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Abstract

L
Let (ayy-.-,8,) = a denote a vector of numbers, and let C(a,n)

8 denote the nxn cyclic matrix having (815-+-58,50,...,0) as its
first row. It is shown that the sequences (det C(a,n):n =k,k+l,...)

- and (per C(ayn): n = k,kt1l,...) satisfy linear homogeneous difference

i equations with constant coefficients. The permanent, per C , of a
matrix C 1s defined like the determanent except that one forgets

1 about (-1) %'9 TT uhere x is a permutation.
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N Introduction

| While she was a student at Lowell High School, Beverly Ross [2]

” generalized an exercise given by Marshall Hall Jr. [1], and found an

_ elegant solution. Hall's exercise was posed in the context of systems

of distinct representatives, or SDR's for short. Let A = (Ay + + A)

~ denote an m-tuple of sets, then an m-tuple COREE with 2, eh,

for i = 1,...,m is an SDR of A if the elements SERRE are all
| distinct. Hall's exercise 1s the case m = 7 of the following problem

posed and solved by Ross: Let As = {i,i+1,i+2)} denote a 5-set of

consecutive residue classes modulom for i = 1,...,m . The number

of SDR's of (A;: 1 = 1,...,m) is 2+L where L is the m-th term

| of the Lucas sequence 1,3,4,7,11,... defined by Ly = 1, L, = 3

He and L = Lo_1+tL 5 for n = 3,4,. . . . For example, it follows
Co from this result that the solution to Hall's exercise 1s +L, = 31 .

In this note we give a new proof of Ross' theorem, and indicate

— a generalization.

Ce |
Ross' Theorem |

We shall require a simple result which appears in Ryser [5]; namely,

the number of SDR's of an m—-tuple B = (Bys+- 5B) of sets Bys..sB |
is equal to the permanent of the incidence matrix of B . Since this |

fact 1s an immediate consequence of definitions, we give them here. |

- Let m and n denote natural numbers with m < n , and let Bis.esB |
denote subsets of {1,...,n} . The incidence matrix [b(i,Jj)] of

B = (Bys--+sB) is defined by |



~ 1, if JeB,
b(i,J) =

L 0, if jfB;
for 1 =1,...,m and J = 1l,...,n . The permanent of an mxn matrix

[r(i,J)] is defined to be

= per(r(i,j)1= 2 r(i,xl)r(2,®) . . . r(m,m)
| n

where the index of summation extends over all one-to-one mappings =

| sending {1,...,m} into {1,...,n} .
—

The incidence matrix on of the m-tuple A = (A; ceesh) of sets

i Ags oes A considered by Ross 1s an myxm cyclic matrix having as its
first row (1,1,1,0,...,0) ; that is, the first row has its first three

= components equal to 1 and the rest of its components equal to 0 .

For example, the incidence matrix for Hall's exercise 1s

| 1 1 1 0 0 0 O

Oo 1 1 1 0 0 ©

Oo 0 1 1 1 0 ©

C., = Oo 0 0 1 1 1 © .
— !

| Oo 0 0 0 1 1 1

1 0 0 0 0 1 1

—

1 1 0 0 0 0 1

Ross' Theorem 1s equivalent to showing that per Con = etl . To

do this, we define three sequences of matrices:

_ ] 111 0 1 110 0

| 1 1 1 001 1 1 0 1 1 1 ©

| b= | 0 1 1 » Dy =|, 01 1 > d= 0 0111 -
E 0 1 10 01 0 0 011

10 0 01
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— ;

| 110 0 1 1 0 0 0
1 1 0 1 1 1 0 1 1 1 0 O

a - Es =| 1 1 1 ) Ey = 001 1 1 , Eo = 0 1 1 1 O yee 3

1 Oot 0 011 EE
df 0 0 0 1 1

[—-—

| 1 1 1 0 1 1 1 0 O

1 1 1 001 1 1 0 1 1 1 O

- Fs = 0 1 1 ’ Fy = 0 01 1 ’ Fe = 0 0111 3 eee a
B 0 01 5 0 o1 0 0 011

O 0 0 0 1
- :

L Let per Cu = Cn yr per D = d , per Eo =e and per B= .

: We use the following properties of the permanent function. First, the
}
_— permanent of a 0-1 matrix is equal to the sum of the permanents of the

. minors of the 1's in a row or in a column of the matrix. Second, the

permanent of a matrix 1s unchanged by permuting the rows or by permuting

_ the columns of the matrix. Third, the permanent of a matrix having a

: row or column of O's 1s equal to 0 . Fourth, the permanent of a

— square matrix 1s equal to the permanent of the transpose of the matrix.

oo Expanding per Con in terms of the minors of the 1's in the first row
—

of C , we find
| m

— (1) c =2d [te (m = 4,5,...) .

| Expanding per D in terms of the minors of the 1's in the first

column of D_, we find
m

- 1| : = + = ces)(2) d € -1 rq (m » Ds )



It 1s easy to show that

(%) e = en1%8,5 (m = L,5,...),

ly = =... =1T,=1.(Lh) £ =f fy 1
-

Using the system (1) - (4) it 1s easy to show by induction that

— e =F , where F denotes the m-th term of the Fibonacci sequence
m m+ 1 m

eo os ® = = = + + = +(1,1,2,35...) , d_ +F , andc_ 2+ 2F LYE 2 LIS +L

for m = 3,4....

A Generalization

Let a = (aps--52,) denote a k—-tuple of numbers and let T denote

a kx (k—-1) matrix having all of its entries in the set (0,85 - SEL
CL

For each n > k define an n xn matrix C(T,n) as follows:

7. | x

o 0
k

al

c(T,n) = 0 al

Sx

Ts 8q

The first k-1 columns of C(T,n have the upper triangular half Ty

of T in the upper right corner, and the lower triangular half Ts of T

in the lower left corner. All other entries in the first k-1 columns

of C(T,n) are 0 . The remaining n-k+l columns of C(T,n) consist

of n-k+1l cyclic shifts of the column (a5 «+ 58558750, ..,0)



_ Given a kx (k-1) matrix T having all of its entries in

| {0,a,, A Ag! and having (tse esty 1) as its top row, we expand
~ per C(T,n) by the minors of elements in the top row of C(T,n) . It turns

| out that these minors always have the form C(Ty,n-1) where T. is a

| k x (k-1) matrix having all its entries in 10,84, Co ® ... Thus, there
a exist k x (k-1) matrices T ,...,T having all their entries in

05a, . 28, } such that
= k

| (1) per C(T,n) = 2J ty per C(T;>n-1)
| i=1
|

where t= a, . (If we are dealing with determanents, (-1)* must
~ be put into the summand.)

We have an equation like (1) for each matrix T ; hence, we have a

| - finite system of equations if we let T range over all possible

a kx (k=1) matrices with their entries in 10,2 ® The existence

| of this system of difference equations implies the existence of a difference

E equation satisfied by the sequence (per C(T,n): n = k,kt+l, ...) for
each fixed matrix T . (This 1s also true for the sequence

~ (det C(T,n): n = k,k+1l,...) .) A consequence of the foregoing is ths

5 result proved by Ross, but evidently much more is true.

: Let LS REETE denote natural numbers with 1 = Iq <. . .< r, = k ,

| — and for each natural number m > k define the collection A = {Ag 5A

of sets A of residue classes modulo m where

A; = {r ti, ...,r +i} :

~ Let a(m) denote the number of SDR's of A , then the sequence
i (a{m) : m = k,k+1,...) satisfies a linear homogeneous difference equation

i



— with constant coefficients. The proof of this fact follows the proof

of Ross' Theorem given in the preceding section.
|
—

Note that our existence theorem has a constructive proof, but we

do not have an explicit expression for a difference equation satisfied
—

| | by the sequence (per d(T,n): n = k,k+tl,..) . This gives rise to a host

of interesting research problems. For example, give a difference

equation satisfied by the sequence (per C (k,n): n = k,kt1l,...) where

= C(k,n) is the cyclic nxn matrix having as its first row

| (1, ..,1,0,...,0) consisting of k 1's followed by n-k O's .

References

[1] Marshall Hall, Jr., Combinatorial Theory, Blaisdell Publishing

_ Company, Waltham, Mass., 1967. (Problem 1, page 953.)

[2] Beverly Ross, "A Lucas Number Counting Problem," Fibonacci

% Quarterly, Vol. 10 (1972), pages 525-328.

[2] Herbert J. Ryser, "Combinatorial Mathematics," Number 1k of the

Carus Mathematical Monographs, John Wiley, 1963.

-

-

-


