STAN-CS-72-328 SEL-72-02

An Efficient Implement at ion of
Edmonds’ Maximum -Matching

Algorithm

by

Harold Gabow

June 1972

Technical Report No. 31

This work was supported by the
National Science Foundat ion
Graduate Fellowship Program and

by the National Science Foundation
under grant GJ - 1180

BIGITRL svoveins LECSLETTE

CTERFCED eLeCTRORICE (EECEETORICE

STRANFORE UNIVERSITY - STROFCRL, CRLIFCELIE

r" Ecaatid

STAN—CS—72-328 SEL~72~026

AN EFFICIENT IMPLEMENTATION

OF EDMONDS' MAXIMUM MATCHING ALGORITHM

by

Harold Gabow

JUNE 1972

Technical Report No. 31

DIGITAL SYSTEMS LABORATORY
Dept. of Electrical Engineering Dept. of Computer Science
Stanford University

Stanford, California

This work was supported by the National Science Foundation Graduate Fellowship
Program and by the National Science Foundation under grant GJ-1180.

W

pr

An efficient implementation

of Edmonds' maximum matching algorithm

by

Harold Gabow

Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Abstract

A matching in a graph is a collection of edges, no two of which share a

vertex. A maximum matching contains the greatest number of edges possible.
This paper presents an efficient implementation of Edmonds' algorithm for
finding maximum matchings. The computation time is proportional to V3, where
V-is the number of vertices; previous algorithms have computation time pro-
portional to V4. The implementation avoids Edmonds' blossom reduction by

using pointers to encode the structure of alternating paths.

Introduction .
Some Preliminaries .
Statement of the Algorithm
Proof of Correctness .
Efficiency and Applications
Acknowledgment .

Appendix .

r—-

References .

r— —

S

re

TABLE OF CONTENTS

page no.

31
60
61
62

68

E
1
!

Figure 1:

(a)
(b)
(c)
(d)
Figure 2:
(a)
(b)

()
(a)
(e)

. Figure 3:

Figure k:

Figure 5:

(a)
(b)
()

Figure 6:
Figure 7.
Figure 8:
Figure 9:

Figure 10:

Figure 11:

iii

LIST OF FIGURES

The graph G1 © e e s e s 4 e e o W
Adjacency lists defining Gy . . .
A matching in Gl' o s e 4 4

G1 after augmenting along (1-2,'9,'10‘,8‘,6,53152%1;11')'

page no.

L I
® o s ¢ e o s

w LW W W

A matched graph . . ,, . . .

Values stored by MATCH when searching for an augmenting
path to 13 . . ,

P(8,13), P(12,13)......o

P(6,13)

P(10,13), P(3,13)
MATCH scans edge X¥. « « s o o « &

MATCH scans edge Xy

1
Links assigned in search from 7 .

G, after augmenting along (8,6,5,4,

The search from vertex 11 . . .

G, after 3 edges have been matched

.
- N o

* e o s e e ¢ e . . 11

. 12

P L

e g
E7% 0 IOPIPIPII S
<

REMATCH augments along (12) * P(9,11)24-26

The search from vertex 11 in Edmonds algorithm . . .
Rematching an augmenting path

v,, linked, for 1 i n; v unlinked

2i

The paths Q(f,g) and P(v,e)

28-29
53-54

57
59

1. Introduction

The problem of finding maximum matchings on nonbipartite graphs has
applications in integer programming and optimum scheduling. For example,
Fujii, Kasami, and Ninomiya f1969] have devised an efficient algorithm
for scheduling two processors. The slowest part of their algorithm is a
subroutine for finding maximum matchings.

We present an algorithm for finding maximum matchings on graphs. If
V is the number of vertices in a graph, the running time is proportional
to v’3 The space required is roughly 3.5 V words in addition to the space
needed for the graph and the matching.

The basic approach is a careful implementation of the ideas presented
by Edmonds [1965]. His algorithm has running time proportionalto V4
[Edmonds, 1965, and Fujii, Kasami, and Ninomiya, 1969-erratuml, We improve
this by a factor of V. The speed-up is achieved by eleminating the process
of blossom reduction. We use a system of pointers to store the relevant
structure of alternating paths.

This approach is similar to the labelling techniques in the matching
algorithms of Balinski 19671 and Witzgall and 7shn [1965]. We can imple-
ment Balinski's algorithm in time V3 by maintaining a stack for vertex
selection. However the generality which has made Edmonds' method so suc-
cessful is lost in this implementation.

After summarizing some well-known ideas in Section 2, we state the
algorithm in Section 3. A proof of correctness is given in the next section.
Section 5 discusses time and space bounds and applications of the algorithm.

The Appendix contain a listing of an ALGOL W program for the algorithm.

2. Some Preliminaries

This section summarizes some well-known definitions and results. A
greph consists of a finite set of vertices and a finite set of edges.
An edge 1s an (unordered) set of two distinct vertices. A graph G, is

shown in Fig. 1 (a). In this section Gdenotes an arbitrary graph.

The two vertices of an edge are said to be adjacent. An adjacency
list for a vertex v is an ordered list of the vertices adjacent to v.
The adjacency lists in Fig. 1 (b) define the graph Gl-

A matching in G is a collection of edges, no two of which share a
vertex. Fiqgure 1 (c) shows a matching in Gl' Matched edges are drawn

with wavy lines. In this section M denotes a matching. The pair (G,M)

is a matched graph. M is a maximum metching in G if no matching in G

contains more edges than M. ‘
A walk [Harary,1969] is a list of vertices (vl, v2,...,vn) such

that for lgi<n, v

Vi1 is an edge. A walk is simple if no vertex occurs

more than once in the list. A path is a simple walk. A cycle is a walk
(vl,v2,...,vn) such that n>3, (vl’va""’vn-l) is simple, and v =v,.

Let P = (vl,va,...,vn) and Q =(w1,w2,n-,wn) be paths. The reverse
path of P, denoted rev P,is (vn,vn_l,...,vl). The concatenation of P
and Q, denoted P*Q, ds (v 5v,,PHQV) ¥y s0«0%). b e a
path it 1is necessary that AN be an edge and that vy # wJ for
I<i<n,l<js<m

An alternating walk in a matched graph (G,M) is a walk (vl,ve,...,vn)

such that exactly one of every two edges vi1Vy and \AIRE 1 <1ic<n,

is matched. An alternating path is a path that is an alternating walk.

An exposed vertex is a vertex that is not in any edge of M. An augmenting

yath is an alternating path whose ends 1 and v, are exposed vertices.

r—-'*w—w.

(a)
(v)
(e)
(d)

1 1
9
12 8 2
10
6 4
7 (a) 3
(2,5:6:8311) T: (3)6)
(4,1) 8- (9,10,1,6,11)
(4,7) 9: (10,12,8)
(51?,3) 10: (9,]2,8)
(6,1,4) 1: (1,8)
(8,7,5,1) 12: (9,10)
2
6
4
9
() 12 8
10
, 6
(\‘ Fig. 1

The graph Gl'

Adjacency lists defining Gl'
A matching in Gi.

G, after augmenting along (12,9,10,8,6,5,4,2,1,11).

(d)

It (vl’vé""’vn) is an augmenting path in (G,M), a larger matching
M' is obtained by replacing the matched edges Voi¥pi41 1<i<n, with
the unmatched edges v, ,v,;, 1sisn. The construction of M' from M is
called an augmentation. 1In Fig. 1 (c¢), (2, 9, 10, 8, 6, 5, 4, 2, 1, 11)

is an augmenting path. Performing an augmentation along this path gives
the matched graph with no exposed vertices shown in Fig. 1 (d).

Augmenting paths are important for the following reason.

Lemma 1: A matched graph (G,M) has an augmenting path if and only if M

is not maximum.
Proof: See [Berge , 1957] or lEdmonds, 1965].

As a consequence, a maximum matching can be obtained by repeatedly
searching for augmenting paths and performing augmentations. The algor-
ithms presented in [Balinski, 196771, [Berge, 19577, [Witzgall and Zahn,
1965], and the algorithm described in the next section are organized
in this manner.

3. Statement of the Algorithm

This section presents an efficient algorithm for finding maximum
matchings on graphs. First the overall strategy is described. Then the
data structures used by the algorithm are discussed and illustrated,and
the strategy is elaborated. Next the algorithm is presented in full
detail. An example of how it works on a particular graph is given.
Finally an application of Edmonds' algorithm to the same graph is dis-
cussed, and the two algorithms are compared.

The algorithm is called MATCH. The input to MATCH is a collection
of adjacency lists defining a graph. The output 1s a maximum matching

for the graph, stored in an array MATE. MATE contains an entry for each

vertex. If u and v are vertices, edge uv is matched if and only if
MATE (u) = v and MATE (v) = u.

MATCH begins with the empty matching, that is, all vertices are
exposed. It searches for an augmenting path. If such a path is found,
the matching is augmented. The new matching contains 1 more edge than
the previous one. Next, MATCH searches for an augmenting path for the
new matching. This process is iterated until no augmenting path is
found. At this point MATCH halts with a maximum matching.

MATCH searches for an augmenting path in the following way. First
an exposed vertex e is chosen. MATCH scans edges to find alternating
paths to e. _A vertex v is said to be linked when MATCH finds an alter-
nating path that starts with a matched edge and goes from v to e. Let
such a path be P(v,e) = (v, vl,u.,eL sO Wy is a matched edge. MATCH
sets an entry in an array LINK for every linked vertex v. The path P(v,e)
can be computed from LINK (v). If an edge joining a linked vertex v to
an exposed vertex f # e is ever scanned, MATCH finds an augmenting path
(f) * P(v,e). If no such edge exists and no more vertices can be linked,
there is no augmenting path.

Figure 2 illustrates the results of such a search. A matched graph
is shown in Fig. 2(a). Vertex 13 is exposed. Figure 2 (b) shows the
values MATCH stores when it searches for an augmenting path to 13.
Figures 2(c)-(e) show several paths P(v,e) defined by these values.

The following paragraphs explain how LINK and the associated arrays
define these paths.

The LINK entry for a linked vertex is interpreted in one of three
ways, depending on the link type. The three link types are degenerate,

pointer, and pair. The table in Fig. 2(b) indicates 11 vertices are

vertex mate link type link pair link basel _ base2 top
1 2 unlinked - 1 . 8 12 1
2 1 _pointer 13 2 2 6 1
3 L pair 2
L 3 pointer 2
) 8 pair 1
6 9 pair 1
T 10 unlinked -
8 5 pointer L
) 6 pointer L
- 10 T pointer 5
11 12 pair 1
12 11 pointer 9
13 - degenerate -

(v)

g |

10
P(10,13)

(e)

10 1

(d)

Fig. 2
A search from vertex 13
(@) A matched graph.

(b) Values stored during
search.

Some paths defined by
these values :

() P(8,13), P(12,13)
(d) P(6,13).
(e) P(10,13), P(3,13).

linked in one of these ways. The remaining 2 vertices, vertex 1 and
vertex 7, are unlinked. This means there is no alternating path starting
with a matched edge that goes from 1 or 7 to 13. Note that in Fig. 2(c)-
(e), the unlinked vertices are drawn hollow. This convention is used

in this paper in all illustrations of ;ﬁatched graphs with links.

Now we describe the three link types.

Degenerate - In the search for an augmenting path to an exposed
vertex e, MATCH assigns a degenerate #ink to e. This defines a de-
generate alternating path, P(e,e) = (e). Note that if e is adjacent to
an exposed vertex f, (f) * P(e,e) 1s an augmenting path.

Figure 2(b) -indicates that vertex 13, and no other vertex, has a

degenerate link.

Pointer - If vertex v has a pointer link, LINK (v) is the number
of another linked vertex. So a path P(LINK(v),e) is defined. The path
P(v,e) is defined as (v, MATE (v))* P(LINK (v),e).

Using this definition and the values given in Fig. 2(b), we compute
P(8, 13):

P(8,13) = (8,MATE (8)) * P(LINK (8),13) = (8,5) * P(k4,13).

P(4,13) = (4,MATE (4)) * P(LINK(L), 13) = (4,3) * P(2,13).

P(2,13) = (2,MATE (2)) * P(LINK (2),13) = (2,1) * P(13,13).
= (2,1,13).

P(8,13) = (8,5,4,3,2,1,13).

Note vertices 8,4 and 2 all have pointer links, so the computation is
valid. The path P(8,13) is illustrated in Fig. 2(c). Also shown is

P(12,13), which is defined in a similar way by pointer links.

g

r——

Pair - For vertex v to have a pair link, MATE (v) must have a pointer lin.
This is illustrated by the values given in Fig. 2(b).

If vertex v has a pair link, LINK(v) is an index into the parsllecl
arrays BASEl and BASE2. The pair of-values BASEl (LINK (v)), BASEZ2 (LIVK
(v)) specifies vertices that define P(v,e).

As an example, consider vertex 6. The path P(6,l3) is shown in Fig.

2 (d). Note that(BASEl (umk(~)), BASE2 (LINK (6)))= (8,12). This pair
defines P(6,13) as follows: Vertices 8 and 12 are both linked. Hence
there are alternating paths P(8,13) and P(12,13) (see Fig. 2(c)). Vertex
6 is in P(12,13). Let P(12,6) denote the portion of P(12,13) from 12 to 6.
Thus P(12,13) = (12,11,9,6). Then P(6,13) is defined as the path rev
P(12,6) * P(8,13). We can compute P(6,13) as follows:

P(6,13) = rev (12,11,9,6) * P(8,13)

(6,9,11,12) * (8,5,4,3,2,1,13)

- (6,9,11,12,8,5,4,3,2,1,13) ,
This is the path illustrated in Fig. 2(d).

In the same way, P(3,13) can be computed. The pair link of vertex 3
specifies the vertex pair (2,6). Since vertex 3 is in P(6,13), the path
P(3,13) is defined as rev P(6,3) * P(2,13). This path is shown in
Fig. 2(e). The figure also shows the path P(10,13), which can be computed

using the rules for pointer and pair links.

There is one other array shown in Fig. 2(b), TOP. This array has
an entry for each pair link. An entry in TOP contains the number of an
unlinked vertex. MATCH uses TOP to compute the unlinked vertices in
paths P(v,e). For instance, ‘;if vertex v has a pair link, then TOP

(LINK (v)) is the first unlinked vertex in P(v,e). Thus in Fig. 2, the

first unlinked vertex in P(3,13) is 1 = ToP (2) = TOP (LINK(3)).

10

It is possible that P(v,e) does not contain an unlinked vertex.
In this case, if' v has a pair link, TOP (LINK (v)) is set to the dummy
vertex 0.

TOP is maintained because it speeds up the computation. Using
TOP, MATCH finds the first unlinked vertex in P(v,e) with a table look-
up* Without TOP, this operation would involve computing vertices in
P(v,e) until an unlinked vertex is reached. Thus TOP enables MATCH to
do in constant time what might otherwise require time proportional to

the number of vertices.

Now we can give a more detailed description of how the algorithm
searches for an_augmenting path. A search begins by choosing an ex-
posed vertex e, for which no search has previously been made. Vertex
e 1s given a degenerate link. All other vertices are initially unlinked.
MATCH repeatedly scans edges that emanate from linked vertices. Let x
be a linked vertex, and let xy be an edge emanating from x. When MATCH
scans xy, it processes the edge in one of four ways, depending on
vertex y:

(1) If y is an exposed vertex distinct from e, MATCH augments the
matching along the path:(y) * P(x,e). The LINK array is used to compute
P(x,e), as described above. This process is illustrated schematically
in Fig. j(a)-(b). After the augmentation, MATCH starts a new search.

(11) If" y is matched with a vertex v = MATE(y) and both vertices
are unlinked, v is given a pointer link, LINK(V)o—x. This process 1is il-
lustrated schematically in Fig. j(c)-(d). After linking v, MATCH con-
tinues the search from e.

(iii) If y is a linked vertex, the pair link (x,y) is assigned

to certain unlinked vertices. The process is illustrated schematically

—

X X
y y
(a) (b)
——
X LINK(v)
[
y MATE(v) P(v,e)=(v,MATE(V))*P(LINK(v),e)
MATE(y) \
(c) (d)
X
y
MATE(y)
(e)
Fig. 3

MATCH scans edge xy.
(a)-(b) y exposed:augment.

(c)-(d) y, MATE(g) unlinked: assign pointer link to v = MATE(y).

(e) y unlinked, MATE(y) linked: no new links.

12

(b)

P(vire)

=rev P(base, vy)’P(base;se)

(c)

Fig. &4
MATCH scans edge xy
(a) y linked: call PAIR LI (y,x).

(b) o and.u2 step through unlinked vertices to find tip.

(c) v steps through unlinked vertices preceding tip,
assigning pair links. -

e |

 r— I

13

in Fig. 4(a)-(c) for (x,y) = (basel, base& First a vertex tip is
computed (Fig. 4(b)). Tip is the first unlinked vertex that is in
both I%ygggi, e) and P(Qggge,e). TOP is used to compute tip efficiently.
Next the liM{({g@&g%) is assigned (Fig. 4(c)). It is assigned
to the unlinked vertices that precede tip in P(Qggafe) or in P(Qiige,e)
After assigning these pair links, MATCH continues the search from e.

(iv) If y is not in any of the classifications (i) - (iii), MATCH

takes no further action for edge xy. (see Fig. 3(e)). The search from

e 1s continued.

The search from e ends either when MATCH augments the matching or
when MATCH runs out of edges to scan. In the former case, e is matched'
with a vertex during the augmentation; in the final matching e will be
matched, although not necessarily with the same mate. 1In the latter case,
e 1s exposed when the search ends; in the final matching e will still be

exposed.

Now we present MATCH in full detail. First specifications for the
data and the storage areas are given. Then the algorithm is stated.

The vertices of the input graph are numbered from 1 to V. MATCH
also uses a dummy vertex 0 for boundary conditions.

The graph is stored as a collection of adjacency lists. (An ad-
jacency matrixz could be used instead, with no loss of speed). The order
of the vertices in the adjacency list of v gives the order in which the
edges emanating from v are scanned.

The output of the algorithm is in MATE. MATE specifies a matching
this way: If u, v £ 0 are vertices, MATE (u) = O if and only if y ig

exposed; edge uv is matchdd if and only if MATE (u) =v and MATE (v) = y.

14

Intermediate matchings developed by the algorithm are stored in MATE in
the same way.

There are two bits for each vertex specifying the link type. One
bit specifies whether or not a vertex is linked. If it is linked, the
second bit indicates the link type, pointer or pair. (The degenerate link
type need not be specified.) In the statement of the algorithm below,
these bits are referenced implicitly in tests such as, "If the vertex is
linked, then. ..". (For example; see step M 4.)

The LINK array has an entry for each vertex. If a vertex v is linked
in the current search (as indicated by the linked/unlinked bit described
above), LINK (v).defines P(v,e)..If v is not linked in the current search,
MATCH does not use LINK (v).

In the table of Fig. 2(b), pair links have one level of indirection:
the linking information is stored in BASE1l and BASE2, and a LINK entry ,
addresses this information. This is also how the ALGOL implementation
of MATCH works. In the remainder of Section 3,and in Section k4, we are
less formal. Ignoring the indirection, we write LINK (v) =(blﬂb),
instead of b, = BASEL (LINK(v)), b, =BASE2 (LINK(v)). This is done
only for convenience.

The TOP array has an entry for each vertex pair(biﬂb) that has
been assigned as a pair link in the current search. It is easy to see
.there are at most L%—]ij entries in TOP: Imany search, 1 vertex has a
degenerate link. Of the remaining V-1 vertices, half may have pointer

links and half may have pair links. So at mostt—aﬂ vertices have

pair links. Thus there are at most'yzl.ldistinct vertex pairs (bl’b2)

having entries in TOP.

We adopt a convention for addressing the entries in TOP, similar to

15

the one used for LINK. If v has a pair link addressing the pair
‘(pl,bg) we write TOP (bl,bg) instead of TOP (LINK(v)).

Entries in the TOP array are made and modified by the subroutine
PAIR LINK. If (bj,b,) is a pair link, TOP (b;b,) has the following
properties: TOP (bl’ba) is the first unlinked vertex in P(bl,e); it
is also the first unlinked vertex in P(be,e). If v has the pair link
(b),b,), TOP(b),b,) is the first unlinked vertex in P(v,e); it is also
the first unlinked vertex in P{MATE(v),e). If TOP (bl’bz) is the dummy
vertex 0, there is no unlinked vertex in any of these paths.

The algorithm is presented below. A 'high level" language similar
to the one developed by Knuth [1968] is used.

The algorithm consists of four routines. MATCH is the main driver;
it initiates and coordinates searching for augmentations. PAIR LINK
assigns pair links to vertices, using FIRST FREE to find unlinked ver-
tices. REMATCH performs eugmentations by rematching edges.

NATCH cbnstructs @ maximum matehing fmr a gmaph, s a
search for an augmenting path to each exposed vertex. It scans edges
of the graph, deciding to assign new links or to augment the matching.
M. [Initialize.] Read the graph into an adjacency structure,
numbering the vertices 1 to V. Create a dummy vertex 0. For
0sis V set MATE(i) « 0; alternatively, start with an arbitrary
matching in MATE. Mark 0 as unlinked, but set LINK(O)&.

Ml. [Start a new search]. Choose an exposed vertex e that has not
been previously examined in Ml. Mark it as linked. If no such

e exists, halt; MATE contains a maximum matching.

M2. [Scan a new edge.] Cheose a linked vertex x and an edge

emanating from it, xy. Thisvertex-edge pair must not have been

16

scanned previously in M in this search. If no such pair exists,
erase all links and go to ML (e is not on an augmenting path, so

a new search is begun).

M3. [Augment the matching.] If y is exposed, set MATE (y)ex,
call REMATCH (y,x), then erase all links and go to M1 (REMATCH
completes the augmentation along (y) * P(x,e). See Fig. 3 (a)-(b)),
Mi. [Assign pair links.] If y is linked, call PAIR LINK (y,x)
and then go to M (PAIR LINK assigns pair link (y,x) to

unlinked vertices in P(y,e) and P(x,e). Sce Fig.l),

M5. [Assign a pointer link]. Set wMATE (y). If v is unlinked,
mark v as having a pointer link, set LINK (v)=x, and go to W

(See Fig. 3(c)-(d)).

M. [Get a new edge.] Go to M (y is unlinked and MATE(y) is linked,

so this edge adds nothing. See Fig. 3(e)).

FIRST FREE (v) 1is a subroutine of PAIR LINK. The parameter
v is a linked vertex. FIRST FREE (v) returns the value of the
first unlinked vertex in P(v,e); if none such exists it returns
the dumy vertex 0.
Fl1. [Return MATE.7 If MATE(v) is unlinked, return MATE (v).
F2. [Return TOPJ If v has & pair link, set (bl,bQ)-LmK(v) and
return TOP(bl,be).
F3. [Return TOP] (MATE(+v) must have a pair link.) Set (bl,ba)o-

LINK(MATE(v)) and return TOP(bl,bz).

PAIR LINK (basel,basea) assigns the pair link (basel,basee)

to unlinked vertices. The parameters .basi and bas_% are linked

vertices joined by an edge. PAIR LINK sets tip to the first

r—-

17

unlinked vertex in both_P('basel,e) and P(base ,e). Then it links
all unlinked vertices preceding tip in_P(basel,e) and in P(baseE,e).
See Fig. L(b)-(c).

PLO. [Initialize.) Set u,~FIRST FREE(base) for i=1,2, If u =u,,
return (no unlinked vertices can be linked). Otherwise flag

u) i=l’2-

i
PLl.[Loop.] Do PI2 for 1 alternating between 1 and 2. Each

time 1 is set to 1 remove any flag from the dummy vertex 0.

PL2. [Find vertices to link.] Set wu,~FIRST FREE(LINK(MATE(ui)))

(ul is set to the next unlinked vertex in P(base ,e)). 1f u is
flagged, set tipeu, flnd go to PL3. Otherwise flag ui, reset 1 according to
PLl 5and go to PL2.

PL3. [Link vertices in P(,e).] (Tip is now set so all unlinked
vertices between lgasei and tip can be assigned pair links. gee

Fig. 4(v).) Set w~FIRST FREE(ga_as_e_l) and do PLk. Then set

v~FIRST FREE (m) anch do Pit.o t o PL5.

PLh. [Link v.] If v#tp,mark v as having a pair link, set
LINK(V)"(PEEJ_’EL“.Q): unflag v, set w-FIRST FREE(LINK(MATE(v)))

and go to Pk, (See Fig. 4(c).) Otherwise continue a6 specified

in PL3.

FL5. [Set TOP] Set ul'-’I'OP(y_a_s_e_l,pg_ssQ).-m (Tip is the first
unlinked vertex in P(p_g_ggi,e))e

FL6. [Remove flags.) Unflag u,. Set u, ~FIRST FREE(LmK(mm(ul))).
If ulis flagged go to PL6.

PL7. [Update TOP.] For each pair link (bl’be) that has been assigned
in the current search from e, if TOP (b]_’be) is linked set TOP (bl’be)"

tip. has become the first unlinked vertex in P(basel,,e)).

18

PI8. [Return.: Return.

REMATCH (f,v) rematches edges along an augmenting path.
The argument f 1s a vertex which has become exposed; v is
a linked vertex which will be rematched to f. REMATCH 1s a recur-
sive routine.
Rl, [Match f and v.] Save weMATE(v). Set MATE(v)~f.
R2. [Rematch a path.l If MATE(w)=v and v has a pointer link,
set MATE(w)eLINK(v), call REMATCH(w,LINK(v)) recursively, and
then return.
R3. [Rematch two paths.] TIi' MATE(w)=v and v has a pair link,
set (bl,be)—bINK(v), call REMATCH(bl,be) recursively, call
REMATCH(b2,b1) recursively, and then return.
R4. [Return.] (MATE(w) # v so a path has been completely rematched.)

Return.

We illustrate this algorithm by showing how it works on the graph
Gl of Fig. 1(a). The input to MATCH is the collection of adjacency lists
in Fig. 1(b). MATCH constructs the matching shown in Fig. 1(d).

Initially 8ll vertices in G, are exposed. MATCH searches for an

1
augmenting path to vertex 1. The first edge scanned, 12, forms such
a path. An augmentation is done by placing 12 in the matching. MATCH
sets MATE(1)¥2, MATE(2)-3.

In a similar manner, edges 34 and 56 are matched. The matched
graph at this point is shown in Fig. 5(a).

MATCH starts the next search at exposed vertex T. The links as-

signed in this search are shown in Fig. 5(b). First MATCH scans edge

73 and assigns @ pointer link to vertex 4. Next, MATCH chooses

19

1 1

8
12
10
6
! (a) 3
“vertex link

L 1
6 4
T dgn.

(b)

(e)

Fig. 5
(a) Gl after 3 edges have been matched.
(b) Links assigned in search from7.
(c) G, after augmenting along (8,6,5,4,3,7).

20

arbitrarily to scan an edge from vertex 4. This edge, 45, links

vertex 6. Choosing arbitrarily again, MATCH scans edge 68. This com-
pletes an augmenting path, (8) * P(6,7). The matching which results from
the augmentation is shown in Fig. 5(c).

The matching in Fig. 1l(c) results when MATCH searches frou vertex
9 and matches edge 9$-10.

The last search is from vertex 11. Figures 6(2)-(f) show the inte:-
mediate states of' the search. Each state is illustrated by & graph and
tables. The graph shows the edges of Gl that have been processed. The
tables show the entries that have been made in LINK and in TOP. The
graph also indicates paths P(v,1l) for newly linked vertices v.

Figure 6(a) shows the state of the search after four pointer links
have been assigned. When MATCH scans edge 34, pair links are assigned
to vertices 5 and 7. The result is shown in Fig. 6(b).

Now we give a detailed account of how vertices 1 and 8 are linked,
and Fig. 6(c) is obtained. MATCH scans edge 24. Since vertices 2 and
b are linked, PAIR LINK (4,2) is called to assign the link (4,2).

PAIR LINK first computes_tip in steps PLO-PI2. Tip is found to be
0, as follows:

1. In step PLO, the first unlinked vertex in P(4,11) is computed
to be vertex 8. This computation is done by the invocation FIRST FREE (4).

" Vertex 8is flagged.

2. Similarly vertex 1, the first unlinked vertex in P(2,11), is
computed and flagged in step PLO.

3. 1In step PI2, the next unlinked vertex in P(4,11) is computed
to be 0. Vertex 0 1is flagged.

L. In step PL?, the next unlinked vertex in P(2,11) is computed

i
L
L

P(3,11)
N

(b)

(a)

21

vertex

link

11

vertex

link
11

(4,3)

11

dgn.,

=

e

22
vertex link pair link top
1 (4,2) (4,3) 0
2 11 (L,2) 0
3 6
L 6
5 (4,3)
6 11
T (&,3)
8 (k,2)
10 8
11 dgn.
vertex link pair Link' ‘top
1 (4,2) | | (4,3) 0
2 11 (4,2) 0
3 6 (10.8) 0
L 6
5 (4,3)
6 11
T (,3) |
8 (L,2)
9 (10,8)]
10 8
(e 11 dgn.
1
2
|
!
(12)°P(8, 1) Fig. 6

The search from vertex 11.
Vertices 2,6,3,4 get pointer links.
Edge 34 links vertices 5,7.

Edge 2k links vertices 1,8.
Vertex 10 gets a pointer link.
Edge 8-10 links vertex 9.
Edge 9-12 completes augmenting
path (12) * P(9,11).

"

o~~~ o~~~

l—h(DgO [oz]

23

to be 0. Since 0 is already flagged, tip is set to 0.

Tn steps PL3-PI4, PAIR LINK assigns the link (4,2) to vertices 1 and
8. The flags on these vertices are also removed. The value tip = 0 is
used in this process.

In steps PL5-PLo, PAIR LINK removes the flag remaining on tip = 0.
Now 8ll flags have been removed.

PAIR LINK sets TOP(4,2) to 0 in step PL3. This indicates there are
no unlinked vertices in P(4,11) or P(2,11).

PAIR LINK resets TOP(4,3) in step PL7. Vertex 6, the previous value
of TOP (L,3), is now linked. Since there are no longer any unlinked
vertices in P(3,11) -or P(4,11), TOP(4,3) is reset to O.

Finally PAIR LINK returns, in step PI8. Now MATCH continues scanning
edges. Figures 6(d) and 6(e) show how vertices 10 and 9 are linked. Figure
6(f) shows how MATCH finds the augmenting path (12) * P(9,11) = (12,9,10,
8,6,5,4,2,1,11).

Subroutine REMATCH performs the augmentation. Figures 7 (a)-(h) show
the intermediate states of the augmentation, Each state is illustrated
by a graph and a stack. The stack is the stack of recursive calls to
REMATCH. The graph shows a setting of MATE. As usual, vertices u and v
are joined by a wavy line if and only if MATE(u) = v and MATE (v) = u.
Half-wavy lines also appear in the graphs, such as edge 68 in Fig. T7(e).
If uv is an edge that is wavy at u and straight at v, then MATE(u) = v
but MATE(v) # u. Thus in Fig. 7(e), MATE(6) = 8, MATE(8) = 10.

Figure 7(a) shows the matching when MATCH calls subroutine REMATCH.
In step M3, MATCH sets MATE(12) to 9, as indicated by the half-wavy line
between 12 and 9. Then REMATCH(12,9) is called, as shown in the stack.

r

The path P(9,11) is shown in this-figure to clarify the operziion of REMATCH(12,%)

24

P(9,1%
LINK(9)=tf8)

REMATCH (12,9)]

(a)

MATCH (10,8)
REMATCH (8,10

P21~~~
LINK(2)=(11)

MATCH (4,2)
REMATCH (2,4)
REMATCH (8,10

25

P(11.11)= - _ _
LINK(1)=dgn. " = ==~__

(d)

LINK(4)=6 7 5)

-
—
. LINK(6)=11
7 5
3 4

[REMATCH (1,11)
REMATCH (2,5)

REMATCH (8,10)

REMATCH (2,L)

REMATCH (8,10)

REMATCH (5,6)

MATCH (8,10)

26

(9)

(h)

Fig. 7
REMATCH augments along (12) * P(9,11)

(#)-(g) The invocation of REMATCH at the top of the stack is being entered.
The setting of MATE is shown in the graph.
(h) The augmented matching.

h‘r—v———«

—

27

Pigure 7(b) shows the results of' REMATCH(12,9). Vertex 9 is completely
matched with vertex 12. Also two recursive calls are in the stack. Note
that P{9,11) is defined as the concatenation of two paths, rev P(10,9)
and P(8,11). The two calls on REMATCH process P(9,11) by processing
these two paths.

The invocation REMATCH(10,8) processes P(8,11) in a similar manner,
since vertex 8 has a pair link. The results are shown in Figure 7(c).

Figure 7(d) shows the results of REMATCH(4,2). Vertices 2 and 1
have new mates. A new recursive call is in the stack. Note that P(2,11)
is defined as the concatenation of (2,1) and P(11,11). The recursive call
REMATCH(1,11) completes the processing of P(2,11) by processing P(11,11),

Figures 7(e)-(g) illustrate the other invocations of REMATCH, REMATCH
finally returns with the matching shown in Fig. 7(h).

At this point there are no exposed vertices. MATCH halts in step
M1, having constructed a maximum matching. Note this matching is identical

to the matching in Fig. 1(d).

For comparison we briefly describe how Edmonds' algorithm finds the

same matching in G The algorithm develops the matching shown in Fig. 1(c)

1|
in a manner similar to MATCH. We discuss the search for an augmenting path
to vertex 1. This search is illustrated in Fig. 8. The six graphs in
Fig. 8(a)-(f) correspond to those in Fig. 6(a)-(f) for MATCH.

Edmonds conducts a search by growing a planted tree. Such a tree

has an exposed vertex for a root. Its edges are alternately unmatched
and matched. The planted tree in Fig. 8(a) is grown. It is easy to see
the structure of planted trees corresponds to that of pointer links.

When edge 3% is scanned in Fig. 8(a) it completes a cycle (6,7,3,4,5,6,).

28
“11
b O
8 1
a 2
(a) - (b) (c)
b C O c
9 12
10
(d) (e))

Fig. 8

The search from verteggll in Edmonds algorithm
(a) A planted tree. ,
(b) Blossom step for 34 yields a pseudovertex a ={6,7,3,4,53.
(c) Blossom step for 2a yields a pseudovertex b = {11,8,2,2,1}.
d) A planted tree in the reduced graph.
2e) Blossom step for bl0 yields a pseudovertex c = (10,b,91.
(f) Augmenting path (12 ,c¢) in the reduced graph.

=

|

r

29

12

(9)

"

Fig.

(cont’d)

) Augmentation in reduced graph.

i) Pseudovertex b 1s expanded.

(9
(h) Pseudovertex c is expanded.
(1
(]) Pseudovertex a is expanded.

30

Edmonds defines a blossom as an odd number of vertices joined by a cycle
that is maximally matched. Vertices 6,7,3,4, and 5 form a blossom. The
subgraph of Gl consisting of these vertices and the edges between them
are shrunk into a single vertex, a, called a pseudovertex. This results
in a reduced graph G, . The planted tree “in G, is shown in Fig. 8(b).
The pseudovertex a is drawn hollow.

Now the problem is to find a maximum matching in the reduced graph.
Suppose this has been done, as shown in Fig. 8(i). The pseudovertex a can
be expanded into the original cycle (6,7,3,4,5,6,). The matching for these
vertices can be chosen from the edges of the cycle, as shown in Fig. 8(j).
In general, this process can be carried out because one vertex of a blossom
is matched by an edge leading into the pseudovertex. The even number of
vertices that remain can be matched among themselves.

The intermedieste steps that construct the maximum matching in Gi are
similar. They are illustrated in Fig. 8(b)-(j). Two more blossoms are
shrunk (Fig. 8(c), (e)) and then expanded (Fig. 8(h), (j)). The end result,
showvn in Fig. 8(j), is identical to the matching constructed by MATCH.

The shrinking and expansion operations in Edmonds' algorithm are
time consuming. To construct a reduced graph for each blossom requires
O(VB) steps per blossom. The result is a VLL algorithm. MATCH avoids
shrinking by recording the pertinent structure of blossoms in LINK and TOP.

The factor of V speed-up results from this.

31

k. Proof of Correctness

We show MATCH operates in & valid and complete fashion. By valid
we mean MATCH finds valid augmenting paths and correctly rematches edges
along these paths. By complete we mean MATCH finds an augmenting path
if one exists.

The first five lemmas establish validity and the last two lemmas es-
tablish completeness. More precisely, Lemmas 2-3 prove M+ and M set
links so that P(v,e) is an alternating path; Lemmaé proves M3 rematches
edges along P(v,e). Lemma 7 proves each search Me-M6 is complete; Lemma 8
proves Ml initiates enough searches.

We begin by focusing on the loop M2-Mi-M5-Mb. This loop scans edges
and assigns pointer and pair links. It terminate8 when an augmenting path

is found, or when all edges have been scanned.

Lemma 2: During the loop Me-Mi-M5-M6, two matched vertices v and MATE (v)
are always in one of these three states:

0. v and MATE(v) are unlinked.

1. v has a pointer link and MATE(v) is unlinked.

2. v has a pointer link and MATE(v) has a pair link.
-The only possible transition from state 0 is to state 1. The only possible
transition from state 1 is to state 2. Once assigned, a pointer or pair

link is never changed.

These states, and the transitions between them are illustrated in
Fig. j(c)-(d) and Fig. b(b)-(c).

Before proceeding, we introduce a convenient notation. Define U to be

32
the set of unlinked vertices in state 1. Thet s, .
U = (u|MATE(u) has a pointer link and u is ualinkedj.

Proof: The argument is by induction. We check that each time step M
is reached, the classification of the Lemma holds. Also, we check that
another property hold’s:
(1) Let x be a linked vertex. FIRST FREE(x) retumr the number

of a vertex in U.
Property (1) is needed to check the classification.

Step M is reached after executing step M, M:, M, or M6. We check
the two inductive assertions in each of these four cases.
Case l: Step Ml. is executed.

Step M is reached for the first time after Ml. At this point all

matched vertices are unlinked. Hence &8ll vertices v, MATE(v) are in state

0, and the classification holds. Property (1) is vacuously true.
Case 2: Step MS is executed.

No new vertices are linked in this’step. So the inductive @ssertions
still hold when M2 is reached.
Cse3: M 1s executed.

This step assigns a pointer link to a vertex v. Both v and MATE (v) are
unlinked on entry to M. Sothis is a transition frem state 0 to state 1.

Property (1) holds for linked vertices x # v, by inductiom. Property
(1) also holds for vertex v: FIRST FREE(v) returns the value MATE(v) in
step F1, and MATE(v) € U.
Cape 4: Step M+ is executed.

Step M4 calls PAIR LINK. In steps PL3-PIk, this subroutine links

33

vort i ce 5 computed by FIRST FREE. So by (1), step M: links vertices In U.
These vertices make a Lrensition from stete 1 to stoLe 2. sC the class-.
ification still holds.

Now we check that property (1) holds after step Mi. We consider
three cases, depending on vertex x.

First suppose vertex x is in state 1. Then FIRST FREE (x) still
returns the value MATE (x) €U.

Next, suppose FIRST FREE(x) =Ire. step PL2, tip is set to &
value returned by FIRST FREE. By induction,_tip €U. Hence FIRST FREE(x)
EU.

The remaining possibility is that vertex x is in state 2 and FIRST
FREE (x) # tip. Note in this case, both x and MATE'(x) are linked vertices
on entry to M4. For if x or MA’TE(x) is linked in PAIR LINK, FIRST FREE (x)
= tip (see steps PL3-PL5,F2-F3).

Let u be the value of FIRST FREE(x) on entry to M. By induction,
ueU on entry to M4. Below we show that after M is executed, FIRST
FREE(X) = u and ueU. Together these statements imply property (1) for x.

The invocation FIRST FREE(x) returns a value TOP (bl’ b2), in step
F2 or F3. So TOP(bi,bz) # tip . This implies TOP (b] ,b2) was not changed
in PAIR LINK, step PL7. So the value of FIRST FREE(x) on entry to M:

. is TOP(bl’bE)' Thus u = TOP(bl,bz) = FIRST FREE (x) .

Next note vertex u was not linked in PAIR LINK. For if u were
linked, TOP(bl,bg) would have been changed to Tip Im Prju s uel
citer Mi is executed.

Thus property (1) holds for all linked vertices ralter M:i.

The Lewmma now follows by induction,

OED

3L

Lemma 2 enables us to ignore such possibilities as a linked vertex
being assigned a new link, or becoming unlinked. In particular, we can
define a partial order@on the set of linked vertices, as follows:

v@v if and only if w is linked after v.

For example, in Fig. 4, 1103, 1194,3@5, 3@7, 381, 7@8. For
the purposes of@, we consider vertices linked in the same invocation
of PAIR LINK as being linked simultaneously. So neither 5@T or M5
is true.

We also make several definitions relating to the lists (paths)

P(v,e). The precise rules that define these lists are given below.

©O. In any search, the exposed vertex e is linked by the degenerate
alternating path E’(e,e) = (e).

1. If v has a pointer link, LINK(v) contains the number of another
linked vertex, and P(v,e) = (v,MATE(v)) * P(LINK(v),e).

2. If v has a pair link, LINK(v) contains the numbers of two
linked vertices bl’bz‘ Vertex v 1is in P(bi,e), fori=1ori=2

(but not both). For this value of i, P(v,e) = rev P(b;,v) * B(by_;,e).

These definitions are illustrated schematically in Fig. 3(d) and
Fig. 4(c). 1In the latter, vertex v); has the pair llnk_(basel,base).
We also use a list notation, writing

P(V}e) = (VOJVl,V2 yeeey Vgn).

Here v = v, = e. The last subscript is even because P(v,e)

v
0 2n
starts with a matched edge, ends with an unmatched edge, and is alternating.

For convenience, define Vonsy O be 0, the dummy vertex which is unlinked.

This allows us to treat boundary conditions in a uniform manner.

Finally, we define a useful function:

35

If v is a linked vertex, free(v) is the first unlinked vertex
in P(v,e).

For example, in Fig. 6(a),free(3)=7; in Fig. 6(b), _free(3) =8;
in Fig. 6(c), free(3) = 0. The third equality is due to the convention
that 0, an unlinked vertex, is the la;t vertex in any path P(v,e). In
general, if P(v,e) contains no "real" unlinked vertices, free(v) = 0.

In the proof of Lemma 3, we show FIRST FREE(v) computes free(v),

for linked vertices v.

The first goal is to prove P(v,e) is an alternating path beginning
with a matched edge. This is done in Lemma 5. We begin by showing that

P(v,e) 1is well-defined and has several useful properties.

Lemma 3: In the loop M2-Mi-M5-M6, each time step M2 is reached, the
following Properties hold for every linked vertex v.
(1) P(v,e) is a well-defined list of vertices.
(2) Vi 1s linked and Voisl
(3) 1f Voi41 is unlinked for some i in O<i<n, then P(v,e) =

= MATE(V21), for all i in 0 <isn.

P(v,v2i_l) * P(VEi’e) .

(4) If v has a pair link (bl’bg)’ then TOP(bl,b free(v) =

p) =

free (MATE(v)).

These properties are illustrated in Fig. 6(b) for the linked vertex
v = T. As shown, P(v,e) = P(7,11) = (7,3,4,5,6,8,11). Clearly properties
(1) and (2) hold. The path decomposition of property (3) holds for i = 2,
v, = 8 and B(v,e) = B(7,11) = P(7,5) *P(6,11) = P(v,v) * P(y,e). T
s2tting of TOP to an unlinked vertex described in (4) holds lor vertex T

with pair linXx (bl,bq) = (4,3) and TOP (%,3)=8.

Property (3) may seem overly restrictive. It seems'natural to claim

36

M .
V21-l) P(vei,e) holds for all i in

O<i<n. Huwever this more general statement is false. This is illus-

the decomposition P(v,e) = P(v,

trated in Fig. 6(c). Taking v = 8, P(v,e) =(8,6,5,4,2,1,11). For

i=1, P(v,v;) *P(v,,e) =(8,6) * P(5,11) = ,(86543768,11)4 P(v,e).

Proof: The argument is by induction. We check that the Lemme is true each
time step M is reached.

Step M is reached after executing step M1, Mi, M, or M6. It is
easy to check the Lemma after M1, My, and M6. This is done in Cases
1-3, below. The main part of the proof is checking the Lemma after step

Mi, which assigns pair links. This is done in Case k.

Case 1: Step Ml-is executed.
After M1, the only linked vertex is e. Vertex e has a degenerate
link that defines P(e,e) = e. Properties (1)-(4) are easy to check:

Property (1) P(e,e) is clearly well-defined.

Property (2) For i = 0, Vertex v0= e is linked. Also o= 0-= MATE (e) .

Property(3)-(4) These properties are vacuously true.

In the remaining cases we proceed inductively. We assume that on
entry to step M4, M5, or M6, Properties (1)-(4) hold for all linked ver-
tices. We show that after the step is executed, the Properties still

Hold for all linked vertices.

Case 2: Step M6 is executed.

This step changes nothing. So the Properties still hold.

Sasp3: M5 1is executed.

Step MY assigns a pointer link to a vertex v. We must check Properties

A

r—

37

(1)-(L4) hold after M5 for linked vertices g, x@vV, and also for v.

If v@v, Properties (1)-(4) hold for x on entry to M5. Step M
does nothing to modify these Properties, SO they ore still valid on exit.

For vertex v, the list P(v,e) is defined as (v, MATE(v))* P(LINK(V),e).
Note LINK(v)@ v, as illustrated in Fig. j(c)-(d). Now we verify
(1)-(4) for v.

Property (1)

The list P(LINK(v),e) is well-defined, by induction. So P(v,e) is
the concatenation of two well-defined lists, and hence is well-defined.
Property (2)

Property (2) holds for vertices in P(LINK(v),e), by induction. Hence

Property (2) holds for v, and Voi+1’ 1<1i<n.

For 1 = 0, the definition of P(v,e) shows Vo = Vi Yy = MATE (v) .
Property (7)
Suppose oy t 1 is unlinked for some i in 2 € i < n. The following

equalities show Property(j) holds in this case.

P(v,e) = (v,MATE(v)) * P(LINK(v),e) def'n
= (v)vl) * P(LINK(V), v2i"1) * P(V2i’e) induction
= P(v,vei_l) * P(VEi,e) def'n

For i = 1, P(v,e) = (v,vi) * Ph@,eb by definition. This is

independent of whether V3 is linked or unlinked.

Property (4)

This Property is vacuously true, since v has a pointer link.

Case 4: Step Mi is executed.

This case is the main portion of the proof. The argument is lengthy,

38

and divides into two parts. Part A analyzes the operation of PAIR
LINK, the subroutine called in M+. The analysis depends on the in-
ductive assumption of Properties (1)-(4). Part B uses the results of

the analysis to verify that Properties (1)-(4) hold on exit from M.

Part A: Analysis of PAIR LINK

The conclusions of this analysis form & description of how PAIR
LINK and its subroutine FIRST FREE operate. The description is given
below, as Properties (5)-(13). Then each of these 8 Properties is

proved in turn.

Description of PAIR LINK

(5) Let ¥ be a vertex that is linked on entry to M. Then FIRST
FREE (x) returns the value.free(x).

(6) In step PO of PAIR LINK, uiis initialized to the first
unlinked vertex in Cb_a_sgre ,e), for i=1,2.

(7) In the loop PL1-PI2, step PLl varies 1 according to the sequence
i = 1,2,1,2,.... Step PI2 sets ui to the next unlinked vertex in
P(pig_e_i,e). If step PL2 is entered with L'i set to the dummy vertex o,
PI2 resets lu, to 0.

(8) The loop PLO-PI2 terminates when ul assumes a value that has
been assumed by Uy, OT vice versa. Tip is set to this common value.

(9) Tip is an unlinked vertex thet is in P(_]gg_ge__a_l,e) and in
P(base2, e). No unlinked vertex that precedes tip in P basel,e) is
also in P(Eg_s_ge,e). No unlinked vertex that precedes ip in P basee,e)
is also in P(pgg,_e_l,e).

(10) In the loop PL3-PI)+, variable v assumes the values of all

unlinked vertices that precede .tip in P(basel,e) or in P(base, ,e)

e

39

Tue s vertices, eucluding tip, are essigned pair links (beze o?se).

(11) In the loop PL5-PLG, variable u1 assunes the wrlues of =11

the unlinked vertices that are flagged in PLO-PI2 but not linked in
PL3-PI4. These vertices, including tip, are made unflagged.

(12) In step PL5, an entry for the new pair link (bese ,_‘_bis_ee)
is added to TOP and initialized to Xfp.v is any vertex that re-

ceives the pair link (Qbasel,base) in PL3-PIk4, then free(v) = free

(MATE (v)) =TOP _(basel, base;).

(13) In step PL7, some entries in TOP are reset to %ip, o the

following is true: If x has a pair link (bl’b2)’ then free(x) = free

(MATE () = TOP(b 2

Now we prove the Properties of the description.
Property (5)

If FIRST FREE returns in step Fl, MATE(x) is unlinked. Property
(2) implies P(x,e) = (x,MATE(x),...). Hence MATE(x) = free, (x). Thus
FIRST FREE returns free (x).

If FIRST FREE returns in step F2, x has a pair link (bl’bg)'
Property (4) implies TOP(bl,bz) = free(x). Thus FIRST FREE returns
free (x).

If FIRST FREE returns in step F3, both x and MATE(x) are linked,
and x has a pointer link. The classification of Lemma 2 implies MATE (x)
hes a pair link (bl’b2)° Property (4) implies TOP(bl’b,’l) = free
(MATE(MATE(x))) = free (x). Thus FIRST FREE returns free ()

QED for (5)

Property (G)

First.we introduce a notational convenience: Variables u, base

g

Lo

stand for v, basel or LY gals_e_e.

The assignment

u = FIRST FREE(base)
initializes u to_free(base), by Property (5). Thus u starts out with
the value of the first unlinked vertex in P (base,e). Note u is the
dumy vertex 0 if there are no "real" unlinked vertices in P (base,e).

Step PO returns if U = Uy In this case we define tip to be
this common value. Note that Properties (7)-(9) are satisfied by this
definition.

QED for (6)

Property (7)

It is clear that i varies between 1 and 2. We analyze the assign-

ment in step PI2,
u ~ FIRST FREE(LINK(MATE(u))),

assuming PI2 is entered with u set to an unlinked vertex in P (base,e).

First suppose u = 0. From step MO it is clear that MATE(0O) = O,
LINK(o) = 0. So PI2 executes the assignment, u < FIRST FREE(0). FIRST
FREE(0) returns 0 in step Fl. Thus PI2 resets u to the dumy vertex 0.

Now the main case is treated, u # 0 on entry to PL2. We show step
PI2 computes the first unlinked vertex beyond u in P (base,e) and as-
signs this value to u.

Firstnote that Property (3) can be applied with v = base and
Voiel = U Property (3) is valid for v = Base,ly imductiomu n -
linked vertex u has an odd subscript 2.j+l in P(base,e), by Property (2).

Since u #0, 3 <n. So if j > 0, Property (3) holds.

Property (3) can be written in the following way:

I

L1

(14) P (base,e) = P(base,u ') * P(MATE(u),e)

Here u' us defined as ‘(%j-l’ the vertex that precedes u by two in
P (pase,e). Also MATE(u) = (hgsl_e_)zj, by Property (2).

We have proved (14) for j»0. If- j =10, u = (Pf—s-g)l and MATE (u) =
base. Since u' = (ga_sg_)_l is undefined, we interpret P(base,u') as the
empty list. Then (14) holds for j = 0. So (14) is valid for any un-
linked vertex u# in P (base,e).

By Lemma 2, MATE(u) has a pointer link. The definition of pointer

link implies this further decomposition:
(15) P(base,e) = P(base, u') * (MATE(u),u) * P(LINK(MATE(u)),e).

So the unlinked vertex that follows u in P (base,e) is free (LINK
(MATE(u))). The assignment of PL2 computes this value, by Property (%).

Thus PI2 sets u to the next unlinked vertex in P(base,e)

QED for ()

Property (8

We begin by proving tnis preliminary result :
(16) An unlinked verte: u occurs at most once in a list P(bese,e).

The proof is by contradiction. Suppose u occurs more than once in

‘P(base,e). First we show LINK(MATE(u)) @MATE(u). Then we use the sup-

position to derive a contradiction.

As noted in the proof of Property(T), MATE(u) has a pointer link.
Thus, as illustrated in Fig. j(c)-(d), LINK(MATE(u)) @MATE(u).
Now consider the decomposition (15), applied to the first occurrence of u

in P(base,e). The second occurrence of u is in P(LINK(MATE(u)),e). So by

Lo

Property (2), MATE (u) occurs with an even subscript in P(LINK(MATE(u)),e).
Property (2) also implies that at the time LINK(MATE(u)) was assigned a
link, the vertices with even subscripts in P (LINK(MATE(u)),e) were all
linked vertices. Thus LINK(MATE(u))oMATE(u). This is the desired
contradiction.
QED for(16)
Now we prove Property (8). The loop PLO-PL2 terminates when y as-

sumes the value of a vertex that has already been flagged. Tip is set

to this vertex. We show below that at some point, u3_i took on the value
tip. For convenience, we take i =1, and argue in terms of u = ul and
u3-i =u2o

Case 1: Tip 4 0.

Tim wastfllagged in step PLOpoy PL?..Ll ©r uw WwWas a s -
signed the value tip. If the assignment was made to U, then Uy assumed
the value tip twice in the loop PLO-PI2. Then Properties (6) and (7) imply
tip occurs twice in P(ggs_el,e). But this contradicts (16). We conclude

that U, previously took on the value tip.

Case2: Tip = 0.

Variable u, may assume the value 0 more than once in loop PLO-FI2.

1

Indeed, by Property (7), once u, assumes the value 0, it is always reset

to 0 in PL2. However if u2;£ 0, the flag on 0 is removed before PI2 is
executed again for Uy So for tip to be 0, we must have U o=, = 0.
QED for (8)

Note that Property (8) implies both 0 and u, assume the value tip

in PLO-PI2. Hence tip is in P(basel, e).

Property (9)
This Property is illustrated in Fig. L(v). Tip is shown as the first

L3

unlinked vertex that is common to both P(basgl,eb ar|l s eg,e)- As

noted above, Property (8) implies_tip occurs in P(basel,e) and in P(base;,e).

we show below that if t is an unlinked vertex that precedes tip in P(basel,e),

t is not in P(base,,e). This suffices to establish Property(g) since

2

the argument for t in P(baseE,e) is similar.

First note the decomposition (14) holds for u = tip:

(17) P(base,e) = P (base,_ tip') * P(MATE(tip),e).

This was proved for tip # 0 in the discussion of Property (7). If tip = 0,
define tip'= e and take P(MATE(tip),e) = P(0O,e) to be the null list. Then
the decomposition holds for all values of tip.

So B , €) decomposes into two parts. We show that t does not

R_as_ee
belong to either-part.

Suppose t occurs in P(_b_ggt_ae,t_ig’). Thus u and u, assume the value t
before they assume the value tip. This cannot be, since it contradicts
Property (8).

Suppose t occurs in P(MATE(tip),e). Consider the decompostion(7)
for base = base,. Vertex t occurs in P(pggl,m'), by hypothesis, and
in P(MATE(tip),e), by supposition. Thus t occurs twice in P(_Ilg_ggl,e). This
cannot be, since it contradicts (16).

Thus t does not belong to P(basel,e).

QED for (9)

Property (10)

In step PL3, variable v is initialized by the assignment
v~ FIRST FREE (base).

This is the same as the initialization in step PLO.

In step P4, variable v is reset by the assignment

&

Ly

ve FIRST FREE (LINK(MATE(v))).
This is the same as the resetting in step PL2.

So it is easy to see that v assumes the values of all unlinked
vertices preceding tip in P(base,e), and these vertices are linked.
This is illustrated in Fig. k(c).

QED for (10)

Property (11)

In the loop PLO-FI2, a vertex is flagged when its number is assigned
to W, Or u,- The loop terminates when ui assumes the value tip, which
was previously assumed by Uz i Again, take 1 = 1, for convenience.

So the vertices that are flagged in PLO-PI2 are these: the vertices
that precede tip in P(gggl,e); the vertices that precede tip in
P(Me,e)i tip _and the first k unlinked vertices following tip in
P(p_;a_s._ga,e), for some k. The. vertices in the last set correspond to the
k values assigned to u, after tip.

The vertices in the first two sets are made unflagged and linked
in the loop PL3-PIk.

Now we show that the loop PL5-PL6 processes the vertices in the

third set. Begin by considering the decomposition (17) for base = baseE.

The decomposition shows the vertices in the third set are the first
(k + 1) unlinked vertices in P(MATE(tip),e).
In step PL5, w 1s initialized by the assignment u«tip. Thus u, 1is

set to the first unlinked vertex in P(MATE(tip),e).

s

1 1

(u.l))). Thus uy takes on values of consecutive unlinked vertices in

In step PL6, u, is reset by the assignment u,” FIRST FREE(LINK(MATE
P(MATE(tip),e).

So ul takes on the values of the vertices in the third set. These

[

L5

vertices are unflagged. When u, assumes the value of an unflagged

vertexr , all (k + 1) vertices of the third set have been procesced,
so the loop halts.
(Note again the special case, —-when 0 is the last of the (k + 1)

vertices. When u, assumes the value 0 for the first time, the flag

is removed from 0. Then in step FI6, y is reset to 0. Now uy has

no flag, so the loop terminates.)

QED for (11)

Property (12)

We begin by proving that free(v), the first unlinked vertex in
P(v,e), is t_ih Then we prove a similar equality for free (MATE(v)).

First note that_free(base) = Fipr by Property (10), every

vertex preceding tip in P(base,e) is linked after steps PL3-PLh.

Now consider a vertex v that has the llnk_(basel, baseE). For

convenience, suppose v 1s in P(base.,e). Figure 4(c) illustrates this

1
situation. By definition, P(v,e) = rev P(gq_ggl,v) * P(g?_gggé,e). e
list P(:n;aﬁ]_,v) contains no unlinked vertices, since gr_gg(ll%gl) = tip
and v precedes ER So the first unlinked vertex in P(v,e) 1is the
the first unlinked vertex in P(base.,e). Thus free(v) = free (vase)

=%

= tip, as claimed.
Next consider a vertex MATE(v), where v has the link (base.L,

p_aig?) . We rewrite the decomposition (14):
P()aasel,e = P(basel,v') * P(MATE(v),e).

Vertex tip occurs after v in P(base.,e), whence tip occurs in

1
P(MATE(v),e). So ;_@_r_e_ci(basel) = tip = free (MATE(v)),es claimed.
I QED for (12)

L6

Property (13)

Suppose ¥ has a pair link (bl, b2). The case (bl’b2)=
('S&sel,basez) is taxeatedsin Preperty 12). m e xQv.

Note that on entry to PAIR LINK, free(x) = free(MATE(x)) =
TOP(bl,bz), by Property (4). Let u be this common value.

If u is not linked in PL3-PL4, then free (x) and free (MATE(x))

do not change. Also TOP (bl’b is not modified in PL7. So the

o)
three values remain equal, and Property (13) holds.

Suppose u is linked in PL3-PIk. A decomposition similar

to (14) holds:
P(x,e) = P(x,u') * P(MATE(u),e).

The vertices in P(x,u') precede u, so none of them are unlinked.

So the first unlinked vertex in P(x,e) is the first unlinked vertex

in P(MATE(u),e). Thus free (x) = free(MATE(u))= tip, by Property (12).
The proof that free(MATE(x))= tip in this case is analogous.

QED for (13)

B. Proof of Properties (1)-(k4)

Now that PAIR LINK has been analyzed, it is easy to check that
Properties (1)-(1&) hold for all linked vertices after step M.

If no vertices are linked in PAIR LINK, step PLO returns. Nothing
is changed in step M:. So Properties (1)-(4) still hold after I&.

Now suppose one or more vertices are linked in PAIR LINK. Let
v be such a vertex. We check Properties (1)=(4) for v and for all
vertices x (v, below.

Vertex v has the pair link _(ba_sg_l, Eﬂiﬁg)' For definiteness,

choose v in P(basel,e). "Thus P (v,e) = rev P(lj.,v)_ * P(base;,e).

-

N7

This is illustrated by vertex v

11 in Fig. 4(c).

Property (1)

Property (1) holds for vertices x@v on entry to Mh, by induction.
Since PAIR LINK does not reset any entries in LINK or MATE, the 1lists
P(x,e) do not change. Hence Property (1) still holds for vertices :
on exit from M:.

In particular, the lists P(Qgggl,e) and P(b,e)_ are well-defined..
Also, IKpgggl,v) is well-defined, since Property (10) shows v occurs

in P(base

—1

; €). Thus P(v,e) = rev P(}iaﬂz) * P(bamz,e) is well-
defined. S¢ (1) holds for wv.

QED “or(1)

Property (2)

Property (2) holds for vertices x()v, since the only possible
change in the list P(x,e) is that some unlinked vertices become linked.
Now we check that the vertices with even subscripts in P (v,e),

V,y» are linked. Writing P(v,e) = rev P(b_as_gl, v) * P(b_a_ggg,e), we
check the two portions of P(v,e) separately.
All vertices in P(p_aigl,v) are linked. This is a consequence of
Property (10). So the vertices oy in rev P(l_)gs_e_l,v) are certainly linked;
Now we check the vertices v,; in ?ﬁbﬂeeﬁitry to M4, the
even-subscripted vertices in P(pgggl, e) are linked, by Property (2).
Thus vertex v has an odd subscript in P(:"‘_SE]_

has an odd subscript, and base; has an even subscript. Thus the vertices

,€). So in P(v,e), base

V2i in P(base ,e) are the vertices with even subscripts in P(é’e)-

So Property (2) for base

A shows these vertices i;jz_ are linked.
1 .

L8

Tt rema i] 3 - = TE(v,..). is is 1il-
Tt rema ins only to che ck that Ty 1l MATE (21) This is 1l
lustreted in Fig. L(c). The proof follows eesily from the properties

just established.

Q,ED for (S)

Property (3)

Property (3) holds for vertices x()v, since the only possible
change in the list P(x,e) 1is that some odd-subscripted vertices become
linked.

Now we check Property (3) for v. Write P(v,e) = rev P(‘g_a_ggl, V)

* P(base., e). Let v be an unlinked vertex in this list. As

-— 2i+1

noted above, 8ll vertices in P (base., are linked. So v.. has
=227 Y sl

an odd subscript, 2j+l, in P(é,e). So for j »0,the following

equality holds:

P(v,e)

i

rev P(base,,v) * P(ghse,,e¥ ' n

rev P(baselyv) * P(base?_: v2i-l) * P(Vgi,e)
Property (3)

* p(v. . ,e) def 'n

l-l) 2i

P(v) vn 2
[

So Property (3) holds for v in this cese.

For j = 0, the definition of P(v,e) g:res Property(3).

Property (4)
This Property was proved in the analysis of PAIR LINK, as

Properties (12) and (13).
QED for (L)

-

49

Now the inductive hypotheses have been verified for all cases.

The Lemma follows, by induction.

QED

It is easy to conclude from lemms 3 that P(v,e) is an alternating
walk beginning with a matched edge. First a simple induction shows P (v,e)
is a walk. The argument is illustrated in Fig. 3(d) and Fig. 4(c).
Then Property (2) of Lemma 3 shows P(v,e) 1is alternating, with the first
edge matched.

The proof that P(v,e) is simple is more involved. It depends on
another relationship between linked and unlinked vertices, proved in
Lemma 4. Pirst e give a definition extending free to a function of two
variables:

If v and w are linked vertices and w ¢ P(v,e), then free (v,w) is
the first unlinked vertex beyond w in P(v,e).

For example, in Fig. 2(e), free (10,6) = 1; free (10,13) = 0; free (10,10)
=T. 1In general, free (v,v) = free (v).

Strictly speaking, free (v,w) is not well-defined. We have not shown
P(v,e) is simple, so w may occur more than once. We agree to always choose

the first occurrence of w.

Lemma 4: Suppose v and w are linked vertices and w € P(v,e). Then

free (w) = free (v,w).

Figure 2(e) illustrates the Lemma. Taking v =10 and w =3, free (3)
=1 = free (10,3). This figure also disproves two modifications of the
Lemma that one might conjecture. First, free (3) = 1 #7 = free (10),
so the conjecture free (w) = free (v) is false. Second, one might hope

that P (w,e) is & sub-path of P(v,e). This is not the case in Fig. 2(e).

i

50

The proof' is by induction. We show the Lemma is true each time
a link is assigned.

Suppose v is assigned a pointer link, so P(v,e) = (v,MATE(v))*
P(LINK(v),e). Let w be a linked vertex in P(LINK(v),e). So free(v,w) =
Eree (LINK{v) ,w) . mBy indubtion, _fiee(w) =nfree(LINK(v),w). n g
these equalities, we see the Lemma holds after a pointer link is assigned.

To check the Lemma after pair links are assigned, we consider four
cases. These depend on whether v and w are linked during the current
execution of PAIR LINK or were previously linked.

Case 1: v and w were previously linked.

Suppose prior to the execution of PAIR LINK, u = free(w) = free(v,w).

If u is unlinked after PAIR LINK, this equality still holds. Otherwise,

decomposition (15) derived in Lemma 3 holds for v end w:

P(v,e) P(v,u') * P(MATE(u),e)
P(w,e) = P(w,u') * P(MATE(u),e)

If t is the first unlinked vertex in P(MATE(u),e), t = free(w) = free(v,w).

Case 2: v was previously linked.

Vertex w is linked by PAIR LINK, so MATE(w) was previously linked.
Furthermore, MATE(w) € P(v,e) by (2) of Lemma 3. So by Case 1,ﬂe(MATE
(w)) =_free(v,MATE(w)). Property (4) of Lemma 3 shows_free(w) = free(MATE
(w)). Also free(v,w) =_free(v,MATE(w)), since MATE(w) and w are consec-
utive vertices in P(v,e). Combining equalities we get free(w) = free(v,w).
Case 3: w was previously linked.

Vertex v is linked by PAIR LINK. Let P(v,e) = rev P(base,,v) * P(base,e).

Ifw € P(‘gg_gl,v), Case 1 shows free (w) =_Qg§(pg§l,w). Since
Q_g_q_(ggigi,w) = tip = free(v,w), the desired equality holds.

If W e P(basez, e), Case 1 showsSfree(w)i= frea’l_(basee,vc). e

51

P('bL_se2,e) is included in P(v,e), free(v,w) = rr__g_g(b_y_ge,,w), and the
desired equality holds.
Case 4: v and w were previously unlinked.
It is clear from Fig. 4(c) that tip = free(w) = free(v,w).
By induction the Lemma holds each time a link is assigned.
-QED

Now we can complete the proof that P(v,e) is en altermating path.
Lerma 5: If v is & linked vertex, P(v,e) is simple.

Proof: We assert the Lemms is true each time e link 18 assigned.

Suppose v is assigned a pointer link, so P(v,e) = (v,MATE(v))
* P(LINK(v),e). The walk P(LINK(v),e)is simple, by Induction. It does
not contain v or MATE(v), since both vertices weres previously unlinked.
Hence P(v,e) is simple.

Suppose v is assigned @ pair link. Let P(v,e) = rev P(_'gg._s_e_l,v)
» P(pgiee,e). Both P('_Qg_a_e_l,e) and P(mee,e) are simple, By induction.
So P('g_a_t_sgl,v) is also simple. It sufficesto show P(P&!E.]_»') is disjoint
from P(t_:g;_s_ge,e).

Conéider the graph before the peir link_(b__a_l_gl, bﬁ'ée)i' assigned,
as ill&rated in Fig. 4(b). Suppose w cP(p_g_a_e_l,e) N P(base,_,e). We

.show w /P(basel,v). We can choose w to be linked, sihceMATE(w) is also

in the in§ion, and w or MATE(w) is linked: Lemme 4implies
free(base, ,w) = free(w) = free(base;,w). Referring back toFig.k(b),
either free(w) is tip or free(w) lies beyond tip. Since v is assigned
8 link (}iasbasez), v does not lie beyond w. Equivalently, w ¢
P('basel,v).

Thus P(l,v)g and f’(base;,e) are disjoint, and P(vye) is simple.

52

By induction the “.emma holds each time a 1link is ascigned.

QED

Note our results ao npt show that, as one might guess from 7ig. L(t),
MATE(tip) is the first vertex common to P(l&s_gl,e) and P(Rg_s:_e_g, e). For
example, consider Fig. 7. Suppose an edge joining 5 and 12 is scanned
next. PAIR LINK is called. It sets tip to vertex 1, the first unlinked
vertex common to P(5,13) and P(12,13). These two paths join and diverge
several times before vertex 1. MATE(l) = 2 is certainly not the first
common vertex. In general, although _P(_ba_sgl,e) and P(b_aﬁe_e,e) mey join

end diverge arbitrarily before joining at tip, the argument in Lemma 5 shows

only linked vertices occur between the intersection and MATE(tip).

We conclude from Lemma 5 that in step M2, when MATCH scans an edge
xy leading to an exposed vertex y, (y) * P(x,e) is an augmenting path.
Now we analyze step M3 and REMATCH to see how the matching is augmented.

Figure g(a) shows (y) * P(x,e) when REMATCH (y,x) is called in M3.

The hollow vertices x

5i4] MY Or may not be linked. The convention for

half-wavy edges, introduced in Fig. T, is used. Thus MATE(y) = x but
MATE(x) # y.

Figure 9(b) shows (y) *P(x,e) when REMATCH (y,:) returns. The peth
has been remctched and the augmentation is complete.

Lemma 6 shows REMATCH accomplishes the transformation shown in Fig.
8(a)-(b). First we make some definitions. If z is a vertex, let M(z)
be the value of MATE(z) when the search begins in M1. Define a set 2
that grows and shrinks as REMATCH resets MATE, by

Z = {M(z)] MATE(MATE(2)) # z) .

A vertex in Z is at the straight end of a half-matched edge, as illustrated

53

Y X X X2i X2 (p) X2i+1 X2n-1

f v Vi LINK(v) Vs (o) Vem

LINK(v) 3 (q) Vam

t v vi LINK(V) Vi (e) Vam

Fig. 9

Rematchi an augmenting path
The augmenting path(;y) * P(x,e),
On entry to REMATCH (y,x).
On exit. ’
The path (f) * P(v,z): v has a pointer link.
On entry to REMATCH (f,v). |
On entry to REMATCH (vl, LINK (v)) .
On exit.

o o
N N’

NS~ —~
@ O O
— e —

54
P(v,e)
W- - -o
base 2 v f
base,) Vom Vom+1
P(v.e)
M— - -o
base; \2 v f
base, _ @) Vom z
P(v,e)

E @ @rrs - - -0
base;, V4 v f
- - -

base, (h) Vom z
P(v.e)
l I base vy v f
base, Vom F4

)

Fig. 9 (cont'd)

The path(f) * P(v,z): v has a pair link.
(f) On entry to REMATCH(f,v).
(g) On entry to REMATCH I(p_a_s_gl,base).
(h) On entry to REMATCH fhasg ,base!
(

).
i) On exit from REMATCH if,v;. 1

55
by x and 0 in Fig. g(a) and z = Vomey 10 Fig- 9(c).

Lemma 6: Suppose REMATCH(f,v) is called with v a linked vertex, vf an
edge, f ¢ P(v,e). Set z to the first vertex in P(v,e) that is in z,

and set m so z = v Suppose these conditions hold:

om+l’
(a) z in unlinked or v@z.
(b) MATE(V,.} = M(v4)1for 0 i< 2m.

Then REMATCH(f,v) returns with MATE reset in the following way:

(c)MATE(v21_1)=v21, MATE(vgi) =V, 40 for 1 s i <m.

V2
(d) MATE(v) = £.
In Fig.9(2), (y) * P(x,e) satisfies conditions (a) and (b) with
z =0, m=mn. Figure 9(b) illustrates conditions (c) and (d). Clearly
(c) and (d) imply REMATCH works correctly.
Note vertex z of the Lemma exists. This is true because 0 ¢ P(v,e)

M(e).

NZ, since 0 = V2n+l =
Proof: The proof is by induction on the linked vertices v ordered by@.

If m = 0, MATE(MATE(v)) # v. In Rl, MATE(v) is set so (d) holds.
Then REMATCH returns in Rk. Since condition (c) is vacuous, the Lemma
is true in this case.

Suppose m > 0 and v has & pointer link. Figure 9(c) shows the path
© (f) * P(v,z) when REMATCH is entered. (Edge vf is shown half-dotted,
meaning MATE (f) may or may no. be se-i; to v.) Condition (b) shows P(-,z)
is still well-defined by MATE and LINK.

Figure 9(d) shows the peth after MATE (v) end MATE(vl) are reset In
Rl eand R2. We see thet for the recursive call REMATCH('V'I,LII\H{(V)), vertex
z stays the same and m decreases by 1. Condition(a) holds because z is
unlinked or LINK(v) v @z, and condition(b) still holds. So by induction,

REMATCH(Vl,LINK(v)) returns with edges rematched as in Fig. 9(e). So

56

conditions (c)-(d) are valid when REMATCH (f,v) returns.

Next, suppose m > 0 and v has a pair link. Figure 9(f) shows
(f) * p(v,z) on entry to REMATCH. Note z ¢ ,P(Ba_§_g2,e). This is true
because Fig. 4(b)-(c) and condition (a) together imply z does not pre-
cede _tip in P(basel,e or P(base e). Figure 9(g) shows the path after
Rl. Note at this point, v € P(basel,e) NZand z ¢ P(base e)n z.

For the recursive call REMATCH(base,,base,), z is reset to v.
Condition (a) holds because z is unlinked oz Baseg@vc@cz,n dition
(b) still holds. So by induction, REI«&ATCH(basel,*_o_a_s_ge) returns as shown
in Fig. 9(h).

For the recursive call REMATCH(base ,basel), z 1s reset to v. Con-
dition (a) holds because_p_as_el@v, and condition (b) is still true. So
by induction REMAT%(p_z_b_qg_gl) returns as shown in Fig. 9(i). So

conditions (c)-(d) are valid when REMATCH(f,v) returns.

The Lemma now follows by induction.

We have shown MATCH finds valid augmenting paths and correctly
rematches edges along these paths. The last two lemmes show MATCH
finds all possible augmenting paths. First the search M2-M6 is

proved complete.

‘mma If a vertex v is joined to e by an alternating path
(v,vl, ceesVp, = e) beginning with a matched edge vy either v is even-

tually linked or the search M-M6 finds an augmenting path.

Note this result shows that if an augmenting path to e exists, M-Mo
finds an augmenting path. For suppose (f,vo,vl,...,ven = e) 1is an augmenting

path. By the Lemma, either o is linked or M-M6 finds' an augmenting path.

51

In the former case, M-M6 finds (f) * P(vo,e) or some other augmenting path.

Proof: Suppose M-M6 terminates at M without finding an augmenting

path. Suppose Vas is linked, for 1 <1 <mn, and v is unlinked, as

shown in Fig. 10. We derive a contradiction below. This proves the

Temma .

v Vi Vo oi-1 Vi Voi+1 Von-2 Van-1 e

Fig. 10
We begin-by showing that for all i in 1 €1 <€ n, vertex Voi 1 is
linked and_f_x;e_g(vzi_l) = v. The proof is by induction.
First let i = 1. Note vertex v is linked. For suppose the con-
trary. At some point in the search, in step M, edge Vo' is scanned
from the linked vertex Voo Then step M is executed and MATE(vl) = v

is linked. But this contradicts the original assumption that v is un-

linked. We conclude v, is linked.

So P(vl,e) exists, and equals (vl,MATE(vl) = V,...). Vertex v is
the first unlinked vertex in this path. So the inductive assertion holds
for i = 1.

Next suppose the assertion is true for some i and v where i«.

Vi

We prove the assertion for i + 1 and At some point in the search,

Vo141

in step M2, edge Voi 1 Yoy 18 scanned with both vertices Vosio1 and Vou

linked. Then step M+ is executed, and PAIR LINK (is called.

Vpi-1r Vi)

This guarantees that during the rest of the search, free() = free(vai).

Y21-1
(see Fig. L(c)). g0 v = free(vei). But P(vgi,e) = (Vgi’MATE(Vzi)"")‘

Thus MATE(vei) is linked.

= Yoin

Furthermore, Property (4) of Lemma 3 implies_free(v2 = free(MATE

i+1)

(v21+1)) = v. So the inductive assertion holds for i + 1.

58

By induction, the assertion holds for all i in 1< 1 < n. In

particular, Von-1

So at some point in the search, in step M, edge v,

is linked and free(ven_l) = v,

e i
n 1° 18 scanned

with both vertices Von-1 and e linked. Then PAIR LINK(ven_l,e) is

called. This invocation links v = i‘ree(v2n 1).
But this contradicts the original assumption. So that assumption

is false, and the Lemma is true.

QED

Now we show the algorithm halts with a maximum matching. It is
clear from our discussion that MATCH always halts. Let M be the final

matching in MATE.

Lemma 8: 1If e is an exposed vertex of M, there is no augmenting path

to e.

Proof: g(Witzgell andt zehnf{1969]).n o f M1, @& search
for an augmenting path to e is started. Call this search S(e). S(e)
ends in M without doing an augmentation M3. Let D be the set of edges
emanating from linked vertices which are scanned in M during S(e). We

first show no edge of D is rematched in an augmentation done after S(e).

Suppose the contrary. Let Q(f,g) be the first augmenting path

MATCH finds after S(e) that includes an edge in D. Let this edge be

w ', with v linked to e. Choose p maximal so v, Vv is a matched

2p 2p+l

edge in P(v,e) N Q. As shown in Fig. 11, Q(f,qg) = (f,wfzo,wl,...,weq =

v2p’ w2q+1 _ v2p+1,,,,,w2n_l,g). All vertllces are shown solid, regard-

less of links. Note the case w is possible. It

2q = '2p+l’ Yoq+l = V2p

is tr ¢i~d by a similar argument.

59

V2m-1
Vap+2
P(v.e)
Q(f,g) 0
f Wo Wy Woq Wag+1 Waqe2 Wan.-1 g

Fig. 11

The paths Q(f,g) and P(v,e).
The alternating walk (wO’wl’""w2q-2’w2q—l’V2p’v2p+l""’v?m—l’e)
is simple, by the choice of p. So Lemma 7 shows Yo is linked in S(e).
But then the augmenting path (f) * P(wo,e) is discovered in S(e),
contradicting the assumption e 1is exposed.

So no edge of D was rematched after S(e). If the search M-Mb

starting from e is repeated after MATCH halts, exactly the same edges
D will be scanned. No augmenting path will be found. By Lemma 7, there

is not augmenting path to e in the matching M.

5. Efficiency and Applications

MATGH requires at most 0(V3) time units when executed on a random access
computer. For the search M2-M6 is done at most V times. We show below that
each of the steps MP-M6 uses 0(V2) time units persearch.

Step M2 scans an edge emanating frgm a linked vertex. M2 may be executed
twice for every edge of the graph. This requires 0("2) time units.

Step M3 calls REMATCH to augment the matching. M3 is executed at most
once in a search. It requires time proportional to the length of P(v,e),
or O(V) time units.

Step M+ calls PAIR LINK to assign pair links. M: is executed for edges
joining two linked vertices. So M+ may be executed O(Vz) times. In all
but L% executio;is, no links are assigned. PAIR LINK returns in step PLO,
in constant time. In at most ‘:_V_;L;l executions, PAIR LINK links vertices,

requiring O(V) time units (in step PL7). So the total time used in M4 is

o(V).

Step Mb assigns a pointer link. M) may be executed L‘V%l;' times. This
requires O(V) time units.

Step M6 does no processing for an edge, but just transfers control. M6
may be executed 0(d) times. This requires O(VE) time units.

So MATCH requires a total of 0(V3) time units.

The space needed by MATCH can be seen from the listing in the Appendix.
The adjacency lists of the graph require V + U4E words, where E is the number
of edges. The matching, stored in MATE, uses V words. For the search M3-Mo,
2.5 V words plus 2 V bits are used: 1.5 V words in the table (BASE,TOP)
describing pair links, and V words (LINK) plus 2 V bits (FREE,PTR) for link

information for vertices. Step M is implemented in a breadth-first manner,

requiring & queue (LINKQUEUE) of V words.

61

This amounts to 2 V . 4 E words for the graph and matching, and 3.5
V words plus 2 V bits for MATCH itself.

Note procedure REMATCH is recursive, so it uses a run-time stack. I
is easy to see only 1 word (LINK(L)) per recursive call need be saved. Thus
at most 0.5 V words are needed for the stack. The stack may share the storage
allocated to LINKQUEUE, since these two data areas exist at different times.

MATCH can be used to speed up the scheduler devised by Fujii, Kasami,
and Ninomiya [19697. They solved this problem: Compute an optimum schedule
for N tasks to be executed by 2 processors, assuming the tasks have equal
length and arbitrary precedence constraints. The approach is to construct a

compatibility graph, showing which tasks may be executed simultaneously; find

& maximum matching on the compatibility graph; sequence the matched task pairs
~and the unmatched tasks according to precedence constraints. This algorithm
was thought to require time proportionalto Nh[Fujii, Kasami, and Ninomiya,
1969-erratum]. But the first and last steps may be executed in time N3, and
we have shown the matching can be done in time N3. So the scheduler is an

3

N-algorithm.

MATCH can be generalized to find maximum matchings on weighted graphs.

In a weighted graph, each edge has a weight which is a real number. The problem

is to find a matching with*meximm weight. Matching on ordinary graphs is
the special case of this problem where all edges have the same weight. An
algorithm has been developed which takes time proportional to y3 log v. This
and other generalizations are currently being investigated and programmed.

6. Acknowledgement

The author wishes to thank Professor Harold Stone for introducing him to
the problem of maximum matching,- for many stimulating conversations, ;pq for

reviewing the manuscript with great energy and perspicacity.

62

T. Appendix
This section contains a listing of an ALGOL W program for
the maximum matching algorithm.

Global Storage Declarations

BEGIN INTEGER V,E35 STRI NG 10) NANE;

COMMENT Vv IST H ENUMBER OF VERTICES IN THE GRAPH.
F | STHE NUMBER OF FDGES IN THE GRAPH.
NA ME | STHENAMECGF THE GRAPH;

INTFIEULDSIZE:=3;

RPEAD (MAME,V,E);

COMMENT PROCFSS EACH GRAPHU N T | LFNI-OF-CATA CARD IS READS
WHILE v>0 DO

BFEGIN

INTFGER ARRAY MNEIGHBDR(V+1::V+2%E);

INTEGER ARRAY NEXT({1l::V+2%E);

L IGICAL ARRAY FREF,PTR {0::V);

INTEGER ARRAY L INK,MATE (0::V);

INTESER ARRAY BASF (1:: {(v-13) DIV 2,1::2);
INTEGER ARRAY TGP (1 @ :tV=-1l)DIV2) ;

INTEGER ARRAY L INKQUEUE(1 2V);

INTEGER HEAD,TATL PAIRNUM, LINKVTX ¢ PLACE s NBHR yH;
INTEGER TIPyFyd s

INTEGER ARRAYFFEFVTX(12:2);

COMMENT NF | GHROR COMTAINSTHFADJACENCY LISTSUFTIitORAPH,.

NEXT(X) I F XIS A VERTEX, THFE ADJACENCYLIST OF X IS
(NE IGHBOR (NEXT (X))y NFEIGHBOR(INEXTUNEXT{X)))yeoea)e
THE LAST VERTFX INTHELISTISNELGABOR{Y),
WHERE NEXT(Y)Il SO.

FREE(X) | STRUFIFVERTEX X IS UNLINKED.
PTR({X) | SFALSEIl FVERTEXXH A S APAIKLINK.
) FINK(X) I fVERTEX X HAS A POINTER LINK, LINK(X)I S

THE FOINTER.

I FVERTEXX HAS APAIRLINK,LINK(X)IS THE
NUMBER OF THE PAIRL I N K . ITISUSEDA S A N
INDEX INTOBASEAND TGP.

MATE(X) | FVERTEXX | S O N AMATCHED EDGE, MATE(X)I S
THE VERTEX MATCHED TO X.
IF VFRTFX XI S EXPOSED,MATE(X)IS 0.

BASE(N,) I FNI STHENUMBERCFA P A | RLINKyBASE(IN,1)
A N DBASFIN,2)ARFTHEACJACENTLINKED VERTICES
WHICHFCRMTHEPAIR.

TOP(N) IF N IS THE NUMBERCF A PAIR LINK, AND X 1S A
LINKED VERTFX WITH LINK NeTHENTOPI(N)}ISTHE
FIPSTUNLINKEDVERTEXINP(XyEXPOSEDVTX), THE
ALTFPNATING PATH FRCM X TOTHEEXPUSED VERTEX.

63

LINKQUFUE CONTAINS THE QUEUE CF LINKED VEKTICES TN BE

FXAMINED .

HEAD POINTS TG THE EIRST ENTRY IN THE QUEJE,
TATIL POINTS TO THE LAST ENTRY IN THE QUEUE.
PAIRNUM STGRES THE NFXT PAIR LINK NUMBER Tiy bE ASSIGNED;

Routines for Reading and Printing a Graph

PROCENDURE READGRAPH;

COMMENT THIS PROCFOURE READS THE GRAPH AND CONVERTS IT TU ADJACENCY

LISTS I[N NEIGHROR AND NEXT;
BREGIN INTFGFR VI1,V23;
FOR JT:=1 UNTHIL V DI NEXT(I):=0;
FAR T3= V#2%F STEP =2 UNTIL V+2 DO
BEGIN
REANOM(V1I,V2);
NETGHROR(T) s=Vv2
NEXT{T):=NEXT(VL]1);
NEXT(V]1):=I]3
NETGHBOR(I-1) :=V1;
NEXT(T=1):=NEXT(V2);
NEXT(V2):=1~-13
END;
END READGKAPH:

PROCEDURF WRITEGRAPH;

CCMMENT THIS PROCENURE WRITES THE ADJACENCY LISTS UF THE

REGIN
WRITF(") WRITE(" ");
WRITE ((Mkdetetek o0 NAME , Mook 00) 3
WRITE(ny=w,y,nE=n £).
WRITE("ADJACENCYLISTS”)3
-FOR [:=1 UNTIL V DO
) REGIN
WRITE(T,"2v);
Ji=NEXT(I);
WHILEJ>IDG
BEGIN
WRITEON(NFIGHBOR{J)) ;
T=NFXT(J)
END
END;
ENI)WRITFGRAPH;

GRAPH ;

64

.Routines for Searching for Augmentations

PROCFENDURF SEARCHUINTEGFR VALUE EXPOSEIVTX);

COMMENT THLS PROCENURE SEARCHES FUR AN AUGHENTING PATH Tu EXPOSEDVTX,
AN FXPUOSFD VFRTFX. IT SCANS EDGES NF THE oRAPH, UFCIDING WHEN
TC ASSIGN L INKS AND PERFORM AN AUGMENTAT ION

REGIN
WRITE { “SEARCH FOR EXPOSFD VIX", FXPOSFDOV TX) 3
COMMENT INTTTALIZES LINK EXPOSEDVTXy ANDMAKEA L LGCITHERVERTICES
UNLTNKEC
FIP 1:=0 UNTIL V Q0 FRFE(I) :=PTRA(I):=TRUE;
FREE(EXPOSENVTX)t =FALSE;
LINKQUE U (L) : =FXPUGSEDVTX S
PAIRNUM::=FEADI=TAIL =13
c OMME NT THISLCOPSFTISLINKVTXT2 A LINKED VERTEX FRUM LINKQUEUE
AND EXAMINES THE EDCGFS EMANATING FROMULINKVTA G
WHILE HEADL=TA IL_ND
REGIN
LINKVTX:=Lt INKQUEUE(HFAD}
HEANS=HEAD+1;
PLACF:=NEXT(LINKVTX) S
WHI LE PLACE~=0 DO

2EGl
CCMMENT SFTNBHFTO THE YEXT VERTEXADJACENTTILINKVTX;S
NOHR :=NEIGHBOR (PLACE):
PLACE:=NEXTIPLACE)
CCAMENT | FNBHR T S LINKENDJASSTIGNPAIRLINKS;
I F-FREE(NSAR) THEN PAITRLINK(LINKVTX yNBHR)
ELSE 1% MATE(NBHR)=0 THEN
BEGIN
COMMENT IF NPHR ISEXPOSED AUGMENT THE MATCHING;
. MATF(NRHR)3=L INKVTX 3
WRITE (WALIGMENT "y,
REMATCHINBHR oL INKVTX) §
GCTO DONE
END
. COMMENT | FNBHR A N DMATE(NBHR) A R EUNLINKEDy ASSIGN A
PCINTER LINK;
ELSEIFFRFF(MATF(NBHR))T HE NMAKELINK{LINKVTXMATE(NBHR))3
FNO WHILEPLACE;
FND WHILEHEADS
DONE:
ENND SEARCH;

»

65

Routine for Assigning Pair Links

PROCFDURE PATRLIAK (INTFGFR VALUF ASEL,RASE2);
COMMENT THIS PROCFDURF ASSIGNMNS PALR LINKS TO UNLINKED VERTICES IN
PIRASEL, FXPOSEDVTX) AND P(BASFE2,EXPISEDVTX). BASEL AND EASE 2
ARF AGJACEMNT LINKED VERTICIS.
THESE VARPTABLES ARE USFD [N PAIRLINK:
FREFVTX (1) tF T IS 1 CR 2, FREEVTX{I) STEPS THKUUGH THF
UNLINKED VERTICES IN PUBASEI ot XPUSEDVT X)W

TIP - IS SET TO THE FIRST UNLINKED VERTEX THAT IS IN

ROTH P(RASEL,EXPOSEDVIX) AND P(BASE2,EXPOSEDVIX);
BEGIN

INTEGEF PKOCFDURE FIRSTFREF (INTEGER VALLE L)
COMMENT TAIS PRCCEOURE RETURNS THE VALUE OF THE FIrRST UNL INKED
VERTEX IN PILyEXPOSFDVTIX)
RIEGIN
COMMENT STCRE “THE VALUE IN THF GLOBAL VARIABLE F AND
RETULEN F3
Fi= IF FREF({MATE(L)) THEN MATE(L)
FLSF
TOP(LINKLIF PTRIL) THEN MATE(L) FLSF L))
F
END

FREEVTX(1):=FIRSTFREF(RASEL);
COMMENT IF THE FOLLDWING TEST FAILS THE PROCEDURE EXILITS,
SINCE NO LINKS MAY BE ASSIGNED:

If FREEVIX(L)-~=FIRSTFREF(BASF2) THEN

REGIN

PTR(FRFEVTX(1)) :=FALSE;

FREEVTX(2):=F3

J=23

COMMENTTHISINDOPFLAGSUNLINKEDVERTICESALTERNATELY IN

' PRASTL, “XPOSEDVTIX) AND P(BASE2, EXPUSEDVIA)¢ UNTIL THE

FIRST CUMMNN UNLINKEDR VERTEX | SFUOUNDe A VERTEXI S
FIAGGENRY SETTING I TSPTRV A L UE T OFALSE;
wH TLE PTR (F) DO

REGIN

PTR(F):=FALSE;

Ji=3-J; o

COMMENT I F T H FENDOF P{BRASFJ,EXPOSEDVTX) HAS BLEN REACHED,

DONS'T GO ANY FURTHER;

| FFREEVTX (J)=0 THEN J:=3-J;

FREEVTX{3) 2=FIRSTFRFE(LINK(MATE(FREEVTX(JD)));

E-ND;

66

COMMENT MAKF FENTRIES IN RASE AND TOP;

TOP{PATRNUM) :=TIP:=F3

BASF(PAIRNUM,1) :=BASEL;

BASC(PAITRNUM,2):=BASTF 2} .

WRITE("PATR: ("yRASEL+BASF2,%) TIP IS",TIP," ")

COMMONT RESET PTR TO TRUE FCR VERTICES AsUVE TIPS
OTR{F) :=TRUE
WHILE -PTR(FIPSTFREE (LINK(MATE(Y)}))) DO

PTR(F) :=TRUF;

COMMENT LINK AL L UNLINKEG VFRTICES WhICH PRECEDE TIP IN
P{RASFL,EXPOSENVTX) AND PIBASE2,EXPLSEUVIX);
FAP [:=1,2 DO
I[F FIRSTFREE(RASE(PAIRNUM, [))~=T[P THEN

BEGIN

MAKEL INK (PAIRNUM, F)

WATLF FIRSTERECILINKIMATE(F))}~=TIP DO

MAKELTINK(PATRNUM,F);
CND

CUMMENT RESFT ENTRIES T N-TOP ARRAY WhICH HAVE JUST BEEN
LINKFD;
FUR I :=LUNT I LPAIRNUM-1ID C
IF -FREE(TOPLL)) THEN TOP({I) = | P

COMMENT R UM PPAIRNUMFORTHENE X TPAIRLINK;
PAIRNUM := PAIRNUM+L S
END 3

END PAIRLINK;

Routine for Assigning Links

PROCEDURE MAKELINK (INTEGERV A L U EL,FREEVIX)
COMMENT THISPRNCEDIJRFASSIGNS 4 LINK L TO AVERTEXFREEVTX;
BEGIN
FREE(FPEFEVIX):=FALSE;
{ INK(FREEVTX]} = L3
COMMENT PLACFFKEFVTX AT THE FNDOFTREQUEUEUF LINKED
VERTICES;
TAIL:=TAIL#1;
LINKQUEUE(TAIL) :=FREEVTX;
I FPTR(FRIEVTX)T H E NWRITE("PTRz:");
WRITECNIFREEVT X Ly ")
END MAKFEL INK ;

r-

-

67

Routine for Rematching

PROC EDUPE REMA TCH (I NTEGER VALUE F oL)3
COMMENT THISPROCECUPEMATCHESLT OF,ANBCONTINUESRE“ATCHING

ALONG P(L oFXPOSEDVTX)BYCALLINGITS E L FRECURSIVELY;
3FGIN .
WPRITEON (" MATCH " F,l);
H:=MATE (L);
AATELL) s=F3
COMMENT IF THE FCLLIWINGT E S TFAILSy THE REMATCHING ALONG
PLLyFXPOSEDNVTX) | SCONMPLETF;
[F MATF(H)=L THFN
IFPTRIL)THEN
REGIN
COMMENT | fLHAS A POINTERL | N K, REMATCH ALUNG P {Ly EXPGSEDVTX)3
MATE (H) =L INK(L DS
REMATCH(H LINKIL)) 3
END
FLSF '
COMMENT IF L HAS 4 PAIRLINK, REMATCH ALONG P(BASEL,EXPOSEDVTX)
AND P{BASE2, EXPOSEDVTX) ;
FNR 13=1,2 DC
REMATCH(RASFILINK{L) oI)oBASE(LINK(L) y2-1))3
END RFMATCH;

Driver Routine

CUMMENT THIS IST H EMAINPRQGRAM

COMMENT REAGCIMPUT GRAPHHA N DSTOREITI NADJACENCYL I STS;
REANDGRAPH;

COMMENT WRITFQUTT H EADJACENCYLISTS:

WRITFGRACHS

WRITE("STARTMA T " ,TIME(L1));

CUOMMENT INI TIALIZE;

FOR I:=0UNTILVDOMATE(I):=0;

LINK(U):=0;

COMMENT SFARCHFORAUGMENTINGPATHS T TOEACHEXPOSED VERTEX:
FOR [:=1UNTIL VDOIFMATE(I)=0T H E NSEARCHII);

WR I TE(M"ENDMATY ,TIME(L))

CCMMENT WRITEQUTTFEMATCHING ;

WRI TF("MAXIMAL MATCHING:2");

FOR 13=LUNT I LVDUWRITECN(Y n,I ,MATE(]));

COMMENT BFEGINT H ENFEXT GRAPH;

READ(NAME,V,F)3

FND

END .

68

References

Balinski, M.L., 1967. "Labelling to obtain a maximum matching," in
R.C. Bose and T.A. Dowling, ed., Combinatorial Mathematics

and Its Applications, University of North Carolina Press,
Chapel Hill, North Carolina, pp. 585-602, 1967 .

Berge, C., 1957. "Two theorems in graph theory," Proceedings of the
National Academy of Science, Vol. 43, pp. 842-8hk, 1957.

Edmonds, J., 1965. "Paths, trees and flowers," Canadian Journal of
Mathematics, Vol. 17, pp. 4ui9-L67,1965,

Fujii, M.,Kasami, T., and Ninomiya, K., 1969. "Optimal sequencing of
two equivalent processors, "SIAM Journal of Applied Mathemat-
ies, vol. 17, pp.T84-789, 1969, and erratum, Vol. 20, p.l4l,

1971.
Harary, F.,l§69. Graph Theory, Addison-Wesley, Reading, Mass.,1969,

Knuth, D., 1968. The Art of Computer Programming, Vol. 1, "Fundamental
Algorithms, " Addison-Wesley, Reading, Mass., 1968.

Witzgell, D. and Zehn, C.T. Jr., 1965. "Modification of Edmonds' Algor-
ithm for maximum matching of graphs," Journal of Research of
the National Bureau of Standards, Vol. 69B, pp.91-93, 1965,

