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ABSTRACT
In a recent paper [1], Fujii, Kasami and Ninomiya presented a procedure
for the optimal scheduling of a system of unit length tasks represented as
a directed acyclic graph on two identical processors. The authors conjecture
that the algorithm can be extended to the case where more than two processors

are employed. This note presents a counterexample to that conjecture.

[1] Fujii, M., .T. Kasami and K. Ninomiya, "Optimal Sequencing of Two Equivalent

Processors," SIAM J. Appl. Math., Vol. 17, No.4, July 1969, pp. 784-789.
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Consider a system consisting of a set of tasks T = {Ti} 1 <1ic<n,

*
and a directed graph GP representing the precedence relations among the

n tasks.

Each task is assumed to require exactly one unit of time. Fujii,

Kasami and Ninomiya [1] have presented.the following scheduling algorithm,

which is optimal for the case of two processors. The algorithm is restated

for the case of an arbitrary number of processors:

1.

Let

Partition T into a minimal number of subsets, subject to the

following restrictions:

a) The cardinality of each subset must not exceed p, the number
of available processors.

b) All of the members of any subset f in the partition must be

tibl i.e. i :
compatible (i.e. if Ti,TJ, € B, T, » TJ, and T, £ TJ,).

Pl be the partition be so formed.

Form a sequence Bl, C Bk of subsets of T, which will
correspond to the execution sequence of an optimal schedule, zng
a sequence of partitions =P - = P_~ * %
d p Pl'PZ P1 51, P3 P2 62, ° ,
P = -
k= P Prorr Prer = ?

as follows:

a) Select and remove from Pi a subset B, of T in which every

i

element of Bi is maximal (has no predecessors in any remaining

subset of Pi)' Terminate if P, = @, the empty partition.
i

b) If no such subset exists, form a new partition, P,U in which
i
such a subset does exist. This 1s always possible for p=2 by
Lemma 1 of the paper [1]. By the Lemma, ,p_'l = lp.l, Go to
i i

step 2a.

c) F P = -B.. .

) Form 41 Pi Bi Go to step 2a

We will use the notation Ti < Tj (or Tj > Ti) to indicate the relation

" 1"
Ti preceeds Tj .
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In this algorithm,

the cardinality of P decreases by 1 at each iteration,

so that the sequence Bl' . Bk has k=’P1’, which is also a lower bound for

the total execution time. Hence this is an optimal sequence.
The following counterexample shows that step 2.b is not always possible

when there are 3 processors:

A minimal partition', p, is {{r ,7,,7.}, {Ty, Ty, T}, [P[= 2. povever, tne
best time which can be achieved is 3, corresponding to a partition
(e.g.1 P = {{r,,1,3, {1,,1,,1.}, {T}} witn [P[= 3.

Hence, Lemma 1 does not generalize for p > 2 and the presented algorithm

is not extendable to 3 processors.



