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3 V. Pereyra

«

Abstract

These seminar notes give a detailed treatment of finite difference

C approximations to smooth nonlinear two-point boundary value problems for

second order differential equations. Consistency, stability, convergence,

and asymptotic expansions are discussed. Most results are stated in such

L . a way as to indicate extensions to more general problems, gyccessive

extrapolations and deferred corrections are described and their 1mplemen-

tations are explored thoroughly. A very general deferred correction gen-

erator 1s developed and it 1s employed 1n the implementation of a variable

order, variable (uniform) step method. Complete FORTRAN programs and

| extensive numerical experiments and comparisons are included together

1 with a set of 48 references.
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~ HIGH ORDER FINITE DIFFERENCE SOLUTION OF DIFFERENTIAL EQUATIONS

V. Pereyra

Co I. Introduction
— These notes correspond to a six-week Seminar offered during the Winter

quarter 1972-73. In them, we intend to give an overview on certain gen-

C eral techniques that permit the increase of the order of accuracy of simple

discretizations to differential equations. Also, we will examine in detail

one specific application. This will lead us naturally to consider some

<- efficient tools which will permit the graceful implementation of the methods.

We shall consider the basic ideas 1n relation to a simple application:

= the two point boundary problem.

C (L.1a) -y"(x) + f(x,y) = 0,

(1.16) y(a) =a, yd) =8.

Most of the elements of the general theory are present here and we

L shall emphasize those points which are basic and can be transferred to

— other applications.

; The problem and an 0(h°) discretization are presented 1n Chapter

- II. The notions of consistency, stability and convergence are developed,
_ and an asymptotic expansion for the global discretization error 1s obtained.

The method of successive extrapolations is introduced in Section II.k4

L- together with some comments on implementation.

In Section 11.6, the method of deferred corrections 1s treated. An

B algorithm for obtaining an 01°) discrete approximation with a cost

\ -4-
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| similar to the method of order 0(h°) of II.1 is described in 11.6.3.
Numerical results for a set of four test problems frequently found in the

literature are obtained with a FORTRAN computer implementation (Section

11.6.6). An operation count and comparisons with the successive extra-

polations method are offered at the end of Chapter II.

Finally, Chapter III 1s dedicated to the detailed discussion of a

C computer implementation for the iterated deferred corrections method. Tne

automatic weight generator for numerical differentiation of III.1 is an

indispensable tool in the "Universal Deferred Correction Generator" of

b- 111.2. A theorem on asymptotic error estimation based on deferred correc-

tions 1s proved 1n III.3 and it constitutes one of the important building

blocks for the variable order, variable (uniform) step algorithm developed

. in 111.4. Numerical results and a computer program are also included.

| It 1s in this final Chapter that we have collected some novelties

| not to be found in our former work on deferred corrections. In fact, the

| comparisons with Richardson extrapolations for these types of problems
have not been performed before. It comes to no surprise that though the

) asymptotic behavior is very similar for both techniques, deferred correc-

tions fare considerably better in terms of work for a given accuracy,

giving the solution at more points as an additional bonus.

The aim of this Seminar was to evolve from the simple application

we have described to more elaborate problems, such as: two-point boundary

value problems for first order systems, elliptic boundary value problems

on rectangular and general regions, parabolic mixed initial-boundary value

problems, etc. Unfortunately, six lectures have not been quite enough to

reach that goal and the second part of these notes will have to wait for
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a better occasion. Nevertheless, we would like to refer the reader to the

literature where some pointers are given on how to utilize the algorithms

we develop here in more complex situations. a gpecial mention should be

made of the Deferred correction generator that can be used as presented

here in many different problems. The same comment applies to the logical

structure of the variable order, variable step method, whose flexibility

C and excellent results have no equal in the published literature on non-

linear, second order, smooth, two-point boundary value problems.

[-

{
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\ II. Two-point boundary value problems for nonlinear second order

— differential equations

II.1 The problem and 1ts discretization

We consider in this chapter problem (1.1) under the additional
L

conditions:

} (2.18) (x,y) ¢ Clla,b] x (-=,4)] ,

C (2.1b) f(x,y) > 7) (b-a)"

It is well known (Lees (1964)) that in this case (1.1) has a

unique solution ye ¢*la,b], which can be approximated by a three point

‘ finite difference method.

B We call (1.1) the continuous problem. The finite difference

approximation will constitute the discrete problem.

“ Let h = ben for a given natural number n > 1 , and let
X, =at ih , i=0,1,...,n , define an uniform mesh on [a,b]. The dis-

C crete problem 1s obtained by replacing y" in (1.1) by a second order
symmetric difference at every interior mesh point:

. (2.28) BT(-y.,  +2Y, -Y,.) + £(x.,¥.) =0 , i=l,...,n-1
il 1 i+l i’71 ! Pree ’

L (2.2) Y, =a, Y =8B

= For short, we can denote (1.1) by

(2.3) F(y) = 0,
[-

and this 1s to be understood as a nonlinear equation 1n a certain function

space. We won't make this any more precise here, since our emphasis 1s

in quite a different direction, but nevertheless, we shall take advantage

of the built-in power of synthesis that such a formulation has. 1p the
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same spirit, (2.2) will be denoted by

| (2.4) F(Y) =0,

— representing a nonlinear equation ("system of equations") in the Euclidean

. space EV1 , the unknown being the vector vi = CEPI SY . Natur-
ally, the 1dea is that h will go to zero (or n —») and thus we really

have an infinite family of these objects. Also we expect that, in some

sense, the values ¥,(h) will converge to the respective function values
of the exact solution. In order to make these ideas more precise, we

need to introduce some extra notation. For each function Z (x) defined

t in [a,b] and satisfying (1.1b) we define ¢. [2(x)] = [2(x))5. 05 2(x 1 y
The operator Py 1s sometimes referred to as an space discretization,

We shall say that the discrete solutions Y(h) converge discretely

> to the exact solution y* (x) if:

(2.5) lim ||¥(h) - Pu ln) _o,hlo
(b-2)

| where Wen) is the maximum norm on E In what follows we shall
omit the subindex (h) from the norms.

| ) As usual, this convergence depends on two properties of the
discrete operator Fy : consistency and stability.

A Definition 2.1. The operator F 1s consistent of order p > 0 ,
if for the solution y(x) of (1.1) and h < hy it holds that:

CVE Fe 3) on)

Definition 2.2. The operator Fy 1s stable 1f for any pair of

discrete functions U , V , and h < hy, there exists a constant c¢ > 0 ,
independent of h , such that:
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N (2.7) Nu =v Sef (U) . FV) .

| Lemma 2.5. If Fy is stable then it is locally invertible around

- °.y and the inverse mapping Pt is uniformly Lipschitz continuous for

. all h < hg,

. Proof: Let us consider the open spheres B, = B95 , p), where

- p > 0 1s independent of h . For any U, V € B, we have, because of
| the stability condition, that Fis an one-to-one mapping (since other-

— wise the right hand side in the inequality (2.7) could be zero without

the left hand side being zero!), and therefore is a bijection between

L- By and 1ts image Ry, = F (3) . Thus the inverse mapping Pt exists
in Ry Let X, Y € Ry , then we can write (2.7) as

IE (x) - FH(Y)) < CX - Y . []: =

With this result we can prove the discrete convergence of any

L consistent, stable discretization,

Theorem 2.4. Letus assume that the continuous problem F(y) = 0

L
has a unique solution y - Let F, be a stable discretization on the

| : spheres B, = Bw, ,0) , and be consistent of order p with F . Then
there 1s an hy > 0 such that:

I (a) For any h < h, there exists a unique solution Y(h) for
| the discrete problem F(Y) = 0 .
i (b) The discrete solutions Y(h) satisfy

(2.8) [¥(n) = 9 y [| = o(nP) .

] (i.e., they are convergent of order p ).

| Proof: Let Ry be,as in Lemma 2.3, the image of By by Fo , and
| let us call 4) = 7 (oy) + Obviously Z € R, , and because of the
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‘ consistency 12, | = o(nP). On the other hand, because of Lemma 2,3 we

know that for h < hey , the Fy arc homeomorphisms between the spheres B

and thelr images Ry By Brouwer's Invariance of Domain Theorem (Aleksandrov

“ [1956]) we know then that Fy maps the interior of B. onto the interior

of Ry , and the boundary onto the boundary. Let V be any vector on the

boundary of By . Because of the stability condition we know that

CC

2.9) S<yr(v)- 2

and since F,(V) will run over the whole boundary of Ry while V runs
L_

over the boundary of By , we can conclude that the sphere B(Z, ,0/c) is
*

fully contained 1n R . Since 12, 1 = 0 for h -0 , we can now choose
— _ x | |

hy < hy, such that for h < hi, 12,1] < p/c , which in turn will imply
b * :

. that 0 € B(Z ,p/c) © R, - But R_ was the image of B, by F, , end

| therefore the last statement implies that for h <« h there exists a unique
| Y (h) € By such that F, (Y(h)) = 0 . (All these statements are repre-

| sented in Fig. I.) The discrete convergence of order p follows also
from the stability. In fact

| 1¥(h) = oy < ez.) = o(n®) .

¥

B, 0 ~~
-

py |

Fig. I
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: Remark. Observe that there is very little in the statements and

| results of this Section that 1s necessarily tied up to the two-point boun-
~ dary value problem, and therefore they have more general applications.

11.2 Consistency, stability, and convergence

C

By using °y in (2.2) we obtain what 1s usually known as the
local truncation error, This is an expression that shows how much our

L discrete operator fails to represent the continuous operator (for which

we have Fly) = 0):

2.10) w(x) = [Fo], = By DAO) Ly 0) +  (,))
a We can obtain a more interesting expression for T(x) by expanding
i in Taylor's formula around x , which we can do thanks to the smoothness

assumptions. By using the fact that f(x,y*(x)) = v(x) we get:

L :

I Ww) =D TmON oF)k=1

This expansion then shows that the discrete method 1s consistent

) of" order p = 2 .

A We shall now prove that the discrete method (2.1) is stable for

: h sufficiently small, which through Theorem 2.4 will give us the existence

| of unique discrete solutions of the nonlinear system of equations (2.1),
and their discrete convergence of order = to y (x) . The proof of

the L_ stability is basically due to Lees [1964]. We need several

definitions and Lemmas. The technique is a simple instance of the use of

L, estimates often found in partial difference equations.

For every h we define the inner product of mesh functions by
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n-1

(2.11) (V,U) = h ) v,Uu, .
i=1

This inner product induces a norm over the mesh functions that

we denote by

1

(2.12) qv,= (V,V)Z

By the usual relationships between the standard L and L, norms0

..

Ux) < J1xl, < Vn || x||) we have that

+ 1
(2.15) BEV] < VII,< (b-a)= Vy],

 _ vB _[b-a

C- since ||V]lg = h® ||V|,= (3) vi,
Let us consider the difference operators A, and A :

A u(x) = h™t (u(x+h) - u(x)) ,
L (2.14) 1

A u(x) = h (u(x)- u(x-h)) .

2 -2 Ce
It is clear that 6 u(x)= h [-u(x-h)+ 2u(x) - u(x+h)] satisfies:

2

(2.15) -s u(x)= AA u(x) .
+ -

L

We need still another norm in our space, that will involve the

. difference operator 4A

_ n 5

; 1 2(2.16) vil, = (A V,AV)2 = | h > [4 V. | :
i=1

We quote without proofs the following results of [29].

a) 2 [VI S IIVII , 3
2

| b) (U, 6 V) =(aU, a V).

This implies 1n particular that

2 2

c) (60,0) = [IU]l, .
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2
- If 3 1s considered as a linear operator over the mesh functions,

Ca _ -2
then its matrix representation has the familiar tridiagonal form h (-1, 2, -1).

This matrix has eigenvalues _ 4. 2 gmh .

we have also:

e 2

3 hy Iwi< ruil

4 Theorem 2.5, Let7 3 int r The discretization (2.2) 1s
stable for J

h < By satisfying:

— ls—2 5 Tm .

— (b-a) 2k (b-a) 2

| Proof: Letus consider two mesh functions U,V, and let
— 9,

— 1 q2
be defined as:

i 2
FU) = 670 + £(x,U) = a;

F(V) = 6°V + fh )=8V + (x,V) = q,

in integral form:
| 1

| : 2 |
. 5 W + f(x, EU + (1-8) dew= gq .

0

~ Calling the integral term P we observe that P > 7 . By taking inner

products (see (2.11)), we get

W, 8°( 5 W) = (W,q) - (W, PW) R

and theret'orc by C) and Schwartz's inequality:

Wi <Hw _
TWH = 0 Dall, = mogws

By d) we obtain (IW 2 « -% ne .
WISAPIalg = Lay or,
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: 1

2.1 1+ AL) wy < 3B :(2.17) ( 5) IW],< Fall
It 1s easy to verify, by expanding sin X in Taylor series and truncating

at the first and second term respectively, that

2

2 2 (mh, (b-8))" |°1 al

PRES E-rvl Ie—
(b-a) (b-a)

and since (2.17) can be written as:
. z

1
Wil <

WH, = x Fila
we have from the hypothesis that

« - -1

(2.18) jw. < SRN. 31.~..} J — x
TT 0
— at T= tT
(b-a) (b-a) 24

\ where the denominator 1s greater than zero. We still haven't got the

inequalities in the infinity norm ar 1) - We recall (2.13) and a) in

order to transform (2.18) into:

K z
Iu-vil < 5 (b-a)% JF,(U) - F,(V)]] .

. Theorems 2.4, 2.5, and equation (2.10) prove that the discretization

(2.2) 1s convergent of order 2, 1i.e.

* 2

(2.19) jj¥(h) - @,¥ || = o(n") .

In the next section we shall develop a more detailed expression

=

for the global discretization error (2.19).
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11.3 An asymptotic expansion for the global discretization error

Under the assumptions of Sections 1 and 2 it 1s clear that the

variational equation (linear!) associated with (1.1)

(2.20a) -e’ + f(xy)e = g(x)

(2.20b) e(a) = ed) =0

has an unique solution e (x) € C [a,b] for each given c functions

C v(x), a(x) .

If we use for (2.20) the same discretization (2.2) as we used for

(1.1), then an expression similar to (2.10) holds. 1p fact, it will be

convenient to-use the notation F'(y)e = g for (2.20), and F (?,¥V)E = @. 8,

for 1ts discrete analogue.

The prime here denotes derivative (in the sense of' Fréchet;

“ Jacobian in the finite dimensional case). Therefore we have, at the

solution of (1.1)

(2.21) T/(x) = F/(o y Jo e (x) = @{ RICCI PE cK: n = F (oy )®, e (x) = ig - > a, e (x)h™ "3+ O(h )
| k=1

where e (x) is the corresponding solution ok‘ (2.20), and a, = EET
As 1t turns out, higher order derivatives of the mappings ¢F , Fy coincide,

> having the form

(2.22) o, Fle] = pli) of = ® ot ed
oy

‘ Theorem 2.6. Let F, F_ be as above. Then for h < hy the global dis-
_ cretization error has an asymptotic expansion 1n even powers of h ;

K

C (2.25) Y(h) - © = e(h) = Yh > (2) FS + o(1 KY)
k=1

C
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~ The functions e, (x) are 1ndependent of h and satisfy the
linear two point boundary value problems:

rp. x _ *

(2.24) Fy Je, = -ey + f(xy (x))e, " b, , e, (a) = e, (b) = 0 .
“

The functions b, will be constructed in the proof.

Proof: We can rewrite (2.23) in the form,

K

2

C S(h) = e(h) - ?, ) e, (x)h Ko 0(n"K+) :
k=1

K

Let us call for short u(h) = nk d = -F xp(h) = eh’, and I = - (0, (¥ + uw(h))) .
k=1

If we are able to prove that for appropriate choices of by T = 0(n=K+2) ,
then by using the stability condition the expansion (2.23) will follow.

. In fact we have, since F (Y(h)) = 0 , that

y *
(2.25) Tlf = | T,(¥()) - F(0,(v + u(n)))f >

1 x 1

| Sn) - 0 (v7) = wm). SIS)
2

aewer that p(h) = 0(h™) , let us expand TI in Taylor's series around

- 0 Sty :
h K (J) *

. * Lx Fo (oy) : 2K+2= {Fey ) Lo Foley deu(n) + > — [®, u(h)]1°} + o(n )
. Jj=2

Using the expansions (2.10), (2.21) and (2.22), we obtain:

K : K_ *(2k+2), 2k * 2k +2 23

I = a: ay h™ + F'(y )u(h) + > a pl )(h) -n J +
k=1 Jj=1

~ 1.0)1 ] * ] 2K+2

f > 3 £ (x,y jun o(n"HF)
j=



_ Now we observe that:

K K
* *

2) Fun) = YF (re iE Np rE
~ k=1 k=1

“ K K K

0) 3a per ),2] -y . (> 0) 23J J \

J=1 J=1 vw=1

K ,k-1

2(k-

_ = (Z a (2 (k 7) 2k 0(n=K+2) :-V Vv

k=1 ‘y=1

K

J > 28 2K+2C h =

) (hn) Org(c@ pyIHF + 0(eFF)
L— E=J

where the 9 g are polynomials jJ-homogeneous on their variables,be

Replacing these three expressions in I we get:

K XK (OFap k-1
I= a Ee) ID DENIES i

1 = Kev v

~ 1.)1 (J * 2k 2

2 7 fy (ey )Q; ACERS ego) h {+ o(h™™"") |J=1
|.

where we assume =

2

Since we want I to be O(h £42 r that means we would like to

choose Db so that { } vanishes Th b = 1 *(L)| . : us 1 (x) =-3Y (x) , with
which we can determine e, (x) by solving (2.24);

. 1 _%(6) 1 (4) 1 *, 2b BE —_—(3%) E M00 +g of + Fr nde |
_ which allows us to determine e, (x) , and so on. Ie observe that in

general, the determination of by involves derivatives of the solution
*

- y 5 and earlier error functions e | v=l,...,k=1 . Therefore the b
V k

can be determined recursively. This proves the Theorem. 1
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| I1.h Successive extrapolations
2s

Expansion (2.23) 1s the basis for the well known method of successive

extrapolations ("to h=0"), a fairly simple procedure used to increase the

R order of' the discretization. In other contexts, this procedure is asso-

ciated with the names of Richardson [1910], Romberg [ 1955], Gragg[1963],

Bulirsch and Stoer [1964], Stetter [1965], and Pereyra [1967a]. gee

C Joyce [1971] for a detailed survey and a more complete set of references,
and Widlund [1971] for a survey of recent developments.

We shall describe briefly the application of successive extrapola-

. tions to our present problem 1n order to emphasize certain aspects and

establish a basis for comparison with other high order methods.
h

Let Y(h_) , (2) see, (=), be the solutions of (2.2) for
it the indicated step sizes, that correspond to systems of dimensionality

I n= Tl s ++ eg BT 2 X n. 4 + 1 (see Fig. 2 for an example).
| Function n Grid
.

Y(1/2) 1 fq9

~ v(1/k) 5 tt
1

Y(1/8) 7 ——t—e——F+—+—
0 1

Fig. 2

It 1s clear that only the points corresponding to the coarsest mesh

(ho) are common to all meshes. It is at those common points where we shall

be able to improve the order of our solution. TLet us then call Y; the

n= vectors obtained from ¥(h, ) by extracting the components
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N Yipi (hy), t=l,...,n, ,

: of Y(h,) . With these initial values Y; . we can form the (vector)
Romberg triangle

“ ndyd=1 - yh

(2.26) Boy Dae fi= 1, del,0.,1
From (2.23) we can easily derive asymptotic expansions for I, - cP v

> 5 5 J * - 2k 2K+2 }(2.27) Ios “n J = % ) 5{x)h, + O(h )
k=j+1

Also, 1f we disregard terms of order greater than n(23+2) then
we can obtain an asymptotic error estimate for the global discretization

error.

Lemma 2.7
L ood caf

x : :

(2.28) vy - OpY (YY - 9) (13th
where= stands for asymptotically equal.

" Proof: Write (2.27) for vy and vd, , and subtract, ignoring terms of
order greater than pee )

. | vy - vy?

RN ~ 0 eg, (0ST) ~ []

IT .5 Some comments on implementation

We have proved the existence of discrete solutions Y(h) ip a

nonconstructive way. The most frequently used procedure for actually solving

equations (2.2) 1s Newton's method. In cases in which £, is hard to
\ compute some alternate procedure might be preferable. ye won't go into the

details of the implementation of Newton's method 1n this case since this
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oo 1s fairly straightforward and it has been extensively discussed 1n the
=

oT literature (cf. Henrici[1962], Keller [1968]). Let us only remark that

system (2.2) 1s tridiagonal, which makes the solution of the linear

. systems that appear at each Newton step very simple. If there is no

other information, a linear interpolation between the boundary values can

provide a reasonable starting vector.

C In constructing the successive extrapolates one can follow several

paths. One of the most reasonable seems to be the following:

. i) Compute ¥(h_)

L— 11) Use Y(h_) and interpolation 1n order to have a good initial

approximation for Y(h,)

111) Use Y , Y; in order to estimate the error in Y, . If you
are satisfied, quit. If not:

i iv) Combine Y, ; Yr in order to get Yy .

| v) Obtain ¥(h,) and construct a new row of the triangle, etc. . . .
-

Observe that for ¥(h_) we shall use as a starting vector something

} ) probably pretty inaccurate, but the dimensionality of this problem will be
the smallest. For any other ¥(h,) we shall use 1n the Newton iteration

. the fairly accurate initial values provided by Y(h, ) , using interpola-

tion to fill into the new abscissas. This is a very important point,

since 1t will tend to decrease considerably the number of Newton iterations

| necessary to carry the residuals below a level compatible with the discret-

ization error.

We have always to remember that the dimensionailty of the problem

is multiplied by 2 every time we compute a new row, A source
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. of' criticism for this method has been the fact that one gets the most accurate

results r) only on the coarsest mesh, wasting all the precious computation
performed in the finer meshes. In a recent paper of Lindberg [1972] the

w author implements and justifies an idea of Dahlquist for producing accurate

results on the finest mesh through a recursive interpolation procedure.

This 1s done for initial value problems but 1t 1s clear that a similar

C principle will hold for our present problem (though it has not been done

as far as I know; it would be worthwhile to investigate this matter fur-

ther, clarifying Lindberg's statements).

b

II.6 Deferred corrections

II.6.1 Introduction

As early as 1947, Leslie Fox advocated a technique called "difference

corrections". Through the years he and his collaborators have applied this

technique to a variety of problems in differential and integral equations

(see Pereyra [1967c] for a detailed bibliography and historical account).

In Fox [1962], a wealth of information on the state of the art in the

\ - English School can be f'ound. It is there where we find the term "deferred

corrections" used interchangeably with that of difference corrections. The

i reasons for this switch in nomenclature are not apparent, except perhaps
for the feeling that the technique was 1n some way connected with the

"deferred approach to the limit" that we were discussing in the earlier

Sections, and also because the name reflected the fact that a posteriori

corrections were performed.

. We have preferred to adopt the latest name 1n our work on this

technique since our approach 1s not tied up (at least in appearance) to
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. expansions 1n terms of differences, as it was in the earlier developments.

We base our formulation of the method on the asymptotic expansion

for the local truncation error:

C - *(2k+2) 2K+2)
(2.29) T(x) = ) a, y (x, Jus + O(h ;

k=1

to which, as we have already observed in Section II1.2, only needs smoothness

‘© of the exact solution y*(x) and the application ofTaylor's formula for
its derivation,

For any smooth function y* (x) we can approximate linear combina-

. tions of 1ts derivatives with any order of accuracy in h at any grid
point by using sufficient ordinates 1n a neighborhood. This 1s again a

consequence of a wise application of Taylor's expansions and numerical

differentiation techniques. Thus, there exist weights We such that

4 2L+2+q

. (2.30) T,(x;) = ) nC i } 3 wy (x vn)
| k=1 s=1

+ o(nY) = 5,(y (x,)) + 0(h%) , o_ integers.

We shall show later how to obtain W in an efficient and suffi-

_ clently accurate way. Observe that we have multiplied T(x) by he .

In this fashion J) becomes a bounded operator (for hl0) and most
of the dangers of numerical differentiation formulas are avoided. In

fact, because of the linear relations between differences and function

values, some choices of 5,(v (x,)) will coincide with Fox's formulation,
though we feel that this more general presentation, coupled with efficient

welght generators 1s better'adapted for use ona digital computer. In fact,
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N Fox's difference correction procedure was mostly advocated for desk cal-

) culator computation, where a table of' differences manipulated by an able

person was a real asset, The main contributions of the author of these

w notes, starting with a Stanford Report (Pereyra [1965]), have been to put

on a sound theoretical basis the asymptotic behavior of a very general

procedure modeled on Fox's difference corrections, and what 1s even more

C relevant, he has produced tools and complete implementations of this tech-

. nique 1n a varlety ol applications. However, so many years and develop-

ments later (with some minor changes) the words in Fox's[1963] very inter-

b— esting expository paper are still very much actual: "This idea (difference

correction) does not seem to have penetrated deeply into the literature of

- automatic computation . . . . Certainly we have to do some differencing,
| involving extra programming, extra space, and some difficulties in auto-

matic inspection of differences, but machines are getting larger and pro-

| gramming easier (or so everybody tells me), and if we are concerned with

| accuracy, as we certainly should be, 1 should have thought that something
like this was essential."

4 ) Probably one of the main reasons for this neglect in recent times

. has been the widespread interest in other high order methods (splines,

finite elements). Unfortunately, the theoretical developments in these

| areas have very much surpassed (and overshadowed) the practical, efficient

| implementation of the methods. Thus, we find ourselves in the sad situation

| of having a highly promising, very general, theoretically well supported

technique, that 1s begging for an at least equal treatment in its practical

aspects, while on the other hand, for some applications at least, 1t 1s

fairly clear that the results obtained with our more traditional finite
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N difference techniques will be hard to beat. (Compare the numerical results
} for similar problems in Ciarlet, et al [1967,1968], Perrin, et al [1969],

and Herbold and Varga [1972], with those in Pereyra [1967c¢,1968, 1970] and

this report.)

I wouldn't be surprised 1f it finally turns out that a successful

implementation of high order spline methods comes about via a deferred

C correction type of approach, bypassing in some way the very expensive

steps of high order quadrature formulae and complicated systems arising

from the present approaches. See Fyfe [1969] for a first timid step in

L that direction.

11.6.2 Algorithms

There are many ways of producing deferred corrections. Fox's way

consisted essentially of representing vy" a5 a series of differences.

C In the first step, common to all procedures, one would compute using

I only the first term of the expansion (in this case the basic method (2.2)),and then use these or" ) values in the difference expansion, and recom-

| . pute 1n order to obtain a more accurate solution. The process was thought
as 1lterative, providing in infinitely many steps the exact solution. This

was never done in practice; in fact it is hard to find any published numer-

ical example in which more than two corrections were performed, carrying

~ perhaps three or four terms in the difference expansion. Naturally, the

reason for this was that on a desk calculator any prolonged computation

was a big undertaking.

Let y (0) be the 0(h2) solution to (2.2), and let 5, be, as
in (2.30), an or) approximation to Ty = cay (pt , the first term
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in the local truncation error (multiplied by h) . Observe that since

) b)

therei s already a laclor h' :1n Toy we only are requiring an 0 (bh)
imation x (hh) *approx imation Lo vy atthe grid points. 1f we have y ( x) available

then, as we said before, there is no problem in obtaining the weights We

for Sq But all what we have 1s YS In principle it cannot be ex-
pected that from an 0 (h°) discrete approximation to a function one can

2
C obtain an 0(h) approximation to a derivative. It is here where we make

use of the expansion (2.23) for the global discretization error. In fact

we have that because of linearity and (2.30):

Ss, (Y 2) = 5, (ey ) = S,(®,e,)h + S,(¥,e,)h + 0(h”) .
*

Observe that we have used the fact that Sq = 0(l) . But S, (ey) = 7 + 0 (hf)
L) 4 6 |

SACI = a ol hn + o(h”) , k=1,2. Therefore,
L

65 g(°) = +

(0) *
C and we can use Y instead of Py and still obtain the same asymptotic

behavior. With 5, (v°) computed at every grid point we solve for a cor-
: rected value y(1)

~2

¢ (2.51) F(v) = ns (v{?)y |h 1

The local truncation error for this new discretization 1s om ) and

therefore, since we are still talking about the same basic operator Fy ,
C |

the stability condition proves that there exists a uniquesolution (1)

— to this problem and that

1 * L

L (2.52) vt ) - PY Il « O(h )

Provided we can obtain an asvmptotic expansion for ey - ©

4
-
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« this procedure can be repeated, and each time two more orders in h will

| be gained. In general, the iterated deferred correction procedure can be

described in the following way:

: kK 2k+2“ i) Let y¢ ) be an O¢(h K+ ) discrete solution.
-2 2

11) Compute h 5, ,, (1%) , an h Ke approximation, to the first
(k+1) terms in the local truncation error expansion.

“ _. 2 (k) (k+1)
iii) Solve F(Y)= h 8, (Y ) for Y :

For boundary value problems there are some theoretical difficulties

in obtaining the successive expansions needed to justify the method, The

difficulty comes from the fact that different differentiation formulas

must be used at different points of the mesh. In fact, in the first step

C we can use five point symmetric formulas in order to approximate JF)
2

to order h at the mesh points X2 joey X o_o , but we shall need six

§ point unsymmetric formulas at the points Xy or Xp 1 . For the symmetric

L formulas we have asymptotic expansions 1n even powers of h :
K

(2.33) Sv (x) = T(x) + pt (xn + o(rEF) io z. - 1 u ol 1 i V i I4 1 3 +e « 9 11= I4

V9

> while for the unsymmetric formulas we shall have (different) expansions

. with all powers ofh . With a small manipulation it can be shown that

2K

* ~2 (0), _ k 2K+1
x Foley) - 077s, (v7) =o r(x)h™ + 0o(h™7)

k=k

but r, (x) will in general be discontinuous, because of the change of

. differentiation formulae. Therefore, Theorem 2.6 cannot be applied in

order to guarantee the existence of expansions for y(1) - oy , which
|

1.
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w in turn would be necessary (in our approach) for proving the accuracy of

- the differentiation formulas 1n successive steps.

One way of deferring this until after the second correction is the

« following: Since y = f(x,y) then we can replace all higher deriva-

tives of y by total derivatives of' f two orders lower. Thus in our

irst correction we need to approximate Coy"(0) only to order he ,
Le dx

t and by using grid values of Fx,Y,) we can achieve this with a symmetric
— three point formula over the whole range. Naturally, the same problem

| we discussed above will appear after the second correction. ye shall see
i Risin

yo later that by using a basic method of order pt , we can rigourously obtain

| an nO order method applicable to the problem of this Chapter.
We can also rigourously perform deferred corrections (any number)

L for boundary value problems of the form (1.la) with periodic f , i.e.:

| f(x +b - a, y) = f(x), and periodic boundary conditions:
y(a) = y(b) , y'(a) = y'(b) .

. In this case, we can use the same differentiation formula over the whole

. range since there are really no boundaries in this problem, and we can

extend our solutions by periodicity.

Now the fact that we cannot obtain with the present methods the

theoretical asymptotic behavior of the iterated deferred corrections for

problems (1.1) does not mean that the technique 1s useless in this general

case. Far from it, we shall show numerical results that should justify a

more careful study in order to determine precisely what 1s that asymptotic

behavior. We would like to stress the point that the asymptotic expansions

for the successive global errors y (%) - ®.y are used only in the theoretical
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justification of the method, but at no time are they needed in its practical

implementation as in the case ofsuccessive Richardson extrapolations.

More general equations of the form

C (2.54) y" = f(x,y,y ‘)

can and have been treated. We feel at the present time that those problems

will be much more easily dealt with using a general procedure for systems of

L the form

y' = L(x,y)

(2.35)

a ay(a)+ B y(b) = 2

which 1s now in development. We expect that our method will compete fav-

ourably with the multiple shooting techniques that have become fashionable

- in recent times. In Keller [1969, 1972] the relevant theory for an 0(n°)

discrete approximation to (2.35) is developed and asymptotic expansions

are derived. Keller uses then this fact to justify a successive Richard-

| son extrapolation procedure. See also Kreiss [1971].

i © 11.6.3 An 0(n°) method for the price of an O(n”) method
In this Section we consider problem (1.1) again, but we shall use

= the more accurate on) discretization

2.36) WCLevy vey, yl 4gmlf, +108 iE] =0, isl,...,n1

where f, = £(x5Y5) . We symbolize (2.36) by G, (¥) . By recalling that
f(x, y (x)) = v(x) it 1s then easy to derive via Taylor expansions that

the local truncation error is in this case:
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k. ;

N Gyo") = oy Ya rE, ry r O(n"KH)
— k=

where TET ED - =

~ This method can also be proven to be stable as was the case for

the simpler method (2.2). (See | ,].) Thus we can produce an algo-

rithm similar to the one described in 11.6.2 but which now should gain &

- orders per correction. We shall make explicit that algorithm in the next

Chapter, while presently we develop a correction method of order ne

which 1s specially effective and economical. Paraphrasing terms which

¢ are very fashionable these days we could say that the method to be described

_ is of a high computational "simplicity". The main idea is that one correc-

tion with the same asymptotic properties as in the usual procedure, can be

. obtained by sclving the variational equation assoclated with the problem,
with an appropriate right hand side. If Newton's method is being used to

~ solve the nonlinear equations resulting from the basic discretization then

- the correction will look just like one extra Newton step. If we observe

that the o(h') method (2.36) is essentially not more complex than the

- 0(n°) method (2.2) then the reason for the title of this Section becomes

clear.

} The linearized equations that obtains at each Newton step v are

. the following:
2 2 |

| (2.37) EB HCP - es 2 tn + : E, +
2

i * EB £04057 4) ” 1 Bing © }4

where

Vv V SRAY Vv N V. ((2.38) re = - {(-Y; , F 2Y,. - vr) +3 (£5, + 101 + £7.) :
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For short, we can call the left hand side of (2.37): 6, (YV)E © Once
{E.} is obtained, then the new iterate results:

(2.59) WH =yV +8 |
1 1 i

Because of the stability, 1t 1s enough to reduce the residuals rs

to a level compatible with the global discretization error in the final cor-

rected solution. In fact,

\ 2Vv

rt =nG (YY), ¢(¥(h)) = 0,
and therefore we have that

V ~2

IY" = ¥(n)] < c JJG(¥YV)]] = ch xY .

b- Thus,

v * v * 2

IY = oy Il SY = wh) + 0 ¥(h) = oy) < en™ fieY) 4 cnt

and a reasonable stopping criteria for Newton's method 1s then:

L
1

(2.50) f1z¥] < cin o

where cq 1s usually chosen to be a small constant unless some more precise

information about ¢ and C is available. Let +0) be the computed
q L

O(h") solution. If we now define

: in )1 4d * 4 6 6

A 16% (Ceo (2) 7 BF 0 Pixs v (x) gr»
. and

{0

(2.42) S(f(x,7" I) = T(x) + 0(n°) .
Then by solving

(2 .43) 6 (vz = s(££0)y
and putting

2.40) voy) go



“ wc shall have an 0(m°) approximation.

Proof: By an argument similar to Theorem 2.6, we know that the smooth

function e, (x) satisfying

W -

L (2.45) a¢'(y Je, = h ho
is such that e = v0) - * _ 4 8

bY ¢eh” + 0h") .

( But also,
/ *\— 3

Gp (oy )e; = @T + 0(n”)
4

where =
©1 beh

a Therefore, using (2.42) we get

Gao")7) = 6/0 ONE = (6/05), - 02(x©)z) were -n)h'h 1 h 1 h 17

! . =GI(® ye . e c/(v\°) = 8L h''h 1° Yh - (6, -E) = o(n") .
*

| But since the term G/ T= 8 0i n(@n¥ Je ® = 0%) and 6, (v( )) is stable we obtain
- 8

which in turn implies that

|
(0) * 8

- (Y*"7 = E) - oy = o(n°)

as we wanted to prove. |
. II.6.4. Some numerical results

| In this Section we present some test problems from the current
literature in high order methods. Some limited comparisons are included.

The limitations are generally due to the vagueness in which numerical

results are often presented.,
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3 Problem 1
LE J EEEEEEE——————

— ‘ 2

y+ y - sin x (1 +sin x) 0

3 y(0)= y(m)=0

Exact solution:

-— y(x) = sin x .

See Pereyra [1968].

‘
Problem 2

—_ _y” + eV - 0

y(0) = y(1) = 0
C=

Exact solution:

_ v(x) = -dn 2 + 24n (c .sec(z (x-1))}

. The constant c satisfies: ¢ sec r = 12 .

c = 1.336055694906108...

See Perrin, Price and Varga [1969], H. B. Keller [1972].

b

a Problem 3

Lo

| y+ vy + vo § got enix [Ln? (cod 2rx - sin 2px) - e © 51n2mx - 1] =o
y(0) = y(1) = 1

}

. Exact solution:
Sin2mx

y(x) =e

| See Ciarlet, Schultz and Varga [1968].

| Problem L
-y' + 4 (v + x + 1)° =0

i y(0) = y(1) = ©

|-
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E Exact solution:
~~

y(x) = — - x ~-1.

3 See Ciarlet, Schultz and Varga [1967] or Schultz [1973], p. 98.

The results of this Section were obtained with a FORTRAN IV 1mple-

mentation (WATFIV compiler) of the algorithm described in 11.6.3 running on

Ce the IBM 360/91 computer at the Stanford Linear Accelerator Center. pouyple

L precision ( ~ 16D) was used throughout. Newton's method was employed for
— solving the nonlinear equations, ysing as starting vectors in each case the

linear interpolation of the boundary values.

L —_—

The evaluation of the correction term was performed via the Universal

Two-Point Boundary Value Problem Deferred Correction Generator which will
,

B be described in detail in the following Chapter.

| In Table 1 we present results for Problem i , i=l,...,4 , "Error"

stands for the maximum absolute error at the grid points between the exact

1 and discrete solutions. Runs with maximum relative error gave similar

| ) results. krror, corresponds to the basic hn? approximation and Error,
to the corrected solution. (n+l) is the number of grid points, while

i (n-1) 1s the dimensionality of the systems solved. m is the computed
order obtained by comparing the errors for two solutions for different

- step sizes. Thus,

(2.46) m = toel error (h)/ error (b/2)] |

Oper. stands for (number cf operations)/1000 . A detailed

] operation count study will be performed in the next Chapter, and 1t 1s
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~ from there where we obtain the results for this column. fpFunction eval-

uations are not included in the operation count, but thelr number 1s

connected in an obvious fashion with the column iter., which gives the

- number of Newton iterations necessary to reduce the maximum norm of the

residuals in the solution of the basic problem below the level EFS.

We adopted EPS = 10" %n® which gives the following stopping criterion

b for the Newton iteration:

(2.57) Jie, (YV))|, < max (107 x 1°, 5 x 10716) |

where the constant 5 X 1016 is related to the IBM System 360 double

precision.

L We list in res. the norm of' the last residual. The notation a ,

| b means a Xx 10°.
-

n error m errorg m iter. res. oper.

8 2.90, -5 - 1.05, _g ——— ’ 1.22, -13 1.3

16 1.81, —-6 4.00 1.12, -10 9.87 | 5.15, -153 2.8

32 1.13, =77 4.00 2.37, =13 7.70 7] 7.92, -15 5.9

60 T.O4, -9 4.00 1.97, -13 1.45 7 2.07, -15 12.0

128 4.40, -10 4.00 4.60, -14 2.10 8 1.97, -16 241

256 2.179, -11 3.98 3.92, -13 =--- 7 3.76, -16 48.5

Table 1
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BN n error) m eITorg m iter. res. oper

N & 5.86, -7 oe T.30, c10 aa k L.h7, -17 .8

16 2.42, -8 hoo 1.64, -12 8.81 4 2.15, -17 1.8

32 1.52, -9 5.99 4.08, -15 8.65 4 1.55, -17 3.8

“- 6h g.ug, 11 H.00 3 93, -16 3 38 i 2.27, -17 7.6

128 5.92, -12 L.00 7.91, -16 ---- I 2.50, -17 15.4

256 3.7h, -13 5.98 L.o2, -15 -_— i 2.51, -1-’ 30.9

-

Table 2

n error) m eIIrory m iter. res. oper.
.r os

8 1.97, -2 ——-- 9.02, -2 ———- 6 2.22, =16 1.2

~ 16 1.06, -3 4.22 1.57, -b 9.36 6 2.78, -16 2.5

. 32 6,40, -5 h.05 7.06, -7 7.60 6 3.19, -16 5.2

6h 3.97, -6 b.01 7.97, -10 9.79 6 3.76, -16 10.5

-— 128 2.bvr, -7 b.01 2.49, -12 8.32 6 5.81, -16 21.2

« 256 1.55, -8 5.99 1.3%, -13 I .23 6 3.87, -16 h26

. Table 3

\ _.

n SLLor) m CLIO q m iter. res. oper,

8 1.64, -5 _——- L.65, -7 _—— L 2.09, -13 8

- 16 1.05, -6 3.97 2.20, -9 707 5 1.91, -17 2.2
52 6.60, -8 3.99 5.63, -12 8.61 5 1.80, -17 k.5

— 6k 4.13, -9 4,00 1.39, -1k4 8.66 5 1.62, -17 9.1

128 2.58, -10 4.00 5.72, -16 4.60 p) 2.12, -17 18.3
-_

256 1.54, -11 er 9.27, -13 ———- in 2.32, -16 30.9

Table 4

b
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o n error) m errorg 0 iter. res. oper,

10 1.19, -5 9.39, -9 — 7 7.86, -14 1.7

20 1.595 -7 4.01 1.74, -11 9.08 ! 2.00, ~l4 3.6

w 40 4.61, -8 4.00 2.42, -13 6.17 7 5.19, -15 7.4

80 2.88, 9 4.00 2.06, -1% ---- 7 1.35, -15 15.0

160 1.81, -10 3.99 2.74, -13 ———— 7 Ih.98, -16 30.2
C ee

Table 5 (Problem 1)

time in seconds

. . n (all problems)

8 0.21

16 0.34

32 0.58

64 1.09

128 2.26

256 5.68



CE

-58-

" TI .6.5 Discussion of results and comparisons

The first thing we must observe 1s that the residual 1n the solution

of the basic problem by Newton's method must be reduced to a level com-

patible with the accuracy expectedin the corrected solution. That is

the rationale behind our stopping criterion (2.47). For this type of

problem, Newton.9 method is known to be quadratically convergent and this

C theoretical fact 1s supported by the numerical behavior of our iteration.

Therefore, we see that as soon as the residual is reduced below 1p

(and this has occurred in all our experiments after four iterations at

b— the most) , then in the following two steps we should have residuals approx-

imately < .01 n , 10748 and stop. Experiments using a less stringent

stopping criterion show that on the average one might save one Newton

iteration, at the risk of losing several figures accuracy.

Unfortunately, the "double precision" in 18M System 360 does not

“ provide a sufficiently long word to test the asymptotic behavior of this

1 very precise technique, and therefore the computed exponents for the
corrected, supposedly 0(n°) solution, are somewhat erratic. However,

| - in the regions where there 1s not too much round off contamination, the
computed exponents lie around 8 us they should.

_ We can compare the resultsof Table 5 with those in Pereyra [1968]

There, an iterated deferred correction procedure was implemented, based on

= the o(n") formula (2.26). Details of this implementation will be given

later on. It 1s interesting to compare the results of the first correction,

as performed in [38] with the results of Table 5, the difference in the

two procedures being thatii we plan to correct more than once then a full
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. nonlinear problem has to be solved at each correction, as opposed to the

- procedure described here. The other important differenceis that in [48]

advantagewas taken of the periodicity of the solution, thus using symme-

“ tric formulas throughout. Naturally the basic solutions coincide, so we

— only compare the errors for the 0 (0%) corrected solutions.

= error /n 10 20 4() 80
~ (8) (8) (8)

[58 1 4.2, -9 1.6, -11 6.2, -14 2.4, -16

€ — This —— (9) (6) (-)
method 9.4, -0 1.7, -11 2.4, 14 0 d ng

N The numbers in parentheses are the computed exponents. WH? see that the

‘ method in [38] gives results that have a more clear asymptotic behavior.

This can partly be explained by the fact that the results of that paper

= were obtained using double precision on a CDC 3600 computer, i.e. with

L numbers with 84 binary digits mantissas. We would like to point out

- however that the actual errors are comparable for n = 10, 20,40 where

_ the point of diminishing returns (on this computer) 1s reached for the

- present, more economical algorithm.

= Problem 2 is used as a test problem in various papers that deal

with high order spline approximations via a Raleigh-Ritz approach [5, kl, 46],

Lo in Keller [1972] where a successive Richardson extrapolation procedure is

employed, and also in Wasserstrom [197%] using a conlinuation technique.

Since the only meaningful comparison 1s that of programs written in the

- same language, running on the same machine (ideally under the same conditions

or environment), we feel that it is useless to compare our results with those
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N presented in [5 , 41, 46] since very little information is provided in those
papers about the actual implementation of the methods.

The only comment we shall make 1s that the highest accuracy reported

“ in[ 5, 41,46] for this problem is mex.abs.error <5 X 1078 (cf. Table 21).
Keller reports max.abs.error < b.01 x 1074 obtained with an 0(h°) dis-
crete method for systems of first order equations, plus three extrapola-

4 t lons . The mesh sizes used by Keller were E , 1 1 and gy . Unfor-5°26 712 2k

tunately, as we pointed out in Section II.5, the accurate solution is ob-

tained only on the coarsest mesh, 1.e. at the two points x = , = A
- glance to Table 2 shows that results slightly more accurate than those of

Keller can be obtained by the method of this Section with a 15 point mesh,

- and that these results are valid over the whole grid. In the next Section,

. we shall make some general comments comparing the amount of arithmetic and
function evaluations that are necessary for successive Richardson extra-

| polations and for our procedure. Wasserstrom reports results accurate to
six figures with16 seconds of computing time on a GE-635 machine (cf. Table 6!).

~ Similar comments applyto the results of’ Tables 5 and 4. For in-

© 5 tance, the best results (in terms ol accuracy) ofCiarlet, Schultz and.

Varga[ 1968] for Problem 3 are improved by our results of Table 3 with

n= 32 :

max.error [ 5 ] = 5.49 «105

max.error [this method: n=32] =7.06 x107

As we said above, these comparisons are not oo meaningful. For instance,

1t can be argued that the spline approach produces solutions defined over

the whole interval, as opposed to the discrete solutions furnished by

finite difference techniques. On the other hand, there is nothing to

prevent us from obtaining a posteriori an accurate spline interpolation
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N ol’ our discretedata . Once a definite poal is stated,for instance: "find

tin algorithm capable of approximating the solution of the differential

equation at any point of the interval [a,b] with absolute precision g",

“ then two different algorithms can be analyzed in terms of thelr costs to

achieve the desired goal. In order to obtain this, fair implementations

must be tested on the same installation and the true costs compared. It

LC 1s 1n this light that we have tried to produce careful, usable implemen-

~ tations of the techniques described in these notes, and that we include

here the actual computer programs with, and conditions under, which the

. numerical results were obtained, with the hope that our experiments will

be reproducible andtherelfore future, better methods, can make accurate

claims. Also we expect that by making available these well-documented,

_ easy to use, subroutines, the public: will be served in an area which is

begging for such material.

1 In the next Section we present a computer printout of the program

| used to obtain the numerical results of this Chapter.

°  II.6.6 A FORTRAN IV program for the 0(n®) method of II.6.%

In this Section we present the FORTRAN IV subroutine DCBVPE with

- which we obtained the results of Section I1.6.4. This subroutine calls

the unsymmetric tridiagonal linear systems solver subroutine TRISOL and

the subroutine UZDCG that generates the necessary correction terms.

These two subroutines, the driver programani the subroutines defining

the equations, are also provided. U2DCG willhe describedin detail in

Chapter 3.
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SURROUTI NE DCBVP8 (N, F, DFY, X VY)
IMPLICIT REAL*8 (A~H, 0-2)
LOGI CAL DEFCOR

DIMENSION X(257),Y(257),A(257),B(257),C(257),R(257),AA(50)
*  LFU(257),DFU(257)

C WAAR ALARA ESS EA AEA R ERLE EER EER RR EEE a a Nr CA Up TA PTAA
C 8TH ORDER FIN ITE DI FFERENCE TWO PNDINTBOUNDARY VALUE PROBLEM

\ C SOLVER FOR

C “YY'4F(X,Y) = 0 , Y(X(1))=Y(1) , Y(X(N+1))=Y(N+1)
C TH EH**4 ORDER METHOD

C He#=2 *(=Y(1=1)+2*Y(1)=Y(I+1))+(F(I-1)+10*F(I1)+F(1+1))/192 =O
C IS COUPLED WTH ONE LINEAR DEFERRED CORRECTION IN NRDER TO PRODUCE

C AN H*+*8 ORDER METHOD.

L C *#***LIMTED TO N =(X(N+1)=X(1))/l LE. 258 wx
C TO PROCESS FINER M:SHES CHANGE THE DIMENSION STATEMENTS

C IN ALL SUBROUTINES ACCORDI NGLY.

Cxxx2%|{JSER PROVIDED DATA***%4

C X(1) = LEFT END ABSCISSA

C X(N+1) = RIGHT END ABSCISSA

: C Y(1)ANDY(N+1) : CORRESPONDING BOUNDARY VALUES.
C N+ | IS THE NUMBER OF MESH POINTS (COUNTING THEEND POINTS.

C THEY ARE ASSUMED TOBE EVENLY SPACEDBY H =(X(N+1)=-X(1))/N
C F , DFY ARE EXTERNAL USER PROVIDED SUBROUTINES THAT SHOULD PRODUCE

C THE MESH FUNCTIONS F(XC1),Y(1)), DF/DY(XC1),Y(V)), I=2,...,N, RESP.
C THEIR CALLING SEQUENCES MIST BE:

C F(N, X,Y, FU)
C DFY (N, X,Y, DFU)
C WHERE FU(257),DFU(257) ARE THE ONE-DIMENSIOMAL ARRAYS TO BF
C FILLED WTH THE REQUIRED MESH FUNCTI ONS.

) C ON QUTPUT THE ARRAY YW LL CONTAIN THE COMPUTED DISCRETE SOLUTIOM,
NP1=H+1

H=(X(NP1)-X(1))/N
\ HSN =H* 2

Crxxdnx NEXT STATEMENT IS INSTALLATION DEPENDENT wx%xd%xkdss

C _. IF THIS PROGRAM IS NOI' USED ON ANIBM/360COMPUTER IN REAL*8 PREC,
C THE CONSTANT 5.0D-16S H O U L DREREPLACFED BY (APPROX IMATELY)

| C 10*MACHINE PRECISION I HN ORDER TO AVO! D UNDUF CYCL ING IN THE
C NEWTON 1 TERAT ION,

EPS=DMAX1(5,0N=-16, ,0001*xHSN*xxY)
- DEFCOR=, FALSE.

Cl=(Y (NP1)=-Y(1))/N

DO 51=1,50
5 AA(1)=0,.D0

DO 10 I=2,N
X(I)=X(1)+(1-1)*H

10 Y(I)=C1l*(lI=-1)+Y(1)
HSNO12=HSQ/12
Al=5,*HSQO/6
I TNEW=0

15 CALL F(N, X, Y, FU)
RESH=0,



DO 20 1=2,N

x REII=YCI=1)=24Y (1) +Y (141) =HSN012% (FUCI=1)+10, *FU (1) +FU(1+1) )TE=DABS(R(1))
20 IF(TE .GT., RESN) RESN=TE

fF(RESN .LE. EPS) GO TO 500

25 CALL DFY(N, X,Y, DFU)
DO 30 I=2,N

. ACI=-1)=A1*DFUC(])+2,
B(1)=HSQO12*DFU(1)-1,

30 C(1-1)=HSQO12+DFU(1+1)-1,
Ni 1=N=-1

CALL TRISOL(A, B, C, R, NM1)
ITHEW= ITNEW+1

. DO 40 I=2,N

40 Y(I)=Y(1)+R(1)
IF(DEFCOR) RETURN
IFCITNEW LE. 10) GO TO 15

500 AA(5)=-,1

AA(7)=-11.D0/84.D0O
. DEFCOR=, TRUF,

CALL U2DCG(1,4,4,N, AA FUR, IERROR,.TRUE.)
| DO 100 #=2,N
L 100 R(1)==HSO*R(1)

GO TO 25

i END
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SUBROUTINE TRISOL(A,B,C,F,N)
IMPLICIT REAL*8(A-H,0-2)

C ARE AALRASEEAR ESAS EERE EER ERE EEE EE ERE RE ER RR RR RR AA GPA AAAI
C UNSYMMETRIC TRIDI AGONAL SYSTEM SOLVER

C A : MAIN DIAGONAL; B : LOWER SUBD.,:;C : UPPER SUBD.
C F : RIGHT HAND SIDE. DESTROY EDANDREPLACEDBYSOLUT I ON

C THE ITH EQUATION IS:

N C BOL) *X(1=1)+ACI)*X(1)+CCI)*X(1+1)=F(1+1> ,
C l1=1,...,N : N CORRESPONDS TO (N-1) IN THE MAIN PROGRAM,

C AAA AA AAAS AES EERE ERE EL EE EE Ey YE EE LE EE EE ET urururupriupa
DIMENSION A(257),B(257),C(257),F(257)

C FACTORZAT I ON

no 10 1=2,N
\& IMl1=1]-1

CC IM1)=C(IM1)/A(IM1)
10 ACT )=A(CT )=B(1 )*C(IM1)

F(2)=F(2)/A(1)
DO 20 1=2,N

| 20 FCOIL+1)=(F(CI+1)=-BCI)*F(1))/A(1)
C- C BACK SOLUTION

NM1=N=1

NP1=N+1

DO 30 I=1,NM1
IN=NP1-1

30 FOIN)=FC(IN)=C(IN=-1)*F(IN+1)
. RETURN

END
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= SHRROUT INE U2DCG(XK,P,0,N,A,Y,S,IFPROR, FVEN)
IMPLICIT REAL*8(A~H,N=-2)

TU | NTEGERP, Nn
0G | CAL EVEN

DIMENSION A( 50),Y(257),S8(257),Cc(50)
(fy lee AA AAA ASA ALES ELL LEE SATE ETE Rr ER ER RR RF VAP

THIS | S AN UN | VFRSAL TWO POINT BOUNDARY VALUE DEFFRRED CORRECT! ON
C GENERATOR.

C » G1 VEN THE ASYMPTOT! C EXPANS | ON
C

: C T(K) = SUMCACJ)2 (D2x(J=1))Y/(J=1)! * Hxx(J=1))
| r J = N+1,...,04PeK

C

C AMD FUNCTION VALUES Y(1),...,Y(N+1), COPRESPOND| NG TO AN
C C UNIFORMLY H-SPACED MESH : X(1) = X(1) + (t-1)«H , 1 =1,,..,N+1,

C U2DCG WILL PRODUCE S(2),...,S(N) : AN H+2(N+PxK) ORDER
r APPROXI MATION TO T(K) AT THF INTERIOR GRID POINTS,
n FOR FIXED INTEGERS N,P,N, A RFSTRICTION ON K IS
C Thdhekhhhh K LE, (N¢1=n)/P RRR RAN
C ALSO P JGE-1 , 0 GE. 1 , ¥ AF,|

. C ERROR = 1 MEANS THAT ONE OF THFSE COMDITIONS HAVE BEEN VI OLATED
C AND Nf CORRECTION HAS SEEN COMPUTED.
C ACl), . . .,A(0) APE SET TO ZFRO RY U2DrG,

. Q IF THE EXPANSION T(K) HASOMLY EVEN DERI VATI VES THFN EVEN SHOULD
C REF SET TO .TRUF, OTHERWISF IT SHNULD SF SET TO ,FALSF,

: '» FEBRUARY 1973 HhRAR RRR RE RRR RRR VICTOR PERFYRA

- C LARA AAR AAR ARE AAA A A EE A A
I F (K .,GT. (N+1-0)/P _OR.P.LT. 1.0R,D, LT. 1 .0R.XK . LT. 1)

| « GOTO 100
t PO 20 I=1,0

20 A(Ct1)=0,

KK1=N+Pw»K

| KK=KK1=-1
KM ID=KK1/2
I FRROR=N

KMID1=KMID-1

= KINT=KK1

C UNSYMMETR | C APPROX I MAT! ON. LEFT BOUNDARY.

1 IF(KMINDT LT. 2)6G0 TO1 O
no 5 1=2,KMID1

CALL COEGEN(KK1, I|,C,A)
ACUM= 0.

NO 4 J=1,¥KK]1
4 ACUM=ACUM+C(J)*Y(J)
5 S(1)=ACUM

¢ CENTER, RANGE

10 IF(.NOT, EVEN) 60 TO 25
In KINT=KK

25 CALL COEGEN(CKINT,¥MID,C,A)
NF=N+1=-K | NT+KM ID

DO 40 1=KMIND,NF
ACUM=()
ll t=1=-KMID

DO 38 J=1,KINT
38 ACUMsACUM+C (J) *Y (11 + J)
bn SC 1) =ACUM
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~ C RI GHT BOUNDARY
IF(KMID1 .LT. 2) RETURN

KMIDP1=KMID+1+KK1~-KINT

DO 50 I=KMIDP1, KK
CALL COEGEN(KK1l, I, C,A)
ACUM= ( .
I I=N=KK

[1=N+1-KK1

DO 4 8 J=1, KK1

48 ACUM=ACUM+C(J)xY(1 1+)
50 S{I+11)=ACUM

C RETURN
100 |ERROR=1

RETURN

END

SUBROUTINECOEGEN(N, NP, C, BR)
IMPLICIT REAL=*8(A-H, 0-2)

_ DIMENSION C(50), BB(50), ALLF(50)
C hii AA AA AAA E EASE ELE EE EE EE EE EE EE LE TL rar
C THIS IS A SLIGHTLY MDI FIED FORTRAN 4 VERSION OF THFALGOL

C PROCEDURE PVAND, P.901 OF
C "SOLUT 104 OF VANDERMONDE SYSTEMS OF EQUAT IONS” BY

C A. BJORCK AND V. PEREYRA MATH COMP, VOL. 24,PP.893-903 (1970),
C WHERE A COMLETE DESCRIPTION OF THE METHOD USED CAN BE FOUND,

| C THIS IMPLEMENTATION ASSUMES THAT THEALF(l) ARE INTEGERS,

C iad ARAL AR LA REEL EL EE RE EL EE rg a eu FU PP
DO 1 I=1,N

| C(1)=BB(1)

DO 11 t=1,N
11 ALF(l)=1=-NP
2 NN=N=1

DO 6 1=1,NN
LL=N-|

NO 6 J=1, LL
K=N=d+1

6 C(K)=C(K)=-ALF(1)*C(K=-1)
DO 8 I=1,NN
K=N=1

XKIN=1.D0/K
Kil=K+1

DO 8 J=KM1,N
C()=C(J)*XKIN
JMl=J-1

8 C(JM1)=C(JM1)-C(J)
RETU RN

END



N C MA IN PROGRAM FOR TESTING 8TH ORDER METHOD FOR 2 PVRPR,
| IMPLICIT REAL*8 (A~H. 0-7)

- EXTERNAL F1, F2, F3, F&4, DFY1, DFY3, DFY4
= DIMENSION X(257),Y(257), IPROB(10), YEX(257)

Pl=3.141592653589793D0
READ, (1PROB(1), I=1,4),JJ,N

: DO 100 Jd=1, JJ
N=2#N

h DO 100 1=1,4
IF(IPROB(I) .GI. 0) GO TO (1,2,3,4),|
GO TO 100

| X(1)=0.
; X(N+1)=p|
- Y(1)=0,

o Y(N+1)=0,.
PRINT,' PROBLEM. I , Na',N

C CALL DCBVP8(N, F1,DFY1, X,Y)
CALL EXACT1(YEX,X,N)

| GO TO 10

N ) X(1)=0.
X(N+1)=1.0

Y(1)=0.

| Y (N+1)=0.
PRINT, ' PROBLEM 2 .N=!',N
CALL DCBVP8(N, F2, Fi, X Y)

§ CALL EXACT2(YEX,X,N)GO TO 10

3 X(1)=0,

X(N+1)=1,

_ Y(1)=1.
Y(N+1)=a1,

| PRINT,,' PROBLEM 2, Ns'N
CALL DCBVP8(N, F3,DFY3, X,Y)

- CALL EXACT3(YEX,X,N)
GO TO 10

4. X(1)=0.

X(N+1)=1.
Y(1)=0,
Y (N+1)=0,

PRINT," PROBLEM 4 , Na=' N
GALL DCBVP8(N, F4,DFY4, X,Y)
CALL EXACTYL (YEX, X, N)

10 ERRNOR=0,

DO 35 L=2,N

ERR=DABS(YEX(L)-Y(L))
C IF(YEX(L) EQ, 0.) GO TO 35
C ERR=ERR/DABS(YEX(L))

IF(ERR .GT. ERRNOR) ERRNOR=FERR

C PRINT, X(L), Y(L), YEX(L), EPR

35 CONT I NUF

PRINT, ERRNOR
100 CONTI NUE

STOP

END
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SUBROUTINE F1(N, X,Y, Fl)
IMPLICIT REAL*8(A-H, 0-2)

hs DI MENSION X(257),Y(257), FU(257)
- Nl=N+1

DO 10 I=1,N1
SI=DSIN(X(1))

10 FUCE)=Y (1 )**3=-S|*x(1,+SIw#w2)
RETU RN

~ END
SURROUTt NE DFY1 (N, X Y, DFU)
IMPLI CIT REAL*S8 (A-H OZ)
DIMENSION X(257), Y(257), DFU(257)
N1=N+ 1

C DO 10 I=1,N1
10 DFUCT )=3, *Y(1 )*#2

RETURN

END

SUBROUTINE EXACT1(YEX, X, N)
IMPLT CIT REAL*S (A-H 0- Z)
DIMENSION  YEX(257),X(257)h

no 10 I=2, N
10 YEX(1)=DSIN(X(}))

RETURN

END

SUBROUT INE EXACT2 (YEX, X N
IMPL IC IT REAL+8 (A-H 0-2)

~ DIMENSION YEX(257), X(257)
C=1.336055694906 10800
CO02=,5*C

DLN2==DLOG(2. DO

10 YEX(I)=DLN2+2,*DLOG(C/DCNS(CO2*(X(]17--5)))
RETURN

END

SURROUTI NE F2 (N, X Y, FU
IMPL IC IT REAL*8 (A-H O27)

DIMENSION X(257),Y(257), FU(257)
N1l=N+1

DO 10 I=1,N1
10 FUCT )=DEXP(Y (1))

RETURN

END

fe
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; SUBROUT 1 NE F3(N,X Y, FU)
IMPLIC IT REAL*8(A=H,O-t)

w DIMENSIONX (257), Y (257),FU(257)
—~ Nl=N+1

TWOP 1=6.283185307179586D0
| TPSO=TWOPI *TWOPI

. DO 10i=1,6N1
TPX=TWOPI*X(1)

C SI=DSIN(TPX)
EXPSI=DEXP(S1)

= 10 FUCL)=Y (1) «(1 +Y (1) #Y (1))+EXPSI* (TPSQ* (DCOS(TPX)*%2=5])-
* EXPSI*EXPSI|-1.)

: RETURN

. END

L SUBROUTI NE DFY3 (N, XY. DFU)
IMPLI CIT REAL+8(A-H O32)

Co DI MENSION X(257), Y(257), DFU(257)
Nl1=N+I

DO 101!=1,N1

10 DFUCI)=1,+3,*Y(1)*Y(1)
L— RETURN

END

SUBROUTINE EXACT3(YEX, X N)
- IMPLICIT REAL*8 (A-H, 0-2)

DIMENSION YEX(257), X(257)
TWOP1=6,283185307179586D0

' DO 10 1=2,N

10 YEXC1)=DEXP(DSIN(TWOPI*X(1)))
RETURN

| END
SUBROUT!I NE F4 (N, XY, FU)
MPL IC IT REAL*8 (A=H, 0-2)

| DIMENSION X(257),Y(257), FU(257)Nl=N+1

D O10I=1,N1

10. FUQI)=,5%(Y(1)+4X(1)+1,)we3
RETURN

N ENI)
SUBROUTI NE DFY4 (N, X Y, DFU)
IMPLIC IT REAL*8 (A-H 0O- Z)

- DIMENSION X(257),Y(257),DFU(257)
Nl=N+1

D O 101=1,N1

10 DFUCT)=1.5*(Y(1)+X(1)+1,)%x2
RETURN

END

SUBROUT | NE EXACT4 (Y EX X N)
IMPL IC IT REAL*8 (AH OZ)

DIMENSION YEX(257), X(257)
DO 10 I=2,N

10 YEX(1)=2./7Q2.-XC1))=-X(1)=-1.
RETURN

END
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B 11.6.7 Operation count

In this Section we shall make an operation count for the 0(d)

algorithm Just described. First of all, each Newton iteration requires

{ (n-1) evaluations of the function f and its partial derivative ft
All the other operations required are arithmetic or logical and our count

refers to the former. "M" will stand for multiplications or divisions,

L and "A" will stand for additions or subtractions. Integer operations

are not counted. We call nl = n-1 , and we shall essentially keep only

the higher order terms in the total count.

. The main steps in a Newton iteration are:

| (a) Computation of residual: on, A + 5n.M
(b) Setting tridiagonal system: Sn, A + 3n,M

| (c) Solution of tridiagonal system: 3n, A + on. M
(d) Updating of Y nA

~ (2.48) 12n, A +11n.M/ Newton iteration

We won't count the operations involved in the computation of the

initial value Y° by linear interpolation since that can be considered

. as a step common to all techniques of this type.

Finally we have to account for the work involved in computing the

correction. We have:

(a) 5 calls to the Vandermonde solver: 96A + 64M (independentof n!)

(b) Calculation of S: Tn A + To M

(c) Parts b), c¢), d) of Newton: Tn, A + Bn. M

Lin, A +n,M .

Therefore, 1f' 1 Newton iterations are performed, then the total work will

be
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(2.49) TW = (1231 + 14)n, A + (114 + 15)n.M :

Let us consider, for instance, Problem 2. Forh = 1/32 , four

Newton iterations were required in order to decrease the residual below

1.55, -17, and the corrected 0 (19) result had« max. abs. error of

4.08, -15 at the grid points. Formula (2.49) tells us that the total

number of operations 1s then:

L (2.50)  TW(prob.2j;def.corr.;n=52) = 1922A + 1829 u .

Since the basic method 1s clearly om) we can estimate what kind

of a mesh would give us equivalent accuracy (n=256 is almost there, but

L- not quite). In fact we would need 790 points in order to achieve that

accuracy (provided that roundoff' does not ruin it first). From the num-

) ber of Newton iterations required for the various mesh sizes shown 1n

Table 2 we can expect that again 4 iterations will be needed for n=790

and the operation count will be 1n this case:

(2.51) TH(prob.2;0(h" method; n=780) = 3TU4LO A + 54320 M .

| We see comparing (2.50) and (2.51) that the om) method will

need approximately 20 times more arithmetic operations than the corrected

| one. Also we must count the number of function evaluations. In this

problem f = f= ev y but in order to make a general statement we shall
= .count en, function evaluations per Newton step. Thus the 0(n°)

method, with n=32 , requires FEgq = 530 , while the om) method with
) n=780 will require FE) = 6248 , i.e. again about 20 times more work.

We should also mention that 25 times more storage will be needed for the

(nt) method to achieve the desired accuracy. However, all this compari-
son 1s unfair. After all we expect a bona fide high order method to
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w perform better than a lower order one; therefore, except to emphasize this

- fact in a specific case, we should look for stronger competitors.

“ Successive Extrapolations (SE)

With minor modifications our program for deferred corrections can

be employed for performing an algorithm similar to the one described in

[ 11.4. Infact, what we have done 1s to introduce the necessary changes

_ in the Main Program of p. 47 and "short-circuit" the correction step in

DCBVP8 by replacing the 5th statement of p. 43 by

he TF(RESN.LC.EPS) RETURN

| Thus, Subroutines U2DCG and COEGEN are unnecessary. Since our
basic method has order 4 then, given h , we call ¥, , i=1l,..., to the

| (n -1) vectors obtained from the solutions Y (==) . These are to be,
| of course, approximations to y*(a + kh) . We then form the successive
- columns of the extrapolation triangle by:

pl HH] - Vy, (3+1) _ 1

Observe that

EAR 07 = o(n2 3H)
and only two orders of h are gained per extrapolation.

We report now the max. absolute error in Y; for the various prob-

lems and different initial meshes.
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Problem 1 Problem 2

No errorsg m €rrorg In

4 1.69, —9 -—-- 4,01, -12 ———

~ 3 1.60, -11 6.72 1.64, -14 7.93

16 1.68, -13 6.57 2.87, -16 5.84

32 3.31, -14 2.3k 8.01, -1o ———

C en nnn

Table 7

4 Problem 3 Problem 4

Ng errors§ m €rrorg m

| A 6.06, -5 — 2.97, -9 i

8 8.14, 7 6.22 1.45, -11 7.68

16 2.06, -9 8.63 6.07, -14 7.90

32 7.51, -12 8.10 6.24, -16 6.60

64 1.38, -13 5.77 ~—- ----

Tuble 8

Computer Times

ae in sec. (all problems)

4 0.38

8 0.75

t 16 1.45

32 2.96

Table 9
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It 1s somewhat hard to choose a reasonable criterion of comparison

between these two methods. One that seems adequate is to choose two

results of similar accuracies and compute the work necessary to obtain

them. From Tables 3 and 8 we find that for Problem 3, DC with n-256

has an accuracy of 1.33, -13 , while SE with n_=oh attains an accuracy

| of 1.38, -13 . From Table 3 also we learn that 6 Newton iterations are

necessary to reduce the residuals to the necessary level for n=64 128,

256 . Thus the total number of operations for DC is, according to (2.49):

(2.52)  TW(prob.3;def.corr.;n=256) = 21930 A + 20655 M ,

For the SE procedure we recall that the basic problems for meshes

n=64, 128, 256 must be solved and their results combined linearly. This

- last part requires Sn A + én M , and combining this figure with the work

i required by the various Newton iterations we get
| (2.53) TW(prob.3;Rich. ext. jn _=64) = 324484 + 29%2M .
_ The number of function evaluations 1s 1n each case:

(2.54) FE(DC) = 3598 ; FE(SE) = 5Lkiz2 .

N Finally, we must remark that DC gives 1ts od) solution at 256

- points while SE only gives it at 64 points. The computer time required

by SE for this problem was 1.79 sec., while DC took only 1.18 sec.

Thus we see that in this problem, for the same accuracy and 4 times more

detail, deferred corrections 1s 1.5 times faster than successive extra-

polations, both methods being of the same asymptotic order, Also observe

that Problem 3 is the most "difficult" of our set of test examples.

In the following Chapter, an Iterated Deferred Correction procedure

wlll be developed, and we will be able to carry out additional comparisons

with higher order successive extrapolations.
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NS Finally we would like to point that in higher dimensional problems

the effect of' mesh refining on the amount of work and storage 1s much more

dramatical, as it has been indicated in Pereyra [1967].

. We include some sample results and the modified programs for SE.

«

L



~56-

|

oc ~— = pa
oO in - S\. { ) /

Ln = Lo ploc. co nd pd< x o toc oy oO
= c — o0

o. o ok pul
— ~~ oc <
c — oc =
MN oC —~ NYw = c

— oN < iy
~ N Veh ~~.

[Ye i el po
« S < ~— = we 9* bd *
co = < <.

og eo = Ke

Toll-< «© Cc — wn ~
SE =i= oC alll an co

(J | ti 1 fF I |
NW Co 00 oN ~~
MeN oc = «<C oO Mn
wo oC oc — oN MNL ~ oN =F pet Cr <n
co ~ © tN oC oN ON

i" No I ~~ in NW n al Tec oo [a Or - Me osJE Ve ga
=> (Tal op == Ne <= wn oc pr (Tall a

nC < mM — oC ell Yo. Cc — CN Cc C CC MM onSY o SC
- wo — oN oO -_ oO -_ Cw
CNN ox oN oN co C —
C — CC" < wo < MN « ~~i 4 ~~ un
=. CS = NC = oN oo = cc

- C oc C Cr C — CC rie
[ [ [] LJ [J @ ® ®

ad (anll s nd nll ce [i wl (ad ccoCC - CC | -

* L | [ J *
>< * >< * > %* >< x
<< MN < NW x <T Oe eN So EatZCCO3: ITTCx seocc4 TTT0 x
ER 1 x EE “CC O ox

Crimv pn x C eM oc &x CNC x |e 00 MY &- NOC ON & - in oC It & -_L ot oC x
alll SN VaR VP oC oC ot & Cc ~~ oN ox pn pe xTERE ENCE ENC kT inn
— NNN - rn Kx - NC IN ~~ x
Cr~Co x Cu Nw x Curo oo & CCC «xQ oC oC In Xx oom x Q NPM oo & AC or «xLS Qf Tol a < un nk CNC NN <{ eC CN oCnM NN COM x wR Toll VOR Vo OC ot x[ oll Val FoR NPS —uroc Co x lc J «BE SUP I~ «
X Ow eC & XW r-C x Xu oh « > vt ri NY xUL —C + & Ww oc moc « We rm x Ld IN et
WN oe ON CN Tol ol CN OC xSC CTC # = 00 WN ag Val ToRV Sr pall LNCNC coc x C Coot x Ccocc «x Cec «[Tol J SN VW MN x WN vv 4 & UV) ON rd ol 4= C. oo oo of =£5 eo oo oe KX FX eo * XK ZC ee +o ex

LECCE rurcococsicocoosifoco |
- £ J <I X od &
cc I * I oC IT * CC *
C CC *x CO « C C x CC *
Oo ee x 0 a * OQ o- %® 0 = +%*a cr « 0 * 0 * OO &

* x * «



~57-

q MA! N PROGRAMFOR TESTING SURCFSS| VE RICH, EXTRAPNOL, FOR 2PRVP,
0 FOR A GIVEN BASIC MESH N PROBLEMS FOR WHICH IPRNB(!)=1 ARE RUN,
r (JJ=1) RI CHARDSON EXTRAPOLAT! ONS ARE PERFORMED.

IMPLICIT REAL*8(A=H,0-2)
FXTERNAL F1,F2,F3,Fu4,DFY1,DFY3,NFYY
DIMENSION X(257),Y(257), 1PROB(10),YEX(257),R(257,6),RFR(E,E)

« PI=3, 141592653589793D0

READ, (IPROB(1),1=1,4),JJ,N
N1=N

NO=N#*2?

DO 100 I=1,4
| N=N1

L IFCIPROB(1) EN. 0) GO TO 100
NO 1000 J=1, JJ
N=2%N

G0 TO(1,2,3,4),|
1 X(1)=0,

X(N+1)=pP|

Y(1)=0,
Y(M+1)=0,

CALL NCRVPS8(N,F1,NFY1,X,Y)
: CALL EXACTI(YEX,X,N)

60 TO 10

2 X(1)=0,
- X{(N+1)=1.0

Y(1)=0,
Y(N+1)=0,

i CALL DCBVP8(N,F2,F2,X,Y)
CALL EXACT2(YEX,X,N)
GOTO 10

| 3 X(1)=0,X(N+1)=1,
Y(1)=1,
Y(N+1)=1,

_ CALL DCBVP8(N,F3,NDFY3,X,Y)
CALL EXACT3(YEX,X,N)
GOTO 10

4 X(1)=0.

.X(N+1)=1,
Y(1)=0,
Y{N+1)=0,

CALL DCRVPR(N,Fu,DFYL,X,Y)
CALL FXACTHU(YEX,X,N)



B

L

L -58-

10 FRRNOR=(,
“ PO 35L=2,N

FRR=DARS(YEX(L)=-Y(L))
IF(ERR GT. FRRNNR) FRPNNR=ENR

35 CONT INUF

RER(J, 1)=ERRNDOPR
LST=2*»(J=1)

C LL=LST+1
no 90 L=2,N0
PCL,Jd)=Y(LL)

90 LL=LL+LST

1000 CONTI NCJE

3 HO=(X(N+1)=-X(1))/N0O
P O180L=2,ND

180 X(L)=X(1)+(L-1)*H0D

PRINT, PROBLEM! , |
"0 TO (11,12,13,14),|

11 CALL EXACTI(YEX,X,N0)
: GO TO 15

12 CALL EXACT2(YEX,X,ND)
GO TO 15

| 13 CALL EXACT3(YEX,X,NO)
= CO TO 15

14 CALL EXACTL(YFX,X,NO)

| 15 PO 200 J=2,4JCO=Lxx

NIV=1,n0/(CcN-1,.n0)
PO 20011=J,JJ

| IR=JJ=114+
ERRNOR=N,

PO 190 L=2,NN

R(L, IR)=NIV*(CO*R(L,IR)=R(L, 1P=1))
~ FRR=DABS(R(L, IR)=YEX(L))

IF(ERR GT. FRRNOR) ERRNOR=FRP
190 CONTI NUE

200 RER(IR,J)=FRRNOR

PRINT,' RICHARDSON EXTRAPOLATIONMAX, FRROR ON GRID NO=',6 NO
PO 30011=1,JJ

300 PRINT, (RER(11,J),J=1,11)
PRINT, "#tadhararnerrrrrrrrrarrdotttns!

100  CONTINUF
STOP

FND
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¥

oo SUBROUTINE DCRVPS(N,F,DFY,X,Y)
IMPLICIT REAL=8(A-H,0=2)| DIMENSION X(257),Y(257),A(257),R(257),€(257),R(257),AA(50)| * LFU(257),NDFU(257)

C lee A AEA AA A LAA AL EL ARERR ERE RR RE RR Rr Serr AAU
Se r TWO POINT BOUNDARY VALUF PRORLEM SOLVER FOR

C YP eF(X,Y) = 0, Y(X(1))=Y(1) , Y(X(N+1))=Y(N+1)
C TYE H#*+l4 ORDFR METHOD

C Hid =2 #(=Y(1=1)+422Y(1)=Y(141))4+(F(1=-1)+102F(1)+F(1+1))/12 =O
c IS USED

| Creer {IMITEDT O N= (X(N+1)-X(1))/H LE. 256 * kkk
L C TOPROCESS FINER MESHES CHANGE THEDIMENSION STATEMENTS

C IN ALL SURROUT! NES ACCORD | NALY,
CxxxxxlUSER PROVIDED DATA*++++

C X(1) =LEFT END ARSCISA

c X{(N+1) =RIGHT E N D ARSCISSA

C YC1)AN DY{(N+1): CORRESPOND I NBBOUNDARY VALUES,
Sa py N+ 1 IS THE NUMRER OF MESH POINTS (COUNTING THF END POINIS),

| r N MUST BE GRFATFR OR EQUAL THAN TWO.
C THEY ARE ASSUMED TOBF EVENLY SPACED BYH=(X(N+1)-X(1))/N

L C F . DFY APE EXTERNAL USFR PROVIDED SUBROUTINES THAT SHOULD PRODUCE
» THE MESH FUNCTIONS F(X(1),Y(1)) , DF/DY(XC1),Y(1)), t1=2,...,N, RESP,
C THEIR CALLING SEQUENCES MIST RF:

| C FIN, X,Y, FU)
C DFY(N,X,Y,DFU)
C WHERE FU(257),DFU(257)ARE THF ONE-DIMENSIONAL ARRAYS TO BE
C FILLEDWITHTHERENUIRE DMESHFUNCTIONS,

~ C ON OUTPUT THE APRAY YWILL CONTAIN THE COMPUTED DI! SCRETE SOLUTION,
NPl1=N+1]

H=(X(NP1)-X(1))/N
. HSO=aHex2

Cxxxrex NEXT STATEMENT IS1 NSTALLAT! OM DEPENDENT *%xxkrxwns

C IF THIS PROGRAMIS NOT USED ON AN | BM/3680 COMPUTER INREAL=+8 PREC.
Cc THE CONSTANT §5.0Nn=-16 SHOULD RFREPLACED BY (APPROX IMATELY)
C 10*MACHINE PRECISION INORDERTOAVO I D UNDUE CYCLING IN THE
C NEWION ITERATION,

FPS=NMAX1(5.0D=~16, ,0001*HSNw2Y)
Cl=(Y(NP1)=-Y(1))/N
PO 10 I=2,N
XC) =X(1)+( 1-1) +H

1n Y(1)=C1le(1=1)+Y(1)
HSNN12=HSN/12
Al=5,+HSN/6
I TNEW=0
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~ 15 CALL F(N,X,Y,Fu)
RESN=0,

PO 201=2,N

PO1)=Y(1=1)=2#Y(1)+Y(141)=HSOOI2%(FUCI=1)+10.2FU(1)+FU(1+1))
TE=DABS(R(1))

20 IF(TE .GT., RESN) RESN=TF
- IF(RESN LE. EPS) RETURN

25 CALL DFY(N,X,Y,NFU)
nos ot=2,N
ACI=1)=A1=DFU(1)+2,
B(1)=aHSOO012+*NFU(I1)=-1.

( 30 C(I1=1)=HSN012+DFU(1+1)=~1.
IF(N-2)35,35,36

35 R(2)=R(2)/A(1)
OTN3 7

36 MM1=N-1

CALL TRISOL(A,B,C,R,NM1)
37 I TNEW=1TNEW+1

g ND40 1-2, N
Ln Y(1)=Y(1)+R(1)

IF(ITNEW .LE.10)G0OT O 1 5
END

bo

L

|
L
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III. Computer implementation of iterated deferred corrections for

To boundary value problems

The iterated deferred correction (IDC) algorithm described in

Chapter II, p. 27, requires the computation of the various correction

- operators Sc that approximate the sections of the local truncation

BN error. Given a known basic discretization Fo of order Pp | and the
: kth segment of the asymptotic expansion for the local truncation error:

i (3) (4)_ (5.1) T(x) = > Ie) y Le hY
J=9

b— where the coefficients 2 are independent of h , we would like to have

i a flexible, fast, and accurate algorithm capable of producing the weights
Ww that define Sy (see (2.30)). In the next Section, we develop such

. an algorithm, which can also be used for other applications. The fact
that the sum (3.1) starts from g £ p has been added for even further

L flexibility. There are situations in which the order p and the first
derivative appearing in the expansion do not coincide, 1n which case this

B added flexibility will come in handy. Subroutine U2DCC of p. 45 is a

° FORTRAN IV implementation of our algorithm.

III.1 An automatic weight generator f'or numerical differentiation

and other applications

Given a smooth function y(x) , an uniform mesh of: size h with

points BY , and an abscissa Xx , we are interested in approximating
the number

(5.2) Ly) (2) = > @541 GI
j=0 |
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C— by means of a linear combination of values of the function y(x) at some

of the mesh points:

m+1

. (5.3) My) =D wylx,)
S=1

where r is a given integer. The algorithm that we are about to describe

C can be easily adapted to the case of nonuniform meshes, but here we prefer
to present it in its simplest form.

We assume that the accuracy required 1is o(r™ . It 1s well known

LL (see Collatz [1960], Ballester and Pereyra [1967]) that if y(x) has (m+l)

i continuous derivatives then the approximation (3.3) exists 1f one takes
t = m+ 1 different abscissas.

Proof: Let v= (x _, - %) 1 , and let us expand M(y) in a Taylor
i series around x :

NEEL) 5— . . t

] ISTEDET Pi sa ITEI SAS CIS J: S s% tr. h

© or

t-1 t (3 €: J) (t) t
_ yol(x) pd og wat YY (8) nb(3.4) My)= > (3 “) jr » s%s tr —4j=0 \ s=1 "5=1

Our aim is to make the difference M(y) - L(y)(x)as large an

order of h as possible. Matching terms with the same powers of h

generates the following conditions for the weights W

t

(3.5) wo 8541
s=1
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. In order to make the linear system (3.5) square we can 1mposSe as many as

t of these conditions, 1.e. J=0,...,t-1 . If this system of linear equa-

tions can be solved then the resulting M(y) will have the property

. t (t)—_ tT

S=1

But system (3.5) 1s a Vandermonde system of equations and since
C

the «, are distinct it 1s non-singular. I
Therefore, our problem of evaluating the appropriate weights w

S

has been reduced to solving systems of linear equations of the form:
L—

3.7) V(ww=a

- T T T

where a = CIPPRIN- ’ a = (8y5...58,) ’ w = (Wy 5eeesm,)

and V(a) is the Vandermonde matrix:

11 . . . 1

C

Re I~ SR
J

2 2 2
8 =L (5.8) (2) of ay a|.

t-1 t-1

| “0%
It 1s well known that Vandermonde matrices are ill-conditioned

i (cf. Gautschi [1962, 1965]), and if one attempts to use a standard Gaus-
sian elimination code on this type of problem, failure occurs even for

= very modest sizes. Great loss of accuracy is also common, even for t=5 .

Fortunately, there are techniques for solving this and similar kinds of

problems that not only are more accurate and stable, but that also
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take much less arithmetic operations to produce the desired result. Nat-

urally, they take advantage of the special structure of the matrix V(a)

(see Ballester and Pereyra [1967], Bjorck and Pereyra [1970], Galimberti

and Pereyra [1970, 1971] and Pereyra and Scherer [1973] for more details,

generalizations and other applications).

nBjorck and Pereyra [1970], a method for solving the transpose

(dual) problem

T

(3.9) V(x) a-=f

1s developed. A matrix interpretation of the method permits then the

consideration of the direct problem (5.7) with little difficulty. For

problem (3.9), advantage is taken of the fact that if we think of the

elements of the vector f as values of a certain function, then the

equations (3.7) are just the conditions of interpolation by a polynomial

of degree (t-1), and therefore, the solution a will have as components

the coefficients of the unique interpolation polynomial:

t-1

S

P(x) = > Ger1”
s=0

The Newton form of the interpolation polynomial P(x) 1s obtained
b

1f one considers the new basis given by the polynomials

k

(5.10) Q(x) =1, Q(x) =m (x-a) , ksl,...,t-1
i=1

-

With this basis, we have

t-1

(3.11) P(x) = > c, Q(x) 9
k=0

[
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- where the coefficients c, are the divided differences constructed with
the function values f and the abscissas «a :

“x = fla, poe 0] hb] k=0,...,t-1 .

It 1s well known that these divided differences can be obtained

recursivelyby

4 fla, 1s 00 1 = fla. a](3.12) flo, , ,..co,0,,] = __ Jd-k+#l7-- "341 i-k >"

J+l Jj-k

k=0,...,t-2 5 Jj=k+1,...,t-1 .

v Once we have computed the vector ¢ Jr 4ivided differences then a

: Horner-like scheme permits to evaluate (3.11). In fact, we can compute

(5.15) ap(x) = “ter K(x) = (x -aq)a (0) Fes k=t2,00000
L and then clearly,

a(x) . P(x) .

Let

k k k) t-1l-k

4 (¥) = a) + 8) +... oF a Jy ’
(t-1) _

8541 = Cs s  J=0,...,t-1 .

If we replace these expressions in (3.15) .. pain a simple recursion for
LL k

the coefficients a ) s k=t-2,t-3,...,0
(k) __(k+1) |

as =a; , 1=1,...,k ; t

k) (k+1)3.14 a = Cc -(5-14) 2y) k © Yfke
(k) (k+1) (k+1)a. = -— N = —

J ?3 Op41854) 0 ITER. t-1

Recursions (3.12) and (3.14) furnish the solution to problem (3.9).

Let us consider the lower bidiagonal matrices of order t , |
L (a) , defined by
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Lela); = 13 beled s =0 , I=L...,k
(3.15)

beled; 4 BEE i1=k+1l,...,t-1 .

~ We shall call

be = Ile) 5 Mo=1 (1),

3 and D, to the diagonal matrices;

(3.16) D = diag CERERPE PY Cp _ @))se ese _ apg 1)}
With this notation it is easy to see that recursions (3.12) and (3.14) can

be represented in matrix form as:

(0) _ (k+1) _ _- k
C = Ny ¢ = pu ) » k=0,...,t-2

(3.17) ( t-1) t-1 k t (k+1

| a = ) > gl ) = AN ) , k=t-2,...,0 .
T T

CallingU” , L° to the lower and upper unit triangular matrices

. -1 -
5.18) UT= D."M, ..... I A(5.18) t-2Mg 2 DM, Lom olybe Ly

then we see that (3.17) can be expressed as

(5.19) ¢ = Uf, a=1%.
-T _

Since a =V "ff , we have then V I. r,t , Or

(5.20) vt. -1 -1} = UL, V = 5 2

and we have found a factorization in bidiagonal factors of the unique tri-

angular matrices furnishing the UL decomposition of the inverse Vander-

-1

monde matrix V . With this factorization we can easily write a recursive

algorithm for solving the problem of our more immediate interest, i.e. the
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: primal or direct Vandermonde system (5.8). In fact, we have(3.21) W = v HH a)a = Ula = Un DE, 1 )a ,
from where we can easily derive a recurrence to compute Ww . Subroutine

N COEGEN (see p. 46) 1s a FORTRAN IV implementation of this recurrence, while

in [ 3) Algol 60 implementations of both Vandermonde solvers and some

variations can be found.

: In the present implementation the user has to provide the size of
= the system N , the integer location of x , NP , with respect to the

| nodes used in (-3.3). We assume here that x is actually a grid point.
8 With this information COEGEN generates the vector @ , whose components

| are 1lntegers: a; = 1 - NP . Therefore the elements different from 1 in
the diagonal matrices Dy (see (5.10)) are simply: x - gga] = k + 1,

L which amounts to the small modification we mentioned above. The right
| hand side of the system must be supplied in the array BB , while the

} solution to the system will be found upon output in the array C . In our

_ application COEGEN -is called by the subroutine U2DCG that we pass to

des cribe .

II1.2 A Universal 2-point boundary value Deferred Correction Generator

As we sald before the gist to an effective implementation of iter-

ated deferred corrections lies 1n being able to obtain the correction operators

S, approximating the expansions (2.30) or 11.6.3. The correction operators we

are going to develop are of the general form (3.3), and therefore the subrou-

tine COEGEN will be an important component in our algorithm. Other types

of corrections are possible as we have pointed out in [34). See also Denny
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s and Landis [1972]. The word Universal in the title of this Section refers

to the fact that we hope that the generality of the subroutine U2DCG will

be able to cope with a variety of different boundary value problems and

various discretizations. For instance, we have seen already for the

simple problem (1.1) two different discretizations which in turn produce

different asymptotic expansions (cf. (2.29) and 116.3, p.30). The

C theory developed in Chapter II, which carries over to many other situa-

tions, and our comments above are the reasons for the choice of the form

(3.1) as the type of general expansions we would like to approximate.

L In a two point boundary value problem, where approximations to an

expansion of the form (3.1) are necessary at all the interior grid points

N of an uniform grid, we are faced with various standard problems:

> (a) The order of the approximation must be 0(n3tPK) at

each point.

(b) We like to use as centered formulas as possible since

they have the smallest truncation constants and smaller

weights. In the "center" of the interval we can do this

) without difficulties, but as soon as we get closer to the

boundaries we need to use unsymmetric formulas.

L These tasks are fulfilled by the subroutine U2DCG which is listed on p. 45

| of these notes.
- The user needs to know what kind of an expansion he wants to approx-

I imate, i.e. he has to provide the coefficients a 5 in (3.1), for
J =a, . . .,qtpk-1 (setting to zero those for which the corresponding

— derivative does not appear; observe that due to programming language

limitations, the coefficient, as corresponds to the (j-1) derivative).
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xn The other two parameters required are the order op of the basic method
B from which the expansion came, and the correction step k which is desired.

The number of interior nodal points plus one, N , 1s also required, and

finally the grid function (array) Y , which will be used in formulas like

(5.3) must also be provided. It is assumed that Y is an 0 (na+P" (E-1),
order approximation to v(x) . On output, the correction mesh function

« 8, (¥) is produced in the array S . The integer variable IERROR will be

equal to 1 and no correction will he computed in case some of the following

assumptions are violated,

L (3.22)  K < (N+1-Q)/P 52, 0, K>1 .

The condition P , Q , K > 1 is pretty obvious; the first condition is a

constraint motivated by the fact that a minimum number of grid points are

necessary to achieve a given accuracy for a certain derivative. Thus in

; order to obtain the required accuracy we need g + pk points. Since we

count with N+l1 grid points and p and g are given then that imposes

| a condition on k , Of course, if our expansion consists only of even
derivatives then we can have sufficiently accurate symmetric formulas

© with only q+ pk - 1 points, al least in the center range. This cacze

1s indicated to the subroutine by setting the logical parameter EVEN to

.TRUE., otherwise this parameter should be set to FALSE. .
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~ 111.5 Asymptotic error estimation by deferred corrections

B The procedure of' Section II.6.% was actually a way of obtaining an

asymptotic error estimate for the basic 0(n") solution. It turns out
« that a similar technique can be employed in general to estimate the error

in an iterated deferred correction algorithm. wo shall give now an ex-
! : 4

planation associated with the O(h') method of 11.6.3, but this result,

q as most of the others, carries over to much more general situations (cf.

[39]).

For k=1,... let

3.23 T. (x) = a LI°7(Xy) J(3.23) T, 5 3 hn
jh

with

L 0, j odd ,
5.24) a, =

( ) J I 1
z FFE) J even .

Lx (k+1)

Let S. (9.3 )( £ *- i \Pp Xi) Bh "si CT Vir +s) ’
s=1 : 1

. y where the displacement r, will be dependent upon the position of x ip
i

; the interval [a,b] (cf. 111.2). The weights are chosen so that
| Sl

| K-~ *
: (5.25) 5(vy = 1(x) + o(n'* (EH)

] where the discrete function ¢(k-1) satisfies
(k=1), _ (k-2(3.26) G, (¥ ) = 8,(¥ ))

and

- (k-1) * Lx
(3.27) & _; = ¥ - oy =o),



Z71-

Theorem 3.1. Let Ay be the solution to the linear problem

k-1)(3.28) G/(v" A= og (y(E2), _ (k-1h ) 1 (Y ) = 8 (x Ny
Then

- b' = *(k+1)
39 29 a, _q eq 1 O(h )

(i.e.: A,_, is an asymptotic error estimator for y(E-1)y
L Proof: * bx (k+1): S G = TT, (x) + 0 , btHES a (9p ) x) (n ) + We obtain combining this

relationship with (3.26):

6, (vy Cg yy = gs (v(k-2) | ht (k+1)- h h'%h _1 ) - T(x) + o(n )

| But from (3.25) 3nd the Mean Value Theorem we can deduce that
8k (k-1) *o(h™) + G/(Y y (y(k-1) -©0y) = (k-2)

(k-1 Lx k++_ - 8, (vy yo nt*ern)y

or, since 8k > 4x(k+1) for k > 1 ,

6 (xD)yy (k-1) Lg 3%) _ (k-2) k-1 x(h )( h ) =s,_;(Y ) s, (+ )) + o(n" (kt1), |

Subtracting this last expression from (5.28) we obtain finally

k-1)6! (vy! A . = an (k+lh{ ) Pym oq) = on ly,

and since G, 1s stable, go is G,. and the result follows. []
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. 111.4 A variable order, variable (uniform) step, two point boundary
value problem solver, based on deferred corrections

In this Section, we address ourselves to the following task:

Co "Given problem (1.1), (2.1), n > 5 , and 10% machine precision < g ,
~ find a discrete solution on an uniform mesh with at least (n+l) points and

maximum absolute error less than equal to e¢ ."

c- We won't claim that our algorithm is optimal with respect to the
solution of this problem, but we shall try to show that it has some good

points as compared with other available techniques. In fact, the algorithm

C-— will be designed in the style of an adaptive scheme, except that the mesh

will be automatically refined over the whole interval. A more complicated
i

— algorithm could be designed, such that local refinements are performed in

i order to follow better the local variations of the exact solution. In

fact, the vector A, of Theorem 3.1 provides an excellent tool for that

L more complicated task since it measures the error at each individual mesh

[ point. We prefer to reserve this type of approach for situations in which

the use of non-uniform meshes 1s unavoidable, like in the case of multipoint

i - boundary value problems, or problems with isolated, interior discontinuities
b (interfaces) (see Keller (1969, 1972)).

i Our strategy will be based on the Iterated Deferred Corrections (IDC)

| algorithmof 11. 6.2, for the o(n') discretization (2.36). We know from
| ITIT.2 that for a given n there is a natural limitation on the number of

| corrections that can be performed. Also, from past numerical experience
(and common sense), we know that for a given problem and mesh size there

| are also limitations on the number of corrections that will do us good.
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Unfortunately, while the first limitation can be exactly predicted (i.e.

i k < (n+l - 4)/k) , the second one is problem and machine dependent.

On the other hand, 1t turns out that the asymptotic error estimation

« procedure of' III.3 provides a fine, reliable tool for detecting on line

the behavior of the corrections. Thus, | by > 1, 4 is a clear indicator
that the (k+1)th correction will not improve our solution (and also that

C Ay 1s not a reliable estimator for e.) This phenomenon 1s obviously

connected with what in the past has been known as "the growth of high

| order differences", which served as a signal-to the pencil and paper num-

- erical analyst to cut his series of differences (see also [26,27]). We see then

that without having to construct, store and computer inspect a table of differ-

L enceswe can still extract the useful information inherently contained 1n the

| procedure. As a matter of fact, we use in our program the more strict test

Tall < -1*]1alf -

- If this condition is violated we halve the mesh since we are not obtaining

§ a sufficient reward for our pains.

A flow chart and a FORTRAN IV program for the algorithm follow. We

emphasize here that by changing appropriately some boxes 1n the program, one

can solve other problems with this same logical arrangement. Subroutine

IDCBVP calls Subroutines TRISOLand U2DCG, which have been listed earlier in

these notes.
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o Flow Chart f'or Variable Order, Variable (Uniform) Step,

= Deferred Correction Solver

oo START
“-

| Input parameters:

N, X(1), X(n+1),
: Y(1), Y(N+1), TOL

C

No « N

ERRGLD « + co
[- K « O

He(X(N+1)-X(1))/N
— |EPS: MAX. RES. FOR

_ NEWTON
KMAXe(N+1-4)/4

—| ERREV « FALSE.

: Initialize Y (I) Fe 1.0
- for Newton as

MASS linear comb. of Xl ~ X(N/2+1)
no

no values

| Initialize Y(1) ?

on new grid fron N > 256\yes N=N/2
(I) on old grid TOL=ERROLD

ERREV = ,TRUE.

. (12) Compute 5, (114)
no |

| yes
?

Compute residual yes
=*] and its norm: K.GT .KMAX

RES] ?
0

| RRNOR>F*ERRGLD
es

e
no

OF
? ERREV « ,FAISE. ?

Solve lin- ERREV = ,TRUR. NYE] Compute error |

: lear equas, | estimate and norm; ERRNGR < TOL {stopFRRNOR

ves PAN =
— ITNEW<10 ITNEW « 'ITNEW+1 NS

0) \\ — 0, | Correct Y(I) |500) no
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SURRAOUTINF IDCRVP(M,F,NFY,¥,Y,TOL)

| IMPLICIT PEAL#R(A-M,0=7)- INGICAL FEPRFY

DIMENSION X(257),Y(257),A(257),n(257),0(257),R(257),AN(50)
x, FU(257),DFU(257),S(257)

C hi AA ALAR LEAS AAAS LEE LE EE EE a RR So Su A Ar PAA
| r VARIARLE ORDER, YAR | ABLE (UM] FOPM) STEP FINI TED | FFERENCE
- rn TWO POINT BOUNDARY VALUE PRORLFM SOLVFR FOR
3 ro =Y'TeF(X,Y) = 0, Y(X(1))=Y(1) , Y(X{M+1))=Y(N+1)

r THE  Hwxxh ORDER METHON

C Hak =? RCI a 2a Y (1) =YC1a1))e (FCI=1)+10%E CH) +FC141))/12 = 0n | S COUPLED WITH ITFPATED DEFERRED CORRELTH ONS| N ORDER TO PRODUCE

CC ~ A DISCRETE SOLUTION WITH MAX ARS, FRROR <¢ TOL OM A CRIN MOT
C COARSER THAN THE GIVEN N,
Foxxxx IMITED TOM = (X(N+1)=X(1) )/H LE, 256  #%ewx

. a TO PROCESS FI MFR MESHFS CHANGE THE D IMENS 10N STATEMENTS
r IM ALL SUBROUT I.NFES ACCORD | MOLY,
Crexxx ISFR PROV INDED NDATAR® Rx»

i C X(1) = LEFT END ARSPCISA
r X(N+1)Y = RINHT ENN ARSCISSA

n Y(1) AND Y(N+1) : FOPRESPOMDING ROAUMDARY VALUES.
| n M+1 IS THE NUMBER NF MFSH POINTS AT WHICH THE SOLUTION IS DESIRED

r (COUNTING THE FMD POINTS), OM NUTPUT N WILL COMTAIN THE SIZE OF
co THE MESH ON WHICH THE FIMAL Y “AS ACTUALLY COMPUTED,
r THEY ARF ASSUMED TN RF EVEMLY SPARED RY H = (X(N+1)=X(1))/N

. r TOL : NSFR'S NESIRFEN MAXIMUM ARSOLUTE EORPNR NOPM AM A MESH MAT
r COARSER THAN N, ON NUTPHT TOL WILL CONTAIN THF ERROR
r FSTIMATED RY IDCBYP,

r FF, DEFY APE EXTFPNAL USFR PROVIDED SURRAUTIMES THAT SHNULD PRODUCE
r TRE MESH FUMCTIONS  F(X(1),Y(1)) , DF/DY(X(1),Y(1)), 1=2,...,N, RESP.
~ THEIR CALLING SENUENCES MIST RE:

r FIN,X,Y,FU))
r DEY(N,X,Y, NFU)
r WHERE FUC257)Y,NFH(257) APF THF NNE=DIMFNCS|NNAL ARPAYS TO RE
r - FILLED WITH THF PENUIREN MFSH FUNCTIONS.
ro NH OUTPUT THE ARRAY ¥Y WILL CONTAIN THE COMPUTED DISCRFTF SOLUTION,

FPS=1,
MD =M

Ih K=0
FACT=1.NN

FRROLN=1,.DN10
MP1=MN+1

VMAX=(NP1=-4)/L
H=(X{(NP1)=-X(1))/\
NSN =Hwwn?

FPRFY=_FALSF,
nN § 1=1,50 |

5 AANCEY=D_DNN



»

. -76-

» INITIAL IZATIONFNRNFUTON
IF(N FN, NORD TN 9

“~ NHALF=N/ 2
— MI=NHALF+1]

nn 6 I=1,N1
F ACT)Y=Y(1)

_ NO 7 J=1,NHALF
| J2=2%]

| Y(J2+1)=A(J+1)
B 7 Y(J2)=.5D0#(A(J+1)+A(J))

no § 1=2,MN
S(1)=0n,

5 B X(T )=X(1)+(1-1)#H
Ce ~OTO 11

8 9  f1=(Y(NP1)=Y(1))/N
NO 10 |=2,N

_ S(1)=n,
XC1)Y=X(1)+(1=1)=2¥

| 10 Y(1)=C1*(1=1)+Y(1)
11 HSNN12=HSN/12

be Al=5, *MSN/G
19 | TNF=0

| IFE(EPS .EN. 5.0N-16) AD TO 15
L FPS=NMAX1(5.0N=16h, ,1#Hex(L*Ka1N))

| Cxxxxx NEXT STATEMENT 1S INSTALLATION DFPENDENT  sawsewsew

| r IF_THIS PPOCRAM 1S NOT USFD ON AM [RM/36N COMPUTER IN REAL*8 PREC.
L r THE CONSTANT  5,0N-1F SHOULD RF REPLACED RY (APPROXIMATELY)

r IN+MACHINE PREFISION IN ORDER TO AVOID UNDUE CYCLINGIN THFrn NEWTON ITERATION, ST
X 15 PALL F(N,X,Y,FU)

PECM=N,

nN20 1=2,N

PEIY=Y (1-1) =2%Y (IY 4Y (141) =HSNOT2% (FI(1=1) 410, # FU +FU( 141) )=S( 1)
TEF=NARS(R(1))

nN IF(TF .AT. PESN) RESM=TF
"  IF(RFSN LF. FPS) nO TO 50n

25 CALL DFY(N,X,Y,NFU)
nO 30 1=2,M
ACI=1)=A1*DEU(1)+2,
B(1)=HSNO12+DFU(])=1,

in CO1=1Y=MSNOI2+DFU(1+1)-1.
MT =N=]

CALL TRISOL(A,R,N,R,NM1)
IF(FRREY)Y GO TN 150
V TNFW=| TNFW+1

NO 40 (=22,N
uN Y(1)=Y(I)+R(1)

IFCITNFW (LE, 10) AO TO 15
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~ r COMPUTATION NF Sy
| 500 K=V+1]

FACT=. 1Dn

_ F(X AT. KMAX) nn TO 30N
V2=2%xK+1

[ no 50 1=2,K?2
12=2%1+1

= 50 ARCI2)Y=1.00/C(1+1)*12)=-1.D0/6.PN
FEPPFV=_ TRUF,

. CALL U2DCG(K, 4,4, MN, AA, FL, 0, IEORAD TRUE)
LC — no Inn 1=2,N
o STFE=HSN*R(])
- P(1)Y=S(1)=-STF
1 1nn S(1)=STE

~O TNH 25

FPROR COMTRNL AND DFCISION CFMNTER

| 150 FRRNEV=_FALSF,
be FRPPNNOR=N,NN

no AO I=2_M

| TE=NARS(R(1))AN IF(TEF AT, FRRNNAR) FRNAMNA=TF
Kl=K=1

| IF(ERRNOPR IT, TOL) 60 TO 200
IF(ERRMOR RE, ERROLD*FACT .0R, K+] fT. KMAX) GO TO 300
FPROLN=FRPMNR

| nOTN 12
200 TOL=FRPRNNR

RETUPN

INN N=2+«N

“ IF(N GT, 256) GO TO 400
Y(M+1)=X(N/2+1)

: "NTO 4

1 unh  N=11/2
TOL=ERROALN

PETURN

END
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_ IIT.5 Numerical results

We give in this Section numerical results corresponding to the

four test problems of II.6.hk, and for a boundary layer type equation sug-

\_ gested by Sam Schecter (Stanford Research Institute). The new test prob-

lem 1s linear:

Problem 5:

C -y” _ Sey _ 0
(e + x )

EEDSO a ——— 3 y(a) | -y ( -a) 3 € 2 a > 0 .(¢ +a)

Solution:
L oo UL

X

v(x) = —7x .| (¢ + x7)

| For e» 0, y(x) -» sign x which has a jump discontinuity at x = 0 .
a For small € , this is a fairly hard problem to solve with finite dif-

ferences.

In Table 10 we have collected various statistics about IDCBVP for

Problems 1 , i=l,...,5 . For all problems we have started with N =8 ,

and requested a final max.abs.error tolerance of EPS = 10” . Problem

5 parameters were g = 10-4 a =0.1.
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N Final Final
— Estimated True Final Number

Problem Error Error of Points

l 7.0, -17 2.8, -15 32

« 2 5.5, -15 5.2, -15 16

— 3 9.0, -16 J.2, =14 128

: 4 2.2, -14 2.3, -14 32

C 5 3.8, -13 6.1, -13 256

- Table 10

[-

We see from these results that the automatic step adjustment follows

closely the difficulties of the problem (recall earlier results for Problem

3). In order to have a better feeling for the actual flow of the computa-

E tion for each problem we give in Table 11 some additional information,

. For each problem we list under the mesh size the number of nonlinear sys-
tems of that size that have been solved and the total number of Newton

I corrections employed (in parentheses).

_ Prob. No. Points 8 16 32 64 128 256

1 Lg) 33) 3 (4 -—- -—- ——-

2 1 (3) 3 (4 --- --- -—- I--

3 LL) 243) 36) Lyn 3 (4 —--

4 L (3) 3 (5) 3 (4) a -—- -—-

1(1) 2) 306) 306) HGH) ok (®)

Table 11
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| To give some 1dea of the behavior of the asymptotic error estimator

| - we show the detailed evolution for a bad case: Problem%, in Table 12.
Estimated Exact

N k Error Error\

0 9.6, -4 1.1, -3

1 IE ~3 1.4, -3

0 4.0, -6 L.o, ~6

- 1 7.8, -10 8.0, -10

| 2 3.86, _1q h.3, -113 5.87, 212 LL, -12

2 9.0, -16 3.2, -1k

~ Table 12

In the following Table, we give some information about the perfor-

mance Of successive extrapolations on the same problems. Tyo pasic grid

size isN = 8 . We indicate the final grid size and number of extrapol-

ations needed to reach accuracies similar to those in Table 10 for IDC ,

or if that was not possible for N < 256 , then we show the best accuracy

attained on the diagonal of the Richardson triangle. The number of

Newton iterations is taken from Tables 1-4, pp. 35-36.
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| Accuracy Finer Number of Number of NewtonProblem Attained Mesh Extrapolations Iterations

1 3.2, =1h 128 I 7,7,7,758

2 2.5, =16 6h 3 TRH

- 3 1.4, -13 256 5 6,6,6,6,6,6
I 3.6, -15 64 3 4,5,5,5

5 1.6, =7 256 p) linear problems
L

k Table 13

Using Lemma 2.7 of p. 20 we could have actually implemented an

asymptotic error estimator for the successive extrapolations method and

L developed an automatic error monitoring and stopping procedure. Though
| we cannot vouch for its success (since we didn't have the time to do it),

past experience and the similarities with the asymptotic behavior of IDC

indicate that it 1s probably a good idea. Making believe that we have

done such a thing (and that the asymptotic predictions were accurate),

we now indicate the best results in the whole Richardson triangles (not

only in the diagonal) for each problem. Rows and columns are numbered

from 1. The column (i,j) of Table 14% indicates the position of the best

result in the Richardson triangle.

Problem Best Result (i,3).

1 6.6, ~15 (5,2)
2 1.9, ~16 (4,3)

3 1.3, -13 (6,3)

4 5.8, -16 (5,5)
5 3.2, -9 (6,3)

Table 14



3 “80.

N We see that, with the exception of Problem 4, the best results

are not located on the diagonal of' the Richardson triangle. These results

indicate that the error monitoring should be carried out on all the elements

Y of the Richardson triangle.

Moral: FINITE DIFFERENCES: ARE YOU REALLY DEAD?

¢

,
[

“

i
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