?!0EFINE« T;
FNS « MAPCAR('CAR, FNS); %“ List of fns to reconipi le%
NFNS «LENGTH(FNS}; “& of fns to reconipi le%
N « 0: “4 of fns conipi led so far %
EVAL <'INPUT, IF PPN THEN <PPN{2,11, PPN[4,1)> ELSE 'DSK?:,

IFILE>;

INC(T, NIL);
UNTIL N EQ NFNS 00

BEGIN NEW XI, X2, TX1, TXZ;
IF ((TX1 «SCANUIYEQ?IIDTYPE

& (Xi« INTERN SCNVAL) MEMQ
'(LET EXPR FEXPR LEXPR MACRO)

& (TX2 « SCAN{()) EQ ?!IDTYPE
& (X2 « INTERN SCNVAL) MEMQ FNS)

| (X1 E Q "INLINE
& (X2 « SREAD(I[Z] MEMQ FNS

§ TX2 « ?!SEXPTYPE)

{X1 EQ 'SPECIAL
&§ (TX2 « SCAN()) EQ ?! IDTYPE

6 x2 « INTERN SCNVAL) THEN

| BEGIN _
% settoken stack to contain only XI and X2 %
SET-TOKENS (xX1,TX1, X2, TX2);
“Parce an <EXPRESSION> 9%

EXPRESSICN?H(]
IF NEXT {'?:) THEN FLUSH)

ELSE ERRIR"| LLECAL EXPRESSION RECOMPILED");
IF XI NECG'SPECIAL THEN N «N+1i; IB
END

ELSE SKIP-TO-SEMI (Nil);
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” END:
INCINIL, TJ):
TERPRI TERPRI IF ?!PRINT THEN FINISH-PRINTINGO:

~ END:

L

he

LET DEFINE (x,L) PRIMARY =

{ OEFINE {REP 1 M x

EIDENTIFIERI

- (ALT "PREFIX I{OPTITOK]} {OPT [NUMBER]
| [NUMBER] | [NUMBER]
| [TOK] {OPT INUMBER] |! [NUMBER]}

_ by 1 3
MEAN

FOR NEW | IN L DO

CASE i [(2,110F
C— BEGIN

BEGIN

[ [11.28PREFIX{81 « | ill :
I 111. ?8RIGHT {3} «

IF 1(2,4) THEN 1(2,4,1) ELSE 1000:
¢ IFI{2,3] THEN

— [ (2,3,11.28PREFIX{Bt« 1 [11:

END:

BEGIN

I [1).28LEFT (81 « 112,21;

| [1]1.?28RIGHT {8B} « | [2,3,2];
END:

BEGIN

[ [2,2] .28INFIX{8} «1111:

L IF 112,33) THEN

C | [11.728&8LEFT {8} « | [2,3,1]
ALSO 111] .?28RIGHT {8}« I [2,3,2,21:

| END:
-

END:
{

C

LET COMMENT(x) PRIMARY =

{ COMMENT [SKIP-TO-SEMI (T) 1}
i MEAN NIL:

CL

"
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LET SPECIALS {%,L) PRIMARY =

{ SPECIAL <IDLIST> 1 |
MEAN —

MAPC (*SPECIALDEC, LJ: .

LET LAMBDA-BODY (x, VARS,PVARS,x, %, EX] = |
I 1° ( <VARTABLES>{OPT :<VARIABLES>I!’)I’t <c EXPRESSION >}

MEAN —

<’ LAMBDA. VARS, ~
IF PYARS THEN <'PROG,PVARSI[2], <'RETURN, EX>>

ELSE EX»: .

LET DECLARATIONS (L)= —J

{{REP 0 Mx {{ALT NEW | SPECIAL1T  <I0OLIST> 1’: 11} 1} |
MEAN a

FOR NEW | IN L COLLECT B |
IF I [1,1] EQ 1 THEN 1 [2]

ELSE MAPC('SPECIALDEC,1(2])}: Co

LET EXPRESSIONS (L) = Co

{ {REP O M x {<EXPRESSION>t ’; [FLUSHI} 3

MEAN —

MAFCAR (CAR, LJ): ob

LE TIDLIST(L) = |
{ {REP 8 MN x {[ID]} ",1 1 1
MEAN —

MAPCAR(’CAR, L): ll

LET VARIABLES (L)= |

{REP OM %{{OPT SPECIAL) (1011 ',1 1}
MEAN = J

MAPCAR (FUNCTION{LAMBDA (X);

IF CAR X THEN SPECIALDEC(XI[Z2]}YELSE X[2]},L); Cd

|
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= LET PARAMETERS (L) =
{ {REP 1 M x {{ALT {OPT SPECIAL} [ID] | ’'xi} ’,}1 1}
MEAN L;

$<

L LET ARCUMENTS (L) =
{ {REP B M x {<EXPRESSION>! bod

MEAN

ig MAPCAR (CAR. L};
|@

i LET PREFIXES (L) =
{ {REP 8 M { [PREFIX] {ORT 'el 11} 1

' MEAN
REVERSE(L)

C—

i LET INFIX (L} = |
{ [INFIX1] {OPT oi 1}

: MEAN L:
[4
-

| LET FILE (NAM, EXT =

i { [TOKEN] OPT '. [TOKEN]I} 1}
MEAN

C IF EXT THEN NAMI1) CONS EXTI[Z,11 ELSE NAMI1I:

| LET LBR (x) =

i {ALT C0 TO %“» ( may be used instead of "{" ¥%
C MEAN NIL:

LET RBR (x) =

(VIALT |) ot) “ ")" may be used instead of "}" %
| MEAN NIL:

| On

C_

|
-

¢
-
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—
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DELIM TER 63, &7
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Lo
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f FEXPR 54
L FLUSH §&, 63

| GET 28
h.

ID 11, 16, 23, 58, 63
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1 ncremental state vector- ©

| infix 11, 58, Gl
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LAPIN 72

legal letter 63
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LEXPR 54



Section 17 Index 30

LISP 2

LISP70 1, 2

list-processing 2, 3

LITERAL 12, 16, 23, 33, 46, 63

M 37, 38, 40
MACHO 54

ma j or changes 3, 15
MEAN 23, IS

meta expression 24. 25, 30, 35, 44, 50

minor changes 3, 12,15
MLISP 2, 3, 19, 73

MLISPZ 1, 2, 3, 4, 12, 13, 15, 44, 45, 66, 73

NEXT 68

nonterminal 23, 30, 31, 33 :
NUMBER 63, 67 |

operator precedence hierarchy 58, 61
OPT 24, 31, 35, 36, 42, 43, 50

PARSE 64, 65, 66

PATTERN 73

pattern matcher 5, 24, 26, 34

pattern mmtching 1, 3, 30, 34, 44
PEEK 68

prefix 11, 58, 53

PREFI X 57
PRIMARY 4, 11, 13, 15, 16, 19, 45, 46
PRI NTTY 72

production 4, 13, 1&4, 23, 24, 25, 26, 33, 45
PROGRAM 4, 11, 12, 13, 14, 19, 24, 64, 73
PROPERTY 68

PUTFROP 20

QUALIFIER 17, 18, 20

RECOMPILE 3, 14, 53, 354

REP 24, 31, 35, 37, 38, 39, 40, 42, 50

repetition control numbers 37
runtime functions G4
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~ SET- CONTEXT 69, 70
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/ SIMPEX4, 16, 17, 18, 19
- state of a computation 6

state vector 6, 7

| STRING 63, 67
| SUCCESS 7

C syntax 23, 25, 26, 27, 30, 35, 37, 42, 44
syntax description language 30, 31, 33, 34, 35, 50

L
TOKEN 67, 68

token type 67
translator writing 2, 13, 24
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