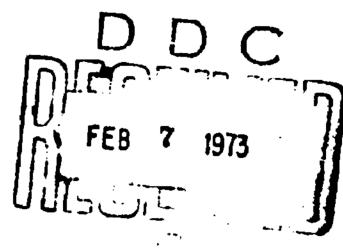


AD 755138

ASYMPTOTIC BOUNDS FOR THE NUMBER
OF CONVEX n -OMINOES

BY

DAVID A. KLARNER
AND
RONALD L. RIVEST



STAN-CS-72-327

DECEMBER 1972

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce
Springfield VA 22151

Unclassified

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotations must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) Stanford University Computer Science Department Stanford, California 94305	2a. REPORT SECURITY CLASSIFICATION Unclassified
	2b. GROUP

1. REPORT TITLE

Asymptotic Bounds for the Number of Convex n-Omino

4. DESCRIPTIVE NOTES (Type 2. report and inclusive dates)

Technical Report, December 1972

5. AUTHOR(S) (First name, middle initial, last name)

David A. Klarner and Ronald L. Rivest

6. REPORT DATE December 1972	7a. TOTAL NO. OF PAGES 15 18	7b. NO. OF REFS 9
8a. CONTRACT OR GRANT NO. GJ-992 and N-00014-67-A-0112-0057 NR 044-40	8b. ORIGINATOR'S REPORT NUMBER(S) 02 STAN-CS-72-327	
8c.	8d. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
9.		

10. DISTRIBUTION STATEMENT

Releasable without limitations or dissemination.

11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
-------------------------	----------------------------------

13. ABSTRACT

Unit squares having their vertices at integer points in the Cartesian plane are called cells. A point set equal to a union of n distinct cells which is connected and has no finite cut set is called an n -omino. Two n -ominoes are considered the same if one is mapped onto the other by some translation of the plane. An n -omino is convex if all cells in a row or column form a connected strip. Letting $c(n)$ denote the number of different convex n -ominoes, we show that the sequence $((c(n))^{1/n} : n = 1, 2, \dots)$ tends to a limit γ , and $\gamma = 2.309138\dots$.

14

Asymptotic Bounds for the Number
of Convex n-Ominoess

by David A. Klarner and Ronald L. Rivest

Abstract

Unit squares having their vertices at integer points in the Cartesian plane are called cells. A point set equal to a union of n distinct cells which is connected and has no finite cut set is called an n-omino. Two n-ominoes are considered the same if one is mapped onto the other by some translation of the plane. An n-omino is convex if all cells in a row or column form a connected strip. Letting $c(n)$ denote the number of different convex n-ominoes, we show that the sequence $((c(n))^{1/n}: n = 1, 2, \dots)$ tends to a limit γ , and $\gamma = 2.309138\dots$.

This research was supported in part by the National Science Foundation under grant number GJ-992, and the Office of Naval Research under contract number N-00014-67-A-0112-0057 NR 044-402. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Asymptotic Bounds for the Number
of Convex n -Ominoes

by David A. Klarner and Ronald L. Rivest
Computer Science Department, Stanford University

Introduction

Unit squares having their vertices at integer points in the Cartesian plane are called cells. A point set equal to a union of n distinct cells which is connected and has no finite cut set is called an n -omino. Two n -ominoes are considered the same if one is mapped onto the other by some translation of the plane. (Such n -ominoes were called fixed animals with n cells by R. C. Read [8].) For example, there are six different 3-ominoes as shown in Figure 1.

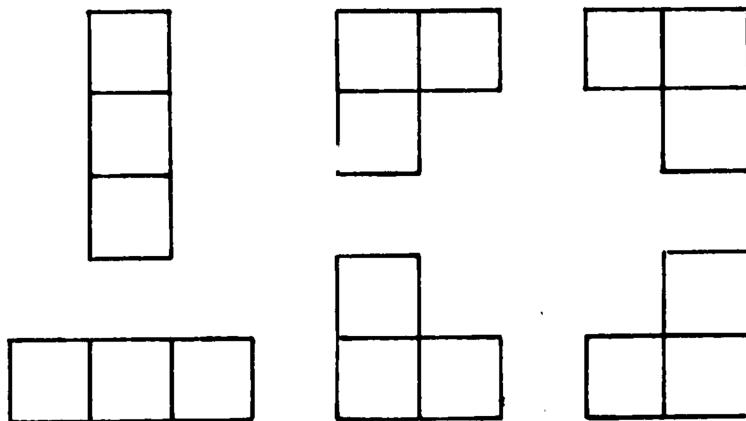


Figure 1. The 3-ominoes.

Let $t(n)$ denote the number of distinct n -ominoes. It is known [2] that the sequence $((t(n))^{1/n}: n = 1, 2, \dots)$ tends to a limit θ . The investigation of θ began with Eden's [1] work; he managed to prove that $3.14 < \theta \leq 6.75$. There has been considerable effort expended to improve these bounds. Currently, the best lower bound (given in [2]) is $3.72 < \theta$, while the best upper bound (given in [5]) is $\theta < 4.65$.

An n -omino is row-convex when each row of the n -omino is a connected strip of cells. Column-convex n -ominoes are defined analogously. All six of the 3-ominoes (shown in Figure 1) are both row-convex and column-convex; in general, such n -ominoes are said to be row-column-convex, or just convex for short. It was shown in [3] (and in [2] by a second method) that

$$(1) \quad \frac{x(1-x)^3}{1 - 4x + 7x^2 - 5x^3} = \sum_{n=1}^{\infty} b(n)x^n$$

where $b(n)$ denotes the number of distinct row-convex n -ominoes. (This result was also obtained by Polya [6].) Thus, it follows that the sequence $((b(n))^{1/n}: n = 1, 2, \dots)$ tends to a limit β which is equal to the largest real root of $y^3 - 4y^2 + 7y - 5 = 0$; that is, $\beta = 3.20 \dots$.

Recently, Donald Knuth wrote us from his sabbatical hide-out in CENSORED (where he is secretly writing Volume 4 of his septuple, The Art of Computer Programming), and asked us if the number $c(n)$ of convex n -ominoes had been investigated. This paper is entirely motivated by Knuth's question. We shall be concerned with the problem of effectively calculating the limit γ of the sequence $((c(n))^{1/n}: n = 1, 2, \dots)$. One of the first things we prove is that this limit exists. Later on we show how to calculate upper and lower bounds for γ and give the best results obtained by these methods.

Existence of $\lim_{n \rightarrow \infty} (c(n))^{1/n}$

Following Ceasar's admonition, we divide, then conquer. A convex n -omino may be split into three parts by making two cuts between certain rows so that the upper and lower parts are roughly trapezoids, and the middle part is roughly a parallelogram. A typical sectioning of this sort is shown in Figure 2. More precisely, the trisection of a convex n -omino A is accomplished by cutting along the lowest level of A where the left boundary of A goes to the right and by cutting along the lowest level of A where the right boundary of A goes to the left.

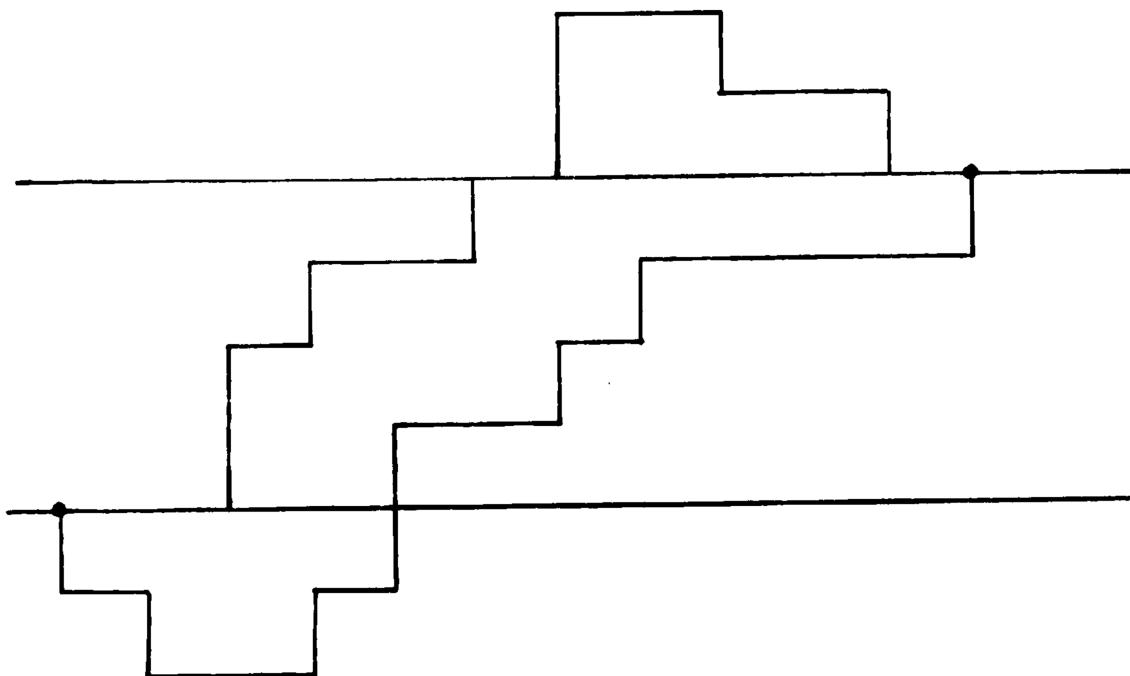


Figure 2. Trisection of a convex 28-omino.

A convex n -omino whose left boundary climbs to the right and whose right boundary climbs to the left corresponds to a partition of n called a stack by E. M. Wright [9]. We let $s(n)$ denote the number of distinct n -ominoes corresponding to stacks; for example, there are four 3-ominoes shown in Figure 1 which correspond to stacks, so $s(3) = 4$. A convex n -omino whose left and right boundaries both climb to the right is called a parallelogram, and $p(n)$ will denote the number of distinct n -ominoes which are parallelograms. Clearly, $p(n) \leq c(n)$ for all n ; also, $s(n) \leq p(n)$ for all n (the diagram in Figure 3 suggests a proof of this fact). Finally, an obvious construction establishes that $p(m)p(n) \leq p(m+n)$ for all m, n . Now we use the fact that if $\{u_n\}$ is a sequence of natural numbers such that $((u_n)^{1/n}; n = 1, 2, \dots)$ is bounded and $u_m u_n \leq u_{m+n}$ for all m, n , then $\lim_{n \rightarrow \infty} (u_n)^{1/n}$ exists. (For similar results, see Pólya and Szego [7, p. 171].) We have $p(n) \leq b(n) < (3.20)^n$ for all large n , and $p(m)p(n) \leq p(m+n)$, so

$$(2) \quad \lim_{n \rightarrow \infty} (p(n))^{1/n} = \gamma$$

exists. Using the fact that every convex n -omino splits into two stacks and one parallelogram, we can reconstruct these n -ominoes by pasting together two stacks and one parallelogram in various ways. Again, using an obvious construction, and using the fact that $p(i)p(j)p(k) \leq p(i+j+k)$ for all i, j, k , it is easy to show that

$$\begin{aligned}
 (3) \quad c(n) &\leq 2n^2 \sum_{(i,j,k)} s(i)p(j)s(k) \\
 &\leq 2n^2 \sum_{(i,j,k)} p(i)p(j)p(k) \\
 &\leq 2n^2 \binom{n+2}{2} p(n) \leq (n+2)^4 p(n)
 \end{aligned}$$

where the index of summation in the sums extends over all compositions (i,j,k) of n into non-negative parts. There are $\binom{n+2}{2}$ such compositions.

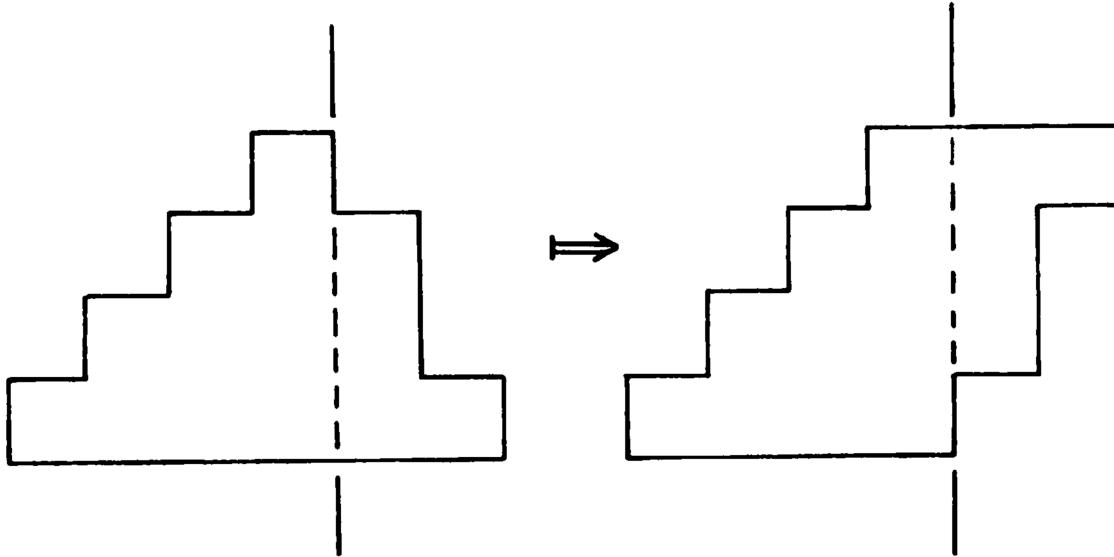


Figure 3. An injection showing $s(n) \leq p(n)$.

Using (2) and (3) together with the fact that $p(n) \leq c(n)$ for all n , we have

$$\begin{aligned}
 (4) \quad \gamma &= \lim_{n \rightarrow \infty} (p(n))^{1/n} \leq \liminf_{n \rightarrow \infty} (c(n))^{1/n} \\
 &\leq \limsup_{n \rightarrow \infty} (c(n))^{1/n} \leq \lim_{n \rightarrow \infty} ((n+2)^4 p(n))^{1/n} = \gamma.
 \end{aligned}$$

Hence, $\lim_{n \rightarrow \infty} (c(n))^{1/n}$ exists, and

$$(5) \quad \lim_{n \rightarrow \infty} (c(n))^{1/n} = \lim_{n \rightarrow \infty} (p(n))^{1/n} = \gamma .$$

An Integral Equation

We shall use a theory developed in [4] concerning a double sequence $(b(n, a) : n, a = 1, 2, \dots)$ defined in terms of given sequences $(f(m, n) : m, n = 1, 2, \dots)$ and $(g(n) : n = 1, 2, \dots)$ as follows:

$$(6) \quad b(n, a) = \sum f(a_1, a_2) f(a_2, a_3) \dots f(a_{k-1}, a_k) g(a_k)$$

where the index of summation extends over all k-tuples (a_1, \dots, a_k) of natural numbers for $k = 1, \dots, n$ with $a_1 = a$ and $a_1 + \dots + a_k = n$.

It was shown that if

$$(7) \quad G(x) = \sum_{n=1}^{\infty} g(n)x^n ,$$

and

$$(8) \quad F(x, y) = \sum_{m, n=1}^{\infty} f(m, n)x^m y^n ,$$

converge for $|x|$ and $|y|$ sufficiently small, then

$$(9) \quad B(x, y) = \sum_{n=1}^{\infty} \sum_{a=1}^n b(n, a)y^a x^n$$

converges for $|x|$ and $|y|$ sufficiently small, and

$$(10) \quad B(x, y) = G(xy) + \frac{1}{2\pi i} \int_C F(xy, \frac{1}{s}) B(x, s) \frac{ds}{s}$$

where C is a contour in the s -plane which includes $s = 0$ and the singularities of $F(xy, \frac{1}{s})$ but excludes the singularities of $B(x, s)$. The theory of (10) runs parallel to that of the Fredholm integral equation. In particular, if $F(x, y)$ has the special form

$$(11) \quad F(x, y) = R_1(x)S_1(y) + \dots + R_t(x)S_t(y) ,$$

we say F is separable, and it turns out that (10) can be converted into a system of t equations linear in t unknown functions. The system can be solved and the solution yields a formula for $B(x, y)$. We shall give an example of this later on.

If F is not separable we can still get information about B by approximating F with something that is separable. Suppose

$$(12) \quad K(x, y) = \sum k(m, n)x^m y^n$$

and $k(m, n) \leq f(m, n)$ for all m, n , then we say K is a lower bound on F ; an upper bound on F is defined analogously. If K is separable, we may substitute K for F in (10) and calculate a lower bound for B . Upper bounds for B may be obtained in a similar fashion. We shall adopt this strategy too, so an example is forthcoming.

The relevance of the foregoing discussion to the enumeration of n -celled parallelograms is as follows: the number of $(m+n)$ -celled parallelograms having m cells in one row and n cells in a second row is

$$(13) \quad f(m, n) = \min\{m, n\} .$$

It is fairly easy to show that the number of n -celled parallelograms with exactly k rows of cells having exactly a_i cells in the i -th row for $i = 1, \dots, k$ is

$$(14) \quad f(a_1, a_2) f(a_2, a_3) \dots f(a_{k-1}, a_k) \quad .$$

Thus, if we take f as defined in (13) and put $g(j) = 1$ for all j , we can sum (6) over $a = 1, \dots, n$ and obtain $p(n)$. In this case, we have

$$(15) \quad F(x, y) = \frac{xy}{(1-x)(1-y)(1-xy)} \quad ,$$

and

$$(16) \quad G(x) = \frac{x}{1-x} \quad .$$

Substituting these functions in (10) gives

$$(17) \quad B(x, y) = \frac{xy}{1-xy} + \frac{1}{2\pi i} \int_C \frac{xy B(x, s) ds}{(1-xy)(s-1)(s-xy)} \\ = \frac{xy}{1-xy} + \frac{xy}{(1-xy)^2} B(x, 1) - \frac{xy}{(1-xy)^2} B(x, xy) \quad .$$

We can iterate (17) to eliminate $B(x, xy), B(x, x^2y), \dots$ successively to find

$$(18) \quad B(x, y) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k(k+1)/2} y^k (1-x^k y + B(x, 1))}{(1-xy)^2 (1-x^2 y)^2 \dots (1-x^k y)^2} \quad .$$

Setting $y = 1$ in (18), we solve for $B(x, 1)$, the generating function of $(p(n) : n = 1, 2, \dots)$, which turns out to be

$$(19) \quad B(x, 1) = \frac{\frac{x}{1-x} - \frac{x^3}{(1-x)^2 (1-x^2)} + \frac{x^6}{(1-x)^2 (1-x^2)^2 (1-x^3)} - \dots}{1 - \frac{x}{(1-x)^2} + \frac{x^3}{(1-x)^2 (1-x^2)^2} - \frac{x^6}{(1-x)^2 (1-x^2)^2 (1-x^3)^2} + \dots} \\ = \sum_{n=1}^{\infty} p(n) x^n \quad .$$

We have been unable to make use of (19) in estimating $p(n)$. Instead we use upper and lower bounds for F as defined in (15), and then use (10) to calculate upper and lower bounds for B .

Lower Bounds

Let

$$(20) \quad F_k(x, y) = \sum_{m,n=1}^k f(m,n)x^m y^n$$

where $f(m,n) = \min\{m,n\}$ just as in (13), and let $B_k(x, y)$ denote the solution of (10) having F_k substituted for F . Since F_k is a lower bound for F , it follows that B_k is a lower bound for B . It was shown in [4] that when the kernel of (10) is approximated by a polynomial as in this case, then $B_k(x, 1)$ is a rational function, say $B_k = P_k/Q_k$ with P_k and Q_k polynomials, and the denominator of B_k may be expressed as a determinant. In the present situation this turns out to be

$$(21) \quad Q_k(x) = \begin{vmatrix} 1-x & 1 & 1 & \dots & 1 \\ 1 & 2-x^2 & 2 & \dots & 2 \\ 1 & 2 & 3-x^3 & \dots & 3 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 2 & 3 & \dots & k-x^k \end{vmatrix}$$

If we put $Q_0(x) = 1$ and $Q_1(x) = 1-x$ we can use (21) to verify that

$$(22) \quad Q_k(x) = (1-x^{k-1}-x^k)Q_{k-1}(x) - x^{2k-2}Q_{k-2}(x)$$

for $k = 2, 3, \dots$. For example,

$$Q_2(x) = 1 - 2x - x^2 + x^3 ,$$

$$Q_3(x) = 1 - 2x - 2x^2 + 2x^3 + 2x^4 + x^5 - x^6 ,$$

$$Q_4(x) = 1 - 2x - 2x^2 + x^3 + 3x^4 + 5x^5 - 2x^6 - 2x^7 - 2x^8 - x^9 + x^{10} .$$

Letting γ_k denote the largest real root of $Q_k(1/x) = 0$, we have $\gamma_1 \leq \gamma_2 \leq \dots \leq \gamma$, where γ is defined in (2). We have used a computer to calculate lower bounds for $\gamma_1, \gamma_2, \dots, \gamma_{10}$ given in the table. Our results indicate that the sequence $\{\gamma_i\}$ converges very quickly to the value 2.30913859..., our best lower bound for γ .

Upper Bounds

For $k = 1, 2, \dots$ we define upper bounds $f^k(m, n)$ for $f(m, n) = \min\{m, n\}$ as follows:

$$(23) \quad f^k(m, n) = \begin{cases} m, & \text{if } k < n < m, \\ f(m, n), & \text{otherwise.} \end{cases}$$

Hence,

$$(24) \quad F^k(m, n) = \sum_{m, n=1}^{\infty} f^k(m, n) x^m y^n$$

$$= \frac{xy}{(1-x)^2(1-y)} - \frac{x^2 y}{(1-x)^2} - \dots - \frac{x^{k+1} y^k}{(1-x)^2}$$

is an upper bound for F ; furthermore, note that F^k is separable.

Let B^k denote the solution of (10) with F^k substituted for F .

Then,

$$(25) \quad B^k(x, y) = \frac{xy}{1-xy} + \frac{xyB^k(x, 1)}{(1-xy)^2} - \frac{xy}{(1-xy)^2} \sum_{r=1}^k x^r y^r B_r^k(x)$$

where

$$B_r^k(x) = \frac{1}{k!} \left. \frac{\partial^r}{\partial s^r} B^k(x, s) \right|_{s=0} .$$

Now we use (25) to get a system of equations involving B_1^k, \dots, B_k^k . Take the r -th partial derivative with respect to y at $y = 0$ and divide by $r!$ in (25) to get

$$(26) \quad B_r^k(x) = x^r + rx^r B^k(x, 1) - \sum_{j=1}^{r-1} (r-j)x^r B_j^k(x) ,$$

from which it follows that

$$(27) \quad B_{r+1}^k(x) = (2x - x^{r+1}) B_r^k(x) - x^2 B_{r-1}^k(x) .$$

Setting $B_r^k(x) = P_r(x) + Q_r(x) B^k(x, 1)$ for $r = 1, \dots, k$, it follows that P_r and Q_r also satisfy the difference equation (27). Also, we can substitute $P_r + Q_r B^k$. For B_r in (25) with $y = 1$ and solve for $B^k(x, 1)$ in terms of $P_1, Q_1, \dots, P_k, Q_k$ to obtain

$$(28) \quad B^k(x, 1) = \frac{x - x^2 - \sum_{j=1}^k x^{j+1} P_j(x)}{1 - 3x + x^2 + \sum_{j=1}^k x^{j+1} Q_j(x)} .$$

Thus, B^k is a rational function whose numerator N_k and denominator D_k we know how to compute because they are defined in terms of P_1, \dots, P_k and Q_1, \dots, Q_k which we know how to compute. Let β_k denote the largest real root of $D_k(1/x)$, then we know

$$(29) \quad \lim_{n \rightarrow \infty} \left(\sum_{a=1}^n b^k(a, z) \right)^{1/n} = \beta_k \leq \gamma ,$$

and $\beta_1 \geq \beta_2 \geq \dots \geq \gamma$. Thus, we can calculate upper bounds for β_1, β_2, \dots to obtain successively better upper bounds for γ .

Using the definitions

$$(30) \quad D_k = 1 - 3x + x^2 + x^2 Q_1 + \dots + x^{k+1} Q_k ,$$

$$(31) \quad Q_{r+1} = (2x - x^{r+1}) Q_r - x^2 Q_{r-1} \quad (r > 1) ,$$

and $Q_1 = x$, $Q_2 = 2x^2 - x^3$, the polynomials D_1, D_2, \dots are calculated with relative ease. For example, we found

$$D_1 = 1 - 3x + x^2 + x^3 ,$$

$$D_2 = 1 - 3x + x^2 + x^3 + 2x^5 - x^6 ,$$

$$D_3 = 1 - 3x + x^2 + x^3 + 2x^5 - x^6 + 3x^7 - 2x^8 - 2x^9 + x^{10} .$$

Using a computer, the polynomials D_1, \dots, D_{10} were calculated via (30), and upper bounds for β_k , the largest real root of $D_k(1/x) = 0$, were computed for $1 \leq k \leq 10$ using the Newton-Raphson method. These upper bounds for β_k are given in the table.

Combining our upper and lower bounds we can conclude that

$$(32) \quad \gamma = \lim_{n \rightarrow \infty} (c(n))^{1/n} = 2.309138\dots .$$

k	γ_k	β_k
1	1.00000000	2.41421356
2	2.24697960	2.33578290
3	2.30855218	2.31475605
4	2.30913772	2.31023504
5	2.30913859	2.30934711
6	2.30913859	2.30917790
7	2.30913859	2.30914598
8	2.30913859	2.30913998
9	2.30913859	2.30913885
10	2.30913859	2.30913864

Table

References

- [1] M. Eden, "A two-dimensional growth process," Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV (Berkeley, California, 1961), pp. 223-239.
- [2] D. A. Klarner, "Cell growth problems," Canadian Journal of Mathematics, Vol. 19 (1967), pp. 851-863.
- [3] D. A. Klarner, "Some results concerning polynominoes," Fibonacci Quarterly, Vol. 3 (1965), pp. 9-20.
- [4] D. A. Klarner, "A combinatorial formula involving the Fredholm integral equation," Journal of Combinatorial Theory, Vol. 5 (1968), pp. 59-74.
- [5] D. A. Klarner and R. L. Rivest, "A procedure for improving the upper bound for the number of n-aminoes," Computer Science Dept. Report CS 263, Stanford University, February 1972, to appear in the Canadian Journal of Mathematics.
- [6] G. Pólya, "On the number of certain lattice polygons," Journal of Combinatorial Theory, Vol. 6 (1969), pp. 102-105.
- [7] G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Vol. 1 (Berlin, 1925).
- [8] R. C. Read, "Contributions to the cell growth problem," Canadian Journal of Mathematics, Vol. 14 (1962), pp. 1-20.
- [9] E. M. Wright, "Stacks," Quarterly J. Math. Oxford (2), Vol. 19, (1968), pp. 313-320.