

THE NUMBER OF SDR'S IN CERTAIN REGULAR SYSTEMS

BY

DAVID A. KLARNER

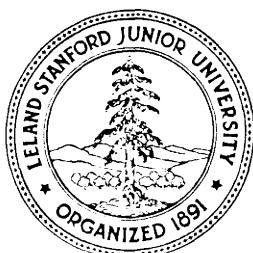
STAN-CS-73-354

APRIL 1973

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY



The Number of SDR's in Certain Regular Systems

David A. Klarner
Stanford University

Abstract

Let $(a_1, \dots, a_k) = \bar{a}$ denote a vector of numbers, and let $C(\bar{a}, n)$ denote the $n \times n$ cyclic matrix having $(a_1, \dots, a_k, 0, \dots, 0)$ as its first row. It is shown that the sequences $(\det C(\bar{a}, n): n = k, k+1, \dots)$ and $(\text{per } C(\bar{a}, n): n = k, k+1, \dots)$ satisfy linear homogeneous difference equations with constant coefficients. The permanent, per C , of a matrix C is defined like the determinant except that one forgets about $(-1)^{\text{sign } \pi}$ where π is a permutation.

This research was supported by the National Science Foundation under grant number GJ-36473X. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Introduction

While she was a student at Lowell High School, Beverly Ross [2] generalized an exercise given by Marshall Hall Jr. [1], and found an elegant solution. Hall's exercise was posed in the context of systems of distinct representatives, or SDR's for short. Let $\bar{A} = (A_1, \dots, A_m)$ denote an m -tuple of sets, then an m -tuple (a_1, \dots, a_m) with $a_i \in A_i$ for $i = 1, \dots, m$ is an SDR of \bar{A} if the elements a_1, \dots, a_m are all distinct. Hall's exercise is the case $m = 7$ of the following problem posed and solved by Ross: Let $A_i = \{i, i+1, i+2\}$ denote a 3-set of consecutive residue classes modulo m for $i = 1, \dots, m$. The number of SDR's of $(A_i : i = 1, \dots, m)$ is $2 + L_m$ where L_m is the m -th term of the Lucas sequence $1, 3, 4, 7, 11, \dots$ defined by $L_1 = 1$, $L_2 = 3$ and $L_n = L_{n-1} + L_{n-2}$ for $n = 3, 4, \dots$. For example, it follows from this result that the solution to Hall's exercise is $2 + L_7 = 31$.

In this note we give a new proof of Ross' theorem, and indicate a generalization.

Ross' Theorem

We shall require a simple result which appears in Ryser [3]; namely, the number of SDR's of an m -tuple $\bar{B} = (B_1, \dots, B_m)$ of sets B_1, \dots, B_m is equal to the permanent of the incidence matrix of \bar{B} . Since this fact is an immediate consequence of definitions, we give them here. Let m and n denote natural numbers with $m \leq n$, and let B_1, \dots, B_m denote subsets of $\{1, \dots, n\}$. The incidence matrix $[b(i, j)]$ of $\bar{B} = (B_1, \dots, B_m)$ is defined by

$$b(i, j) = \begin{cases} 1, & \text{if } j \in B_i, \\ 0, & \text{if } j \notin B_i \end{cases}$$

for $i = 1, \dots, m$ and $j = 1, \dots, n$. The permanent of an $m \times n$ matrix $[r(i, j)]$ is defined to be

$$\text{per}[r(i, j)] = \sum_{\pi} r(i, \pi 1) r(2, \pi 2) \dots r(m, \pi m)$$

where the index of summation extends over all one-to-one mappings π sending $\{1, \dots, m\}$ into $\{1, \dots, n\}$.

The incidence matrix C_m of the m -tuple $\bar{A} = (A_1, \dots, A_m)$ of sets A_1, \dots, A_m considered by Ross is an $m \times m$ cyclic matrix having as its first row $(1, 1, 1, 0, \dots, 0)$; that is, the first row has its first three components equal to 1 and the rest of its components equal to 0.

For example, the incidence matrix for Hall's exercise is

$$C_7 = \left| \begin{array}{ccccccc} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{array} \right| .$$

Ross' Theorem is equivalent to showing that $\text{per } C_m = 2 + L_m$. To do this, we define three sequences of matrices:

$$D_3 = \left| \begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right|, \quad D_4 = \left| \begin{array}{cccc} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{array} \right|, \quad D_5 = \left| \begin{array}{ccccc} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{array} \right|, \dots ;$$

$$E_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad E_4 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \quad E_5 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \dots;$$

$$F_3 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad F_4 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad F_5 = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \dots$$

Let $\text{per } C_m = c_m$, $\text{per } D_m = d_m$, $\text{per } E_m = e_m$, and $\text{per } F_m = f_m$.

We use the following properties of the permanent function. First, the permanent of a 0-1 matrix is equal to the sum of the permanents of the minors of the 1's in a row or in a column of the matrix. Second, the permanent of a matrix is unchanged by permuting the rows or by permuting the columns of the matrix. Third, the permanent of a matrix having a row or column of 0's is equal to 0. Fourth, the permanent of a square matrix is equal to the permanent of the transpose of the matrix.

Expanding $\text{per } C_m$ in terms of the minors of the 1's in the first row of C_m , we find

$$(1) \quad c_m = 2d_{m-1} + e_{m-1} \quad (m = 4, 5, \dots).$$

Expanding $\text{per } D_m$ in terms of the minors of the 1's in the first column of D_m , we find

$$(2) \quad d_m = e_{m-1} + f_{m-1} \quad (m = 4, 5, \dots).$$

It is easy to show that

$$(3) \quad e_m = e_{m-1} + e_{m-2} \quad (m = 4, 5, \dots),$$

$$(4) \quad f_m = f_{m-1} = \dots = f_3 = 1.$$

Using the system (1) - (4) it is easy to show by induction that

$e_m = F_{m+1}$, where F_m denotes the m -th term of the Fibonacci sequence $(1, 1, 2, 3, \dots)$, $d_m = 1 + F_m$, and $c_m = 2 + 2F_{m-1} + F_m = 2 + F_{m-1} + F_{m+1} = 2 + L_m$ for $m = 3, 4, \dots$.

A Generalization

Let $\bar{a} = (a_1, \dots, a_k)$ denote a k -tuple of numbers and let T denote a $k \times (k-1)$ matrix having all of its entries in the set $\{0, a_1, \dots, a_k\}$. For each $n \geq k$ define an $n \times n$ matrix $C(T, n)$ as follows:

$$C(T, n) = \begin{array}{|c|c|} \hline \bar{h}^{T_1} & \begin{matrix} a_k & & & & \\ \vdots & a_k & & & 0 \\ a_1 & & \ddots & & \\ & a_1 & & & \\ & & & \ddots & a_k \\ & & & & a_1 \\ & & & & & \ddots \\ & & & & & & a_1 \end{matrix} \\ \hline 0 & \ddots & & & & \\ \hline \bar{h}^{T_2} & & & & & \\ \hline \end{array}$$

The first $k-1$ columns of $C(T, n)$ have the upper triangular half T_1 of T in the upper right corner, and the lower triangular half T_2 of T in the lower left corner. All other entries in the first $k-1$ columns of $C(T, n)$ are 0. The remaining $n-k+1$ columns of $C(T, n)$ consist of $n-k+1$ cyclic shifts of the column $(a_k, \dots, a_2, a_1, 0, \dots, 0)$.

Given a $k \times (k-1)$ matrix T having all of its entries in $\{0, a_1, \dots, a_k\}$ and having (t_1, \dots, t_{k-1}) as its top row, we expand $\text{per } C(T, n)$ by the minors of elements in the top row of $C(T, n)$. It turns out that these minors always have the form $C(T_i, n-1)$ where T_i is a $k \times (k-1)$ matrix having all its entries in $\{0, a_1, \dots, a_k\}$. Thus, there exist $k \times (k-1)$ matrices T, \dots, T having all their entries in $\{0, a_1, \dots, a_k\}$ such that

$$(1) \quad \text{per } C(T, n) = \sum_{i=1}^k t_i \text{per } C(T_i, n-1)$$

where $t_i = a_i$. (If we are dealing with determinants, $(-1)^i$ must be put into the summand.)

We have an equation like (1) for each matrix T ; hence, we have a finite system of equations if we let T range over all possible $k \times (k-1)$ matrices with their entries in $\{0, a_1, \dots, a_k\}$. The existence of this system of difference equations implies the existence of a difference equation satisfied by the sequence $(\text{per } C(T, n) : n = k, k+1, \dots)$ for each fixed matrix T . (This is also true for the sequence $(\det C(T, n) : n = k, k+1, \dots)$.) A consequence of the foregoing is the result proved by Ross, but evidently much more is true.

Let r_1, \dots, r_n denote natural numbers with $1 = r_1 < \dots < r_n = k$, and for each natural number $m > k$ define the collection $\bar{A}_m = \{A_1, \dots, A_m\}$ of sets A_i of residue classes modulo m where

$$A_i = \{r_1 + i, \dots, r_n + i\}.$$

Let $a(m)$ denote the number of SDR's of \bar{A}_m , then the sequence $(a(m) : m = k, k+1, \dots)$ satisfies a linear homogeneous difference equation

with constant coefficients. The proof of this fact follows the proof of Ross' Theorem given in the preceding section.

Note that our existence theorem has a constructive proof, but we do not have an explicit expression for a difference equation satisfied by the sequence (per $Q(T, n)$: $n = k, k+1, \dots$). This gives rise to a host of interesting research problems. For example, give a difference equation satisfied by the sequence (per $C(k, n)$: $n = k, k+1, \dots$) where $C(k, n)$ is the cyclic $n \times n$ matrix having as its first row $(1, \dots, 1, 0, \dots, 0)$ consisting of k 1's followed by $n-k$ 0's.

References

- [1] Marshall Hall, Jr., Combinatorial Theory, Blaisdell Publishing Company, Waltham, Mass., 1967. (Problem 1, page 53.)
- [2] Beverly Ross, "A Lucas Number Counting Problem," Fibonacci Quarterly, Vol. 10 (1972), pages 325-328.
- [3] Herbert J. Ryser, "Combinatorial Mathematics," Number 14 of the Carus Mathematical Monographs, John Wiley, 1963.