
TANFORD._ ARTLFI CI AL INTELLI GENCE PROJECT

EMO AIM-176

TAN-CS-308

RECENT DEVELOPMENTS IN SAIL

AN ALGOL- BASED LANGUAGE FOR ARTIFICIAL INTELLIGENCE

BY

J. A. FELDMAN

J.R. LOW

D.C. SW NEHART

| RH TAYLOR

|

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

NOVEMBER 1972

COMPUTER SCI ENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNI VERSITY

|

STANFORD ARTIFICIAL INTELLIGENCE REPORT NOVEMBER 1972

MEMD NO, AIM 176

COMPUTER SCIENCE DEPARTMENT

REPORT NO, 308

| Recent devel opnents | n SAIL
An ALGOL-pgSed Ignduads for Artificial Intelligence

BY

Je Av Feldman

Je R. Low

D, C, Swlnehart

Re He Taylor

ABSTRACT -

New features added to SAIL, an ALGOL based language for the PDP=10,
are discussed, The features Include procedure variables; multiole
processes; coroutinest a limited form of backtracking: an event
mechanism for inter-process communication; and matehing procedures, a
new way of searching the LEAP associative data base,

KEYWORDS

Artificial Intelligence Languaces, ALGOL, SAIL, LEAP, multi=tasking,
events, assoclative data stpuctures, backtracking, coroutines,

progressive deepening,

The Views and conclusions containad In this document are those of the
authors and should not be Interpreted as necessarily representing the

| official policles, eolther expressed or impited, of the Advanced
Research ProJects Agency, of the Natlona] Sclence Foundation, or of
the Unfted States Governnent,

This research was supported In part by the Advanced Researgh ProJegts
Agency of the office Of the Secretary of Defense under contract SD=
183 and In part by the Natioma! Science Foundation under ¢ontract GJ=
776,

Reproduced In the Uynjited States, Avaliable from the National
Technical Information Service, Springfield, Virginia, 22151,

4 + '

- -

_—

INTRODUCTTON

progress In Artificial [ngelllaence has traditiona IY beenaccompanled by advances In special pyuppose programming techniques and
langua®es, Virtually a|l of this devejopment has been cgnoentrated
In |anfuages and systems orlented to |Ist processing, As the efforts
of Artificial Inte||jgence researchers began to turn from purejy
symbole Problens toward Interaction wlth the real world, certain
features of algebraic languages became desirable, There were several
attempts(notably LISP2 and FORMULA ALGOL) to combine the best
features of both kinds of language, At the same time, designers of
aldebrale | anguages began to Include feature8 for non=-numer local
computation, No new general purpose |anguage wlthout some sort of
list processing fac! |lty hag been suggested for severa) years, We
have followed a tack somewhat dlfferent from elthep of these In the
des|9nOf SAIL and in Its subsequent modifications,

The starting point for the deve lopment of SAJL was the recognized
neeg for a language Incorporating symbolic and. algebraic
capabilities, primarily for Hand-Eye research, The problems are
somewhat similar to those In Computer Graphics and one_ of us had Just

developed a language, LEAP [4], for such a ® ications, After an
attenpt to honest|y eva juate altecnat Ve teohn]aques, we declded thatthe associative processing fecature8 03 LEAP Wer@ the way to Qo; Ther
ape Inportant differences between LEAR and the flest SAIL, (or marl ly
In inpUt=output, string manipulation, and Imo | ementat on), but these
differences are not relevant here, l¥ls essentia [4 th |} system forthe PDP=1@ which fs distributed by DECUS and Is being used for
Artificial Intelligence and other research In a nunber of
laboratories,

hl original SAIL met Our need8 for mbout two years before peaul ringserious change, then we began to face the problem of butt Ina
together a hand-eye system whloh was much bigger than the available
maln memory and wWhigh did not lend Ttself to a static overlay
structure, Our solution inve|ves a number of ‘language additions
which facilitate the treatnent of JoBs under the time=sharing system
as a set of cooperating seauential pro¢esses, and has been described
In {53s The three main additions wepe 5 monitor for user control
and debugging, a shared data facl |lty, and the Introductionof
message Procedures, The shared data faolllty makes use of the secend
relocation register of the POP-10 %0 allow Job8 to access a common
global data area Im a natural and efflelent mmnner. The message
procedures arc the maln mechanlsm for asynchronous o¢ommun]catlon and
contro! between Jobs, A message procedure IS a procedures In one Job
whieh can be invoked from another Job, Contro| Information
associated with the Invecatlon oan provide the effect of
subroutines, coroutines,parallel processes,events,and a varlety of
other disciplines, These multi-tasking modl|ficatlone to SAIL have

| 2

enabled pesearchers to gasemd |e and modi fy large collections of Jobswith a nminlnum &mgunt of attention to system problems,

A nymbepr of factors _have 13 bined recent |y to cause us,ti smaxe asecond set of major mod Toatlons to SAIL, The nuit] -task]ng
facilities of the second SAIL war. seen to be at leastas useful
within a single Jobas they were a0r0ss Jobs. In addition: the
abl ity to assemb|e [grge oolleotions of routines brought us to the

point of faclingone 04 the oore pgoblems of Artificlal Inte | [gence -
what Is the right sequence of aotlons for carrying out._& gl ven taskIn a partioular environmat®, “his strategy problem Is curpentiy vary
popular and Is the driving forge behind many- of -the recent
development In lanouapges for Artiflel g Intel)Tgence.Our v &w of the
problem Is sonewhat unopthodoX anal nefits S ONE discussion,

Problem 391vina toe an entity whloh deals wlth the real .world isfrayoht with uncertainty, The state of the world gan not assumed to
be known «= In fact, one of the malngoals of a smtegy mugat be to

galn enough Informationto carry out Ie task, An teal ona] problemarses In resource -ajlocatlion} even If an oxhaus]l ve search of the

environment will yleld a solution, It my not do so A an aec@ptable
cost, Considerations of this sort cause Us toVv eW the 4 134 hdproblem as inherently involving numerical estimates of probab| ties,
costs, etc, A complete discussion of these [ssues ls beyond the
scope of (hls pap®r , but the recant SAIL modifications have been
Infivenced by our model of the strategy problem,

yr recent language work has pgen intended Spy taoll tera rhe deslgn0 programs for theconstruction and execution ol ‘strategles for
Interaction with the real world, The facl|Itles are belng applied to
other probjems, but we wlll oonoentrate on the or elpal t hene.
However the language design effort Was concerned with expanding the
power of SAIL as a general purpose |arguage as Opposed to develop]ng
3 specla| purpose system, One oritica| deglgn constraint was that the

features not ental] large hidden overheads or sppreciab | y degrade the
performance of Programs not making use of she. We bel] eve we have
found a set of features whieh meetour deslén foals. t he m Joradditions are! backtracking, prooedyre variables, matohino
procédures; and a general multi=tasking faclilty,

STATE ‘SAVING AND BACKUP

de ever fferent a|@ rnative gtrateoies |¢ fte
hacoasary' to Ldvet tered dhe sat. 3 "the omariase! this, | ®1f the |
first attenpt does not succeed, W may "back ur" and try gne of the
ather alternatives, We my also switeh between alternatives,
eontinuing with eneonly until It no longer seems the vat promising,
but retaining the optlon of resuming It later If the. other
alternatives do not prove to be satisfactory, Another technlaue used

3

In programming non=deterministic algorithms, parallel processes, Wil!
be dlsCussed later ‘in thls paper,

In general the state of a SAIL computation Includes the ourrent
contro! environment, the I|nput and output whigh have been requested,
the contents of the LEAPassoclative store and the contentsof all
variables, New SAIL has features whfoh Wl|| help handle the last of
these components: the contents of varlables,

W normally do not want to have the v3oues of all variables "ba ked-up" when we switch between galtegnatlives, One reason g that 3t Is
often useful for one alternative to communfoate certain pleces of
Information It has acquired t o tHe othep alternatives, This
Information Is usually saved In certaln varlabjes,Jf we backup those
variables, we lose the Information, Another reason for nbt backing=up
all variables Is that often only a small subset will have, meaningfor
more than a singje alternative, and !t Is very costly to back up
larg® anpunts of data whieh my not be pelevant for the other
alternatives, Therefore We have implementedways of saving the
values of spec!fiec varlables and then restoring themat a later time,

The state-sav] ach |s baged on two naw. statements} REMEMBER

an RESTORES Lo8nmes theif 530082898" dw Sh JaERTeyal RERTieS 4"context, A context consists of a set of refer®nces to variables and
thelr values,

We save the contents of variables by means of REMEMBER statements,

REMEMBER (1.,J,a03]) INicontextl)

This statement would save the values 9 "jw, myn, mar3I3" In thecontext named "contexti", If any O these variables had been
previously saved In "contexti", the old values Would be Jost,

An alternate form of the REMEMBER statement Is:

: REMEMBER ALL [IN eontextl} |
The current value of cach varlable which has been remembered in
nconteXti” would replace the vajue that was Previously stored there,

The RESTOREstatementa|so has two forms, The first has an arguments=
| {Sts

RESTORE (J,a(31) FROM contextl}

‘hls Would, search contex: f he argument d. glve. am error
fhafeatids 14° ahy Sate RSE nrhombaradh®uRTLET, that context, TRE
values saved for those arguments "remembered", would be restored to
the appropriate variables,

4

The other form of the RESTORE statement ist

RESTORE ALL. FROM contextl:

This “eu Ld estore the contents of all variables saved wlthin thenaned Con ext)

Thes® new feat Uresseem to provide the moss. T.mportant feqtures ofState=SaVving Without the large overhead Imposed bv automgtic backup |
of the entire state op Incremental state=saving as {mp]emented in
sone other programmng systems,

5

EN

LEAP

SAIL contalns a 8ssoclat|ve dat a systen 4th GEAP Wyle Is usedfor svymbolle computations, LEAP Is a combination o pyntax andruntime subroutines for handling tems, sets of tems and
agsociatlons,

An item |s similar 0 = LISP atom, [tems may _hae _declared or obtained
during execution from a pool of |tams bY using the function NEW,

Itens may be stored In variables (|temvars), He members of ste. beejerents of |lete, or be asgsoofated together to form ttriDles
(assocliat|ons) within the associative store,

A set i8 an unorder gd collection of distinct items, (tems .MAYy beInserted Into set var ables by "PUT" gtatements and removed from sect
variables by "REMOVE" statenents Set expressions may alse be
assigned to set variables, The simplest set expression is of the
form!

(temi, Itenl8 ltem3 ,44}

Whlegh represents the set cong) sting of the denoted Items, Morecomplicated set expressions Involving gel functions,_set union,subtraction and Intersection are alse provided, Sets arc) stored ina
canonical Internal form which a|igwsus tocarry out such operatigns
as intersection, union and oomparlison In a timeproportional to the
lengths of the sets Involved,

Sets arc deflolentin som @ ppl c gtlons, t hough, becaysg they areUnor dered, Thus We could not easlly try different alternatives | m
order of thelr expected utility, To remedy this, as wel| as provide a
mechanism for oreation of parameter lists to Interpretively called
procedures (see PROCEDURE VARI ABLES bejow), SAIL now contains a data-
type called "| Ist", A |Tst Is simpiy an ordered sequence A ¢ frame A

Iter may appear more than once " hin a |ist, (Tat ogerationsIncjude Inserting and removing specifi, Items frem a 1 Ist variable by
Indexed PUI and REMOVE statements, List variables may aiso be
ass|{aned | Ist expressions, the simplestof which Is of the formi

| ({Iteml, ltem2, Itend sos?)

which represents the expllcit sequence of denoted (tems, Other Istexpressions Thclude 11% jolt peau concatenation, ang Supilees

Triples are ordered three tuples of |tems, gnd may themse|ves beconsidered [tems and qeeuUr Tn subsequent associations, They are added
to the assoolat|ve store by executing MAKE statenents, for example;

MAKE use ® planl = tagkl)

J)

The three Item components of an association are refered to _asthe
“attribute”, the "ob Ject", and the "value" respectively, Associations
may be renoved from the store by using ERASE statenents such asi

ERASE use ® planl = ANY! |

Each ltem other than those representingassoclations my have a DATUM

whichlsa scalar or array of any SAL data~type, The datamtype of aDATUM ray be checked durlng execution, DATUMS are used much as
variables, For example!

DATUM(It) * 31

would cause the datum of the jtem "{¢" to be replaced with "5",

SAIL contains acompije=time mn gro fac!|ity which allows such things
as string substitution and oond tional compilation, As i8 (he custom
of many SAIL programmers » we Wl || use the mageo "8" to stand for the
string "DATUM", Thus the above example wou|d appear asi

a(ig) « 5i

PROCEDURE VARIABLES

It Is aulte natural fm an Interpreter to 2leoy for the _exsguflon ofprogram generated Seauences of actlons, This Is an Important feature
for artificlal TIntejljgence applications and is not eas!ly mde
aval|lable for complied prograns, In new SAIL, the generation of such
sequences Is facl|ltated by a procedure variable mechanismwhichflts
inquite nicely with the assoclatlve search features of the language,
These procedure Variables are created at runtime from items by
statements of the form

y ASSIGN(< Item expression>,<procedure specificationd)

where

. <procedure speclflication> tir<procedure |d>|
DATUM(<procedure [tem expression>)

For instance,

ASSIGN(xxx,baz)

wou|d cause the datum of Item XXX to contain a description of baz,
together With a pofnter to bar’s current environment, Siml jarly, the
statement

ASSIGNC(yyysda(xxx))

7

_—

would cause yw to be mad® Into a procedure Item contalning the sane
Informaglon ag that in XXX,

In addltlon to dynamically speolfying what procedure be execute, onewould also [lke a convenlent way to dynamleca|ly specify an argument
list for a procedure call, This fad]ilty Is provided by the APPLY
mechanlsmi

APPLY(<procedure specification>,<argument |1st>)

whepe (argunent ist > Is any SAIL | 1st and my bs om{tted if the
procedure has no parameters, For example,

APPLY (foo)
AppLY(3f{xxx),|lstl)
APPLy(8CAPPLy(yyy?) {{x,¥,2))}

APPLY uses t he _ltems In t he argument |lst, together wlth the
environment Information from the procedure Item (or from the current
env | ronment, {ff “the procedure |s named explleltiy) to _make + he
approprlat® Procedure call, If the called procedure produces a
value, that value Wil| bs returned as the value of APPLY,

Procedure Items permit a great deal of flexibility, For Instance,
the user can say things| lke

FOREACH x | xeagctlons A useexzfastenling do
BEGIN
APPLY(28(x),({boardi,board2)))} Co
[F togethgr(boardi,boaed2) THEN GO TO donglit}
END}

done lt!

This would search the _set "actlons" far ny ..roceulres which have
been asserted to be usefu| for fastening things Eogeeher unt Tl elther
the list |s exhausted op the task |s successfully completed,

MJILTI PLE PROCESSES

The control Structure of SAIL was orlslnally very much [Ike phat ofAlgo! 68 -- t hat |s tosayblock struotured and procedure oriented,
Although this structure Is adequate for many problems, there are Some
cases In whieh It Is uncomfortably raestelotive, In hand-eye
app | locations, for Instance, there (irc freaquent|y modulgs of code

whieh are nore or less mutually Indedrndent but that wish to Fa On
each Other for var joys services, Similarty, Poe may wl sh toInvestigate sevaralipossible strategies at once, With the resuits of
ens computation perhaps Influencing the course of others, In such

’ 8

cases, it is much morenatura| to think of (and write) these modujes
as co-roytines or Independent processes rather than__as nested
procedure cal Is, To some extent, nessage procedures providedthe
desired facl|itles, with each Job acting as a separate process, This
solution has some rather severe _#rawbacks, since the overhead
Involved I n switching control from process to process and In
Interprocess communication Is so high that close Interaction becomes
prohibitively expensive, One of our goals Inproviding newcontroi
facilities Wis to make possible the close cooperation of many small
to medium slzed processes within a single Job without Imposing an

excesslve overhead efther on old=sty|e procedural Programs Or Onusers 0f the shiny new features, In doingthls, we wanted o retain
the block structure rule3 Of AlQol, since these rules are genepa|ly
familiar to programmers and ©orovide a useful neans of determining
which data ls to be shared,

103, TBATSOEBEISN Koa BISahoPY (32VRHDRS 103000180, 000 PERNAETa process Is essentially a procedure activation which has been given
its own pun time stack and which thus does not have to return before
the process that invoked It can continue, SAIL oprocedures normaly
make uWpelevel references via a "statlc” (lexical nesting) chain
malntalned for that purposeIn the stack, When a orocedure Is to be
called asan | ndependent process: a "process" routine flrst gets
space for a new stack, It then sets Up approoriate process gontrol
variables in the new Stack area and In the "parent", Flnaily, the
procedure Is {invoked using the new stack, when thls procedureIs
entered,| t wlll set up Its statle iink by looking bagk along the
static chain of the calling process untli| it finds an activation of
Its |exlical parent, Thus, different processes wiI| share data
belorging to thelr common ancestors,

Many of the applicationswhich we have considered do not permit us to
predict Just hoWw many subprocesses a process might wish to spawn or
reaulre that sSevera| processes be Instantiated using the same
srpocedure on different data, Therefore, we have chosen to "name"
processes by assigning them to LEAF tems, rather than by using
procedure names or some sPeclaldata typecalled "procass", This
approach has the added advantage of al lowing conplex structures Of
processesto be bul|t uc using the mechanisms of LEAP, New procasses
are created by statenents of the form}

SPROUT(< Item expression>,<procedure calld>,<optlonsd)

where the Item specified by <ltemexpressiond Is to be used as tne
process nane, the <procedure cal|> te|ls what thls process is Xn d0,
and <ontlions> ls am integer which Is used to specify how certain
mroc®ss attributes are to be set up, (If the <ootions> parameter Is
omitted or oniy partially spacified, SAIL wll| oprovide defauit

| 9

values), For instance, a procedure to nail twb board8 together miahtcontain a sequence |ike

:

ITEM pil,p2.p31
: y

! — .
SPROUT (pl,grab(handl, hammer)
SPROUT(p2,grabthand2,nal i?)
SPROUT (p3, lookat(tvi,boards))t
!

JOIN((pl,p2,p3))}
pound(hamme,r,nali,boards)}
:

: |

In this case, grab(handi,hammer) would be executed a8 process nl,
grab(hand2,nal |) woul d be executed fs process pe and
lookat(tvi,boards) would be executed as process p03, The process
creating them continues on [tsway down to the JOIN statement, In
general,

JOIN(<Cs0t>)

caus®s the process oxecuting It (o be suspended unt]! all the
processes named By the <setd have terminated, Thus
pound(hammer,nall,boards) will not be calied untiipi,n2, and_p3
have all terminated, Inourexample,both SPRQUTed processes and the
original process wouldtheoretically fun In Parallel, In fact, this

Is not possible with a singleprocessor, Instead, the SATl runtime
system Includes , scheduler that decldes Whioh orooess. 18 to beexecuted at rny 9fven Instant, Eaoh f#rocess ls glven a prierlty and
time quantum and maybe in one of four states "runnlngn, "ready"
(i,0, runnable), "suspended", or "terminated", The scheduler, whlch

I's Invoked elther by a olook Interrus¥ or by an exollclt cyl] by theUser, Usesasinple round robin akgorfthm to distribute service amens
the highest priority ready processes,

Wwhepa process |s SPROUTed, the system assigns(¢ 4 standard defaultpriority and time quantum, unless Xhe user spec [files otherwiseby
appropriate optiongs,. The SPROUTed process usually becomes the
running process, while the SPROUTIng brocess reverts to ready status,
Unless sone other option |e speclifled, For Instance, Suppose we have

some procedure "wander" whichseapsches a data base or the res | Woe ldat random for potentially useful opJects. Then we might write
something |lke!

(wanderet er{wog|
SPROUT (wande spr ane d sees 180580RRI0NEL)RUN ME)

10

The Current Process would oontlinue to "ape and wapderer wouldlanguish In .eady status unt! | eve .ything of highe, pploplty had been
suspended,

Processes muy be suspended or terminated via |

SUSPEND(<process [tem expresslond>)

and

TERMINATE (<process Item expressiond)

whlch do just what one might expect, Similarly, SAIL provides system
functions for changingaoprocess’spriorityor quantum,

Co-routine style interactions are facl|itated by the use of the
RESUME construct:

x-RESUME(<process {tem expresslon>, {return vajue>,<opntlonsd)

where <optlons> Is agaln optional, The ysual effect of RESUME Is to
cals® (he current|y running process %o b e suspended athe process
specifled by <process item expresslion> (0 become running, If the
process Dbelng resumed had suspended Itself by means of a resune
statement, then 't W]l| receive <return valued asthe vajue of the
RESUME: For Instance,

PROCEDURE tooj_getter(ITEMVAR tool.type)!
BEGIN

ITEMVAR tool} | Co
FOREACH tool| tool € tool.pox A typeetoolZtoo|.type DO

RESUME(CALLER(THIS_PROCESS),to0))}
END}

. {

SPROUT(fae«NEW.tponl_getter({screwdriver), SUSPEND_HIM)

TERMINATE (tg);

In this case, the tool getter process "tag" wil| be Inltlalizes and |Immediate|y suspended, Then, the RESUMEC(t@)NIC) wlll wake It up to
fing one screwdriver, which will be assigned to |temvar "sd" bY the
RESUME (CALLER(THIS_PRQOCESS)s¢001), (THI S- PROCESS and
CALLER(¢proc!d>) are system supplied poutines (hat return the crocess
tems for the current|y running process and for the process that last
awakened process <procld>, respectively,) Later on, we wi|| discuss a
sonewhat cleaner solution, using matching procedures, to the probijem

11

useg for thls esse tion, We will 8/80 show how the, Interprocesssommuni. ation fagi| ts of the language may beused to handle theproblem of what to do f tool_g0tter ruins out of tools,

FOREACH STATEMENTS

The standard way of searohing the “LEAP associative store is the
FOREACH statement, AFOREACH statement consists of & "bindlng | ist"
of ltemvars, an "associative context" and a statement to be iterated,
Consider the following exanple,

FOREACH 9pspsc | parent ® ¢ 2 p A parent e¢ p 3 ad DO
MAKE grandparent ® ¢ & gpl

In this example the binding=list consists of the |temvars "gp", "o",
"¢", The assoclative context consists of two "e|ements", "parent e ¢
Zp", and "parent a p 3 9p", The statement to be iterated Is the

MAKE statement

Inttlally all three ltemvaps are "unbound", That 1s. , they are
considered to haveno Item value, SIno® "p" and "6" are wupbound, the
e|erent "parent ® c¢ 3 p" represents anassociative searoh, The LEAP
Interpreter is Instructed to look for triples containing "parent" as
their attribute On flnding such a triple, the interpreter assians
the object and value compon®nts to "0 "and "p" respectively, We
eortinue to the next element "parent ®»3 gp", In this element there
Ison]Y one unbound Jtemvars "gp","o" |8 not unbound even t hough lt
ls in thes binding {ist because |t was bound by apreceding e|ement,
A search is made for triples wlth "parent" as thelr attrib, te and the
current binding for "p"as their obJeect, If such a triple Is found.
Its value componentIs bound to "gp" and the MAKE statement is

executed, After execution of the MAKE statement, _ pe LEAPInterpreter will "back up" and attempt to flnd another binding for.

ngp" and then eXecute the MAKE statement agaln, Wien the fnterereterfalls to find another binding, It bagksw to the preceding element
and tr¥s to find other bindings for "op" and "e", Finally when all
triples matching the pattern of the first element have been tried,
the execution of the FOREACH statenent |S complete,

In old SAIL, FOREACH e|ements oonsl| gted of elther triple searches,
set membership, or boolean expressjons not dependant on unbound
ltervars, Only ¢tripje searches and set membership were 31 lowed to
bind an unbound !temvar,

Ne ¥caaike, C00 RAEN EAT pr S8Y alle © 11d 38anfaT1D"E °Bdd98agstaledlNgwhich may have Zero or more BINDING(we ttenmn as "2") Tiemvars as
formal parameters, these Paraneters are not necessarlly bound at the
the the procedure is called, If the Procedure cannot find bindings

12

for its unbound BINDING paraneters, It FAIL , <¢ausing afarinterpreter to back up to the previous elenent WIthim the &ssociatjve
context of the FOREACH, If it SUCCEEDs, bindings for the unbound
parameters will be returned, Tbe matching prooedure Is actually
SPRQUTedas a coroutine process, SUCCEED and FAIL are essentiajly .
forms ©f RESUME whieh return oontrol to the caller with the values
TRUE and FALSE respectively, FAIL also causes the matching procedure
Process to be TERMINATED, Wien tbe matching procedure Is called _by .
"backup", it Is nerely RESUMEd, Thus, the entire environment in terms
of the procedure's local variables, stack, 8tc,,Is the sane as when
the Procedure executed the previous successful return, “The matohing
procedure may continue from the polnt a whigh it left off,
generating new bindings for Its unbound parameters, [nmany respeegts

matchingproceduresare similar to the IPL=V "fonerators® whl oh haveappeared[n varled forms In other Problemsolv ing languages,

To ald in the bind fna operations we have provided predicatestodetermine If a spegifio paraneter | unbound for thls eal| of the
procedure, W also have introduos anew form of the FOREACH statenent
which condltlomal|y adds |temvaps to Its binding Iist, Cons! dear ths
the foilowing exampje of the new formi

MATCHING PRQCEDUR er T R tool, tYo
BEGIN FoREAGH 21051 8458 tive | tos¢ tool box R!-tvoel)

typeetoo|Ztoo|.type DO SUCCEED)
FAILS

END;

: : " " " "

Toebinging, EF Tal ty TORAH 8ATaTRONR0 |E000" Hea 1ESRS
were unbound, The action of the matching procedurels to find a too!
if the tool Is unknown but the type Is known; find the type if the
toolis known but the type is not; verlfy that the too|Is of the
reaulred type If both are Knowns or search through the toolbox and
return tool,tool_type pales If neither tool nor type 8 known, The
actual semantics 1s determined by whlch,If efther, of the paraneters
ape bound,

Unfortunately in general, matching procedures with more than a single
potentially unbound paraneter are not so easy to code, The user mmy
have to provide up to 2*N different code sequences to handle the
varjous aonbinations of N BINDING |temvars,

To illustrate one. class of uses of matching procedures | et .usconsider the following problem, WwW are given aset of cube shaped
blocks of varyingstizes and are reauested to bplek a subset of the
blocks such that when stacked they Will form a tower of agiven
helght, Assume that we Will represent a cube b¥an!tem whose datum
is the helght of the cube, W may easily solve thls problem by using
arecursive procedure "findi",

13

RECURSIVE BOOLEAN PROCEDURE find (SET bset, INTEGER dlff;
REFERENCE SET ans):

BEGIN INTEGER ITEMVAR newb}
FOREACH newb | newb ¢ bset a (3(newb) § diff) DO

IF (atmewb) = diff) v findi(bsat~(newb),diff=a(newb),ans)
THEN BEGIN PUT newb IN answer} RETURN(TRUE) END

RETURN(FALSE)
END;

However, now let us consider a sllght|y different problem. Suppose we

wish to simultaneously pulld tWo towers from g Single set of glocks.Calling "findi" twice, t Fest with the entlre set of blocks for for
the first tower» then with the remaining blocks for the second, WII]
not work, Though <theremay ox at many possible subsets whloh wii |
form the first tower, "flindi®" wl|| always return the same one even
though it is possibje to construct the second tower only if a
different subset of the blocks were chosen for the first tower, For
exampie, if the set of blocks consisted of sizes 31, 4s» and % and we
were to construct towers of heights % and 4, "findi” Would construct
the first tower using biooks 1 and 4 and thus be unable to construct
the second tower,

Now let Us see how we quid use matching procedur®s to Overcome this
problem, Let us write the mmtching procedure to solve a single tower
ppobliem [13],

MATCHING PROCEDURE find2 (SET bseti INTEGER helght;
? SET ITEMVAR ans)

BEGIN

RECURSIVE PROCEDURE aux (SET 813 INTEGER diff);

BEGIN INTEGER TEMVAR ne wh |FOREACH ngwp | newp € sli A (B8(newp) S gift) DO
] BEGIN PUT newb IN 3(ans):

IF (8(newp)s ql¢¢) THEN SUCCEED
ELSE gquX(si={newp},d(ff=3(newph))}

REMDVE newb FROM 3(ans)}
END)

END|

ans « NEW({))$} COMMENT new (tem. The empty set is datum}
aux(bset,helight)}
FAIL;

ENDJ

To call the matching procedure we would simply have a FOREACH
statenent:

14

FOREACH ans | finda(blockset.Belaht,ans) DOor Intset(d(ans));

This is clear|y egujvalent to the solution given above for "findi",
However now consider the two tower casei!

FOREACH apsL,ansd i find2(biocksat,nelahtl, ansdinfind2(blockset=3(ansl},helightd,ans2) OO
printsets(3d(ansi),d(ans2))}

This wll] find a soiution If any exists, because 1H, after finding asolution to the first tower, It Is Impossiple to tind a sclutionto
the Second problem, we backup and flnd a different solution to the
first tower and then try the second again,

An interesting digtinctlon between the Programs for "fJndil" and
"f | nd2" mayYbefound, Notice that "flindi" only returns to its caller
after "unwinding" the recursion, thus allowing the answer set to be
constructed as the recursion Is being "unwound" within a successful
call, With "find2", however, the procedure may "return" or succeed
whijeIt Is stl|| deeply nested in recursion and thus the answer set
mist be constructed before the next recursive cali of "aux" Is nnde,

W enviglon that matching proceduces Will be ug eg to. simulate m=ary
relations, serve as genera ors (f moves or strategies, as Well assirply ald In the coding of complex assoclatlve contexts,

INTERPRQCESS COVMIN CATI ON

ip comp |lcated systems _aUchasthe ptanford Hand Eve Ypem whereere are manycooperatind Processes bresent, ohe would ! Ke to havea mechanlsm py which an occurrence in one Process can nf uence the
flowofeontrolIn other processes, Such occurrences frequently fail
Into several basic groups, wth perhaps some distinguishing
Information assoclated with each occurrence ot a given type, In
designing Iinterprocess communication facl|!ties for SAIL we wanted to
make it easy for the user to dlstingulsh anong happenings of the sane
general type and to define for hinself Just how each type Is to be
hangled, W have chosen an "event" mechanism which is really a
falely general nessage proo®ssor, Any | tern may be used as an'"event
not ice", or nessage, and each tyYpeoOo + event in a program is
represented by an litem, Wth each Such event type, SAIL associates:

1, A "notice aquaye” of jtens whlch have been "caused" for this event
type,

2, A "wait queue" of processes which are waiting for an event of this
type,

3, Procedures for manipulating the queues,

15

The two essential) actions assoclated with any event type are

CAUSE(<event type>,<notice [tem >,<optionsd)
and

INTERROGATE(<event type>,<options>)

where, as elsewhere, <optlonsd my be left out If the default case Is
desired,

The statenent

CAUSE(typel,ntec)

would cause SAIL to look at the walt aueaue for tynel, If _the queue
fs empty, then "nte¢" would be put into typel’s notice queue,
ot herwi se, a process Would be removed from the walt agueue and
reactivated, with "ntc" as the awalted item,

If a process executes the statement

¢mve INTERROQGATE (typed)

then the first Item In the not]ce aueue for typel would bg removedfrom the queue and assigned to ltemvap Itmv, If the queue Ss empty,
then itmv Would be set to the special item NIC, If a process wants
to walt for an event of a given type, it may do %0s as {RN

ftmve INTERRQGATE(typel,WAIT)

In this case, (ff the notice aueue is empty, then the PDPrOCeSS will be
suspended and put onto the wait queue for typeil,

Similarly,

|¢mveINTERROGATE(typel RETAIN)

causes the event notice to be retained in the notice queue for typel,

This went mechanism should prove useful in problem golvingapplications in which processes are sprouted to consider di?ferent
actions, An "or" node in a goal tree, for exanple, might be
represented by

}

SPROUT(pl,natl|(sucevy,boards))}
SPROUT (p2,9|uelsucevt,boards))}

16

SPROUT (p3,screw(sucevt,boards));
winne +INTERRQGATE(gyuceve WAIT)
FOREACH p | p€ (pls p3,03) A p2nlnner DO TERMINATE(D);
{

Wien a branch discovers that It has succeeded, It can exaouta a
statement |lke

CAUSE (sucevt, THIS_PROCESS)}

which would gnnounce success and cause ts Parent tO terminate itsless svceessfu| brothers.

Events glve us a meaps by Which sone discovery fade by one progesscaf be mmde to "unstick" sone other process Which has @otten Into
trouble, Lets consider our tool getter again,

PROCEDURE too|_getter(ITEMVAR tool_type)s
BEGIN
ITEMYAR too |}
FOREACH tool | tool€toolpox A typeetooiZtooltype DO

RESUME (CALLER(THISPROCESS) too |)}
DO too |*INTERROGATE(tool_found, WAIT) Co

UNTIL type®too|Ztoo|-t¥pe;
RESUME (CALLER(THIS_PROCESS),¢001)}
END;

f th REACH statement fail8 to fl a tool of the correct tyoe,
be fod] RSetier S111 be suspended B71 Sone brotess causes an event
of type tool-found, using the an ltem representing (ool as the event
notice, Suppose that our process "wanderer" has fina||y gotten a
chance to run (everything of higher prloprlty being stuck) and that It
does: !'n fact, stumble across a screwdriver, which It knows to be a
king of tool, It might then do something 1ike

MAKE typeethinazscrewdrivers
P Ur thing IN tool_boX}

CAUSE(too|_found,thing, TELL _EVERYONE+DONTSAVE)}

This would cause every Droge wall re On (he. Oyent "tool! found" tobe awakened, (1f no proceas |s walting, the not lce will not be saved
on the notice aqueye,) Thls Wuld wake up whomever called tool_gettear,
which would then gee |f It oan use the "thing,

i ask e of evera| possible

c5RgTETEAL! fh sone Cases Eni %doytdrhe done bya athe fg"! 1083 giehINTERROGA [Es each event type in a |ist, ynfortunately, | one wishes

17

to walt for an ocgirrence within a glven set of events, this doesn’t
work very well, since an attemptto waltfor on8 event type will keep
the other types from belng seen, Therefore, SAIL allows a process to
ask about a set or |ist of event types directiy,as In

| gmve INTERRQGATE(ev_type_|Is) WNAIT+RETAIN)

A eo. 0 wis] onjy walt if all of
then! 08 aleuds Vari Shotli ald 1% owt ps 14488 |Vat8a%as’ pon asany © walt queue heres !s serviced (All walt queue entrjes for
this request wlll bg deleted,) If It Is Neosssary to kmow Just whichtype was responsible for a given notice, the ootlon SAY_yHICH may be
Used, Suppose (he Statement

ttmve INTERROGATE(ev_type_| is, WAIT+SAY_WHICH)

returns tem "motic", whlch was caused 288 an event of Lyoecatastro he, ag BETH TRIN Then the dgg0CidtlonEVENT_TYPEonotic=Scatastrophe wlllbe nude by the system
r so - "amd" | rece “foo !Thus, ne “§ycto program an "a d" node wlthin process "foo" might be

SPROUT (pl, fetch(hammer,handi,sucevt,falieve));
SPROUT(p2,fetech(nali,hand2,sucevt,falleve))}

SPROUT (pn, lookat(tvi,boards,sucevt,fajjevt))}
FOR| « 1 STEP 4 untiln DO
BEGN

p=INTERROGATE(((fallevt,sucevt)),WAIT);
IF EVENT _TYPEep=failevt THEN

BEGIN
MAKE fallure_causeefooZp] |
FOREACH p |p € ((pl,p2,s4e20n}) DO TERMINATE (Dp)
CAUSE(foos_faqllure_event,foo);
SUSPEND (foo?!

; END;
END}

CAUSE(foos_success_event,foo)}

Mere, It |s assumed that eaoh process is to take responsiblity for
making "| Ifeor death" decisions reguardingany subprocesses, An
soon ‘a8 one of the pl reports faljupe, foo Wil] terminate wl|l [ts
"chil dren” (whose appolinged askshay® becone polnyless) réepory Tes
own fallure, and suspend Ttsalt, If all the olf report success, then
foo wil| do likewise,

Events may be used together with mg tohing procedures tao. do deferredupdating, as {s shown by the follow ngexample, A matching orocedure

18

I

may want to nmnke some change to the data base only if the rest of the
agsocliative context of the FOREACH succeeds. . _A simple way of
Implementing this Is to have the matohing procedure spawn a process -
which wi|| do the updating, Th! process wl|| go Inte event walt, and
the event will only be oausrd 3f the entire assoclative context of
the FOREACH succeeds, Consider the following gul|t~by=association
program, For each member of the suspwet ist, Ww flest see If He is

really undesirableby checking hls blink account, If he dgesn’t have |enough money to bribe us we Wll| put another blackmark In ghe flie of
anyone who has any ngsoclation with nim, unless that pepsonfs only
association with hls is as an Informer (In whichocase the fink wll
be given a "negative" black mark), When a person gets 5 black marks
he then becones a Suspect,

SET badguyys} LIST suspect;
MATCHING PROCEDURE | Inked(BINDING ITEMVAR x)}
BEGIN

PROCEDURE UPDATE}
BEGIN INTEGER ITEMVAR y. 1}
WHI LE TRUE DO

BEGIN ¢«INTERROGATE(|inkedok,WAIT)
PUT xIN badguys!
3(f)ed(ft)=2}
FOREACH ¥ | #22 eo X EY DD
BEGIN 8(y)ed(y) + 1}

IF a(y)25 THEN PUT vI N suspectAFTER=}
END;

END)
END}

beNENT SPROUT (2, update):
FOREACH x | x ¢ suspect DO

) SUCCEED;

TERMINATE (2);

FAIL;
END,

IL

0

’

COMMENT main procedure execution; CL .
FOREACH persons, fink | |inked(person)Aa(weajth(personi<iots)

A Ilnformerepersonzfink DO

BEGI N CAUSE(| Inkedok, fink)’

LJ

END,

19

Thissimple examp|® does of course not realy require elther matohlng
procedures or the eyent mechanism (0 caus® (he updating, but the
technique It ||lustrates shouldbe quite valuable In more complicated
sftuatlons,

A gh th eye Imlgly re-gsufélclent for mogt-of $h

ain ean Ene RATER ss JERE I HRT HE cages Ys: wntthey are not quite right, For instance, Rd MEE want i Waitfor a glven event only If no other process 13 lready waltlng forthat event, Instead of trying to providea spoof option to cover
every poasible contingency, we have Instead provided oi of queue
and process primatives wlth whloh t user oan wrlte his own CAUSEand INTERROGATE procedures, To substitute ht own procedure for theane provided by SAIL, the user makes an association of the form

CAUSE _PROC®typeiEnew_cause_prood

Or

INTERROGATE PROCetypelEnew_Int_ proc

where typel Is the event type and new _0ausSe _proo and new_lnt_procare
procedure {tems bound to the substitute procedures, These procedures

will be pun as "atomic" operations, and wil| be al lowed to finlenwithout Interruption, In particular, any CAUSEs or _changes In
process status requested by suoh a procedure wlil not actually take
nlace Untill after the procedure exits, Thls "Interrupt Jeve|" turns
out to be quite usgful and permits one to Write Interrupt handlers
that look at a notice of some event, do Whgt they can, and then
either Just return or ©(s6 cause aN event that Will trigger some
stronger condition,

20

CONCLUSION

Each of the features desorlbed In this paper was Intended aq ve
particular programm nf probl ens, We have not vel had _ suff lec entpractical experience with the new system ¢o say With certalnty that
they are the the plght ones. There Isagroat deal of work on these
problems 1n severa| |aboratorles and“ new |spuesare being ralsed
freguent|y, We do feel, however, that the basle galutions suggestedhere Will prove useful and that they do s eniflicant|y extend the
capabilities of AlQoleiike languages,

ACKNOWLEDGEMENT

Wwhi|je the work described In this paper was being done, there has also
been a elani?icant rors at the St an Vora A 1, Lab to proguce a new
L]JSP s¥Ystem (LISP 70) which also ne Judes provisions for muitinieprocesses, backtracking, and other similiar features, We would |Tke
to thank the authors of this effort, HoraceEnea, Larry Tesler, and

David Smith for several Interesting conversations about I system,AjthouSh the approach they have taken |8 somewhat d ferent fromours: these talks provided ug wlth severa] useful Insliohts,

|

|
‘ {

i

REFERENCES |

C1] Anderson, By» "Programming Languages for Artltis lal Intel |lgence: -the role of nonedeterminism,” School of Art Ificial
Intelligence, Univ, of Edlnbubgh, Experimental
Programming Reports No,25,

(2) Birtwistle, G,» "Notes on the SIMULA Language,"
Norwegian Computing centre Publication S=7, april 1969,

J 0 | " | " |C32 DerkgppsJy Act a7 BALFETHT86" 15 June 1972.

4) Feldman, J, A,, and Rovner, P, D.s "An ALGQL=Based Assoclative
Language,” C,ACM12,8 (August 1969), ro 439=449,

(5) Feldman, Je A,» and Sproulls, Ry, F,,"System Support For the
Stanford Hande=8ye System,"proc, Second JCAL,
Sept, 1971, pp 183-189,

[6] Hewltt, C,» "Procedural Embeddingof Knowledge In Planner,"
Proc, SecondlJCAl, September 1971, pp 167-182,

7) MDermott, 0D, V,, and Sussman, G, J,,"The CONNIVER Reference
Manual," MT A I, Memo 259,May |972,

(810rganick, Es 1., andClomry, Jo Gor "A Data Structure Mode]
of the B6720 Computer System," SIGPLAN Notjces 6,2,
February 1971, pp 83 « 145,

(9) Swinehapt, D, C,, and <Sproulls Ry Foss "SAIL Manuaj,"
Stanford Artliflelal Intelligence Laboratory Operating
Note No, 52,

22

