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. Abstract

This paper is concerned with best two-sided scaling of a general

square matrix, and in particular with a certain characterization of

that best scaling: namely that the first amd last singular vectors

(on left and right) of the scaled matrix have components of equal

modulus. Necessity, sufficiency,

and its relation with other charac-
terizations are discussed.

Then the problem of best scaling for
rectangular matrices is introduced and a conjecture made regarding a

possible best scaling.

The conjecture is verified for some special
cases.



1. Introduction

Let A be an n x n nonsingular matrix.+ We are interested in the best
row and column scaling of A in the 22 norm; that is

min

DE diag (I1DAEI], 1T @AR)™H ]).

Of course this is equivalent to

min
D,E diag (o, (DAE) /°n (DAE))
where ul(A)Z GZ(A)Z . . . 20,(A) >0 are the singular values of A. 1In this

paper we will discuss the following useful characterization of this best

two-sided scaling: let A =T 2 V be the singular value decomposition of A.
. : - (1) (ny (1) (n)

Then A is best scaled in the 22 norm if |ui | = lui I,lvi | = lvi |, for

i=1,... n. That is, A is best scaled if the first and last columns of U and

V have components of equal magnitude. We refer to this as the EMC property.

- This characterization has had an interesting history: it was to our
knowledge first discussed by Forsythe and Straus [3] in connection with
one—gided scaling, or equivalently best symmetric scaling (DAD) of a positive
definite matrix A. (For one-sided scaling, only one of U,V is involved

in the EMC property.) They showed sufficiency of EMC for best one-sided
scaling. It was also mentioned by Bauer [1] for one-sided scaling; he also
gave an explicit representation of the best 12 scaling for matrices A with

A and A—: having a checkerboard sign pattern. More recently, McCarthy and

Strang [4] have settled the question of necessity for one-sided scaling:

for matrices A which when best scaled have ol and cn distinct, the EMC
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property must hold; however this is not always true if g, or T is multiple
even using the inherent ambiguity in the singular vectors, and they give
counterexamples.

The EMC property for two-sided scaling was first brought fo our attention

by C.L. Lawson (see also [6, pg 44]) in connection with the matrix

1 2 3
A={1 -1 1 o /o ~27.4
1 n =
0 1 1

We found the best 22 scaling by minimizing ol(DAE)/on(DAE) as a function of

D,E using a function minimizing procedure. This gave D = diag(1,v3,3),

E = diag(1,1/2,1/¥6), o /on: 13.9,
1

1 1 v6/2
DAE =| V3 -v3/2 1/v2 )
0 3/2 v6/2

In this paper, we discuss the EMC property for best two-sided scaling
and how it is related to the Bauer representation for checkerboard matrices.
Then we discuss the problem of best scaling for a rectangular matrix.

’ We end this introduction with a warning: although these best scalings
are attractive and theoretically interesting, it may be quite improper to
scale.a particular problem this way; this can cause inaccurate data and
unimportant variables to assume too much influence. Such is the case for
example in solving ill-posed problems using the singular value decomposition
(see [5]). Normally several of the equations are ignored and a reasonable
solution is constructed solving the remaining ones; however “best" scaling
can cause the whole matrix to become quite well-conditioned, with its

(well-determined) solution bearing no relation to the solution of the original

problem.
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2. Aspects of the EMC Property

First we show the sufficiency of the EMC property for best two-sided

scaling. The proof is a slight extension of Forgythe and Straus [3].

Theorem 2.1:

Let A be an n x n nonsingular matrix. Then A is best scaled in the

£2 norm with respect to diagonal scalings DAE if the EMC property holds.

Proof:

We have for any nonsingular diagonal D,E,

T

DAEq
cond, (DAE) = o fo" = max Ipll, ] qsz
1'"n p,q,r,s rTDAES
lrllzl 8”2
[ {DTAO1 1/2
. max 1D~ szllE_qu2 i (u(n)TD-Zu(n))(v(n)TE-év(n))
P»q,TX,8 cond, (A
| As] 277 D2, )y (D T2 (1)
1D 11, 1E s 1,

where u v Vv

(l)'u(n) (1) _(n)

are the appropriate singular vectors of A. |Now if

@)1 e T @) land ™), 1= 16®) 1 for & = 1,0esm, e, if the o

property holds, the term in square brackets is 1 and condz(A)Sicondz(DAE)

for all D,E. QED

For the EMC property to be also necessary for best two-sided 22 scaling,

we must show the existence of a D,E with DAE having the EMC property.

However

as we mentioned earlier, McCarthy and Strang [4] gave examples of one-sided

best scaled matrices for which the corresponding one-sided EMC property failed



to hold. These examples hoever had multiple @, or 0_ in best scaled
-~ 19

form; for matrices with distinct 9; and 9, I0 best scaled form, they
showed that EMC was attainable. From this we easily obtain:

Corollary 2.2:

Let A have distinct ol and L in best scaled form; then the EMC
property is necessary and sufficient for best two-sided £2 scaling,

Thus the existence of an EMC scaling is assured with this restriction

of distinct extreme singular values. Of course it need not be unique:
for example if A has a special symmetry so that PAQ=A for P, Q
permutation matrices, then if DAE is best scaled, so is (PDPT)A(QTEQ).

(This is P(DAE)Q with singular value decomposition (PU)X(VTQ) and this
has EMC if U Z VT does.)

Now we discuss the relation between EMC and Bauer's characterization
for best 12 scaling of a real irreducible checkerboard matrix A. We must
also assume, although it normally follows from the irreducibility of A,
that |4 lA"ll , lA'll la] , |a] |AY], | AT| |A| are irreducible. Recall
the Bauer characterization (see [1]): if A, A_l have checkerboard
sign patterns, that is if there exist diagonal orthogonal matrices,

1

Iys dys g0 3, 0 that JjAT) = Al 2 0 and JATT = [47Y > 0, and if

we let y(l), x(l) be the left and right Perron eigenvectors of IAIIA-II

(and similarly y(2)’ x(z) for IA-l]‘Al), then the best £2

scaling DAE for A is given by d12 = yi(l) / xi(l) ,



e (Because of the irreducibility, the Perron vectors have

i

positive components.) Thus A is best scaled if the left and right Perron

. -1 —
vectors of |Al [A 7| and |A lllAlare equal. But such a matrix A satisfies

the conditions of Corollary 2.2, so the above must be equivalent to the EMC

property. We expand on this as follows:

Theorem 2.3:

Let A be a real irreducible matrix with a checkerboard sign pattern.

lI'J A_1J4 and let A =U Z VT be its singular value

Suppose lA|=J1AJ2, |A 3

decomposition.

(1) Suppose the EMC property holds. Then Iu(l)I is the left and right
Perron vector of l4f|A.ll, and_lv(l)l is the left and right Perron vector
of 147114,

(ii) Suppose the left and right Perrom vectors of IAIIA‘l' are equal (call

it u), and similarly for |A7Y 1A| (call it v). Then oD . Jlu,u(n) o
(1) (n) 4

v = szb v = J3V.

Proof:

12

value decomposition for |Al. Hence Jlu(l) >0, sz(l) > 0 (positive because

T
(1) Wwe have |A| = J AT, = (Q;{D Z (v J-—2, and this must be the singular

. e . -1
of the irreducibility of A). Similarly |A 7| o -1, 4 -1, T
- J.A T, = (0] 3,) and
we must have Jay s o, J4u(ﬂ) > 0. Now the EMC property and orthogonality
of the:{u(i)};{v(i)} gives

3u®mg @ PROTNCES
3y D 3y g D

-1 T -1 T -
Now |A] |47 = 3, U ] (Via,0,0) [0 Jym3u ol 1, UTJ4,

Consider Q; it is orthogonal and symmetric, and from (1) we see that
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1 0‘ A s e 0 cllon
Thus Qi 7 = : . 0
0 .
°n/°1 0--+ 0
Thus

e @ e, v JoI™ o7 5, 00,u®)

So Jlu(l) = lu(l)l is the

_l .
|Al |A 7| corresponding to

it is also the left Perron vector.

to be the left and right

-, U (ZQZ'I)en

g g

- 1 1 (1)
J.1 U (0 )e1 5 (Jlu ).
n n

6.

unique positive right Perrom eigenvector of

the eigenvalue Ul/an' A similar computation shows

Perron vector for IA-IIIAI.

Likewise, J2v (1) o Iv(l)

lcan be shown

(11) If the hypothesis of (ii) holds, then from Bauer [1l] we have that

the spectral radius of |Al|A™1| and 171 1Al is o, /a_.
n

-1 °1
Thus |Al|A 7] u = 5~ U, which gives
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Nowtakeue.2 norms:
o a o]
12[(—2—1)232(&)221
i % i 9%

and equality must hold, implying that a= 1, B, = 1 with the other components

(n) (1)

P qu = u Y, By a similar argument, one can show

1
zero, giving J4“ =u

J. v = v(l), J

) v =v™, oep.

3
We should also remark that the equivalence of these two characterizations

can be used to check the accuracy of A-l, when it is known that both A and

A_l have checkerboard sign patterns. For a given A and computed A_l, one

o

can compute the best scaling via the Perron vectors of |A| |A~ and.IAflllAI;

then one can test--the EMC criterion on the singular vectors of the scaled

matrix.
3. Best Scaling for Rectangular Matrices
Let A be m x n with m > n and rank n. Then we can still ask for the

best scaled DAE in the sense of minimizing ollon(DAE). It is clear that

for the best scaling on the right, the EMC property on V is still sufficient,
since ATA is still a nonsingular n x n matrix and the Forsythe-Straus argument
still holds. However this is not the case for scaling on the left, since in
particular we could take any n linearly independent rows of A and best scale
the resulting n x n matrix; this will then have the EMC property (assuming
9y and o are distinct) but will not necessarily give the best scaling for

A. There are in fact (:) such choices of n x n submatrices, so a leading
contender for the best scaled A would be that n x n submatrix which when best
scaled gives the minimal condition. This leads to the intriguing

Conjecture: There exists an n x n submatrix of A which, when best scaled,

gives the best scaling for A also.
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It would be better to say one of the best scalings because it is not
necessarily unique. We cannot prove this in general, only in some special
cases which we discuss below. e have also verified it numerically on

several examples.

Case I: A= (;;) where B is n x n, nonsingular, and FTF is diagonal.
Then A?A?BTB + BTFTFB

-BT(I + FIF)B

-BTGTGB

so the nonzero singular values of A and GB are the same. Now if FTF is

diagonal, G is diagonal, and thus the best scaling for A occurs when GB (or

B) is best scaled. $So one best scaling for A is DAE = ) where D.BE is

1

best scaled. However this is not necessarily unique: let B be best scaled,

D1BE
( 0

and consider

DlBE

).
D2FBE

DAE = (

Then

(DAE) T (DAE) = EBT(D12+FT

Now if F is such that FTD22

has at most one nonzero element in each row and column), then G is also

D22F)BE=(GBE)T(GBE).

F is diagonal for all D2 diagonal (e.g. if F

diagonal for all choices of D1 and D2 and the best scaling of A occurs for
E = I-and any Dl’ D2 such that G = I (since B Is best scaled) .t is, we
must have

2

T 2
D1 + F'D

2 F =1
Of course this will occur for D1 = I, D2 = (0, but there can be many other

solutions.

Note also that if B is an orthogonal matrix, a best scaling is

certainly obtained with D1 = I, D,= 0, no matter what F is.



Case II: n = 2

1 Y1

We have A = : , D = diag(d;,...,d ), E = diag(e,,e,),
u v
n n T

Al(B B) |1/2
and we seek min condz(B-DAE) = min - = v g(D,E)
D,E D,E 12(3 B)

2 2.2 2

T ey Zdi u elezz.'di u v,

Let B'B = (2 1-) =

2 2 2.2
e]_ezitd:l uivi e2 Zdi vi

: 2,,4.2
Then g(D,E) = 1+ /£(D,E) where f(D,E) = (p-s) +gr
L - /£(D,E) (pts)

. Since g is a monotone function of f, we need only find min £(D,E). As a

function of e = ez/el, we can write

£(D,E) = gg—yez)z + 4e262

(a+ye?)?

where a, B, Y are constants. This is minimized as a function of e for

T

2
e = y/a, making p = s and thus BB = (2 ;) which has eigenvector matrix

11 .
(1 _1). possessing the EMC property.

With this E,

2 2
2 (xd, “u,v,)
£0) =5 - : 12 14 5 = cos26(Du,Dv).
P (2d; "u, %) (2d, “v, %)

To minimize this, we need to examine three cases.

(1) some u orv, = 0. Suppose u =0, vy # 0. Taking di + ® gives

f(D) = 0 for any choice of the other dj' If ui = vi = 0, the problem
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reduces to one of lower dimension. g5 assume all ui’vil"o'
(i1) {ui}, {vi} not all of the same sign. gyppose ul > 0, u, >0, vl > 0,

V, <0 for example. Then we can make (Du) 1 (Dv) and f(D) = 0 by choosing

2

dl-'/--».-—.l’dz-:jJL ,di"o,ii‘l,Z.
] “uov,

If r = u1/v s R = = ;12/v , this gives e? TR and

r JR
/R - Jr
best B = DAE =
0 0
0 0

"its eigenvector matrix with the EMC property.

u, >0, v, 0 for all i. Then from a result of Cassels (see

Beckenbach and Bellman [2, p. 45]), we have

(111)

min f (D) = .ir_R_z 4
D (r+R) 2+L4+R
R r

where r = min Ui/Vi = um/vm (say) and R = max ui/vi = uM/vM. The corresponding

i i

Dhasdma- 1 ,dM- 1 ,di=0,11‘m,M. Thisgivesez=rRand

/umvm Y Uy
0 0
0 0
best B = DAE = /r JR mth row
JR Jr uth row

-0

—
Oe-0O
[« Y
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. T , . . .
Again BB" has its eigenvector matrix with the EMC property.
Finally, one might think that for rectangular matrices with a
checkerboard sign pattern,the best scaling could be achieved using Bauer's

algorithm with A and Aw, the pseudo-inverse. We give the following

counterexample:
1 1
A={| 2 1 .
4 1
10 : 12
Best scaling: D = diag(1,0,1/2), E = (0 2). Then B = DAE = 0 0 ,
with condz(DAE) a 3, 2 1
. (—1/3 0 2/3
Now B = 2/3 0 -1/3 and
4/3 5/3 0 4/3
I8¥] 18| = , lBHg"’(- 0 0 0
4/3 5/3 4/3 0 5/3

Both of these are symmetric so both have equal left and right Perron vectors.

Thus the Bauer 22 scaling leaves B unchanged, if we call 0/0 _ 0 (notice

'B,,B¢| is reducible). However if we try to derive B from A using Bauer's

algorithm, it fails:
v 1 [-4 -1 5 13
A (14 7 -7 ), |a%] ] = ( " 547) ,

and this has spectral radius =p = 3.62 > 3 = condz(B). Moreover the left

and right Perron vectors of IAwllAl are

o -2\, [ s/7 )
(5/7) (9-13/7
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0 2.4

We might also remark that if the conjecture is valid for arbitrary

giving a right-hand scaling matrix E = (1 0 ) , not optimal.

m x n matrices, it would indicate the‘folly of trying to best scale a

rectangular matrix arising from a least squares problem for example; only
n of the observations would be retained!
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