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A FAST METHOD FOR SOLVING

A CLASS OF TRI-DIAGONAL LINEAR SYSTEMS

by

Michael A. Malcolm and John Palmer

ABSTRACT

The solution of linear systems having real, symmetric, diagonally

dominant, tridiagonal coefficient matrices with constant diagonals 1s

considered. It is proved that the diagonals of the LU decamposition of

the coefficient matrix rapidly converge to full floating-point precision.

It 1s also proved that the computed LU decomposition converges when

floating-point arithmetic 1s used and that the limits of the LU diagonals

using floating point are roughly within machine precision of the limits

using real arithmetic. This fact 1s exploited to reduce the number of

floating-point operations required to solve a linear system from 8n-7

to 5n+2k-3 , where k 1s much less than n , the order of the matrix.

If the elements of the sub- and superdiagonals are 1 , then only 4n+2k-3

operations are needed. The entire LU decamposition takes k words of

storage, and considerable savings 1n array subscripting are achieved.

Upper and lower bounds on k are obtained in terms of the ratio of the

- coefficient matrix diagonal constants and parameters of the floating-point

number system.

| Various generalizations of these results are discussed.



l. Introduction

’ We will consider the solution of linear algebraic systems having

| real symmetric, diagonally dominant, tridiagonal coefficient matrices

with constant diagonals. This problem occurs frequently in solving certain

kinds of partial differential equations, boundary value problems of ordin-

ary differential equations, and cubic spline interpolation problems.

Consider the coefficient matrix

a b

b a b

A= D 2 =
¢ ° *

bp ‘a %b

b a

of order n . The usual LU decomposition of A requires n-1 divisions,

n-1 multiplications, and n-1 additions. The solution of the equations

LUX = d requires an additional n divisions, 2n-2 multiplications, and

2n-2 additions. With the following observation, the entire LU decompos-

. ition of A can be stored in k floating-point words, and the solution

of the linear system Ax = d can be obtained in k divisions, 3n-1 mul-

tiplications, and 2n-2+k additions, where k is usually much less than

n. Typically, k is on the order of 10. Moreover, k can easily be

estimated from the values of a and b and parameters of the floating-

point number system used in the solution. If b =1, then n multiplies

can be avoided. In addition to a smaller operation count, substantial

savings 1n array 1ndexing are achieved.
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2. The Algorithm

Consider the matrix

o 1

1 ao 1 .

1 of 1
B = [J | ¢ ’

0 | ¢ |

LJ LJ ’ |
1 of 1

l «o

where o = a/b . Note that A = bB . The analysis, as well as the comp-

utation 1s simplified by considering the coefficient matrix to be B and

the linear system bBx = d . B can be factored into the product LU ,

where

1 uy 1

4 1 | u, 1
®

L = £5 1 , U = ‘
h ’ ° J

LJ ‘ : 1
LJ * >

| u

tp 2

using the recurrence relations:

JA u, =a = Li 1° .| u, =o, i= 1/u, pn i=2,...,n,

or

u, =a - Lu. , , i=2,...,n. (1)
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Under suitable conditions, to be discussed, the 4, converge and

by = bal =. . . = L, = § to machine accuracy. In the computer, one simply

computes and stores the values of L » di=1,...,k . The solution vector

X can then be computed as follows:

Yi = d. - Li 1Yiq , i=2,.. kK , Ys = d, - LY: 1» i=k+1,...,n ,

= 2“n Lyn ? (2)

-1

Xs = b Z. i=1,...,n .

5. Convergence of the LU decomposition

We will show that when A 1s diagonally dominant, the sequences

[u,] and [£,] converge. We will also find an estimate of the rate of

convergence which can be used to determine a value for k .

It 1s sufficient to show that the sequence [u,] converges, and

for this we assume diagonal dominance, or equivalently, |o| > 2 . The

following theorem is a special case of a theorem of Parter (1962) for

band matrices.

Theorem 1: 1f fa| > 2 , then the sequence [u,] converges to u where

a + sgn{a) Vo~- L i}gy=——/rr (3)
2

Proof: Convergence follows from the fact that the sequence [ou ] is bounded
and monotone:



Lemma. 1 (boundness); If la| > 2 , then

ou, >2 , di=l,... . (4)

Proof: From (1), u, = @ . Thus au, = @° > 4 . Now assume that (4) holds

for some value of i > 1 . By (1),

au =o o/u, > 2 o° [2 > 2isl ~ EA TE

Lemma 1 follows by induction. !
Lemma 2 (monotonicity): If || > 2 , then

au, < ou. sy A1+l,... .

Proof: From (1),

_ 1

EC Ta

and o(u -u,) = ES ou, - u, .) i=2EN ATT) A IE LAA EE
i"1-1

It follows from Lemma 1 that the u. must all have the same sign. Thus,

by induction,

ou, , =u) <0. l
Now, 1n the limit,

2

or, u -ou +1 =0, |

Equation (3) 1s the quadratic formula with the sign of the radical chosen

to avoid a contradiction with Lemma 1. This completes the proof of

Theorem 1.
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The following two theorems provide a way to estimate the value of k .

Theorem 2: Ifle|>2 , then

t - 1 - log uw (5)k<|i+—BB | 5

Log, (o - = - 1)

where B 1s the floating-point radix, t is the number of digits,

and [8] denotes the smallest integer not_less than g .

Proof: We will first prove the following lemma.

Lemma 3: If || > 2 , then

| 2 o 1-1 :CR S| =1,... . 6or(u, u, ) > -(o ” ) , i=1, (6)

Proof: From (1), Lemmas 1 and 2,

a (u Su) = —= ofu, - u, ) <0, (7)i+l i’ u.u, i i-1
1 1-1

usu. q cm.

2

No w, ou, =a ———i=2 ,... . (9)
i Uy1

. By Lemma 2, and the fact that u.u > 0 ,

04 o .
a < TH ’ i=1,... .

i

2

Thus, qu, >o - <2 )
i u

1 1 :
and — <<—, i=2,... .

o

“i%i-1 o£ - XL
u

Thus, Us 41 - u, > 2 o i 1-172 [) .
_ u



Repeated application of this inequality yields

(0, . -w)> © - 2-1) - uw), i=, LL.ivl © 4 u 27"

Since a (u, - u) = =-1, (10)

the Lemma 1s proved.

Dividing (6) by au > 0 and taking absolute values,

u, - u, .

u au u

Requiring the right-side of (11) to be less than g 17 gives a sufficient

condition on 1 for the convergence of [u,] . Taking logarithms yields

the sufficient condition

t -1 ~ log ou

P>1e—8 (12)
log (or c= a 1)

8 u

Thus k need be no larger than the smallest possible value of i given

by (12). x
Theorem 3: If |@|>2 , then

t - 1 - 10g au

A I—a
log (0 =~ 2)

B

Proof: We will first prove the following lemma.

Lemma4: If|a|>2, then

a (u u,) < -(a” - 2)1-1 i=1,... (13)i+l i/ — g et

Proof: By Lemma 2 and (1),

2 .
au, < gu, = oo , 1=l,... .

i 1
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Since, by Lemma 1, au, > 0,

2> 1, i=1,... .
u, -—

T

Substituting into (8) and (9) gives

i 1-1 o@ —2

This inequality and (7) and (10) yield Lemma 4. }
Dividing (12) by @u > 0 and taking absolute values gives

u, -u

i+l i nt 2 1-1

Ba-— (¢” -2) , i=l,... . (13)
Setting the right-side of (13) greater than g It gives a non-convergence

condition for 1 , and thus, a lower bound on k . Taking logarithms

yields Theorem 3. i
If we denote by ¥ , the upper bound given in Theorem 2, and by

K , the lower bound given in Theorem 3, we have

K<k<X.

; In practice, these bounds are very close.' Usually ¥X =k =X . The

following table gives values for ¥ , X and k for various values of

@ for both single and double precision on the Imm 360.

To
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Short Precision Long Precision

(p=16, t=6) ° (p=16, t=1k)> | ws k x x
| 2.05 18 27 30 46 77 80

2.1 16 20 22 41 55 57

2.2 14 15 16 35 40 41

2.3 ~ 12 13 15 31 33 34
2.4 11 11 11 28 29 29

2.5 10 10 10 25 26 26

3.0 8 8 8 19 19 19

4.0 0 0 0 14 14 14

2.0 5 d 5 12 12 12

6.0 4 4 4 11 11 11

7.0 4 4 4 10 10 10

Upper and Lower Bounds (KX and ¥) and

Observed Values for k for the IBM 360
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The preceeding theorems characterize the convergence of the

sequence [u,] in the absence of rounding errors. If the computer arith-

metic satisfies certain reasonable rules, then the computed sequence [u,]
also converges monotonically to a limit u which is very close to u .

We will prove this result for a > 2 . ,A similar argument holds for
od < =2 ,

Let D denote the operation of floating-point divide, and eS

denote the operation of floating-point subtraction. For any floating-

point numbers a, b, and c¢, we will assume the following:

(i) a>0>1Da>o0

(ii) a>b>1251>1b > 1)

(1i1) a>Dbo>o c@b > ca
(iv) a>2>25a81>1

(v) a@® ©O=a

Theorem&: If o > 2 , and the computer arithmetic satisfies the above

rules, then the computed sequence [u,] converges monotonically to u and
ii =u+o (gt?) :

Proof: u. = ao > 2 and u, = a (1D a) . Since a > 2 , (i)) yields

] 1Q) a>0 . From (iii) and (v) we have oa > e@® (1Q) a); thus uy > uy .

From (ii), 1 > 1@o . By (iii) and (iv), ¢@1QQo > a@1 > 1 . So

Uy >, > 1. |

| Now assume & , > & > 1 . By (ii), 1>1(D% >4_ , . By

(iii) and (iv), o@&© (1 / wy 4) >a / w)>a@®1l>1. So,

u, > Wo. > 1 . By induction, the sequence (4, ] is bounded and monotone.
Therefore, since there are a finite number of floating-point representations

between @ and 1 , the sequence converges to a limit uw > 1 . In the
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limit, we have

5-00 (1Q1)

Following the techniques of' Wilkinson (196%), wc have

i= (0! - ut (Lee) (1H)

for some values of € and MN satisfying

1-t - :

| e] < B and [7] < 7".
SO,

~ ~=1

~—1

where§ = an -u (e+7 + en) .

Therefore,

~ =~ 2

u=2[(a+8)+¥Y(a+6) —-4 1].

From Theorem 1 we see that

~ ~tT-u=0(6) =o(87Y. }
Since u > 1 , Theorem 4 provides a bound on the relative error in u .

We would like to remark that the algorithm (2)is nothing more than

Gaussian elimination which 1s known to be very stable for positive definite

systems. The condition number of the matrix B 1s easily calculated to be

A |
|| + 2 COS ———— 0! +2n+l

cond(B) = ——————= <————
le] - 2 cos —7 lor | - 2

Using the error bound given in Forsythe and Moler (1967): If

By = d and (B+E)z = 4 , then

ly - 2 HE]
—< cond(B) — ,

12 11 || Bll
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where |[|-]|] denotes the spectral norm. If E 1s due to roundoff error

1-t

in representing @ , then |[E||< e = |o|B , and

ly - zi € ’

121] |la| = 2 cos ET

4. Generalizations

An important extension of Theorem 1 is that the LU decomposition

will converge even 1f some of the upper left elements of' the matrix are

changed. If a tri-diagonal matrix contains a Toeplitz sub-matrix, then

that portion of the LU decomposition converges. Problems of this sort

occur, for example, with cubic spline interpolation with prescribed deriv-

atives at the ends. This 1s a result of the following.

Theorem PE If > 2 and uy = Y where Y has any value except 0 ,

l/a , or u_, then the sequence u; = @ - 1/u, , + i=2,..., converges

to u, where

a = od + Vo ~- 4
+ 2 ’

and

4 =X Vo - 4
- 2 )

(A similar result holds for o < -2.)

Proof: The nonlinear difference equation, u, = a - To can be solved
| i-1

W,

explicitly by using the substitution u. = mo to produce a linear
i-1

second-order difference equation. For o > 0 and u, = Y , the solution
1s:

11



i+l
u

1 + E (+=
u, =u 5
i + 1

u

1 + E —

Vol L -v +where & = — . Since cy> 2 , the positive quantity

(u_/u,) 1s less than unity. Convergence follows immediately. :

The results we have given for scalars can also be generalized to

matrices.

| Theorem6: Ifa matrix can be partitioned as

“la B

B A B

| | a= B A B

where both A and B are symmetric and positive definite, and 1f the:

eigenvalues of B™'A are greater than 2 in modulus, then the block

Gaussian elimination of ¢converges.

Proof': Block elimination 1s equivalent to constructing the sequence of

_ _ BN -1 . B T
matrices Us = A , U: 1g = A BU, B, i=l1,2,... . ButA = PAP and

B = pp’ where A is the diagonal matrix of eigenvalues of BLA . Define

A. = A d A = A at Th U, = PA pr nd if U, = PA pr then1 A ana fy= ACh Se TR |

T T Ty-1_T

U,,,= PAP" - PP (Pa, P") PP
-1, T T

= Pa - 4,7]P = PA, FP.

The convergence of A. (as well as the rate of convergence) under the

12



conditions stated follows from the results for scalars given in Theorems oy
An example of a matrix that satisfies the required conditions for

convergence 1s the matrix that arises from the five-point finite difference

approximation to ILaplace's operator in a rectangle:

A =I | Bh

aq = -1 A -1
° ° °

® ® ®

® ® ®

where

L  -1

~-1 4 -1
' Y ° ®

A = . . .

ER |

-1 4

However, this method does not appear to be competitive with existing

methods for this particular matrix.

5. Conclusions

Many of' the observations which lecad to the simplification in com-

puting the LU decomposition for tri-diagonal Toeplitz matrices generalize

to Toeplitz band matrices. Bauer (1955) states that the Cholesky decomp-

osition of band symmetric matrices converges 1n the sense that each

diagonal of the triangular matrix converges. We know of no rate-of-

convergence results for the band case.

An alternate proof of Theorem 1 can be easily constructed by con-

sidering the analytical solution to the difference equation (1). Bounds

12



on k similar to those given in Theorems 2 and 3, but not quite as close,

can be obtained similarly.
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