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Asymptotic Bounds for the Number

of Convex n-Ominoes

by David A. Klarner and Ronald L. Rivest

Abstract

Unit squares having their vertices at integer points in the

Cartesian plane are called cells. A point set equal to a union of n

distinct cells which is connected and has no finite cut set is called

an n-omino. Two n-ominoes are considered the same if one is mapped

onto the other by some translation of the plane. An n-omino is convex

if all cells in a row or column form a connected strip. Letting c(n)

denote the number of different convex n-ominoes, we show that the

sequence ((c(n))Y/?. n=12,...) tends to a limit 7 , and
y - 2.309138... .
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Asymptotic Bounds for the Number

of Convex n-Ominces

by David A. Klarner and Ronald L. Rivest

Computer Science Department, Stanford University

Introduction

Unit squares having their vertices at integer points in the Cartesian

plane are called cells. A point set equal to a union of n distinct

cells which is connected and has no finite cut set is called an

n-omino. Two n-ominoes are considered the same if one is mapped onto

the other by some translation of the plane. (Such n-ominoes were

called fixed animals with n cells by R. C. Read [8).) For example,

there are six different 3-ominoes as shown in Figure 1.

Figure 1. The 3-ominoes.
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Let t(n) denote the number of distinct n-ominoes. It is known.

| [2] that the sequence ((t(n)) YP, n=12,...) tends to a limit 0 .
The investigation of © began with Eden's [1 ] work; he managed to

prove that 3.14 <@ < 6.75 . There has been considerable effort

expended tc improve these bounds. Currently, the best lower bound

(given in [2 ]) is 3.72 < © , while the best upper bound (given

in [{5]) is © <h.65. |

An n-omino is row-convex when each row of the n-omino is a connected

strip of cells. Column-convex n-ominoes are defined analogously. All

six of the 3-ominces (shown in Figure 1) are both row-convex and

column-convex; in general, such n-ominces are said to be row-column-convex,

or Just convex for short. It war shown in [3] (and in [2 ] by a second

method) that

(1) xx - Tb)”
1-b4x+7x" -5% n=1

where b(n) denotes the number of distinct row-convex n-ominoes. (This

result was also obtained by Polya [ €].) Thus, it follows that the

sequence ((b(n))Y/™. n = 1,2, ...) tends to a limit 8 which is equal
to the largest real root of v -byZ+7y-5 =0 3 that is, p= 2.20 ... .

Recently, Donald Knuth wrote us from his. sabbatical hide-out in

(where he is secretly writing Volume L of his septuple, The Art of ad
Computer Programming), and aske’ us if the number c(n) of convex

n-ominoes had been investigated. This paper is entirely motivated
by Knuth's question. We shall be concerned with the problem of

effectively calculating the limit 7 of the sequence

((c(n)) 2/2. n=12...). One of the first things we prove is that

this limit exists. Later on we snow how to calculate upper and lower

bounds for 7 and give the best results dained by these methods.

2
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Existence of lim(n =x) (c(n))¥/™

Following Ceasar's admonition, we divide, then conquer. A

convex n-omino may be split into three parts by making two cuts between

certain rows so that the upper and lower parts are roughly trapezoids,

and the middle part is roughly a parallelogram. A typical sectioning

of this sort is shown in Figure 2. More precisely, the trisection of a

convex n-omino A is accomplished by cutting along the lowest

level of A where the left boundary of A goes to the right and by

cutting along the lowest level of A where the right boundary of A

goes to the left. ;

Figure 2. Trisection of a convex 28-omino.
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A convex n-omino whose left boundary climbs to the

right and whose right boundary climbs to the left corresponds to a

partition of n called a stack by E. M. Wright { 9]. We let s(n)

denote the mumber of distinct n-ominoes corresponding to stacks; for

example, there are four 3-ominoes shown in Figure 1 which correspond

to stacks, so s8(3) = 4 . A convex n-omino whose left and right

boundaries both climb to the right is called a parallelogram, and p(n)

: will denote the number of distinct n-ominoes which are parallelograms.

Clearly, p(n) <c(n) for all n ; also, &(n) < p(n) for all n

| (the diagram in Figure 3 suggests a proof of this fact). Finally, an

obvious construction establishes that p(m)p(n) < p(mtn) for ail myn .

Now we use the fact that if {u} is a sequence of natural numbers such

that ((u)V/™; n=12...) is bounded and wu <u for all m,n ,
then 1lim(n —o) (wy1 existe. (For similar results, see Pélye and
Szego [ 7, p. 171].) We have p(n) < b(n) < (3.20)" for all large n ,

| and p(m)p(n) <p(mtn) , so

(2) tn (pe)? = 5
n-—o

exists. Using the fact that every convex n-omino splits into

two stacks and one parallelogram, we can reconstruct these n-aminoes by

pasting together two stacks and one parallelogram in various ways.

Again, using an cbvious construction, and using the fact that

p(1)p(J)p(x) < p(i+j+k) for all i,j,k , it is easy to show that
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(3) cn) < an® I s(1)p(3)s(k)
(1,J3,k)

< 2an® I p(1)p(3)p(k)
(1,d5k)

< a®("Pp(n) < (m2) p(n)

where the index of summation in the sums extends over all compositions

(1,3,k) of n into non-negative parts. There are (M2) such |
compositions.

Figure 3. An injection showing &(n) < p(n) .

Using (2) and (3) together with the fact that p(n) < c(n) for

all n , we have

(4) y = ln (p@)Y® < 1m tnt(c(n))Y/R
Nl =e =o

< Lim sup(e(m)® < 1a ((m2)'p@NY® - 7 .
n-—-0 n--e
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Hence, 1in(n =) (c(n))Y? exists, and

1 .

(5) ln (cm)? = 1m (p@)M® = oy
7] —® n—eo

An Integral Equation :

We shall ure a theory developed in [ 4 ] concerning a double

sequence (b(n,a): n,a = 1,2,...) defined in terms of given sequences

(f(myn): myn = 1,2,...) and (g(n): n = 1,2,...) as follows:

where the index of summation extends over all k-tuples CF . ces8y)

of natural numbers for k = 1,...,n with a, = a and a, + cos ta, =n.

It was shown that if

ot n(7) g(x) = 2. g(n)x ’
n=1

and

ou mn(8) F(x;y) = 2 f(mn)xy
m,n=1

converge for |x| and |y| sufficiently small, then

© n an
(9) B(x,;y) = ZL Zb(na)yx

n=l a=l

converges for |x| and |y| sufficiently small, and

1 1 ds

(10) B(x,y) = G(x) + 57 J F(xy,5) B(x,8)
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where C is a contour in the s-plane which includes s = 0 and the

singularities of F(xy,>) but excludes the singularities of B(x,s) .
| The theory of (10) runs parallel to that of the Fredholm integral

equation. In particular, if F(x,y) hag the special form

(11) Flxy) = RNS) +... +R(XS,(¥)

we say F is separatle, and it turns out that (10) can be converted

into a system of t equations linear in t unknown functions. The

| system can be solved and the solution yields a formula for B(x,y) .

| We shall give an example of this later on.

If F 1s not separable we can still get information about B by

approximating F with something that is separable. Suppose

(12) K(x,y) = Zk(mn)xy"

and k(m,n) < f(m,n) for all m,n , then we say X is a lower bound

| on F ; an upper bound on F is defined analogously. If KX is

separable, we may substitute K for F in (10) and calculate a lower

bound for B . Upper bounds for B may be obtained in a similar

fashion. We shall adopt this strategy too, so an example is forthcoming.

The relevance of the foregoing discussion to the enumeration of

n-celled parallelograms is as follows: the number of (m+n)-celled

parallelograms having m cells in one row and n cells in a second

row 1s

(13) f(m,n) = min{m,n} . |

It is fairly easy to show that the number of n-celled parallelograms

: with exactly k rows of cells having exactly a, cells in the i-th

row for 1 =1,...,k is

| 7



(1k) f(a,,a,) JCNLEY ‘cos fa, _q a) .

Thus, if we take f as defined in (13) and put g(3) =1 forall Jj,

we can sum (6) over a =1,...,n and obtain p(n) . In this case, we
have

and

xX

(16) G(x) = T=

Substituting these functions in (10) gives

_ XY 1 xy Bix, bioe(17) B(x,y¥) Toxy xi J "1-xy) (8-1) (s-xy

: = THe —5_ B(x,1) - —2— B(x,xy)
(l-xy) (1-xy)

We can iterate (17) to eliminate B(x,%y) , B(X,X°¥) ... successively
to find

= (SKNyeBe)
k=1 (1-xy) “(1-x“y)° ... (1=x"Y)

Setting y = 1 in (18), we solve for B(x,1) , the generating functicn

of (p(n): n=12,...) , which turns out to be

x -x +EE -
1-x N21 x2 CTE

(19) B(x,1) = (1 x) (1 x) (1-x) (1-x ) :: )
1] - Xpxs———+...

102 102? (1021200)?

_ = p(n)x" ‘
n=1
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We have been unable to make use of (19) in estimating p(n) . Instead

we use upper and lower bounds for F as defined in (15), and then use

(10) to calculate upper and lower bounds for B .

Lower Bounds

Let

x mn
(20) Fy (x,¥) = 2 f(m,n)x"y

m,n=1

where f(m,n) = min{m,n} just as in (13), and let B, (x,¥) denote the

solution of (10) having F, substituted for F . Since Fis a lower

bound for F , it follows that B. is a lower bound for B . It was

shown in [1 ] that when the kernel of (10) is approximated by a polynomial

| as in this case, then B, (x, 1) is a rational function, say B, = P/Q,

with Py and QU polynomials, and the denominator of B, may be
expressed as a determinant. In the present situation this turns out to be

l-x 1 1 aoe 1

(21) ) = 1 3 2 30 ... 3

1 2 3... kx

If we put Q(x) =1 and Q, (x) = lex we can use (21) to verify that

k=l Xk 2.:.=2

for k =2,3,... . For example,

9



Q(x) =l-2x-x"+x ,

Q(x) = Loox -2x2 +200 + 2x" 4 x0 = x0 ’
Q, (x) = 1-2x-2x° + x0 + 3x + 5x° - 2x0 ox! _ 2x8 <x? + x0 ‘

Letting 7, denote the largest real root of Q, (1/x) = 0 , we have

7{ S75 LX :-- <7, where 7 is defined in (2). We have used a computer

to calculate lower bounds for 712750 ce es¥10 given in the table. Our

results indicate that the sequence {74] converges very quickly to

the value 2.30913859... , our best lower bound for 7 .

Upper Bounds 2

For k = 1,2,... we define upper bounds f(m,n) for

f(m,n) = min{m,n} as follows: |

m, if k<n<nm,

(23) £%(m, n) =
f(m,n) , otherwise.

Hence,

~ mn

m,n=1

2 ktl k

= “ -— - - SA2 [BR BR J 2
(1-x)"(1-y) (1-x) (1-x)

is an upper bound for F ; furthermore, note that F- is separable.

Let B® denote the solution of (10) with F* substituted for F .

Then,

k xy xyB(x,1) = r rk(25) B (x,y) = xy * 5 el Z xy B (x)
(1-xy) (l-xy)~ r=l

10



where

k 1 3° .k

B(x) = Xt - 1% B x0) ;1 g=0

Now we use (25) to get a syster equations involving Baye. esBy .
Take the r-th partial derivati ¢ th reepect to y at y =0 and

divide by r! in (25) to get

k r, rk r-l r_k
(26) B (x) = X +rxB (x,1) - 2 (r-j)x B(x) ,

J=1

from which it follows that

k +l, _k k

(27) B,1(x) = (2x-x )B_(x) -x°Bx_, (x) .

Setting Br (x) = P_(x) +Q_(x)B (x, 1) for r=1,...,k , it follows
that P_ and Q. also satisfy the difference equation (27). Also,

we can substitute P_+Q B®. For B_ in (25) with y = 1 and solve
for B(x,1) in tems of P,,Q,,.--,P,,Q, to obtain

2 k J+ |
X-x"- 2 x 'p, (x)

@ ey -—i
le3x+x+ 5 AR, (x)

J=1

Thus, B is a rational function whose numerator N, and

denominator D we know how to campute because they are defined in

terms of PiyeeosPy and Qyr-esQy vhich we know how to compute.

Let B, denote the largest real root of D,(1/x) , then we know
1/n

LR
(29) ua Z b(n,z) =f <7

n-os\ a=l

11



and Bf, >By 2-0 27 Thus, we can calculate upper bounds for

| B,s85) ... to obtain successively better upper bounds for 7 .
Using the definitions

2, 2 let

(30) Dy = l-3x+X *XQt... tx Ry ’
_ _ +l 2

(31) Usp = (2x-x RQ, XQ. (r >1) ,

and Q, =X Q, = 2x -x° , the polynomials D,5D,) - are calculated
with relative ease. For example, we found

D, = 1-3x4+x°+%° ’

D, = 1 ox x24 0420 = x0 ’

Dy = 1-3xe x04 200 xb 4 3x! - 2x 2x7 + x3° .

Using a computer, the polynomials D,, . ++sDyq were calculated

via (30), and upper bounds for §, , the largest real root of

D, (1/x) = 0 , were computed for 1 < k < 10 using the Newton-Raphson
method. These upper bounds for By are given in the table.

Cazhining our upper and lower bounds we can conclude that

1/n

n-—-—-o

12



k 7 Py

1 1.00000000 2.41421%356

2 2.2L697960 2.33578290

3 2.30855218 2.31h75605

L 2.30913772 2.3102350L

5 2.30913859 2.30934711

6 2.30913859 2.30917790

7 2.30913859 2.3091L4598

8 2.30913859 2.30915998
9 2.30913859 2.30913885
10 2.30013859 2.30913864

Table
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