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Problem 1.

Consider the set (2x+1,3x+1: 1) defined to be the smallest set
of natural numbers which contains 1 and is closed under the operations
X = 2x+l or 3x+l . The set can be constructed by iterating these

operations as indicated in the following tree.
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Michael Fredman showed in his thesis that this set has density 0
in the set of all natural numbers; hence, S = (2x+1,3x+1: 1) does not
contain an infinite arithmetic progression. T[et N denote the set of
all natural numbers. Is it true that N\S may be expressed as a disjoint

union of infinite arithmetic progressions?

Problem 2. Milner's Problem (Robin Milner at Stanford A. I. project)
Let Bn denote the set of all binary sequences of length n .
Suppose m < n , éeBn , BeBm , and let v(a,b) denote the number of

subsequences of a equal to b . The m-list of éeBn consists of a
knowledge of the numbers v(a,b) for all Eeg . How large must m be
such that the m-lists for all elements éeBn are distinct? This is
Milner's problem. Chvatal, Rivest, and Klarner have obtained some
results on this problem. A related problem is the following. There
are many identities connecting the V's . For example, let B,

b4

m ,.n , , = =
denote a 2 x2 matrix with b, 3 defined to be V(i,Jj)(n-m)! where
2



i and 5 denote the binary sequences of length n and m used to

represent i and j respectively. Then it is easy to check that

Br,sBs,t - Brgt

algebraically independent of these. For example, V(é,(ll)) = (V(aé(l))) .

Many other identities exist which seem to be

The problem is to find a basis for all algebraic identities relating the

numbers v(é,E) for fixed a , as b ranges over all binary sequences.

C Problem 3.

Recently, Ron Rivest and David Klarner succeeded in showing that

a< h.65 , where a = lim(a(n))l/n and a(n) denotes the number of

n-—-w

connected square-celled animals with n cells. 1In fact, we designed a

L. procedure for calculating numbers Q.,2%.,... such that @ < & < Q
1772 i+l i

for all i . We were unable to prove, but conjecture that

lim Oéi =Q

1 —eo
L Prove or disprove our conjecture. Try to beat our upper bound & < k.65 .
Reference: D. Klarner and R. Rivest, "A procedure for improving the

upper bound for the number of n-ominoes," CS 263, Computer Science
Department, Stanford University, February 1972.

—

: Problem 4.
Give a "sieve formula" for enumerating planted plane trees having
- certain subtrees excluded. The n-omino enumeration problem is a special

case of this problem.

Problem 5.
More on plane trees. A famous problem in probability theory

(solved, by the way) asks for the probability that a candidate always



has at least j/k of the votes cast. Here is a related enumeration
problem. How many binary sequences (al,ae,...,akn) of length kn

containing exactly jn ones satisfy the conditions

al+...+akn > jm “form = 1,...,n ?

When j =1 , the solution 1is
kn+k
(1)

n+1l
(kn+k—-n)

Problem 6.
Give & simple proof that if a rectangle is cut into three congruent

n-ominoes, then the n-omino is a rectangle.

Problem T.

Find the smallest number x > 0 , such that copies of the Y-pentomino

<'r [ T) pack a 12 x 5x rectangle. Klarner holds the record

with x = 16

Problem 8.
Every 3-celled animal on the line packs some interval. An example

of a 3-celled animal and an interval it packs:

EIEEbIclalble[alc [Ale[F [ale [ [e F]

the interval

AN EEWN

the animal the animal's reflection
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. 6-celled animal that does not pack the plane, namely,

Translations of the animal and its reflection are used in the packing.

Here gaps between the cells are 1 and 2 , and the length of the
smallest interval the animal can pack has length £(1,2) = 18 . If

the gaps between the cells are m and n in a three-celled animal, it
can be shown that the length of the smallest interval the animal can
pack £(m,n) is bounded above by 1+ 3% 2 . This proof depends on the
following algorithm: Suppose m < n , let A denote the animal with
gap m on the left, and let B denote the animal with gap m on the
right. We pack a one-way infinite strip of cells as follows. Fill the
first cell with the left-most cell of A . Fill the left-most unfilled
cell in the strip with the left-most cell of A , if there is overlap
remove A and try B . It is an interesting exercise to show that
this procedure results in a packing of an interval whose length is not
preater than l+5m+n . Let f(myn) denote the length of the interval
packed by this algorithm. Give a nice upper bound on £(m,n) , and find

out if it satisfies some kind of recurrence relation.

Problem 9.
Does every l-celled animal in the plane pack the plane? Does every

5-celled animal in the plane pack the plane? There is at least one

"

A 3n-celled animal like this one can be constructed which does not

pack E - Thus, if every n-celled animal packs E then n < 3k .

k 4

Improve this upper bound if possible.
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Problem 10. (R. Rado)

Consider sets of squares in the plane having sides parallel to

the x- or y-axis. Let a(S) denote the area covered by the union of

suchaset S.

Is it true that"

a(T 1
max > ?
TCS a(sS T
I's in T disjoint
Problem 11. (R. Stanley)

Consider partitions of n

2

which satisfy a tableau condition:

11 |12 13

22 25

This

border is regular

This border may be irregular
but must be nonincreasing

The entries a.1:j do not decrease in the rows or columns, and their

total is n

Let T denote the shape of the array, and let VT(n)

denote the number of ways of filling in the array subject to these

conditions. Prove that the generating function is as follows:

T‘T 1
d. .
-x 12

(1)J>€T l

where the numbers di
A0

= n
) n§=:o VT(n)

are defined as in the following example:



[T Ix[x]x]x[x]x]x]

>

To find d15 begin in cell (1,3) and count all cells in its row to
the right of (1,3) , count also the cells in the column below (1,3) ,
and if one can "turn the corner" at the bottom of this column, count

the cells in this row as well. Thus, d1,5 =8, dg’h =5, d5’5 =2,

etc.

Problem 12. An extremal problem (see problem 5728 of Amer. Math.

Monthly, 1970).

The "octahedron" in En has 2n_l different pairs of parallel
hyperplanes spanned by two n-sets whose union comprises the vertex set
of the octahedron. Prove that the octahedron is an optimal configuration
of 2n points in En having the property that the points span many

pairs of parallel hyperplanes.

Problem 13.

R. C. Read (J. London Math. Soc., 1963, 99-104) enumerated classes
of isomorphic self-complementary linear graphs with Un vertices and
classes of isomorphic self-complementary directed graphs with 2n
vertices. It turns out that these numbers are equal. Give a "natural"

one-one correspondence between the two sets.



Problem 1k.
Recently, Klarner showed that the set S = (mlﬁ_+ . ..+mrxr: 1)
(that is, the smallest set of natural numbers which contains 1 and is

11

natural numbers) is a finite union of infinite arithmetic progressions

closed under the operation m xz . ..+mrxr where ml,...,mr are given

provided (i) r > 2, (ii) @H)z.gmr)= 1, and

(iii) (m oMyt ..+m ) =1 . Does the conclusion still follow

1 1 T

if we drop hypothesis (iii)?

Problem 15.

Hautus. and Klarner gave a simple characterization of all uniform
{mx n}-colorings of the square plane lattice provided (m,n) = 1 . We
were unable to describe the uniform colorings when (m,n) > 1 ., Any

nice theorems about these designs?

Problem 16. (Due to Leo Moser.)
Can the whole plane be tiled by using exactly one square each of

sides 1,2,3,4,... 2

Problem 17.

The ordinary game of tic-tat-toe is an instance of a positional game

played on a hypergraph H = (V,E) . Here V (the set of vertices of H )
is a finite set and E (the set of edges of H ) is a set of subsets

of v . Two players take turns to claim a previously unclaimed vertex

of H . 1If a player claims all the vertices of an edge of H , he wins.
If all the vertices of H have been claimed but no one has yet won then

the game is a draw. An easy argument (Hales and Jewett, "Regularity and

T
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positional games," Trans. Amer. Math. Soc. 106 (1963), 222-229) shows
that the second player cannot have a winning strategy. Besides, if the
game results in a draw then there is a partition V = Vi U V2 such that
no V)l contains an edge (in that case, H is called 2-colorable).
Given positive integers n , k with k < n we define a hypergraph
W(n,k) by setting V = U42,..”n}'aﬂd letting a set A « V to be an
element of E if, and only if, |A|= k and the elements of A form
an arithmetic progression. Van der Waerden (Beweis einer Baudetschen
Vermutung, Nieuw Archief v. Wiskunde 15 (1928), 212-216) proved that given
any k there is always an n such that W(n,k) is not 2-colorable.
Let N(k) be the smallest such n . It is easy to show that N(2) = %

and N( 3) = 9 ; one has N(4) = 35 (see Chvdtal, "Some unknown van der

Waerden numbers," Combinatorial Structures and Their Applications (R. K. Guy

et al., Eds.), Gordon and Breach, New York, 1970). As far as I know, the
value of N(5) is still unknown. The existing upper bounds on N(k) are
beyond the range of algebraic expressions. The existence of N(k) implies
the existence of the smallest n = n(k) such that the first player has
a winning strategy on W(n,k) . Obviously, we have n(k) <N(k) . One
has n(») = 5 and n(h) = 19 (sce Chvdtal, "Hypergraphs and Ramscyian
theorems," Thesis, University of Waterloo, 1970). Apparently, N(k) is
a rather poor upper bound for n(k) |,

What is the value of n(5) ? Can you find a decent upper bound
for n(k) ? Is n(k) always odd? 1If so, is % (n(k)+1) a winning
first move? Is there a winning strategy for the first player on W(n,k)

for all n > n(k) ?



Problem 18.

A k-graph is a hypergraph (V,E) with Uﬂ = k for all AcE
m(k) be the smallest ®7 in a k-graph which is not 2-colorable.
Obviously, m(2) = 3 . It is not difficult to show that m(3) = 7 ;
the edges of the corresponding 3-graph are the lines of a projective
plane of order two. One has

ek(1+ ek'l)'l <mk) < KK 3/2 log 2/(1+ (1+2p))]

(Herzog and Schonheim, "The Br property and chromatic numbers of

generalized graphs,'* J. Combinatorial Theory 12 (1972), 41-k9),

- o+ .
improving 2k 1< m(k) < k22k L due to Erdds.)

Let

Erdds repeatedly asks for the value of m(4) . Perhaps a computer

would help.

Problem 19.

A graph G 1is called hypohamiltonian if it contains no hamiltonian

circuit (that is, a circuit passing through all the vertices of G ),

given any vertex u of G , the vertex-deleted subgraph G-u has a

but

hamiltonian circuit. The smallest hypohamiltonian graph is the Petersen

graph.




Herz, Duby and Vigué ("Recherche Systématique des Graphes Hypohamiltonians,"

Theory of Graphs (P. Rosenstiehl, Ed.), 1966) used a computer to search

for hypohamiltonian graphs with 11 or 12 vertices and found that
there are none. However, they discovered one with 13 and another one
with 15 vertices. Since then, the existence of hypohamiltonian graphs
with n vertices has been demonstrated for all ni;]j except for

n= 14, 17, 19, 20, 25
(see Chvétal, '*Flip-flops in hypohamiltonian graphs,'* to appear in
Canad. Math. Dull.). Perhaps it is time to settle at least the case
n = 1% (computers could help).

The hypohamiltonian graphs offer a number of amusing questions. It
seems that these graphs never contain a circuit of length three or four.
However, so far no one has found_ggy graph F such that no hypohamiltonian
graph contains F . I offer $5.00 for an example of a planar hypo-

hamiltonian graph or a proof that there is none.

Problem 20.

A graph G is called t-tough if deletion of any m points from G
results in a graph that is either connected or else has at most m/t
components. It is not difficult to see that every hamiltonian graph
is l-tough but the converse is not true (the Petersen graph is % -tough) .
I offer $10 . & for the proof that every t-tough graph is hamiltonian
and $10 .t+lm for an example of a t-tough graph (t > 35—) which is not
hamiltonian.

Fleischner ("Square of a block is hamiltonian,” to appear in J.

Combinatorial Theory) proved that the squares of a 2-connected graph is

always hamiltonian. (The square G2 of a graph G is defined to be the

10



graph having the same vertices as G ; vertices u , v are adjacent

in G2 if and only if they have distance at most two in G .) gince
the square of a k-connected graph is always k-tough, it is desirable to
prove that every 2-tough graph is hamiltonian. An example of a

2 -tough nonhamiltonian graph is obtained when in the Petersen graph,

2

each vertex is replaced by a triangle as indicated below.

N~

Some results on toughness are contained in a forthcoming paper of mine,
to appear in Discrete Mathematics.

Problem 21.

A unit distance graph is one whose vertices can be represented by

points in the Euclidean plane in such a way that adjacent vertices are
represented by points having distance one. Obviously, the unit distance
graphs can be characterized by forbidden subgraphs. It is easy to show

that the unit distance graphs contain neither Kh nor Kg 3
)

11



Let us denote by fwthe largest possible number of edges in a unit
distance graph with n vertices. One has f(3) = 3, () = 5,
£(6) =9 . Obviously, if G; = (Vl,El) and G, = (v ,E2) are unit
distance graphs then G, xG, (defined as (Wlxvé,E) with
{(xl,xe),(yl,yg)} ¢E iff either x; = y; {Xeyye} €E, or else
Xy = Y2, Dﬁfyl}€ El) is a unit distance graph. Therefore
f(mn) > mf(n) +nf(m) and so f(n) > cn log n . On the other hand, the
absence of K2,5 in unit distance graphs implies quite easily that
f(n) < cn3/2 . FErdSs asked whether f(n) = o(n5/2) .

Klarner has observed that, for any representation of the circuit Ch
of length four, the opposite edges must be parallel, and that this fact
can be used to construct more forbidden subgraphs. For instance, the

graph below is not a unit distance graph: xu is parallel to yv and

so dist(u,v) = dist(x,y) =1

Nevertheless, there are graphs with n vertices and cni/ edges
which do not contain even a Ch ) These can be obtained by assigning
vertices to all the points and lines of a projective plane and joining
a point-vertex to a line-vertex if and only if the line passes through

the point. Thus a geometry of order m gives rise to a (bipartite)

12
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graph having total of 2(m2+m+ 1) vertices and (mt+l) (m2+m+ 1)

edges, containing no C), I suspect that these graphs are not unit

distance graphs but have not proved it even for m = 2

Problem 22.

For any finite graph F (without isolated vertices) we define r (F)
to be the smallest N such that, for every graph G with N vertices,
either G or its complement G contains F . Obviously, r(F) < r(Kn)
where F has n vertices and Kn is the complete graph with n
vertices. Hence the existence of r(F) for every F follows from
Ramsey's theorem. Erdfls conjectures that Kn minimizes r(F) among
all n-chromatic graphs F and suggests to test this conjecture on

the wheel W6 .

We have r(Kh) = 18 ; the unique graph G with 17 vertices such that

tKL}, ¢ G, K, ¢ G is the graph with vertices {0,1,..0 @O0J , two of them

(i,3) being adjacent iff fi-jl is a quadratic residue mod 17 .
Certainly I‘(W6) > 17 . Indeed, there is a graph Gy with eight

vertices such that GO contains no K5 and éO contains no Kl& )

Replacing each vertex X, in GO by a pair of adjacent vertices x?.L', x?

and joining X: to XJ. (i /= J) if and only if X, is adjacent to Xj

13



in G, , we obtain a graph G with 16 vertices such that Wg ¢ G,

Wed G
Can you prove r(W6) >18 -

Problem 23.

Among many equivalent formulations of the four-color conjecture,
there is a recent one which deserves special interest. Unlike in most
other cases, the proof of the equivalence is nontrivial and so it may
constitute the first step towards the solution of WC . Given any graph
G = (V,E) and a set S ©¢ V , we denote by dS the number of edges
having exagtly one endpoint in S . A function w: V - {-2,+2} is

called a balanced coloring if

3s > Z w(x)
xeS

for all S € V . Bondy ("Balanced colourings and the four colour
conjecture," to appear in Proc. Amer. Math. Soc.) proved that the four
color conjecture is equivalent to the following "balanced coloring
conjecture":

Every bridgeless cubic planar graph admits a balanced coloring.
(A cubic graph is one where each vertex meets exactly three edges; a

bridgeless graph is one which remains connected after the deletion of
an arbitrary edge.) One can think of the vertices x with w(x) = -2
as being colored blue and those with w(x) = 2 as colored red. A balanced
coloring of a cubic graph has two simple but interesting properties:
(1) the number of blue vertices equals the number of red ones,
(ii) there is no nonchromatic path with three vertices.

It would be nice to prove that every bridgeless cubic planar graph admits

1k
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a coloring with properties (i), (ii). Besides, it may be useful to

study balanced colorings in the class of all graphs, not necessarily

bridgeless cubic planar ones.

Problem 2k,

Let &, > d2 >0 0 0> dn be nonnegative integers. What are the

1
necessary and sufficient conditions for the existence of a planar graph
with n vertices having degrees dl’de" ..,%1? This question appears

to be quite deep. When the planarity assumption is dropped, the answer

becomes quite simple: the sum of all di's must be even and the

inequality _
kK n
Y4 < kx-D+ Y min(k,d,)
i=1 i=k+1

satisfied for each k = 1,2,...,n (Erdds and Gallai, "Grdfok eldirt
fokd pontokkal," Mat. Lapok 11 (1961),264-274; also in Harary, Graph
Theory, Addison-Wesley, Reading, Mass. 1969). The only additional

condition which is known to be necessary in the planar case is

k(n-1) l<k<2 ,
k
2 4, < { en+ék-16 , 35k5-51-(n+u), (1)
1=

Sn+3k-12 , %’(rﬂ—h)gkgn

(Bowen, "On sums of valencies in planar graphs," Canad. Math. Bull. 9
(1966) , 111-11k4; and Chvétal, "Planarity of graphs with given degrees of

vertices," Nieuw Archief voor Wiskunde 17 (1969), 47-60).

Unlike the general (purely combinatorial) case, the planar problem
exhibits peculiar irregularities. ihen dealing with the simplest case,

d; =d, = . . . ;d =d, Euler's formula (resp. (1) with k = n )

15
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forces d <5 and n 23_—& . These conditions, together with the

trivial dn = even , turn out to be sufficient apart from two
exceptionalcases: d =4 ,n=7 and d =5, n =14 . 1t ywould be
interesting to go deeper into the structure of the problem and find more

subtle additional conditions that would exclude the two exceptional

cases.

Problem 25.

A finite family F of finite sets is called an independence system if

XeF,Y ¢ X = YeF

A family of sets is called intersecting if it contains no two disjoint

sets. It is called a star if all of its sets have at least one element

in common. For example, the family

g, {1}, 12} ,{3} ,{1,2},{1,3},(2,3}

is an independence system; its subfamily

1} , {1,231 ,{1,3}

is a star (and therefore intersecting), the subfamily

(1,2}, (1,3}, {2,3}
is intersecting but not a star. I offer $10.00 for a proof or a disproof
of the following conjecture.

Among the largest intersecting subfamilies of an independence
system, there is always a star.

Naturally, I am not going to pay anything for the degenerate
"counterexample" F = {{#}} . Decent as we are, we are interested in
independence systems F with |F|‘2 2 . Without loss of generality,
we can assume that the sets in F are sets of positive integers. Then

we write X <Y if, and only if, there is a one-to-one mapping

16



f: X - Y with f(t) >t for each teX . I can prove the above conjecture
for rather special independence systems, namely, those which satisfy
XeF , Y <X = YeF
In its full generality, the problem appears to be quite difficult.
I am rather skeptical about the use of counting arguments. It would be
interesting to prove the conjecture for independence systems whose

maximal sets are lines of a projective plane.

Problem 26.

In the 1930's, Miss Esther Klein asked whether there is a function
F(n) such that from any F(n) points in the plane (no three collinear)
one can always choose nt+l of them which are the vertices of a convex

polygon. ErdSs and Szekeres ("A combinatorial problem in geometry,"

2n-2
n-1

Szekeres married Miss Klein. Komlds and I proved a more general result

Compositio Math. 2 (1935), 463-L470) proved F(n) < ( )+1 ; subsequently
("Some combinatorial theorems on monotonicity," Canad. Math. Bull. 1k
(1971), 151-157) which goes as follows. Let f be an arbitrary real-
valued function defined on the edges of a directed graph D which contains
no directed cycles. TIf the vertices of D cannot be colored in.(%?if)
colors then there is a directed path with n edges €585 . TN such
that the sequence f(el),f(ee),f(ez),..,f(en) is monotone. (The

specialization is clear: the points in plane can be ordered by their

first coordinate, D becomes a transitive tournament and f is the

2n=-2
n-1

F(3) =5, F(4) = 9 . I wonder if the last equality carries through

slope function.) The bound F(n) < ( )*1 is not sharp; one has

to the abstract setting. The abstract version of the problem (more

messy but more faithful than the first one) can be set up as follows.

17



Let f be an arbitrary real-valued function defined on the set
{(1,9): 1 <4 <3 <N} (2)
perhaps we should assume
min(£(i,J),f(j,k)) < £(i,k) < ma.x(f(i,j),f(j,k))

for all 1 <1< j<k <N . By an n-gon, we shall mean a pair of

sequences (il’iz’ . ..,in) s (jl,jg,.:.,js) with r,s >2 such that
il < i2 <L LK ir
jl < 32 <. .00 < js
f(il, 12) < f(ie, 15) <. .. < f(ir_l, ir)

£(3153,) > £(3s032) > . > £(3. 53.)
1°“2 2793 s-1’"s

and i, = i =3 r+s-2 = n . Let G(n) denote the smallest

17917 Yy s’
N such that every function f defined on (2) gives rise to an

(nt+l)-gon. Obviously, F(n) < G(n) ; the theorem of Komlds and myself

2n-2
n-1

Indeed, let f be an arbitrary real-valued function defined on

shows that G(n) < ( )*1 . It is not difficult to show that G(3) =5 .
f(1,§): 1 < i < 3 <5} . without loss of generality, we can assume
£(1,2) < £(2,3) . Now, let us assume that f gives rise to no 4-gon.

Then we necessarily have - step by step -

£(2,3) > £(3,4) because of (1,2, 3,4), (1,4)
£(3,4) < £(L4,5) because of (2,5),(2,3,4,5)
£(2,3)> £(3,5) because of (1,2,3,5), (1,5)
£(2,4)> £(4,5) Dbecause of (2,4,5), (2,3,5)
£(1,2) < £(2, 4)  because of (1,5),(1,2,4,5)

£(1,3) < £(3,4) because of (1,2,4), (1,3,4)

and so finally (1,3,4,5),(1,5) is a 4-gon; contradiction.

Is G(4) = 9 and, more generally, G(n) = F(n) for all n ?

18
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Problem 27. Number Systems
The problem is to determine all sets D of ten real numbers such
that every positive or, (if you prefer, nonnegative, or arbitrary)

real x can be represented as

x= L 8l ae . (*)
-o<k<n
It is clear that if D = {dl,. . ”dlo} has this property, then so

does AD = le,..qoﬂlo} for any real & > O . This will be implicitly
understood below.

If OcD and all di are > 0 then we can deduce that
D = {O,l,.¥.,9}. It is also known that D can be chosen to be
{x,x+1,x+2,...,x+9} for any x , -9 <x<1.

As an instance of the latter, take the symmetric case where
x = ~-4% . Then

D= {‘h%:‘5%:‘2%"“:5%:h%}3

the number 0 , for example, now admits the representation

An interesting feature of this system, noted by Claude Shannon, is that
rounding-off is equivalent to truncation.

Another interesting case is when x = +1 . The following example
shows how a positive number written in ordinary decimal notation can be

transformed into the new system:

19



LO 023 0bLs decimal #

0 111 111-

.9 911 934

0111 111+ add back without carries

91022 10 k5 representation in new system

It can easily be shown that this method works in general. For
other x replace the 1's in the above example by x's .

Finally, it should be remarked that we require D to have ten
elements, since Ron Graham proved that if it had fewer, the set of numbers
representable as (¥) is a set of measure zero. It is not difficult,
however, to construct sets D with as few as three elements which give

rise via (¥) to a set of numbers dense on the positive real axis, even

if we stipulate that a, = 0 for all k < 0 . Such an example is
_n2
D = {0,1,0} where o = - z 10
n>1

Problem 28.  Sorting by Deques

The problem is to investigate the permutations that can be obtained
from a general deque starting with the permutation 1,2,...,n as input.
For example, one would like to know a simple test for deciding whether
or not a given permutation can be so obtained. Another interesting
question is to count the number of permutations thus obtainable, by
recurrence, generating function, and/or asymptotic formula.

For a definition of deque, related problems, and a description of
techniques that have been found useful in attacking them, see Section 2.2.1
and the following problems in D. Knuth "Fundamental Algorithms" (p. 234).

Note: It was remarked that q/;; exists. Possible "canonical"

sequences of the four-operations
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insert next input at left
insert next input at right
output the leftmost element
output the rightmost element

(with exactly one canonical sequence per obtainable permutation) are
being investigated. Vaughan Pratt found that there exist four special
permutations of every odd length > 5 such that a given permutation is

obtainable if and only if it contains none of these special permutations.

Problem 29. Dragon Curve
The "dragon design" is obtained by repeatedly folding a sheet of
paper in one direction and then unfolding it so that each of the creases
forms a fixed angle © . For a more precise definition and many
interesting properties of this curve, see the article: 'Number representations

and dragon curves' by Chandler Davis and D. E. Knuth, J. Recreational Math. 3

(1970), 66-81, 133-149.

It is experimentally observed that there is a greatest angle QO ’

between 90° and 100° , such that for OO < @ < 180° the dragon curve

does not have any self-intersections. The problem is to determine OO .
Some experimentation indicates that the "crucial points", where

self-intersection is likely, occur at the 8(5-2") and g(11-2") .

Problem 30. Posets and Permutations

We consider a partially ordered set P , such as the one drawn below.

N S

MI v ;IS 71‘6

lI gI, ;15
2

where we use arrows to indicate the ordering relations.
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We also label the points of P in a particular way, consistent
with their relative order with the integers 1,...,n ; that is, we
require that if i - j , then i < j

The problem now is to find.an efficient algorithm for determining
the permutation of the labels 1,2,...,n which gives a labelling

still consistent with the partial order of P , but which has a maximal

number of inversions. (An inversion of a permutation SRS is two
numbers . “pﬂ"'P*j .. with i < j but p; > P, ‘)
For the above example we easily find that the desired permutation

is uniquely p, . = 147258369 .

..p9
Another way to veiw this problem (obtaining the inverse permutation,

which has the same number of inversions) is to consider any method of

removing the points of the graph one at a time, never removing a point

until its predecessors have been removed. The idea is to maximize the

number of inversions in the output. The example

shows that it is not sufficient simply to remove the largest possible element
first (1, 5, 6, 2, 3, 4 has more inversions than 2, 3, 4, 1, 5, 6 ).

[This problem was inspired by computer sorting.]

Problem 31. Partitions into subintervals
It is a known result that
(1) If © 1is irrational then the numbers {n6} = némod 1 ,
n=20,1,2,... are dense in [0,1] and in fact evenly

distributed (H. Weyl) and that
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(2) having introduced the points {k8} , k = 0,1,...,n-1 , the
next point {n@} will then fall in the middle of one of the
largest remaining intervals. It is furthermore true that at
each stage we have at most three distinct sizes of subintervals

(V. T. 86s).

We are concerned here with proving the following generalization of

the above. Let © and Oﬁ,...,ah 1 be any reals, and let kO""’kn

be any positive integers. Then R. Graham has conjectured that the

1

numbers
{0} , (20} o (ke
{6+ ozl} , {26+ al} .. {kle +ozl}
{9 + an_l3 b {.2@ + an—l 3 .« o {kn-l@ = an-l}

will subdivide [0,1] into subintervals of at most 3n distinct sizes.

Problem 32. Counting leftist trees
In what follows we consider only binary trees (with left distinguished
from right); a leaf node has no sons, and a nonleaf node has 2 sons.
We assign to each vertex of a binary tree a weight by proceeding as
follows. We first assign 0 to all leaves. Then we climb up the tree
by the rule that if the two sons of a node have been given weights x
and y , the node itself receives the weight min(x,y)+1 .
Now such a weighted binary tree is called leftist if for each node,
the son situated to the left has a weight at least as great as the son

situated to the right. The constraints can be symbolized by

min(x,y)+1
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The picture below shows a leftist tree.

Intuitively leftist trees are characterized by the fact that to go from
any node to the nearest leaf it suffices to proceed always to the right.
The problem then is to compute the asymptotic growth of a the number

of leftist trees with n leaves.

Problem %3. Counting balanced trees

A similar problem can be asked about the situation where we modify
the above as follows. If the two sons of a node have weights x and y ,
then the node itself has weight max(x,y)+l . A binary tree so weighted
is called balanced if the weights of the two sons of any node differ by

at most one. Thus, the constraints now are

max(x,y)+1

/\ |x-v <1

X N

It is known that the "Fibonacci trees" are the balanced trees with
the minimal number of nodes for a given height h .  (The height of a

tree is the weight at the root.) The Fibonacci trees Tn are given by

TO = ’ Tl = A and TIl = A

Tn—l Thoz
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Also the number of distinct balanced trees with height h is known
h
2 . L
to grow as C where C 1s a positive (unknown) constant. (Balanced
trees are sometimes known by the less desirable term "AVL trees".) What

is the asymptotic number of balanced trees with n leaves?

Problem 3k. A basic equivalence relation on graphs.

Find an efficient algorithm for computing the weak components of a
directed graph. (Efficient in the sense that it takes
O(max(vertices, edges)) steps.) The weak components are the finest
partition such that, if all nodes in each component were collapsed
together, the graph would be linear and the ordering would be a linear
ordering, i;e., 8a—5>6——5)0———>0 is acceptable but

8— yo&————0——H0 is not.

Example:

_ A ‘e
A~ T =5/A

-

\ “Y\

(o "o ) \"e
~~ — N

The dotted lines indicate strong components and the horizontal lines
indicate weak components.
Formally, x and y are in the same weak component if they are

in the same strong component or if one can get from x to y and back
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by a sequence of "non-path" steps. Nodes a and b are said to be
connected by a non-path if there is no path from a to b

Reference: Graham, Knuth, and Motzkin, Discrete Math. 2 (1972L 17-30.

Problem 35. Greatest common substrings.
It is possible to find the longest common subsequence of two

sequences of a's and b's 1in a time proportional to the product of

their lengths. Can one do better?  Note: aba is a subsequence of
aabbbba .
Problem 36,  Permutations as substrings. (Due to R. M. Karp.)

What is the shortest string of {1,2,...,n} containing all permutations
on n elements as subsequences? (For n = 3, 1213121 3
for n =14 123412314321 35 for n=5, M. Newey claims

!

the shortest has length 19 .)

Problem 37. Random growth of 3-2 trees.

Analyze the probability that various numbers of splits will occur
during random insertion into (5,2) trees as the trees become large.
A (3,2) tree is a tree in which every node may be a leaf or else it

has 2 or 3 sons. One may write (3,2) trees as follows:

The dots indicate data items, one or two in each cell. Downward arcs
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leaving a node indicate possible results of comparing another data item

with those in a node. For example, a node containing only one item x

.
~ can yield only two results for new incoming y , either y < x or y > X .
o In a node of form ume X <X2 . Also,
.
a b C
all items y in subtree a are smaller than X in b they are
- between x, and x, ; and in c they are larger than x Similarly
“ 1 2 2 .
in Q;f,—;i::;;> all items in subtree a are smaller than X4 and
a b
[ —_— all items in subtree b are larger than Xy
Now, we consider only (3,2) trees with this ordering on their items
. and whose leaves are all at the same level. We insert by introducing
¢ items randomly at the positions of the leaves. (The leaves represent
equiprobable gaps between existing items.)
- We insert by a sequence of operations local to various nodes along
the path to the root. For example, to insert x' in place of leaf a in
¢ x ?
‘bL a b
- we get
at a" b
-
to insert z in place of leaf c in
‘L—.
a b c
L
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gives

which splits into

a b ct c"

.
and y 1is inserted in the node above in the same way. (If there was no
node above, we place y in a new root node.)
“— Thus the first three steps in the growth of a 3-2 tree are always
B G
|
—
— and the fourth step is either
- or .
¢
- By symmetry, we may choose the former. Now the fifth step yields
‘v
o 2
( ® ¢ D with probability 2 , C_ e O with probability 5
“ T
C e > @ Ce o>
¢



-

The question is, how many splittings will occur on the n-th random step,
on the average, and how many tree nodes will there be? This is one of

the few important "basic" algorithms that hasn't been analyzed yet.

Note: After six steps the tree is either

IR

and it appears that all are equivalent with respect to further operations.

Or are they?
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