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A CLASS OF TRI-DIAGONAL LINEAR SYSTEMS
by

Michael A. Malcolm and John Palmer

ABSTRACT

The solution of linear systems having real, symmetric, diagonally
dominant, tridiagonal coefficient matrices with constant diagonals is
considered. It is proved that the diagonals of the LU decamposition of

the coefficient matrix rapidly converge to full floating-point precision.

It is also provéd that the computed LU decomposition converges when
floating-point arithmetic is used and that the limits of the LU diagonals
using floating point are roughly within machine precision of the limits
using real arithmetic. This fact is exploited to reduce the number of
floating-point operations required to solve a linear system from 8n-7

to 5n+2k-3 , where k is much less than n , the order of the matrix.

If the elements of the sub- and superdiagonals are 1 , then only 4n+2k-3
operations are needed. The entire LU decamposition takes k words of
storage, and considerable savings in array subscripting are achieved.
Upper and lower bounds on k are obtained in terms of the ratio of the

- coefficient matrix diagonal constants and parameters of the floating-point
number system.

Various generalizations of these results are discussed.



1.  Introduction

We will consider the solution of linear algebraic systems having
real symmetric, diagonally dominant, tridiagonal coefficient matrices
with constant diagonals. This problem occurs frequently in solving certain
kinds of partial differential equations, boundary value problems of ordin-
ary differential equations, and cubic spline interpolation problems.

Consider the coefficient matrix

. -
a b
b a b
A=_ b. a. b.
. . .
‘b *a b
a
-
of order n . The usual LU decomposition of A requires n-1 divisions,

n-1 multiplications, and n-1 additions. The solution of the equations
LUx = d requires an additional n divisions, 2n-2 multiplications, and
2n-2 additions. With the following observation, the entire LU decompos-
ition of A can be stored in k floating-point words, and the solution

of the linear system Ax = d can be obtained in k divisions, 3n-1 mul-
tiplications, and 2n-2+k additions, where k is usually much less than
n. Typically, %k is on the order of 10. Moreover, k can easily be
estimated from the values of a and b and parameters of the floating-
point number system used in the solution. If b =1, then n multiplies
can be avoided. In addition to a smaller operation count, substantial

savings in array indexing are achieved.



2, The Algorithm

Consider the matrix

o 1
1 o 1
1 o 1
B = '] L | ¢ b
e ¢
v o ¢
1 o 1
1 o
-l
where o = a/b . Note that A = bB . The analysis, as well as the comp-

utation is simplified by considering the coefficient matrix to be B and

the linear system bBx = d . B can be factored into the product LU ,
where
n - 7
1 ul 1
ho1 oL,
. .
L= 2y 1 , U=
A ] . . [ 4
. . 1
e * .
u
ip-1 L n
- e o

using the recurrence relations:

u_:a-‘f;._ b .
u = s zi—lzl/uil ’ 1 ll l=2,o.c’n,

or

c
1

o - 1/u,l_l , i=2,...,n. (1)



Under suitable conditions, to be discussed, the zi converge and

.Gk = thﬂ = .. .= J?,n = ¢§ to machine accuracy. In the computer, one simply

computes and stores the values of !’i , i=1,...,k . The solution vector

X can then be computed as follows:

yl = dl b

= - 3 = = - i=k+ J ey 7
yi di fli_lyi_l 9 1—2, Ca Ik H yi di Lyi-l, i=k+1 n

= 2
%n !’yn ’ (2)

z; = M,(y:.L 'zi+l) , d=n-lye.k oz = 4. (Y - Zi+l)’ i=k-1,...,1

X, =._b"lz, , i=l,...,n .
i i

5. Convergence of the LU decomposition

We will show that when A is diagonally dominant, the sequences
[ui] and [!Zi] converge. We will also find an estimate of the rate of
convergence which can be used to determine a value for k

It is sufficient to show that the sequence [ui] converges, and
for this we assume diagonal dominance, or equivalently, |a| > 2 . The
following theorem is a special case of a theorem of Parter(1962) for

band matrices.

Theorem 1: Tf |ar| > 2 , then the sequence [ui] converges to u where

o + sgn(a) Vae- L | (3)
2

Proof: Convergence follows from the fact that the seguence [aui] is bounded

and monotone:



Lemma 1 (boundness):; If le| > 2 , then

au, >2 , i=l,... . (%)

Proof: From (1), u, = @ . Thus au, = 25> 4 . Now assume that (4) holds

o

for some value of i > 1 . By (1),

2 2 2
o, . =0 -afu >a -a"/2>2,
Lemma 1 follows by induction. l
Lemma 2 (monotonicity): If |oz| > 2 , then

arui*l< otul. s i+l,...

Proof: From (1),
_ 1
o "% T

and a(u -u,) = <:v(u:.L -, 1), 1=,

i+l
Yitiog

It follows from Lemma 1 that the us must all have the same sign. Thus,

by induction,

a(ui+l - ui) <0, '

Now, in the limit,
w-a-L,
2

or, u -~-ou+1=0,

Equation (3) is the quadratic formula with the sign of the radical chosen

to avoid a contradiction with Lemma 1. This completes the proof of

Theorem 1.



The following two theorems provide a way to estimate the value of k
Theorem 2: If|e|>2 , then
t - 1 - log uw

B
k<|1+ 1, (5)
logs(a? -g——l)'

where B 1is the floating-point radix, % is the number of digits,

and [;] denotes the smallest integer not_less than g .

Proof: We will first prove the following lemma.

Lemma 3: _I_i_“ |cr| > 2 , then

2 i,
a(ui+1 - ui) > -(a” - - - 1) , i=l,... . (6)

Proof: From (1), Lemmas 1 and 2,

1
- = —_— - <0
cx(ul+l ui) = = <>z(ui ui—l) R (7)
1711
and L - L >0, i=2,... . (8)
U, Uu. cm. - 1
i“i-1 I
2o (9)
No w, ou, =a ——i=2 ,..,. .
i uy_q

Thus, o(u;,) - v;) > —3



Repeated application of this inequality yields

(u

2 o 1-i .
-8 > @ 0 g - ), o,

Since a(u2 - ul) =-1, (10)
the Lemma is proved.

Dividing (6) by ou > 0 and taking absolute values,

1-i

< (@ --— -1) (11)

Requiring the right-side of (11) to be less than 51_t gives a sufficient

condition on i for the convergence of[ui]. Taking logarithms yields

the sufficient condition

t -1 - log ou
i>1+ B ‘ (12)

Thus k need be no larger than the smallest possible value of i given
by (12).
Theorem 3: If |@| >2 , then

t -1 - log au
k>|1+ B

logs(a2 - 2)

Proof: We will first prove the following lemma.

Lemma 4: If|w|>2, then
a(u u,) < -(a2 - 2)1".i i=1 (13)
ie1 g/ S s A=hseee

Proof: By Lemma 2 and (1),

2 .
au, < u, = o i=1,...



Since, by Lemma 1, a/ui >0,

o
u

> 1, i=l,...
r

Substituting into (8) and (9) gives

1 1
> , i=2,.
Uit o -2
This inequality and (7) and (10) yield Lemma 4. '

Dividing (12) by @u > 0 and taking absolute values gives

u, -u

i+l i I 1
S BN

u l— au

2 1-i
(¢ -2)~7%, di=1,... . (13)

Setting the right-side of (13) greater than gl_t gives a non-convergence
condition for i , and thus, a lower bound on k . Taking logarithms
yields Theorem 3.

If we denote by ¥ , the upper bound given in Theorem 2, and by

K , the lower bound given in Theorem 3, we have

KE<k<K.
In practice, these bounds are very close.' Usually ¥ =k =X . The
following table gives values for ¥ , ¥ and k for various values of

@ for both single and double precision on the Isu 360.



Short Precision

Long Precision

(p=16, t=6) (p=16, t=14)

o X k X X k X
2.05 18 27 30 46 77 80
2.1 16 20 22 41 55 57
2.2 14 15 16 35 40 41
2.3 12 13 13 31 33 34
2.4 11 11 11 28 29 29
2.5 10 10 10 25 26 26
3.0 8 8 8 19 19 19
4.0 6 6 6 14 14 14
5.0 5 5 5 12 12 12
6.0 4 4 4 11 11 11
7.0 4 4 4 10 10 10

Upper and Lower Bounds (¥ and ¥) and
Observed Values for k for the IBM 360



The preceeding theorems characterize the convergence of the
sequence [ui] in the absence of rounding errors. If the computer arith-
metic satisfies certain reasonable rules, then the computed sequence [ﬁi]
also converges monotonically to a limit u which is very close to u
We will prove this result for of'> 2 . ,A similar argument holds for
o< =2 ,

Let @ denote the operation of floating-point divide, and e
denote the operation of floating-point subtraction. For any floating-
point numbers a, b, and ¢, we will assume the following:

(i) a>o0> l@a >0

(ii) a>b>121>1b > 1

(ii-i) a>boc@b>cOa

(iv) a>2>22a61>1

(v) a@® o0=a

Theoremﬁ: E o >2 , and the computer arithmetic satisfies the above

rules, then the computed sequence [ai] converges monotonically to u and

ii =u+o (Bl't)

Proof: ﬁl = o > 2 and 1'12 = Q9 (l@af) . Since @ > 2 , (i)) yields

1Qo>0 . From (iii) and (v) we have > a@ (1Q@); thus u, >y,

From (ii), 1> 1@ . By (iii) and (iv), e@1Qe > ¢@1 > 1 . So
~ ~ \
up2uy, > 1.

Now assume uk-l > u.k >1 . By (ii), 1 > l@uk > uk 1 - By
(iii) and (iv), ae(l/"uk_l)zoze(l/ﬁk)?_aelzl. So,
ﬁk > ﬁk+l > 1 . By induction, the sequence [ﬁi] is bounded and monotone.

Therefore, since there are a finite number of floating-point representations

between @ and 1 , the sequence converges to a limit @ > 1 . In the



limit, we have
u =0 (1Qu) .
Following the techniques of' Wilkinson (1963), we have
u= (o! - it (L+e))(L1+n) .
for some values of € and T satisfying
1-t -
| e] < B and|'ﬂ1§31t.

So,

where § = a7 - ﬁ-l(e + 7 +em) .
Therefore,
u =§[(a+ 8) +V(a+ 5)2 -4 ].

From Theorem 1 we see that
1~t
) - l

U -u=0(6) =o(8
Since w > 1 , Theorem 4 nrovides a bound on the relative error in u .
We would like to remark that the algorithm (2) is nothing more than

Gaussian elimination which is known to be very stable for positive definite

systems. The condition number of the matrix B is easily calculated to be
i
Ial + 2 cos —0o7 |M] + 2
cond(B) = —
le] -2 cos — 7 | - 2

Using the error bound given in Forsythe and Moler (1967): If
By = d and (B+E)z = d , then

Iy - zll IHE]|
—— < cond(B) ,

2 11 | B

10



where |[|+]] denotes the spectral norm. If E is due to roundoff error

in representing @ , then ||E[|< e = |G|81_t , and
Iy - z|| €
- m
izl o] - 2 cos —T

4, Generalizations

An important extension of Theorem 1 is that the LU decomposition
will converge even if some of the upper left elements of' the matrix are
changed. If a tri-diagonal matrix contains a Toeplitz sub-matrix, then
that portion of the LU decomposition converges. Problems of this sort
occur, for example, with cubic spline interpolation with prescribed deriv-
atives at the ends. This is a result of the following.

Theorem 5: If « > 2 and u, = Y where Y has any value except 0 ,

l —

/o , or u , then the sequence u, = @ - 1/u

or u_ 5 117 i=2,..., converges

wher
1o u+ e

u__Ol+ Q/2-)+
+ 2 >
and
g = X e - 4
- 2

(A similar result holds for o < -2 .)

. , , 1
Proof: The nonlinear difference equation, ui = - T can be solved
i-1

w,
explicitly by using the substitution u, = L to produce a linear
oY

second-order difference equation. For o > 0 and u, = Y , the solution

is:

11



—

i+l

()

u, = u +/ s
1 + 1
u
1+ E =
u+:)“
VE Lo- v +
where & = 1% ; - ; LE Since cy > 2 , the positive quantity

(u_/u+) is less than unity. Convergence follows immediately.

The results we have given for scalars can also be generalized to

matrices.
Theorem 6: 1If a matrix can be partitioned as
B A
B A B
a= B A B
L —

where both A and B are symmetric and positive definite, and if the:

eigenvalues of B A are greater than 2 in modulus, then the block

Gaussian elimination of ¢ converges.

Proof': Block elimination is equivalent to constructing the sequence of
matrices U. = A , U, = A - BU?lB , i=1,2,... . But A = PAPT and
1 i+l i
B = PPT where A is the diagonal matrix of eigenvalues of B-lA . Define
-1 T . _ T
Al = A and Ai+l = A - Al . Then Ul = PAlP and if Ui = PAiP then
T T Ty-1_T
U, = PAP" - PP (PAiP ) PP
-1, T T
= Pl[a - &, 1pm = PA, P

The convergence of Ai (as well as the rate of convergence) under the

12



conditions stated follows from the results for scalars given in Theorems 1-5.I
An example of a matrix that satisfies the required conditions for
convergence is the matrix that arises from the five-point finite difference

approximation to Laplace's operator in a rectangle:

A -1
a = -1 A -1
[ ] L ] [ ]
(] [ ] [ ]
[ ] L) °
where
— m
o1
-1 4 -1
A = ...o.o
[ 4 [ 4
.-l
-1 4

However, this method does not appear to be competitive with existing

methods for this particular matrix.

5, Conclusions

Many of' the observations which lecad to the simplification in com—
puting the LU decomposition for tri-diagonal Toeplilz matrices generalize
to Toeplitz band matrices. Bauer (1955) states that the Cholesky decomp-
osition of band symmetric matrices converges in the sense that each
diagonal of the triangular matrix converges. We know of no rate-of-
convergence results for the band case.

An alternate proof of Theorem 1 can be easily constructed by con-

sidering the analytical solution to the difference equation (1). Bounds

13



on k similar to those given in Theorems 2 and 3, but not quite as close,

can be obtained similarly.

14
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