STANFORD ARTIFICIAL INTELLIGENCE
~ MEMO AIM-185

STAN-CS-73-333

ON THE POWER OF PROGRAMMING FEATURES

{

- BY

ASHOK K. CHANDRA

ZOHAR MANNA

SUPPORTED BY
NASA CONTRACT NSR 05-020-500

AND
~ ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

JANUARY 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY




STANFORD ARTIFICIAL INTELLIGENCE LABORATORY January 197%
MEMO AIM-185

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-73-333

ON THE POWER OF PROGRAMMING FEATURES
by

Ashok K. Chandra

Zohar Manna

ABSTRACT: We consider the power of several programming features such
as counters, pushdown stacks, queues, arrays, recursion and
equality. In this study program schemas are used as the model
for computation. The relations between the powers of these
features is completely described by a comparison diagram.

This research was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under Contract No.
SD-183, and by NASA contract NSR 05-020-500.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, vVirginia 22151.



Introduction

In this paper we consider the problem of comparing the power of
several features used in programming languages. For example, it is
intuitively obvious to any programmer that recursion cannot, in general,
be replaced by iteration with variables alone, but recursion can always
be replaced by a pushdown stack. This indicates that a pushdown stack
is at least as powerful as recursion, and that recursion is more powerful
than iteration. Thus, from the iteration-vs-recursion standpoint we
would say that ALGOL and PL/l are more powerful than FORTRAN. The
question is whether an intuitive notion of this kind can be understood
in a formal-way, and possibly elaborated upon to obtain a better under-
standing of programming features and to enable us to compare their power.

Unfortunately, the problem is not so simple. Consider, for example,
the programming language of flowcharts, which contain ideal integer
variables, i.e., their values can be arbitrarily large. .The operations
allowed in the flowchart are incrementing and decrementing variables by
one, and testing to see if the value of a variable is zero. Such a
simple language with just three variables can calculate all the "computable"
functions, that is, all the partial recursive functions over the natural
numbers. Thus if we add recursion or a pushdown stack to such a language,
the power of the language will not be increased.

This suggests that in order to carry out such a study, we must
isolate in some way the effect of the programming features, whose power
we wish to compare, from the values being computed by the program. For
this purpose we consider for each programming language a class of program

schemas; a program schema may use the control features of the language




but the basic operations (constants, functims, and predicates) are
used only as symbols without being specified.

Related work has been done previously, among others, by Paterson and
Hewitt [1970], Garland and Luckham [1971], Constable and Gries [1972],
Plaisted [1972] and Chandra and Manna [1972]. The classes of schemas
considered in these papers are not identical to ours, but the differences
are not significant. Details of the results presented in this paper

can be found in Chandra's thesis [1973].

Part I. The Class of Program Schemas

A program schema is a program in which the data domain is not

specified. In addition, the constants are indicated simply by the
symbols 8ys855 et the functions by fl,f2,... , and the predicates
by P1sPps. 9 . Thus a program schema may be thought of as representing

a family of real programs. A real program of the family is obtained by

providing an interpretation for the symbols of the program schema, i.e.,

specifying a data domain and specifying data elements, functions and
predicates over the domain for the symbols a; fi and P respectively.

In our program schemas we use two kinds of variables: data

variables, denoted by Y2Voreee s and boolean variables, denoted by

21’22’ . . . Boolean variables can have value either true or false.
Data variables, on the other hand, have values from the data domain
that is specified along with an interpretation for the schema. Corres-
pondingly, we distinguish between two types of terms: data terms and

boolean terms. A data term 7 can be built up using the data variables

vy of the schema and the individual constants as and applying the



function symbols £, to them. The value of a data term for a given

interpretation is always a data element. p poolean term & is an

atomic formula or a negated atomic formula, where an atomic formula
is a boolean value (true or false), a boolean variable j or a
i 9

predicate test of the form p(’rl, . ..,1-k) . Under any interpretation,

the value of @ is a boolean value, +tyrye or false.

1. Simple Algol-like Schemas

The first class of schemas we consider is the class of Algol-like

schemas which--can be constructed from statements of the following form

(we use standard Algol-like notations):

(1) start statement START (a)
(ii) halt statement HALT (1)
(iii) loop statement L.OOP

(iv) assignment statements y; < T

or Z, <

(v) test statement if o_then goto L, else goto L2
Ll and LE here are labels. 1In addition we may use begin . . . end

for grouping statements.
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The start statement, START(a) , initializes all data variables v,
to the value a and all boolean variables to true . The halt statement,
HALT(t) , outputs the data value of the term t . The loop statement,

LOOP , causes the schema to loop forever.

We use &() to denote the class of all simple Algol-like schemas.

2, Augmented Algol-like Schemas

We will also consider Algol-like schemas augmented with features

designed to make the schemas more powerful.

(a) Counters

A counter is a variable whose value is always a non-negative integer.
Counters are denoted by CisCpyevn - All counters used by a schema are
initialized to zero by the start statement. The statements allowed
on an arbitrary counter c¢ are:

(1) c «c+l

(2) if c = 0 then goto L, else begin ¢ < c-1; goto L, end.

2
We use ¢(c) to denote the class of Algol-like schemas with
counters (it includes the subclass of schemas with no counters),
¢{1lc) to denote the class of schemas with at most 1 counter, and

¢(2c) to denote the class with at most 2 counters.

(b) Pushdown Stack

A pushdown stack is a last-in first-out store in which a pair of

values of both types (data, boolean) can be stacked. Pushdown stacks

are denoted by S12855 - +- All pushdown stacks used by a schema are

initialized to be empty by the start statement. A schema with a stack



can "push" a data value and a boolean value into the stack, and it
can "pop" them (if the stack isnon-empty).
The statements allowed on an arbitrary pushdown stack s are:
(l) EEEE(S1Y: z)
(2) if s = A then goto L

else begin pop(s,y,z); goto L, end

Here, vy denotes an arbitrary data variable, Z a boolean variable,

and A the empty stack. The statement " push(s,y,z) " adds the current

values of the wvariables y,z on top of the stack s . The statement

" pop(s,y,z) " does the opposite: the one data and one boolean value

at the top-of the stack s are assigned to the variables y and z ,

respectively, and these two values are removed (popped) from the stack.
We use ~(s) to denote the class of Algol-like schemas with

pushdown stacks, and similarly for C(1ls) and C(2s) .

(c) Queues

A queue is a first-in first-out store. Queues are denoted by
ql,qz,... . All queues used by a schema are initialized to be empty
by the start statement. A schema with a queue can "add" values at one
end, and "remove" them from the other. The statements allowed on an
arbitrary queue g are:

(1) add(a,y, z)

(2) if g = A then goto I;

else begin remove(q,y,z);_goto L2 end .

n

The statement " add(q,y,z)

y, z at one end of the queue. The statement " remove(q,y,z) " does the

adds the current values of the variable



following: the one data and one boolean value at the end of the queue

are assigned to the variables y and z , respectively, and these two

values are removed from the queue.

We use C{q) to denote the class of Algol-like schemas with queues.

(d) Arrays
An array is a semi-infinite sequence of "locations" (numbered

0,1,2, ... ), each of which can take on a pair of values: one data value

and one boolean value. Arrays are denoted by AsAs ... . The start
statement, START (a) , initializes all locations in arrays to the data
value a and the boolean value true . A location can be accessed by

subscripting the array with a counter. The statements allowed on an
arbitrary array A are:

(1) Alel ~ (v, 2)

(2) (y,2) « Afc]

We use @(A) to denote the class of schemas with arrays. Note
that the use of an array implies the use of counters, that is, schemas
in @(A) do have an arbitrary number of counters.

The class of Algol-like schemas with any or all these features

(counters, stacks, queues, arrays) is denoted by C(s,q,A) .

3. Recursive Schemas

A recursive schema consists of a set of recursivedefinitionsof

the following form:

Fl(a,a,...,true,trueJ...) where

P (y1,2)) <= if % (v zl,F) then -cl(;}l,él,i“) else Ti(;;rl, El,r?’)

Fn(yn,zn) <= if ah(yn,zn,F) then Tn<§n’£n’ﬁ) else fﬁ(&n,in,F) ,



where &2 represents a vector of data variables, zj a vec tor of boolcan
variables, and F:z(Fl,”.,Fn)is a vector of "defined function::".
Each defined function Fi may take both data values and boolean values
as arguments but, for simplicity, we assume that it always returns just
one data value. Qﬁ(ii’ii’i) is a boolean term and Ti(ii,ii,F) and
Ti(&i,ifiﬁ are data terms that may use the variables in &i and gj_' and
the defined functions F along with the constant symbols 81585+, the
function symbols fl’fE"‘ . + and the predicate symbols P1sDys e

The value of the schema for any given interpretation is the value
of ]?1 withall its data arguments set to the value of the individual
constant a , and all its boolean arguments set to true. During
computation, all arguments are passed by value, i.e., the innermost
function calls are evaluated first. Note that there are no "global"
variables, and function calls cannot have any side effects, they simply

return values.

We use &(R) to denote the class of all recursive schemas.

4, Equality
We also consider schemas in which every boolean term & may have
the :fornl'rl = T, Or Tl_% T, 1in addition to the earlier possibilities.
When equality is allowed in a class &(...) , we denote the
augmented class by C{...,=) . Thus, we use C(=) to denote the class
of Algol-like schemas with equality, ((c,=) to denote the class of
Algol-like schemas with counters and equality, C(R,=) to denote the

class of recursive schemas with equality, etc.




5. Example
Any two schemas S and S' are said to be equivalent if for every
interpretation of S and S ,t/ either both schemas diverge (i.e.,
loop forever), or both halt with the same output.
Consider the following recursive schema
SO: F(a) where
F(y) <= if p(v) then v else f(y,F(g(y)))

Note that if we have an interpretation of SO for which

p(gn(a)) = true for some n >0 , and

p(g (2)) = false for all i < n ,
then

F(a) = £(a,f(g(a), £(a°(a), .- -, (" ()& (a)) - - -)))

Below we exhibit some Algol-like schemas that are equivalent to SO .

To simplify the programs we use an extended Algol-like language, using

reqgular while . ..do . . . statements, goto statements and if . . . then .. .else ...

statements. All these statements can be expressed easily in terms of
our primitive statements. We allow also the statement c, < C which
can be replaced by legal statements for counters by adding one additional
counter.

For clarity, we add a few comments in the schemas below. Since
boolean variables play no role in this example, we ignore their presence

in the comments.

*/
— i.e., the interpretation includes an assignment to all constant,

function and predicate symbols occurring in S or in S' .



(a) A simple schema

Sl: START (a) ;
while 1 p(y;) do y; < &(¥yy);
[comment: y, = g'(a) }
L: if p(y),) then HALT(y,)
else begin y, = a; ¥y ~ &(y)); ¥z < V), end;
{comment: in the i-th loop (1 < i < n)
Yy = & (a), V3 = g'(a), v, = e'(a)}
whiie - P(¥:) do begin ¥, -~ 8(3yp); i - &(yy) end;
{comment : in the i-th loop (1 £ i < n)

v, = & (a), vy = & (2),y,=e (a)]
vy = Typvy) s

got0 L .

(b) A schema with counters

SQ: START (a) ;

while = p(yl) do begin v, © g(yl);cl - cl+l end;
n
(comment: y, = g (a), c, = n}
L: if ¢; = 0 then Hﬁlm(yl)

else begin Vo = @j cl - c]-l; C,, - Cl end.;

while c, # 0 do begin Vo © g(ye);c2 - c,-1 end;
{comment: in the i-th loop (1 < i < n)

n_i(a.), ¢, = n-i]

v, =8
yl - f(y2)yl);

gotO L .

10
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(c) A schema with a pushdown stack

Syt START (a) ;
while - p(y;) do begin push(s,y;,2); yl ~ &(y;) end;

{comment : ¥y = gn(a): s =(a,g(a),-. -,gn—l(a))}

L: if s = A then HALT(yl) else _‘Qop(s,yg,z);

[comment: in the i-th loop (1 < i < n)

v, = 6" (@), s = (aea), . . ol @)

¥y = Ty s

goto L

(d) A schema with an array
574: START (a) ;
while 1 p(y;) do_begin Alc 1 «(yy,2z)5c—ctl;y; — gy )end;

[comment : ¥y = g"(a), AIO] =a, A[l] =g(a), .

Aln-1] =g""(a), ¢ = n]
L: if ¢ = 0 then HALI(y,)
else begin ¢ « c-1; (ye;z) ~ Alc] end;
(comment: in the i-th loop (1 < i < n)
Yo -g"(a), e - n-i}
vy« T(¥syy) 3

got0 L

11



(e) A schema with equality

S5: START(a) 3
hil -
while ~p(y)doy, - &lyy),
[comment: 'y _ y_ _ gn(a)]
1 2
L:if;‘y2 _ a then HALT(yl) else Vg < @i
hi )
while g(yB) # ¥, do Yz © g(yi);
Y2 < y35
@omment: in the i-th loop (1 < i < n)

Vo = vs = & Ha) )

=¥ = Plyeyy);

goto L
Part II. On the Power of Classes of Schemas
Let ‘C’/l and C”/2 be two classes of schemas. We say that

) if for every

(a) C, _is more powerful than C>  (notation* C >¢,

—
—

schema in ¢ i i
~» there is an equivalent s c h e m a
1

(b) ¢, _and ¢, are equally powerful (notation: c, = ¢, if

al > @2 and @2 > (51 , and
CC) CA/J_ ylS Strictl more pOWe fu th & |
rful than ¢, (notations Cb’l >@2) ,

if & >C but Cy £ G

1. The Comparison Diagram

We now consider the interrelations between the classes of schemas

we have defined.

12



Intuitively, anything that can be done iteratively can also be

done recursively. 1In other words, we would expect that ¢(R) >¢() , and
C(R,=) > C(=) .That these are indeed true was shown by McCarthy [1962].
Also, as mentioned earlier, one expects that recursion is strictly more
powerful than iteration. Paterson and Hewitt [1970] showed that there
are certain recursive schemas for which there are no equivalent simple
Algal-like schemas, i.e., &(R) >C() , and also &(R,=) >(=) .

Another intuitive notion is that recursion can always be replaced
by a pushdown stack. Thus, if our schemas in G(R) and ¢(1ls) do
capture the intuitive power of recursion and of a pushdown stack, we
would expect that C(R) < (1s) , and similarly, ¢(R,=) < ¢(1s,=) . Thege
were shown to be true by Hewitt [1970] and by Constable and Cries [1972]. One
should also ask whether a pushdown stack has power strictly greater than
recursion, or whether they are equally powerful. To state this in
another way, we observe that recursion involves the use of an implicit
stacking mechanism. The question is whether or not this implicit stack
really utilizes the full power of a pushdown stack. Chandra [1973]
answered this by showing that &(R) = ¢(1ls) , and that &(R,=) = C(ls,:).fj

Paterson [unpublished memorandun] and Garland and Luckham | 1971] showed
that C(c) > ¢(1lc) . Plaisted [ 1972 | proved the surprising resull that the
addition of just one counter to simple Algol-like schemas adds no power,
i.e., C(lc) = ¢() . However, the addition of a second counter adds
power, i.e., ¢(2c) > @(lc) ; and after that, the addition of a third,

fourth, fifth counter, etc., does not increase the power.

Y It can be shown that the power of recursive schemas is not affected
by the addition of features such as: (a) recursive definitions
which consist of simple Algol-like programs with global variables
and local variables as well as recursive calls, or (b) defined

functions which return-not just one data value, but a vector of data
and boolean values.

13




Constable and Gries [1972] introduced schemas with arrays and

used a problem suggested by Paterson and Hewitt to show that @(A) >¢(R) .
Chandra and Manna [1972] observed that the use of equality increases the
power of schemas.

The interrelationships between the various classes of schemas is
shown in Figure 1. 1In the figure (and all following figures), if there
is an ascending arc (or a chain of such arcs) leading from a class 01
to a class ¢, , and 62 is above al in the figure, it means that
" C, 1is a strictly more powerful class than Cy ", If two classes,

(';1 and CE,{,“ > nre not linked by an ascending chain of arcs, then the
classes are unrelated, i.e., al é a,a and 62 éal.For example,
(=) § c(4a) , and @ (Rn) é ¢(=) . In other words, there is at least
one schema in (=) for which there is no equivalent schema in @(Av) s
and vice versa. Details of all the results suggested by Figure 1 can
be found in Chandra's thesis [1973].

From Figure 1 it is apparent that schemas with arrays and equality
act as a "maximal" class. In fact, any arbitrary schema with
equality, counters, stacks, queues and arrays can be effectively
translated into an equi valenl schema With eguali Ly and once array.

Also, one pushdown stack has the same power as recursion, but two glaoc ko
are strictly more powerful -- they are together as powerful as arrays.
Even the seemingly "weaker" class with one pushdown stack and one counter
has the same power as arrays. Observe that a queue is a more powerful
feature than a stack; actually, a queue is as powerful as two stacks

(addition of more stacks or queues adds no power).

1k



G(AJ =)

- cle;=) C(4) C(R, =)
o
ec) - (=) @(R)
b~
L
' ()
L c) = e
C(c) = C(2¢)
C(R) = C(1s)
. 2(A) 2( 1 s, le) = C(rg) C(1q) LIV e s,q,0)
- and similariy, when we add cqualily bo cuch clage
5
@('—") = G(lc,:)
Cle,=) = C(2c, =)
@(R)—-) = G(ls}z)

CET T COee0 o) = can) = o() = en.

Figure 1
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It is inleresling to labe L Lhe vertices ol Mipgure inanother way,
as shown in Figure 2. (Note that Fipures 1 and 2 are isomorphic; that,
is, they represent the same relationships). This figure can be treated

as a unit cube where the axes are_labeled:

x-axis: "add a stack and delete a counter",
y-axis : "add a counter", and
z-axis: "add equality tests".
Z
y X ¢(1s,1c, =)
a(e, -) (s, )

27 elie, ) N

cf2c) ¢(1s)

1)

Iigure 2

2. Some Proofs
To illustrate how the results of Figure 1 are proved, we give an

intuitive idea of the proofs for the results indicated in Figure 3.

16



c(4)

e(c) C(R)

()

Figure 3

In the following we use the result that for any classes Gl r Co o

Cy of schemas, if Cy <C, £C;_and ¢y <C;_then C) <Cs.This

follows from the fact that if ¢ < Cy b 63 then there is a schema S
in 05 for which there is no equivalent schema in ¢, , and hence no
equivalent schema in Cl . This implies that 65 écl . Since C’/l < 65 '

it follows that Gl < @5 . Similarly we have that if Gl > 02 ﬁ(%

and ¢, >C; _then ¢y >C; . Thus, to show that €(2) >¢(R) >¢() ,
@(a) > cle)>¢() , and that ¢(R) and ¢(c) are unrelated, it suffices
to prove that C(A) >C(R) >¢() , @(a) >c(c) >() , and that C(R)
and (c) are unrelated, i.e., (O, (R) p(c) and C(R) £ c(c).This
follows because

() <cfe) 2 C(R) and ¢() <c(R) imply &() <C(R) ,

c() < ¢&R) ¢ clc) and () < ¢(c) imply &() < C(c) ,

C(A) > ¢(c) £ C¢(R) and ¢(R) < @(a) imply C(R) < @(A) , and

c(8) > C(R) £ c(c) and ¢(c) < C(A) imply C(c) < @(a)

It is trivial that Q@(A)_>{(c) > () since every schema in ()

is in ¢(c¢) , and every schema in ¢€(c) 1s in @(A) . We also have

17



C(R) > ¢() since every simple Algol-like schema can be translated
into an equivalent recursive schema by associating a defined function
with each statement in the Algol-like schema. C{A) > C(R) can be
shown by simulating a pushdown s;ack with arrays using standard
call-by-value AIGOL compilation (booleans are used to represent the
return address).

The interesting part is to show that C(R) and C(c) are
unrelated, i.e., to exhibit a schema 8; in ¢(R) for which there
is no equivalent schema in ¢(¢) , and a schema 82 in ¢{c) for

which there is no equivalent schema in C(R) .

(a) Consider the following recursive schema (in C(R) ):
Sl: F(a) where
F(y) <= if p(y)_then y_else f(F(g(y)),F(h(y)))

There is no schema in &(c¢) equivalent to this. The reason is that
the computation requires storing an arbitrarily large number of
temporary data values, whereas every schema in (c) has a fixed
number of data variables.

Consider a class of interpretations {In} having the following
property: for every In , n >0,

(1) distinct terms yield distinct data elements under I, - and

(ii) p is true only for the terms that contain n occurrences

of the functions g and h applied to a

The schema Sl on the interpretation In computes the term z, (a) where

T,(y) = v , and

T () = £(7,(e(x)),7,(8(y)))

18
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For example, Sl under Il and 12 computes the terms f(g(a),h(a))

and f£(f(g(g(a)),n(g(a))),f(g(h(a)),n(h(a)))) , respectively. These

terms can also be represented as binary trees as shown below:
T(a) ¢ f(e(a),n(a)) s

f and

N

g(a) h(a)

1,(a) 1 £(f(g(e(a)),n(e(2a))),f(g(n(a)),h(n(a)))) is

T

f’/////’//”’\\\\\\\\\\\\\%

g(g(a)) h(g(a)) g(h(a)) h(h(a))

Suppose there is a schema S from ¢(c) that is equivalent to Sl .
Without loss of generality we assume that S has no symbols other than
a, f, g, h and p, that the only assignments that use f have the
form vy © f(yj,yk) , and that halt statements have the form HALT(yi).
Consider the computation of S under the interpretation ln . Since ©
is assumed to be equivalent to Sl it computes the term z, (a) which
can be represented as a perfectly balanced binary tree of height n
Now we consider the computation of arbitrary binary trees in which each
node corresponds to a distinct value and where in a single step at most

one binary function can be applied. It is well known, and can be proved

readily by induction, that the number of variables #(T) required to

19
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L e

compute the term corresponding to such a binary tree T ;g given by

#( ) = 1 , and

# 2 = if (#(T)) =#(T,)) then #(T)+1
@ @ else max(#(T;),#(T,)) .

This tells us that ntl variables are required for computing the term

Tn(a) . For example, three variables are required to compute z, (a)

v; ~ &ea)) 5 v2 - h(eg(a)) 5 yy = £lypy,) s
Vo - 8(a)) 5 v - B(B(a)) 5 v, < fy,ys)
vy vy,
Now, if the schema S has, say, m data variables, then for the
computation of Tm under Im' S must have at least mtl data

variables -- a contradiction. Thus no schema in 2(c) is equivalent

to Sl'

(b) Consider the following problem: "given a consuant a , unary
functions f,g , and a predicate p , find an element x of the form

i, 3 . .

f7(g°(a)) » i, > 0 , such that p(x) is false. TIf no such x exists

then the schema loops forever". In the following we refer to this

problem as the witch-hunt problem.

It is easy to see that schemas in @(c) can solve this problem.

The following is one such schema:

20



32: START (a) ;

le c2 - cl; ¥y < oai

L2:c5*-c2; Vo © V55
while ¢, # 0 do begin ;= Cx-l; y, - f(ye) end;
if 1 P(¥,) then HALI(y,);
vy < &lyy)s

if ¢, £.0 then begin c, « c,-1; goto L2 end;

2

€1 = ctls

gotO0 Ll.
The idea is that for a given cy Cl = 0,1;2,5,.--(Ll~loop) , we

check the vatue of p for all possible terms of the form

¢ c,-C

2 1 72 , .
2 = f (g (a)) in the following order: ¢

2 =9
However, no schema in ¢(R) can solve the witch-hunt problem.
Intuitively, the reason is that no schema in @(R) can compute all

terms of the form fl(gJ(a)) , in any order. For suppose there is a

-1, . .., 1,0(L2-1oop)

schema S in C(R) that solves the witch-hunt problem. Then, without

loss of generality we can assume that S has no predicate other than p ,

and that defined functions in § have no boolean arguments. T,et n

be the largest number of arguments of any defined function in S.

Consider an interpretation It ye for which the predicate p is true

for all terms. We also require that distinct terms yield distinct data

elements under Iiyye + and we claim that S cannot generate all the

terms on the n+l columns described in Figure L.

The j-th column, O < j <n , consists of all terms fl(gJ(a)) for

all 1 >0 . To show this, we divide all terms into 2n+3 sets p_
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for 0<j<n. The set Aj consists of the single term gj(a) ,

the se-t Bj eonsists of the entire column of terms fi(gj(a))

for 1 > 0, and the set C is the "catch all" consisting

of all other terms. Now, as the schema S must loop on the interpreta-
tion ILA , and there are only finitely many sets, there must be some
defined function Fk that calls itself recursively such that each one
of its argmments is in the same set as in the earlier call. Thepn, as
the predicate tests are always true, the defined functions called
between such two calls of Fk are repeated in the same order, and with
the arguments from the same sets as before. Hence, there is at least

one column, say such that no argument of these calls of Fk is

jll

from it. Therefore only finitely many terms from column jl can be
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reached during the computation, i.e., there is at least one term, say

il J-l
f (g “(a)) , that is never tested.

Now we change the interpretation It slightly to
rue not sotrue

i
1 -1
£ (g (a)))

is false. Then the computation of S on the interpretation 7

in which p applied to all terms is true except that P (

not sotrue

is the same as the computation on Itrue s 1.e., S will loop on

Inot so true ' But as S is assumed to solve the witch-hunt problem,
il J.l

it must halt with output f “(g “(a)) -- a contradiction. This proves

that no schema in @(R) can solve the witch-hunt problem.

It is interesting to note, however, that the witch-hunt problem

can indeed by solved by some Algal-like schemas with equality and no

counters, i.e., by schemas in (=) (see Chandra [1973]).

3. Number of Variables and Depth of Data Terms

One can investigate further the effect of the number of data
variables on the power of schemas. It can be shown, for example, that

*
for every n, n >0 :~/

(a) C(R, n var) > ¢(n var)
(b) (R, 1 var) £ c(n var)
(c) (R, n var) } c(ntl var)

This implies the relations shown in Figure 5. Recall that if there is
an ascending arc leading from any class ¢, to another class C,

it means that c1 <<32‘

%/
i Here, " n var " indicates that the schema has at most p data
variables (in Algol-like schemas) or at most p data arguments

for defined functions (in, recursive schemas).
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(a) The result that C(R, n var) >¢(n var) follows by the standard
process of translating a simple Algol-like schema into an equivalent
recursive schema. (b) The recursive schema Sl above is in

(R, 1 var) , but there is no schema in ¢(n var) , for any n > 0 ,
which is equivalent to S_ (c) To show that there is u schema in
¢(n+l var) which is not equivalent to any schema in (R, n var) we
consider the following problem.

"Find an element x of the form.fl(ga(x)) , 1>0 and j<n,

such that p(x) is false." We refer to this problem as the restricted

witch-hunt problem. The following schema § in ¢(n+l var) solves the

>

problem.
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83: START (a) ;

Vo = 8(y)s vy —elyy)s oo v - 8(uy)s
L: %x = p(y;)_then HALT(y,) elsey) « £(y;);

if ~p(y,) then HALT(y,) else y, = £(y,);

if = P(v,, ) then HALI(y, ) else y . = £(y_,,);

got0 L

Our earlier proof shows, however, that there is no schema in ¢{(R, n var)
which solves the problem, and therefore there is no schema in @(R, n var)
which is equivalent to Sj

There i;-no need to investigate how the number of boolean variables
affects the power of the schemas, since it can be shown that boolean
variables do not add any inherent power to Algol-like schemas or to

recursive schemas (with or without equality).f/

We can further consider how the depth of data terms affects the
power of schemas. The depth |r| of a data term T is defined as
follows: laiI =0, y.;y =0, and lfi(r, )| =1+ma.x{lwlj,...,lvni] .
Trivially,ii/ (0 var, 0 depth) = C¢(n var, 0 depth) < (0 var, 1 depth)
for all n . It can be shown that for every n > 0 and d > 0 , we
have:
(a) C(n var, d+l depth) p C(n+l var, 1 depth) , and

(b) C(n+l var, d depth) % C(0 var, d+l depth)

*

Y Note, however, that owing to the particular way we introduce
pushdown stacks, queues and arrays, at least one boolean variable
is required to make use of these features.

*¥%
——/ Here " d depth " indicates that the schemas use data terms of depth
at most d .
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These results imply the relations described in TFigure 6. Note that the

figure indicates, for example, that ¢(3 var 2 depth) and

C¢(2 var, 3 depth) are unrelated.

(a) The first result can be proved by using the restricted witch-hunt

problem.

(b) The second result can be proved by observing that the following

schema §) in ¢(0 var, d+1 depth) is not equivalent to any

schema in ¢(n+l var, d depth)

Sh: START(a) ;

HALT(£(£5(a), £3(a),. »25,5(2))

2

~d
where fi(a) means f, applied d times to the constant a
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4, Discussion
It is reasonable to ask what it is about the various features

we have discussed that makes one class of schemas more powerful than

another. An observation of the arguments involved in proving the
interrelationships shown in Figures 1 and 2 suggest three intuitive

factors that determine the power of the various features.

(a) The amount of data space (x-axis of Figure 2 -- "add a stack

¢ and delete a counter"). Simple Algol-like schemas, and even those
with counters and equality, have a fixed amount of data space. This
limitation is shown by the fact that these schemas just cannot compute

. certain terms which are too large. The additions of a data variable
to simple Algol-like schemas increases the power, as may be expected.
Recursive schemas act as if they had an unbounded amount of data space

b available to them, as do schemas with stacks, queues or arrays.

(b) The control capability (y-axis of Figure 2 -- "add a counter").

The control capability of a schema signifies the ability of the schema
L to decide what to do next. Boolean variables and counters are examples
of features that help in making such decisions. Boolean variables
L however add no inherent power, while two counters add as much control
power as one might want. A pushdown stack provides, in addition to an

s unlimited amount of data space, some control capability because a stack

can simulate a counter, but it does not have as much control capability
as two counters. A queue, on the other hand, provides in addition to

. unlimited data space, as much control capability as two counters.
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One can also consider other programming features that provide

control capability. One such example is the boolean stacklb/which is a
pushdown stack consisting entirely of boolean values (see also Green,

Elspas and Levitt [1971]).

(c) The structure of terms (z-axis of Figure 2 - "add equality").

In our discussion we observed that the addition of terms containing
equality increases the power of schemas. This illustrates that if we
enrich the structure of terms allowed we may increase the power of
schemas. On the other hand, if we restrict the structure of terms,

such as by limiting the depth of data terms, we may decrease the power.

*
Y A boolean stack is strictly more powerful than one counter but
strictly less powerful than a pushdown stack or two counters. Two

boolean stacks, however, are just as powerful as two counters (as
is also one boolean queue).
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