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— Abstract

Let S denote a set of k-dimensional boxes each having integral
—

sides. Let I'(S) denote the set of all boxes which can be filled

L completely with translates of elements of S . 1+ is shown here that S

I contains a finite subset B such that 1?(B) = I'(S) . This result was
proved for k = 1,2 in an earlier paper, but the proof for k > 2

| contained an error.
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Let N and P denote the sets of non-negative and positive

_ integers respectively, and let N* and pt denote the sets of k-tuples

of elements of these sets for each keP . Natural ordering and ordering

- by division in P may be extended to pt in the usual way: thus,

(a,, . oa) < (bys sb) just when a, <_b, for i =1,. .,k , and

(as +vsa,) | (bys ev iD) just when a. |b, for i = 1,...,k . We shall

_ use Dedekind's notation aAb for the greatest common divisor of

a,beP , and write AA for the greatest common divisor of a non-empty

- subset A ¢ P . Also, avb denotes the least common multiple of

a,beP , while VA denotes the least common multiple of a non-empty,

- finite subset A C P . These concepts and notations extend in an obvious

way to p* ordered by division.

Let [a,b] denote the interval in pt , ordered naturally, having

— lower end a and upper end b; that is, [a,b] = {x: Rep and a < x <b},

and this set is non-empty only when a <b . Also, let 1= (1, . . 1)

— denote the k-tuple of 1's in PX . The interval [1,4] is called a

_ k-dimensional box with dimensions icp” which we denote d , and the
interval [1+t,d+t] with EeN® is called a translate of the box 4 .

— A set ¢ of sets 1s said to packa set A just when some subset of ¢7

is a partition of A . The closure of a set S of k-dimensional boxes

is defined to be the set I'(S) of all k-dimensional boxes which can be packed

with the set of all translates of all elements of S . It 1s easy to see

that © 1s a closure operation; that is, S < r(S) = I(I'(8)) for all

— sets 8 , and 1?(R) c I'(S) for all R ¢c S . The finite basis theorem

for box packing which was discussed in [1] is as follows; Every set S

~ of k-dimensional boxes contains a finite subset B such that T'(B) = I'(8) .
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Unfortunately, the proof given in [1] breaks down for k > 2 , and it

1s the purpose of this paper to give a correct extension of the proof

given for k =1 and 2 . In an effort to discover a relationship

between this theorem and known results concerning basis theorems in

| lattice theory, we have formulated some of our lemmas in a general

setting. It appears that the situation involving box-packing 1s outside

what 1s already known generally about closure operators.

A sequence (x: nePp) of elements of a lattice I is said to be

- stable just when LAR = X AX 5 . «. . for all neP . We record

the obvious fact that stability of a sequence 1s a property inherited by

subsequences.

~ Lemma 1. Subsequences of stable sequences are stable.

A lattice L is said to be locally finite just when the interval

| {yeL:x <y <2} is finite for all x,zel . Important examples of a
locally finite lattices are the set pt of k-tuples of positive integers

| ordered by division and pX ordered naturally. Later we shall require
the fact that every infinite sequence of elements of pt ordered by

L division contains an infinite stable subsequence. This fact is implied

by the following result.

-

Lemma 2. Every infinite sequence of elements of a locally finite lattice

. with a least element contains an infinite stable subsequence.

| Proof. We use the Konig infinity lemma which asserts that an infinite
rooted tree all of whose vertices have finite degree has an infinite path

starting at the root of the tree. In our application, the vertices of the
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tree will be certain (possibly finite) subsequences of a givensequence

X = (x: neP) whose elements belong to a locally finite lattice with

a least element I . First, x is designated the root, and then the

| rest of the tree is defined by specifying the vertices joined below any

given vertex y = (y, neP) in the tree. For each d in the (necessarily

finite) interval [2,7] = {z: 1 < z <vy) r let s(y,d) denote the

subsequence of y consisting of all elements v, with 1 > 2 such that
YAY = d . The vertices joined below y in the tree are the non-empty

sequences s(y,d) for all de[£,y,]-. Thus, every vertex in the tree
has finite degree. Also, since every term of x is the initial term of

some sequence which is a vertex in the tree, the tree is infinite.

Applying the Konig infinity lemma, we conclude that there exists an

L infinite path (x_: neP) in the tree. Let S, denote the first term
| of x for all neP , then s = (s,: neP) is a stable subsequence of x .

To see this, recall that X 4 1s a subsequence of x with S. deleted

i for all keP , and Ss NY is the same for all terms y of x . Hence,
s_ A S41 = SN Spun Toc for all neP . This completes the proof.

. Now we establish certain properties possessed by the closure

| operator I' . In fact, what we want to prove can be proved in a wider
context, and since 1t doesn't cost us any extra space, we do this. To

see that [ (as defined for box packing) has the property assumed in our

next lemma, note that 1f translates of all of the boxes in a set x are

used to pack a box y , then none of the elements of X is larger than y .
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Lemma 3. Let S denote a set of elements belonging to a locally

finite lattice L . Let I' denote a closure operator on IL having

the property that if yeL ,X CL, and yel(X) , then yel{xeX: x <vy} .

: Let
| (1) B(S) = {seS: if sel'(X) for some X c S, then sEX] .

Then I'(B(S)) = I’ (S) , and B(T) = T for all Tc B(S) .

Proof. Let B = B(S) . If S\['(B)=9 , then S cI'(B) which implies

r(s) ¢ I'(I'(B)) = r(B) c r(S) because B ¢ S . That is, 1(s) = r(B) .

— Now suppose S\['(B) # § , and select yeS\I'(B) so that all xeS with

s < y are elements of r(B) .Such a minimal element y exists in

BN S\I'(B) because IL is locally finite. Since y¢r'(B) , we have y£B ,
C so there exists a subset X © S with y&(X) , but yfX . Let

z = {xeX: x < y} , then we have yeI'(Z) and yfz . Also, Z c I'(B)

~ because y is minimal in S\I'(B) . This means yeI'(Z) ¢ I'(I'(B)) =

| 1?(B) < I'(S) because B c¢ S ; that 1s, yel'(B) , a contradiction.

= Finally, suppose T c¢c B , then elements teT have the property
i possessed by all elements of B ; namely, tel'(X) for some X c S

implies tcX , and this 1s true 1n particular for all X ¢ T . We

i conclude that T = {teT: if tel (X) for some X c T, then tcX} = B(T) .
| This completes the proof.

Lemma 4. Let b ep" with b= (b ,«..,b ) for n = 1,...,28 , and
| — . " gal i"

suppose (b_: n = 1,...,25 1s stable. Let 3 = b x AD - for
2 -1,3 2 ,]

| j =1,...,k . Then there exists an integer p such that PLP sb yl
I contains all boxes having dimensions (91845 ---59,8,) with Qs ++2Qp 2 P
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..... . Let u(r) = byyVe..vb - for i,r = 1,...k. We shall
2 i

show by induction on j that there exists a number p, such that every
J

box having dimensions

with Apr 0Qy > Ps is an element of AUTRSIRY .
For J = 1, boxes having dimensions

(011% + byyy 5DVosseb, Vb, )

for all x,ycN are elements of T {b_,0,] . But, there exists an integer

p, such that q,B,eib x+y: x,yeN} for all 4, > p, because

by ADs divides By . Thus, the claim 1s true for jj = 1 .

Now we suppose the statement 1s true for some j > 1 , and then

prove it for j+l.Let p!l(r) = Db V . VD , and note that
1 r . r+1 .

2 +1,i .. 2 51 |

the statement involving (2) also applies to the stable sequence |

J J+1 |
(b_ n=2"+1l,...,2% 7) . Thus, there exists a number pt such that
every box having dimensions |

[] 4 1 _ - L)

with EERE Pp P is an element of T{b 5 y ees D 1] .Boxes having
29+ 1 2

dimensions given by (2) and (3) have boxes 1n their closure with dimensions ;

for all aq, ced 2 max {p,,p! } and all x,yeN . Now we observe that |

Hipp (J) LG) divides Bara , and there exists an integer
t : t YY

oo Pry > max {pp} such that Cry 1Bipq © Ls 1 (3) vant (3): x,yeN} for
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LL - all I ipq > Pir . Also, note that te (3) vir (J) = He (J+1) by
definition for j = 1,...,k. Thus, we have shown that (2) holds for

J*l 1f it holds for j . This completes the proof.

Lemma 5. Let s = (s, neP) denote a stable sequence of k-dimensional

boxes, and let S = {s : neP} . Then B(S) is finite.

Proof. The proof 1s by induction on the dimension k of the boxes.

First, we prove the statement for k = 1 . Tet s = (s,: neP) denote

a stable sequence of l-dimensional boxes (that 1s, s €P for all neP ),

and let S = {s, neP} , and suppose B(S) is infinite. Let

- b = (b, : ncP) denote the elements of B(S) ordered according to their

sequential ordering in s . Since & is stable, this is also true of b .

L Furthermore, since B(S) is infinite, b tends to infinity. The closure

| of B(S) contains the closure of {b sb} which 1s {bx + by: X,yeN} ,
but this set contains all large multiples of by AD, . Since every element

L of' B(S) 1s a multiple of b, Ab, and since b tends to infinity, it
| follows that there exists jeP such that ber {b,,b,} , but bf{bysb,] :

This contradicts the definition of B(S) , so B(S) must be finite

{ when k = 1 .
Now suppose there exists some ke¢P such that the statement is

- false; furthermore, suppose k is minimal, and k > 1 . Let s = (5, neP)

denote a sequence of k-dimensional boxes, let S = {s,: neP} , and

N suppose B(S) is infinite. Also, let b = (b_: neP) denote the elements

f of B(S) ordered by their sequential ordering in s , and let
:

| b = bq ceesb 1) for all neP . Note that each of the sequences

| (bs: ncP) for i = 1,...,k tends to infinity. If this were not true,
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say for 1 = k . we could find an infinite subsequence ¢ = (c_: nep)

| of b with c, = CHPRY Co) such that c,, _ Cs = +++ + Since
¢ = {c_: ncP} c B(S) , we have C -- B(C) infinite. Also, & is a

stable sequence since ¢ ds a subsequence 0 I acslable sequence. Now

| let Cs (CcLycee, | 2) for all ncP , let :’ : (a n«P) , andnw ny,K=-1 n

let C = CHE ncP} . Evidently, & 1s an infinite stable sequence,
and B(C*) = C* is infinite. Since & has dimension k-1 , this

contradicts the minimal property of k . Thus, each of the sequences

- (bi: neP) for i =1,...,k tends to infinity.

According to Lemma 4, there exists an integer p such that

SUTRA contains every box having dimensions (9,84 - ) 954)
. with SEERERTL a J Thus, there exists b.eB(5) such that

SLATER but by eld, eensb i] . This contradicts the
L definition of B(S) , so the proof is complete. Now we are ready to

i prove our main result.

| Theorem. Let S denote a set of k-dimensional boxes, then there
exists & finite subset B of S such that I'(B) = r(S) . In fact, one

| can take B = B(S) .

Proof. We showed that 1?(S) = I'(B(S)) in Lemma 3, so it is enough to

prove that B(S) 1s finite. Suppose B(S) 1s infinite. Then we can

k form an infinite stable sequence t = (t,: neP) using distinct elements

of B(S) . B-u-t T= {t : ncP}¢ B(S) ; so T = B(T) by Lemma 7. But

. B(T) is finite according to Lemma 5, so we have a contradiction and the

| theorem 1s proved.



— The construction given in Lemma 4 involves packing a large box by

cutting 1t with a plane into two smaller boxes, then the smaller boxes

are treated in a similar way. We call this simple packing. It is

interesting to note that a slight alteration of the foregoing argument

ylelds the result that P(S) contains a finite subset T such that

— every element of (8) can be simply packed with translates of elements

of T . We leave the proof as an exercise.
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