STANFORD._ ARTLFI CI AL I NTELLI GENCE PRQJECT
rwzmo AIM-176

bTAN-CS-308

RECENT DEVELOPMENIS IN SAIL

AN ALGOL- BASED LANGUAGE FOR ARTIFICIAL INTELLIGENCE

BY

J. A FELDMAN
J.R LOW
D.C. SW NEHART
R H TAYLOR

SUPPORTED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

NOVEMBER 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN VERSITY

STANFORD ARTIFICIAL INTELLI GENCE REPORT NOVEMBER 1972
MEMD NO, AIM 176

COMPUTER SCIENCE DEPARTMENT
REPORT NO, 328

Recent developments |n SAIL
An ALGOL-puSed |gnduade for Artlflonal Intelllgence

BY

J¢e Ay Feldman
Jo Ry Low

D, C Swinehart

Re He Taylor

ABSTRACT

New features added to SAIL, an ALGOL based language for the POP=10,
are discussed, The features Includey procedure variables; multiole
processes; corouti nest a limited form of backtracking: an event

mechanism for inter-process communication; and Mmatching procedures, a
new way of searching the LEAP associatlve data base,

KEYWURDS

Artificial [ntelligence Languaces, ALGOL, SAlL, LEAP, multl-taskma.
events, assoclative data steuctures, backtracking, coroutines,

progressive deepening,

The Views and conclusions containad In this document are those ©Of the
authors and should not be Interprated as necessarily representing the
official policles, elther expressed or impiled, of the Advanced
Research ProJjects Agency, of the Natlona)| Sclence Foundatlon, or of
the Unlted States Governnent,

This research was supported In part by the Advanced Researgh ProJects
Agency of the gffice Of the Secretary of Defense under contract SO=
183 and In part by the Natiomal Science Foundation wunder c¢ontract GJ=
776,

Reproduced In the United States, Avallable fromthe National
Technical Information Service, Sprinafieid, Virginia, 22151,

I NTRODUCTI ON

progress In Artiticial Intelllgence has traditloma |y been
accompanled by advances In special puppose programming technigues and
languades, Virtual|y a|l of this devejopment has been cgnecentrated

In |anSuages and systems orlented to |ist processling, As the efforts
of Artificlal Inte|ifcence researchers began to turn from purely
symbo|le Problens toward Interaction Wlth the real world, certain
features of algebrajc languages becams desirabie, There ywere several
attempts(notably LISP2 and FORMULA ALGOL) to conbine the best
features of both kinds of language, At the saMme tIme, dosTonegs of
al9ebrale | anguages began to Include feature8 for non=numerical
computation, No new general| purpose |anguage wlthout some sort of
list processing fac! |lty has been suggested for severa| years, W
have followed a tack somwhat dlfferent from elther of these In the
design Of SAIL and Tn fts subsequent medificatlons,

The starting polnt for the deve lopment of SAJL was the recognized
neea for a language Incorpora¥ing symbollc and_ aleebralc
capabilities, primar]ly for Hand-Eye research, The problems are
somewhat simllar to those In Conputer Graphles and one of us had Just
devel oped a language, LEAP [4], for such a gl lcations, After an
attenpt to honest|y Ova'uate altecnat ve teohn|ques, we UQCTd.d t hat
the assoclative processing feature8 03 LEAP Wer® the way to @o,; Theiw
are Inportant dlfferences between LEAB and the fiest SAIL, (Dr’erlly

In InpUt=output, string manipulation, and Imp|ementation), but these
differences are not relevant here, It|sessential} th } system for
the PDOP=1@ which s glistributed by DECUS and Is belna used for

Aptificial Intelligence and other research In a nunber of
laboratories,

This original SAIL net Our need8 for mbout tWo years before‘seaufr¥ng
serious change, then we beganto face the problem of butt Ina
together a hand-eye system whloh wWas much blgger than the available
maln nemory and Whigh did not lend ftself ¢o a statlic overiay
structure, Our sojutlon |Invo|ves @ nunber of languagg_ldd‘tlgns
which faci|ltate the treatnent of Jobs under the time=sharing system
as a set of cooperating seaquential| progesses, and has been described
In {53y The three maln additions wepe o monitor for umer control
and ~debugglng, a shared data facl [fty, and the Introduction of
messdge Procedures, The shared data faolllty makes use of the secend
relocation register of the POP-10 %o ajiow Job8 to @ao6cess a common
globa| data area Im a natural and efflelent mmnner. The message
procedures are the maln meohanlsm for asynchronous oommunTcat]on and
contro! between Jobs, A message procedure |s a procedure In_one job
whieh can be invoked from another Job, Contro|]n?ormlt]on
agsociated with the Invocation oan provide the effect of
subroutines,coroutines,parallel processes,events, and a varlety of
other dlsciplines, These mu|tl=-tasking mod!fications to SAIL have

enabled pesearchers to rsomblo and nodify large collectlons of Jobs
with a ninlmum &mgunt of attentlon to system problems,

A numbeér of factors _have ?3 bined recent |y to cause us tQ .makg a
secohd sect of majJor mod Tcataona to SAIL, The muiti=taskling
facilities of the second SAIL war. seen to be at |east _as useful
within a simngle Joba s they were aoross Jobs. In additlons the
abl |1ty to assemb|e [arge ocollections of routlnos brought us .to the
olnt of faclingone Of the oore pgpoblems of Arttflo!n! Intoqfconce -
what Is the right seaquence ofactlons for capryl "f out ven task
In a particular environman®, Whis strategy problem Is currentiy vary
popular and '8 the driving forge behlnd many of _the recent
developmant In lanouages for Artlﬁ!ef 2 Intel|Tgence., Oyr v 8w of (he
problem Is somewhat umnopthodoX anal Its somc dliseuss on,

Reoblem golving foe on entity Whleh deals th the real .world Is
frauyoht with uncertalinty. ﬂo state of the wor}d Qan not . assumed to

be known = In fact, one of the malngoals of a smtegy musat be to
galn onouthnformation to earry out ?he task, An ddl¢ ogat prob|em
ar!ses In resource -~ ajlocation) even tf an exhgus ve search of the
environment will yleld a solutlon, It may not do so f‘t an aoceptable
cost, Conslderatlons of this sort cause us to Vv the sfrstoay
problem as inherently involving numerical estimates of probabllities,
costs, etc, A complete dlscussion of these Issues ls beyond the
scope of thls paper , but the recant SAIL mcdlflcutlons have been
Influenced by our model of the steategy oroblem,

Ovr recent language work has b intended sn .facl| taga the deslgn

programs for ~ the construct and execution ol strategles for
Interactlion with the real world, “The facl|ltles are belng aopiled to
other probjiems, but we wll]l oonoentrate on the or]Qal thene.

However the language deglgn effort was cancerned wlth Oxbandl'nﬂ the
power of SAIL as a geperal Purpose |arguage as opposed to developIng
S specla| purpese system, One oritica| deglgn constralnt was that the
features not ental| large hidden overheads or sppreciably degrade the
pefformance of Programe not making use of them, We bel] eve we have
found a set of features whiechmeetour deslign 0.'8. the ma{or
additions are} backtracking, prooedyre varlables, matehino
procedupres, and a general multi=taskine faclilty.

STATE 'SAVING AND BACKUP

In order to t several different a|®@ rnative gsteateglies It 1s 0ften
ngcossa;y ?0 §3@. tlu;aaurrnntat.ta 0’ the oomputlt? .Thys, 2 t

first attenpt does not suceceed, W may "back p" nnd try gne of the
ather alternatives, We my l|80 switoch Dbetween a|tepnatives,
sontinuing with oneonly until It no longer seems the var oromising,
but retalining the ont!on of resuming it later I the. other
a|ternatives do not prove to be satisfactory, Another tlchnTaue used

In programming non-gotermlnlstlc algorithms, parallel processes, Wilil
be dlsCussed later 'in thls paper,

In general the state of a SAIL computation Includes ¢the current
contro! environment, the Input and output whigh have been requested,

the contents of the LEAPassoclative store and the contents of all
varlables, New SAIL has features whfoh wli| help handle the last of
these components: the contents of varlables,

W norMally do not want to have the vglu®es of all vnrl?blls "ba ke?-
Up" when we swltch between altegnatives, Onec reason g that 3t Is
often uUsafu| for one alternative to communfocate certaln pleces of
Information 1t has acqulred t o tNe other alternatives, This
Information ls usya|ly saved [n certaln variabjles, If we backup those
varlables, we lose the Information, Another reason for nbt backihg=up
al varlables Is that often only a small subset will have meaningfor
more than a singje alternative, and !t |svery cost|y to back up
larg® ampunts of data whleh mmy rot be rpelevant for the other
alternatives, Therefore Wwe have Implementedways of saying the
values of spec!fiec varlables and then restoring them at a later time,

REMEMBER,
ans RE8H0 E“éash“i R0 13.02889,00, 00 wngAI sjatementa) RENGHSER,
"conteXt conteaxt cons ats of a set of ref or nces to varinb es and
thelr Values

We save the contents of varlables by means of REMEMBER statements,

REMEMBER (1,J,aC3]) IN icontextl)

This statement would sgave the values i, wyn, ma[3I3" In the
context named "gontexti", If any O these varilblos had been

previous|ly saved [n "contexti®, the old values Would be |ost,

An alternate form of the REMEMBER statement st

REMEMBER ALL INcontextl}

The current value of each varlable which has been remembarod in
"econteXt1” would replace the vajue that was Previously stored there,

The RESTOREstatementalso has two forms, The first has an argument=
list.

RESTORE (J,al(3J)) FROM contextl}

Thatcatghdieoeangn gontenst n i 8 omEDeadroUNINET %R.t 9l¥8. 430, 2T 58S
values snved for those arguments "premembered®, would be rectored to

the approprlate variables,

The othepr form of the RESTORE statement Ist

RESTORE ALL FROM contextl;

This wc’ulg estore the oontents of all variables saved wlthin the
naned con GX‘F~

These new feat Uresseem to proVide the sdo. Tapor t ant fe?tures of
State=SavIingd Without the large overhead Imposed py aqUtomagtic backupo
of the entlre state or Incrementa| state=saving as {mplemented in
sone other programmng systems,

LEAP

SAIL contalns a agsoclatlive data system oaj &EAP w?fa ls used
for svymbollo computations, LEAP Is a comb nnt_ ?yntax and
runtime subroutines for hand|ing |tems, sets of tems and

agsociations,

during execution from a pool of ltanms by using the functlon NEH.
Itens may be stored in variables (|temvars), be mombars o slt7
ejerents of |less or be associated together to form ttrlpie
(associatlons) wlthin the associative store,

An ltem |g similar g0 = LISP atom, ‘toms may _he _declared or obtained

A set |8 an unOrderrioollaotlon of distingt items, Jtems .May be
Inserted Into set var lables by "PUT™ gtatements and removed from set
variables by "REMOVE" statenents Set expressions may alse be
:sstcnea to set variaples, The simplest set expression is of the
orm!

(Itemi, Iten28 ltem3 .4,)

whlech represents the set conslsting of the denoted [tems, Meore
ocomplicated set express|ions IHVOIV?HQ et functions, _sgt uni on,
subtraction and intuseotlon are a|so provided, Sets arc) stored ina
canonical Internal form which alliows us tocarry out such operatigns
as intersection, unfon and ocompaelsoh In a timeproportional to the
lengths of the sets Involved,

Sets arc deflolent in some @® ppl tlons, though. becausg they are
Unordered, Thus We could not oaa ¥ tey different altarnqtlvos in
order of thelr expected utflity, To remedy this, as wel| as provide a
mechanism for oreation of paraneter lists to Interpretively called
srocedures (see PROCEDURE VARI ABLES below), SAIL now contalns a data-
type called "1 1st", A |ist |s simply an ordered seauenc=.n ‘_,JJ'.N' A
lter may appear more than once w? hin a |ist, &lgt ogerat ons
Inciude Inserting and removing speclf! Items from a I st varlable by
Indexed PUTI and REMOVE statements, List varlables may also b e
ass|oned |Ist expressions, the simplestof which Is of the formi

{((ltemil, tem2, Ttend 44o})

which r nr037 ?uthe'?xpl clt sequence of dongfod {te u.ubl?thor ITst

expressions ynetlions, concatenation, an sts,
Triples r? ordered .three .tuples of {toms, may themse|ves be
considered [tems and occur Tn subsequent assog ttlonl. They are added
to the assoolat|ve store by exscuting MAKE statenents, for eXample

MAKE use ® planl = tasgki}

6

The three Item components of an assoclatlon are refered to _as the
"attribute”, the "ob Ject", and the "yalue" respectiyely, Associations
mayY be removed from the store by uUsing ERASE statenents such a$i

ERASE use ® planl 2 ANY

Each ltem other than those representingassoclations mmy have a DATUM
whichls a scalar or array of any SAll data-tyne, The data=type of a
DATUM ray be checked durlng executijon, DATUMS are wused mueh as
variables, For exampie!

DATUM(I1t) * 51
wou|d cause the datum of th® jitem "{¢" to be replaced Wwith "5",

SAIL containsacompije=time mm gro fac!|ity which allows gquch things
as string substltution and oond tlonal compilation,As i8 (he custom

of many SAIL programmers » We w||| use the macro "2" to stand for the
string "DATUM", Thus the above example woul|d appear asg

aclieg) = 53
PROCEDURE VARIABLES

It Is aulte natural Im an Interoreter to ajloy for the _exesgujlon of
program generated seauences of actlons, This [s an Important feature

for artlficlal 1[ntejlfogence aoplications and is not easily mde
avallable for compl|ed prograns, In new SAIL, the generatlon of such
sequences |s fac!|ltated by a procedure variable mechanismwhichflits
fnquite nioely with the asseclatlve search features of the Ilanguage,
These procedure Variabl®s are created at runtime from items by
statenments of the form

- ASSIGN(<!tem expression>,<procedure specificationd)

wher e

<procedure speciflcation> :ir<procedure |d> |
DATUM(<procedyrs [tem expressiond)

For instance,
ASSIGN(xxx,baz)

wou|d cause the datum of ltem xxx to contain a descrlpﬂ
together WIth a polnter to bar’s current environment, Sim
statement

on of baz,
T jarly, the

ASSIGNCyyysalxxx))

would cause vyvy to be mad® Into a procedur® [tem contalning the same
Informaglon ag that in XXX,

In addlitlon to dynlmlcallf speclfylng what progedure fo execute, one
would also [lke a convenlent way to dynamlca|ly specify an argument
Iist for a proosdure call, This fadlilty !s provided by the APPLY
meohan|sm}

APPLY(<procedure speciflocation>,<argument |Ist>)

whepe (argunent |isg > Is any SAIL I!st and mmy bs omltted if the
procedure has no parameters, For example,

APPLY(fo0)
AppLY(3(xxx),|lstl)
APPLY(Q(APPLy(VVV))c((XaYOZ))*

APPLT uses t he _ltems In ¢ he argument Ilst, together wlith the
environment Information from the procedure Item (or from the current
env | ronment, If “the procedure |s named expileltly) to _make ¢ h ¢
approprlate® Procedure call, If the cailed procedure produces g
valus, that value WIl| bs returned as the value of APPLY,

Rrocedure ltems permit a great deal of flexibiilty, For Tnstance,
the user can say things |lke

FOREACH x | xeactlons A useexzfastenlng do
BEGI N
APPLY(2(x), {{boardi,board2)))} S
IF togethgr(boardi,boapd2) THEN GO TO dongit}
END1

donelt!

This would seapch the _set "ao’lons" far ?nyhnabb'UUfﬂ! whieh hava
been asserted to be usefu| for fastening things together unc 1] elther

the list |s ecxhausted op the task |s suceessfully completed,
MILTI PLE PROCESSES

The control structure of SAIL was oclelnally very much |Ike $hat of

Algo! 68 -- that |s tosayblock struotured and procedurg orjented,
Although this structure |s adeauate for many problems, there are Some
cases In whleh 1§ 1Is uncomfortably restelotive, In hand-eve

app|loatfons, for instance, thepre (irec freguentiy modulgs of code
whilegh are nore or less mutually Indedrndent but that Wlsh to all On
each Other for varjous servlices, Similapiy, one may “3 sh to
Investigate sevaralpossible strategles at once, With the results of
ens compyutatlion perhaps Influencing the coupse of others, In such

cases, it is much morepatural to think of (and wWrite) these modu|es
as co-roytines or Independent processes rather than_as nested
procedure calls, To some extent, nmessage procedures providedihe
deslred facl|itles, with each Job actlng as a separate process, This
solution has some rather severe _#rawbacks, since t(he overhead
Involved I n switching control from procéss t o Process and In
Interprocess communication Is so hlgh that close interaction becomes
prohlbltively expansfive, One of our goals Inproviding mewcontrol
facllities Wis to mmke possible the close cooperation of many small
to medlum slzed processes within a single Job without Tmposing an
excess!ve overhead e{ther on oldesty|e procedural programs O on
users of the shiny new features, In dolngthls, wewanted ¢t oretaln
the block strpucture rule3 Of Algol, since these rulies ara geneca|ly
familiar to programmers and ©orovide a useful neans of determ?nlng
which datals to be shared,

m
R I D ER S L Mt I T G
a process Is essent7ally a procedure activation which has _been given
its own prun time stack and which thus does not have to return tefore
the process that invoked !t can continue, SAIL procedures normally
make uWp=-jeve| references via a "statlc" (lexlcal nesting) chain

malntalned for that purpose in the stack, When a orocedure [s to be
called asan | ndependent process, a "process" routine flrst gets
space for a new stack, It then sets Up aoorooriata pProcess control
varlables In the new stack area and In the "parent", Flnaily, the
procedure Is {nvoked using the new stack, when thls procedure is
entered, | t Wl| !l set up Its statle |ink by Jlooking bagkalong the
static chain of the calllng process unti| it finds an activation of
Its lexlical parent, Thus, dlfferent processes Wil | share data

belonglng to thely common ancestocs.

Many of the applicationswhich we have consider®d do npot permit us to
predlict Just hoW mmny subdrocesses a process might wish to _soawn or

reaulre (hat severa| processes be Instantiated using the same
srocedure on different data, Therefore, we have chosen to "name"
processes by assigning them to LEAF ltems, rather than by using
procedUre names or some SPeclaldata typecalled "process", This
approach has the added advantage of al lowlng conplex structures Of
dorocesses to be bul|t uc using the mechanisms of LEAP, New procasses
are created by statenents of the formj

SPROUT(<Item expression>,<procedure call>,<ontlons>)

where the Item aspecified by <ltemexpression> |s to be Jsed as tne
BrocessS nane, the <orocedure cal|l> te|ls what thls process is &n do,
and <optlonsd |s an integer which Is used to sneclfy how certain
Pmrocess attrlbutes are to be set up, (If the <ootions> parameter is
omitted or only partlally spacified, SAIL wil| provide defauit

values), For Instange, a procedure to nail twb board8 together mlaht
contain a sequence |lke

H
ITEM pi1,p2:p3}
H

|
SPROUT(pl,grab(handl,hammer))t
SPROUT(p2,grabthand2,nal|¥)}
SPROUT(p3, lookat(tvi,boards))t
!

JOIN((pl,p2,p3})})
pound(hammer,nali,boards)}
:

!

In this case, grab(handi,hammer) would be exeouted a8 oprocess ni,
grab(hand2,nall) woulld be exeouted &3 process Y3 and
lookat{tvi,boards) would be executed as Drocess 03, The process
areati?c them continues on |tsway down to the JOIN statement, In
general,

JOIN(<set)>)
oaus®s the ppocess oxeouting [t (o be suspended unt]i all the
processes naned By the <setd> have terminated. Thus
pound(hammer,nall,boards) wil| not be calied untiipi,n2, and_p3

have all terminated, Inourexamp|e®, both SPRQUTed processes and the
orfgina| process wouldtheoreticalily fun In parallel, 1n fact, this
Is not possible with a singleprocessor, Instead, the SAI% runtime
system Includes . scheduler that decldes whishoroocess _Is to be
executed a¢ rny 9/ven Instant, Eaoh Brocess ls given a prierlty and
tine quantum and may be in one of four statest "runnlngn, "ready"
(iye, runnable), "suspended", or "terminated”, The scheduler, wh]ch
I's Invoked elther by a olook [nterrusY or By an gxp|7e¥t>c;|% by the
user, Usesasinple round robin akgorjthm to distrlbute service among
the highest priority ready processes,

Whep a process |s SPROUTed, the system asslgns (¢ ?, standard default
prlority and time gquantum, uniess Xha userspec [fles otherwlise by
aporopriate optionss, . The SPROUTed process usyallyY becomes the
running process, whiie the SPROUTIng brocess reverts to ready status,

unless sone other optjon Is specifled, For Instance, suppose we have
some procedure "wangep" whichseasohes a data base or the ea| world
at fahdom for potentigliy useful opJects. Then Wwe mfight write
something |lket

SPROUTwandeggraNbiyyander(noc|d mRa8415y +run_NE)
10

The Current Process would oontlnue to fu?o and wapderer would
langulsh In peady status ungll eve.ything of highe, prio}‘ty had been

suspended,
Processes may be suspended or terminated y]g

SUSPEND(<process |tem expresslond)

and

TERMINATE(<process ltem expressiond)

which do just what one might expect, Similarly, SAIL provides system
functions for changingaprocess’sprlorityor quantum,

Co-routine style Jnteractions are facl|l/tated by the use of the
RESUME construct:

x+RESUME(<brocess {tem expresslon>,<return vajued,<optlonsd)

where <optlons> Is agalin optlonal, The usual effeet of RESUME Is to
eaUs® the current|y running process %o b e suspénded athe orocess
specifled by <process item expression> (o become running, I[f the
process belng resumed had suspended [tself by means of a resume
statement, then 't WJl| receive <return valued asthe vajue of the
RESUME« For Instance,

PROCEDURE tooj_getter(ITEMVAR tool_type):

BEGI N

ITEMVAR tooll . - N
FOREACH too| | too| € tool.pox A typeetooiZtoo|_type Do

RESUME(CALLER(THIS_PROCESS), too|)}
END3

!
SPROUT(tpeNEW. tpopnl_ getter(screwdriver),SUSPEND_HIM)
DO sd«RESUME(¢9,NIC) UNTIL f!ts(sd,scpoWi)}

TERMINATE(tg);

In this case, the tool getter proocess "tg" wil | be inltlalized and
Immediate|y suspended, Then, the RESUMECtQ@)NIC) wlli wake It up to
fing onec screwdplver, which wll| be assigned to |temvar "sd" by the
RESUME(CALLER(THIS_PROCESS)sto001), (THI S- PROCESS and
CALLER(¢procld>) are system supplled poutines that return the crocess
ltems for the current|Y running process and for the process that last
awakened process <procld>, respective|y,) Later on, we wl|]| discuss a
somewhat cleaner sofutlon, using matching procedures, to the probjem

11

Useg for th|s|||u5f T]on. We Wil!l a|80 show how the, Interprocess
gommuni.ation fasilit ? the language may beused to handle the
problem of what tg do If tool getter rups qut of tools,

FOREACH STATEMENTS

The standard way of searohing the “LEAP associative store s the
FOREACH statement, A FOREACH statenent ¢onsists of & "binding | ist®
of ftemvaprs, an "assoc]at|v0 context" and a statement to be iterated,
Conslder the following exanple,

FOREACH gpsprc | parent ®* ¢ S p A parent e p 3 ad DO
MAKE grandparent ® ¢ & gp}

n this example the binding=|lst consists of the |temvars "gp") "o",
¢", The assoclative context consists of two "e|ements", "parent e ¢
p", and "parent a p 3 gp", The statement to be jterated Is the
MAKE statement

=

Inttlally all three ltemvaps arpe "unbound", That 184 . they are
conslidered to have no ftem value, Simo® "p" and "¢" are unbound, the
ejerent "parent ¢ ¢ 3 p" represents anassociative searoh, The LEAP
Interpreter is lnstiu_cted to look for triples containing "oarent" as
their attribute On flnding such a triple, the intororatar assians
the object and' value compon®nts to "0 Mand = "p" respectively, We
eoftinue to the next element "parent ® 3 gp", In this elemant there
IsonlY one unbound _Jtemvar, "gp","o" |8 not unbound even though 1t
ls in the blnding |Tst because |t was bound by apreceding e|ement,
A search is made for triples wlth "papent® as thelr attrlb, e and the
eurrent binding for "“p"as their obJect, If such , tr]DlO fs found,
l'ts value component Is bound to "gp" and the MAKE statement s
executed, After executlon of the MAKE statement, _ the LEAP
Interpreter wil| "back up" and attempt to flnd another bdindlng for
mgp" and then eXegute the MAKE statement agaln, Wien the [nterpreter
falls to find another binding, |t bagks w to the preceding element
and tr¥s to find other bindings for "p" and "c", Flnally when . all
triples matehing the pattern of the first element have been tried,
the exegution of the FOREACH statencnt |S comp|ete,

In old SAIL, FOREACH ejements oonslgted of efther trliple searches,
set membership, or boolean expressjons not dependant on unbound

ltemvars, On|y ¢tripje searches and set membership wers al |owed to
bind an unbound !temvar,

Drgceélre.oonta'@s ?ngowProcgdureb nd ﬂg.ntf.TYgrs °5$$?3a agﬁégg 352
which may have zero or nore BINDING(WW temn as "?") temvars as

formal parameters, these Paraneters are not nooessari!y bound at the
the the procedure is called, If the Procedure cannot find blndings

12

for its unbound BINDING paraneters, It FAIL , w<ausing . the 1 _EAP
interpreter to bagck up to the previous elenent Withim the a&ssoclative
context of the FOREACH, If i« SUCCEEDs, bindings for the unbound
parameters Wwill be returned, The matehlng prooedure Ts actually
SPRQUTed as a coroutine process, SUCCEED and FAIL are essentlajly
forms ©f RESUME which return oontrol to the c@aller with the values
TRUE and FALSE respectively, FAIL also causes the matehlng procedure
Process to be TERMINATEd, Wen tbe matohlng procedure Ts called _by
"bagkup", it Is nerely RESUMEd, Thus, the ent[re environment in terms
of the procedure's local variables, stack, etc,, |s the sane as when
the Procedure executed the previous successful return, The matohing
procedure may contimnue from the polnt at wh‘oh it left off,
generating new blindings for Its unbound parameters, Inmany respects
matchingproceduresare similar to the IPL=V "generators® whloh have
appeared in varled forms In other Problemsolv ing languages,

To ald in the bingfna operatlons we have oprovided opredlicates to
determine If a speclifio paranmeter |8 unbound for this eall of the

procedure, W also have introduos anew form of_ the FQREACH statenent
which condltlonal|y adds |temvars to Its binding Ilst, Cons|der the
the foilowing exampje of the new formi

MATCHING PROCEDURE togl._getter ITEMVAR too 00| _type)
BEGTN FoREAgH Pene EoRlaastEsre T da5TVeR 830 g k0! -tyoe)s

typeetoo|Stoo|_type DO SUCCEED)
FAILS
END;

: : i " ”" " "
The Oinding, & 1oy TORRATHG"08ATa TR0 ESRL" ORIV uedl T ESRN
were unbound, The actfon of the matechlng procedurels to fInd a too!
if the tool Is unknown but the type s knowny find the tvpe if the
too|is known but the type is not; verlfy that the too| Isof the
reaulred type 1f both are Known} or search through the toelboX and
return tool,tool|_type palrs If neither tool nor type IS known, The
actual semantics 1s determined by whlch, If elther, of the paraneters
are bound,

Unfortunately in general, mateching procedures with mor® than a single
potentlially unbound paraneter are not so easy to code, The user my
have to provide up to 2*N different code sequences to handle the
various aonbinations of N BINDING i{temvars,

To jllustrate one. class of uses of atching procedures I ct .us
consider the following problem, W are given aset of eube shaped

biocks of varylngslizes and are reauested to plek a subset of the
blocks such that when stacked they Will form a tower of agiven
hefght, Assune that we WiI| represent a cube b¥an!item whose dagum
is the helght of the cube, W may easily solve thls problem by using
arecursive procedure "findi",

13

RECURSI VE BOOLEAN PROCEDURE findi (SET bset, INITEGER d‘f“
REFERENCE SET ans)
BEGIN INTEGER ITEMVAR newb;) .
FOREACH newb | newb € bset A (3(newb) § diff) Do
IF (almewp) = diff) v findi{bsat~{newb),diff=a(newb),ans)
THEN BEGIN PUT newb IN answerjRETURN(TRUE) END;
RETURN(FALSE)Y S
END;

Mowever, now let us consider & sllght|y different problem, Suppose we
wish to sImultgneously pulld tWo towars from g single set of plocks,
Call!ng "tindi" twice, flrst with the entire 'set of blocks for for
the first tower » then with the emainlng blocks for the second, wil]
not work, Though theremay eX¥ at many possible subsets which wii |
form the flrst ctower, "findi" wl || ajways return the same one even
though it is possibje to construct the second tower only I[f ,
different subset of the blocks were c¢hosen for the first tower, For
examp|{e, if the set of blocks consisted of sizes 31, 4» and 5 and we
were to construct towers of heights 5 and 4, "findi"™ wou|d construct
the first tower using biooks 1 and 4 and thus be unable to oonstruct
the second tower,

Now let Us see how we quid use matoh!pa procegdures (o overcome this
oroblem, et us write the natching procedure to solve a slngle tower
problem [1],

MATCHING PROCEDURE find2 (SET bseti INTEGER helght;
?7 SET !TEMVAR ans)i
BEGI N
RECURSI VE PROCEDURE aux (SET 813 INTEGER diff);
BEGIN INTEGER]TEMVAR newp}
FOREACH Ngwp | newp € sl A (8(newp} S glft) DO
BEGIN PUT newb IN 3(ans)i
IF (8(newp)z ql¢¢) THEN SUCCEED
ELSE auX(si={newp},diff=2(newp));
REMDVE newb FROM 3(ans)j
END}
END |

ans & NEW({))} COMMENT new !tem, The empty set is datum}
aux(bset,helight)}
FAIL;

END)

To cal!| the matching bprocedure we would simply have a FOREACH
statenent :

14

FOREACH ans | f]nd?(blookget.hg!ghhans)DO
or Intset(d(ans));

This is clearly 6gujvalent to the solution given above for "findi",
However now consfdep the two tower case;!

FOREACH apsij,ans< | ffndZ(bIocksaf.helnhtl.ansi>h
f?ndZ(blockset-btansiiohe ght2,ans2) DO

printsets(d(ansi),3(ans2))}

This wlill find a sojutlon If any ex|sts, because ifi, after finding a
solution to the f?rsttbm&r, 1t |8 ?mposs!ble te f‘nd a #eclution to
the Second problem, we backup and flnd a different sofutfon to the
first tower and then try the segond again,

An interesting digtinctlon between the Prograns for "fJndi" and
"f 1 nd2" maybefound, Notice that "flndi" only returns to its caller
after "unwinding" the recursion, thus allowing the answer set to be
constructed as the regursion Is belng "unwound" within a successful
call, With "find2", however, the procedure mmy "return” or succeed
whije It Is sti|| deeply nested in recurslion and thus the answer set
must be constructed before the next recursive gall of "aux" Is mmde,

W enviglon that matching grooeduFes,wlll be u%.d to. simulate n=ary
relations, serve as Yenora ors (! moves or strategies, as Well as

girply ald In the codlIng of complex assoclatlive contexts,

INTERPRQCESS COMMUN CATI ON

ré are manycooperatingd Processes bresen one would X have
a mechanl!sm py which an ocCurrence in onc Progess can nf luence the
flowofcontrol In other processes, Such oceurrences freaquent|y fail
Into several basic groups, with perhaps some distinguishing
information assoclated with each occurrenc® ot a given type, In
designing interprocess communication facl|!ties for SAIL we wanted to
mke it easy for the user to dlstinguish anong happenings of the sane
general type and to defline for hinmself Just how each type Is to be
hangled, W have chosen an "event" mechanlsm which is really a
falely general nessage proeessor, Any | tern may be used as an'"event’
mot i1ce", or nessage, and each typeo f event In a program s
represénted by an item, Wth each Such event type, SAIL assocliates:

{ comp|lcated systems _auchasthe gtanfogd Hand Eve ¥'tam where
Re ' T ke to

1, A "potlice auaue” of itenms whlch have been "caused" for this event
tyﬂen

2, A "walit gueue" of processes which are waiting for an event of this
type,

3, Prccedures for manjpulating the aqueues,

15

The two essentla| actions assoclated with any event type are

CAUSE(<event type>,<notice ftem >,<options>)
and

INTERROGATE(<event typed>,<optionsd)

where, as elsewhere, <optlonsd my be left out |f the default case Is
desired, '

The statenent

CAUSE(typel,nto)

would cause SAIL to look at the wWalt aqueue for typel, 1I!f_ _the queue
ls empty, then "nt¢" would be put into typel’s notice aqueue,
otherwise, a process Would be removed from the Walt queue and
reactivated, with "ntc" as the awalted item,

If a process executes the statement

l¢mveINTERROGATE (typel)
then the flpst Item in the notlce aueue for typel would b? removyed
from the queue and assigned to ftemvap Itmv, 1f the queue s empty,

then itmv Would be set to the speclal item NIC, If a process wants
to wait for an event of a given type, it may do $0s as in

{tmve INTERRQGATE(typel ,WAIT)

In this case, !f the notice aueue is @mpty, then the PrOCeSS will be
suspended and puUt onto the wait aueue for typel,

Simjlarly,

ltmveINTERROGATE(typel,RETAIN)
cauUses the event notfce to be retained in the notice aueue for typel,
This went mechanjsm should prove wusefu| in problem ?olang
app{lications in which processes are sprouted to cons:dar di 7ferent

actions, An "0r" node in a goal tree, for exanple, might be
represented by

SPROUT(pi nal|(sucevt,boards))}
SPROUT(p2,9|uelsucevt,boards))}

16

SPROUT(p3,screw(sucevt,boards));
winne -IN ERROGATE(guceve s WAIT)
FOREA p | 06(01003003) A pEwinner DO TERMINATE(D);

Wen a branch discovers that It has succeeded, !t can exaouta a
statement |lke
CAUSE(sucevt, THIS_PROCESSY))

which would nnounce success and cause |ts Parent to terminate Tts
less svWeceessful brothers.

Events glve us a meaps by which sone disooverv Tade by one progess
cah be nmde to "unstlck" sone other process hich has @otten Into
trouble, Lets considar our t0o0| getter again,

PROCEDURE too|_getter(ITEMVAR too|_type)}
BEGIN
ITEMYAR too |}
FOREACH tool | tool€toolpox A typeetoo|Stooltype DO
RESUWE(CALLER(THIS_PROCESS) tool|)}
DO too|*INTERROGATE(tool_found,WAIT)
UNTIL typee®too|Ztoo|-t¥pe:
RESUME(CALLER(THIS_PROCESS),¢001)}
END3

th REACH statement fail8 to fl a tool of the correct tyoe,
Lhen fog? iter & Imbo sugbendeg Q?I some argcess(%ausfé an event

of type tool-found, uslng the an ltemreorasent!no tool as tho event
notice, Suppose that our Drocess "wanderer" has fina||y gotten a
chance to run (everyth!ng of higher prlorlty being stuck) and that It
does, !'n fact, stumble across a screwdrliver, which !t knows to be a
king of tool, It might then do something like

MAKE typeethingZscrewdriver;
P Ur thingIN tool_boxj
CAUSE(too|_found,thing, TELL _EVERYONE+DONTSAVE)

Thls would cause every oroce? wait on the.0Yent . "tool_found" to
€ awakened, (1f no process |s walt hc. the not ice will not be saved

on the notlce aqueue,) Thlis Wuld wake up whomever called tool_getter,
which would then gee 1f It oan use the "thing",

f everal possible
yYers ne onishes estéh asgouT NI H I TAE L 5 100D hidR
cSng gocﬁsés e2c§°23332 type " st, unfortu%ately. ? Yshes

17

to walt for an ocegrrence within a glven set of events, this .doesn’t
work very well|, singca an attempt to waltfor on8 event type will keep
the other types from belng seen, Therefore, SAIL allows a process to
agk aboyt a set or |Ist of event types directiy,as In

l¢tmveINTERROGATE(ev_type_|ls)WAIT+RETAIN)

A W W if
Lo aLTI28 baubsoviri ghotDt as% 18 000T] o3 HySRltataltal! o8
any o walt queue entries s serviced i1 walt queue entrje
thls request wl|| bg deleted,) If It |s necessqr¥ to knmow _Just

type was responsible for a glven notlice, the optlon SAY_pHICH m

Useds Suppose the Statement

ftmveINTERROGATE(ev_type_|Is,HAIT+SAY_WHICH)

returns [tem "motic", whleh was caused_ @8 an event of type
°atast§0 he, asg Tts va lyue ., Then the agsociatlon
EVENT _TYBEenot!iczcatastrophe wl || be made by the system

Thu 8 W ogr "and" de wlth yrocess "foo" Tght
sgmg%h?gg 'T%eto program an node wlt in or might be

SPROUT(pl,fetch(hammer,handi,sucevt,fallevt));
SPROUT(p2,fetch(nall,hand2,sucevt,fal|evt));

SPROUT(pn, lpokat(tvi,boards,sucevt,fallevt));
FOR | « 1 STEP 1 untll n DO
BEGI N
p=INTERROGATE(((fallevt,sucevt)),WAIT)}
IF EVENT_TYPEep=fajlevt THEN
BEGI N
MAKE fallur®_causeefooZp)
FOREACH p lp € ({(plyp2,.,,.20n}) DO TERMINATE (D)}
CAUSE(foos.fallure_event,foo);
SUSPEND(foo0?}
END;
END}
CAUSE(foos_success_event, foo)}

Here, It |s assumed that eaoh process is tQ take responsinl Ity for
making "| Ifeor death" declislons reguardingany subprogesses, An
soon ‘88 one of the p| reports faljupe, foo wil| terminate all {ts
"chl| dren" (yhose appoinged jaskshay® becone Ppolngless) repory l¢s
own faljure, and suspend Ttseff, 1f all the ol report success, then
foo will do |ikewiss,

Events may be used together with natohing procedurea to_ do .deferred
updating, as is shown by the follo ngexample, A matching orocedure

18

—

may want to nmanke some chan@® to the data base only if the Eegt of the
agsocliative context o the FOREACHM succeeds. . _A simpie way of
Impiementing this Is to have the matehing procedure spawn a process
whlich Wi|| do the updating, Thi process w! || go Inte event walt, and
the event wll| only be causrd 3f the entlre assoclative context of
the FOREACH succeeds, Consider the following gul|t=by-assocliation
program, For each member of the suspwet |ist, w flrst seo Yf Ke is
really undesirable by ohockln? his b&nk account, If he dgesn’t have
enoydh money to br'bo us Il put another bllokmark In the file of
anyone who has any agsoclation with nim, unless that operson’s only
associatlon with his ?s as an Informer ¢(In whichecase the fink wlli
be glven a "negative" black mark), When a persgoOn gets 5 black marks
he then becones a suspect,

SET badguys} LIST suspect;
MATCHI NG PROCEDURE llnkod(BINDING ITEMVAR x)}
BEGI N
PROCEDURE UPDATE;}
BEGIN INTEGER JTEMVAR y»f}
WHI LE TRUE DO
BEGIN ¢«INTERROGATE(|inkeqok,WAIT)}
PUT xIN badouys?
8(f)ed(¢)=2}
FOREACH ¥ | #20¢ e X E ¥ DD
BEGIN 8(y)«d(y) + 1}
[Fa(y)25 THEN PUT vI N suspectAFTER~}
END;
END)
END}

z~§£dl ss&OUT<z-undate)l
FOREACH x | x ¢ suspect DO
SUCCEED,
TERMINATE(2)}
FAIL;
END,

K
.

COMMENT main procedur® execution)

FOREACH persons fink | |lnked(person)a(wea|th(person)<iots)
A Informereperson3fink DO

BEGI N CAUSE(| Tnkedok, fink)}

END,;

19

Thissimple examp|e does of course not reéa|ly require elther matohlng
procedures or the eyent mechanlsm ¢0 caus® ¢t he uodatlng, but the
technlaue It |||lustrates should be qulte valuable Tn more complicated
situatlons,

A'th7322l3gg EﬁTv‘d'd R!SE‘oz tﬂg%l!%‘ %ﬁ.,i“ ‘clan cn‘lg° wh?Yt

they are not quite ?tht. For tancd- & poroe st m?oht want ?o wa
for & glven event only If no other nprocess lccadv walting for
that event, Instead of trying to DroVEdO a :9001;! optlog to cover
every pPosslible contingency, we have lnstoud prov dod n ot |o aueue
and process primatives with whloh thg user ocan wel te own CAUSE
and INTERROGATE progedures, To subst|tute hlg own opoo.dure for the
ane provided by SAIL, the user makes an uosocflt‘on of the form

CAUSE _PROC®typeiZnew_cause_proo

Or

INTERROGATE_PROCetypelZnew_[nt_proc

where typel |s the event type® and new_oause_prod and new_[mt_procare
procedure {tems bound _to the substitute procedures, Thege orocedUres

will b® pun as "atomic" operatlons,and wil| be al lowed to f n]7h
without Interruption, In particular, any CAUSEes or _changes
process status requested by such a procedure wli| not actual |y take

njace Untl| after the procedure exlts, Thls "Interrupt |eve|" turns
out to be quite usgful and permits one to Write Interrupt handlers
that look at a notige of some event, do Whgt they can, and then
either Just return op eise cause an event that Wlll trigger some
stronger condftlon,

20

CONCLUSION

Each of the features desoribed In th|s paper, was [ntended s 8ol' ve
particular programming problens, We have hnot yet had,_suf.u'o ent

practical experience with the new system ¢o say With OOrtaTnty t hat
they are the the rlght ones. These Isagroat deal of work on these
mroblemMs [n severa] IabOrutorlos and“ new |snuosar° belng raised
frequentiy, We do feel, however, that the ba? solutions suggested
here Will prove useful and that they do slgnificantiy extend the

capablilitlies of Al@oleiike languages,

ACKNOWLEDGEMENT

Whije the w described In t is papeg was b'tnﬂ done, there has ajso
been a s?an?;¥oant ;f% at) StanFO Lab t% proguce a new

LISP s¥stem (LISP 70) whlch also In udoa provlalona for multinle
processes, backtracking, and other slm lar features, KWe would |Tke
to thank the authors of thls effort, HoraceEpea, Larry Teglor. and
David Smith for several Interesting oonvoiautlona about ? ’ systam,
Ajthoudoh the approach they have taken somewhat fferent from
ourss these talks provided usg wlth severa| useful no!ohts.

21

}
i
|
|

REFERENCES

(1) Anderson, Bys» "Programming Langumges for,AFtlflTjal Intel|lgence:
the role of nonedeterminism," School of Art Iflelal
Intel|igence, Unlv, of Edlnbuigh, Experimental
Programming Reports No,25,

(2) Birtwistle, G,» "Notes on the SIMULA Language,"
Norweglan Computing centre Publication S=7, aspril 1969,

€32 Derkgags ¥y 8t 5382 BAAFGTHORE"15 June 1972,

4] Feldman, J. A,, and Rovnar, P, D.s "An ALGQL=Based Assoclative
Language," C,ACM12,8 (August 1969), po 439=449,

(5] Feldman, J+ A,» and Sproull, R, Fys"System Support For the
Stanford Hande=eye System,"proo, Second [JCAI,
Sept, 1971, pp 183~189,

u

[6) Hewltt, C,» "Procedur
1JCA

al Embeddingof Knowiedge In Planner,"
Proc, Second 1.

September 1971, pp 167=182,

t7) MDermott, D, V,, and Sussman,; G, J,»"The chNIVER Reference
Manual," MT A 1, Memo 259,May |972,

t810rganicks E» 1., andClomry, Jo Gis "A Data Stpucture Model
of the B6709 Computer System," SIGPLAN Notfoos 6,2,
February 1971, pp 83 = 145,

(9] Swinehart, D, C,, and <Sproulls Ry Fuy "SAIL Manugp|,"
Stanford Artl#lelal Intelllgence Laboratory Operating
Note No, 52,

22

