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| a . Abstract

This paper is concerned with best two-sided scaling of a general

square matrix, and in particular with a certain characterization of

that best scaling: namely that the first and last singular vectors

(on left and right) of the scaled matrix have components of equal

modulus. Necessity, sufficiency, and its relation with other charac-

terizations are discussed. Then the problem of best scaling for

rectangular matrices 1s introduced and a conjecture made regarding a

possible best scaling. The conjecture is verified for some special

cases.
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1. Introduction

Let A be an n x n nonsingular matrix.+ We are interested in the best

row and column scaling of A in the L, norm; that is

DE diag (DARL,|] am).

Of course this 1s equivalent to

- DE aia (0, (DAE) lo, (DAE)}

« where 0, (4) 2 0, (4) 2. . . 20,(A) >» 0 are the singular values of A. In this

| paper we will discuss the following useful characterization of this best
= two-sided scaling: let A =U ) V be the singular value decomposition of A.

| Then A 1s best scaled in the ¢ norm if [ull | = lu? vi) = vi, for
i=1,...nn. That is, A is best scaled if the first and last columns of U and

§ V have components of equal magnitude. We refer to this as the EMC property.
- This characterization has had an interesting history: it was to our

i knowledge first discussed by Forsythe and Straus [3] in connection with

g one-sided scaling, or equivalently best symmetric scaling (DAD) of a positive

definite matrix A. (For one-sided scaling, only one of U,V is involved

: in the EMC property.) They showed sufficiencyof EMC for best one-sided

scaling. It was also mentioned by Bauer [1] for one-sided scaling; he also

gave an explicit representation of the best L, scaling for matrices A with

A and A! having a checkerboard sign pattern. More recently, McCarthy and

Strang[4] have settled the question of necessity for one-sided scaling:

for matrices A which when best scaled have 7 and 0. distinct, the EMC
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Lo property must hold; however this is not always true if 6; or a is multiple
| even using the inherent ambiguity in the singular vectors, and they give

counterexamples.

] The EMC property for two-sided scaling was first brought to our attention

by C.L. Lawson (see also [6,pg 44]) in connection with the matrix

~ | A=11 -1 y oc Jo ~ 27.41] nn =

0 1 1

We found the best £, scaling by minimizing 0, (DAE) /o_ (DAE) as a function of
D,E using a function minimizing procedure. This gave D = diag(l,v3,3),

— E = diag(1,1/2,1/v6), ° [o = 13.9,
L 1 1 Jf

DAE =| V3 -v3/2  1/Y2 )

| 0 3/2 v6/2

-— In this paper, we discuss the EMC property for best two-sided scaling

and how it 1s related to the Bauer representation for checkerboard matrices.

- Then we discuss the problem of best scaling for a rectangular matrix.

) We end this introduction with a warning: although these best scalings

are attractive and theoretically interesting, 1t may be quite improper to

scale.a particular problem this way; this can cause inaccurate data and

unimportant variables to assume too much influence. Such is the case for

example 1n solving 1ll-posed problems using the singular value decomposition

(see [5]). Normally several of the equations are ignored and a reasonable

solution 1s constructed solving the remaining ones; however “best" scaling

can cause the whole matrix to become quite well-conditioned, with its

(well-determined) solution bearing no relation to the solution of the original

problem.
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2. Aspects of the EMC Property

First we show the sufficiency of the EMC property for best two-sided

scaling. The proof is a slight extension of Forsythe and Straus [3].

- Theorem 2.1:

Let A be an n x n nonsingular matrix. Then A is best scaled in the

£ norm with respect to diagonal scalings DAE if the EMC property holds.
Proof:

We have for any nonsingular diagonal D,E,

[p DEG!pl, 11q

. cond, (DAE) = 0/0 _ max —2 2
Psq,I,S | r "DAEs|

IT=T,1TsTT,

T
= — lp Al[ - 1/2

max 10” pi | 11E ql | (n)T.~2 (n),, (a)T_~2 (n)= 2 2 (u D “ur )(v E “v )
Py»QsT,8 = cond, (4)

-1 -1

DT IE sl
L

1 n 1 n

| where uf ) uf ) vl ) ) are the appropriate singular vectors of A. (Now if
(n) (1) n 1

| (u ); 1 =] (u ); | and | (vf )), | = |v M1 for i = l,04ee,n, i.e. if the Emc
i property holds, the term in square brackets is 1 and cond, (A) < cond, (DAE)

for all D,E. QED

= For the EMC property to be also necessary for best two-sided £, scaling,

we must show the existence of a D,E with DAE having the EMC property. powever

as we mentioned earlier, McCarthy and Strang [4] gave examples of one-sided

- best scaled matrices for which the corresponding one-sided EMC property failed
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| to hold. These examples hoever had multiple @, or 9 in best scaled

| oo form; for matrices with distinct 94 and ° in pest scaled form, they
| showed that EMC was attainable. From this we easily obtain:

Corollary 2.2:

Let A have distinct Iq and ol in best scaled form; then the EMC

property 1s necessary and sufficient for best two-sided £ scaling,

Thus the existence of an EMC scaling 1s assured with this restriction

of distinct extreme singular values. (Of course it need not be unique:

for example if A has a special symmetry so that PAQ=A for P, OQ

| permutation matrices, then if DAE 1s best scaled, so 1is eppya(Q EQ) .
. (This is P(DAE)Q with singular value decomposition ev) J (vig) and this

L has EMC 1f U ) vr does.)
Now we discuss the relation between EMC and Bauer's characterization

i for best L, scaling of a real irreducible checkerboard matrix A. We must
also assume, although it normally follows from the irreducibility of A,

that | 4] a7) ’ 1a la] , [Al AY], | AT] |A| are irreducible. Recall
the Bauer characterization (see [1]): if A, al have checkerboard

sign patterns, that is if there exist diagonal orthogonal matrices,

Jy» Iss SEY J, so that J, Ad, = | Al 2 0 and 1470 = IAL > 0, and if
we let yg) ne be the left and right Perron eigenvectors of | Al a7)

(and similarly yg) x (2) for |a™1] lal), then the best £,
scaling DAE for A 1s given by 4,’ = y, 1) / x, 1 ,



2 20 (2), (2) | ey
| €; Xs /y, « (Because of the irreducibility, the Perron vectors have

| - positive components.) Thus A is best scaled if the left and right Perron
-1 _

vectors of [Al [A ~] ang |A Hal are equal. But such a matrix A satisfies

the conditions of Corollary 2.2, so the above must be equivalent to the EMC

property. We expand on this as follows:

Theorem 2.3:

Let A be a real irreducible matrix with a checkerboard sign pattern.

Suppose |Al=J,A7,, lA =5, 8, and let A =U ) vi be its singular value
decomposition.

~ (1) Suppose the EMC property holds. Then ey I is the left and right
salPerron vector of l4°|A™"|, and lv (1) I is the left and right Perron vector

of 1871] al.

| (1i) Suppose the left and right Perron vectors of [A] lA~1) are equal (call
| it uv), and similarly for 1A74 Al (call it v). Then ne "- Ju, ou = J. 44 /

(1) n

h \ = Jv, vw! ) Jy
Proof:

” T

(1) We have |A| = J, 4d, = (J) ) (v 5), and this must be the singular
J 1 1

aq Lo ~1
of the irreducibility of A). Similarly [A 7] . 1. -1, T

J.4 73, = (3, V0) (u J,) and
n

we must have Ja ¥ > 0, 7,u(® > 0. Now the EMC property and orthogonality
of the wy 1), gives

| ()_. (1) (n)_. (1)

(n)_. ..(1) (n) (1)
Jyu Ju Jv =J4v

(1) (1) (1) (1)
Ju 13,u Jv 1I,v (1)

-1 = T -1 T -1 T
Now [A] [477] = 3; UJ (V,5,v)] TI =5 uel™ dy,

Consider Q; it 1s orthogonal and symmetric, and from (1) we see that



| QQ ,=1 and the rest of the first and last rows and columns of Q are zero.

0 LJ [ LJ |
| : 0  o,/0 |

Thus oJ t - 0

: on/%y 0 >: 0

Thus

-1 (1) o -1, TI (n)[ATTA 713ut )=3) U (oI) UT J, (3,u™)

0)1 n

0} o
_ 20 NUN | (1)
J, U on Je, > (Ju ).

} n n

S (1) (n, . CL he Pp ;O Ju = |u | is the unique positive right Perron eigenvector o

|Al 1A” corresponding to the eigenvalue °./a . A similar computation shows
it is also the left Perron vector. Likewise, Jov (1) 4 Iv can be shown

L

-1
to be the left and right Perron vector for |A ~[]Al.

{ (ii) If the hypothesis of (ii) holds, then from Bauer [1] we have that

| the spectral radius of |Al1A™L and 1A7L Al is o,/a_.o

Thus |AllA 1 u = = u, which gives

| n
0 JA J,u=0.3 2a ly

—

n n n n

Now let J,u = ) aut) ; Jqu = ) gull), with } a,’ =) 8, = 1, Then the
_ 1 1 1 1

above can be written

- n n B

0g L g= vi) (339) op I Fv
1 i 1 1



a Now take £, norms:

1a) 2p Baz,
oo i i i i

and equality must hold, implying that a= 1 B, = ] with the other components
Zero, giving Ju - yu J.u = oD, By a similar argument, one can show
Jv = v1 Jv = v®| opp.

We should also remark that the equivalence of these two characterizations

. can be used to check the accuracy of AL, when 1t 1s known that both A and

At have checkerboard sign patterns. For a given A and computed at one

) can compute the best scaling via the Perron vectors of 1a] 1471 and 1A”Y1Al;

L then one can test--the EMC criterion on the singular vectors of the scaled
matrix.

L 3. Best Scaling for Rectangular Matrices

| Let A bem x n with m > n and rank n. Then we can still ask for the
best scaled DAE 1n the sense of minimizing o,/a (DAE). It 1s clear that
for the best scaling on the right, the EMC property on V is still sufficient,

since ala 1s still a nonsingular n x n matrix and the Forsythe-Straus argument

v still holds. However this is not the case for scaling on the left, since in

| particular we could take any n linearly independent rows of A and best scale

the resulting n x n matrix; this will then have the EMC property (assuming

ay and a are distinct) but will not necessarily give the best scaling for

A. There are in fact (0) such choices of n x n submatrices, so a leading
contender for the best scaled A would be that n x n submatrix which when best

scaled gives the minimal condition. This leads to the intriguing

Conjecture: There exists an n x n submatrix of A which, when best scaled,

gives the best scaling for A also.



It would be better to say one of the best scalings because it 1s not

lL necessarily unique. We cannot prove this in general, only in some special

cases which we discuss below. |e have also verified it numerically on

several examples.

Case I: A = ly where B 1s n x n, nonsingular, and Pls is diagonal.
Then ATA=pT3 + BIFIFB

_ = (1 + F'F)B

| =BLG GB

so the nonzero singular values of A and GB are the same. Now if FOF is

| diagonal, G 1s diagonal, and thus the best scaling for A occurs when GB (or
Lo

B) is best scaled. So one best scaling for A is DAE = LF where DBE is
L best scaled. However this is not necessarily unique: let B be best scaled,

| and consider
lL D,BE

DAE = .(b, reE?
2

nt Then

T T, 2, .T. 2

(DAE) (DAE) = EB" (D, “+¥'D,’F)BE=(GBE)" (CBE).
Now 1f F 1s such that FD, °F 1s diagonal for all D, diagonal (e.g. if F

[ -

has at most one nonzero element in each row and column), then G 1s also

diagonal for all choices of Dl and D, and the best scaling of A occurs for

E = Iand any Dy» D, such that G = I (since B Is best scaled) nat is, we

must have |

2 T. 2

Dy + F D,F = I

Of course this will occur for D1 = I, D, = (J), but there can be many other

solutions.

Note also that if B 1s an orthogonal matrix, a best scaling 1s

certainly obtained with D1 = I, D,= 0, no matter what F is.



- Case II: n = 2

10 .
We have A = |. . , D = diag(d,,...,d ), E m= diag(e,,e,),

U Vv

n n T
A,(B"B) 11/2

and we seek min cond, (B=DAE) = min —— = v g(D,E)
D,E D,E A, (B B)

l dey 2. 2 2

. i ey xd, u, e e,ld, u,v,
Let B'B = (P ) =

= re ee. Id, uv e.’zd, “v2172771 "11 2 1 i

1 + /£(D,F -8) Hh rl

Then g(D,E) = 1+ /f(D,E) where £(D,E) -{p-8) ir
1 - /£(D,E) (pts)

. Since g is a monotone function of f, we need only find min £(D,E). As a

- function of e = e le, we can write

- 2,2 2.2

£(D,E) = (a~ye”)" + 4e”B
2,2

| (at+ye™)
where a, B, Y are constants. This 1s minimized as a function of e for

© 2

| e = y/a, making p = s and thus Bln = ¢ >) which has eigenvector matrix
| 1 1

i _1) possessing the EMC property.

With this E,

= 2 2

(Td, uv, ) 9
f(D) = — = ————F———————— = cos 8(Du,Dv).

52 (zd 2, 2y (zd 2y 2- ii i i”

To minimize this, we need to examine three cases.

(1) some u, orv, = 0. Suppose u, = 0, vy # 0. Taking d, + ® gives

f(D) = 0 for any choice of the other a, If u =v, = 0, the problem
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reduces to one of lower dimension. go szssume all u, ,v, ¥0.

(11) lu}, {v,} not all of the same sign. guppose ul » 0, uy, >0,v1l > 0,
| Vy, <0 for example. Then we can make (Du) L (Dv) and f(D) = 0 by choosing

Bdrm 0,140,uv, “uv,

- : 2

If vr = uy /vy, R = u,/v,, this gives €“ a rR and

Yr JR

YR ~ Jr
best B = DAE =

_ 0 0

| 0 0 |

| "its eigenvector matrix with the EMC property.
(111) u, > 0, vy? O for all i. Then from a result of Cassels (see
Beckenbach and Bellman [2, p. 45]), we have

D — 4 =

| (r+R) 2 + z+ -
here r = min = | x =

Ww ! u./v, u lv (say) and R max u, /v, Up Ve The corresponding

D has 4 = 1 » dy = 1 »d. =0, 1 ¢ m,N, This gives & = rR and
YUn'm Any

0 0

0 0

th

best B = DAE = /r JR mn row

JR Jr Mth row
0 0

\ 0 0
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| Again BB! has its eigenvector matrix with the EMC property.

oo Finally, one might think that for rectangular matrices with a

checkerboard sign pattern,the best scaling could be achieved using Bauer's

Lo algorithm with A and AY, the pseudo-inverse. We give the following

counterexample:

1 1

A=} 2 1 .

4 1

10 1
Best scaling: D = diag(1,0,1/2), E = G 9) Then B = DAE =] 4 | »

| with cond, (DAE) a 3. 2 1

{ . (2 0 2/3Now B" =
i 2/3 0 -1/3 and

’ 5/3 4/3 of [5/3 0 4/3

oo 8%) 18] = , I8|lB*= [0 0 To || 4/3 5/3 4/3 0 5/3

Both of these are symmetric so both have equal left and right Perron vectors.

Thus the Bauer ¢, scaling leaves B unchanged, if we call 0/0 . 5 (notice

- |B] [BY] 1s reducible). However if we try to derive B from A using Bauer's

algorithm, it fails:

vod (+ 1 birar (13/7 5/7A 14 \14 7 =7 ]°? |a¥[ [a] = 4 2 ’

and this has spectral radius =p = 3.62 > 3 = cond, (B). Moreover the left

and right Perron vectors of 14%] | a] are

p ~- 2 > 5/7 )5/7 p - 13/7/
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| 3 12.

| giving a right-hand scaling matrix E = & a ) , not optimal.
We might also remark that 1f the conjecture 1s valid for arbitrary

m x n matrices, it would indicate the‘folly of trying to best scale a

rectangular matrix arising from a least squares problem for example; only

n of the observations would be retained! |
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