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HIGH ORDER FINITE DIFFERENCE SOLUTION
OF DIFFERENTIAL EQUATIONS

V. Pereyra

Abstract

These seminar notes give a detailed treatment of finite difference
approximations to smooth nonlinear two-point boundary value problems for
second order differential equations. (Consistency, stability, convergence,
and asymptotic expansions are discussed. Most results are stated in such
a way as to indicate extensions to more general problems, gyccessive
extrapolations and deferred corrections are described and their implemen-
tations are explored thoroughly. A very general deferred correction gen-
erator is developed and it is employed in the implementation of a variable
order, variable (uniform) step method. Complete FORTRAN programs and
extensive numerical experiments and comparisons are included together

with a set of 48 references.
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HIGH ORDER FINITE DIFFERENCE SOLUTION OF DIFFERENTIAL EQUATIONS

V. Pereyra

I. Introduction

These notes correspond to a six-week Seminar offered during the Winter
quarter 1972-73. In them, we intend to give an overview on certain gen-
eral techniques that permit the increase of the order of accuracy of simple
discretizations to differential equations. Also, we will examine in detail
one specific application. This will lead us naturally to consider some
efficient tools which will permit the graceful implementation of the methods.

We shall consider the basic ideas in relation to a simple application:
the two point boundary problem.

(1.1a) -y"(x) + f(x,y) =0,
(1.1b) y(a) =a, y(b) =8 .

Most of the elements of the general theory are present here and we
shall emphasize those points which are basic and can be transferred to
other applications.

The problem and an OGF) discretization are presented in Chapter
II. The notions of consistency, stability and convergence are developed,
and an asymptotic expansion for the global discretization error is obtained.

The method of successive extrapolations is introduced in Section II.4
together with some comments on implementation.

In Section 11.6, the method of deferred corrections is treated. An

algorithm for obtaining an O(h8) discrete approximation with a cost
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similar to the method of order O(hg) of II.1 is described in II.6.3.
Numerical results for a set of four test problems frequently found in the
literature are obtained with a FORTRAN computer implementation (Section
11.6.6). An operation count and comparisons with the successive extra-
polations method are offered at the end of Chapter II.

Finally, Chapter III is dedicated to the detailed discussion of a
computer implementation for the iterated deferred corrections method. Tpe
automatic weight generator for numerical differentiation of III.1 is an
indispensable tool in the "Universal Deferred Correction Generator" of
111.2. A theorem on asymptotic error estimation based on deferred correc-
tions is proved in III.3 and it constitutes one of the important building
blocks for the variable order, variable (uniform) step algorithm developed
in 111.4. Numerical results and a computer program are also included.

It is in this final Chapter that we have collected some novelties
not to be found in our former work on deferred corrections. 1n fact, the
comparisons with Richardson extrapolations for these types of problems
have not been performed before. It comes to no surprise that though the
asymptotic behavior is very similar for both techniques, deferred correc-
tions fare considerably better in terms of work for a given accuracy,
giving the solution at more points as an additional bonus.

The aim of this Seminar was to evolve from the simple application
we have described to more elaborate problems, such as: two-point boundary
value problems for first order systems, elliptic boundary value problems
on rectangular and general regions, parabolic mixed initial-boundary value
problems, etc. Unfortunately, six lectures have not been quite enough to

reach that goal and the second part of these notes will have to wait for
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. a better occasion. Nevertheless, we would like to refer the reader to the

literature where some pointers are given on how to utilize the algorithms

we develop here in more complex situations. a gpecial mention should be

made of the Deferred correction generator that can be used as presented

here in many different problems. The same comment applies to the logical

structure of the variable order, variable step method, whose flexibility

C and excellent results have no equal in the published literature on non-

linear, second order, smooth, two-point boundary value problems.
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II. Two-point boundary value problems for nonlinear second order
differential equations

IT.1 The problem and its discretization

We consider in this chapter problem (1.1) under the additional

conditions:

(2-13') f(x)y) ¢ Cw[[agb] X ('°°3+°°)] ’
(2.1p) fy(x,y) > -n?/(b-a)e

It is well known (Lees (1964)) that in this case (1.1) has a
, , *
unique solution y e Cm[a,b], which can be approximated by a three point
finite difference method.

We call (1.1) the continuous problem. The finite difference

approximation will constitute the discrete problem.

b-
Let h = —Eg for a given natural number n > 1 , and let

Xl = a + ih , i=0,1,...,n , define an uniform mesh on [a,b]. The dis-
crete problem is obtained by replacing y" in (1.1) by a second order

symmetric difference at every interior mesh point:

-2

(2.2a) h™7(-y +ey, - Yi+l) + f(xi,Yi) =0 , i=l,...,n-1 ,

il
(2.2v) Y, = o, vy, =8

For short, we can denote (1.1) by

(2.3)  F(y) =0,

and this is to be understood as a nonlinear equation in a certain function
space. We won't make this any more precise here, since our emphasis is

in quite a different direction, but nevertheless, we shall take advantage

of the built-in power of synthesis that such a formulation has. 1p the
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same spirit, (2.2) will be denoted by

(2.4) F(Y) =0,

representing a nonlinear equation ("system of equations") in the Euclidean
space EL , the unknown being the vector Y& = (Y5...,¥ ) . Natur-
ally, the idea is that h will go to zero (or n —-e) and thus we really
have an infinite family of these objects. Aalso we expect that, in some
sense, the values Yj(h) will converge to the respective function values
of the exact solution. 1In order to make these ideas more precise, we

need to introduce some extra notation. For each function Z(x) defined
in [a,b] and satisfying (1.1b) we define mh[Z(x)]z [Z(xl),...,Z(xn l)]T )

The operator @, is sometimes referred to as an space discretization,

We shall say that the discrete solutions Y(h) converge discretely

to the exact solution y*(x) 1if:

(2.5) lim [|Y(h) - cphy*n(h) -0,

hlo (b-a)

where ”'”(h) is the maximum norm on E h . In what follows we shall

omit the subindex (h) from the norms.
As usual, this convergence depends on two properties of the

discrete operator Fh : consistency and stability.

Definition 2.1. The operator F is consistent of order p > 0 ,

h

if for the solution y(x) of (1.1) and h < ho it holds that:

VI F (o)) L o(nP)

Definition 2.2. The operator Fh is stable if for any pair of

discrete functions U , V , and h < ho there exists a constant ¢ > 0 ,

independent of h , such that:
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(2.7) U= VI < e [IFy(U) L PV

Lemma 2.5. If Fh is stable then it is locally invertible around

* . . -1
© ¥ , and the inverse mapping F,” is uniformly Lipschitz continuous for

all h <h,

*
Proof: Let us consider the open spheres Bh E]%why, p), where

p > 0 is independent of h . For any U, V € B~ we have, because of
the stability condition, that Fh 1s an one-to-one mapping (since other-

wise the right hand side in the inequality (2.7) could be zero without

the left hand side being zero!), and therefore is a bijection between

Bh and its image R, = F (B Thus the inverse mapping Fh exists

h~ *h
in R, Let X, Y €R

p)
n ! then we can write (2.7) as

HFgl(X) - F;ll(Y)ll <clx - Y. []

With this result we can prove the discrete convergence of any

consistent, stable discretization,

Theorem 2.4. Letus assume that the continuous problem F(y) = 0
, _ *
has a unique solution y . Let F,Dbe a stable discretization on the
*
spheres B, = B(why ,p) , and be consistent of order p with F . Then

there is an EO > 0 such that:

(a) For any h < HO there exists a unique solution Y(h) for

the discrete problem F (Y) = 0

(b) The discrete solutions Y (h) satisfy
(2.8)  [¥(h) - 9y || = o(xP)
(i.e., they are convergent of order p ).
Proof: Let Rh be, as in Lemma 2.3, the image of Bh by F, , and

h

* *
let us call Zﬁ = Fh(why ) . Obviously Zh € Rh , and because of the
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*
consistency “Zh” =

know that for h < ho , the Fh arc homeomorphisms between the spheres Bh

O(hp). On the other hand, because of Lemma 2.3 we

and their imagcs Rh , By Brouwer's Invariance of Domain Theorem (Aleksandrov
[1956]) we know then that F, maps the interior of Bh onto the interior
of Rh , and the Dboundary onto the boundary. ©Let V be any vector on the

boundary of Bh .  Because of the stability condition we know that

2.9)  S<pEm) -z,

and since Fh(V) will run over the whole boundary of R, while V runs

over the boundary of Bh , we can conclude that the sphere B(Z;,p/c) is
. . *

fully contained in R, . Since 12 ll- 0 for h -0 , we can now choose

- - * . ;

hy < By such that for h <h, ||Z || < #/c, which in turn will imply

*
that O € B(Zh,p/c) c Rh + But R was the image of B_ by F and

h h -
therefore the last statement implies that for h < h_ there exists a unique

Y(h) € Bh such that Fh(Y(h)) =0 . (A1l these statements are repre-
sented in Fig. I.) The discrete convergence of order p follows also

from the stability. In fact

1¥(h) = oy < c g = o(sP) . D

F

'@6

Fig. I
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Remark. Observe that there ic very little in the statements and

results of this Section that is necessarily tied up to the two-point boun-

~ dary value problem, and therefore they have more general applications.
I11.2 Consistency, stability, and convergence
C
By using @hy* in (2.2) we obtain what is usually known as the
local truncation error, This is an expression that shows how much our
L discrete operator fails to represent the continuous operator (for which

*
we have F(y )= 0 ):

t]

(2 .10) Th(xi) [Fh(cphy*)]i = h-g(-y*(xi 1) + 2y*(xi) - y*(Xi+l)) + f(xi,y*(xi)) .

We can obtain a more interesting expression for Thbo by expanding

L in Taylor's formula around X , which we can do thanks to the smoothness

. _ *
assumptions. By using the fact that f(x,y*(x)) =y “(x) we get:

K
L 00 = Yy o o)
k=1
This expansion then shows that the discrete method is consistent
ol" order p = 2
We shall now prove that the discrete method (2.1) is stable for
h sufficiently small, which through Theorem 2.4 will give us the existence
of unique discrete solutions of the nonlinear system of equations (2.1),
and their discrete convergence of order h2 to y*(x) . The proof of
the L_ stability is basically due to Lees [1964]. We need several
definitions and Lemmas. The technique is a simple instance of the use of

L, estimates often found in partial difference equations.

For every h we define the inner product of mesh functions by



(2.11) (v,U) =

I
=
<3

=
<
e

This inner product induces a norm over the mesh functions that

we denote by
1
(2.12) v, = (V,V)F .

By the usual relationships between the standard L and L2 norms
o]

(f xIi < 1%, < Vn || x||) we have that
(2.15) W) < Vi, < (o-a)E vy

. 1 b-a 3
since Vi« = h2 = [2=2
I1Vlig = 0% |1V, (nIWM
Let us consider the difference operators A+ and A :
A u(x) = h’l(u(x+h) - u(x)) ,

2.1
( : A u(x) = h'l(u(x) - u(x-h))

2 - Lo
It is clear that 6 u(x) = h 2[-u(x-h) + 2u(x) - u(x+h)] satisfies:

(2.15)  -Su(x) = a4 u(x) .

We need still another norm in our space, that will involve the

difference operator A

n %
(2.16) (vl = (4 V,avE = (5 ) |av,|?
i=1

We quote without proofs the following results of [29] .
a) 2 |V < |1Vl A’

b) (U, 6°V) = (a U, A V) .

This implies in particular that

) (6°0,0) = )% .
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2
If ¢ is considered as a linear operator over the mesh functions,

then its matrix representation has the familiar tridiagonal form hfe(-l, 2, -1).

This matrix has eigenvalues _ 4 .2 jm .
AJ h2 sin 2(b-a 14 J=l,...,n—l 14 and

we have also:

)y Il < faify

Theorem 2.5, TLet 7 3 int fY The discretization (2.2) 1is

stable for h < ho satisfying:

_ﬂ2 nzh% [2
T |1 -— <
(b-a)’ 2l (b-a)° 1

Proof: Letus consider two mesh functions U, V, and let q
1’ g2
be defined as:

n

2
Fh(U) U + f(x,U) = a

2
F(V) = 67V + £(x,V) = q

Putting W =U -V , and q = 9, = 4, we obtain by the mean value Lheorem

in integral [lorm:
1

2
& W +f fy(x, EU + (1-8)V) deg-w = g
0

Calling the integral term P we observe that P > 17 . By taking inner

products (see (2.11)), we get

2.
(W, 6 W) = (W:Q) - (W, I:W) s
and theref'orc by ¢) and Schwartz's inequality:
)
2 2
UWHA :lfW”Q HQHO -7 HWHU .

@) we obtain iy < Ful pa, - L o,
1
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(2.17) (1 + %) L, < X Eally -

It is easy to verify, by expanding sin X in Taylor series and truncating

at the first and second term respectively, that

2 2 ) (mhy/ (b-8))° |
- 2L

—— >
(bea)2 = "1 (oo

and since (2.17) can be written as:
2

1
Wil < =il

we have from the hypothesis that

(2.18) W < m(b-a)""
n S wn )2 N2 alg =K 1l
1T . 1 - 0 - .
(b-a) (b-a)22k

where the denominator is greater than zero. (e still haven't got the
inequalities in the infinity norm (|| +||). We recall (2.13) and a) in

order to transform (2.18) into:

Vil < & (o-a) R, (0) - F (V)

Theorems 2.4, 2.5, and equation (2.10) prove that the discretization

(2.2) 1is convergent of order 2, i.e.

(2.29) Jj¥(n) - @y = o(n") .

In the next section we shall develop a more detailed expression

for the global discretization error (2.19).
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II.3 An asymptotic expansion for the global discretization error

Under the assumptions of Sections 1 and 2 it is clear that the
variational equation (linear!) associated with (1.1)

(2.20a) -e” + fy(x,y)e = g(x)

(2.20Db) e(a) = e =0
has an unique solution e (x) € dm[a,b] for each given ¢ functions
y(x), g(x) .

If we use for (2.20) the same discretization (2.2) as we used for
(1.1), then an expression similar to (2.10) holds. 1p fact, it will be
convenient to-use the notation F'(y)e = g for (2.20), and Fé(@hY)E =8
for its discrete analogue.

The prime here denotes derivative (in the sense of' Fréchet;
Jacobian in the finite dimensional case). Therefore we have, at the

solution of (1.1)

K
* 5 .
(2.21) T/(x) = Fl(oy )cphe*(x) = o fg - Z ake*(2k+c,)(x)h£k}+ o(1ZE#2) |
k=1

* ) , : 2
where e (x) is the corresponding solution ok' (2.20), and 4 =
( ) p g ( )7 dk m—)—! .
As it turns out, higher order derivatives of the mappings th ' Fh coincide,

having the form

. . . . J .
5 oo (3) 3 _ (3, o3 = 2°Ff j
( ) ¢ F e Foolee” =@ —5 e

Theorem 2.6. Let F, Fh be as above. Then for h < h, the global dis-

0

cretization error has an asymptotic expansion in even powers of h ;

K
o * 2 ¢
(2.25) Y(h) - Py = e(h) = o E uk(x)h ko o( i K+2)
k=1
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The functions ek(x) are independent of h and satisfy the

linear two point boundary value problems:

(2.24) F'(y*)ek e’ o+ fy(x,y*(x))ek = b

" ek(a) = ek(b) =0

The functions bk will be constructed in the proof.

Proof: We can rewrite (2.23) in the form,

K
2
5(h) = e(h) - o, z e, (onE = o(nFH)

k=1
K

- 2k *

Let us call for short p(h) = E e’y and I = —Fh(mh(y + w(h)))

k=1

(h2K+2 )

If we are able to prove that for appropriate choices of bk I =0 ,

then by using the stability condition the expansion (2.23) will follow.

In fact we have, since Fh(Y(h)) = 0 , that
(2.25) 1)) = |7, (Y(h)) - Fh(wh(y* + (D)) >

% 1Y (n) - cph(y*) - w(®)] . % s .

2
weww that w(h) = 0(h™) , let us expand I in Taylor's series around

*

- IR L R o)+ ) TR (o w1 4 o)
j=2

Using the expansions (2.10), (2.21) and (2.22), we obtain:
K

K
. wh{Z &ky*(2k+2)h2k b (n) + Z ajp(2k+2)(h)-h2‘j N

k=1 i=1

K
' IE: ffféa)(x,y*)u(h)5}+ o(n k)
j=2 '
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« Now we observe that:
K K
a F . * 2k 2k
) (um) = D F (e 2 Y xS
- =1 k=1
« K K X
2k+2 ). 2]
b) Za n(2k+ ) 2j =Z Y (Z \()2k+2)h2\)) 23
J= J=1 w=1
K ,k-1
2(k-v)+2 12 2
_ Z(}: .y o2l )) Ky o252y |
k=1 ‘=1
. K
Jd _ 2E 2K+2
) w(n)? = 37 %l @ )BT+ Ok
L g=]

where the Qj £ are polynomials j-homogeneous on their variables,
%

Replacing these three expressions in I we get:

= *(2k+2) = (2(k-v)+2)
I:EPhZaky +bk+Z:ake

k=1 VoV

k
J=

where we assume Ql K = Q

- 2K+2
Since we want T to be O(k ) » that peans we would like to
. 1 *(L
L choose bk so that { } vanishes. Thus bl(x) = -3V ( )(x) . with
which we can determine ¢, (x) by solving (2.24);
- *(6) (4 %, 2
b, (x) = [—3— y (X)) + )(x) + = fyy(x’y e (=)
. which allows us to determine ee(x) , and SO on. e observe that in
general, the determination of b inyolves derivatives of the solution
*
- Yy , and earlier error functions e , v=l k-1

Y

=1l,...,k-1 . Therefore the bk
can be determined recursively. This proves the Theorem.
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1.4 Successive extrapolations

~
Expansion (2.23) is the basis for the well known method of successive
extrapolations ("to h=0"), a fairly simple procedure used to increase the
N order of' the discretization. 1In other contexts, this procedure is asso-
ciated with the names of Richardson [1910], Romberg [ 1955], Gragg[1963],
Bulirsch and Stoer [196L4], Stetter [1965), and Pereyra [1967a]. gee
C Joyce [1971] for a detailed survey and a more complete set of references,

and Widlund [1971] for a survey of recent developments.

We shall describe briefly the application of successive extrapola-
tions to our present problem in order to emphasize certain aspects and
establish a basis for comparison with other high order methods.

h h
Let:'Y(hO) , Y (E?) y . , Y'(~§) , be the solutions of (2.2) for

2

i the indicated step sizes, that correspond to systems of dimensionality

L
b-a _ .
L n, = Tz; -1, ..., n; = 2 X n, 4 + 1 (see Fig. 2 for an example).
( Function n Grid
| -
Y(1/2) 1 (:) P 1
~ v(1/%) 3 b } &P ; ;
1
‘ v(1/8) 7 et
0 1
Fig. 2

It is clear that only the points corresponding to the coarsest mesh
(ho) are common to all meshes. It is at those common points where we shall
be able to improve the order of our solution. TILet us then call Y? the

ng vectors obtained from YOH) by extracting the components
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Y o1 (hi) , t=l,...,no )
of Y(hi) . With these initial values Ys , we can form the (vector)
Romberg triangle
g -y
(2.26) i _Y_L—JUT ’ i= l,... ’ jzl,...,i
From (2.23) we can easily derive asymptotic expansions for Y?- cp y*
K ook
J * _ 2k 2K+2
(2.27) Y{ - % ¥ = ®y ekj(x)hi + O(h )
o o]
k=j+1

Also, 1if we disregard terms of order greater than h§23+2) , then

we can obtain an asymptotic error estimate for the global discretization
error.

Lemma 2.7
2.2 J ¥ vd gl :
(2.28) vy A SN ISR TA

where = stands for asymptotically equal.

Proof: Write (2.27) for Yi and Yg—l , and subtract, ignoring terms of

order greater than h(23+2):
J J
YU - Y
J * (23+2) )
Y -@ y ~o e, A(x)h Y x —
i h h J+l,J( ) i 1 - yJdtl

II.5 Some comments on implementation

We have proved the existence of discrete solutions Y(h) 1p a
nonconstructive way. The most frequently used procedure for actually solving
equations (2.2) 1is Newton's method. In cases in which fY is hard to
compute some alternate procedure might be preferable. e won't go into the

details of the implementation of Newton's method in this case since this
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+

is fairly straightforward and it has been extensively discussed in the

literature (cf. Henrici[1962], Keller [1968]). Let us only remark that
system (2.2) 1is tridiagonal, which makes the solution of the linear
systems that appear at each Newton step very simple. If there is no

other information, a linear interpolation between the boundary values can

provide a reasonable starting vector.

In constructing the successive extrapolates one can follow several
paths. One of the most reasonable seems to be the following:

i) Compute Y(ho) .

ii) Use Y(ho) and interpolation in order to have a good initial

approximation for Y(hl) .

iii) Use YZ , Yl in order to estimate the error in Yi . If you

are satisfied, quit. If not:
. . 0 o, 1
iv) Combine YO s Yl in order to get Yl .
v) Obtain Y(h2) and construct a new row of the triangle, etc.

Observe that for Y(ho) we shall use as a starting vector something

probably pretty inaccurate, but the dimensionality of this problem will be

the smallest. For any other Y(hi) we shall use in the Newton iteration

the fairly accurate initial wvalues provided by Y(hi l), using interpola-

tion to fill into the new abscissas. This is a very important point,

since it will tend to decrease considerably the number of Newton iterations
necessary to carry the residuals below a level compatible with the discret-
ization error.

We have always to remember that the dimensionaiity of the problem

is multiplied by 2 every time we compute a new row, A source
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of' criticism for this method has been the fact that one gets the most accurate
results Yg only on the coarsest mesh, wasting all the precious computation

performed in the finer meshes. In a recent paper of Lindberg [1972] the

author implements and justifies an idea of Dahlquist for producing accurate
results on the finest mesh through a recursive interpolation procedure.
This is done for initial value problems but it is clear that a similar
principle will hold for our present problem (though it has not been done

as far as I know; it would be worthwhile to investigate this matter fur-

ther, clarifying Lindberg's statements).

IT.6  Deferred corrections

IT1.6.1  Introduction

As early as 1947, Leslie Fox advocated a technique called "difference
corrections". Through the years he and his collaborators have applied this
technique to a variety of problems in differential and integral equations
(see Pereyra [1967c] for a detailed bibliography and historical account).
In Fox [1962], a wealth of information on the state of the art in the
English School can be f'ound. It is there where we find the term "deferred
corrections" wused interchangeably with that of difference corrections. The
reasons for this switch in nomenclature are not apparent, except perhaps
for the feeling that the technique was in some way connected with the
"deferred approach to the limit" that we were discussing in the earlier
Sections, and also because the name reflected the fact that a posteriori
corrections were performed.

We have preferred to adopt the latest name in our work on this

technique since our approach is not tied up (at least in appearance) to
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expansions in terms of differences, as it was in the earlier developments.

C
We base our formulation of the method on the asymptotic expansion
for the local truncation error:
‘- - *(2k+2) 2K+2)
(2.29) Th(xi) = -Z 8y (xi)hek + 0(h s
k=1
f_~ which, as we have already observed in Section II.2, only needs smoothness
¢ of the exact solution y*(x) and the application of Taylor's formula for
its derivation,
L For any smooth function y*(x) we can approximate linear combina-

tions of its derivatives with any order of accuracy in h at any grid
point by using sufficient ordinates in a neighborhood. This is again a
consequence of a wise application of Taylor's expansions and numerical

differentiation techniques. Thus, there exist weights w such that
s

4 24+2+q
“ P *(2k+2 2k+2 § *
k=1 s=1

—

+ o(n?) = Sz(y*(xi)) + o(n?) , @, integers.

We shall show later how to obtain W in an efficient and suffi-
ciently accurate way. Observe that we have multiplied_Th(x) by h2
In this fashion SE becomes a bounded operator (for h}0) and most

of the dangers of numerical differentiation formulas are avoided. In
fact, because of the linear relations between differences and function
values, some choices of Sl(y*(xi)) will coincide with Fox's formulation,

though we feel that this more general presentation, coupled with efficient

weight generators is better'adapted for use oa digital computer. 1In fact,
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Fox's difference correction procedure was mostly advocated for desk cal-
culator computation, where a table of' differences manipulated by an able
person was a real asset, The main contributions of the author of these
notes, starting with a Stanford Report (Pereyra [19Qﬂ), have been to put
on a sound theoretical basis the asymptotic behavior of a very general
procedure modeled on Fox's difference corrections, and what is even more
rclevant, he has produced tools and complete implementations of this tech-
nique in a variety ol applications. However, so many years and develop-
ments later (with some minor changes) the words in Fox's[1963] very inter-
esting expository paper are still very much actual: "This idea (difference
correction) does not seem to have penetrated deeply into the literature of
automatic computation . . . . Certainly we have to do some differencing,
involving extra programming, extra space, and some difficulties in auto-
matic inspection of differences, but machines are getting larger and pro-
gramming easier (or so everybody tells me), and if we are concerned with
accuracy, as we certainly should be, 1 should have thought that something
like this was essential."

Probably one of the main reasons for this neglect in recent times
has been the widespread interest in other high order methods (splines,
finite elements). Unfortunately, the theoretical developments in these
areas have very much surpassed (and overshadowed) the practical, efficient
implementation of the methods. Thus, we find ourselves in the sad situation
of having a highly promising, very general, theoretically well supported
technique, that is begging for an at least equal treatment in its practical
aspects, while on the other hand, for some applications at least, it is

fairly clear that the results obtained with our more traditional finite
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difference techniques will be hard to beat. (Compare the numerical results
for similar problems in Ciarlet, et al [1967,1968], Perrin, et al [1969],

and Herbold and Varga [1972], with those in Pereyra [1967c,1968, 1970] and
this report.)

I wouldn'*t be surprised if it finally turns out that a successful
implementation of high order spline methods comes about via a deferred
correction type of approach, bypassing in some way the very expensive
steps of high order quadrature formulae and complicated systems arising
from the present approaches. See Fyfe [1969] for a first timid step in

that direction.

I1I1.6.2  Algorithms

There are many ways of producing deferred corrections. Fox's way
consisted essentially of representing y" as a series of differences.
In the first step, common to all procedures, one would compute using
only the first term of the expansion (in this case the basic method (2.2)),
and then use these O(h2 ) values in the difference expansion, and recom-
pute in order to obtain a more accurate solution. The process was thought
as iterative, providing in infinitely many steps the exact solution. This
was never done in practice; in fact it is hard to find any published numer-
ical example in which more than two corrections were performed, carrying
perhaps three or four terms in the difference expansion. Naturally, the
reason for this was that on a desk calculator any prolonged computation
was a big undertaking.

Let Y(O) be the 0(h2) solution to (2.2), and let 8, be, as

. 6 . .
in (2.30), an 0(h") approximation to T, = -aly*(h)hh , the first term
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. . . 2
in the local truncation error (multiplied by h™) . Observe that since

i )
therei salready a tactor h tin T]_' we only are requiring an 0 (b))

. . *(h , , *
approx imation Lo y (+) atthe grid points. 1f we have y ( x) available

then, as we said before, there is no problem in obtaining the weights W

for S, . But all what we have is Y(o). In principle it cannot be ex-

1
pected that from an O(hz) discrete approximation to a function one can
obtain an O(hg) approximation to a derivative. It is here where we make
use of the expansion (2.23) for the global discretization error. 1n fact
we have that because of linearity and (2.30):

Sl(Y(O)) - sl(mhy*) = Sl(cphel)h2 + sl(@heg)hu + 0(h6) .

*
Observe that we have used the fact that Sl = 0(1) . But Sl(¢hy ) = Tl + O(h6)’

by 4 6 .
Sl(whek) = -alei )h + 0(h”) , k=1,2 . Therefore,

sl(y(o)) =1 + o) ,

*
" and still obtain the same asymptotic

behavior. With Sl(Y(o)) computed at every grid point we solve for a cor-

(D)

and we can use Y(O) instead of @

rected value

(2.51)  F(Y) = h‘2sl(y(°)) .

L

The local truncation error for this new discretization is (o(h") and

therefore, since we are still talking about the same basic operator Fh s

the stability condition proves that there exists a uniguesolution Y(l)
to this problem and that

(2.52) ”Y(l) - cphy*“ . o(hL’) .

Provided we can obtain an asvmototic expansion for Y(l) - *
WY
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this procedure can be repeated, and each time two more orders in h will

be gained. In general, the iterated deferred correction procedure can be

described in the following way:

i) Let Y(k) be an O(h2k+2) discrete solution.

2 . . .
ii) Compute (Y(k>) , an h.k+2 approximation, to the first

-2
b Sk+l

(k+1) terms in the local truncation error expansion.

iii) Solve F (¥) = h‘eskﬂ(y(k)) for y(EH)

For boundary value problems there are some theoretical difficulties
in obtaining the successive expansions needed to justify the method, The
difficulty comes from the fact that different differentiation formulas
must be used at different points of the mesh. 1In fact, in the first step
we can use five point symmetric formulas in order to approximate y*(h)
to order h2 at the mesh points X2""’Xn—2 , but we shall need six

point unsymmetric formulas at the points x X 1 . For the symmetric

l 14
formulas we have asymptotic expansions in even powers of h :
K

(2.5) 830 (x) = 1y (%)) + E R CI R ¢ WA EER
V=9

while for the unsymmetric formulas we shall have (different) expansions

.with all powers of h . With a small manipulation it can be shown that
2K
* -2 (o) _ k 2K+1
F(ey ) - 778 (¥*°)) = @ E r, (x)h” + o(h™"7)
k=l

but rkbd will in general be discontinuous, because of the change of

differentiation formulae. Therefore, Theorem 2.6 cannot be applied in

order to guarantee the existence of expansions for Y(l) - mhy* , which
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in turn would be necessary (in our approach) for proving the accuracy of
the differentiation formulas in successive steps.

One way of deferring this until after the second correction is the
following: Since y*” = f@gy*) then we can replace all higher deriva-
tives of y* by total derivatives of' f two orders lower. Thus in our

2

* ,
Iirst correction we need to approximate @,5 £(x,y (x)) only to order b ,
dx

and by using grid values of f(xi,Yi) we can achieve this with a symmetric
three point formula over the whole range. Naturally, the same problem
we discussed above will appear after the second correction. we shall see
later that by using a basic method of order hlL , we can rigourously obtain
an h8 order method applicable to the problem of this Chapter.

We can also rigourously perform deferred corrections (any number)

for boundary value problems of the form (1.la) with periodic f , i.e.:

f(x +b - a, y) = £f(x) , and periodic boundary conditions:
y(a) = y(b) , y'(a) = y'(b) -

In this case, we can use the same differentiation formula over the whole
range since there are really no boundaries in this problem, and we can
extend our solutions by periodicity.

Now the fact that we cannot obtain with the present methods the
theoretical asymptotic behavior of the iterated deferred corrections for
problems (1.1) does not mean that the technique is useless in this general
case. Far from it, we shall show numerical results that should justify a
more careful study in order to determine precisely what is that asymptotic

behavior. We would like to stress the point that the asymptotic expansions

*

for the successive global errors Y(k) - %y

are used only in the theoretical
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justification of the method, but at no time are they needed in its practical
implementation as in the case of successive Richardson extrapolations.
More general equations of the form

(2.54) y" = f(xy,y ‘)

can and have been treated. We feel at the present time that those problems

will be much more easily dealt with using a general procedure for systems of
the form

y' = £(x,y)
(2.35)

ay(a) + B y(b) = 2>

which is now in development. We expect that our method will compete fav-
ourably with the multiple shooting techniques that have become fashionable
in recent times. In Keller [1969, 1972] the relevant theory for an O(hg)
discrete approximation to (2.35) is developed and asymptotic expansions
are derived. Keller uses then this fact to justify a successive Richard-

son extrapolation procedure. See also Kreiss [1971].

11.6.3 An O(h8) method for the price of an O(he) method

In this Section we consider problem (1.1) again, but we shall use

the more accurate O(hA) discretization

(2.36) h_2[ Y. . +2Y, -y

1 . .
i1 ; i+l1 + Te'[fi-l +10 f, i-f, } =0, i=1,...,n-1

i+l

where f, = f(xi’Yﬂ) .  We symbolize (2.36) by Gh(Y) . By recalling that
N * *, o , . ,

f(x, y (x)) =y “(x) it is then easy to derive via Taylor expansions that

the local truncation error is in this case:
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Gh(@hy*) = 9, akf(gk)(xr y*(x)) A O(h2K+C):

k=2

1 1

h . -
where a., - 6

This method can also be proven to be stable as was the case for
the simpler method (2.2). (See [ . 1].) Thus we can produce an algo-
rithm similar to the one described in 11.6.2 but which now should gain 4
orders per correction. We shall make explicit that algorithm in the next
Chapter, while presently we develop a correction method of order h8
which is specially effective and economical. Paraphrasing terms which
are very fashionable these days we could say that the method to be described
is of a high computational "simplicity". The main idea is that one correc-
tion with the same asymptotic properties as in the usual procedure, can be
obtained by sclving the variational equation associated with the problem,
with an appropriate right hand side. 1If Newton's method is being used to
solve the nonlinear equations resulting from the basic discretization then
the correction will look just like one extra Newton step. If we observe
that the O(hh) method (2.36) is essentially not more complex than the
OUF) method (2.2) then the reason for the title of this Section becomes
clear.

The linearized equations that obtains at each Newton step v are

the following:

2 2 |
h™ o v - oh v
(2.37) 5 Iy(xi-l’Yi—l) l] Ei-l + [—%— fy(Xi,Yi) + 2‘ Ei +
2
E B
" [12 fy(xi+1’Yi+l) } 11 B = F
4
where
v v h2
. V(Y oyV _ Y h™ v v v
(2.38)  wy = - L0y ) + 20 - )+ 35 () #2087+ 1))



-51-

For short, we can call the left hand side of (2.37): CORpPRRY
h Gh(Y )E Once

{Ei} is obtained, then the new iterate results:

(2.59) YVt = yY 4 g,
i 1 i
Because of the stability, it is enough to reduce the residuals ri

to a level compatible with the global discretization error in the final cor-

rected solution. In fact,
v 2
rt = 06 (YY) , 6,(¥(h) = O,
and therefore we have that
-2
1YY = ¥(n)] < e 16, (¥V)) = cb™ Y .

Thus,

1Y - oI < 1YY - x(a)) + f v(n) - o < e eV b et

and a reasonable stopping criteria for Newton's method is then:

(2.40) 1z < en™®

where ¢y is usually chosen to be a small constant unless some more precise

information about ¢ and C is available. ILet Y(O) be the computed

4 .
O(h") solution. If we now define
L ] ‘
1 d * + 6 6
(2.41) T(x,) = - = Flx,, y(x)) 11 d * h
L 0 10 v () 57 - g AT AN
and

(2.42) S(f(x,Y(o))) = Tl(x) + O(h8)
Then by solving

(2 .43) Gk’l(Y(o))E = S(f(o))

and putting

I TIRE S CO R C) e

3
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wc shall have an O(h8) approximation.

Proof: By an argument similar to Theorem 2.6, we know that the smooth

function el(x) satisfying

* -
(2.45) 6'(y")e; = n7'n
is such that e = Y(O)
But also,

! *yv— 8
Gp(ey )e, = @T + o(n),

4
where =
el ¢helh

Therefore, using (2.42) we get
’ * = ’ (O) _ *\—_
Gy )e, - G (Y"/)E = (Gp(o, v )E, - Gé(Y(O))Ei) 'FGﬂ(Y(O))(Ei"E)

-Gﬁ(@hy*)e ST Gg(Y(O)W (5, - ) = O(h8) .

. *
But since the term Gﬁ(mhy Je & =

8 o
0o(h”) and Gﬁ(Y( )) is stable we obtain
- 8
€ -E =0(h)

which in turn implies that

(Y(O) -E) - why* = O(h8)

as we wanted to prove. []

IT.6.4. Some numerical results

In this Section we present some test problems from the current

literature in high order methods. g,no 1ipited comparisons are included.

The limitations are generally due to the vagueness in which numerical

results are often presented.,



Problem 1
V] g 2
-y' +y -sin x (1 4sinx) 0
y(0)= y(m)=0
Exact solution:

y(x) = sin x .

See Pereyra [1968].

Problem 2
_y// + ey =0
y(0) = y(1) =0

Exact solution:

y(x) = -4n 2 + 24n (c .sec(g (x-%))}

The constant c satisfies: sm:ﬁ =2 .

c = 1.336055694906108. ..

See Perrin, Price and Varga [1969], H. B. Keller [1972].

Problem 3

-y +y o+ y5 + 510 amx [hnz(cog 2nx - sin 2nx) - e28in2mx - 1]

y(0) = y(1) = 1
Exact solution:
y(x) _ e51n2ﬂx .

See Ciarlet, Schultz and Varga [1968].

Problem L

-y + 5 (v +x + 1)3 =0

y(0) = y(1) = ©

=0
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Exact solution:

T - X - 1

See Cilarlet, Schultz and Varga [1967] or Schultz [1973], p. 98.

The results of this Section were obtained with a FORTRAN IV imple-
mentation (WATFIV compiler) of the algorithm described in 11.6.3 running on
the IBM 360/91 computer at the Stanford Linear Accelerator Center. Double
precision ( ~ 16D) was used throughout. Newton's method was employed for

solving the nonlinear equations, ysing as starting vectors in each case the

linear interpolation of the boundary values.

The evaluation of the correction term was performed via the Universal
Two-Point Boundary Value Problem Deferred Correction Generator which will

be described in detail in the following Chapter.

In Table i we present results for Problem i , i=l,...,4 , "Error"
stands for the maximum absolute error at the grid points between the exact

and discrete solutions. Runs with maximum relative error gave similar

. 4 . .
results. Error, corresponds to the basic h approximation and Error8
to the corrected solution. (n+l) is the number of grid points, while

(n-1) is the dimensionality of the systems solved. n

is the computed

order obtained by comparing the errors for two solutions for different

step sizes. Thus,

o _ loglerror(h) h/2)]
i6) m - n)/error(y/2)

Oper. stands for (number of operations)/1000 . A detailed

operation count study will be performed in the next Chapter, and it is
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from there where we obtain the results for this column. pynction eval-

uations are not included in the operation count, but their number is

connected in an obvious fashion with the column iter., which gives the

number of Newton iterations necessary to reduce the maximum norm of the

residuals in the solution of the basic problem below the level EBFS .
We adopted EPS = 10_-4xh8 which gives the following stopping criterion
v for the Newton iteration:
(2.47) (e, (vV)), < max (107" x 15, 5 x 10719) |
where the constant 5 x 10_16 is related to the IBM System 360 double
i precision.
L_ We list in res. the norm of' the last residual. The notation a ,
L_ b means a x lOb
n error) m error, m iter. res. oper.
8 2.90, -5 ——— 1.05, g -—— 7 1.22, -13 1.3
. 16 1.81, -6 4.00 1.12, -10 9.87 l 3.13, -13 2.8
32 1.13, =7 4.00 5.37, =15 7.70 7 7.92, -15 5.9
64 7.0k, -9 4.00 1.97, -13 1.45 l 2.07, =15 12.0
128 4.40, -10 4.00 4.60, -14 2.10 8 1.97, -16 24 1
256 2.79, -11 3.98 3.92, -13 =---- 7 3.76, -16 48.5

Table 1
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_ n error) m errorg m iter. res. oper .
) 8 5.86, -7 7.36, -10 ———— b 1.47, =17 .8
16 2.42, -8 h .00 1.6k, -12 8.81 4 2.15, =17 1.8
52 1.52, -9 5.99 4.08, -15 8.65 L 1.55, -17 3.8
- 6k gug, 11 .00 3. 935 -16 3 38 4 2.27, -17 7.6
128 5.2, -12 4.00 7.91, -16 N 2.50, -17 15.4
256 574, -13 3.98 L.,02, -15 —- in 2.51, -1 30.9
-
Table 2
- n error) m errorg m iter. res. oper.
8 1.97, -2 === 9.02, -2 e 6 2.22, =16 1.2
- 16 1.06, -3 L.22 1.37, -b 9.36 6 2.78, -16 2.5
. 32 6.40, -5 b.05  T.06, -7 7.60 6 3.19, -16 5.2
B on 3.97, -6 b.o1 7.97, -10 9.79 6 3.76, -16 10.5
- 128 2.47, -7 .01  2.hg, -12 8.32 6 5.81, -16 21.2
¢ 256 1.55, -8 5.99 1.33, -13 L .23 6 3.87, -16 42 .6
Table 5
- n error, m errorg m 1ter. res. oper.
N 8 1.64k, -5 —-- L.65, -7 —— L 2.09, -13 .8
- 16 1.05, -6 3.97 2.20, -9 (U 5 1.91, -17 2.2
52 6.60, -8 3.99 5.63, -12 8.61 5 1.80, -17 L.5
— & 4,13, -9 L .00 1.39, -1k 8.66 5 1.62, -17 9.1
% 128 2.58, -10 4.00 5.72, -16 4.60 5 2.12, -17 18.3
- 256 1.54, =11 k.07 9.27, -13 —— L 2.32, -16  30.9
- Table 4
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_j'(..
n error) m errorg m iter. res. oper,
10 1.19, -5 — 9.39, -9 — 7 7.86, -14 1.7
20 7.395 -7 4.01 1.74, -11 9.08 7 2.00, -14 3.6
40 4.61, -8 4.00 2.42, -13 6.17 7 5.19, =15 7.4
80 2.88, -9 4.00 2.06, -13 -——-- 7 1.35, -15 15.0
160 1.81, -10 3.99 2.74, -13 —— 7 .98, -16 30.2

Table 5 (Problem 1)

time in seconds

n (all problems)
8 0.21
16 0.34
32 0.58
64 1.09
128 2.26
256 5.688

Table 6
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TI .6.5 Discussion of results and comparisons

The first thing we must observe is that the residual in the solution
of the basic problem by Newton's method must be reduced to a level com-
patible with the accuracy expected in the corrected solution. That ig
the rationale behind our stopping criterion (2.47). For this type of
problem, Newton.9 method is known to be quadratically convergent and this
theoretical fact is supported by the numerical behavior of our iteration.
Therefore, we see that as soon as the residual is reduced below .lhg

(and this has occurred in all our experiments after four iterations at

the most) , then in the following two steps we should have residuals approx-
imately < .01 hh , 10-b'h8 and stop. Experiments using a less stringent
stopping criterion show that on the average one might save one Newton
iteration, at the risk of losing several figures accuracy.

Unfortunately, the "double precision" in 1BM System 360 does not
provide a sufficiently long word to test the asymptotic behavior of this
very precise technique, and therefore the computed exponents for the
corrected, supposedly O(h8) solution, are somewhat erratic. However,
in the regions where there is not too much round off contamination, the
computed exponents lie around 8 us they should.

We can compare the results of Table 5 with those in Pereyra [1968]
There, an iterated deferred correction procedure was implemented, based on
the O(hu) formula (2.36). Details of this implementation will be given
later on. It is interesting to compare the results of the first correction,

as performed in [38] with the results of Table 5, the difference in the

two procedures being that il we plan to correct more than once then a full
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nonlinear problem has to be solved at each correction, as opposed to the

procedure described here. The other important difference is that in [48]

advantage was taken of the periodicity of the solution, thus using symme-

tric formulas throughout. Naturally the basic solutions coincide, so we

only compare the

errors for the O(h8) corrected solutions.

errory/n 10 20 40 80
(8) (8) (8)
[58 1 4.2, -9 1.6, -11 6.2, -14 2.y, -16
This  —- (9) (6) (-) N
method 9.4, -0 1.7, -11 2.k, 215 50 drE

The numbers in parenthescs are the computed exponents. HC? see that the

method in [48] gives results that have a more clear asymptotic behavior.

This can partly be explained by the fact that the results of that paper

were obtained using double precision on a CDC 3600 computer, i.e. with

numbers with 84 binary digits mantissas. We would like to point out

however that the

actual errors are comparable for n = 10, 20, 40 where

the point of diminishing returns (on this computer) is reached for the

present, more economical algorithm.

Problem 2

with high order

is used as a test problem in various papers that deal

spline approximations via a Raleigh-Ritz approach [5, i1, 46],

in Keller [1972] where a successive Richardson extrapolation procedure is

employed, and also in Wasserstrom [197%] using a conlinuation technique.

Since the only meaningful comparison is that of programs written in the

same language, running on the same machine (ideally under the same conditions

or environment),

we feel that it is useless to compare our results with those
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presented in [5 , 41, 46] since very little information is provided in those
papers about the actual implementation of the methods.

The only comment we shall make is that the highest accuracy reported

in[ 5, 41,46 ] for this problem is max.abs.error <5 X 10-8

12

(cf. Table 2!).

Keller reports max.abs.error < 4,01 x 107", obtained with an O(h2) dis-—

crete method for systems of first order equations, plus three extrapola-

t ions .  The mesh sizes used by Keller were 1 1 1 and gt . Unfor-

53286712
tunately, as we pointed out in Section II.Y, the accurate solution is ob-

tained only on the coarsest mesh, i.e. at the two points x = l 2 A

3753
glance to Table 2 shows that results slightly more accurate than those of
Keller can be obtained by the method of this Section with a 15 point mesh,
and that these results are valid over the whole grid. In the next Section,
we shall make some general comments comparing the amount of arithmetic and
function evaluations that are necessary for successive Richardson extra-

polations and for our procedure. Wasserstrom reports results accurate to

six figures with 16 seconds of computing time on a GE-635 machine (cf. Table 6!).

Similar comments apply to the results of' Tables 3 and 4. For in-

5 tance, the best results (in terms ol accuracy) of Ciarlet, Schultz and.
Varga [ 1968] for Problem 3 are improved by our results of Table 5 with
no= 32

] = 5.49 xlO-6 :

max.error [

N

max.error [this method: n=32]} =7.06 %10 -7

As we said above, these comparisons are not oo meaningful. For instance,
it can be argued that the spline approach produces solutions defined over
the whole interval, as opposed to the discrete solutions furnished by
finite difference techniques. On the other hand, there is nothing to

prevent us from obtaining a posteriori an saccurabe spline interpolation
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ol our discrele data . Once a definite goal is stated, for instance: "find
tin algorithm capable of approximating the solution of the ditfercntiul
equation at any point of the interval [a,b] with absolute precision ¢",
then two different algorithms can be analyzed in terms of their costs to
achieve the desired goal. 1In order to obtain this, fair implementations
must be tested on the same installation and the true costs compared. It
is in this light that we have tried to produce careful, usable implemen-
tations of the techniques described in these notes, and that we include
here the actual computer programs with, and conditions under, which the
numerical results were obtained, with the hope that our experiments will
be reproducible and theretore future, better methods, can make accurate
claims. Also we expect that by making available these well-documented,
easy to use, subroutines, the public: will be served in an area which is
begging for such material.

In the next Section we present a computer printout of the program

used to obtain the numerical results of this Chapter.

I1.6.6 A FORTRAN IV program for the O(h8) method of II.6.%

In this Section we present the FORTRAN IV subroutine DCBVPS with
which we obtained the results of Section II1.6.4. Thi s subroutine calls
the unsymmetric tridiagonal linear systems solver subroutine TRISOL and
the subroutine U2DCG that generates the necessary correction terms.
These two subroutines, the driver program anj the subroutines defining
the equations, are also provided. U2DCG will he described in detail in

Chapter 3.
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SURROUT I NE DCBVP8 (N, F, DFY, X YY)

IMPLICIT REAL*8(A-H, 0-2)

LOGI CAL DEFCOR

DIMENSION X(257),Y(257),A(257),B(257),C(257),R(257), AA(S0)
* ,FU(257),DFU(257)

*******************************************************************
8TH ORDER FIN ITE DI FFERENCE TWO POINTBOUNDARY VALUE PROBLEM
SOLVER FOR

SY'U4F(X,Y) = 0, Y(X(1))=Y(1) , Y(X(N+1))=Y(N+1)
T H E Hx*l4 ORDER METHOD
Hew=2 #(=Y(1=-1)+2+Y(1)=Y(1+1))+(F(I1-1)+10*F(1)+F(1+1))/12 = O
IS COUPLED WTH ONF LINEAR DEFERRED CORRECTION |IN ORNER TH PRODUCE
AN H**8 ORDER METHOD.

¥xxxLIMTED TO N =(X(N+1)=-X(1))/H .wE., 25% *dk ko ok

TO PROCESS FINER MESHES CHANGE THE DIMEMSION STATEMENTS
IN ALL SUBROUTINES ACCORDI NGLY.

**x%%|JSER PROVIDED DATA****4

X(1) = LEFT END ABSCISA
X(N+1) = RIGHT END ABSCISSA
Y(1)ANDY(N+1) : CORRESPONDING BOUNDARY VALUES.,
N+ 1 IS THE NUMBER OF MESH POINTS (COUNTING THEEND POINTS.
THEY ARE ASSUMED TOBEEVENLY SPACEDBY H =(X(N+1)=-X(1))/N
F , DFY ARE EXTERNAL USER PROVIDED SUBROUTINES THAT SHOULD PRODUCE
THE MESH FUNCTIONS F(X(1),Y(1)) , DF/DY(XC1),Y(1)), I=2,...,N, RESP.
THEIR CALLING SEQUENCES MIT BE:
F(N, X, Y, FU)

DFY (N, X, Y, DFU)
WHERFE FU(257),DFU(257) ARE THE ONE-DIMENSIOMNAL ARRAYS TO BF
FILLED WTH THE REQUIRED MESH FUNCTI ONS.
ON QUTPUT THE ARRAY Y WLL CONTAIN THE COMPUTED DI SCRETE SOLUTIOM,
NP1=N+1
H=(X(NP1)=-X(1))/N
HSO=H*%2

Crxxkv NEXT STATEMENT IS INSTALLATION DEPENDENT sk dtdkxhan

C

C
¢
C

10

15

IF THIS PROGRAM IS NOT USED ON ANIBM/3G60COMPUTER IN REAL*8 PREC.
THE CONSTANT 5.0D-16 S H O U L DRBFEREPLACFED BY (APPROX IMATFELY)
10+MACHINE PRECISION I N ORDER TO AVO! D UNDUE CYCL ING IN THE
NEWTON 1 TERAT ION,

EPS=DMAX1(5.0N-16, ,0001*HSN**Y )

NDEFCOR=, FALSE.

Cl=(Y (NP1)=Y(1))/N

DO 51=1,50

AA(1)=0.D0

DO 10 1=2,N

XCI)=X(1)+(1=-1)*H

Y(I)=C1l*(I=-1)+Y(1)

HSN012=HSQ/12

Al=5,*HSQ/6

ITNEW=0

CALL F(N, X, Y, FU)

RESN=0.
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DO 20 I=2,N
R(I)=Y(l-l)-2*Y(l)+Y(I+1)-HSQ012*(FU(l-1)+10.*FU(I)+FU(I+1))
TE=DABS(R(1))
20 IF(TE .GT. RESN) RESN=TE
IF(RESN .LE. EPS) GO TO 500
25 CALL DFY(N,X,Y, DFU)
DO 30 1=2, N
AC1-1)=A1*DFU(])+2,
B(1)=HSQO12*DFU(1)~1,
30 C(1=1)=HSQO124DFU(1+1)-1,
Nt 1=N=-1
CALL TRISOL(A, B, C, R, NM1)
ITHEW= ITNEW+1
DO 4O 1=2, N
40 Y(E)=Y(1)+R(1)
IF(DEFCOR) RETURN
IFC(ITNEW .LE. 10) GO TO 15
500 AA(5)=-
AA(7)=-11.D0/84. D0
. DEFCOR=. TRUE.
CALL U2DCG(1,4,4,N, AA FU R, IERROR,.TRUE.)
DO 100 1=2, N
100 RC1)==HSQ*R(1)
GO TO 25
END

o

—
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SUBROUTINE TRISOL(A,B,C,F,N)
IMPLICIT REAL*8(A-H,0-2)
AR R L Ry R R L E L L L T Ty Y T U U,
UNSYMMETRIC TRIDI AGONAL SYSTEM SOLVER
A : MIN DIAGONAL; B : LOWER SUBD,; C ¢ UPPER SUBD,
F : RIGHT HAND SIDE. DESTROY EDANDREPLACEDBYSOLUT I ON
THE ITH EQUATION IS:
BCI)*X(I=1)+ACI)*X(1)+CCI)*X(1+1)=F(1+1) ,
=1, ...,N : N CORRESPONDS TO (N-1) IN THE MAIN PROGRAM,
AR R R R L R L R R R Lk N E L L
DI MENSION A(257),B(257),C(257),F(257)
FACTORI ZATION
no 10 1=2,N
Ml=1-1
C(IM1)=C(IM1)/A(IM1)
ACT )=A(CT )=B(1 )*C(IM1)
F(2)=F(2)/A(1)
DO 20 1=2,N
FOI+1)=(F(I+1)=-BCI)*F (1)) /AC1)
BACK SOLUTION
NM1=N-1
NP1=N+1
DO 30 I=1,NM1
IN=NP1-1{
FOIN)=FCIN)=C(IN=1)*F(IN+1)
RETURN
EHD
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- SURROUTINF U2DCG(X,P,0,N,A,Y,S, | FPRROR, FVFN)
IMPLICIT REAL#*#8(A~H,0-2)

| NTEGER P, 0

I.NG | CAL EVFN

DIMENSION A( 50),Y(257),5(257),C(50)
*************t***************t*tt****t****************

THIS |'S AN UN | VERSAL TWO POINT BOUNNARY VALUE DEFFRRED CORRECT! ON
GENERATOR.

G 1 VEN THE ASYMPTOT| C EXPANS | ON

T(K) = SUMCAC)#(Drx(J=1))Y/(J=-1)! * H¥x(J=1))
J o= 0+1,...,04P*K

AMD  FUNCTION VALUES Y(1),...,Y(N+1), COPRESPOND I NG TO AN
UNLFORMLY H-SPACED MESH : X(1) = X(1) + (t1=-1)*«H , I =1,,,,,N+1,
u2nc6G WILL PRODUCE S(2),...,S(N) : AN H#=(N+P+K) ORDFR
APPROXI MATION TO T(K) AT THF INTERIOR GRID POINTS,

FOR FIXED INTEGERS N,P,N0, A RFSTRICTION ON K IS

hhkhkhhhn K JLE, (N+1=n)/P LR T X T
ALSO P GE-1 , 0 .GE. 1 , ¥ AF, 1

IERROR = 1 MEANS THAT ONE OF THFSE COMNDITIONS HAVE BEEMN VI OLATED
AND NN CORRECTION HAS SEEN COMPUTED,

A(1), . . .,AMn) APE SET TO ZFRO RY U2DrG.

IF THE EXPANSION T(K) HASONLY EVEN DERI VATI VES THFN EVEN SHOULD
RE SET TO .TRUF, OTHERWISF IT SHNULD SF SET TO .FALSF,

FEBRUARY 1973 AR RRRRRRR AR R R VICTOR PERFYRA
*********************i*********************************************
I F (K ,GT. (N+1=-0)/P .OR.P . LT 1.0R,0,LT.1.0R.K .LT. 1)
! x ROTO 100
L PO 20 I=1,0
20  A(1)=0,
KK1=N+PxK
L KK=KK1-1
KM ID=KK1/2
I ERROR=0
KMID1=KMID-1
= KINT=KK1
c UNSYMMETR | C APPROX I MAT! ON. LEFT BOUNDARY.
1 IF(KMID1 LT, 2)6G0 TO1 0
PO 5 1=2,KMID1
CALL COEGEN(KK1, I,C,A)
ACUM= (.
NO 4 J=1,¥K1
4 ACUM=ACUM+C(J)*Y (.))
5 S(1)=ACUM
c CENTER, RANGE
10 IF(.NOT, EVEN) €0 TO 25
N KINT=KK
25 CALL COEGEN(KINT,¥MID,C,A)
NF=N+1-K | NT+KM I D
DO 40 1=KMIND,NF
ACUM=(),
I I=1=KMID
DO 38 J=1,KINT
38 ACUM=ACUM+C (J) *Y (11 + J)
40 SC 1) =ACUM

")1‘)’)’7‘)0’10’3’)‘)’7‘)0‘3‘)0‘3\‘)—)3‘37)
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RI GHT BOUNDARY

IF(KMID1 .LT. 2) RETURN

KMIDP1=KMID+1+KK1~-KINT

DO 50 I=KMIDP1, KK

CALL COEGEN(KK1, I, C,A)

ACUM= 0 .

I I=N=KK

I1=N+1-KK1

DO 4 8 J=1, KK1

ACUM=ACUM+C(J)*Y (T 1+J)

S(I+11)=ACUM

RETURN

IERROR=1

RETURN

END

SUBROUTINECOEGEN (N, NP, C, BR)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION C(50), BB(50), ALF(50)
**********************************************************
THIS IS A SLIGHTLY MDIFIED FORTRAN 4 VERSION OF THFALGOL
PROCEDURE PVAND, P.901 OF

"SOLUT 10N OF VANDERMONDE SYSTEMS OF EQUAT IONS” BY

A. BJORCK AND V. PEREYRA. MATH COMP, VOL. 24,PP,893-903% (1970),
WHERE A COMWLETE DESCRIPTION OF THE METHOD USED CAN BE FOUND,
THI S IMPLEMENTATION ASSUMES THAT THEALF(l) ARE INTEGERS,
****************************************************************
DO 1 I=1,N

C(1)=BB(1)

DO 11 I=1,N

ALF(1)=1-NP

NN=N= 1

DO 6 1=1,NN

LL=N=1

DO 6 J=1,LL

K=N“\'+1

C(K)=C(K)=ALF(1)*C(K=-1)

DO 8 I=1,NN

K=M=-1

XKIN=1.D0/K

KM1=K+1

DO 8 J=KM1,N

C(1)=C(J)*XKIN

JMl=J-1

C(IM1)=C(JM1)-C(J)

RETU RN

END

* % %k kok
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N C MA IN PROGRAM FOR TESTING 8TH ORDER METHOD FOR 2 PVRBPR.
IMPLICIT REAL*8 (A=H.0-7)
‘ EXTERNAL F1, F2, F3, Fh, DFY1, DFY3, DFY4
- DIMENSION X(257),Y(257), IPROR(10),YEX(257)
P1=3.141592653589793D0
READ, (IPROB(1), I1=1,4),JJ,N
DO 100 dJ=1, JJ
. N=2#N
- DO 100 1=1,4
IF(1PROB(I1) .GI. 0) GO TO (1,2,3,4), |
GO TO 100
1 X(1)=0,
X(N+1)=p|
- Y(1)=0,
- Y(N+1)=0,
PRINT,' PROBLEM I , Na',N
N CALL DCBVP8(N, F1,DFY1,X,Y)
CALL EXACTI(YEX, X, N)
GO TO 10
2 X(1)=0.
X(N+1)=1.0
Y(1)=0.
L Y (N+1)=0.
PRINT, ' PROBLEM 2 .N=!',N
CALL DCBVP8 (N, F2, Fi, X Y)
L CALL EXACT2(YEX, X, N)
GO TO 10
3 X(1)=0,
X(N+1)=1,
Y(1)=1.
Y(N+1)=1.
PRINT,, ' PRORLEM 2 ,. Ns' N
CALL DCBVPB(N, F3,DFY3,X,Y)
- CALL EXACT3(YEX, X, N)
GO TO 10
b . X(1)=0,
X(N+1)=1,
Y(1)=0.
Y (N+1)=0,
PRINT,' PROBLEM 4 ,.Na' N
GALL DCBVP8(N, F&4,DFY4, X, Y)
CALL EXACTL (YEX, X, N)
10 ERRNOR=0,
DO 35 L=2,N
ERR=DABS(YEX(L)=Y (L))
C IFCYEX(L) . BQ, 0.) GO TO 35
c ERR=ERR/DABS(YEX(L))
IF(ERR .GT. ERRNOR) ERRNOR=ERR

c PRENT, X(L), Y(L), YEX(L), EPR

35 CONT I NUF
PRINT, ERRNOR
100 CONTI NUE
STOP
END
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SUBROUTINE F1(N,X,Y,FU)
IMPLICIT REAL*8(A-H,0-2)

DI MENSION X (257),Y(257),FU(257)
N1=N+1

DO 10 I=1,N1

SI=DSIN(X(1))
FUCE)=Y(1)**3-S]1%(1,+SI%*e2)
RETU RN

END

SURROUT t NE DFY1 (N, X Y, DFU)
IMPLT CIT REAL*8 (A-H O 7)
DIMENSION X(257), Y(257), DFU(257)
N1=N+ |

DO 10 I=1,N1

DFUCT )=3, *Y( 1 )»x2

RETURN

END

SUBROUTINE EXACT1(YEX, X, N)
IMPLT CIT REAL*8 (A-H 0- Z)

DI MENSION  YEX(257),X(257)
no 10 =2, N
YEX(I)=DSINCX(1))

RETURN

END

SUBROUT INE EXACT2 (YEX, X N
IMPL IC IT REAL+8 (A-H 0-2)
DIMENSION YEX(257),X(257)
C=1.336055694906 10800
C02=,5x*C

DLN2=-DLOG(2. DO)

DO 10 I1=2,N

YEX(1)=DLN2+2, *DLOG(C/DCNS(CO2*(X(1)=-5)))
RETURN

END

SURROUT I NE F2 (N, X Y, FU)

IMPL IC IT REAL*8 (A-H O 27)

DI MENSION X (257),Y(257), FU(257)
N1=N+1

DO 10 1=1,N1

FUCT )=DEXP(Y (1))

RETURN

END
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SUBROUT 1 NE F3(N, X Y, FU)
IMPL IC IT REAL*8(A-H, O-t)
DIMENSIONX(257), Y (257),FU(257)
Nl=N+1
TWOP1=6.283185307179586D0
TPSOQ=TWOP I *TWOP I
DO 101=1,N1
TPX=TWOPI*X (1)
C SI=DSIN(TPX)
EXPSISDEXP(S1)
10 FU(I)=Y(l)*(l.+Y(l)*Y(I))+EXPSl*(TPSQ*(DCOS(TPX)**Z-Sl)-
* EXPSI*EXPSI-1,)
. RETURN
- END
¢ SUBROUTI NE DFY3 (N, X Y, DFU)
IMPLT CIT REAL+8 (A-H O 2)
DI MENSION X(257), Y(257), DFU(257)
N1=N+ I
DO 101i=1,N1
10 DFUCE)=1,+3.xY(1)*Y (1)

b- RETURN

END

SUBROUTINE EXACT3(YEX, X, N)
. IMPL ICIT REAL*8 (A-H 0-2)

DIMENSION YEX(257), X(257)
TWOPI1=6.283185307179586D0

e DO 10 1=2,N
10 YEXCI)=DEXP(DSIN(TWOPI*X(1)))

RETURN

L END
SUBROUTI NE F4 (N, X Y, FU)
I#4PL I1C IT REAL*8 (A=H, 0=Z)

L DIMENSION X(257),Y(257), FU(257)
N1=N+1

DO 10I=1,N1

10, FUCQ) = 5«(Y(1)+X(1)+1,)ws3
RETURN
EN D
SUBROUT I NE DFY4 (N, X Y, DFU)
IMPLIC IT REAL*8 (A-H 0= Z)

- DIMENSION X(257),Y(257),DFU(257)

N1l=N+1
D O 101=1,N1

10 DFUCI)=1.5«(Y(I1)+X(1)+1,)ww2
RETURN
END
SUBROUT | NE EXACT4 (Y EX X N)
IMPL IC IT REAL*8 (A-H O-2)
DIMENSION YEX(257),X%X(257)
DO 10 I=2,N

10 YEX(1)=2,/(2.-XC1))=-X(1)-1.
RETURN
END
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I1.6.7  Operation count

In this Section we shall make an operation count for the O(h8)
algorithm Jjust described. First of all, each Newton iteration requires
(n-1) evaluations of the function f and its partial derivative fY
All the other operations required are arithmetic or logical and our céunt
refers to the former. "M" will stand for multiplications or divisions,
and "A" will stand for additions or subtractions. Integer operations
are not counted. We call nl = n-1 , and we shall essentially keep only

the higher order terms in the total count.

The main steps in a Newton iteration are:

(a) Computation of residual: 5nlA + 5nlM
(b) Setting tridiagonal system: BnlA + §nfﬂ
(c) Solution of tridiagonal system: 5nlA + SnlM
(d) Updating of Y nlA
(2.48) 12n A +llnlM/Newton iteration

We won't count the operations involved in the computation of the
initial value Y° by linear interpolation since that can be considered
as a step common to all techniques of this type.

Finally we have to account for the work involved in computing the

correction. We have:

(a) 5 calls to the Vandermonde solver: 96A + O64M (independent of n!)
(b) Calculation of S: 7nlA + 7nlM
(c) Parts b), c¢), d) of Newton: 7nlA + 8nlM

lMHA+Eqm

Therefore, if' i Newton iterations are performed, then the total work will

be
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(2 .h9) W = (123 + lbr)nlA + (119 + lS)nlM

Let us consider, for instance, Problem 2. For h = 1/52 , four
Newton iterations were required in order to decrease the residual below
1.55, -17, and the corrected O(ha) result had « max. abs. error of
k.08, -15 at the grid points. Formula (2.49) tells us that the total
number of operations is then:

(2.50)  TW(prob.2;def.corr.;n=52) = 1922 A + 1829 u .

Since the basic method is clearly o(hu) we can estimate what kind
of a mesh would give us equivalent accuracy (n=256 is almost there, but
not quite). In fact we would need 790 points in order to achieve that
accuracy (provided that roundoff' does not ruin it first). From the num-
ber of Newton iterations required for the various mesh sizes shown in
Table 2 we can expect that again 4 iterations will be needed for n=790
and the operation count will be in this case:

(2.51) TW(prob.2;O(hu)method;n:780) = 37440 A + 54320 M

We see comparing (2.50) and (2.51) that the o(h?) method will

need approximately 20 times more arithmetic operations than the corrected

one. Also we must count the number of function evaluations. In this

problem fy = f =e¥ r but in order to make a general statement we shall

.count 2n. function evaluations per Newton step. Thus the o(h8)

1
method, with n=32 , requires FE8 = 330 , while the O(ﬁ+) method with

n=780 will require FE) = €248 , i.e. again about 20 times more work.
We should also mention that 25 times more storage will be needed for the
Y . .
O(h’) method to achieve the desired accuracy. However, all this compari-

son is unfair. After all we expect a bona fide high order method to
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perform better than a lower order one; therefore, except to emphasize this

fact in a specific case, we should look for stronger competitors.

Successive Extrapolations (SE)

With minor modifications our program for deferred corrections can
be employed for performing an algorithm similar to the one described in
11.4. mfact, what we have done is to introduce the necessary changes
in the Main Program of p. 47 and "short-circuit" the correction step in
ICBVP8 by replacing the 5th statement of p. 43 by

IF(RESﬁ.LC.EPS) RETURN

Thus, Subroutines U2DCG and COEGEN are unnecessary. Since our

basic method has order 4 then, given h , we call Y+ , i=1,..., to the

h
(no-l) vectors obtained from the solutions Y 'Ol . These are to be,
i -
2
of course, approximations to y*(a + kho) . We then form the successive

columns of the extrapolation triangle by:

(3+1),3 J
gan MUY - Y

Y = -
1 4(J+jj -1

Observe that

J+l * 23+h
WU -ey = o(hO )

and only two orders of h are gained per extrapolation.

We report now the max. absolute error in Yi for the various prob-

lems and different initial meshes.



5%
Problem 1 Problem 2
No errorg m error8 m
4 1.69, -9 ---- 4,01, -12 ———
8 1.60, -11 6.72 1.64, -14 7.93
16 1.68, -13 6.57 2.87, -16 5.84
32 3.31, -14 2.34 8.01, -16 ———
Table 7
Problem 3 Problem 4
ng errorg m error8 m
1 6.06, -5 2.97, -9
8 8.1k, -7 6.22 1.45, -11 7.68
16 2.06, -9 8.63 6.07, -14 7.90
32 7.51, -12 8.10 6.24, -16 6.60
64 1.38, -13 5.77 - ———
Table 8
Computer Times
e in sec. (all problems)
4 0.38
8 0.75
16 1.45
32 2.96

Table 9
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It is somewhat hard to choose a reasonable criterion of comparison
between these two methods. One that seems adequate is to choose two
results of similar accuracies and compute the work necessary to obtain
them. From Tables 3 and 8 we find that for Problem 3, DC with n-256
has an accuracy of 1.33, -13 , while SE with no=6h attains an accuracy
of 1.38, -13 . From Table 3 also we learn that 6 Newton iterations are
necessary to reduce the residuals to the necessary level for n=64, 128,
256 . Thus the total number of operations for DC is, according to (2.49):
(2.52)  TW(prob.3;def.corr.;n=256) = 21930 A + 20655 M ,

For the SE procedure we recall that the basic problems for meshes
n=6l4, 128, 256 must be solved and their results combined linearly. This
last part requires 5n0A + 6né%  and combining this figure with the work
required by the various Newton iterations we get
(2.53) TW(prob.B;Rich.ext.;n0=6h) = 32448A + 29952M

The number of function evaluations is in each case:

(2.54) FE(DC) = 3598 ; FE(SE) = 5412

Finally, we must remark that DC gives its O(h8) solution at 256
points while SE only gives it at 64 points. The computer time required
by SE for this problem was 1.79 sec., while DC took only 1.18 sec.
Thus we see that in this problem, for the same accuracy and 4 times more
detail, deferred corrections is 1.5 times faster than successive extra-
polations, both methods being of the same asymptotic order, Also observe
that Problem 3 is the most "difficult" of our set of test examples.

In the following Chapter, an Iterated Deferred Correction procedure
will be developed, and we will be able to carry out additional comparisons

with higher order successive extrapolations.
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Finally we would like to point that in higher dimensional problems
the effect of' mesh refining on the amount of work and storage is much more
dramatical, as it has been indicated in Pereyra [1967].

We include some sample results and the modified programs for SE.
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. r MAl N PROGRAM FOR TESTING SUCCESS | VE RICH, EXTRAPNL, FOR 2PRWP,
C FOR A GIVEN BASIC MESH N, PROBLEMS FOR WHICH IPROB(1)=1 ARE RUN,
r (JJ=1) RI CHARDSON EXTRAPOLAT! ONS ARE PERFORMED.

IMPLICIT REAL#*8(A~H,0-2)
FXTERNAL F1,F2,F3,FL4,DFY1,DFY3,NFYY
NDIMENSION X(257),Y(257), IPROB(10),YEX(257),R(257,6),RFER(E,E)
C PI=3, 141592653589793D0
READ, (1PROB(1),1=1,4),JJ,N
N1=N
NO=N»2
DO 100 I=1,U
N=N1
L IFCIPROB(1) .EA. 0) GO TO 100
NO 1000 J=1,4d
N=2#N
G0 TO(1,2,3,4), |
1 X(1)=0,
X(N+1) =PI
Y(1)=0,
Y(M+1)=0,
CALL NDCBVP8(N,F1,NFY1,X,Y)
- CALL EXAGT1(YEX,X,N)
60 TO 10
N X(N+1)=1.0
Y(1)=n,
Y(M+1)=0,
L CALL DCBVP8(N,F2,F2,X,Y)
CALL EXACT2(YEX,X,N)
GO TO 10
L 3 X(1)=0,
X(N+1)=1,
Y(1)=1,
Y(N+1)=1,
CALL DCBVP8(N,F3,DFY3,X,Y)
CALL EXACT3(YEX,X,N)
GO TO 10
4 X(1)=0,
X(N+1)=1,
Y(N+1)=0,
CALL NCRVPB(N,F4,DFYL,X,Y)
CALL EXACTH(YEX,X,N)
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FERRNNR=0,
PO 35L=2,N
ERR=DARS(YEX(L)-Y(L)
IFCERR ,GT., FRRNNR)
CONTINUF
RER(J, 1) =ERRNOR
LST=2#%(y-1)
LL=LST+1
no 90 L=2,N0
PCL,d)=Y(LL)
LL=LL+LST

CONTI NCJE
HO=(X(N+1)=-X(1))/NO
P O180L=2,ND
XCL)=X(1)+(L=-1)#*HD
PRINT,! PROBLEM!, |
G0 TO (11,12,13,14),1
CALL EXACTI(YEX,X,ND)
GO TO 15
CALL EXACT2(YEX,X,ND)
GO TO 15
CALL EXACT3(YEX, X, ND)
CO TO 15
NALL EXACTu4(YFX,X,NO)

PO 200 J=2,JJ
CO=Lwx=y
nDiv=1,n0/(co-1,n0)
PO 20011=4,JJ
IR=JJ=11+y
ERRNOR=N,
PO 190 L=2,NN
R(L,lR)=ﬂlV*(Cﬂ*R(L,lP)’P(L,|P~1))
FRR=DABS(R(L, IR)=YEX(L))
IF(ERR AT, FRRNOR) FRRNOR=FPP
CONTI NUE
RER(IR,J)=FRRNNOR
PRINT,' RICHARDSON EXTRAPOLATIONMAX, FRROR ON GRID NO=',NO
PO 30011=1,JJ .
PRINT, (RER(11,J),d=1,11)
PRINT, "#*tdhtmawnerererrrrratrtotttss’
CONTINUF
STOP
FND

)
FRPNNOR=ERR
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SUBROUTINE DCBVP8(N,F,DFY,X,Y)

IMPLICIT REAL®*8(A-H,0-2)

DIMENSION X(257),Y(257),A(257),R(257),C(257),R(257),AA(50)
* _FU(257),DFU(257)
************t***i*************t*t***t*ﬁ*#**************************
TWO POINT BOUNDARY VALUF PRORLEM SOLVER FOR

-Y”*F(X,Y) =0 , Y(X(1))=Y(1) , Y(X(N+1))=Y(N+1)

TYE H#*+4 ORDFR METHOD

Hie=2 (=Y (1=1)422Y(1)=Y(141))4(F(1=1)+10+F(1)+F(1+1))/12 = O

IS USED

#xxx IMITEDT O N= (X(N+1)-X(1))/® L.LE. 256 "ok kR

TOPROCESS FINER MESHES CHANGE THEDIMENSION STATEMENTS
IN ALL SUBROUT! NES ACCORD | NGRLY,

**xxwxJSFR PROVIDED DATA*++++

X(1) =LEFT END ABSCISA
X(N+1) =RIGHT E N D ARSC1SSA
Y(1)A N DY(N+1): CORRESPOND I NGBOUNDARYVALUFS,
N+1 IS THE NUMRER OF MESH POINTS (COUNTING THF END POINTS),
M MUST BEGRFATFR OR EQUAL THAN TWO,
THEY ARE ASSUMED TOBF EVENLY SPACEDBYH=(X(N+1)-X(1))/N
F . DFY APE EXTERNAL USFR PROVIDFD SUBROUTINES THAT SHOULD PRODUCE
THE MESH FUNCTIONS F(X(1),Y(1)) , DF/DY(XC1)Y,Y(1)), t=2,...,N, RESP,
THEIRCALLING SEQUENCES MIST RF:

F(N,X,Y,Fl)

DFY(N,X,Y,DFU)

WHERE FU(257),DFU(257) ARE THF ONE-DIMENSIONAL ARRAYS TO BF
FILLEDWITH THERENUI RE D MESHFUNCTIONS,
ON OUTPUT THE APRAY Y WILL CONTAIN THE COMPUTED D! SCRETE SOLUTION,
NP1=N+1
H=(X(NP1)~X(1))/N
HSN=aHex 2

Crxxexx NEXT STATEMENT IS1 NSTALLATI OM DEPENDENT #*%xxunkwn

DOOD

1n

IF THIS PROGRAM IS NOT USED ON AN | BM/360 COMPUTER IN REAL*8 PREC,
THE CONSTANT 5,0n-16 SHOULD RFREPLACFD BY (APPROX IMATELY)
10+MACHINE PRECISION INORDERTOAVO I D UNDUE CYCLING IN THE
NEWION ITERATION,

FPS=DMAX1(5.0D-16, ,0001%HSNwxYy)

CIl=(Y(NP1)-Y(1))/N

PO 10 t=2,N

XC=X(1)+( 1=-1)*H

Y(1)=Cl#(1=1)+Y(1)

HSNN12=HSN/12

Al=5,+HSN/6

I TNEW=0
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20

25

30
35
36
37

40

CALL F(N,X,Y,FU)
RESN=0,
PO 201=2,N

R(I)=Y(l—1)-2*Y(I)+Y(l+1)—H50012*(FU(I-l)*lﬂ.*FU(l)*FU(I+1))

TE=DABRS(R(1))

IF(TE .GT, RESN) RESN=TE
IF(RESN ,LE, EPS) RETURN

CALL DFY(N,X,Y,DFU)
nos ot=2,N
ACI=-1)=A1+DFU(1)4+2,
B(1)=HSNO012+DFU(1)=-1,

C(1-1)=HSNO12+DFU(1+1)~1,

IF(N-2)35,35,36
R(2)=R(2)/A(1)
GOTN3 7
MM1=N-1

CALL TRISOL(A,B,C,R,NM1)

I TNEW=1TNEW+1

N0D40 1-2,N
Y(1)=Y(1)+R(1)
IFCITNEW.LE.10)GO T O
END

1

5

-60-
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III. Computer implementation of iterated deferred corrections for
boundary value problems

The iterated deferred correction (IDC) algorithm described in
Chapter II, p. 27, requires the computation of the various correction

operators S that approximate the sections of the local truncation

k

error. Given a known basic discretization F of order p , and the

kth segment of the asymptotic expansion for the local truncation error:

rEt *(3)
4 = Y (x) 3
(5.1) Tk(x) E a4 7 h

J=q

’

where the coefficients aj are independent of h , we would like to have
a flexible, fast, and accurate algorithm capable of producing the weights
w, that define 5, (see (2.30)). In the next Section, we develop such
an algorithm, which can also be used for other applications. The fact
that the sum (3.1) starts from g % p has been added for even further
flexibility. There are situations in which the order p and the first
derivative appearing in the expansion do not coincide, in which case this
added flexibility will come in handy. Subroutine U2DCG of p. 45 is a

FORTRAN IV implementation of our algorithm.

IIT.1 An automatic weight generator f'or numerical differentiation
and other applications

Given a smooth function y(x) , an uniform mesh of: size h with
points fx;} , and an abscissa X , we are interested in approximating

the number

m
i3

(3) =z
(5.2) L(y) (?) = E 8541 Y Jjgx) hj
j=
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by means of a linear combination of values of the function y(x) at some
of the mesh points:

m+1

(55) M) = ) wylxg )

s=1

where r is a given integer. The algorithm that we are about to describe
can be easily adapted to the case of nonuniform meshes, but here we prefer
to present it in its simplest form.

m+l) . It is well known

We assume that the accuracy required is O(h
(see Collatz [1960], Ballester and Pereyra [1967]) that if y(x) has (m+l)
continuous derivatives then the approximation (3.3) exists if one takes

t =m+ 1 different abscissas.

Proof: TLet a, = (x r g)/h , and let us expand M(y) in a Taylor

series around x :

t t-1 . t
(J) - .. (t)
- y %) 4,dyd
B0 DI JELISEERS TN
s=1 j=0 s=1
or
& (3) - ()

. Yol(x) 3 by (8) bt
(3.4)  M(y) = Z (E ) b+ Z wgot |8
= S= "gll

Our aim is to make the difference M(y) - L(y)(x) as large an

order of h as possible. Matching terms with the same powers of h

generates the following conditions for the weights W

(5.5) Z weod =a
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In order to make the linear system (3.5) square we can impose as many as

t of these Conditions, i.e. j=O,...,t~l . If this system of linear equa-

tions can be solved then the resulting M(y) will have the property

t

(.
t)
— £\ o
(3 .6) M(y)=L(y)(x)+(E wsa’s)'yTgE—) Wt
s=1
But system (3.5) is a Vandermonde system of equations and since
C
the o, are distinct it is non-singular. []
Therefore, our problem of evaluating the appropriate weights w
S
has been reduced to solving systems of linear equations of the form:
L—
(3.7) V(a)w = a
o T T T
where a° = (al,...,at) , 8 = (al,...,at) , W= (wl,...,wt)
and V(@) is the Vandermonde matrix:
r -
11 1
(-
o a, oy
' . 2 2 2
3.8 =
L (.8) Vi) S T T
L
t-1 t-1
“v L%
- o¥
It is well known that Vandermonde matrices are ill-conditioned
L (cf. Gautschi [1962, 1965]), and if one attempts to use a standard Gaus-
sian elimination code on this type of problem, failure occurs even for
= very modest sizes. Great loss of accuracy is also common, even for t=5 .

Fortunately, there are techniques for solving this and similar kinds of

problems that not only are more accurate and stable, but that also
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take much less arithmetic operations to produce the desired result. Nat-
urally, they take advantage of the special structure of the matrix V(g)
(see Ballester and Pereyra [1967], Bjérck and Pereyra [1970], Galimberti
and Pereyra [1970, 1971] and Pereyra and Scherer [1973] for more details,
generalizations and other applications).

IhBjdrck and Pereyra [1970], a method for solving the transpose
(dual) problem

T(

(3.9) Vi) a-=rf¢

is developed. A matrix interpretation of the method permits then the
consideration of the direct problem (3.7) with little difficulty. For
problem (3.9), advantage is taken of the fact that if we think of the
elements of the vector £ as values of a certain function, then the
equations (3.7) are just the conditions of interpolation by a polynomial
of degree (t-1), and therefore, the solution a will have as components

the coefficients of the unique interpolation polynomial:
t-1

S
P(x) = E s+ .

s=0
The Newton form of the interpolation polynomial P (x) is obtained

if one considers the new basis given by the polynomials

(3.10) Qo(x) =1, Qk(x) = X -a ) , k=l,...,t-1

(
i=1
With this basis, we have

t-1

G.11) e = Y g ()

k=0
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where the coefficients ¢, are the divided differences constructed with

the function values f and the abscissas «a :

c, = f[ai"{{”ak+ll s k=0,...,t-1 .

It is well known that these divided differences can be obtained

recursively by

f
] - [aj—k'f'l"'-’aj"‘ll _.l_k,.;.,a’j]

5

(5,12) f[a,j—k"“’a,j+l

k=0,...,t=2 ; J=k+1,...,t-1

Once we have computed the vector ¢ ¢ 4ivided differences then a

Horner~like scheme permits to evaluate (3.11). In fact, we can compute

2 —
(5-13) ag (0 = e s q(x) = (x - %eap )y () ¥ o 5 k=250
and then clearly,
0, (x) . B(x)

Let

_ (x) L (k)
qk(x) e tapxt .ty ,

(t-1) _ :
aJ-+l '—Cj b J=O,-..,t"l .

If we replace these expressions in (3.13) we obtain a simple recursion for

the coefficients a(k) s k=t-2,t-3, ,0
3 ve.

(k) __(k+1 .
%G 79 L P S
k)
1y 2B _oo (k+1)
(5-24) oy k T %1%k

(k) _ (k+1) (k+1) .
a‘.J = aj - ak+laj+l , JEk+H2, ... ,t-1

Recursions (3.12) and (3.14) furnish the solution to problem (3.9).

Let us consider the lower bidiagonal matrices of order t , Lk( ) defined b
al erine y
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HJahi=:L; HJ“M{gizO , 1=1,...0 .k
(3.15)
Lk(“)i+1,i = -, i=k+l,...,t-1

We shall call

e = Iloy) > Mo =1,(1)

and Dk to the diagonal matrices;

(3.16) Dk = diag (1,...,1,(0;k+2 — al)""’(a‘t — a/t.kl)} .
With this notation it is easy to see that recursions (3.12) and (3.14) can

be represented in matrix form as:

(0 s gy () _ D;leg(k) s k=0,...,t-2

g(t‘l) - o(t-1) , (k) _ 5, (c41)

e =1y

. T T
Calling U , L to the lower and upper unit triangular matrices

(3.17)
k=t-2,...,0

4

(5.18) uT = Dt T ET T

I e

then we see that (3.17) can be expressed as

(5.19) ¢ = U't, &a=1%.

. -T -
Since & =V "f , we have then V T. LTUT » OT

-1
(j-EO) v = UL 5 V = L‘]Tj-l R

and we have found a factorization in bidiagonal factors of the unique tri-
angular matrices furnishing the UL decomposition of the inverse Vander-

. -1 , , , , , , ,
monde matrix V © . With this factorization we can easily write a recursive

algorithm for solving the problem of our more immediate interest, i.e. the
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primal or direct Vandermonde system (5.8). In fact, we have

S N S
D« - <My 2Dt_2)(Lt_2. L)a,

(3.21) W = v’l(g)g = Ulg = (M@)

from where we can easily derive a recurrence to compute w . Subroutine
COEGEN (see p. 46) is a FORTRAN IV implementation of this recurrence, while
in [ 3] Algol 60 implementations of both Vandermonde solvers and some
variations can be found.

In the present implementation the user has to provide the size of
the system N , the integer location of X , NP , with respect to the
nodes used in (-3.3). We assume here that x is actually a grid point.
With this information COEGEN generates the vector « , whose components
L_ are integers: a; = i - NP . Therefore the elements different from 1 in
the diagonal matrices D, (see (3.16)) are simply: ¥ - sktL,
which amounts to the small modification we mentioned above. The right
| hand side of the system must be supplied in the array BB , while the

solution to the system will be found upon output in the array C . In our

application COEGEN -is called by the subroutine U2DCG that we pass to

des cribe .

ITT.2 A Universal 2-point boundary value Deferred Correction Generator

As we said before the gist to an effective implementation of iter-

ated deferred corrections lies in being able to obtain the correction operators
S, approximating the expansions (2.30) or II.6.3. The correction operators we
are going to develop are of the general form (3.3), and therefore the subrou-

tine COEGEN will be an important component in our algorithm. Other types

of corrections are possible as we have pointed out in [34]. See also Denny
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and Landis [1972]. The word Universal in the title of this Section refers
to the fact that we hope that the generality of the subroutine U2DCGC will
be able to cope with a variety of different boundary value problems and
various discretizations. For instance, we have seen already for the
simple problem (1.1) two different discretizations which in turn produce
different asymptotic expansions (cf. (2.29) and 1163, p.30). The

theory developed in Chapter II, which carries over to many other situa-
tions, and our comments above are the reasons for the choice of the form
(3.1) as the type of general expansions we would like to approximate.

In a two point boundary value problem, where approximations to an
expansion of the form (3.1) are necessary at all the interior grid points
of an uniform grid, we are faced with various standard problems:

(a) The order of the approximation must be O(hq+pk) at

each point.
(b) We like to use as centered formulas as possible since
they have the smallest truncation constants and smaller
weights. In the "center" of the interval we can do this
without difficulties, but as soon as we get closer to the
boundaries we need to use unsymmetric formulas.
These tasks are fulfilled by the subroutine U2DCG which is listed on p. 45
of these notes.

The user needs to know what kind of an expansion he wants to approx-
imate, i.e. he has to provide the coefficients 2 in (%.1), for
J =4, . . .,q+pk-1 (setting to zero those for which the corresponding
derivative does not appear; observe that due to programming language

limitations, the coefficient, aj corresponds to the (j-1) derivative).



-6H9-

The other two parameters required are the order p of the basic method
from which the expansion came, and the correction step k which is desired.
The number of interior nodal points plus one, N , is also required, and
finally the grid function (array) Y , which will be used in formulas like
(3.3) must also be provided. It is assumed that Y is an O(hq+p'(k’l))
order approximation to y*(x) . On output, the correction mesh function
Sk(Y) is produced in the array S . The integer variable IERRCOR will be
equal to 1 and no correction will bhe computed in case some of the following
assumptions are violated,

(3.22) X < (N+1-q)/Ps3;ep, o, K >1

The condition P , Q , K > 1 is pretty obvious; the first condition is a
constraint motivated by the fact that a minimum number of grid points are
necessary to achieve a given accuracy for a certain derivative. Thus in
order to obtain the required accuracy we need g + pk points. Since we
count with N+l grid points and p and g are given then that imposes
a condition on k , Of course, if our expansion consists only of even
derivatives then we can have sufficiently accurate symmetric formulas
with only q+ pk - 1 points, at lecast in the center range. This cage
is indicated to the subroutine by setting the logical parameter EVEN to

.TRUE., otherwise this parameter should be set to .FAISE. .



r

~70-

II1.5 Asymptotic error estimation by deferred corrections

The procedure of' Section II.6.5 was actually a way of obtaining an

asymptotic error estimate for the basic O(hh) solution. It turns out

that a similar technique can be employed in general to estimate the error

in an iterated deferred correction algorithm. e shall give now an ex-

- : . I
planation associated with the O(h') method of 11.6.3, but this result,

as most of the others, carries over to much more general situations (cf.

[39]).

For k=1l,... let
- br(k+1)-1 )
3.23) T (x) ) LEUERSIE
. x) = a, .
( X 3 37 h
J=h
with
o, j odd ,
3.24) &, =
( ) 8 1 1 _
% S CET I j even .
b*(k+1)
Let S, (@3 )(x.) £ *
k mhy %y = wsi (Xi-ri+s’ yi-ri+s) ?
S=

where the displacement £, will be dependent upon the position of

1

in

the interval [a,b] (cf. 111.2). The weights y sre chosen so that
si

Gas) s () = () + o )y

where the discrete function Y(k‘l)

satisfies
(k=1), _ (k-2)
(3.26) G, (¥ ) =58, (¥ ) s
and
(k-1) * L
(3.27) & _, - Y - oy = o™y,
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Theorem 3.1. ret Ak—l be the solution to the linear problem

(3.28) o/ (x®1) ) _ g

(k-2) k-
h Kk l(Y ) - Sk(Y( l)) ;
Then
_ bx(k+1)
B0 A =e  +0(n )
(i.e.: Ak-l is an asymptotic error estimator for Y(k-l))

Proof: ' *y = W (k1) ‘
Since Gh(¢hy ) Tk(x) + 0(h ) r we obtaln’ combining this

relationship with (3.26):

(k-1) * _ [
G (Y ) - Gyloy ) = Sk_l(Y(k 2y T, (x) + o(hl**(k”’l))
But from (3.25) 4nd the Mean Value Theorem we can deduce that
Sk ry(k=1)y, (k-1) *
O(h + G/(Y > - ® _ k-2
( ) h( ) (Y hy ) = Sk-l(y( )) -

- Sk(Y(k-l)) - O(hh*(kﬂ_))

>

or, since 8k > h*(k+l) for k > 1,

ol Y(k-l) (k-1) _ o v5) _ (k-2 k- .
h( )(Y hy ) _Sk—l(Y )) - SK(Y( l)) " O(ha*(l{i‘l))
Subtracting this last expression frmn(j.28) we obtain tinally

Gé(Y<k-l>) [Ak—l_" ek-lJ = o(ha*(k+l)> ,

and since G, 1is stable, so is G, and the result follows. l:]
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I1T.4 A variable order, variable (uniform) step, two point boundary
value problem solver, based on deferred corrections

In this Section, we address ourselves to the following task:
"Given problem (1.1), (2.1), n > 5, and 10*¥ machine precision < ¢ ,

find a discrete solution on an uniform mesh with at least (n+l) points and
maximum absolute error less than equal to ¢ ."

We won't claim that our algorithm is optimal with respect to the
solution of this problem, but we shall try to show that it has some good
points as compared with other available techniques. In fact, the algorithm
will be designed in the style of an adaptive scheme, except that the mesh
will be automatically refined over the whole interval. A more complicated
algorithm could be designed, such that local refinements are performed in
order to follow better the local variations of the exact solution. In

fact, the vector A of Theorem 3.1 provides an excellent tool for that

k
more complicated task since it measures the error at each individual mesh
point. We prefer to reserve this type of approach for situations in which
the use of non-uniform meshes is unavoidable, 1like in the case of multipoint
boundary value problems, or problems with isolated, interior discontinuities
(interfaces) (see Keller (1969, 1972)).

Our strategy will be based on the Iterated Deferred Corrections (IDC)
algorithm of 11. 6.2, for the O(hu) discretization (2.36). We know from
III.2 that for a given n there is a natural limitation on the number of
corrections that can be performed. Also, from past numerical experience

(and common sense), we know that for a given problem and mesh size there

are also limitations on the number of corrections that will do us good.
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Unfortunately, while the first limitation can be exactly predicted (i.e.
k < (n+l - &)/4) , the second one is problem and machine dependent.

On the other hand, it turns out that the asymptotic error estimation
procedure of' III.3 provides a fine, reliable tool for detecting on line
the behavior of the corrections. Thus, || Ak” > ”Ak-ﬂi is a clear indicator
that the (k+1)th correction will not improve our solution (and also that
is not a reliable estimator for ek)

connected with what in the past has been known as "the growth of high

by This phenomenon is obviously

order differences", which served as a signal-to the pencil and paper num~-

erical analyst to cut his series of differences (see also [26,27]). We see then
that without having to construct, store and computer inspect a table of differ-
ences we can still extract the useful information inherently contained in the

procedure. As a matter of fact, we use in our program the more strict test

oyl < -2%01a I -
If this condition is violated we halve the mesh since we are not obtaining
a sufficient reward for our pains.

A flow chart and a FORTRAN IV program for the algorithm follow. We
emphasize here that by changing appropriately some boxes in the program, one
can solve other problems with this same logical arrangement. Subroutine
IDCBVP calls Subroutines TRISOL and U2DCG, which have been listed earlier in

these notes.
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Flow Chart f'or Variable Order, Variable (Uniform) Step,

Deferred Correction Solver

Input parameters;:
N, X(1), X(N+1),
Y(1), Y(N+1), TOL

ERRGLD « +oo “
KeO
He(X(N+1)-x(1))/N

— | EPS: MAX. RES. FOR -

NEWTON
KMAXe-(N+1-4 )/} A
— | ERREV « .FALSE.

rInitialize Y (I) Fel.0
for Newton as L X _ B
| linear comb. of N+1 X(N/2+1)
boundary
values no/)\

Initialize Y(
on new grid fron

/(1) on old grid

|

f ITNEW I

Compute residual
and its norm:

RESTT ]

?
RESN<EPS

yes

Solve lin-
ear equas,

@ A?fas}\& N=ly/2

ﬁg_t— TOL=ERROLD

[ ERREV - JTRUE. |

Compute SK(Y(k-l)R
Ft 0.1 J

no

ERREV ¢ ,FALSE.

A Comnmute evrrar
X v TIL0OT

A~
\\\ffff%R < TOL ={sT0P,

T

ITNEW « 'ITNEW+1 N
Correct Y(I)
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SURROUTINF INDCRVP(M,F,DFY,¥X,Y,TNL)
IMPLICIT REAL*R(A=1,0-~7)

LNGICAL EPRFY

DIMENSION X(257),Y(257),A(257),n(257),n(257),R(2S7),AA(50)

*  ,FU(257),DFU(257),5(257)
**************t*********it********************************t********
VARIARLE ORDER, VAR | ARLF (UM| FOPM) STEP F I NI TE D | FFFRENCF
TUNPOINT BOUNDARY VALUF PRORLEM SOLVFR FNR

SYPULF(X,Y) = 0 0 Y(X(1))=Y(1) , Y(X(M+1))=Y(N+1)
THE  Hwxxlh 0ORDFR METHOD
Hix=?) *(-Y(|-1)+2*Y(l)-Y(l+1))+(F(i~1)+ln*F(l)+F(!+1))412 =0
I'S COUPLED WITH ITERPATEND DFEFFERRED CORRECT! ONS | N ORDFR TO PRODUCFE
A DISCRETE SOLUTION WITH MAX ABS. FRROR ¢ TOL OM A RN MOT
COARSER THAN THF GIVEN N,
**kxx| IMITED TO Moo= (X(N+1)-X(1) )/H ,[LF, 256 *RARK
TO PROCFSS FI NFR MFESHFS CHANAGFE THF D IMENS 10N STATFMENTS
M ALL SUBROUT I.NMES ACCORD | MGLY,
ek xxx{ISFR PROY INEN DATA% %% %
X(1) = LEFT FND ABSPISA
X(N+1) = RIRHT END ARSCISSA
Y(1) AND Y(N+1) : FOPRESPOMDING RNAUMDARY VALUES.
M+1 IS THE NUMBER NF MFSH PNINTS AT WHICH THE SOLUTION 1S DESIRED
(COUNTING THFE EMD POINTS), OM OUTPUT N WILL COMTAIN THF SIZE OF
THE MFSH ON WHICH THE FIMAL Y UAS ACTUALLY COMPUTED,
THFEY ARF ASSUMED TN RF FVFEMLY SPACFN BY H = (X(N+1)=-X(1)) /M
TOL : NSFR'S NESIPFED MAXIMUM ARSOLUTE ERPOR NOPM OM A MESH MAT
COARPSER THAN N, ON NDUTPHT  TOL  WILL CONTAIM THE ERROP
FSTIMATED RY IDCRYP,
F , DFY APE EXTFPNAL USFR PROVINED SUBROUTIMES THAT SHNULD PRODUCF
THE MESH FUMCTIONS FOXCrY, vy , DE/DY(XC1Y,Y(1)), t=2,...,N, RFSP,
THEIR CALLING SEFNUENCES MUST BFE:
FIN,X,Y,F)
DFY(N,X,Y,NF)
MHERF FU(257),NF11(257) APF THF NNE=DIMFNS|NMAL ARPAYS TN BF
FILLED WITH THF PENUIREN MFSH FUNCTINNG.
O OUTPUT THF ARRAY Y WILL COMTAIM THE COMPUTED DISCRFTF SOLUTION,
FPS=1,
MO =M
I K=0
FACT=1,NnNn
FRROLN=1.N10
MP1=N+1
VMAX=(NP1-4) /1L
H=(X{NP1)=X(1))/\
NSN=Hwex?

FPOFY=_FALSF,
nn 5 §1=1,50
5  AA(1)=D.DN

DHIDDIDDIDIIIDIHIDNDND

DOADIIIDITIDDIDIINNDODNNDNDN
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£ INITIALIZATIONFORNFUTON
IF(N _FN, NOYPD TO 9
NHALF=N/ 2
M]1=NHALF+]
no A I=1,N1
3 ACTY=Y(1)
N 7 J=1,NHALF
1,232*1.]
Y(d2*1)=A(J+1)
7 Y(J2)=,5N0%(A(J+1)+A(J))
no 8 1=2,M
S( ' )=no
3 XCT )=X(1)+(1-1)»H
0T 11
9 f1=(Y(NP1)=-Y(1))/M
PO 1n =2,M
SCi)=n,
XCU)Y=X(1)+(1=1)=n
1n YOI =C1x(1-1)+Y(1)
11 HSOO]_?:HSH/}Z
Al=5, =HSN/{
12 | TNFW=n
IF(EPS .EN, 5.0N=-1R) "D TO 15
FPS=NMAX1(5.0N=-1h, ,1#Hex(42¥+1N))

Crxwxx  MEXT STATEMEMT | S INSTALLATION DFPENDENT  sawswwwws
r IF_THIS PPOFRAM 1S NOT USFD NN AN [RM/3E0 FAMPUTER N REAL#8 PPEC,
r THE CONSTAMT 5,0N-1F SHOULD RE REPLACED RY (APPPOYIMATFLY)
r IN*MACHINE PRECISION IN ORNER TO AVOIN UMDUE OYCLING 1IN TUF
n NEWTON ITFRATION, o T
15 CALL F(N,X,Y,FU)
NESM=N,
nno20 1=2,N
PODY=Y(1=1)=2%Y (1)4Y(1+1)=HSNNT2% (FI(1=1) 410, *FU( 1) +FUC1+1))=SC 1)
TE=NDARS(R(1))
°0 IF(TF .GT. PESN) RESM=TF
© IF(RESN ,LE., FPS) RO TO 500
75  CALL DFY(N,X,Y,NFU)
O30 1=2,N
ACI=1)=A1*DFU(1)+7,
B(1)=HSNO12+NFLI(1)=1, ‘
0 C(1=1Y=MSN012%DFU(1+1) -1,
MM =M= 1
CALL TRISOL(A,R,N, R, NM1)
IF(FRREY) 60 TN 160
I TNEW= ) TNEW+1
NO 40 1=2,N
KA Y1) =Y(E)+R(T)
IFCITNFY (LE, 10) R0 TN 15
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COMPUTATION DF Sy
K=v+]
FACT=. 1Dn
IF(x .nT,
V2=2%xK+1
no 50 1=2,k2

12=2%1+1
ARCI2Y=1.D00/((1+1)*12)=1.D0/6.Nn
FPPEV=,TRUE,

KMAX) "N TH 0N

CALL U2DCGK, 4, 4, N, AN, Fl, 0, IFOROD, TPUF, )

noo1nn 1=2,N

STF=HSN*R(1)

P(1)=S(1)=-STF

S(1)=STE

~O TR 25

FPROR COMTRNL AND DFCISION CFNTER
FRREV=_ FALSF,

FPPMOR=N, NN

no RO I=2,M

TE=NARS(R(1))

IF(TF AT, FERRNOR) FRRMNAR=TF
Kl=K-1

IF(ERRNOR 1T, TOL) £0 TN 200
IF(ERRMOR _AE, ERROLND*FACT .0R, ¥+1
FPROLND=FRPNNR

o0 TN 12

TOL=FRPNNR

RETUPN

M=2+N

IF(N AT, 256) GO TN 400
Y(M+1)=X(N/2+1)

cO0TO N

N=t1/2

TOL=FERROLN

PETURN

FN'D

BT,

KMAX) GO TO 300
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III.5 Numerical results

We give in this Section numerical results corresponding to the
four test problems of II.6.k, and for a boundary layer type equation sug-
gested by Sam Schecter (Stanford Research Institute). The new test prob-
lem is linear:

Problem 5:

_y// - Jey _ 0

(e+x)

I a (—‘-;a?;;’y(a) . -y(-a) , e ,a>0

Solution:
X

y(x) = z:*:f;gﬁg .

For e » 0, y(x) - sign x which has a jump discontinuity at x - ¢ |
For small € , this is a fairly hard problem to solve with finite dif-
ferences.

In Table 10 we have collected various statistics about IDCBVP for
Problems i , i=1,...,5 . For all problems we have started with N =8 ,

and requested a final max.abs.error tgolerance of EPS = 10'l5 . Problem

5 parameters were ¢ = lO'u , a=0.1
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F?nal Final
Problem Esgi?gied Eiiﬁr Figaéo?ﬁgger
1 7.0, =17 2.8, -15 32
2 5.5, -15 5.2, -15 16
3 9.0, -16 3.2, -14 128
4 2.2, -14 2,3, -4 32
5 3.8, -13 6.1, -13 256
Table 10

We see from these results that the automatic step adjustment follows
closely the difficulties of the problem (recall earlier results for Problem
3). In order to have a better feeling for the actual flow of the computa-
tion for each problem we give in Table 1l some additional information,

For each problem we list under the mesh size the number of nonlinear sys-
tems of that size that have been solved and the total number of Newton

corrections employed (in parentheses).

Prob. No. Points 8 16 32 64 128 256
1 1 (5) 3 () 3 --- --- -
2 1(3) 3 (4 ——- ——- — I--
3 1 (5) 2 () 3 (6) ko 3 (4) —
! L3 3 3
5 L(1) 2@ 3 3(0) H®) bo(k)

Table 11
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To give some idea of the behavior of the asymptotic error estimator

we show the detailed evolution for a bad case: Problem 3, in Table 12.

e

Estimated Exact
N k Error Error
2 0 8.3, -2 2.0, -2
0 9.6, -k 1.1, -3
1 Lb, 3 1.k, -3
32 0 6.4, -5 6.4, -5
1 2.1, -7 7.1, -7
6l 2 1.2, -6 8.6, -7
0 k.o, -6 4.0, -6
1 7.8, _10 8.0, -10
2 5.86, _11 .3, -11
3 3.87, -12 L., -12
128 0 2.5, -7 2.5, -7
1 2.5, =12 2.5, =12
2 9.0, -16 3.2, -1k
Table 12

In the following Table, we give some information about the perfor-
mance of successive extrapolations on the same problems. 1no pasic grid
size is N = 8 . We indicate the final grid size and number of extrapol-
ations needed to reach accuracies similar to those in Table 10 for IDC ,
or if that was not possible for N < 256 , then we show the best accuracy
attained on the diagonal of the Richardson triangle. The number of

Newton iterations is taken from Tables 1-4, pp. 35-36,
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Accuracy Finer Number of Number of Newton

Problem Attained Mesh Extrapolations Iterations

1 3.2, -14 128 4 T5757,7,8

2 2.5, =16 64 3 bbb

3 1.4, -13 256 5 6,6,6,6,6,6

Iy 56, -15 64 3 435:535

5 1.6, -7 256 5 linear problems

Table 13

Using Lemma 2.7 of p. 20 we could have actually implemented an

asymptotic error estimator for the successive extrapolations method and
developed an automatic error monitoring and stopping procedure. Though
we cannot vouch for its success (since we didn't have the time to do it),
past experience and the similarities with the asymptotic behavior of IDC
indicate that it is probably a good idea. Making believe that we have
done such a thing (and that the asymptotic predictions were accurate),

we now indicate the best results in the whole Richardson triangles (not
only in the diagonal) for each problem. Rows and columns are numbered
from 1. The column (i,j) of Table 14 indicates the position of the best

result in the Richardson triangle.

Problem Best Result (i,3).
. 6.6, _15 (5,2)
2 1.9, -16 (4,3)
3 1.3, -13 (6,3)
I 5.8, -16 (5,5)
5 3.2, -9 (6,3)

Table 1k



-82-

We see that, with the exception of Problem 4, the best results

. . . .
are not located on the diagonal of' the Richardson triangle. These results
indicate that the error monitoring should be carried out on all the elements

of the Richardson triangle.

Moral: FINITE DIFFERENCES: ARE YOU REALLY DEAD?
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