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Abstract

Let S denote a set of k-dimensional boxes each having integral
sides. Let [(S) denote the set of all boxes which can be filled
completely with translates of elements of S . It is shown here that S
contains a finite subset B such that 1?(B) = I'(8) . This result was
proved for k = 1,2 in an earlier paper, but the proof for k > 2

contained an error.

This research was supported in part by the National Science Foundation
under grant number GJ-992, and the Office of Naval Research under
contract number N-0001Lk-67-A-0112-0057 NR OL4-L402. Reproduction in
whole or in part is permitted for any purpose of the United States

Government.



Let N and P denote the sets of non-negative and positive
integers respectively, and let Nk and Pk denote the sets of k-tuples
of elements of these sets for each keP . Natural ordering and ordering
by division in P may be extended to Pk in the usual way: thus,

(@, . ..,ak) < (bl" . ’bk) just when a, < b, for i =1,. .,k , and
(al,...,ak)l(bl,...,bk) just when a |b, for i = 1,...,k . We shall
use Dedekind's notation aAb for the greatest common divisor of

a,beP , and write AA for the greatest common divisor of a non-empty
subset A ¢ P . Also, avb denotes the least common multiple of

a,beP , while VYA denotes the least common multiple of a non-empty,
finite subset A < P . These concepts and notations extend in an obvious
way to Pk ordered by division.

Let [5,’5] denote the interval in Pk , ordered naturally, having
lower end a and upper end b ; that is, [a,b] = {x: %eP® and & <x <b},
and this set is non-empty only when a <b . Also, let 1= (1, . . .,l)
denote the k-tuple of 1's in P .  The interval [I,d] 1is called a

k-dimensional box with dimensions n_ie-:Pk which we denote d , and the

interval [I+t,d+t] with fen® is called a translate of the box d .

A set ¢ of sets is said to pack a set A just when some subset of 7

is a partition of A . The closure of a set S of k-dimensional boxes

is defined to be the set I'(S) of all k-dimensional boxes which can be packed
with the set of all translates of all elements of S . It is easy to see
that [ 1is a closure operation; that is, S € r(S) = [(I'(8)) for all

sets 8, and 1?(R) _c I'(S) for all R ¢ S . The finite basis theorem

for box packing which was discussed in [1] is as follows; Every set S

of k-dimensional boxes contains a finite subset B such that I'(B) = I'(8)
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Unfortunately, the proof given in [1] breaks down for k > 2 , and it
is the purpose of this paper to give a correct extension of the proof
given for k = 1 and 2 . In an effort to discover a relationship
between this theorem and known results concerning basis theorems in
lattice theory, we have formulated some of our lemmas in a general
setting. It appears that the situation involving box-packing is outside
what is already known generally about closure operators.

A sequence (Xn: neP) of elements of a lattice I is said to be
stable just when XnA}%ﬁl = xnzxxn+§ . . . for all neP . We record

the obvious fact that stability of a sequence is a property inherited by

subsequences.
Lemma 1. Subsequences of stable sequences are stable.

A lattice L is said to be locally finite just when the interval

{yeL: x <y <2} 1is finite for all x,zeL . Important examples of a
locally finite lattices are the set PK of k-tuples of positive integers
ordered by division and Pk ordered naturally. Later we shall require
the fact that every infinite sequence of elements of Pk ordered by
division contains an infinite stable subsequence. This fact is implied

by the following result.

Lemma 2. Every infinite sequence of elements of a locally finite lattice

with a least element contains an infinite stable subsequence.

Proof. We use the Konig infinity lemma which asserts that an infinite

rooted tree all of whose vertices have finite degree has an infinite path

starting at the root of the tree. 1In our application, the vertices of the
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tree will be certain (possibly finite) subsequences of a givensequence

X = (xn: ncP) whose elements belong to a locally finite lattice with

a least element I/ . First, x is designated the root, and then the
rest of the tree is defined by specifying the vertices Jjoined below any
given vertex y = (yn: neP) in the tree. For each d in the (necessarily
finite) interval [Z,yl] ={z:2< z Syl} r let s(y,d) denote the
subsequence of y consisting of all elements Y, with i > 2 such that
yl/\yi = d . The vertices joined below ¥ in the tree are the non-empty
sequences s(y,d) for all d€[l;:y‘l]»- Thus, every vertex in the tree
has finite degree. Also, since every term of x is the initial term of
some sequence which is a vertex in the tree, the tree is infinite.
Applying the Konig infinity lemma, we conclude that there exists an

infinite path ()_cn: neP) in the tree. Let S, denote the first term

of ;{n for all neP , then s = (sn: neP) 1is a stable subsequence of x .

To see this, recall that ;Cn+k is a subsequence of ;(n with s deleted
n

for all keP , and S ANY 1is the same for all terms y of ;;n . Hence,

sn/\ Syt = Sp N Speo T e for all neP . This completes the proof.

Now we establish certain properties possessed by the closure
operator I' . In fact, what we want to prove can be proved in a wider
context, and since it doesn't cost us any extra space, we do this. To
see that [ (as defined for box packing) has the property assumed in our
next lemma, note that if translates of all of the boxes in a set ¥ are

used to pack a box y , then none of the elements of X is larger than y
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Lemma 4. Let EnePk with Bn = (b_,...,b ) for n

Lemma 3. Let S denote a set of elements belonging to a locally
finite lattice L . Let I' denote a closure operator on I having
the property that if yeL ,X <L, and yel(X) , then yel{xeX: x <)
Let

(1) B(S) = {seS: if sel'(X) for some X c S, then seX]

Then I'(B(S)) = I'(S) , and B(T) = T for all T c B(S)

Proof.  Let B = B(S) . If S\I'(B)=¢ , then S c I'(B) which implies
r(s) ¢ I(r(B)) = r(B) ¢ r(S) because B ¢ S . That is, 1(s) = r(B) .
Now suppose S\I'(B) # # , and select veS\I'(B) so that all xeS with
s < y are elements of r(B) .Such a minimal element y exists in
S\I'(B) because L is locally finite. Since y£Ir'(B) , we have y¢B ,
so there exists a subset X © S with y&(X) , but y)éX . Let
z = {xeX: x <y}, then we have yel(z) and yfZ . Also, Z c I'(B)
because y is minimal in S\I'(B) . This means yeI'(z) c [(I'(B)) =
1?(B) < I'(S) because B c S ; that is, yel'(B) , a contradiction.
Finally, suppose T c¢ B , then elements teT have the property
possessed by all elements of B ; namely, tel'(X) for some X c S
implies tcX , and this is true in particular for all XcT . We

conclude that T = {teT: if tel(X) for some X ¢ T, then tcX} = B(T)

This completes the proof.

1,...,2k , and

i nl nk

suppose (bn: n = l,...,?k) is stable. Let ﬁ_j =D AD for
‘ 2 -1, 2,3
j=1,...,k . Then there exists an integer p such that F{l—)l,...,E k}
2

contains all boxes having dimensions (qlBl,. ..,qkﬁk) with Ay <+ 2 P



... . Let ui(r) = b,liv"'vbgr i for i,r = 1,...k. We shall
2

show by induction on j that there exists a number p, such that every
J

box having dimensions
(2) (qlBl)"'quBj ,uj‘{'l(j)’...,uk(j))

with ¢;,...,4. > P, 1is an element of F{’t—)l,....,f) i

=7 N

For J =1, boxes having dimensions
(byX 4 0¥ 5Dy Vb5 Vb))

for all x,ycN are elements of T {51,52} . But, there exists an integer

p, such that qlsle{bllx+b21y: x,yeN} for all 9; > p; because

P

bllAle divides Bl . Thus, the claim is true for j =1

Now we suppose the statement is true for some j > 1 , and then

prove it for j+l.Let u!(r) = b vV .VDb , and note that
i r . r+l1 .
2°+1,i .. 2 , 1

the statement involving (2) also applies to the stable sequence
‘ .
(bn: n=23+l,...,2‘] l) . Thus, there exists a number p!J such that

every box having dimensions

(5) (qlBl"“’quj"u5+l(j)"”’“}'{<j))

with ql,...,q.jjz pJ; is an element of I‘{b 3 ""’b,j+l} .Boxes having
2v+1 2

dimensions given by (2) and (3) have boxes in their closure with dimensions

for all a ...,qj > max{pj,pé} and all x,yeN . Now we observe that

uj+l(J) /\uj+l(J) divides 6j+l , and there exists an integer

Py 2 maX{PJ.:pJ-} such that C?J-HBJ.H€{Xuj+l(J)+yu5+l(J)- x,yell}  for
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all Dy > Psiiq . Also, note that ut(j) vu%(j) =pu, (j+1) by

¢
definition for j = 1,...,k . Thus, we have shown that (2) holds for

j+1 if it holds for j . This completes the proof.

Lemma 5. Let s = (én: neP) denote a stable sequence of k-dimensional

boxes, and let S = {én: neP} . Then B(S) is finite.

Proof. The proof is by induction on the dimension k of the boxes.
First, we prove the statement for k = 1 . ILet s = (s_: neP) denote

a stable sequence of l-dimensional boxes (that is, sneP for all neP ),
and let S = {sn: neP} , and suppose B(S) is infinite. Let

b = (bn: ncP) denote the elements of B(S) ordered according to their
sequential ordering in s . Since s is stable, this is also true of b .
Furthermore, since B(S) 1is infinite, b tends to infinity. The closure

of B(S) contains the closure of {bl’bQ} which is {blx+ bey: x,yeN} ,

but this set contains all large multiples of bl/\b2 . Since every element

of' B(S) is a multiple of bl/\bz, and since b tends to infinity, it
follows that there exists jeP such that bjer‘{bl,bg} , but bjff{bl,bg} .
This contradicts the definition of B(S) , so B(S) must be finite
when k = 1

Now suppose there exists some kcP such that the statement is
false; furthermore, suppose k is minimal, and k > 1 . Let s = ('s'n: neP)
denote a sequence of k-dimensional boxes, let S = {En: neP} , and
suppose B(S) is infinite. Also, let b = (En: neP) denote the elements

of B(S) ordered by their sequential ordering in s , and let

bn = (bnl’ ...,bnk) for all neP . ©Note that each of the sequences

(bni: neP) for i = 1,...,k tends to infinity. If this were not true,
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say for i = k . we could find an infinite subsequence ¢

(c..: neP)

s

) such that ¢ ¢, = ... . Since

nk 1k = 2k

¢ = {{:n.- ncP} < B(S) , we have C -- B(C) infinite. Algo, ¢ is a

stable scquence since ¢ dg oa subscquence 01 g Labhle nequence. Now

let Gx (¢ .,...,cC ) for all nP, let GK : (Ex' n« p) and
n ' nl T, k-1 T ) n’ ) anc
X - , X

let C = {Cn: ncP} . Evidently, c is an infinite stable sequence,

* * 1 1 1 1 1 -¥ 1 1 1
and B(C*) = C is infinite. Since ¢ has dimension k-1 , this
contradicts the minimal property of k . Thus, each of the sequences

(bni: neP) for i =1,...,k tends to infinity.

According to Lemma 4, there exists an integer p such that
l""’Egk} contains every box having dimensions (qlsl'” .E;gié
with 4ys--->q, >P . Thus, there exists EjeB(S) such that

3

r{b

bjf {bl""’bpk} but bj eF{bl,-..,b;y} . This contradicts the

definition of B(S) , so the proof is complete. Now we are ready to

prove our main result.

Theorem. Let S denote a set of k-dimensional boxes, then there
exists & finite subset B of S such that I'(B) = r(S) . In fact, one

can take B = B(S)

Proof. We showed that 1?(S) = I'(B(S)) in Lemma 3, so it is enough to

prove that B(S) is finite. Suppose B(S) is infinite. Then we can

form an infinite stable sequence t = (t_: neP) using distinct elements

n
of B(S) . B-ut T={t :nP}cB(S),so T =B(T) by Lemma 7. But
B(T) is finite according to Lemma 5, so we have a contradiction and the

theorem is proved.
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The construction given in Lemma 4 involves packing a large box by
cutting it with a plane into two smaller boxes, then the smaller boxes

are treated in a similar way. We call this simple packing. It is

interesting to note that a slight alteration of the foregoing argument
yields the result that P(S) contains a finite subset T such that
every element of I'(S) can be simply packed with translates of elements

of T . We leave the proof as an exercise.
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