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M ODUETL S O F L CF

1. Introduction

The logic of computable functions proposed by Dana Scott in 1969,

in an unpublished note, has since been the subject of an interactive

proof-checking program designed as a first step in formally based machine-

assisted reasoning about computer programs. This implementation is

fully documented in [1], and its subsequent applications are reported in

— later papers [2,3,4, and 5]. However the model theory of the logic,

| which scott originally supplied, is not discussed in those papers, and
—

the purpose of this Memorandum 1s to present that theory. Nothing is

L added here to Scott's work. The concept of a continuous function, which

is central to the theory, has since been developed by him to provide

— models for the X-calculus and to yield his mathematical theory of

continuous lattices; the interested reader can follow these topics in

-

Scott [6]. However, since LCF is only a version of the typed X-calculus,

_ these developments are not necessary for the present purpose, and the

present paper contains all that is needed to understand LCF.
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Co 2. Continuous Function Domains

— In this section we define a particular sort of partially ordered

| domain, called a complete partial order (cpo), and the concept of
-

continuous function. We prove some propositions for later use; in

i particular, that if D and E are cpo's, then the set of continuous
} functions from D to E 1s itself a cpo.

—

Definition 2.1 A partial order (po) is a pair (D,=) where D is any

8 set (domain) and © is a transitive, reflexive , antisymmetric relation
. over D.

Definition 2.2 For a po (D,2), a set X © D 1s a chain if X =

x.|i > 0} and Cx. EX Tee...

LU Definition 2.3 A po (D,=) is a complete partial order (cpo) if

} (1) It has a minimum element, which we denote by

L 1 , or just | 1f there is no confusion.
D

i (2) Every chain X  D has a least upper bound (lub)
in D, which we denote by LX.

L Definition 2.4 If D and E are cpo's, then a function ff : D —» E

5 is continuous 1f every chain X € D satisfies
Uf £(x) : xex} = f(LX).

Thus a continuous function 1s one which preserves the lubs of

CL chains. Note that the set on the lefthand side of the above equation

eo 1s a chain, since if X = {x y3X:3s0e.3 and x. T x. LC .....
0°71 o —- 1~

L then we also have f(x) c f(x)| . To see this, we only need to
[
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: observe that any continuous function is monotonic - that is,

_ xEy = f(x)e fy), and this is true because if Y is the chain {xey]

| then UY = y, so we have fx)e{f(x),f(y)]} = ing = f(y).

— We should also note that there 1s an alternative (more restrictive)

definition of a cpo which uses the concept of directed set (X 1s directed

LS

iff x,y€X = 3 z€X.X,y cz) instead of chain, This, in turn, leads to an

: alternative (more restrictive) definition of continuous function. We have
 ——

chosen the less restrictive alternative, but we remark that the theory can

— be done equally well (as far as we are here concerned) with either definition.

Po Notice that we use the same symbol& for the relation in every po
—

under discussion. This should give no difficulty. We also use names

like D and E both for po's and for their domains.
—

| Definition =~.5 We denote the set of continuous functions from D to

— E, where these are cpo's, by [D — E].

: Proposition 2.1 If D and E are cpo's then F = [D — E | 1s a cpo

under the relation

feg iff Tx. f(x)cg(x)
- — =

8 Proof First, F is is a po under this relation (check
reflexivity, transitivity and antisymmetry). Second, the minimum element

L of FF 1s easily seen to be Ax. Le. Finally, we need that any chain

| Z = F has a lub [/Z€F. Define |Z = awx-Uf f(x) : fez}. This is a well-

- defined function since for each x in D, { f(x) : fez} 1s easily seen

to be a chain in E. Next, 1t bounds above every f€Z, since for each

-

x€ED, f/x)el{ f(x) : fez} = (Uz) (x). Further, it is a lub, since if h is
i

4 any other upper bound for 7, then for each x€D and £f€Z, we have

f(x)e h(x); it follows that (UZ) (x)e h(x), and hence UZ ch.

— | : 1 : :
But we must aiso show that UZ€EF, i.e., LZ is continuous.

: p
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| Let X ©€ D be a chain. We require

o wz) (UX) = U{ (UZ) (x) : x€X},

But (UZ) (UX) = U{f(UX) : f€Z} by the definition of LZ.

} = U{ f(x) : fez,xeXx)}

= U{ (uz) (x) : x€X}.

This completes the proof. X

Proposition 2.2 For any cpo D, every f€[D — DJ] has a minimum

= fixed-point Yf€D - i.e. we have f (Yf) = Yf and for all x€D,

f(x) = x implies YICX.

= Remark This proposition ensures the existence of the least

fixed-point operator Y : [D — D] — D. The next proposition shows that
| ow

Y is continuous, i.e. Y€[[D — D] - DJ.

- Proof The set S = (£5 (1) : 0 <1j is a chain by the
monotonicity of f. Define Yf = US. By the continuity of f£f, we have

— f(Yf) = SEL) : 0 <1) = Yf, so YI is a fixed-point of f. Let x
be any other fixed-point. Now by the monotonicity of ff we have

— :

f(Q) E f(x) = x, and by induction on i we can show (1) Ex for

o all 1 >0, so Yf = ULES (1) : 0 <i) £ x, and thus Yf is the
minimum fixed-point of f. X

-

Propo-:2ion. 3 Y is continuous, so YE[[D — D] — D]

- Proof Let Z be any chain & [D — DJ]. We must show that

Y{Lz) = W{Yf : feZ}. In one direction (z) proof is easy since for each

L fez, |JZ3 ff, so Y(1Z) J Yf by the monotonicity of Y which in turn
follows directly from the definition of Yf. In the other direction we

-

only need to show that UW{Yf : f€Z} is a fixed-point of JZ, since then

i Lh



|

it dominates the least such, which is Y (JZ) . SL |

_ UZ (U{YEf : fez}) = U{g(U{YE : fez}) : gez}

_ { g(YE) : e€Z , fez} by continuity of g. |

— = U{ £(Yf) : fez}, since

| g(Yf)= h(Yh) where h = max(g,f).
fee

= {YL : fez}

_ which is the required fixed-point property. This completes this proof.
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5. Pure LCF : Terms

In this section we give the term syntax of Pure LCF, and then

after defining a standard interpretation as a function from identifiers

into the union of a family of cpo's, we show how such an interpretation

1s extended uniquely to a function from all terms into the same range.

The terms of Pure LCF are just those of a typed X-calculus.

Types (1) ind and tr are (basic) types.

(2) If Bl,g2 are types then (Bl—» B82) is a type.

(3) These are all the types.

— We use B, Bl, B2,... to denote types, and frequently omit parentheses,

assuming that '-' associates to the right, so that Bl— B2 —RB3
(-

abbreviates (Bl — (R2 —B3)).

| ~ Terms Each term has a well defined type. We use s,t,u

to denote terms, and write s : B to mean that s has type B.

-

(1) Any i1dentifier 1s an (atomic) term. We do not need to describe them,

. except to say that there are infinitely many at each type, that the type

of each 1s determined in some way (perhaps by explicit subscripting), and

— that they include TT : tr, FF : tr and the families (indexed by type)

uy, ; SA LB 58 5B and (8 . 8) — 5° These 1dentifiers are special
= only 1n that each standard interpretation will assign a particular element

to each of them. We use x,y to denote arbitrary identifiers.
—

(2) If s : Bl-» B2 and t : Bl are terms then s(t) : B2 is a term.

- If x : Bl is an identifier and s : B2 1s a term, then [ax-s] : Bl —R2

( 1s a term.

~ (3) These are all the terms.

- 6
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Remark In the machine implementation of LCF, and often for

~~ intelligibility, we have written terms of the form x(s)(t) (u) and

Y([Ax-s]) respectively as (s -» t,u) and [ax.s], and have dispensed

with DOD and Y. It 1s clear that every term of implemented LCF 1s then

Co a transcription of a term of Pure LCF, and it therefore suffices to

discuss the semantics of the latter.

Semantics A standard model (of LCF) 1s a family {Dg} of cpo's,

. one for each type B, where Dig is an arbitrary cpo, D, is theind r

cpo Lee, ££, 3 under the partial order given by the diagram

|—

tt ff

li,

and D = .B81 = 2 | Dg1™ Dao Note that D. ng completely determines a
— standard model.

Let J be the set of identifiers of Pure LCF. A standard

|S_—

interpretation (of LCF) 1s a standard model (Dg) together with a
- standard assignment, which 1s a function

a : g- UD}
| g
— which satisfies the further conditions

| (L)* dal x : BI € Dy-

(2) The value of ¢¢ for the special identifiers is given by

- the following:

L xWe write the (syntactic) arguments of@7 in decorated brackets as an

ald to the eye.

-
!

!
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/ it yields a continuous function over the appropriate domains.

We define & by induction on the structure of terms, as follows:

ALs(e)l=alsll@l tl)

a [ [xs]. 28 -@ s I.z/ xl

That 7 respects types 1s obvious. That @ [ s J €Dg for all B and-

s : B 1s a corollary of the following

Proposif3.In For each assignment & and for each x : Bl;
t

s : B2, \f€D + @ S €[D D__ J.C >=Yg1 =/x L ] Dar Ppp!

[ Proof First, suppose s 1s an atomic term, i.e. an
identifier. Either s = x, in which case Bl = B2 and AE Ge [s ITX

| is the identity function over D1 Or S E Xx 1n which case it 1s a
constant function from Do1 to Das - In either case it 1s a continuous

L function, hence ¢€
u ion, Day oy Dy .

| Next suppose s is t(u), t : B35 — B2 and u : B35. Assume the
-

proposition for t and u. We have to show that for any chain X c Dor
{dL e(u) I: gex} =a [ t(u)];| { = xk ( ) 1 g J Ux/ lL (u) J; that 1s, that
Uia., [tla u : E€X} =

g/t CG Led) ge) = gy Led @ Lud).
Now if we denote AE. tl] and »£. @ u J by f and g, thezx Se Teil
inductive assumption tells us that fg[D — [D..— D_]] and g€[D_.— D__]

Bl BS B= Bl B53"

and the required equation merely states that for such ££ znd g,

A\E.f(€)(g(§)) is continuous. The proof of this we leave to the reader;

it 1s hardly more than proving that for a chain x, (f(g) (g(E)) : EeX]}

and {£(E) (gM) : E ,MeX] are cofinal chains.

Finally, suppose s is [)y.t], vy : B3,t : Bit and B2 =B3 — Bk

We need to show that

9
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\EED a. -t1 ll €[D_.—» [D D

that 1s, that for any chain X =Dg1>

LU {amep_. -(@ tl] : gex} =53" Fe julmyyL £1 + EEX)
ATED _ . t

Now in the case x =y, we have (@., ) aex ny = Dxyxdnyy = Tyg
—— and the equation reduces to a tautology. If x y , then 7 =t IOUS

(Gry )e x and the inductive hypothesis (that the proposition is true for
—

t) tells us that »E.(& t ] is continuous - hence monotonic -Sy eal
so { (d tJ}} is a chain in D_, , for each Tl. Moreover, the

inductive hypothesis also tells us that for each E AT (a ) T tJ

| TE xT y
1s in [Dg RU Dg, J and by the previous remark the set of these functions -

[ as E£ ranges over X - is a chain in [Dg Dg, | . Thus by the definition
of II for function spaces (Proposition 2.1) we can replace the lefthand

L side of the desired equation by
ATED UU od t : eX

I 5 + HU Uy y)enL ed: tex]. AMeD_. . (@y,.) toNeDgs + (ny)xx
| . Ay€D_. . (@ Ct] since x

| Yeas + Ayx/xln/y Ty
and we are done. We have therefore proved the proposition by induction

| on the structure of terms. X

| Corollary 3.2
For every assignment , type B, and term s : B [ s] ¢€ Dg -

L Proof For atomic terms the corollary 1s assured by the definition of

an assignment. For X-terms, the proposition gives the corollary directly,

For an application term s(t) : B, the proposition tells us that

10



MED) FL 918) TE IDG) = Ppl, so by application to po go

_ as required.
X

—

|
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o To - ERECE Si SE

AL TTT =¢tt,7 LT FF] = ££,

— al Ug I = Los

TL>0 popped -

5 MED, , ATED -Ax€D + (§ —~ M,%), and

LYLp) dl “Yepop
-

where (E — T,x) - the conditional - takes the values L, TM, x according

w as £ = 1. tt, ff, and where we have subscripted the fixed-point operator

Y on the right to indicate that it belongs to [Dg ~ Dg ~ Dl. Note
L that the Y on the left is an identifier, and the vy on the right a

[ function. It is easy to check that¢ [>] is a continuous function,
and Proposition 2.3 has assured us that ¢ [ Y] is also continuous.

L Ifd satisfies condition (1) above, but not necessarily condition
(2), we call it just an assignment, yielding an interpretation (not

| necessarily standard). We also confuse the terms assignment and

| interpretation, since we have no occasion to discuss here different
standard models.

We write De / x to indicate the assignment differing from ,7 only
in that 1ts value at x is &; clearly we have that

Ay if x = vy
Dery

y/o) x otherwise.
We now show how to extend the domain of an assignment ¢¢to all

terms, preserving the condition that

dls : 8B] e¢ Dg

which states not only that ¢ respects types, put also that (for composite types)
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4. Pure LCF : Formulae,Sentences,Rules and Validity

In this section we define the remainder of the syntax of Pure LCF,

extending the domain of assignments 7 still further, and after defining

the concept of validity of a sentence we give the rules of inference and

show that they preserve validity.

Atomic well-formed formulae (awffs)

= If s,t : B are terms, then s c¢c t 1s an awff. Let us add the

i truth values T,F (not to be confused with TT, FF) to the range of
an assignment, and extend any & to awffs by

| dsc tt] hl if alsDecafl ct]
| FF otherwise

| Well-formed formulae (wffs)

| A wff is a set of awffs. We use P,Q,Pl,Ql,...... to denote
arbitrary wffs. Extend & to wffs by

L ALP] =4Tif AeP=>g [A] =T

| l otherwise.
| We use s —t to abbreviate {sc t, t © s J.

i sentences
If P,Q are wifs, then PF Q is a sentence (if P = 0, we just

write + Q). Extend & to sentences by

| gL?-Ql= {Fifg[P1=1,g[Ql=F
T otherwise.

We say that PFQ is false in¢Z , true in7 respectively. We say that

a sentence is valid 1ff it 1s true in all standard interpretations.

We now introduce the rules of inference of Pure LCF, accompanying

each by a proof - often very trivial - that it is valid (a rule is valid

12
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if whenever its hypotheses are valid its conclusion 1s valid). The

ag proofs will rely on two facts about assignments which are fairly easy

to prove (we omit their proofs). First, if A is any syntactic entity

in the domain of an assignment ¢ , and x is not free in A, then

_ d [AJ is independent of @ [[ x; more precisely, Te LA J-~7LA7.
Second, 1n specifying the inference rules we use A{ t/ x) to mean:

— Substitute t for x in A with suitable changes of bound variables

| so that no identifier free in +t becomes bound after the substitution,
| and we need the fact that #7 [LA {t/x}J = 2, T e7/xLAT-
L Rules of Inference

| We write the hypotheses of each rule above a solid line. If there
are none, we omit the solid line. We use the same names for rules as in

L [1].
INCL PQ (Q ¢ P)

| Clearly P true. in ¢ implies Q true in ¢.

| CONJ P Ql P+Q2
PH Ql U Q2

: Clearly valid
. cul PlbP2~~ PFP3

i Pl + P3

| Clearly valid.
APPL tCu F s(t) C s(u)

If glltde7s Lull, then [s(I =a LsT(~[t])

cS ZLsD(g wl) =a [s(u)d, using

the monotonicity of @ [[s J.

15



: REFL  s Cs

— Clearly valid, by reflexivity of &

TRANS s ct, tC u t- scu

= Clearly valid by transitivity of &

| MINI FF uucs
|——

Clearly valid, by the minimality of |
B

oY MIN2 F UU(s) © UU

Clearly valid, py the definition _| Loy go = AEeBL. Lo,

[ Note that 1n the last two rules we have omitted the type subscripts from
UU, intending that they be supplied in such a way as to yield a proper

L awff - 1.e. that the terms on either side should have the same type. We
could have written a1 ~ B82 (s : Bl) C Wao Similarly we will omit

| subscripts from oH and Y.

| CONDT — 2 (TT) (s)(t) = s
COND = 2 (u)(s)(t) = uu

CONDE I- D QF) (s)(t) =t

| These rules are justified by the standard interpretation of o.
ABSTR P t— sC t

x not free in P.

| P FH [ax.s] © [ax .t]
Let 7 be such that 4 [ PJ] = T. Since x is not free in .

we have also G/L PJ = T for any £. So the hypotheses of the rule
assures us that for each in .

3 Dg where x : B: & yp Ls 1&7, Lcd. Hence
AE A sl \.4 tJ, which is to say thatSxl SL tS ’

dL [xx.s] © [ax.t]] = IT, as required.

CONV  [ax.s] (t) = s{t/x]}

14



We have that @ [[ [x.s J(t)] = 0e.a IL s(t)
_ rpc] «Ls , which is equal to @ [Cs{ t/x} J by

the second of the facts about assignments which we have assumed.

ETACONV [lAx.y(x)] = vy, y distinct from x

— aL xx.y(x)]7J = A.J X =
=/xILy(x) Tl Md LyT (a, [I «T)

= \E.Z [[yD(e) (since x is distinct from v, so does not

occur free in vy), =g[[vyv].

CASES P, s= TT i-Q P, s=UU}|Q P, s = FFQ

| PQ
Let & be such that «JL PJ] = T. Since s : tr, @ MfsY must

| take one of the values { tt , 1. ; ff} , so that one of d [[s = TT 1,
ad [[s = vu ll, [Ls = FF] takes the value T., The validity of the

~ appropriate hypothesis ensures [QJ = T.

hb FIXP. = Y(x) = x(Y(x))

| Clearly valid by the standard interpretation of VY.
INDUCT. P Qf UU/x} P UQF Q{s (x)/x]

Pi QlY(s)/x}

x not free in P or s

For simplicity, we consider just the case that Q is an awff.

Moreover we can assume that it 1s of the form + (x) © u(x) where x is

not free in t or u, since for any term t', AdLt'A=a[ (Ay-t'{y/x$] (x)

y distinct from xX, and then x is not free 1n [Av.t'{y/x}]. Let

be a standard assignment, & [[ PJ] = T, and assume that @ [[s] = £

dtd =g, alull =h. We first show by induction on i that for

15



| each i > 0, g(£ (4g) E h(£(4)), where x : B. For i = (O,
— the first hypothesis gives that LQ = 71, that is aCt] (4 =74 ull (L)

Lg/x B B

(since X 1s not free in t,u), sO g(L,) Cc h(l,). Now assume the
inequality for 1. That is, we assume : _

Dei (wy)/xL QJ T. Since x is
— not free in Pp, we also have “et (1 )/xL PJ = T, and we deduce from the

second hypothesis that gz ; s(x = T. N

1 tL )/xLL Q {s(x)/x} 1 ow “ei(1)/<L s(x) J =
| E(£7(L)) ), since x is not free in Ss, = FHL), so from the
L second fact which we assumed for assignments we deduce that 7. _ oT

i+1 i+1 fr) d Qi-T
| that is g(f (Lg) E h(f (La) So the induction is complete.

N =

owe [CQ{Y(s)/x] Tl Py (£)/xL QJ, which we require to take the

[ value T. That is, we require g(Y(f))Ch(Y(f)). But g(Y(f)) =

U{g(f 4g) : 1 > 0} (by the continuity of gq), CU {h(f (15) : i> 0]
i (by what we have proved), E£ h(Y(f)) by the monotonicity of h, and the

justification 1s complete.

This completes also our Justification of the validity of the

Rules of LCF.

|
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