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¢ SELECTED COMBINATORIAL RESEARCH PROBLEMS

by

— V. Chvatal, D. A. Klarner, and D. E. Knuth

¢

Abstract

Thirty-seven research problems are described, covering a wide

— range of combinatorial topics. Unlike Hilbert's problems, most of

these are not especially famous and they might be "do-able" in the

e —

next few years.

(Problems 1-16 were contributed by Klarner, 17-26 by Chvétal,

27-37by Knuth. All cash awards are Chvatal's responsibility.)
¢ :
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| Problem 1.

Consider the set (2x+1,3x+1: 1) defined to be the smallest set

u of natural numbers which contains 1 and is closed under the operations
X = 2xtl or 3x+1l . The set can be constructed by iterating these

~ operations as indicated in the following tree.
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g Michael Fredman showed in his thesis that this set has density 0
in the set of all natural numbers; hence, S = (2x+1,3x+1l: 1) does not

, contain an infinite arithmetic progression. Tet N denote the set of

| all natural numbers. Is it true that N\S may be expressed as a disjoint
union of infinite arithmetic progressions?

|
Problem 2. Milner's Problem (Robin Milner at Stanford A. I. project)

§ Let B, denote the set of all binary sequences of length n .
Suppose m < n , aeB , beB , and let v(a,b) denote the number of

~ © subsequences of a equal to b . The m-list of acB consists of a

knowledge of the numbers v(a,b) for all beB . How large must m be
such that the m-lists for all elements aeB are distinct? This 1is

| Milner's problem. Chvatal, Rivest, and Klarner have obtained some
results on this problem. A related problem is the following. There

are many identities connecting the V's . For example, let Bun

denote a 2" x2" matrix with by; defined to be Vv(i,J)(n-m)! where

1
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| _ i and 3 denote the binary sequences of length n and m used to

oo represent 1 andj respectively. Then it is easy to check that

B, Bs. t = Byt . Many other identities exist which seem to be

3 algebraically independent of these. For example, v(a,(11)) = (v2: (1), .
_ The problem is to find a basis for all algebraic identities relating the

numbers Vv(a,b) for fixeda , as b ranges over all binary sequences.

C Problem J.

Recently, Ron Rivest and David Klarner succeeded in showing that

B a< 4.65 , where a = lim(a(n))/® and a(n) denotes the number of
n-o

- -
connected square-celled animals with n cells. In fact, we designed a

| procedure for calculating numbers Grp ees such that « < * 1 < a,
for all 1 . We were unable to prove, but conjecture that

L lim x, = QQ .
1 —eo

L Prove or disprove our conjecture. Try to beat our upper bound @ < Lk.65 .

. Reference: D. Klarner and R. Rivest, "A procedure for improving the
upper bound for the number of n-ominoes,'" CS 263, Computer Science
Department, Stanford University, February 1972.

: Problem 4.

Give a "sieve formula" for enumerating planted plane trees having

certain subtrees excluded. The n-omino enumeration problem is a special

case of this problem.

Problem 5.

More on plane trees. A famous problem in probability theory

(solved, by the way) asks for the probability that a candidate always

2



©

- has at least j/k of the votes cast. Here is a related enumeration

“ problem. How many binary sequences (ays8n+eesay) of length kn

BN containing exactly jn ones satisfy the conditions

3 a;t.. ta, > jm “form= 1,...,n 7?
“

WhenJj = 1 , the solution 1s

(Fnrky
: n+ 1

(kn+k-n) °°
~

Problem 6.

>= Give& simple proof that if a rectangle is cut into three congruent

n-ominoes, then the n-omino 1s a rectangle.

~ Problem 7.

Find the smallest number x > 0 , such that copies of the Y-pentomino

(LH pack a 12x 5x rectangle. Klarner holds the record«

- with x = 16 .

“ Problem &.

_ Every J-celled animal on the line packs some interval. An example

of a 5-celled animal and an interval it packs:

- — _— pe —— —

lajbfalbjcjalbjcfd[cidje[f]|dfe]fle|f]

the interval

-

the animal the animal's reflection

5
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— Translations of the animal and its reflection are used in the packing.

oe Here gaps between the cells are 1 and 2 , and the length of the

- smallest interval the animal can pack has length £(1,2) = 18 . If

the gaps between the cells are m and n in a three-celled animal, it

g can be shown that the length of the smallest interval the animal can

pack £(m,n) is bounded above by 1+ 35% | This proof depends on the

following algorithm: Suppose m < n , let A denote the animal with

C gap m on the left, and let B denote the animal with gap m on the

right. We pack a one-way infinite strip of cells as follows. Fill the

) first cell with the left-most cell of A . Fill the left-most unfilled

! cell in the strip with the left-most cell of A , if there is overlap

| remove A and try B . It is an interesting exercise to show that
this procedure results in a packing of an interval whose length 1s not

i greater than 1+30 0 . Let £(myn) denote the length of the interval
packed by this algorithm. Give a nice upper bound on £(m,n) , and find

_ out 1f 1t satisfies some kind of recurrence relation.

| Problem 9.
: Does every lh-celled animal in the plane pack the plane? Does every

5-celled animal 1n the plane pack the plane? There is at least one

. 6-celled animal that does not pack the plane, namely, rh |
A Sn-celled animal like this one can be constructed which does not

pack EB, . Thus, if every n-celled animal packs BE, , then n < 3k.

Improve this upper bound if possible.
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— Problem 10. (R. Rado)

« Consider sets of squares in the plane having sides parallel to

the x- or y-axis. Let a(S) denote the area covered by the union of

_ suchaset S. Is it true that"

¢ T 1a

max a > ?- Tes a(S iy
I's in T disjoint

<

— Problem 11. (R. Stanley)

Consider partitions of n which satisfy a tableau condition:

&_

2

- effet] |]
a a

L AY; felt] ||
G03 NE This border may be irregular
NS but must be nonincreasingb ]

_ This border 1s regular

a The entries a3 do not decrease in the rows or columns, and their
L

total is n . Let T denote the shape of the array, and let Vp (0)

} denote the number of ways of filling in the array subject to these

conditions. Prove that the generating function 1s as follows:
L

1 jo «]
— = 3 Vv (n) x"

(i,3)€T Sy J n=0 IJ 1 -X 2

- where the numbers ds : are defined as in the following example:+2

= D
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« To find dy begin in cell (1,3) and count all cells in its row to
the right of (1,3), count also the cells in the column below (1,3) ,

and if one can "turn the corner" at the bottom of this column, count

< the cells in this row as well. Thus, 41,5 = 8, do) = 0 5,5 =e
etc.

¢ Problem 12. An extremal problem (see problem 5728 of Amer. Math.
Monthly, 1970).

= The "octahedron" in E has hl different pairs of parallel
€ hyperplanes spanned by two n—-sets whose union comprises the vertex set

of the octahedron. Prove that the octahedron is an optimal configuration

_ of 2n points in BE having the property that the points span many

LC pairs of parallel hyperplanes.

- Problem 13.

(6 R. C. Read (J. London Math. Soc., 1963, 99-104) enumerated classes

of isomorphic self-complementary linear graphs with in vertices and

classes of isomorphic self-complementary directed graphs with 2n

L- vertices. It turns out that these numbers are equal. Give a "natural"

one-one correspondence between the two sets.

L

6
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_ Problem 1k.

“ Recently, Klarner showed that the set S = (mx + cI 1)

. (that 1s, the smallest set of natural numbers which contains 1 and is

. closed under the operation mo XJ . etm OX where Myyee.,m are given
“ natural numbers) 1s a finite union of infinite arithmetic progressions

_ provided (i) =r > 2 , (ii) (my,%.iom ) = 1 , and

(iii) (my «oom ,mo + : cotm ) = 1 . Does the conclusion still follow

- 1f we drop hypothesis (111)?

) Problem 15.

' Hautus. and Klarner gave a simple characterization of all uniform

{mx n}-colorings of the square plane lattice provided (m,n) = 1 . We

= were unable to describe the uniform colorings when (m,n) >1 _, Any

€ nice theorems about these designs?

Problem 16. (Due to Leo Moser.)

C Can the whole plane be tiled by using exactly one square each of

sides 1,2,3,4,...7

L Problem 17.

The ordinary game of tic-tat-toe 1s an instance of a positional game

played on a hypergraph H = (V,E) . Here V (the set of vertices of H )

L is a finite set and E (the set of edges of H ) is a set of subsets

of v. Two players take turns to claim a previously unclaimed vertex

of H . If a player claims all the vertices of an edge of H , he wins.

. If all the vertices of H have been claimed but no one has yet won then

the game 1s a draw. An easy argument (Hales and Jewett, "Regularity and

I
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= positional games," Trans. Amer. Math. Soc. 106 (1963), 222-229) shows

‘ that the second player cannot have a winning strategy. Besides, 1f the

game results in a draw then there 1s a partition V = Vo UV, such that

_ no V. contains an edge (in that case, H is called 2-colorable).

¢ Given positive integers n , k with k < n we define a hypergraph

. W(n,k) by setting V = {1,2,...,n} and letting a set A cc V to be an

element of E if, and only if, |A|= k and the elements of A form

¢ an arithmetic progression. Van der Waerden (Bewels einer Baudetschen

_ Vermutung, Nieuw Archief v. Wiskunde 15 (1928), 212-216) proved that given

any k there 1s always an n such that W(n,k) 1s not 2-colorable.

“ Let N(k) be the smallest such n . It is easy to show that N(2) = %

and N( 3)= 9; one has N(4) = 35 (see Chvdtal, "Some unknown van der

- Waerden numbers," Combinatorial Structures and Their Applications (R. K. Guy

¢ et al., Eds.), Gordon and Breach, New York, 1970) . As far as I know, the

value of N(O5) is still unknown. The existing upper bounds on N(k) are

beyond the range of algebraic expressions. The existence of N(k) implies

L the existence of the smallest n = n(k) such that the first player has

a winning strategy on W(n,k) , Obviously, we have n(k) <N(k) . One

has n(J) = 5 and n(4) = 1% (sce Chvdtal, "Hypergraphs and Ramscyian

L theorems," Thesis, University of Waterloo, 1970). Apparently, N(k) is
a rather poor upper bound for n(k) |.

What 1s the value of n(5) ? Can you find a decent upper bound

: for n(k) ? Is n(k) always odd? If so, is (n(k)+1) a winning
~ first move? Is there a winning strategy for the first player on W(n, Xk)

for all n > n(k) ?

: Z

8
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- Problem 18.

¢ A k-graph is a hypergraph (V,E) with |Al = k for all AeE . Let
(_.

m(k) be the smallest £1 1n a k-graph which is not Z2-colorable.

Obviously, m(2) = 5 . It is not difficult to show that m(3) = T ;

C the edges of the corresponding J>-graph are the lines of a projective

. plane of order two. One has

oK(1+ ee < mk) < [K°2° 2/2 log 2/(1+ (1L+2p))l .

(Herzog and Schonheim, "The B. property and chromatic numbers of

. generalized graphs,'* J. Combinatorial Theory 12 (1972), 41-k9),

- . .

improving ok to m(k) < ko’ 1 due to Erdds.)
6. -.

Erdos repeatedly asks for the value of m(4) . Perhaps a computer

_ would help.

LS

Problem 19.

A graph G 1s called hypohamiltonian if it contains no hamiltonian

C circuit (that is, a circuit passing through all the vertices of G ), but
given any vertex u of G , the vertex—-deleted subgraph G-u has a

hamiltonian circuit. The smallest hypohamiltonian graph 1s the Petersen

= graph.
(

No
9

9
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= Herz, Duby and Vigué ("Recherche Systématique des Graphes Hypohamiltonians,"

‘ Theory of Graphs (P. Rosenstiehl, Ed.), 1966) used a computer to search

} for hypohamiltonian graphs with 11 or 12 vertices and found that

o there are none. However, they discovered one with 15 and another one

‘ with15 vertices. Since then, the existence of hypohamiltonian graphs

= with n vertices has been demonstrated for all n > 15 except for

3 n= 14, 17, 19, 20, 25

¢ (see Chvatal, '*Flip-flops in hypohamiltonian graphs,'* to appear in

_ Canad. Math. Dull.). Perhaps it is time to settle at least the case

n = 14% (computers could help).

¢. The hypohamiltonian graphs offer a number of amusing questions. It

seems that these graphs never contain a circuit of length three or four.

] However, so far no one has found any graph F such that no hypohamiltonian
L graph contains F . I offer $5.00 for an example of a planar hypo-

hamiltonian graph or a proof that there is none.

h Problem 20.

A graph G 1s called t-tough 1f deletion of any m points from G

results in a graph that is either connected or else has at most m/t

- components. It 1s not difficult to see that every hamiltonian graph

1s l-tough but the converse 1s not true (the Petersen graph 1is : -tough).
I offer $10 ® & for the proof that every t-tough graph is hamiltonian

g t4+1 2
and $10 @ m for an example of a t-tough graph (t > 5) which is not

I. hamiltonian.

Fleischner ("Square of a block 1s hamiltonian," to appear in J.
>

Combinatorial Theory) proved that the squares of a 2-connected graph 1s

always hamiltonian. (The square G2 of a graph G is defined to be the

10
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graph having the same vertices as G ; vertices u , v are adjacent

. in 6° if and only if they have distance at most two in G .) gince
- the square of a k-connected graph 1s always k-tough, it 1s desirable to

prove that every 2-tough graph is hamiltonian. An example of a

C : —tough nonhamiltonian graph 1s obtained when in the Petersen graph,
each vertex 1s replaced by a triangle as indicated below.

- No”

| | —

‘ .
Some results on toughness are contained in a forthcoming paper of mine,

to appear in Discrete Mathematics.

Problem 21.

C

A unit distance graph 1s one whose vertices can be represented by

points in the Euclidean plane 1n such a way that adjacent vertices are

C represented by points having distance one. Obviously, the unit distance
graphs can be characterized by forbidden subgraphs. It 1s easy to show

that the unit distance graphs contain neither K), nor K, 3) .

| AL re

x }
: 2,3

h 11
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_ Let us denote by tmthe largest possible number of edges in a unit

« distance graph with n vertices. One has f(3) = 3, fk) = 5,

— f(6) = 9 . Obviously, if G, = (V,Eq) and Gy = (Vos Ey) are unit

distance graphs then Gy X Gy, (defined as (Vy x Vo, E) with

« {(x5%5)5 (¥757,) } ek iff either Xy = Yq , {x,,¥,} €E, or else
_ X, = Y2 {x57} € E, ) is a unit distance graph. Therefore

; f'(mn) > mf(n)+ nf(m) and so f(n) > cn log n . On the other hand, the

es absence of Kr 3 in unit distance graphs implies quite easily that
f (n) < end/? . Erd0s asked whether f(n) = om! 3) .

} Klarner has observed that, for any representation of the circuit Cy,
_ of length four, the opposite edges must be parallel, and that this fact

can be used to construct more forbidden subgraphs. For instance, the

- graph below 1s not a unit distance graph: Xu 1s parallel to yv and

'q so dist (u,v) = dist(x,y) = 1 .

u 17_— \2q ’SDd
¢ Nevertheless, there are graphs with n vertices and en 2 edges

which do not contain even a Cy, These can be obtained by assigning

vertices to all the points and lines of a projective plane and joining

“ a poilnt-vertex to a line-vertex 1f and only 1f the line passes through

the point. Thus a geometry of order m gives rise to a (bipartite)

« 12



| | graph having total of 2(m° + m+ 1) vertices and (m+l) (m° + m+ 1)

| | ) edges, containing no C), = I suspect that these graphs are not unit
. distance graphs but have not proved it even for m = 2 .

 - Problem 22.

“

For any finite graph F (without isolated vertices) we define rr (F)

to be the smallest N such that, for every graph G with N vertices,

. either G or its complement G contains F . Obviously, r(F) < r(K)
where F has n vertices and K is the complete graph with n

vertices. Hence the existence of r(F) for every F follows from

. Ramsey's theorem. Erdlls conjectures that K, minimizes r(F) among
all n-chromatic graphs F and suggests to test this conjecture on

| the wheel we .
Q

|
0 >

L *

\/ J

We

We have r(K,) = 18 ; the unique graph G with 17 vertices such that

XK), ‘GG, K), ¢ G is the graph with vertices 0,1,,,0 OO , two of them

(i,j) being adjacent iff [1-5] is a quadratic residue mod 17 .

Certainly r(W,) > 17 Indeed, there 1s a graph Go with eight

vertices such that Gy, contains no Ky and Co contains no Ky

Replacing each vertex X. in Gy by a pair of adjacent vertices x; x

and jolning x; to x (i"£& 79) if and only if x, 1s adjacent to % 4

13
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g in Gy , we obtain a graph G with 16 vertices such that We ¢ G ,
We Go

n Can you prove r(W,) >18 ?

ha Problem 23.
C

_ Among many equivalent formulations of the four-color conjecture,

| there 1s a recent one which deserves special interest. Unlike in most

other cases, the proof of the equivalence 1s nontrivial and so 1t may

constitute the first step towards the solution of 4CC . Given any graph

= G = (VL,E) and a set S © V , we denote by dS the number of edges

- having exactly one endpoint in S . A function w: V = {-2, +2} is
called a balanced coloring 1f

- 38 > 1 w(x)
XeS

9

for all S © V . Bondy ("Balanced colourings and the four colour

conjecture," to appear in Proc. Amer. Math. Soc.) proved that the four

C color conjecture 1s equivalent to the following "balanced coloring

conjecture":

i Every bridgeless cubic planar graph admits a balanced coloring.

C (A cubic graph is one where each vertex meets exactly three edges; a

bridgeless graph 1s one which remains connected after the deletion of

an arbitrary edge.) One can think of the vertices x with w(x) = -2

LL as being colored blue and those with w(x) = 2 as colored red. A balanced

coloring of a cubic graph has two simple but interesting properties:

) (1) the number of blue vertices equals the number of red ones,

L (11) there 1s no nonchromatic path with three vertices.

It would be nice to prove that every bridgeless cubic planar graph admits

X 1h



: a coloring with properties (1), (11). Besides, 1t may be useful to

. study balanced colorings in the class of all graphs, not necessarily

“

_ bridgeless cubic planar ones.

Problem 2k,

o“

Let dy > dy > CLD d be nonnegative integers. What are the

necessary and sufficient conditions for the existence of a planar graph

¢ withn vertices having degrees dys dys Lod? This question appears
to be quite deep. When the planarity assumption is dropped, the answer

becomes quite simple: the sum of all d's must be even and the

inequality 3
-

kK n

| ). d, < k(k-1)+ ), min(k,d,)1=1 1=k+1

| satisfied for each k = 1,2,...,n (Erdds and Gallai, "Gréfok el8irt
fokd pontokkal," Mat. Lapok 11 (1961),26L4-274; also in Harary, Graph

. Theory, Addison-Wesley, Reading, Mass. 1969). The only additional

condition which 1s known to be necessary in the planar case 1s

k(n-1) |, l<k<e2 ,
k

J, 4; S$ ( Pn+ék-16, 3<k<3 (mh), (1)i=1

n+3k-12 , (mh) <x <n :

(Bowen, "On sums of valencies in planar graphs," Canad. Math. Bull. 9

(1966) , 111-114; and Chvatal, "Planarity of graphs with given degrees of

vertices," Nieuw Archief voor Wiskunde 17 (1969), 47-60).

Unlike the general (purely combinatorial) case, the planar problem

exhibits peculiar irregularities. When dealing with the simplest case,

dy =d, = . . . -d =d, Euler's formula (resp. (1) with k = n )

15
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B forces d <5 and n >= . These conditions, together with the
| trivial dn = even , turn out to be sufficient apart from two
-

. exceptionalcases: d=4 ,n=7 and d =5, n =14% . 71t wouldbe

interesting to go deeper 1nto the structure of the problem and find more

. subtle additional conditions that would exclude the two exceptional
cases.

Cc Problem 25.
A finite family F of finite sets 1s called an independence system 1f

L
XeF, ¥Y ¢ X =» YeF .

| A family of sets 1s called intersecting if 1t contains no two disjoint
sets. It 1s called a star if all of its sets have at least one element

L in common. For example, the family
| p ’ {1} , 12} 13] »{1,23},{1,33 ,{2,3}
. 1s an independence system; its subfamily

| {1} , {1,2} , {1,3}
1s a star (and therefore intersecting), the subfamily

11,2}, {1,3}, {2,3]

; 1s intersecting but not a star. I offer $10.00 for a proof or a disproof

of the following conjecture.

Among the largest intersecting subfamilies of an independence

system, there 1s always a star.

Naturally, I am not going to pay anything for the degenerate

"counterexample"F = {{#}} . Decent as we are, we are interested in

independence systems F with IF] > 2 . Without loss of generality,

we can assume that the sets in F are sets of positive integers. Then

we write X <Y 1f, and only 1f, there 1s a one-to-one mapping

16



f: X -Y with f(t) >t for each teX . I can prove the above conjecture

| for rather special independence systems, namely, those which satisfy

to Xe,¥ <X = YeF .
In its full generality, the problem appears to be quite difficult.

— I am rather skeptical about the use of counting arguments. It would be

. interesting to prove the conjecture for independence systems whose
- maximal sets are lines of a projective plane.

“

Problem 26.

= In the 1950's, Miss Esther Klein asked whether there is a function

« F(n) such that from any F(n) points in the plane (no three collinear)
- one can always choose ntl of them which are the vertices of a convex

- polygon. Erdds and Szekeres ("A combinatorial problem in geometry,"

« Compositio Math. 2 (1935), 463-470) proved F(n) < (5) ; subsequently
— Szekeres married Miss Klein. Komlés and I proved a more general result

("Some combinatorial theorems on monotonicity," Canad. Math. Bull. 1k

. (1971), 151-157) which goes as follows. Let f be an arbitrary real-
valued function defined on the edges of a directed graph D which contains

no directed cycles. If the vertices of D cannot be colored in (7)

C colors then there is a directed path with n edges €y5€5,.. e ~~ such

that the sequence fey) (ey), (ey), 0st (e)) is monotone. (The
specialization 1s clear: the points in plane can be ordered by their

L first coordinate, D becomes a transitive tournament and f 1s the

slope function.) The bound F(n) < (FPF) 1s not sharp; one has
F(3) = 5, F(4) = 9 . I wonder if the last equality carries through

L to the abstract setting. The abstract version of the problem (more

messy but more faithful than the first one) can be set up as follows.

17
L



Let f be an arbitrary real-valued function defined on the set

. {(1,j): 1 <1 <j <N}; (2)
- perhaps we should assume

min(f(1,3),f(J,k)) < £(i,k) < max(£(i,J),£(J,k))

” for all 1<1< j< k KN . By an n-gon, we shall mean a pair of

sequences (i515, col) , (F205 +203) with r,s >2 such that

1, <1 <. . » <1,

$C . . .
Jp dy < . < J

. £(i,, i) < £(i,, i) <...K< (i, i)

o £31040) 2 £35035) 2 0 > (35 153)

and 14 = 31 , i, = Ig , T+s8=-2 =n . Let G(n) denote the smallest

— N such that every function f defined on (2) gives rise to an

§ (n+l) -gon. Obviously, F(n) <G(n) ; the theorem of Komlds and myself
. 2n-2

shows that G(n) < (“+1 . It is not difficult to show that G(3) = 5 .
Indeed, let f be an arbitrary real-valued function defined on

C f(i,§): 1 <i < Jj <5}. Without loss of generality, we can assume

(1,2) < £(2,3) . Now, let us assume that f gives rise to no k-gon.

- Then we necessarily have - step by step -

L £(2,3) > £(3,4) because of (1,2, 3,4), (1,4)

£(3,4) < £(4,5) because of (2,5),(2,2,4,5)

£(2,3) > £(3, 5) because of (1,2,3, 5)5 (1,5)

£(2,)> £(4,5) because of (2,45), (2,3,5)

(1,2) < £(2, 4) because of (1,5),(1,2,4,5)

(1,3) < £(3,4) because of (1,2,4), (1,3,4)

L

and so finally (1,3,%4,5),(1,5) is a b4-gon; contradiction.

Is G(4) = 9 and, more generally, G(n) = F(n) for all n ?

S 18



- Problem27. Number Systems

' The problem 1s to determine all sets D of ten real numbers such

— that every positive or, (if you prefer, nonnegative, or arbitrary)

real x can be represented as .

‘ x= YL alo ae . (*)
-o<k<n

It is clear that if D = {dys . 4,1 has this property, then so

$ does OD = {ads .. 50d, for any real & > 0 . This will be implicitly
understood below.

~ If OcD and all d. are > 0 then we can deduce that
D = {0,1, .«.,9} . It is also known that D can be chosen to be

{x,x+1,%x+2, «0.,xt9} for any x , -9<x<1l.

— As an instance of the latter, take the symmetric case where

¢ x = -4L . Then

B D= {-4%,-3%,-2%,...,3%,43} ;

— the number 0 , for example, now admits the representation

1

1+ 2 (-43)107" = & + mh «0
- n>1

An interesting feature of this system, noted by Claude Shannon, 1s that

rounding-off 1s equivalent to truncation.

Another interesting case 1s when x = +1 . The following example

shows how a positive number written in ordinary decimal notation can be

- transformed into the new system:

¢

— 15
¢



_ LO 023 0L5s decimal#
0 111 111-

¢ 9 911 93h

NB 0111 111+ add back without carries
.9 10 2 2 10 4 5 representation in new system

¢ It can easily be shown that this method works in general. For

= other x replace the 1's in the above example by x's .

Finally, it should be remarked that we require D to have ten

¢ elements, since Ron Graham proved that if it had fewer, the set of numbers

- representable as (¥)is a set of measure zero. It is not difficult,

however, to construct sets D with as few as three elements which give

¢ rise via (¥)to a set of numbers dense on the positive real axis, even

| if we stipulate that a_= 0 for all k <0 . Such an example 1s

- y pn’D = {0,1,d} where @ = - 10 :

¢ n>1

Problem 28. Sorting by Deques

C The problem 1s to investigate the permutations that can be obtained

from a general deque starting with the permutation 1,2,...,n as input.

. For example, one would like to know a simple test for deciding whether

C or not a given permutation can be so obtained. Another interesting

question 1s to count the number of permutations thus obtainable, by

recurrence, generating function, and/or asymptotic formula.

C For a definition of deque, related problems, and a description of

techniques that have been found useful 1n attacking them, see Section 2.2.1

B and the following problems in D. Knuth "Fundamental Algorithms" (p. 234).

nfo ] : n ; nL Note: It was remarked that a, exists. Possible "canonical

sequences of the four-operations
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a

insert next input at left

= insert next input at right

$< output the leftmost element

— output the rightmost element

(with exactly one canonical sequence per obtainable permutation) are

. being investigated. Vaughan Pratt found that there exist four special

_ permutations of every odd length > 5 such that a given permutation is

obtainable if and only if it contains none of these special permutations.

«

Problem 29. Dragon Curve

|—

The "dragon design" 1s obtained by repeatedly folding a sheet of

. paper in one direction and then unfolding 1t so that each of the creases

forms a fixed angle © . For a more precise definition and many

— interesting properties of this curve, see the article: 'Number representations

C and dragon curves' by Chandler Davis and D. E. Knuth,J. Recreational Math. 3

(1970), 66-81, 133-1L9.

It 1s experimentally observed that there 1s a greatest angle ® ,

C between 90° and 100° , such that for 6, <8 < 180° the dragon curve

does not have any self-intersections. The problem 1s to determine % .

. Some experimentation indicates that the "crucial points", where

C self-intersection 1s likely, occur at the 5(5-27) and 8(11-2™) .

Problem 30. Posets and Permutations

L We consider a partially ordered set P , such as the one drawn below.

3

IPEGbbES

le——e—335
2

where we use arrows to indicate the ordering relations.

L
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— We also label the points of P in a particular way, consistent

‘ with their relative order with the integers 1l,...,n ; that is, we
— Co

require that if 1 - J, then 1 < J .

The problem now is to find.an efficient algorithm for determining

Ye the permutation of the labels 1,2,...,n which gives a labelling

- still consistent with the partial order of P , but which has a maximal

number of inversions. (An inversion of a permutation Py 0D is two

< numbers. ..p.. RI . + with i < j but p, > Pp .)
For the above example we easily find that the desired permutation

is uniquely p, . Pg = 147258369 .
¢ Another way to veiw this problem (obtaining the inverse permutation,

which has the same number of inversions) 1s to consider any method of

— removing the points of the graph one at a time, never removing a poilnt

¢ until its predecessors have been removed. The idea is to maximize the

number of inversions in the output. The example

- >
or— 0 ————— L

.

p)

. shows that it 1s not sufficient simply to remove the largest possible element
¢.

first (1, 9, 6, 2, 3, 4 has more inversions than 2, 3, 4, 1, 5, 6).

[This problem was inspired by computer sorting.]

L

Problem 351. Partitions into subintervals

It 1s a known result that

(1) If © is irrational then the numbers {n6} = némod 1 ,
L

n =0,1,2,... are dense in [0,1] and in fact evenly

distributed (H. Weyl) and that
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(2) having introduced the points {k®8} , k = 0,1,...,n=-1 , the

= next point {ne} will then fall in the middle of one of the

largest remaining intervals. It 1s furthermore true that at
-—

each stage we have at most three distinct sizes of subintervals

_ (V. T. Sds). )

&

We are concerned here with proving the following generalization of

the above. Let © and Qyseees 1 be any reals, and let Kgs oeesk 1

be any positive integers. Then R. Graham has conjectured that the

\
numbers

- ©}, (ee) Cg)
+ + +{eo a, } , {26 a } I . {ky8 3

as +ota 3, {2e+a 3... {k 06. a ,}
-

will subdivide [0,1] into subintervals of at most ?n distinct sizes.

| %

Problem 32. Counting leftist trees

In what follows we consider only binary trees (with left distinguished
|

from right); a leaf node has no sons, and a nonleaf node has 2 sons.

We assign to each vertex of a binary tree a weight by proceeding as

- follows. We first assign 0 to all leaves. Then we climb up the tree
.

by the rule that if the two sons of a node have been given weights x

and y , the node itself receives the weight min(x,y)+1 .

Now such a weighted binary tree 1s called leftist if for each node,
L

the son situated to the left has a weight at least as great as the son

situated to the right. The constraints can be symbolized by

L min(x,y)+1

x y
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| The picture below shows a leftist tree.
“

2

¢

L 1 1

- 0 0 0
¢

| 0 0
—

3 Intuitively leftist trees are characterized by the fact that to go from

6 any node to the nearest leaf it suffices to proceed always to the right.

L The problem then 1s to compute the asymptotic growth of a, the number
of leftist trees with n leaves.

6 ~.

i Problem 22. Counting balanced trees
A similar problem can be asked about the situation where we modify

L the above as follows. If the two sons of a node have weights x and y ,
1

then the node itself has weight max(x,y)+l . A binary tree so weighted

L 1s called balanced 1f the weights of the two sons of any node differ by

8 at most one. Thus, the constraints now are

max (x,y)+1

» y | x yl < 1

It 1s known that the "Fibonacci trees" are the balanced trees with

L the minimal number of nodes for a given height h . (The height of a

tree 1s the weight at the root.) The Fibonacci trees I, are glven by

Tq = , I, = and I, -
L

- To-1 Th-2
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Also the number of distinct balanced trees with height h 1s known

- oh
to grow as C where C 1s a positive (unknown) constant. (Balanced

C trees are sometimes known by the less desirable term "AVL trees".) What

1s the asymptotic number of balanced trees with n leaves?

¢

Problem34. A basic equivalence relation on graphs.
|—_—

Find an efficient algorithm for computing the weak components of a

. directed graph. (Efficient in the sense that it takes
¢

O(max (vertices, edges)) steps.) The weak components are the finest

— partition such that, 1f all nodes 1n each component were collapsed

together, the graph would be linear and the ordering would be a linear

_-. -
ordering, 1i.e., O——>6—5H0———>d 1s acceptable but

gq &——I0&——0—— 30 is not.

Example:

| _— “~N
( ®)

ve. © . © D
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o The dotted lines indicate strong components and the horizontal lines

indicate weak components.

L

Formally, x and y are 1n the same weak component 1f they are

in the same strong component or 1f one can get from x to y and back
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- by a sequence of "non-path" steps. Nodes a and b are sald to be

& connected by a non-path 1f there is no path from a to b .

= Reference: Graham, Knuth, and Motzkin, Discrete Math. 2 (1972), 17-30.

——

“ Problem 35. Greatest common substrings.

_ It 1s possible to find the longest common subsequence of two

sequences of a's and b's 1n a time proportional to the product of

“ their lengths. Can one do better? Note: aba 1s a subsequence of

aabbbba .

$ Problem 36. Permutations as substrings. (Due to R. M. Karp.)

What is the shortest string of {1,2,...,n} containing all permutations

on n elements as subsequences? (For n = 3, 1213121 3

< for n= U4 12341231 4%3%21 3 for n=5, M. Newey claims

the shortest has length 19 .)

“ Problem 37. Random growth of 3-2 trees.

— Analyze the probability that various numbers of splits will occur

during random insertion into (3,2) trees as the trees become large.

“- A (3,2) tree is a tree in which every node may be a leaf or else it

_ has 2 or 3? sons. One may write (3,2) trees as follows:

| r—
6

- Ce> Ce eo C0>

“«

The dots indicate data items, one or two in each cell. Downward arcs

26
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- leaving a node indicate possible results of comparing another data item

< with those 1n a node. For example, a node containing only one item x

= can yleld only two results for new incoming y , either vy < Xx or y > X .

__ In a node of form Ce %asPume xq < x, . Also,
“«

a b C

all items y in subtree a are smaller than Xi in b they are

— between xy and Xy i and in c¢ they are larger than Xx, Similarly& .

in LE all items in subtree a are smaller than xy and
a b

&— all items 1n subtree Db are larger than xy

Now, we consider only (3,2) trees with this ordering on their items

= and whose leaves are all at the same level. We insert by introducing

¢ items randomly at the positions of the leaves. (The leaves represent

equliprobable gaps between existing items.)

— We 1nsert by a sequence of operations local to various nodes along

the path to the root. For example, to insert x' in place of leaf a in

« a b

- we get

at a" b

-

| to insert z in place of leaf ¢ in

LC

a b C

L
" =f



gives

~ a b Cc’ c™

= which splits into

a b oh c"

(.

and y 1s inserted in the node above in the same way. (If there was no

node above, we place y 1n a new root node.)

“— Thus the first three steps in the growth of a 3-2 tree are always

} Ce> ses

—

— and the fourth step 1s either

— 8 | or ay.
°o .

| €

~ By symmetry, we may choose the former. Now the fifth step yields

§

Co 2

C © e¢ > with probability 2, CeO with probability 5
i“ | ~~

CE FO «x»
C
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— The question is, how many splittings will occur on the n-th random step,

on the average, and how many tree nodes will there be? This 1s one of

the few important "basic" algorithms that hasn't been analyzed yet.

_ Note: After six steps the tree is either

“-

- ax»  ® & | ar. |

Co eC 6 > 0 OC oe DOCee0 8 > CeOC ee >

Co

~- and 1t appears that all are equivalent with respect to further operations.

Or are they?

“_ -

g

.

«

—

CC

29

\S
-


