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Abstract

A matching in a graph 1s a collection of edges, no two of which share a

. vertex. A maximum matching contains the greatest number of edges possible.

- This paper presents an efficient implementation of Edmonds' algorithm for

finding maximum matchings. The computation time is proportional to v3, where
. V-1s the number of vertices; previous algorithms have computation time pro-

portional to vt The implementation avoids Edmonds' blossom reduction by
using pointers to encode the structure of alternating paths.
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| 1. Introduction

| The problem of finding maximum matchings on nonbipartite graphs hasapplications in integer programming and optimum scheduling. For example,

Fujii, Kasami, and Ninomiya 71969] have devised an efficient algorithm

for scheduling two processors. The slowest part of their algorithm is a

subroutine for finding maximum matchings.

We present an algorithm for finding maximum matchings on graphs. If

V 1s the number of vertices 1n a graph, the running time 1s proportional

I to v. The space required 1s roughly 3.5 V words in addition to the space
needed for the graph and the matching.

| The basic approach 1s a careful implementation of the ideas presented
. by Edmonds [1965]. His algorithm has running time proportionalto ve

[Edmonds, 1965, and Fujii, Kasami, and Ninomiya, 1969werratuml. We improve

this by a factor of V. The speed-up is achieved by eleminating the process

" of blossom reduction. We use a system of pointers to store the relevant

| structure of alternating paths.
This approach 1s similar to the labelling techniques in the matching

algorithms of Balinski 1967] and Witzgall and Zahn [1965]. We can imple-

ment Balinski's algorithm in time vo by maintaining a stack for vertex

selection. However the generality which has made Edmonds' method so suc-

cessful 1s lost in this implementation.

After summarizing some well-known ideas in Section 2, we state the

algorithm in Section 3. A proof of correctness is given in the next section.

Section 5 discusses time and space bounds and applications of the algorithm.

The Appendix contain a listing of an ALGOL W program for the algorithm.



2. Some Preliminaries

This section summarizes some well-known definitions and results. A

greph consists of a finite set of vertices and a finite set of edges.

An edge 1s an (unordered) set of two distinct vertices. A graph Gy 1s

shown in Fig. 1 (a). In this section Gdenotes an arbitrary graph.

The two vertices of an edge are said to be adjacent. An adjacency

list for a vertex v is an ordered list of the vertices adjacent to v.

The adjacency lists in Fig. 1 (b) define the graph G, -

A matching in G 1s a collection of edges, no two of which share a

vertex. Figure 1 (c) shows a matching in Gy. Matched edges are drawn

with wavy lines. In this section M denotes a matching. The pair (G,M)

is a matched graph. M 1s a maximum matching in G 1f no matching in G

contains more edges than M. |

A walk [Herary,1969] is a list of vertices (vy) VyseeesVy) such

that for l<i<m, v,v,. is an edge. A walk 1s simple 1f no vertex occurs

more than once 1n the list. A path 1s a simple walk. A cycle 1s a walk

(vy sVseeesv)) such that n>3, (Vy sVgpeees¥y 4) is simple, and Vv=v.

let P = (vys¥pseeesvy) and Q =(Wy Wyse 0sW) be paths. The reverse

path of P, denoted rev P,is (v, sv 5005p) The concatenation of P

and Q, denoted P*qQ, as (viv, , PHQV_ itty sW, 500 5W ) b e a

path 1t 1s necessary that AS be an edge and that vy # vy for
I1<i<n,l1<j<nm

An alternating walk in a matched graph (G,M) is a walk (vysViseeesVy)

such that exactly one of every two edges vio and ViVi 1 <1 <n,

is matched. An alternating path is a path that is an alternating walk.

An exposed vertex 1s a vertex that is not in any edge of M. An augmenting

Vathis an alternating path whose ends | and v, are exposed vertices.
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If (VysVpseeesvy) is an augmenting path in (G,M), a larger matching

M' is obtained by replacing the matched edges VoiVoiL1’ 1<i<n, with

the unmatched edges v,, ,V,;» 1<i<n. The construction of M' from M is

called an augmentation. In Fig. 1 (e¢), (12, 9, 10, 8, 6, 5, 4, 2, 1, 11)

is an augmenting path. Performing an augmentation along this path gives

the matched graph with no exposed vertices shown in Fig. 1 (d).

Augmenting paths are important for the following reason.

Lemma 1: A matched graph (G,M) has an augmenting path if and only if M

1s not maximum.

Proof: See [Berge , 1957] or fEdmonds, 19657.

As a consequence, a maximum matching can be obtained by repeatedly

searching for augmenting paths and performing augmentations. The algor-

. ithms presented in [Balinski, 19671, [Berge, 1957], [Witzgell and Zahn,

1965], and the algorithm described in the next section are organized

in this manner.

3. Statement of the Algorithm

This section presents an efficient algorithm for finding maximum

matchings on graphs. First the overall strategy 1s described. Then the

data structures used by the algorithm are discussed and illustrated,and

the strategy is elaborated. Next the algorithm 1s presented in full

detail. An example of how 1t works on a particular graph 1s given.

Finally an application of Edmonds' algorithm to the same graph 1s dis-

cussed, and the two algorithms are compared.

The algorithm is called MATCH. The input to MATCH is a collection

of adjacency lists defining a graph. The output 1s a maximum matching

for the graph, stored in an array MATE. MATE contains an entry for each
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vertex. If u and v are vertices, edge uv 1s matched 1f and only if

5 MATE (u) = v and MATE (v) = u.

MATCH begins with the empty matching, that 1s, all vertices are

. exposed. It searches for an augmenting path. If such a path 1s found,

the matching 1s augmented. The new matching contains 1 more edge than

. the previous one. Next, MATCH searches for an augmenting path for the

new matching. This process 1s iterated until no augmenting path 1s

” found. At this point MATCH halts with a maximum matching.

MATCH searches for an augmenting path in the following way. First

| an exposed vertex e 1s chosen. MATCH scans edges to find alternating

. paths to e. _A vertex v is said to be linked when MATCH finds an alter-

nating path that starts with a matched edge and goes fram v to e. Let

.— such a path be P(v,e) = (v, Vireo), so vw, is a matched edge. MATCH
sets an entry in an array LINK for every linked vertex v. The path P(v,e)

= can be computed from LINK (v). If an edge joining a linked vertex v to

| an exposed vertex f #4 e is ever scanned, MATCH finds an augmenting path

} (f) * P(v,e). If no such edge exists and no more vertices can be linked,

. there 1s no augmenting path.

Figure 2 1llustrates the results of such a search. A matched graph

- 1s shown in Fig. 2(a). Vertex 13 1s exposed. Figure 2 (b) shows the

values MATCH stores when 1t searches for an augmenting path to 13.

- | Figures 2(c)-(e) show several paths P(v,e) defined by these values.

| The following paragraphs explain how LINK and the associated arrays

- define these paths.

L The LINK entry for a linked vertex 1s interpreted in one of three
ways, depending on the link type. The three link types are degenerate,

Lo pointer, and pair. The table in Fig. 2(b) indicates 11 vertices are
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linked in one of these ways. The remaining 2 vertices, vertex 1 and

vertex 7, are unlinked. This means there 1s no alternating path starting

with a matched edge that goes from 1 or T to 13. Note that in Fig. 2(c)-

(e), the unlinked vertices are drawn hollow. This convention 1s used

in this paper in all illustrations of matched graphs with links.
Now we describe the three link types.

Degenerate - In the search for an augmenting path to an exposed

vertex e, MATCH assigns a degenerate #ink to e. This defines a de-

generate alternating path, P(e,e) = (e). Note that if e is adjacent to

an exposed vertex f, (f) * P(e,e) 1s an augmenting path.

Figure 2(b) -indicates that vertex 13, and no other vertex, has a

degenerate link.

Pointer - If vertex v has a pointer link, LINK (v) 1s the number

of another linked vertex. So a path P(LINK(v),e) is defined. The path

P(v,e) is defined as (v, MATE (v))* P(LINK (v),e).

Using this definition and the values given in Fig. 2(b), we compute

P(8, 13):

P(8,13) = (8,MATE (8) ) * P(LINK (8),13) = (8,5) * P(L,13).

P(L,13) = (4,MATE (4) ) * P(LINK(L), 13) = (4,3) * P(2,13).

P(2,13) = (2,MATE (2) ) * P(LINK (2),13) = (2,1) * P(13,13).

= (2,1,13).

P(8,13) = (8,5,4,3,2,1,13).

Note vertices 8,4 and 2 all have pointer links, so the computation is

valid. The path P(8,13) is illustrated in Fig. 2(c). Also shown is

P(12,13), which is defined in a similar way by pointer links.
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— Pair - For vertex v to have a pair link, MATE (v) must have a pointer lin’.

This is illustrated by the values given in Fig. 2(b).

” If vertex v has a palr link, LINK(v) is an index into the parsllel

arrays BASEl and RBASE2. The pair of-values BASE1 (LINK (v)), BASE2 (LINK

| (v)) specifies vertices that define P(v,e).

_ As an example, consider vertex 6. The path P(6,13) is shown in Fig.

2 (d). Note that(BASELl (rmx (~)), BASE2 (LINK (6)))= (8,12). This pair

defines P(6,13) as follows: Vertices 8 and 12 are both linked. Hence

there are alternating paths P(8,13) and P(12,13) (see Fig. 2(c)). Vertex

6 is in P(12,13). Let P(12,6) denote the portion of P(12,13) from 12 to 6.

Thus P(12,13) = (12,11,9,6). Then P(6,13) is defined as the path rev

P(12,6) * P(8,13). We can compute P(6,13) as follows:

= p(6,13) = rev (12,11,9,6) * P(8,13)

= (6,9,11,12) * (8,5,4,3,2,1,13)

- (6,9,11,12,8,5,k4,3,2,1,13),

This 1s the path illustrated in Fig. 2(d).

In the same way, P(3,13) can be computed. The pair link of vertex 3

specifies the vertex pair (2,6). Since vertex 3 is in P(6,13), the path

) P(3,13) is defined as rev P(6,3) * P(2,13). This path is shown in

Fig. 2(e). The figure also shows the path P(10,13), which can be computed

using the rules for pointer and pair links.

There is one other array shown in Fig. 2(b), TOP. This array has

] an entry for each pair link. An entry in TOP contains the number of an

_ unlinked vertex. MATCH uses TOP to compute the unlinked vertices in

paths P(v,e). For instance, Ji vertex v has a pair link, then TOP
= (LINK (v)) is the first unlinked vertex in P(v,e). Thus in Fig. 2, the

first unlinked vertex in P(3,13) is 1 = TOP (2) = Top (LINK(3)).
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It is possible that P(v,e) does not contain an unlinked vertex.

In this case, 1f' v has a pair link, TOP (LINK (v)) 1s set to the dummy

vertex 0.

TOP is maintained because it speeds up the computation. Using

TOP, MATCH finds the first unlinked vertex in P(v,e) with a table look-

up* Without TOP, this operation would involve computing vertices in

P(v,e) until an unlinked vertex 1s reached. Thus TOP enables MATCH to

do in constant time what might otherwise require time proportional to

the number of vertices.

Now we can give a more detailed description of how the algorithm

searches for an augmenting path. A search begins by choosing an ex-

posed vertex e, for which no search has previously been made. Vertex

e 1s given a degenerate link. All other vertices are initially unlinked.

MATCH repeatedly scans edges that emanate from linked vertices. Let x

be a linked vertex, and let xy be an edge emanating from x. When MATCH

scans xy, it processes the edge in one of four ways, depending on

vertex vy:

(1) If y 1s an exposed vertex distinct from e, MATCH augments the

. matching along the path: (y) * P(x,e). The LINK array is used to compute

P(x,e), as described above. This process is illustrated schematically

in Fig. j(a)-(b). After the augmentation, MATCH starts a new search.

| (ii) If" y is matched with a vertex v = MATE (y) and both vertices

are unlinked, v is given a pointer link, LINK(v)e~x. This process is il-

lustrated schematically in Fig. Jj(c)-(d). After linking v, MATCH con-

tinues the search from e.

(iii) If y is a linked vertex, the pair link (x,y) is assigned

to certain unlinked vertices. The process 1s illustrated schematically
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y y

- (a) (b)

| —
X LINK(v)

y MATE(v)-—. MATE(y) v

| (c) (d)

X

y

_ MATE (y)

(e)

Fig. 3

MATCH scans edge xy.

(a)-(b) y exposed:augment.

(c)-(d) y, MATE(g) unlinked: assign pointer link to v = MATE (y).

(e) vy unlinked, MATE (y) linked: no new links.
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(a) Y a
P(base;e) P(base,e)

{ tip /
v22

P(vooe)

Vi1 \
P(vi1.e) f

_ =rev P(base; vy)’ P(base:e) @® | | )

\_
base, bases

(c)

Fig. b

MATCH scans edge xy

(a) yv linked: call PAIR LINK (y,x).

(b) uw and u, step through unlinked vertices to find tip.
(c) v steps through unlinked vertices preceding tip,

assigning palr links. —
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| in Fig. 4(a)-(c) for (x,y) = (basel, base& First a vertex tip is

| : computed (Fig. 4(b)). Tip 1s the first unlinked vertex that 1s in

| both P(base, , e) and P(base,,e). TOP is used to compute tip efficiently.
: Next the link (Pasbese,) is assigned (Fig. 4(c)). It is assigned

to the unlinked vertices that precede tip in P(base, ,e) or in P (hase, ,e)
After assigning these pair links, MATCH continues the search from e.

(iv) If y 1s not in any of the classifications (i) =- (111), MATCH

takes no further action for edge xy. (see Fig. 3(e)). The search from

_ e 1s continued.

| The search from e ends either when MATCH augments the matching or
when MATCH runs out of edges to scan. In the former case, e 1s matched’

| with a vertex during the augmentation; in the final matching e will be
matched, although not necessarily with the same mate. In the latter case,

~ e 1s exposed when the search ends; in the final matching e will still be

exposed.

Now we present MATCH in full detail. First specifications for the

data and the storage areas are given. Then the algorithm is stated.

_ The vertices of the input graph are numbered from 1 to V. MATCH

also uses a dummy vertex 0 for boundary conditions.

The graph is stored as a collection of adjacency lists. (An ad-

jacency matrix could be used instead, with no loss of speed). The order

of the vertices in the adjacency list of v gives the order in which the

edges emanating {rom v are scanned.

The output of the algorithm is in MATE. MATE specifies a matching

this way: If u, v # 0 are vertices, MATE (u) = 0 if and only if y ig

exposed; edge uv is matchdd if and only if MATE (u)=v and MATE (v) = 4.



14 N

Intermediate matchings developed by the algorithm are stored in MATE in

the same way.

There are two bits for each vertex specifying the link type. One

bit specifies whether or not a vertexis linked. If it is linked, the

second bit indicates the link type, pointer or pair. (The degenerate link

type need not be specified.) In the statement of the algorithm below,

these bits are referenced implicitly in tests such as, "If the vertex 1is

linked, then. ..". (For example; see step M 4.)

The LINK array has an entry for each vertex. If a vertex v 1s linked

in the current search (as indicated by the linked/unlinked bit described

above), LINK (v)._defines P(v,e)..If v is not linked in the current search,

MATCH does not use LINK (v).

In the table of Fig. 2(b), pair links have one level of indirection:

the linking information is stored in BASE1l and BASE2, and a LINK entry ,

addresses this information. This is also how the ALGOL implementation

of MATCH works. In the remainder of Section 3,and in Section4, we are

less formal. Ignoring the indirection, we write LINK (v) = (by,b,),

instead of by = BASEL (LINK(v)), b, =BASE2 (LINK(v)). This is done

only for convenience.

The TOP array has an entry for each vertex pair (b,,b,) that has
been assigned as a pair link in the current search. It 1s easy to see

.there are at most En entries in TOP: Imany search, 1 vertex has a
degenerate link. Of the remaining V-1 vertices, half may have pointer

links and half may have pair links. So at nost|] vertices have
pair links. Thus there are at most 52 asstinet vertex pairs (b,,,)
having entries in TOP.

We adopt a convention for addressing the entries in TOP, similar to



| the one used for LINK. If v has a pair link addressing the pair
(b)sb,) we write TOP (by,b,) instead of TOP (LINK(v)).

| Entries in the TOP array are made and modified by the subroutine

| PAIR LINK. If (b,,b,) 1s a palr link, TOP (b,0,,) has the followingproperties: TOP (b,,b,) is the first unlinked vertex in P(b, se); it

is also the first unlinked vertex in P(b,,e). If v has the pair link

(bby), TOP(b, ,b,) is the first unlinked vertex in P(v,e); it is also

the first unlinked vertex in P{MATE(v),e). If TOP (b,5b,) is the dummy

vertex 0, there 1s no unlinked vertex in any of these paths.

- The algorithm 1s presented below. A 'high level" language similar

| to the one developed by Xnuth [1968] is used.
| The algorithm consists of four routines. MATCH 1s the main driver;

| 1t initiates and coordinates searching for augmentations. PAIR LINK
assigns pair links to vertices, using FIRST FREE to find unlinked ver-

> tices. REMATCH performs augmentations by rematching edges.

NATCH cbnstructs s& maximum matehing fmr a gmaph, s a

search for an augmenting path to each exposed vertex. It scans edges

of the graph, deciding to assign new links or to augment the matching.

MW. [Initialize.] Read the graph into an adjacency structure,

numbering the vertices 1 to V. Create a dummy vertex 0. For

Ogi V set MATE (1) « 0; alternatively, start with an arbitrary

matching in MATE. Mark 0 as unlinked, but set LINK(O)&.

ML. [Start a new search]. Choose an exposed vertex e that has not

been previously examined in ML. Mark it as linked. If no such

e exists, halt; MATE contains a maximum matching.

M2. [Scan a new edge.] Choose a linked vertex x and an edge

emanating from 1t, xy. Thisvertex-edge pair must not have been
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scanned previously in M in this search. If no such pair exists,

erase all links and go to Ml (e is not on an augmenting path, so

a new search 1s begun).

M3. [Augment the matching.) If y is exposed, set MATE (y)ex,

call REMATCH (y,x), then erase all links and go to M1 (REMATCH

completes the augmentation along (y) * P(x,e). See Fig. 3 (a)-(b)),

Mi. [Assign pair links.] If y is linked, call PAIR LINK (y,x)

and then go to M (PAIR LINK assigns pair link (y,x) to

unlinked vertices in P(y,e) and P(x,e). Sce Fig.lh),

M5. [Assign a pointer link]. Set vMATE (y). If v is unlinked,

mark v as having a pointer link, set LINK (v)=x, and go to M

(See Fig. 3(c)-(d)).

Mb. [Get a new edge.] Go to M (vy is unlinked and MATE (y) is linked,

so this edge adds nothing. See Fig. 3(e)).

FIRST FREE (v) 1s a subroutine of PAIR LINK. The parameter

v 18 a linked vertex. FIRST FREE (v) returns the value of the

first unlinked vertex in P(v,e); 1f none such exists it returns

the dummy vertex 0.

Fl. [Return MATE.7 If MATE(v) is unlinked, return MATE (v).

F2. [Return TOPJ If v has a pair link, set (b, ,b, )-LINK(v) and

return TOP(b, ,b,)

F3. [Return TOP] (MATE(+) must have a pair link.) Set (b, sb, )-

LINK(MATE(v)) and return TOP(b, ,b,)

PAIR LINK (base, base, ) assigns the pair link (base, ,base,)

to unlinked vertices. The parameters base and base, are linked

vertices joined by an edge. PAIR LINK sets tip to the first



| _ unlinked vertex in both P(base, ,e) and P(base ,e). Then it links
| all unlinked vertices preceding tip in P(base,,e) and in P(base,e).
| See Fig. k(b)=(e).

PIO. [Initialize.) Set u,-FIRST FREE (base, ) for i=1,2, If u, =u,
return (no unlinked vertices can be linked). Otherwise flag

u, , i=1,2.

PL1.[Loop.] Do PI2 for 1 alternating between 1 and 2. Each

time 1 1s set to 1 remove any flag from the dummy vertex 0.

| PL2. [Find vertices to link.] Set wu,FIRST FREE (LINK (MATE (u, )))

) (ui is set to the next unlinked vertex in P(base, ,e)). If u is
3 flagged, set tipeu, and go to PL3. Otherwise flag ua reset 1 according to

PLL sand go to PLZ.

L FL3. [Link vertices in P(,e).] (Tip is now set so all unlinked
| vertices between base, and tip can be assigned pair links. gee

Fig. 4(b).) Set v=FIRST FREE (base, ) and do Pk. Then set

v~FIRST FREE (say) anch do Pi.o t o PLS.

PI4. [Link v.] If v#tip,mark v as having a pair link, set

~ LINK(v)~(base, base, ), unflag v, set v-FIRST FREE(LINK(MATE(v)))
and go to PIk. (See Fig. l(c). ) Otherwise continue a6 specified

in PL3.

PL5. [Set TOP] Set u,~TOP(base, ,base, )-tip (Tip 1s the first

unlinked vertex in P(pase, ,e) )e

PL6. [Remove flags.) Unflag u,. Set uw «FIRST FREE(LINK(MATE(u, ))).
If u, is flagged go to PLe.

PLT. [Update TOP.] For each pair link (b,,0,) that has been assigned

in the current search from e, if TOP (bb, is linked set TOP (bb, )-

tip. has become the first unlinked vertex in Plbase .e) )
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P18. [Return.: Return.

REMATCH (f,v) rematches edges along an augmenting path.

The argument f 1s a vertex which has become exposed; v 1s

a linked vertex which will be rematched to f. REMATCH 1s a recur-

sive routine.

Rl, [Match f and v.| Save weMATE(v). Set MATE(v)-f.

R2. [Rematch a path.1 If MATE(w)=v and v has a pointer link,

set MATE (w)e~LINK(v), call REMATCH(w,LINK(v)) recursively, and

then return.

R3. [Rematch two paths.| Ii’ MATE(w)=v and v has a pair link,

set (by,b, )-LINK(v), call REMATCH(b, ,b,) recursively, call

REMATCH(D,, ,b, ) recursively, and then return.
R4. [Return.] (MATE(w) # v so a path has been completely rematched.)

Return.

We 1llustrate this algorithm by showing how it works on the graph

Gy of Fig. l(a). The input to MATCH is the collection of adjacency lists

in Fig. 1(b). MATCH constructs the matching shown in Fig. 1(d).

) Initially all vertices in Gy are exposed. MATCH searches for an

augmenting path to vertex 1. The first edge scanned, 12, forms such

a path. An augmentation 1s done by placing 12 in the matching. MATCH

sets MATE(1)r2, MATE(2)«-3.

In a similar manner, edges 34 and 56 are matched. The matched

graph at this point is shown in Fig. 5(a).

MATCH starts the next search at exposed vertex T. The links as-

signed in this search are shown in Fig. 5(b). First MATCH scans edge

73 and assigns @ pointer link to vertex 4. Next, MATCH chooses
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(a) Gy after 3 edges have been matched.
(b) Links assigned in search fromT.

(c) Gy after augmenting along (8,6,5,4,3,7).
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arbitrarily to scan an edge from vertex 4. This edge, 45, links

vertex 6. Choosing arbitrarily again, MATCH scans edge 68. This com-

pletes an augmenting path, (8) * P(6,7). The matching which results from

the augmentation is shown in Fig. 5(c).

The matching in Fig. 1(c) results when MATCH searches from vertex

9 and matches edge 9-10.

The last search is from vertex 11. Figures 6(2)-(f) show the inte:-

mediate states of' the search. Each state 1s illustrated by a graph and

tables. The graph shows the edges of Gy that have been processed. The

tables show the entries that have been made in LINK and in TOP. The

graph also indicates paths P(v,11) for newly linked vertices v.

Figure 6(a) shows the state of the search after four pointer links

have been assigned. When MATCH scans edge3l4, pair links are assigned

to vertices 5 and T. The result is shown in Fig. 6 (b).

Now we give a detailed account of how vertices 1 and 8 are linked,

and Fig. 6(c) is obtained. MATCH scans edge 24. Since vertices 2 and

L are linked, PAIR LINK (4,2) is called to assign the link (k4,2).

PAIR LINK first computes_tipin steps PLO-PI2. Tip 1s found to be

0, as follows:

1. In step PLO, the first unlinked vertex in P(4,11) is computed

to be vertex 8. This computation is done by the invocation FIRST FREE (4).

' Vertex 81s flagged.

2. Similarly vertex 1, the first unlinked vertex in P(2,11), is

computed and flagged in step PLO.

3. In step PI2, the next unlinked vertex in P(4,11) is computed

to be 0. Vertex 0 is flagged.

L. In step PL?, the next unlinked vertex in P(2,11) is computed
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The search from vertex 11.

(a) Vertices 2,6,3,4 get pointer links.
3 4 (b) Edge 34 links vertices 5,7.

(f) (c) Edge 2k links vertices 1,8.
(d) Vertex 10 gets a pointer link.
(e) Edge 8-10 links vertex 9.
(f) Edge 9-12 completes augmenting

path (12) * P(9,11).



Fo to be 0. Since 0 1s already flagged, tip is set to O.

| In steps PL3-PL4, PAIR LINK assigns the link (4,2) to vertices 1 and

8. The flags on these vertices are also removed. The value tip = 0 is

used in this process. .

In steps PL5-PLo, PAIR LINK removes the flag remaining on tip = 0.

_ Now sll flegs have been removed.

| PAIR LINK sets TOP(4,2) to 0 in step PLD. This indicates there are

- no unlinked vertices in P(L4,11) or P(2,11).

| PAIR LINK resets TOP(4,3) in step PL7. Vertex 6, the previous value

} of TOP (4,3), is now linked. Since there are no longer any unlinked

3 vertices in P(3,11) -or P(4,11), TOP(4,3) is reset to 0.
Finally PAIR LINK returns, in step PI8. Now MATCH continues scanning

L edges. Figures 6(d) and 6(e) show how vertices 10 and 9 are linked. Figure
| 6(f) shows how MATCH finds the augmenting path (12) * P(9,11) = (12,9,10,

8,6,5,4,2,1,11).

| Subroutine REMATCH performs the augmentation. Figures T (a)-(h) show
the 1ntermediate states of the augmentation, Each state 1s illustrated

. by a graph and a stack. The stack is the stack of recursive calls to

REMATCH. The graph shows a setting of MATE. As usual, vertices u and v

are joined by a wavy line if and only if MATE(u) = v and MATE (v) = u.

| Half-wavy lines also appear in the graphs, such as edge 68 in Fig. T7(e).
If uv 1s an edge that 1s wavy at u and straight at v, then MATE (u) =v

but MATE(v) # u. Thus in Fig. 7(e), MATE(6) = 8, MATE(B) = 10.

Figure 7(a) shows the matching when MATCH calls subroutine REMATCH.

In step M3, MATCH sets MATE(12) to 9, as indicated by the half-wavy line

between 12 and 9. Then REMATCH(12,9) is called, as shown in the stack.

The path P(9,11) is shown in this-figure to clarify the opersiion of REMATCH(12,%)
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REMATCH augments along (12) * P(9,11)

(e)-(g) The invocation of REMATCH at the top of the stack is being entered.
The setting of MATE is shown in the graph.

(h) The augmented matching.
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|
Fo Figure 7(b) shows the results of' REMATCH(12,9). Vertex 9 is completely

| matched with vertex 12. Also two recursive calls are in the stack. Note

| that P(9,11)is defined as the concatenation of two paths, rev P(10,9)

and P(8,11). The two calls on REMATCH process P(9,11)by processing

. these two paths.

i The invocation REMATCH(10,8) processes P(8,11) in a similar manner,

since vertex 8 has a pair link. The results are shown in Figure 7(c).

i. Figure 7(d) shows the results of REMATCH(4,2). Vertices 2 and 1

| have new mates. A new recursive call is in the stack. Note that P(2,11)

- is defined as the concatenation of (2,1) and P(11,11). The recursive call

| REMATCH(1,11) completes the processing of P(2,11) by processing P(11,11).
Figures 7(e)-(g) illustrate the other invocations of REMATCH, REMATCH

L finally returns with the matching shown in Fig. 7(h).
At this point there are no exposed vertices. MATCH halts 1n step

- Ml, having constructed a maximum matching. Note this matching is identical
to the matching in Fig. 1(d).

| For comparison we briefly describe how Edmonds' algorithm finds the
same matching in Gy The algorithm develops the matching shown in Fig. 1(c)

ina manner similar to MATCH. We discuss the search for an augmenting path

to vertex 11. This search 1s illustrated in Fig. 8. The six graphs in

Fig. 8(a)-(f) correspond to those in Fig. 6(a)-(f) for MATCH.

Edmonds conducts a search by growing a planted tree. Such a tree

has an exposed vertex for a root. Its edges are alternately unmatched

and matched. The planted tree in Fig. 8(a) is grown. It is easy to see

the structure of planted trees corresponds to that of pointer links.

When edge 3% is scanned in Fig. 8(a) it completes a cycle (6,7,3,4,5,6,).
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The search from vertex 11 1n Edmonds algorithm

(a) A planted tree. ,
(b) Blossom step for 34 yields a pseudovertex a ={6,7,3,4,51.
(c) Blossom step for 2a yields a pseudovertex b = 11,8,a,2,1}.

td) A planted tree in the reduced graph.e) Blossom step for bl0 yields a pseudovertex c = {10,b,91.
( f) Augmenting path (12 ,e¢) in the reduced graph.
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| (g) Augmentation in reduced graph.
— (h) Pseudovertex c 1s expanded.

(1) Pseudovertex b 1s expanded.
(J ) Pseudovertex a 1s expanded.
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Edmonds defines a blossom as an odd number of vertices joined by a cycle

that is maximally matched. Vertices 6,7,3,4, and 5 form a blossom. The

subgraph of Gy consisting of these vertices and the edges between them

are shrunk into a single vertex, a, called a pseudovertex. This results

in a reduced graph G, - The planted tree “in G, is shown in Fig. 8(b).

The pseudovertex a 1s drawn hollow.

Now the problem 1s to find a maximum matching in the reduced graph.

Suppose this has been done, as shown in Fig. 8(i). The pseudovertex a can

be expanded into the original cycle (6,7,3,4,5,6,).The matching for these

vertices can be chosen from the edges of the cycle, as shown in Fig. 8(j).

In general, this process can be carried out because one vertex of a blossom

is matched by an edge leading into the pseudovertex. The even number of

vertices that remain can be matched among themselves.

The intermediete steps that construct the maximum matching in G, are

similar. They are illustrated in Fig. 8(b)-(J). Two more blossoms are

shrunk (Fig. 8(c), (e)) and then expanded (Fig. 8(h), (j)). The end result,

shown in Fig. 8(j), is identical to the matching constructed by MATCH.

The shrinking and expansion operations in Edmonds' algorithm are

time consuming. To construct a reduced graph for each blossom requires

© O(V) steps per blossom. The result is a Vv algorithm. MATCH avoids

shrinking by recording the pertinent structure of blossoms in LINK and TOP.

The factor of V speed-up results from this.
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— L. Proof of Correctness

We show MATCH operates 1n @& valid and complete fashion. By valid

we mean MATCH finds valid augmenting paths and correctly rematches edges

along these paths. By complete we mean MATCH finds an augmenting path

1f one exists.

— The first five lemmas establish validity and the last two lemmas es-

tablish completeness. More precisely, lemmas 2-3 prove M+ and M5 set

= links so that P(v,e) is an alternating path; lemmaé proves M3 rematches

edges along P(v,e). Lemma 7 proves each search Me-M6 is complete; Lemma 8

proves Ml initiates enough searches.

— We begin by focusing on the loop M2-Mi-M5-M6. This loop scans edges

and assigns pointer and pair links. It terminate8 when an augmenting path

— 1s found, or when all edges have been scanned.

— Lemma 2: During the loop M2-Mi-M5-MB, two matched vertices v and MATE (v)

are always in one of these three states:

” 0. v and MATE(v) are unlinked.

_ 1. v has a pointer link and MATE(v) 1s unlinked.

2. v has a pointer link and MATE(v) has a pair link.

— -The only possible transition from state 0 1s to state 1. The only possible

transition from state 1 1s to state 2. Once assigned, a pointer or pair

~ link 1s never changed.

= These states, and the transitions between them are 1llustrated in

Fig. j(c)-(d) and Fig. b(b)-(c).

Before proceeding, we introduce a convenient notation. Define U to be
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- the set of unlinked vertices in state 1. Thetis, .

U = (ulMATE(u) has a pointer link and u is unlinked}.

Proof: The argument is by induction. We check that each time step We

is reached, the classification of the Lemma holds. Also, we check that

another property hols:
(1) Let x be a linked vertex. FIRST FREE (x) retumr the number

of a vertex in U.

Property (1) 1s needed to check the classification.

Step M is reached after executing step Ml, Mi, M5, or Mb. We check

the two 1nductive assertions in each of these four cases.

Case 1: Step Ml. is executed.

Step M 1s reached for the first time after Ml. At this point all

matched vertices are unlinked. Hence 8ll vertices v, MATE(v) are in state

0, and the classification holds. Property (1) is vacuously true.

Case 2: Step MS 1s executed.

No new vertices are linked in this’step. So the inductive @ssertions

still hold when M2 is reached.

Cese3: © 1s executed.

This step assigns a pointer link to a vertex v. Both v and MATE (v) are

unlinked on entry to Mp. So this 1s a transition frem state 0 to state 1.

"Property (1) holds for linked vertices x # v, by induction. Property

(1) also holds for vertex v: FIRST FREE(v) returns the value MATE(v) in

step F1, and MATE(v) e U.

Cape¥: Step Mi is executed.

Step M+ calls PAIR LINK. In steps PL3-PIk, this subroutine links



N vert ice 5 computed by FIRST FREE. So by (1), step M4 links vertices In U.

» These vertices wake a iLrensition from stele 1 to stale 2. sc tne class-.

ification still holds.

— Now we check that property (1) holds after step Mi. We consider

three cases, depending on vertex X.

N First suppose vertex x 1s 1n state 1. Then FIRST FREE (x) still

Co returns the value MATE (x) €U.

Next, suppose FIRST FREE(x) =n. step PL2, tip is set to &

value returned by FIRST FREE. By induction,tip €U. Hence FIRST FREE(x)

EU.

The remaining possibility 1s that vertex x 1s in state 2 and FIRST

_ FREE (x) # tip. Note in this case, both x and MATE' (x) are linked vertices

| on entry to M4. For if x or MATE(x) is linked in PAIR LINK, FIRST FREE (x)

_ = tip (see steps PL3-PL5,F2-F3).

| Let u be the value of FIRST FREE (x) on entry to Mt. By induction,

} uel on entry to M4. Below we show that after M# is executed, FIRST

| FREE(x) = u and ueU. Together these statements imply property (1) for x.

| The invocation FIRST FREE(x) returns a value TOP (by 5 by); in step

_ F2 or F3. So TOP(b,5b,) # tip. This implies TOP (b, 0, ) was not changed
in PAIR LINK, step PL7. So the value of FIRST FREE(x) on entry to Mi

- is T0P(b,,b,). Thus u = TOP(b,,b,) = FIRST FREE (x).
| Next note vertex u was not linked in PAIR LINK. For 1f u were

| linked, TOP(b, ,D,) would have been changed to Tip Im Prju s uel
_ c.ter Mi is executed.

Thus property (1) holds for all linked vertices alter Mi.

~ The Lemme now follows by induction,

OED

—



Lemma 2 enables us to ignore such possibilities as a linked vertex

being assigned a new link, or becoming unlinked. In particular, we can

define a partial orden@on the set of linked vertices, as follows:

v@w if and only 1f w 1s linked after wv.

For example, in Fig. 4, 1.103, 11D4,3@s5, 3&7, %&1,7@8. For

the purposes 0f@, we consider vertices linked in the same invocation

of PAIR LINK as being linked simultaneously. So neither 5@7 or 5

1s true.

We also make several definitions relating to the lists (paths)

P(v,e). The precise rules that define these lists are given below.

©. In any search, the exposed vertex e 1s linked by the degenerate

alternating path Ple,e) = (e).

1. If v has a pointer link, LINK(v) contains the number of another

linked vertex, and P(v,e) = (v,MATE(v)) * P(LINK(v),e).

2. If v has a pair link, LINK(v) contains the numbers of two

linked vertices bysb,e Vertex v 1s in P(b; se), for i=1 or i= 2

(but not both). For this value of i, P(v,e) = rev P(b, , v) * P(b3_;,e).

These definitions are illustrated schematically in Fig. 3(d) and

. Fig. U4(ec). In the latter, vertex Viy has the pair link (base ,base ).
We also use a list notation, writing

P(v,e) = (vgs75vo yeeey Von):

Here vy TVs Von = e. The last subscript is even because P(v,e)
starts with a matched edge, ends with an unmatched edge, and is alternating.

For convenience, define Vane LO be 0, the dummy vertex which 1s unlinked.

This allows us to treat boundary conditions in a uniform manner.

Finally, we define a useful function:
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If v is a linked vertex, free(v) is the first unlinked vertex

in P(v,e).

be For example, in Fig. 6(a),free(3)=7; in Fig. 6(b), free(3) =8;

in Fig. 6(c), free(3) = 0. The third equality is due to the convention

= that 0, an unlinked vertex, 1s the last vertex 1n any path P(v,e). In

general, 1f P(v,e) contains no "real" unlinked vertices, free(v) = 0.

In the proof of Lemma 3, we show FIRST FREE(v) computes free (v),

- for linked vertices v.

The first goal is to prove P(v,e) 1s an alternating path beginning

with a matched edge. This is done in Lemma 5. We begin by showing that

- P(v,e) 1s well-defined and has several useful properties.

_ Lemma 3: In the loop M2-M4-M5-M6, each time step M2 is reached, the

following Properties hold for every linked vertex v.

= (1) P(v,e) 1s a well-defined list of vertices.

(2) Vp; is linked and v,, = MATE (v,, ), for all i in 0 <isn.

] (3) If Voi 1s unlinked for some 1 in O0d«, then P(v,e) =
P(v,vy; 1) * P(v,;e) .

(4) If v has a pair link (b,,0,), then T0P(b, ,b,) = free(v) =
— free (MATE (v)).

. These properties are illustrated in Fig. 6(b) for the linked vertex

v = T. As shown, P(v,e) = P(7,11) = (7,3,4,5,6,8,11). Clearly properties

~ (1) and (2) hold. The path decomposition of property (3) holds for i = 2,

v= 8, and P(v,e) = P(7,11) = P(7,5) *P(6,11) = P(v,v. ) * P(vy,e). The
) seviing of TOP to an unlinked vertex described in (4) holds for vertex 7

5 with pair link CN = (4,3) and TOP (4,3)=8.
Property (3) may seem overly restrictive. It seems'natural to claim
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the decomposition P(v,e) = P(v,vp; 1) * P(v,,e) holds for all i in
O<i<n. Huwever this more general statement is false. This 1s 1llus-

tratedin Fig. 6(c). Takingv = 8, P(v,e) =(8,6,5,4,2,1,11). For

i=1, P(v,v;) * P(v,,e) =(8,6) * P(5,11) = ,(86,5437368,11)+# P(v,e).

Proof: The argument is by induction. We check that the Lemme is true each

time step M 1s reached.

Step M is reached after executing step M1, Mi, M5, or M6. It is

easy to check the Lemma after M1, Mp, and M6. This is done in Cases

1-3, below. The main part of the proof 1s checking the Lemma after step

Mi, which assigns pair links. This is done in Case k4.

Case 1: Step Ml-is executed.

After Ml, the only linked vertex is e. Vertex e has a degenerate

link that defines P(e,e) = e. Properties (1l)-(4) are easy to check:

Property (1) P(e,e) 1s clearly well-defined.

Property (2) For i = 0, Vertex Se e 1s linked. Also LE O-= MATE (e).
Property (3)-(4) These properties are vacuously true.

In the remaining cases we proceed inductively. We assume that on

entry to step M4, M5, or Mb, Properties (1)-(4) hold for all linked ver-

tices. We show that after the step 1s executed, the Properties still

hold for all linked vertices.

Case 2: Step M6 is executed.

This step changes nothing. So the Properties still hold.

Sdsp3:Md 1s executed.

Step M) assigns a pointer link to a vertex v. We must check Properties
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(1)-(L) hold after M5 for linked vertices x, x@V, and also for v.

} If »Qv, Properties (1)-(4) hold for x on entry to M. Step MD
a does nothing to modify these Properties, SO they cre still valid on exit.

For vertex v, the list P(v,e) 1s defined as (v, MATE (v))* P(LINK(V),e).

— Note LINK(v) @ v, as 1llustrated in Fig. j(c)-(d). Now we verify

(1)-(4) for wv.

) Property (1)
_ The list P(LINK(v),e) is well-defined, by induction. So P(v,e) is

the concatenation of two well-defined lists, and hence 1s well-defined.

. Property (2)
| Property (2) holds for vertices in P(LINK(v),e), by induction. Hence

i Property (2) holds for Vp; and Voie? 1< 1 <n.
1 For 1 = 0, the definition of P(v,e) shows Vo = Vi Vp = MATE (v) .

Property (J)

“ Suppose Voy + 1 1s unlinked for some i in 2 € 1 <n. The following

| equalities show Property(j) holds in this case.

~ P(v,e) = (v,MATE(v)) * P(LINK(v),e) def'n

. = (v,v,) * P(LINK(v), Voy.1) * P(v,,e) induction
| w= P(V,Vpy_q) * P(v,;e) def'n

- For i = 1, P(v,e) = (v,vy) * P(v,,e), by definition. This is

| independent of whether Va 1s linked or unlinked.

Property(4)

— This Property 1s vacuously true, since v has a pointer link.

. Case 4: Step Mt is executed.

This case 1s the main portion of the proof. The argument 1s lengthy,
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and divides into two parts. Part A analyzes the operation of PAIR

LINK, the subroutine called in Mi. The analysis depends on the in-

ductive assumption of Properties (1)-(4). Part B uses the results of

the analysis to verify that Properties (1)-(4) hold on exit from Mi.

Part A: Analysis of PAIR LINK

The conclusions of this analysis form a description of how PAIR

LINK and 1ts subroutine FIRST FREE operate. The description is given

below, as Properties (5)-(13). Then each of these 8 Properties is

proved in turn.

Description of PAIR LINK

(5) Let ¥ be a vertex that is linked on entry to Mi. Then FIRST

FREE (x) returns the value free(x).

(6) In step PIO of PAIR LINK, u, is initialized to the first

unlinked vertex in (base = ,e), for i=1,2.
(7) In the loop PL1-PL2, step PLL varies i according to the sequence

i= 1,2,1,2,.... Step PI2 sets u, to the next unlinked vertex in

P(base, se). If step PL2 is entered with u set to the dummy vertex gq,
PI2 resets = to 0.

) (8) The loop PLO-PI2 terminates when u, assumes a value that has

been assumed by U,, Or vice versa. Tip is set to this common value.

| (9) Tip is an unlinked vertex thet is in P(bese, se) and in

P(base2, e). No unlinked vertex that precedes tip in P(base, se) is

also in P(base,,e). No unlinked vertex that precedes%ip in P(base,,e)

is also in P(bsse, ,e).
(10) In the loop PL3-PI4, variable v assumes the values of all

unlinked vertices that precede .tip in P(bese, ,e) or in P (base ,e)
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The se vertices, eicluding tip, ave fssigned pair links (bese, bce).
-

(11) In the loop PL5-PLO, variable uy essumes the vrlues of £11

- the unlinked vertices that are flagged in PLO-PIZ2 but not linked in

PL3-PI4. These vertices, including tip, are made unflagged.

= (12) In step PLS, an entry for the new pair link (bese, ,base,)
is added to TOP and initialized to Rfp.v 1s any vertex that re-

- ceives the pair link (pase, ,base ) in PL3-PI4, then free (v) = free
_ (MATE (v)) =TOP (base, , base).

(13) In step PL7, some entries in TOP are reset to %ip, co the

— following is true: If x has a pair link (by,0,), then free(x) = free

(MATE (x) ) = TOP(b, ,b,)-

Now we prove the Properties of the description.

- Property (5)

If FIRST FREE returns in step Fl, MATE(x) is unlinked. Property

} (2) implies P(x,e) = (x,MATE(x),...). Hence MATE(x) = free, (x). Thus

_ FIRST FREE returns free (x).

If FIRST FREE returns in step F2, x has a pair link (by 5b,).

Property (4) implies TOP(b, ;b,) = free(x). Thus FIRST FREE returns

; free (x).

If FIRST FREE returns in step F3, both x and MATE(x) are linked,

and x has a pointer link. The classification of Lemma 2 implies MATE (x)

hes a pair link (bysb,). Property (4) implies TOP(b, ,b,) = free

(MATE(MATE(x))) = free (x). Thus FIRST FREE returns free (-)

QED for (3)

Property(G)

- Firstwe introduce a notational convenience: Variables u, base

—
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stand for u, basel or LY base, .

The assignment

u «= FIRST FREE(base)

initializes u to_free(base), by Property (5). Thus u starts out with

the value of the first unlinked vertex in P (base,e). Note u 1s the

dummy vertex (0 1f there are no "real" unlinked vertices in P (base, e).

Step PIO returns if u = Ue In this case we define tip to be

this common value. Note that Properties (7)-(9) are satisfied by this

definition.

QED for (6)

Property (7)

It 1s clear that 1 varies between 1 and 2. We analyze the assign-

ment 1n step PI2,

u ~ FIRST FREE(LINK(MATE(u))),

assuming PI2 is entered with u set to an unlinked vertex in PB (base,e).

First suppose u = 0. From step MO it is clear that MATE(O) = 0,

LINK(o) = 0. So FIR executes the assignment, u «= FIRST FREE(O). FIRST

FREE(0) returns 0 in step Fl. Thus PI2 resets u to the dummy vertex 0.

) Now the main case 1s treated, u # 0 on entry to PL2. We show step

PI2 computes the first unlinked vertex beyond u in P (base,e) and as-

signs this value to u.

| First note that Property (3) can be applied with v = base and

Voy, — Ye Property (3) is valid for v = Base,lby imductioru n  —

linked vertex u has an odd subscript 2501 in P(base,e), by Property (2).
Since u #0, J <n. So if j > 0, Property (3) holds.

Property (3) can be written in the following way:
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_ (14) P(base,e) = P(base,u !') * P(MATE(u),e)

1 ' '

_ Here u wus defined as (basgy, the vertex that precedes u by two in
P (base,e). Also MATE (u) = (base), by Property (2).

. We have proved (14) for J»0. If- J =20, u = (base), and MATE (u) =

base. Since u' = (base) is undefined, we interpret P(base,u') as the

= empty list. Then (14) holds for j = 0. So (14) is valid for any un-

linked vertex uf in P (base, e).

By Lemma 2, MATE(u) has a pointer link. The definition of pointer

- link implies this further decomposition:

(15) P(base,e) = P(base, u') * (MATE(u),u) * P(LINK(MATE(u)),e).

So the unlinked vertex that follows u in P(base,e) 1s free (LINK

(MATE(u))). The assignment of PL2 computes this value, by Property (5).

_ Thus PI2 sets u to the next unlinked vertex in P(base,e)

Property (8)

We begin by proving tnis preliminary result :

) (16) An unlinked verte: u occurs at most once in a list P(base,e).

The proof is by contradiction. Suppose u occurs more than once in

"P(base,e). First we show LINK(MATE(u)) @QMATE(u). Then we use the sup-

_ position to derive a contradiction.

As noted in the proof of Property(T), MATE (u) has a pointer link.

— Thus, as illustrated in Fig. j(c)-(d), LINK(MATE(u)) MATE(u).

Now consider the decomposition (1%), applied to the first occurrence of u
(

in P(base,e). The second occurrence of u is in P(LINK(MATE(u)),e). So by
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Property (2), MATE (u) occurs with an even subscript in P(LINK(MATE(u)),e).

Property (2) also implies that at the time LINK(MATE(u)) was assigned a

link, the vertices with even subscripts in P (LINK (MATE (u)),e) were all

linked vertices. Thus LINK(MATE(u))oMATE(u). This is the desired

contradiction.

QED for(16)

Now we prove Property (8). The loop PIO-PL2 terminates when y as-

sumes the value of a vertex that has already been flagged. Tip is set

to this vertex. We show below that at some point, Ug_y took on the value

tip. For convenience, we take i=l, and argue in terms of y= ou and

Ugg =U,

Case1: Tip 4 0.

Tim wastfllagged in step EPOpoy Fl24y © r uw, was a s -—

signed the value tip. If the assignment was made to Uy then u assumed

the value tip twice in the loop PLO-PI2. Then Properties (6) and (7) imply

tip occurs twice 1n P(base, se). But this contradicts (16). We conclude

that u, previously took on the value tip.

Case2: Tip = 0.

Variable u may assume the value 0 more than once in loop PLO-PL2.

Indeed, by Property (7), once u, assumes the value 0, 1t 1s always reset

to 0 in PI2. However if u # 0, the flag on 0 1s removed before PI2 is

executed again for uy, So for tip to be 0, we must have uy o= us 0.

QED for (8)

Note that Property (8) implies both uw, and u, assume the value tip

in PLO-PI2. Hence tip is in P(base, e).

Property (9)

This Property is illustrated in Fig. L(b). Tip is shown as the first
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unlinked vertex that 1s common to both bas, ,eb ara s_e,se) As

= noted above, Property (8) implies tip occurs in P(base, ,e) and in P(base,,e).

We show below that if t 1s an unlinked vertex that precedestip in P(base, ,e),

B t 1s not in P(base,,e). This suffices to establish Property(g) since
- the argument for t in P(base,,e) is similar.

First note the decomposition (14) holds for u = tip:

= (17) P(base,e) = P(base,_tip') * P(MATE(tip),e).

- This was proved for tip # 0 in the discussion of Property (7). If tip = 0,

define tip'= e and take P(MATE(tip),e) = P(0O,e) to be the null list. Then

NB the decomposition holds for all values of tip.

g SO P(bese,, e) decomposes into two parts. We show that t does not
belong to either-part.

— Suppose t occurs in P(base,,tip'). Thus u and u, assume the value t
before they assume the value tip. This cannot be, since it contradicts

= Property (8).

Suppose t occurs in P(MATE(tip),e). Consider the decompostion(7)

B for base = base,. Vertex t occurs in P(base, ,tip'), by hypothesis, and
_ in P(MATE(tip),e), by supposition. Thus t occurs twice in P(base, ,e). This

cannot be, since it contradicts (16).

= Thus t does not belong to P(base, ,e).
QED for (9)

Property (10)

- In step PL3, variable v is initialized by the assignment

ve FIRST FREE (base).

This 1s the same as the initialization in step PLO.

_ In step Pk, variable v is reset by the assignment



ve FIRST FREE (LINK(MATE(v))).

This 1s the same as the resetting in step PL2.

So it 1s easy to see that v assumes the values of all unlinked

vertices preceding tip 1n P(base,e), and these vertices are linked.

This is illustrated in Fig. L(ec). )

QED for (10)

Property (11)

In the loop PIO-PI2, a vertex 1s flagged when 1ts number 1s assigned

to u, Or u,. The loop terminates when u assumes the value tip, which
was previously assumed by Ug i Again, take i = 1, for convenience.

So the vertices that are flagged in PIO-PI2 are these: the vertices

that precede tip in P(base, ,e); the vertices that precede tip in

P(base,,e); tip and the first k unlinked vertices following tip in

P(base,,e), for some k. The. vertices in the last set correspond to the

k values assigned to u, after tip. |

The vertices in the first two sets are made unflagged and linked

in the loop PL3-PILL.

Now we show that the loop PL5-PL6 processes the vertices in the

third set. Begin by considering the decomposition (17) for base =_base,.
The decomposition shows the vertices in the third set are the first

(k + 1) unlinked vertices in P(MATE(tip),e).

In step PLS, uy 1s 1nitialized by the assignment u, tip. Thus uy 1S

set to the first unlinked vertex in P(MATE(tip),e).

In step PL6, u, is reset by the assignment u,” FIRST FREE(LINK(MATE

(v1). Thus uy takes on values of consecutive unlinked vertices in

P(MATE(tip),e).

So uy takes on the values of the vertices in the third set. These
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- vertices are unflagged. When u, assumes the value of an unflagged
verter , all (k + 1) vertices of the third set have been processed,

- so the loop halts.

_ (Note again the special case, ——when 0 1s the last of the (k + 1)

vertices. When u, assumes the value 0 for the first time, the flag

— is removed from 0. Then in step PIS, y is reset to 0. Now wu has
no flag, so the loop terminates.)

B QED for (11)

— Property (12)

We begin by proving that free(v), the first unlinked vertex in

P(v,e), is tip. Then we prove a similar equality for free (MATE(v)).

First note that_free(base) = tHpr by Property (10), every

vertex preceding tip in P(base,e) is linked after steps PL3-PLh.

- Now consider a vertex v that has the link (base, base,). For

convenience, suppose Vv is in P(base, ,e). Figure 4(c) illustrates this

situation. By definition, P(v,e) = rev P(base, ,v) * P(Base, ,e). e

~ list P(base. ,v) contains no unlinked vertices, since free (base, ) = tip
and v precedes tip. So the first unlinked vertex in P(v,e) is the

- the first unlinked vertex in P(base,,e). Thus free(v) =[ree (base )
= tip, as claimed.

. Next consider a vertex MATE (v), where v has the link (base. ,

base, ) . Wo rewrite the decomposition (14):

P(hase, se = P(base, ,v') * P(MATE(v),e).

Vertex tip occurs after v in P(base, se), whence tip occurs in

P(MATE(v),e). So free (base, ) = tip = free (MATE(v)),es claimed.
. QED for (12)
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Property (13)

Suppose » has a pair link (bys by). The case (bys) =

(Base, ;base,) is txeatedsin Preperty 12). m e xQv.
Note that on entry to PAIR LINK, free (x) = free(MATE(x)) =

TOP(b, sb, ), by Property (4). Let u be this common value.

If u is not linked in PL3-PLk, then free (x) and free (MATE (x))

do not change. Also TOP (by 5b,) is not modified in PL7. So the
three values remain equal, and Property (13) holds.

Suppose u is linked in PL3-PIk. A decomposition similar

to (14) holds:

P(x,e) =P(x,u') * P(MATE(u),e).

The vertices in P(x,u') precede u, so none of them are unlinked.

So the first unlinked vertex in P(x,e) 1s the first unlinked vertex

in P(MATE(u),e). Thus free (x) = free (MATE (u))= tip, by Property (12).

The proof that free(MATE(x))= tip in this case is analogous.

QED for (13)

B. Proof of Properties (1)-(}4)

Now that PAIR LINK has been analyzed, it is easy to check that

Properties (1)-(4) hold for all linked vertices after step Mi.

: If no vertices are linked in PAIR LINK, step PLO returns. Nothing

is changed in step Md. So Properties (1)-(4) still hold after Is.

Now suppose one or more vertices are linked in PAIR LINK. Let

v be such a vertex. We check Properties (1)-(4) for v and for all

vertices x QV, below.

Vertex v has the pair link (base, , base). For definiteness,

choose v in P(base, ,e). ‘Thus P(v,e) = rev P (1 ,v). * P(base,,e).
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This 1s 1llustrated by vertex 11 in Fig. 4(c).

= Property (1)

Property (1) holds for vertices X BV on entry to M4, by induction.

- Since PAIR LINK does not reset any entries in LINK or MATE, the lists

- P(x,e) do not change. Hence Property (1) still holds for vertices :

on exit from Mi.

= In particular, the lists P(base, ,e) and P(e), are well-defined..

Also, P(base, ,v) 1s well-defined, since Property (10) shows v occurs

in P(base, , e). Thus P(v,e) = rev P (bisa) * P (bases,,e) is well-
defined. So (1) holds for v.

QED cor(1)

Property (2)

— Property (2) holds for vertices x Qv, since the only possible

change in the list P(x,e) is that some unlinked vertices become linked.

= Now we check that the vertices with even subscripts in P(v,e),

_ Voy are linked. Writing P(v,e) = rev P(base, , Vv) * P(bese,,e), we
| check the two portions of P(v,e) separately.

-— All vertices in P(base, ,v) are linked. This is a consequence of

Property (10). So the vertices Vy; in rev P(base, ,v) are certainly linked;

= Now we check the vertices v,, in Hfpase emery to M4, the

even-subscripted vertices in P(base, , e) are linked, by Property (2).

Thus vertex v has an odd subscript in P(base, ,e). So in P(v,e), base

. has an odd subscript, and base, has an even subscript. Thus the vertices

Voy in P(base ,e) are the vertices with even subscripts in P(e)
= So Property (2) for base, shows these vertices Vo. are linked.
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Tt rema ins only to che ck that Tol T MATE (wv. ) - This is 1il-
lustireted in Fig. L(c). The proof follows eesily from the properties

just established.

Q,ED for (9)

Property (3)

Property (3) holds for vertices x QV, since the only possible

change in the list P(x,e) 1s that some odd-subscripted vertices become

linked.

Now we check Property (3) for v. Write P(v,e) = rev P(base, , Vv)

P(base,, e). Let Voial be an unlinked vertex in this list. As

noted above, 8ll vertices in P (base, y are linked. So Vail has

an odd subscript, 2j+l, in P(p,€)e So for j »0, the following

equality holds:

P(v,e) = rev P(base, ,v) * P (lohsey, se J ' n

= rev P(base, ,v) * P(base,, Voiq) * P(v,;,e)
Property (3)

= hs ¥* \P( Voip) P(v,,,e) def 'n

So Property (3) holds for v in this cese.

For j = 0, the definition of P(v,e) gives Property (3).

QED for (3)

Property (4)

This Property was proved in the analysis of PAIR LINK, as

Properties (12) and (13).

QED for (4)



. Now the inductive hypotheses have been verified for all cases.

The Lemma follows, by induction.

. QED

“ It 1s easy to conclude from Iemma3 that P(v,e) is an alternating

walk beginning with a matched edge. First a simple induction shows P(v,e)

. 1s a walk. The argument is illustrated in Fig. 3(d) and Fig. 4(c).

Then Property (2) of Lemma 3 shows P(v,e) 1S alternating, with the first

edge matched.

- The proof that P(v,e) 1s simple 1s more involved. It depends on

another relationship between linked and unlinked vertices, proved in

" Lemma 4. Firstwe give a definition extending free to a function of two

variables:

| If v and w are linked vertices and w e P(v,e), then free (v,w) is

_ the first unlinked vertex beyond w in P(v,e).

For example, in Fig. 2(e), free (10,6) = 1; free (10,13) = 0; free (10,10)

~ = T. In general, free (v,v) = free (v).

Strictly speaking, free (v,w) is not well-defined. We have not shown

P(v,e) is simple, so w may occur more than once. We agree to always choose

"the first occurrence of w.

Lemma 4: Suppose v and w are linked vertices and w € P(v,e). Then

free (w) = free (v,w).

) Figure 2(e) 1llustrates the Lemma. Taking v = 10 and w =3, free (2)

. = 1 = free (10,3). This figure also disproves two modifications of the

Lemma that one might conjecture. First, free (3) = 1 #7 =free (10),

- so the conjecture free (w) = free (v) 1s false. Second, one might hope

that P (w,e) is a sub-path of P(v,e). This is not the case in Fig. 2(e).
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The proof' is by induction. We show the Lemma 1s true each time

a link 1s assigned.

Suppose v is assigned a pointer link, so P(v,e) = (v,MATE(v))*

P(LINK(v),e). Let w be a linked vertex in P(LINK(v),e). So free(v,w) =

Cree (LINKJV) ,w). mBy indubtion,_free (w) =nfree(LINK(v),w). n g

these equalities, we see the Lemma holds after a pointer link is assigned.

To check the Lemma after pair links are assigned, we consider four

cases. These depend on whether v and w are linked during the current

execution of PAIR LINK or were previously linked.

Case1: v and w were previously linked.

Suppose prior to the execution of PAIR LINK, u = free(w) = free(v,w).

If u is unlinked after PAIR LINK, this equality still holds. Otherwise,

decomposition (15) derived in Lemma 3 holds for v end w:

P(v,e) = P(v,u') * P(MATE(u),e)

P(w,e ) = P(w,u') * P(MATE(u),e)

If t is the first unlinked vertex in P(MATE(u),e), t = free(w) = free(v,w).

Case2: v was previously linked.

Vertex w 1s linked by PAIR LINK, so MATE (w) was previously linked.

Furthermore, MATE (w) € P(v,e) by (2) of Lemma 3. So by Case 1,free(MATE

(w)) =free(v,MATE(w)). Property (4) of Lemma 3 shows free (w) = free(MATE

(w)). Also free(v,w) =_free(v,MATE(w)), since MATE (w) and w are consec-

utive vertices in P(v,e). Combining equalities we get free(w) = free(v,w).

Case3: w was previously linked.

Vertex v is linked by PAIR LINK. Let P(v,e) =rev P(base,,v) * P(base,,e).

If w e€ P(base, ,v), Case 1 shows free (w) =_free(base, ,v). Since

free(base, ,w) = tip = free(v,w), the desired equality holds.

If w e P(base,, e), Case 1 showsSfree(w)i = free (base, ,w}. e



— P(base,,e) is included in P(v,e), free(v,w) = free(base, ,v), and the
desired equality holds.

Case 4: v and w were previously unlinked.

It is clear from Fig. U(c) that tip =_free(w) = free(v,w).

By induction the Lemma holds each time a link is assigned.

QED

Now we can complete the proof that P(v,e) is en altermating path.

Leos 5: If v is a linked vertex, P(v,e) is simple.

Proof: We assert the lemme 1s true each time e link 18 assigned.

Stppose v is assigned a pointer link, so P(v,e) = (v,MATE(v))

* P(LINK(v),e). The walk P(LINK(v),e)is simple, by Induction. It does

not contain v or MATE(v), since both vertices were previously unlinked.

Hence P(v,e) is simple.

Suppose v is assigned @& pair link. Let F(v,e) = rev P(base. ,v)

» P(base,,e). Both P(base, e) and P(base,,e) are simple, by induction.

So P(base, ,v) is also simple. It sufficesto show P(base, ,v) is disjoint

from P(base, ,e).

Consider the graph before the pair link (base, base) is assigned,

as ill&rated in Fig. 4(b). Suppose w ¢ P(base, ,e) N P(base,,e). We

.show w ¢ P(base ,v). We can choose w to be linked, sinceMATE(w) is also
in the in&section, and w or MATE (w) is linked: Lemma Limplies

free(base, ,w) = free (w) = free(base, ,v). Referring back toFig.4(db),

elther free(w) is tip or free(w) lies beyond tip. Since v is assigned

a link (bcbase,), v does not lie beyond w. Equivalently, wg

P(base,,v).

Thus P(,vk and P(base_,e) are disjoint, and P(vje) is simple.
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By induction the Terma holds each time a link Is &scigned.

QED

Note our results ao npt show that, as one might guess from 7ig. L(bL),

MATE( tip) is the first vertex common to P(base, ,e) and P(base,, e). For
example, consider Fig. 7. Suppose an edge joining D> and 12 is scanned

next. PAIR LINK is called. It sets tip to vertex 1, the first unlinked

vertex common to P(5,13) and P(12,13). These two paths join and diverge

several times before vertex 1. MATE(1) = 2 1s certainly not the first

common vertex. In general, although P(pase, ,e) and P(base,,e) may join
and diverge arbitrarily before joining at tip, the argument in Lemma 5 shows

only linked vertices occur between the intersection and MATE(tip).

We conclude from Lemma 5 that in step M2, when MATCH scans an edge

xy leading to an exposed vertex y, (vy) * P(x,e) is an augmenting path.

Now we analyze step M3 and REMATCH to see how the matching is augmented.

Figure g(a) shows (y) * P(x,e) when REMATCH (y,x) is called in M3.

The hollow vertices Xp141 MAY OT may not be linked. The convention for

half-wavy edges, introduced in Fig. 7, is used. Thus MATE(y) = x but

Figure 9(b) shows (y) *P(x,e) when REMATCH (y,:) returns. The peth

has been remctched and the augmentation is complete.

Lemma 6 shows REMATCH accomplishes the transformation shown in Fig.

8(a)-(b). First we make some definitions. If z 1s a vertex, let M(z)

be the value of MATE(z) when the search begins in Ml. Define a set Z

that grows and shrinks as REMATCH resets MATE, by

z = {M(z)| MATE(MATE(z))# z) .

A vertex in Z 1s at the straight end of a half-matched edge, as illustrated
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Fig. 9

Rematching an augmenting path
— The augmenting cath(y) * P(x»e),

(a) On entry to REMATCH (y,x).
(b) On exit.

_ The path (f) * P(v,z): v has a pointer link.
(c) On entry to REMATCH (f,v). |

(d) On entry to REMATCH (vy LINK (V)) .
(e) On exit.
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Fig. 9 (cont'd)

The path(f) * P(v,z): v has a pair link.
(f) On entry to REMATCH(f,v).

(g) On entry to REMATCH (base, ,base,).
(h) On entry to REMATCH fhass base, ).(1) On exit from REMATCH (Fv.
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by x and 0 in Fig. g(a) and z =v, ., in Fig. 9c).

Lemma 6: Suppose REMATCH(f,v) is called with v a linked vertex, vf an

-— edge, f f P(v,e). Set z to the first vertex in P(v,e) that 1s in 7,

and set m so z = Vom ® Suppose these conditions hold:

o (2) =z in unlinked or v@z.

(b) MATE(v, ) M(v,) for 0 <i < 2m.
Then REMATCH(f,v) returns with MATE reset in the following way:

- (c) MTE(v,, 1)=v,,, MATE(v,,, ) = Vy; q» for 1 <i <m.
(d) MATE(v)= f.

” In Fig.9(a), (y) * P(x,e) satisfies conditions (a) and (b) with

z = 0, m=n. Figure 9(b) illustrates conditions (c) and (d). Clearly

B (c) and (d) imply REMATCH works correctly.
Note vertex z of the Lemma exists. This 1s true because 0 e¢ P(v,e)

NZ, since 0 = Vontl M(e).

] Proof: The proof 1s by induction on the linked vertices v ordered byC.

If m = 0, MATE(MATE(v)) # v. In Rl, MATE (v) is set so (d) holds.

Then REMATCH returns in Rk. Since condition (c¢) 1s vacuous, the Lemma

) 1s true in this case.

Suppose m > 0 and v has & pointer link. Figure 9(c) shows the path

* (f£) * P(v,z) when REMATCH is entered. (Edge vf is shown half-dotted,

meaning MATE (f) may or may not be se-1i; to v.) Condition (b) shows P(-r,z)

is still well-defined by MATE and LINK.

] Figure 9(d) shows the pe%h after MATE (v) end MATE (v, ) are reset In

Rl and R2. We see thet for the recursive call REMATCH(v, ,LINK(V)), vertex
— z stays the same and m decreases by 1. Condition(a) holds because z is

unlinked or LINK(v) Q)v Kz, and condition(b) still holds. So by induction,

REMATCH(v, , LINK (v)) returns with edges rematched as in Fig. 9(e). So
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conditions (c)-(d) are valid when REMATCH (f,v) returns.

Next, suppose m > 0 and v has a pair link. Figure 9(f) shows

(f) #* P(v,z) on entry to REMATCH. Note z ¢ P(base,,e). This is true

because Fig. 4(b)-(c) and condition (a) together imply z does not pre-

cede tip in P(base, ,e) or P(base,,e). Figure 9(g) shows the path after

Rl. Note at this point, v e P(base, ,e) NZ and z « P(base,,e) n Z.

For the recursive call REMATCH (base, ,base,), z 1s reset to v.

Condition (a) holds because z is unlinked o& Based (Q wide, n dition

(b) still holds. So by induction, REMATCH (base, ,base ) returns as shown

in Fig. 9(h).

For the recursive call REMATCH(base, base, ), z 1s reset to v. Con-

dition (a) holds because base, (3 v, and condition (b) is still true. So

by induction REMATCH (bebase, ) returns as shown in Fig. 9(i). So
conditions (c¢)-(d) are valid when REMATCH(f,v) returns.

The Lemma now follows by induction.

QED

We have shown MATCH finds valid augmenting paths and correctly

rematches edges along these paths. The last two lemmes show MATCH

finds all possible augmenting paths. First the search M2-M6 is

proved complete.

7 *mma If a vertex v is joined to e by an alternating path

(Vv, +eesV,, = €) beginning with a matched edge vv, either v is even-

tually linked or the search M-M6 finds an augmenting path.

Note this result shows that if an augmenting path to e exists, M-M

finds an augmenting path. For suppose (£57gsVyseeesVyp = e) 1s an augmenting

path. By the Lemma, either Vy is linked or M-M6 finds' an augmenting path.
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_ In the former case, MP-M6 finds (f) * B(v,e) or some other augmenting path.

Proof: Suppose M-Mb terminates at M without finding an augmenting

path. Suppose V,, 1s linked, for 1 <i« n, and v is unlinked, as

shown in Fig. 10. We derive a contradiction below. This proves the

) lemma

Fig. 10

. We begin-by showing that for all 1 in 1 € 1 € n, vertex Voi 1 1s

linked and_free(v,. ,) = v. The proof is by induction.

= First let 1 = 1. Note vertex vy 1s linked. For suppose the con-

trary. At some point in the search, in step M2, edge VoVy 1s scanned

from the linked vertex Ve Then step M5 is executed and MATE(v, ) =v
- 1s linked. But this contradicts the original assumption that v is un-

linked. We conclude vy 1s linked.

- So B(v, se) exists, and equals (vy , MATE (v, ) = V,e..)s Vertex v is
- the first unlinked vertex in this path. So the inductive assertion holds

for 1 = 1.

Next suppose the assertion 1s true for some 1 and YE where ia.

We prove the assertion for i + 1 and Voisl' At some point 1n the search,

N in step M2, edge Voi 1 Voi 1s scanned with both vertices Vpi-1 and Vou

linked. Then step Mt is executed, and PAIR LINK (Vpi.17 Voi) is called.

RN This guarantees that during the rest of the search, free(v,, ,) = free(v,.).
. (See Fig. U(c)). so v = free(v,.). But P(v,;-€) = (vp; sMATE(v,, ),-- 0).

Thus MATE(v,,, ) = V,;,; 1s linked.

Furthermore, Property (4) of Lemma 3 implies free(v,,, ,) = free(MATE

(Voi) =v. So the inductive assertion holds for 1 + 1.
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By induction, the assertion holds for all 1 inl1< 1 <n. In

particular, v, , is linked andfree(v,.) = v.

So at some point 1n the search, 1n step M2, edge Von 1 1s scanned

with both vertices Von-1 and e linked. Then PAIR LINK(V,,, _17€) is

called. This invocation links Vv = free(v, 1k
But this contradicts the original assumption. So that assumption

1s false, and the Lemma 1s true.

QED

Now we show the algorithm halts with a maximum matching. It is

clear from our discussion that MATCH always halts. Let M be the final

matching 1n MATE.

Lemma 8: If e is an exposed vertex of M, there is no augmenting path

to e.

Proof: g(Witzgell anc Zehn{1969]).n of M1, a search

for an augmenting path to e 1s started. Call this search S(e). S(e)

ends 1n M without doing an augmentation M3. Let D be the set of edges

emanating from linked vertices which are scanned in M2 during S(e). We

first show no edge of D 1s rematched in an augmentation done after S(e).

Suppose the contrary. Let Q(f,g) be the first augmenting path

- MATCH finds after S(e) that includes an edge in D. Let this edge be

w ', with v linked to e. Choose p maximal so VopVopt1 is a matched

edge in P(v,e) N Q. As shown in Fig. 11, Q(f,qg) = (£050 5 ees =

op’? Yogrl _ Vop+1? +++ Won-178 All vertices are shown solid, regard-

less of links. Note the case oq _ Vopt1? Yog+l _ Vor 1s possible. It
1s tr ¢l~d by a similar argument.
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V2m-1

N Vap+2
P(v,e)

. Qf.g) ~

f Wo Wy Vv Woq Woq+ 1 Wog+2 W2n-1 g

Fig. 11

The paths Q(f,g) and P(v,e).

The alternating walk (WgaWy seve sWpg poWog 1 3Vp 0s VonsysesssVor 19)
” is simple, by the choice of p. So Lemma 7 shows wy is linked in S(e).

But then the augmenting path (f) * P(vyse) 1s discovered 1n S(e),

contradicting the assumption e 1s exposed.

_ So no edge of D was rematched after S(e). If the search M-Mb

starting from e 1s repeated after MATCH halts, exactly the same edges

= D will be scanned. No augmenting path will be found. By Lemma 7, there

1s not augmenting path to e in the matching M.

QED
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5. Efficiency and Applications

MATGH requires at most o(v°) time units when executed on a random access

computer. For the search M2-M6 is done at most V times. We show below that

each of the steps MP-M6 uses o(V°) time units persearch.
Step M2 scans an edge emanating from a linked vertex. M2 may be executed

twice for every edge of the graph. This requires ov") time units.

Step M3 calls REMATCH to augment the matching. M3 1s executed at most

once in a search. It requires time proportional to the length of P(v,e),

or O(V) time units.

Step M+ calls PAIR LINK to assign pair links. M+ is executed for edges

joining two linked vertices. So M+ may be executed 0(V) times. In all

but 124 executions, no links are assigned. PAIR LINK returns in step PLO,
in constant time. In at most Hs executions, PAIR LINK links vertices,

requiring O(V) time units (in step PLT). So the total time used in M4 is

o(V°).

Step Md assigns a pointer link. MS may be executed | 5] times. This
requires O(V) time units. ’

Step Mb does no processing for an edge, but just transfers control. M6

may be executed O(d) times. This requires 0(V) time units.

So MATCH requires a total of o(V) time units.

The space needed by MATCH can be seen from the listing in the Appendix.

The adjacency lists of the graph require V + YE words, where E is the number

of edges. The matching, stored in MATE, uses V words. For the search M3-Mo,

2.5 V words plus 2 V bits are used: 1.5 V words in the teble (BASE,TOP)

describing pair links, and V words (LINK) plus 2 V bits (FREE,PIR) for link

information for vertices. Step M 1s implemented in a breadth-first manner,

requiring & queue (LINKQUEUE) of V words.
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| This amounts to 2 Vt 4 E words for the graph and matching, and 3.5

Co V words plus 2 V bits for MATCH itself.

Note procedure REMATCH 1s recursive, so it uses a run-time stack. I:

is easy to see only 1 word (LINK(L)) per recursive call need be saved. Thus

at most 0.5 V words are needed for the stack. The stack may share the storage

allocated to LINKQUEUE, since these two data areas exist at different times.

— MATCH can be used to speed up the scheduler devised by Fujii, Kasami,

and Ninomiya [1969]. They solved this problem: Compute an optimum schedule

S for N tasks to be executed by 2 processors, assuming the tasks have equal

i length and arbitrary precedence constraints. The approach is to construct a
compatibility graph, showing which tasks may be executed simultaneously; find

| a8 maximum matching on the compatibility graph; sequence the matched task pairs
"and the unmatched tasks according to precedence constraints. This algorithm

= was thought to require time proportionalto Nr Fuga, Kasami, and Ninomiya,

1969-erratum]. But the first and last steps may be executed in time N3 and

we have shown the matching can be done in time NS. So the scheduler 1s an

| 53 algorithm.

MATCH can be generalized to find maximum matchings on weighted graphs.

In a weighted graph, each edge has a weight which is a real number. The problem

1s to find a matching with'maximum weight. Matching on ordinary graphs is

the special case of this problem where all edges have the same weight. An

algorithm has been developed which takes time proportional to No log v. This
and other generalizations are currently being investigated and programmed.
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Te Appendix
This section contalns a listing of an ALGOLW program for

the maximum matching algorithm.

Global Storage Declarations

BEGIN INTEGER VE STRI NG 10) NANG .

COMMENT V (ST H ENUMBER OF VERTICES IN THE GRAPH.
F STHE NUMBER (OF FDGES IN THE GRAPH.

NAME | STHENAMECFTHE GRAPH;

INTFIELNSIZE:=3;

READ (NAMELV,E);

COMMENT PROCFSS EACH GRAPHU N T | LEND-OF~CATA CARD IS READS

WHILE v>0 DO

BEGIN

INTEGER ARRAY NEIGHBORIV+1::V+#2%E)

INTEGER ARRAY NEXT{l::V+2%E};

L IGICAL ARRAY FREF,LPTR {(0::V);

INTEGER ARRAY LINK,MATFE (G::V);

INTESER ARRAY BASF (1:2: (V-1) DIV 2,1222);

INTEGER ARRAY TGP (1 : :{V=-1l)DIV2 ) ;

INTEGER ARRAY L INKQUEUE(1 :2V3

INTEGER HEAD ZTAIL yPAIRNUMZLINKVTXy PLACE NBHR,yH;
INTEGER TIPyFaJs

INTEGER ARRAYFFEFVTX (12:2);

COMMENT NF | GHROR CCMNTAINSTHFADJACENCY LISTSUFTIt uRAPH.

NEXT X) | F XIS A VERTEX, THF ADJACENWCYLIST OF X IS

( NE IGHROR (NEXT ( X) )y NEIGHBORINEXTINEXT(X)))yeoe)e
THE LAST VERTFX INTHELISTISNELGABOR{Y),

WHERE NEXT(Y)I SD.

FREE(X) | STRUETF VERTEX X IS UNLINKED.

PTR({X) | SFALSFEI| FVERTEXXH A S APAIK LINK.

] I INK(X) | VERTEX X HAS A POINTERLINK, LINK(X)I S
THE POINTER,

| FVERTEXX HAS APAIRLINK,LINK(X)IS THE

NUMBER OF THE PAIRL I NK .ITISUSEDA S A N

INDEX INTORBASEAND TGP.

MATE (X) | FVFRTIEXX | S ON AMATCHEDEDGE, MATE({X) I S
THE VERTEX MATCHED TO X.

IF VFRTFX XI S EXPOSED,MATE(X)}IS O.

BASE(N, I) | FNI STHENUMBERCFA P A | RLINKyBASE(N,1)

A N DBASEIN,2 )ARFTFEACJACENT LINKED VERTICES
WHICHFCRMTHEPAIR.

TOP(N) [F N IS THE NUMBERCF A PAIR LINK, AND X IS A

LINKED VERTFX WITH LINKNeTHENTOPI(NIISTHE

FIPSTUNLINKED VERTE XINPIXEXPOSEDVTX)yTHE
ALTFPNATING PATH FRCMX TOTHEEXPUSED VERTEX.
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| LI NKQUFUF CONTAINS THE QUEUECF LINKED VEKTICES TN BE
= FXAMINED, - |

HEAD POINTS TC THE BIRST ENTRY IN THE QUEJF.

TAIL POINTS TO THE LAST ENTRY IN THE QUEUE.

_ PAIPNUM STGRES THE NFXT PAIR LINK NUMBER Ti bE ASSIGNED;

— Routines for Reading and Printing a Graph

PROC EDURF RFEADGRAPH; | I |

= COMMENT THIS PROCFOURE READS THE GRAPH AND CONVERTS IT TU ADJACENCY
LISTS IN MNFEIGHROR AND NEXT; |

REGIN INTEFGFR V1I,V2;3 | |

- FOR J:=1 UNTIL V D3 NEXT(I):=0: |

FAR Te:= V#2%F STEP =2 UNTIL V+2 DO | |

RESIN | oo
. READOM(VI, V2); |

NEIGHROR(T):=Vv2

NEXT (TIT) :=NEXT{V]); |
NEXT(V1):=1;

—~ NEIGHBOR (1-1) :=V1; |
NEXT{I-1):=NEXT(V2);

NEXT(V2):=1-1 |

- END;

END READGKAPHS |

PROCEDURE WRITEGRAPH
CCMMENT THIS PROCEDURE WRITES THE ADJACENCY LISTS UF THE GRAPH;

REGIN

- WRITF(™ #); WRITFE(" #);

— WRITE ( Mafededek WoNAME4 Wedded kts) 3
WRITE(Mmy=w,y,np=n_£);

WRITE("ADJACENCY LISTS”);

. FOR [:=1 UNTIL V DON

© REGIN

WRITE(T 21);

Je=NEXT(1);

= WHILEJ>IDN
BEGIN

WR ITEON(NFIGHBOR(J) )

— JI=NFXT (J);
END

END: |

. EN!)WR|TFGRAPH;
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. Routines for Searching for Augmentations

PROCEDURE SEARCH{UINTEGFR VALUE EXPOSEOVTX);
COMMENT THIS PROCEDURE SEARCHES FUR AN AUGHENTING PATH Tu EXPOSEDVTX,

AN FXPOSFD VFRTEXe IT SCANS EDGES NF THE ORAPH, DECIDING WHEN

TY ASSIGN LINKS AND PERFORM AN AMUOMENTATIGN

REGIN

WRI TE { *SFARCH FUR FXPOSFD vIX", FXPOSFDV TX);

COMMENT INTTTALIZE. LINK EXPUSEDVTXy ANDMAKEA LLCTHERVERTICES

UNLTINK EC

FIR 1:=0 UNTIL V HQ FRFE(L) 2=PTRA(] ):=TRUL}

FREFE(FXPOSENVTX):=FALSE;

LINKQUYUF (LY: =FXPUSEDVTX;
PAIRNUM:I=FEAN:=TAIL:=1;

c OMME NT THISLCOPSFTSLINKVTXTD A LINKED VERTEX FRUM LINKQUEUE

AND EXAMINES THE EDGFS EMANATING FROMULUINKVTA

WHILE HKEADC=TA IL _ DO
REGIN

LINKVTX=f INKQUEUE(HFADI)

HEAN:=HCAD+1;

PLACE s=NEXTI{LIANKVTX)S

WHI LE PLACE~=0DO

EG

CCMMENT SFINBHFTO THE YEXT VERTEXADJACENTTOLINKVTX;

NBHR : =NE IGHB0OR (PLACE):
PLACE :=NEXT{PLACE) ;

CCAMENT | FNRHR TS  LINKEDLZASSIGNPAIRLINKS

| F-FREEF(NS4R)THEN PAIRLINK(LINKVTX¢NBHR)

ELSEIY MATE(NBHR)=0 THEN

BEGIN

COMMENT IF NPHR IS EXPOSED AUGMENT THE MATCHING;

. MATF(NRHRJs=L INKVTX

WRITE (WALIGME NT MY,

REMATCHINBHRL INKVTX)

GCTO DONE

END

. COMMENT | FNBHRA N DMATE(NBHR)A REUNLINKED ASSIGN A

PCINTER LINK;

ELSEIFFRFE(MATF(NBHR))THENMAKELINK(LINKVTIXMATE(NBHR) );

FNO WHILEPLACE;

FND WHILEHEAD;

DONE:

END SEARCH;



| Routine for Assigning Pair Links
— PROCEDURE PATRLINK (INTFGFR VALUF +ASEL,RASE2):

CLAMENT THIS PRUCFDURF ASSIGNS PALR LINKS TO UNLINKED VERTICES IN
| P{RASELEXPOSEDVTX) AND P(BASE2,EXPISEDVTIX). BASEL AND EASE?

- ARF ADJACENT LINKED VERTICES,

THESE VARIABLES ARF USED [IN PAIRLINK:

FRFFEVTX (1) IFT IS 1 CR 2, FREEVTX{I) STEPS THKUUGH THF
_ UNLINKED VERTICES IN PUBASELyb XPUSEDVTX)

: TIP IS SET TO THE FIRST UNLINKED VERTEX THAT IS IN

1 orn ROTH PRASEL,EXPOSEDVTIX)AND P(BASEZ,EXPOSEDVIX);

i INTEGER PHUOCFDURE FIRSTFREFE (INTEGER VALLE LU)COMMENT THIS PRCCEOURE RETURNS THE VALUE OF THE FIRST UNL INKED
VERTEX IN PILWEXPOSFDVTX);

RICGIN

| COMMENT STCRFE “THE VALUE IN THF GLOBAL VARIABLE F AND
RETURN Fj

Fe= IF FREFIMATE(L)) THEN MATE(L)

L ELSF
TOP(LINK{IF PTRIL) THEN MATE(L)Y FLSF L))3

-

ENDS

a

FREEVTIX{1):=FIRSTFRFF{RASFLl);

. COMMENT IF THE FOLULIWING TEST FAILS THE PROCEDURE EXITS,
SINCE NO LINKS MAY BE ASSIGNED:

- IF FREEVIX(L1)-=FIRSTFREF[BASF2) THEN
: REGIN

PTRIFRFEVTX(L)) :=FALSE; |
| FREEVTX(2): =F 3

J=2;

COMMENTTHISINOPFLA GSUNLINKFDVFRTICFSALTERNATELY IN

PIRASTL, EXPOSEDVIX) AND P(BASE?, FXPOSEDVIA Je UNTIL THE

FIRST CUMMNN UNLINKEDVERTEX SFUOUNDe A VERTEX S

FIAGGEDBYSFTTING ITSPTRV AL UE T OFALSES

WH TLE PTR (F) DO

REGIN

PTR(F):=FALSFE

Ji=3-J;

COMMENT! F T H FEND OF P{RASFJ,EXPOSEDVTX)HAS BL En RCACHED,

DON'T GO ANY FURTHER;

| FFREEVTX (J)=N THEN J: =3-J;

FREEVTX{3) e=FIRSTFRFE(LINK({MATE(FRFEVTIXI(JIDID));
E-ND;
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COMMENT MAKF ENTRIES [IN BASE AND TOP

TAOP{PATRNUM) :=TIP:=F3 oo
BASF {PAIRNUM,1) :=BASE 1; |

BASC(PAIRNUM,2):=RBASF2 }
WRITE ("PAIR : (",RASEL«BASF2,") TIP [SH, TIP," "3,

COMMIONT RESET PTR TO TRUE FCR VERTICES Asive TIP

OTR{F) :=TRUF; |

WHILE aPTR(FIPSTFRFF (LINK{MATE(Y)})) ) OO
PTF) :=TRUF

COMMENT LINK ALL UNLINKED VERTICES wWwhICH PRECEDE TIP IN

P{RASFEL JEXPOSENVTX) AND PIBASEZyEXPLSEDVIX)

iF FIRSTFREC(RASE(PAIRNUMyI) )»=TIP THEN

BEGIN | |
MAKFL INK{PAIRNUM,F)3

WAT LE FIRSTERECILINK(MATE(F)))~=TIP DO
MAKEL INK (PAIRNUM,F);

CND

CUMMENT RFESFT ENTRIES | N-TOP ARRAY WHICH HAVE JUST BEEN

LINKFD;

FUR I s=LUNTI LPAIRNUM-]1D C

IF ~AFREE(TOP(IL))THEN TOP{1)Y:=T | P ;

COMMENT RUMPPAIRNUMFORTHE NE XTPAIR LINK:

PAIRNUM = PAIRNUM+L;

END5

END PAIRLINK

Routine for Assigning Links

PROCEDUREMAKEL INK (INTEGER V AL U ELyFREEVIX)

COMMENT THISPRNCEDIJREASSIGNS 4 LINK L TO AVERTEXFREEVTX;

BEGIN

FREE(FPFEVIX)S=FALSE;

{ INK(FREEVTX]} = L;

COMMENT PLACFFKEFVTX AT THE FNDOFTREQUEBUEUF LINKED

VERTICES;

TAIL:=TAIL+]1;

l INKQUEUE(TAIL) :=FREEVTX;

| FPTRIFRIEVTX)T HE NWRITE("PTR:")

WRITECNIFREEVT XL," a

END MAKEL INK;
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{ Routine for Rematching

PROC EDUPE REMA TCH ( I NTEGER VALUE F 4L );

oe COMMENT THISPROCECUREMATCHESLTOF ANC CONTINUES REMATCHING

ALONG PL yFXPOSEDVTX)DYCALLINGITS E L FRECURSIVELY;

SF GIN .

— ARITEON(" MATCH" Ful);
He =MATE (tL);

AATE(L) s=F3

L COMMENT IF THE FCLLIWINGT E S TFAILSyTHE REMATCHING ALONG
PIL ,FXPOSEDVTX)| SCONPLETEFS

N [FF MATF(H)=L THFN
- IFPTRIL)T HEN

b BEGIN
COMMENT| fL HAS A POINTERLI NK, RENATCH ALUNL P {Ly EXPGSEDVTX) 3

: MATE (FH) :=L INK(L3

- REMATCH(HL LINKIL)) $
END

| FL SF

. COMMENT IF LL HAS 4 PAIRLINK, REMATCH ALONG P(BASEL,EXPOSEDVTX)
AND P{BASE2, EXPODSEDOVTX)

FNR 1:=1,2 OC

RFMATCH(RASFILINK{L)21) oBASE(LINKI(L) ¢2-1))3

— END RFMATCH;

= Driver Routine

— COMMENT THIS 1ST H EMAINPRQOGRAM

| COMMENT READIMPUT GRAPH A N DSTOREITI NADJACENCYLI STS;

Co READGRAPH;
COMMENT  WRITFCQUTT H EADJACENCY LISTS:

WRITFGRACH

| TO OWRITE("STARTMA T 7 ,TIMF(1));
— CUMMENT INI TIALIZE;

| FOR [:=OUNTILV DOMATF{I):=0;
LINK(O):=0;

“ COMMENT SFARCHFOR AUGMENTINGPATHSTOEACHEXPOSED VERTEX:

FOR [:=1UNTIL VDOIFMATE(I)=0TH E NSEARCHI{I)

WR I TE("FNDMAT" ,TIME(1))

COMMENT WRITEQUTTFEMATCHING:;

i. WRITE ("MAXIMAL MATCHING:"™);
| FOR 1:2=]UNTI LVDOWRITECN{Y ov,] MATE(T]))

| COMMENT REGINTH ENEXT GRAPH;

— READI(NAMEZV,F)3
END

| END

-
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