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M ODETLS O F LCF

1. Introduction

The logic of computable functions proposed by Dana Scott in 1969,

in an unpublished note, has since been the subject of an interactive

proof-checking program designed as a first step in formally based machine-

assisted reasoning about computer programs. This implementation 1is
fully documented in [1], and its subsequent applications are reported in
later papers [2,3,4, and 5]. However the model theory of the logic,
which scott originally supplied, is not discussed in those papers, and
the purpose of this Memorandum is to present that theory. Nothing is
added here to Scott's work. The concept of a continuous function, which
is central to the theory, has since been developed by him to provide
models for the X-calculus and to yield his mathematical theory of
continuous lattices; the interested reader can follow these topics in
Scott [6]. However, since LCF 1is only a version of the typed X-calculus,
these developments are not necessary for the present purpose, and the

present paper contains all that is needed to understand LCF.
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2. Continuous Function Domains

In this section we define a particular sort of partially ordered
domain, called a complete partial order (cpo), and the concept of
continuous function. We prove some propositions for later wuse; in
particular, that if D and E are cpo's, then the set of continuous

functions from D to E is itself a cpo.

Definition 2.1 A partial order (po) is a pair (D,;) where D is any

set (domain) and < is a transitive, reflexive , antisymmetric relation

over D.

Definition 2.2 For a po (D,l'._;), a set X <D is a chain if X =

i ] ExXE....
{xil i> 05y and XOExl_x2§

Definition 2.3 A po (D,E) is a complete partial order (cpo) if

(1) It has a minimum element, which we denote by

L

(2) Every chain X S D has a least upper bound (lub)

_ or just | if there is no confusion.

in D, which we denote by LKX.

Definition 2.4 If D and E are cpo's, then a function f : D - E

is continuous 1f every chain X £ D satisfies

U £(x) : xex} = £(UX).

Thus a continuous function is one which preserves the 1lubs of

chains. Note that the set on the lefthand side of the above equation

is a chain, since if X = Cox.CcCL L.
' {xo,xl, 3 and X & xl_f_:_
then we also have f(xO) Ef(xl) c.. .. . To see this, we only need to
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observe that any continuous function is monotonic - that is,

XxCy = f/x)gfy), and this is true because if Y is the chain {ng}

NS

then Y = y, so we have f(x)gU{f(x),f(y)} = £(LY) = £(v).

We should also note that there is an alternative (more restrictive)

definition of a cpo which uses the concept of directed set (X is directed

iff x,yeX = 3 z€X.x,y ©z) instead of chain, This, in turn, leads to an
alternative (more restrictive) definition of continuous function. We have

chosen the less restrictive alternative, but we remark that the theory can

be done equally well (as far as we are here concerned) with either definition.

Notice that we use the same symbol £ for the relation in every po
under discussion. This should give no difficulty. We also use names
like D and E both for po's and for their domains.

Definition -.5 We denote the set of continuous functions from D to

E, where these are cpo's, by [D — E].

Proposition 2.1 If D and E are cpo's then F = [D — E] is a cpo

under the relation

freg iff ¥x. f(x)cg(x)

Proof First, F is is a po under this relation (check
reflexivity, transitivity and antisymmetry). Second, the minimum element
J_F of F 1is easily seen to be >\X.J-E. Finally, we need that any chain

Z & F has a lub [ZEF. Define UZ = \x-U{f(x) : fe€Z}. This is a well-
defined function since for each x in D, { f(x) : f€Z] is easily seen
to be a chain in E. Next, it bounds above every f€Z, since for each
x€D, f{x)el{f(x) : fez} = (Uz)(x). Further, it is a lub, since if h is

any other upper bound for 7, then for each x€D and f€Z, we have

f(x)2h(x); it follows that (UZ)(x)zh(x), and hence UZc<h.

But we must aiso show that UZ€EF, i.e., LUZ is continuous.

J



Let X € D be a chain. We require

(uz) (UX) = U{(UZ) (x) : xex},

But (Uz) (LX) U{f(UX) : feZ} by the definition of LZ.

uf £(x) : fez,xex}

= Uf (uz) (x) : xex}.

This completes the proof. X

Proposition 2.2 For any cpo D, every f€[D — D] has a minimum

fixed-point Yf€D - i.e. we have f (Yf) = Yf and for all x€D,

f(x) = x implies YfLCx.

Remark This proposition ensures the existence of the least
fixed-point operator Y : [D — D] — D. The next proposition shows that
Y is continuous, i.e. Y€[[D - D] - D].

Proof The set S = {fl(_LD) : 0 <1} 1is a chain by the

monotonicity of f. Define Yf = US. By the continuity of £, we have
i+l , , . .

f(Yf) = L{f (.LD) : 0< i) = Yf, so Yf is a fixed-point of f. Let x

be any other fixed-point. Now by the monotonicity of f we have

i
f(Q) E f(x) = x, and by induction on i we can show f (L )Ex for

all i >0, so Yf = u{fl(J_D) : 0 < i) £ x, and thus Yf is the

minimum fixed-point of f. X
Proposi2ion. 3 Y is continuous, so YE[[D — D] — D]
Proof Let Z be any chain < [D — D]. We must show that

Y(Lz) = UW{Yf : fez}. 1In one direction (g ) proof is easy since for each
fez, UWZ22f, so Y(I_IZ) 3 Yf by the monotonicity of Y which in turn
follows directly from the definition of Yf. In the other direction we

only need to show that U{Yf : fez} is a fixed-point of |JZ, since then

b



it dominates the least such, which is Y<UZ).

UZ(U{Yf : fGZ)) U{g(U{Yf . fez}) - g€Z}

U{ £(YE) : fez}, since
g(Yf) = h(Yh) where h

U{YE : fez}

which is the required fixed-point property.

1 o .

This

u{g(YE) - g€Z,f€Z} Dby continuity of g.

max (g, f) .

completes this proof.

X
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3. Pure LCF : Terms

In this section we give the term syntax of Pure LCF, and then
after defining a standard interpretation as a function from identifiers
into the union of a family of cpo's, we show how such an interpretation
is extended uniquely to a function from all terms into the same range.

The terms of Pure LCF are just those of a typed X-calculus.

Types (1) ind and tr are (basic) types.
(2) 1If Bl, B2 are types then (Bl — g2) is a type.
(3) These are all the types.
We use B, Bl, B2,... to denote types, and frequently omit parentheses,
1

assuming that '-' associates to the right, so that Bl — B2 —B3

abbreviates (Bl — (R2 —B3)).

Terms_ Each term has a well defined type. We use s,t,u

to denote terms, and write s : B to mean that s has type B.

(1) Any identifier is an (atomic) term. We do not need to describe them,
except to say that there are infinitely many at each type, that the type
of each is determined in some way (perhaps by explicit subscripting), and
that they include TT : tr, FF : tr and the families (indexed by type)

uy, , These identifiers are special

B> “tr spopop 2N Y

B—B) B
only in that each standard interpretation will assign a particular element
to each of them. We use X,y to denote arbitrary identifiers.

(2) If s : Bl - B2 and t : Bl are terms then s(t) : B2 is a term.

If x : Bl is an identifier and s : B2 is a term, then [Ax-s] : Bl — g2

is a term.

(3) These are all the terms.
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Remark In the machine implementation of LCF, and often for
intelligibility, we have written terms of the form x(s) (t) (u) and
Y([Ax-s]) respectively as (s - t,u) and [ax.s], and have dispensed
with D and Y. It is clear that every term of implemented LCF is then
a transcription of a term of Pure LCF, and it therefore suffices to

discuss the semantics of the latter.

Semantics A standard model (of LCF) is a family {Dé of cpo's,

one for each type B, where Di

i bit D i
hq 1S an arbitrary cpo, b 1S the

cpo {tt’ff’Ltr 3 under the partial order given by the diagram

tt ff
\ /
ltr

and =[D_,,—» D..]. Note that Din completely determines a

Dg1 ., go 81~ Vg2 nd ¢

standard model.

Let 4 be the set of identifiers of Pure LCF. A standard

interpretation (of LCF) is a standard model (DB] together with a

standard assignment, which is a function

a : g~ U
which satisfies the further conditions

(1)*4[[x:8]}€DB

(2) The value of ¢ for the special identifiers is given by

the following:

*
We write the (syntactic) arguments of # in decorated brackets as an

aid to the eye.



it yields a continuous function over the appropriate domains.

We define & by induction on the structure of terms, as follows:

als(e)l =alsl@lt])

a [Dos]T 28, [sT .
That 7 respects types is obvious. That @ [ s ] GDB for all B and

s : B 1s a corollary of the following

r

Proposifj.In For each assignment & and for each x : Bl

s : B2, xgeDsl- ag/x [s] €[DBl—> Dsg]'.

Proof First, suppose s is an atomic term, i.e. an
identifier. Either s = x, in which case Bl = B2 and )\E -ag, [s 11
/X

is the identity function over DBI, or s ={= X in which case it is a

— = =

constant function from DBl to DB"" In either case it is a continuous
function, hence €[DBl - DBQ] .
“ Next suppose s is t(u), t : B3 — B2 and u : B3. Assume the
-
proposition for t and u. We have to show that for any chain X ¢ DRl’
L a. t(u : EeX) = @ t (1 : i
E { §/X[ (u) T : gex} aUX/Xﬂ: (u) J; that is, that
u{a t I u . E€ =
i g/xu: I g/Xu: 1) 5 X} aUX/x[[t](aUX/xEu])'

Now if we denote )E. ag/x[[ t 1 and )E. dg/xﬂ: u ] by £ and g, the

inductive assumption tells us that fe[ N [DB —- D_.]] and g€[D..— D ],

Dgq = Bl B3

and the required equation merely states that for such f znd g,
A\E.f(€)(g(g)) 1is continuous. The proof of this we leave to the reader;
it is hardly more than proving that for a chain x, {f(§)<g(§)) : §€X}
and {£(€)(g(M)) : &,mex} are cofinal chains.

Finally, suppose s is [)y.t], y : B3,t : B4t and B2 =B3 —gh4

We need to show that
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MeDgs T L Dyl T €[y [Dgum D) ]

that is, that for any chain X ;Del,

U {)\neDB3'(a§/x)ﬂ/yﬂ: t ]] : §€X} =
MEDgs - (@ /scdyy L ¢

Now in the case x =y, we have (dg/x)ﬂ/y _ (dLJX/x)”ﬂ/y _ aﬂ/y

and the equation reduces to a tautology. If x y ., then a =
f (E/X)ﬂ/y
(&h/y)g/x, and the inductive hypothesis (that the proposition is true for
t) tells us that »E.(«& t ] is continuous - hence monotonic -
Syl
so a tJ} is a chain in D for each 1. Moreover, the
inductive hypothesis also tells us that for each E AN (a ) Et:]
- g /%)y
is in [D
B>

as § ranges over X - is a chain in [D__— DBM]. Thus by the definition

B>

of U for function spaces (Proposition 2.1) we can replace the lefthand

— DB“]’ and by the previous remark the set of these functions -

side of the desired equation by
NeD :
ATEDg . L {(aﬂ/y>g/xﬂ: t] : gex}
RS AR
. )\yeDBB . (dUX/x>ﬂ/yI t since x =I= y

and we are done. We have therefore proved the proposition by induction

on the structure of terms. X

Corollary 3.2

For every assignment ¢, type B, and term s : B, [ s] € DB.

Proof For atomic terms the corollary is assured by the definition of
an assignment. For X-terms, the proposition gives the corollary directly,
For an application term s(t) : B, the proposition tells us that

10



xgebsl.a%/xﬁ s(t) T E[D81-+ DB],SO by application to g [ xJ ve get

aTs() 1 = ap g, [s(6)T <0,

as required.

!
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aULTrT] =tt, g [ FF] = f£f,

d[UUBB =LB,

I

Dt_r-aa-eﬁeﬁ =

al
)@EDE}:-MEDB-AX‘EDB- € - 'ﬂ,x), and

0¥ gy ol " Ve g
where (§ — T,x) - the conditional - takes the values |, T, x according
as € = ltﬂ
Y on the right to indicate that it belongs to [[DB _9I)é _;DB]_ Note
that the Y on the left is an identifier, and the <y on the right a
function. It is easy to check that @ [ ] is a continuous function,
and Proposition 2.3 has assured us that ¢ [ Y] is also continuous.

If 4 satisfies condition (1) above, but not necessarily condition

(2), we call it just an assignment, yielding an interpretation (not

necessarily standard). We also confuse the terms assignment and
interpretation, since we have no occasion to discuss here different
standard models.

We write d/ to indicate the assignment differing from 7 only

E/x

in that its value at x is €; clearly we have that

i f -
Cfn/y 1 X y

SRR |
(&%/y)g/x otherwise.

We now show how to extend the domain of an assignment ¢ to all

terms, preserving the condition that

AdLs : 8] ¢ DB

which states not only that & respects types, but also that (for composite types)

tt, ff, and where we have subscripted the fixed-point operator



4.  Pure LCF : Formulae,Sentences, Rules and Validity

In this section we define the remainder of the syntax of Pure LCF,
extending the domain of assignments 7 still further, and after defining
the concept of validity of a sentence we give the rules of inference and

show that they preserve validity.

Atomic well-formed formulae (awffs)

r

If s,t : B are terms, then s ¢ t is an awff. TLet us add the
truth values T,F (not to be confused with TT, FF) to the range of
an assignment, and extend any & to awffs by

AdLsctl =47 if gLsdcalt]

F otherwise

Well-formed formulae (wffs)

A wff is a set of awffs. We use P,Q,P1,Ql,...... to denote
arbitrary wffs. Extend & to wffs by
aLP] =4Tif AeP=sg[[A] =T
F otherwise.

We use s -t to abbreviate {sct, t < s }.

Sentences
If P,Q are wffs, then Pk Q is a sentence (if P = §, we just

write = Q). Extend ¢ to sentences by

a[?-Qll = {Fif@ [Pl =T, g[Ql=F
T otherwise.
We say that PHrQ is false in ¢ , true in 7 respectively. We say that
a sentence is valid iff it is true in all standard interpretations.

We now introduce the rules of inference of Pure LCF, accompanying

each by a proof - often very trivial - that it is valid (a rule is wvalid
12
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if whenever its hypotheses are valid its conclusion is valid). The
proofs will rely on two facts about assignments which are fairly easy
to prove (we omit their proofs). First, if A is any syntactic entity
in the domain of an assignment ¢ , and x is not free in A,  then
@ TAJ is independent of @ [[ xJ; more precisely, ag/x[A J-~70A7.
Second, in specifying the inference rules we use A{ t/x} to mean:
Substitute t for x in A with suitable changes of bound variables
so that no identifier free in t pecomes bound after the substitution,

and we need the fact that @7 [LA {t/x} ] = a, T t]/xu:A]'

Rules of Inference

We write the hypotheses of each rule above a solid line. If there

are none, we omit the solid line. §e use the same names for rules as in

INCL PRQ (Q ¢ P)

Clearly P true. in ¢ implies Q true in .

CONJ P HQl P+Q2
P QL U @2

Clearly valid

CUT P1F P2 P2 P3,
Pl F P3

Clearly valid.

APPL tCu F s(t) < s(u)
If gLl tJdesCuld, then 7 [s(9 =g L sT( 7L tT)
c 7 Lsl(@ Mul)=¢a [ s(u)d, using

the monotonicity of @ [[s .

13
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REFL F s C s

Clearly valid, by reflexivity of &
TRANS sct, tCu t- scu

Clearly valid by transitivity of &
MINL F uucs

Clearly valid, by the minimality of |
B

MIN2 F UU(s) € UU

Clearly valid, by the definition | _ %Eepl. L
- Ly

Bl - B2 ~
Note that in the last two rules we have omitted the type subscripts from

UU , intending that they be supplied in such a way as to yield a proper

)

awff - i.e. that the terms on either side should have the same type. We

could have written UU . L , .
s :Bl) c UU_ .
8l — 52< B1) 8o Similarly we will omit

subscripts from o5 and Y.

CONDT = o (TT)(s)(t) = s
CONDU F o (vu)(s)(t) = uu
CONDF I- D @F) (s)(t) =t

These rules are justified by the standard interpretation of o.

ABSTR P t— sCt
P F [xx.s] © [hx .t]

x not free in P.

Let 7 be such that 4 [ PJ] = T. Since x is not free in .

5

we have also &%/x[ PJ] = T for any £. 3o the hypotheses of the rule

assures us that for each € in , where x : g, a%/xﬂ:S = ﬁ%/x[-t 1.

B
xg.dg/x[[ sl e AE 'dg/x[ tJ, which is to say that

@ [ [Ax.s] © [Ax.t]] = T, as required.

CONV F [ax.s] (t) = s{t/x]}

14
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We have that @ [[ [)x.s ](t)F = O\g-dg/xﬂ: sY) L t1)

_ dd[t]/x[sm , which is equal to @ [Cs{ t/x} J by

the second of the facts about assignments which we have assumed.

ETACONV }-—[)\x.y(x)] = vy, y distinct from x

— a ﬂ: [XX-Y(X)]]’ = kg.dg/x[y(x)]] = A\E .ﬂg/xu: y:n(dg/xm X_-ﬂ)
=\.q [y](g) (since x is distinct from y, so does not
L
occur free in y), =g[[y].
CASES P, s = TT i-Q P, s= U |Q P, sEFF{—.Q

PFQ

Let @ be such that ¢J[ PJ = T. Since s : tr, @ [[ s must

r‘—-‘“ r r————‘.

take one of the values {tt R _[_tr , £}, so that one of d[s =TT,

aflss= wl, a [[s = FF]] takes the value T, The validity of the

~ appropriate hypothesis ensures @[ Q7] = T.
g FIXE. b ov(x) = x(v(x))
i Clearly valid by the standard interpretation of V.
INDUCT. P QfUU/x} P UQFQfs (x)/x}
P Q{Y(s)/x}

x not free in P or s
For simplicity, we consider just the case that Q is an awff.
Moreover we can assume that it is of the form t(x) € u(x) where x is
not free in t or u, since for any term t', aLt’']q = aL [Ky-t'iy/x}](x)],
y distinct from x, and then x is not free in [)\y.t/{y/x}]. Let
be a standard assignment, & [[ PJ] = T, and assume that ¢ [ s] = £

aftd =g, a Luvl =h. we first show by induction on i that for

15
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each i > 0, g(fl(,LB)) c h<fl(l5))’ where x : B. For i = Q,
— the first hypothesis gives that LQel = 1,that is ¢ Ct] (L)@ [ vl(L)
‘LB/X B B
(since x 1is not free in t,u), so g('LP) c h(-LB). Now assume the
inequality for i. That is, we assume dfi( Y. LQll = T. Since x is
x
— not free in P, we also have dfi( )/xﬂ: P]] = T, and we deduce from the

second hypothesis that Qi L )/XH:Q {s(x)/x} T = T. Now ¢
B

(1)l 200 3 -

f(fi(J.B) ), since x is not free in s, = fi+1(1.B), so from the
L second fact x;vhich we assurr.led for assignments we deduce that afi+l( )/X[ Q 7-T,
: that is g(f1+1(1_8))l_: h(fl+l(_j_g). So the induction is complete.
L Noweg [CQ{y(s)/x} T = aY(f)/x[ QJ], which we require to take the
] value T. That is, we require g(Y(f))Eh(Y(£)). But g(Y(f)) =
U{g(fi(la)) : 1 20} (by the continuity of g), . U {h(flu_a)) : i > 0}
{_ (by what we have proved), E h(Y(f)) by the monotonicity of = 4png the
! justification is complete.

This completes also our justification of the wvalidity of the

Rules of LCF.

—— [ St ]
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