STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-168

STAN-CS-72-287 | AD 746146

ADMISSIBILITY OF FIXED-POINT INDUCTION IN FIRST-ORDER
LOGIC OF TYPED THEORIES

BY

SHIGERU 1GARASHI

SUPPORTED BY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AND
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. &7

MAY 1972

S D
o

.: \0! ?“ e wed

Repraduced by Ved \ \‘ﬂﬂ

NATIONAL TECHNICAL
INFORMATION SERVICE

us D'por' of Conmerce
aringfi ld VA 2215¢

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN|VERSITY




STANFORD ARTIFICIAL INTELLIGENCE PROJECY MAY 1972
MEMO AlM=168

COMFUTER SCIENCE DEPARTMENT
REPORT CS=287

AUMISSIBILITY OF FIXED=POINT INDUCTION IN FIRST«ORDER

LOGIC OF TYPED THEORIES

by

®)
Shige,ry lgacaghl

ABSTRACT? First=grder l0alc Is extandec so as to des| with typed
theories, egpecially that of continuous “‘unctliens with
fixed=point tnduction formallzed by D, Soott, The transistion
of his foemal system, or the X caloulus=orlented system
derived and Implemented o0y R. Milner, Into this logle
amounts to addino predicate calcujus features to thenm,

In sych a loglc the fixed=point Induction axloms are no
longer valid, in general, 80 that we characterize formulas
tor which Scottetype induction Is applicabie, In terms of
syntax which gan De checked by machines automatically,

To Se pregented at the Symposium on Theoratlical Programming,
Novosiblrsk, August 1972,

This research was supported In part by the Advanced Research
Projects Agency of ¢the O0Office of the Secretary of Defense under
Contract SU=183 and in part by the National Asronavtics and Space
Admirnistration under Contract NSR 05-020-500.

The views and conglusions c¢ontained In this document are

those of the author and should not be Interpreted as necessarlly
representing the ofticlal policles, slther expressed or Implied, of
the Advanced Research Projects Agency, the Natlional Aeronaytios and
Space Agministration, or the U, S, Government,

Reproduced ;n the USA, Avaliadle from the Nationa| Teohnleal
Infcrmation service, springfiela, virginia 22151,

®) Acdress after 31 July 1972: Research |[nstitute for Mathematlioal
Sciences, Kyoto University, Sakyoku, Kyoto 686, Japan,

i



~N~
* o

wnN

CONTENTS

Introduction teeen
FlegteOrder LoOlc of Typed Theorles cevee
Language teeoy
Iaterpretation . a0
Teuth functions assoclated with formulas ,,,..
Lo3!cal axloms and rules Yeee
Weak |y Contlinuous Functions oo

Admisgibiilty of Fixed=Point [nduction RN

Characterization of Predicates that
agmit Fixede=point Induction veven

Syntax of Formulas that admit Induction ,,,..

Tabjeg of Inheritangce of admigsibliiity teaee
Cxampi® of formuia that admitg Induction ,,,..

Transiation of LCF Into FirsteOrder

Logic of Typed tTheories oo
Axliomatization seeve
(Table of moniogical| axioms: ereae
Adequacy sre e
Examp|e taken fpom proof of compller

corroctness toee
Discussions TEEE

® o

1f

eNAN N »



Aorissinility Of FixedePolnt Induction In FirgteOrder Loslo
0f Typed Theorles

by

Shigeru lgarasghi

1 Jntroduction

D, Scott postulated a |ogle of typed functions comblined with
fixea=point Induction{18), R, Mliner modifled this '!oglc |nte o
forral system called LCF 30 as to handie Aeexpressions convenlent|y,
and implemented it in an (nteractive proof checkergé), Singe an
ear!y oeriod Of ¢this Implementation it has peen thought thet some
precicate calculugs=|ike faclllty may be needed for sSome or Other
reasons, so0 that |n the machine vergion of LCF are Inciuded a kind of
universai quantifier and Implication, the iatter being one I[ovel
lower than the Implication In¢cluded in the orlginal fogle, These
operators, however, can be used in quite a restricted manner, for
they are only abbreviations of |egitimate formulas In LCF, Especially
Implication cannot be nested,

The writer geviged a formal means to carey out derlvations of
a predicate calculus whose obJects were typed A-expregsions within
LCF, which caliculys included the unliversal quantifier as well as
usual propoasitiona| operators but not the existentia| guantifler,
which could not be replaced by negation and universal gquantifleation
since GentZen’s intyltionistic system was used as the pasis. J,
McCarthyl4) propcsed to use the full classical predioate calcuius as
a super-structure of LCF, quantifiers ranging over LCF objects, He
suggested also some generalization of such a system, The formal
system discussed in the present paper is In the sssentials along the
last |ine, The main purpose of the opresent paper Is to allow
Scott=type fixed-point induction as much as possible In the intended
jogic,

This point wi|i be explained more conoretely, Suppose f and ¢
are continuous partial functions, The predicate fsg, where the
equality means the »strong eauallity", l,e,, If one side Is undefined
so Is the other, 1s not continuous, But as in Scott’s |oglc we can
use fixedepoint inductlon In order to drove this equallity, Then
what wli) happen to the following formuia which we are going to allow
in the Intended lodic?

Yx(f(x)sa-g(x)sh(x)),

with the axliom



fsMin AfAxJ(f,x),

- belng Implication In ¢the classical sense, NMIn <¢the ninimal
fixed=point of the function to which it is prefixed, and J(f,x) a
terr In LCF, It turns out that if a|l the functions Invoived In the
expression J(f,x) are continuous, whien condigion ig rcather natural
in order to consigep |tg fixed=-point, and the cange of ¥ g discroeze,
tike a oocolean function, then we can apply fixed=-polint Indyction
without Ingcurring Inconsistency, even if 9 and h are non=continueus
functions, In fact the continulty of 3 and h does not matter In thnls

case, for fixeoepoint Indugtion Iis not sound uniess the above
conaitions are satigfled,

We shal| give a syntactic characterization of the formujas
tor which fixed=-point induction is sound, 80 that machines can cheok
autoratically whether or Not a given formuia aedmits appllication of
the inference rule corresponding to fixsd-point induction,

2 First=Order Loglc of Typed Theories

we conslider a kind of Infipite|ly many=sorted f(jrsteorder
logic tn the classical soensel312), The obJjects are Individyals (n the
usus! sengc togethepr with functions of Individuals or previously

defined functiong, Each type can Do regarded as a sort, Only
objects are typed, and we do not consider predicate variables, The
intended formaj] system wlj| be aboveviated as FLTY, we ehall

partially tollow gheoenfield’s stylelil),
2.1 Language

Types

Al, We presuppoge that there are a number of <types galied the
"base types”™, Some of the base types can be “ordered types™, Types
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are dgencted by «, O, etc., 4nd the aordered types are pogtfixed by the
jetter “o", Ilke 0, No relationships between & and €0 ars assumed
if both @ and €0 happen to be base types, Types other than the base
types are called the "function types”,

A2, If a and B are types, 80 |g 8<Bf, Both sle<e2. ,,, eap<P and

€1, 82, ..y +GN*3 gre used a8 the adbreviations of Wie(®2<( ,,,
e{gnedd),,, ),

A3, It @0 and 0o are types, which must be ordered types, %0 |s
(eg=B0)o,

Becauss of this construction we can consistent|y abbreviate
wg"g excedt the outmost one, For Instance, (®o-~(Pe<+(Ppefo)o)o)o Is
sbbreviated by (%<f.PeB)0,

Alphaoet

Tne alphapet of the |[ntended formal system consists of
s-congtants and sevariabies for each type ., (e3, v
,en)=predicates, (,es,, precicate constants, for each n-tuple ("%, ..
,on) of types (n23), and the following |oglical symdols,

£ { , ) sav ]Mn

It & is a base type, an S=congtant or variadnlie can be called an
individual constant or varlabdle, Otherwlige, an @egonstant or
variatie can be cglled o funetion oconstant or varigbie, It must be
noted that functiong of arbitrapy finite oraer appear., An (81, ,.,
san)~predicate is an n argument predicate In the usua| sense, the
{-th argument being of type €i for each 1 (15iSn),

we shal| use several defined gymbols whieh are standard In
fogic ag follows,

4 « v =

The syrdbol =~ stands for Impilcation, and £ for logica| equlivalenge,
Thus < reang function In the text and Iimpjicetion In formulas,

Terns

1., i1t & |s apn s~congtant, then a i3 an e=ternm, 1f x ls an
s=avarisble, then x |s an ®=teenm,

R2, It t s an a<%term and u s an Ga=term, then ¢tiy) Is a
Reterm, t(u) cgn be algo wWritten as (t u), and {eCud)ilv) as
tlu.Vv).,



83, If ¢ is an (@geso)o=term, then Min t |s an So-term,

84, [t ¢ |s 3n eo=term and &g Iy & function type, then ¢ is an
-". 'm.

fornulas

ci. I1f ¢t and y are a=-termg, then t=u ls a formula,

ce., 1f D is an (%1s ees s3n)=predicate that Is different from &,

and t! Is an Si=term for each | (1SISn) , then pltl, .., sth) g a
formulise,

c3, It A is a formula, then =A |s a formula,
c4, 1¢ A and § are formulas, then AvB, AdB, and A<B are formyulas,
cs. If A is a formu|m and x (s an Sevaciable, then VxA and 3xA

are forruias,
2,2 Interpretation

Wa chooss a ngneempty set D(%), or Do, for each base tybe «
as the domaln »f ingividuals of type o, [f & s an ordered base
type, We assume further that DO s an ordered get (L, £) satlsfying
the following congitions,

(1) (Le S) has the leagt element, l,e, inf L, wWhich shall be denoted
oy C.

(13) (L, S) Is an ==tnductively ordered set in that L Is non=empty
and every noneempty countable set X such that X<[ and X s (Inearly
order®d has sup X In L,

That L is non=empty Is a part of the standard definition of the
induct!vely orcared set, which Is automatically satisfled In this
cese., The symbo| »=* reads “omega™ through out this paper, N soMme
case, It can be read "aleph naught®,

Suppose Da and DB have been definmed, Mo |0t D(e=0] be the
set of all the functliong of D& (nte Dn, If © and p are ordered type,

we let UC(9+B)o) Dbe the set of all the ==continuovs functions
belorglng to DLS=7) together witn the order relation § deflined by

£50 Ittt f(x)Sgix) for any xels,

where the =~econtinujty is defined as follows,



Definition, A "seaquence” X In a set L is a funotion of the @0t of
the positive Integers INnto L, Xn denoting the nath teem X(n), X
is weitton as (Xn) gometimes, A "monotone Increasing™ sequence X
In (Lo §) i's a sequence In (L, S) sych that

XI s lz S [N ] S lﬂ s [ ] L]
f 1 "=egontinuous” (¢f
f(sup X) 8 gup f(X),

for any monotone increasing sequence X in (L, S), where f(X) denotes
the set (f(x)IxeX),

Remark, f Is ==continuous In this sense Iff fisup X) = gup (X
for any countable directed set XcL, (See section 3,) Thls property
will be called the =econtinuity, while = stronger deflnition of

continuity Is that f(gup X) s sup f(X) for any directed set Xc_ . f Is
salg tO0 be "monotoneg” I1ff f(x)Sf(y) whensver xSy, T™he =econtinulty
impiies the monotonicity, whigh can be shown as fol |ows(10],

Supcose xsy, Let X1 be x and Xn be y for any n22, 80 that X is a

monotone increasing seaquence, By w=econtinuity, f(sup X) = sup f(X),
But sue X = y, and fi{x) S sup f(X). Theroefore f(x) § f(y),

by this construction 0%0o can be shown to gatisfy the
concitions (1) ang (11), so that the inductive definition works, In
fect, the function g: DeoeDpo such that

gi(x) = 0 for any x€Dw=o

is the Ileast element of D[(®o<Polo), and, for each asend!ng chaln
(fn) in DClG0<PO)3), the functlion h; D®c<+0fo that maps each e|ement x
of Deo onto supifnix)) s sup(fnl,

With eacn e=constant a In FLY is assocliated an element a* of
Dg, With each (gl, ,., senlepredicate p In FLT (s assoclated an
neary relation pe in Dei® ,., ®Dan, Such a cojlection of Dge’s will be
oenoted by D, and FLT(D) wil|l denote the |anguage obtained from FLT

by 80dinrg a new e-constant, cajled a "name®, for each ejement of D@,
for each s,

A term s "closed” If no variables occur free In It,
Especially, s variaple=free term is cjosed in this sense, We yse
this terminology becaouse we ghall extend the gyntax of terms later
in order to axlomagize LCF, In which Axx |s a closed term, though K3
i{s not varlable=freg, We dofine an Seindividual et for each ologed
s=term t Dy Induction on terms,

Ct, If t 1s an Inalvidual symtol, then t must be an e=gconstant
since t Is closed, we let et Do areDe,
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[+ 38 1¢ ¢ Is uiv), then u must be a closed sep-term and v & Closed
s=term, 30 that syué€Blmed) and eveds, We tet s(ulv)) be eylev ),

03, It ¢t Is Min y, then u must be a closed (@0<s0)o=term, 00 that
ey s an =~¢continuoys function of type %So*%9, Let ¢ denote rV, We
lot ot bg Infixigixlax) (with reSPgct %0 the orgering of So)) namgly
the leagt fixed palat of fo which Ig ghgwy to .x?.t ag follguslill,

Let f,n,x denote
fU60 .o, T(X),y,)) (f occurs n times),

for each n28, Especially, ft.2,x Iis x, Then supi{f,n,0), or
sup(f,n,0108n<=) gtrigtiy, ls Iin fact Inf(x|f(x) x), BY =egontinuity,

fisupl(f,n,0)) = sup(f(f.n,0))
= gup{f.tne1),0)
s gup(f.n,0118n¢=)
< suplf, n,0},

Gy wonotonicity (see the above remark),

sup{f,n,2) < ¢tsupif,n,0)),

Thus
t(supi{f,n,00) 3 sypit,n, 0},

Namely supl{f,n,0) is a fixea point of f, Let a Do an element of 0%o

such that f(a)sa, ince D<a, f(0)St(a)=g, Dy monotanicity, Tthen, by
mgthematica ! lnauct?on. t,n,08a for any n, 30 that supi(f,n,0)Sa, Thus
sup{f,n,0)=intixieix)ax}),

D4, 17 t Is a cloged Yo=term and ®0 is not a bagse type, then ete
Deo and DeocDe, sp that wiElw,

A trutnh vgiye is eilther T or F. T meansg "¢rue”™ and F

"faise™,

4 tormula ig "closed” If no varianies occur free in It, We
define a truth value wa for each closed formula A In FLY(D) by
lnduction on formulas, A[ J, or tL ), genotes a formula, or &8 term,
with voids, and ACx), or t(x), resuits of repjacing them by x,

€1, 1f A Is ¢2y, then ¢t and u must be closed e=gtgrmg for &
certain o, since 5, is closed, We (et
eAST (ff wsezmy,
€2, If A (s pltls «.. otr) where p (s different from s, we (et
eAzT [ peltis oy stN),

()



£3, If A is «B: then we (et
vAZT (¢ wHSF,
Eq, 1t A is BvC, then we |ot

vA3Y |f¢ «B=T op «CaT,

ES. 1f A Is 3xBf(x) and x |s an sevariab.e, then B[a) Is closed
for fach e=name a, We (ot

vAsST (ff «(B[al))sT for some C=name a,

A "D-ingtance” of a formuia ALxl, (. ,%xn] of FLY 1s a cloged
forruls of the form ACal, ... can] In FLT(D), where al 1o an s |=name
1t x| is an etevariable (1sisn), A formula A of FLT (s "valld® in D

If eA’=T for every Dei{ngtance A’ of A, fn pacticular, a cloged
fornula A of FLY 1s valld I17f wAsT,

2,3 Truth functiong associated with formulas

To study the properties of formujias we shal| conslder truth
functions, nameiy functions whose values are the truth vajuves T end
F, assoclated with formulas [(n the natural manner, Faor the
convenlience  of the later description we uyge the followling
terrinologles,

Let x be an Sevariadle, and A(x) a formula In which at most x
occurs frse, Since ACa) Is a closed fromuja for each €=ngmeé a, we
can define a function . D®«(T,F) that sonds each a® onto the truth
value wACa), f ig called "the truth function determined by A and «x
in D", orf, if there is no ambliguity, “the truth function determined
by A"

Lot ALXl, ... »xn) be a formyla in which at most varlabj|es
X1, ¢es o+ xn, respectively of type €1, .., , en, occur free, A
“(9,xl)einstance” of ACLx1, e oXN) In FLT is a formula (n FLT(D) of
the forr Alal, .., .n(l-l).xl.a(l*i)o sees o8N] where al, .,. ¢ &N are
names of type %1, ... » ®¥n, Thys at most x| ocecurs free (n formulas
that ere (Disxl)einstances of a formula (L51SN), Therefare each
t(D.xl)=ingtance determines a tryth functlion,

ALXl, .+ sxn) also "determines” an negry truth function ¢
ofetie ,,. o0Le®n) <« (T, F) that gends each n=tup|e (age, ..y s8N0)
onto ®sALal, ..¢ o001,



2,4 Logica| axioms and rules

We shall accept the following axioms and rules for FLT,

Rule of substitution, In the bejow schemata of axiome or rules,
arbitrary varladleg can D¢ substituted In pilace of 8, x, ¥, 2, %1,
yi. 21s o0 ¢+ XPy yn, Zne Bng W RpDjtrRry torms ’n p"‘. of ¢ w
ve &Nnd g, an apbit,a,y nNeary ppedicage in ,lace 0 e Sagh n, and
an ardlitrary formylg In place of A, B8, and ’ tugJoct %0 the
restrictions that the results of substitutions should be well=formed
forvulas and that any free Occurrence of varjadjies shou|d bes Kkept
free, On the Induction axlom are Imposed the additiena! restelotion
that oniy those formulag of the form AL ) that “admit Induet]en
syntacticaliy* are gubstituted In oiace of AL ), The effostive
definition of formujag that admit (nductien gyntactically Is glven
In gsoction 6,1,

Logjcal axlomg

propositional axiom, ~AVA,
fdentity axliom, x8x,
equality axionm, XBy < Zsw < x(Z)sylw),

xsy < Mjn x 8 Min y,
XL3YL ¢ ,40q * XNOYN © pixl, ,., oXN) @ PlYL, ooy 2¥N),
stationariness axjom, X(M|in x) = Mln x,

indyction axiom, ACOJevy(ALY)ealx(y) ))aAlMIn x],

Rules of inference., Wwe shal| accept all the rules In Gentzen’s
system of Naturgl Deduction(i), or NJ, with ¢the following
modification of the gquantifler=introdyction and elimination rules,
(a cgegignates a variable In thig sectlion,)

Veintroguction rulje, Yeglimination rule,
Ala) YxACx]
cocace () eevenw
VxACx) ACte)



3-introduction rule, Jeslimination rule,

(aCal)
ACt) IxACx]) c
covosa oascssecraveve (.,

InAlx) c

Restrictiont In the Yeeliminatlon ryle ana the l-=introdustion rule,
the eilrinated or Introduced bound varlable, replacing x, must be of
the sare type a» the corresponding term, crepiacing ¢, In the
V=introguction ruje and th 3Jesjimination ruje:, the Introduced or
elirinatead bound varlaedble, replaciQg a, must de of the gsame type as
the corresponding free varfable (eigenvariable), replacing g,

<a> Indicates the restriction, in the original NJ, that the
fres variabie substityted In place of a ocoury only In ¢the pisces
expliclitly cesignated by a, Tnus, for Instance, In the
Ye=irtroguction ruje the free variable replacing a must not oceur In
the formula oOssignated by VYxAlx), nor (n any assumption formula oOf
that fo-myla,

As anpears |n the above rule we use ( ), In stead of { 1 In
the original notatlien, ¢to indicate the assumption formyja whiah Ig
not carried beyond the bar, Besides, we shal| use A -+ R gometimes,
as wel| as (), to denote that A (S an asgsumption formuia of B8, and
Al, 100 o AN ==e 81, . ,, » Bn to denote a "goequent™, In the sense of
Gentzen‘'s LK, For instance, the vee|imination rule can pe expressed
In the foilowing ways, and we shal! use all of them Iin the geque! for
the convenience of gdegecribtion,

vegiimination rule,

(A) (8)
AvB C c
C

Infer C from AVB, A~=<(, and E=e(C,
Infer P ~aea C fpom P =~e AV, A,P e+« C, and B,P eee (C,

An Iinferance ruie of the iast form, (.0, a rule to Infer a
sequent from other sequents is called a "refativi, es™ Inference rule,
A sequent of the ‘oem AL, ,,, +Am === 31, ,,., ,Bn is “vallg In D" jf¢
the forrula A38,,,.8am < Biv,,,vBn (s vajld in (O, A refativiged
Iinference rule Is "goung” Iff the conseguence af the ruje s valld In
D (as seauent) whgngvaer alil of Its premises are valid In D, for any
D,



We oan treat the loglcal axioms In the form of Inferonce

rules, We Iist them In the Qeneralized foems for the practieal
derivation, These ryles are derived rules actually,

propositional rule, ldentity rule,
wAVA tzt
esquality ruije, stationariness rule,
tsu ACt]
Alul tiMin tisMin ¢

inductlon rule,
ALOJ Afajealt(a))

cocveossenvcsecnrnonve {g)

A(MIp ¢)

<a> Indicates the same restriction as described abovse, Thus the
variadie substituteg In place of a must not occur free {n AlMIN ¢,
nor In ACOJ, nor in any assumption formula of AlMIn ¢},

Apparentiy the [nduction axiom, or rule, Is not accoptable
uniess gsoms adequats restriction, [Ike the one Indicated In the rule
of subgtitytion, s tmposed on (t, First, In order te Instantiate
this axjom by a namg b, substituting b In piace O0f X, &b muyst be
=-gcontinuous So that Scottetype fixed point induction makes sense,
which restriction ig satisfied In the present formalism, for MIn b is
not a well=formed term otherwise, Second, even (f MIn b represents an
wecontinuous function of an gappranriate type, there eoxist many
tforrulas which make this axlom not valld, The maln purpose of thils
caper |Is to characterize those formulas for wnich the industion axlom
Is vallig, so that they admit the application of this rule,
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3 Weakly Continyous Functions

The vallidiey of the Iinductlion axliom pefiects the properties
of truth functions pssociated with formulas of FLT, The flest such
property wlill he called the weak continulty, [t must be noted that
most of the truth functions determined by formulas of FLT are o0t
continuous, gng Wweg gre Qoing to eS%ap!ish some criterly for sugh
nan-continuous predicates to make the jnductlon axiom valld, The
weak continulty can be deflined for functions, so0 that we discuss this
oroperty In gensral,

Through out thisg section, L cenotes an ==inductively ordered

pet with ¢the leagt glement O (see section 2,2), and L’ a compiete
lattice, Namely, L’ is an orcered set such that Inf X and sup X
exist for any subset X ¢f L’, O and | shal| denote ths |esast slament
of L¢, or Inf L', and the greatest element of L‘, or sup L’
respectivaly,

Let X bs a gequeénce In L', We cangidae the monotene
increasing sequence Y defined by Yn s Infi{Xmim2n), and the monotonas
decreasing sequence 2 deflined by 2n = gsypi(Xmim2n), whigh are
well=defined by compigteness, Then, by completensss again, sup Y and
Inf z exist, which are called "{iminf X" and “|imsup X" respectively,

3,1 Definitlion, A sequence X {in & complete lattice L’ s
“econvergent" iff

liming X = Jimsuo X,
In such a case we define [I™ X DYy

lim X =2 |imlnf X
= |imsup X.

A ssguence X in an ordered set Is a "quasi-ascending chalp” Iff It s
an ascending chain gr there exists a number M o,t,

X1 € X2 € ,,, € XM 2 X(M+1) = ,,, = X(Men) = ,,, '
In the Jatter case X |s sald ¢o be "semi=finite”,
3,2 Proposition, Let f be & function s,t, ft LeL’, f(X), [(,0, ¢the
seguence (f(Xnll, Isg convergent for any seni=finite X, and

lim f(X) s f(gup X),

Proof, Apparently

11



bim £¢(X) = f(XM) and XM =2 sup X,
whaere M satisfies the conditlon of definition 3,2,

3,3 Propositicn, Let f be a fynction s,t, f: LeL’, f s
wegcontinuous I7f

f(gup X) = sup f(X),
for any countable directed sot X s.,t. Xc_,

Proof, The sufficiency s <trivial, We Dprove ¢the necessity,
Let X be a countablp dlrected set s,t, XSL, Thon we Can cheose a
quasi=-agcending chain Y s,t, YeXx and Y is cofinal in X so that

sSuyp Y 3 sup X,
Suppose f g ==continyous, Then, by ==continuity,

fisup Y) = syp f(Y),

But
sup f(Y) < sup f(X),
gince
Y ¢ X,
Thus
flsyp X) & fCsup Y)
s sup ¢(Y)
S sup ¢(X),

By ronotonicity (gee the remark in segtion 2,2),

f(x)y € ¢{sup X} for any x¢X,
since

x £ syp X
g0 that

sup f(X) S fl(sup X),
Therotore

f(syn X) = sup f(X),
3,4 Definitlon, Let | be an weinductively ordered get, and L’ a
complete lattice, f: L[-L’ Is "waskly continyous® ¢

fisyp X) = |im £CX),

for every sscending chain X In L. (This relatlionship implies that (Im
f(X) exists, for the |eft hand side always exists,)

3.5 Proposition, f (g weakly continuous (f¢

fisup X) = (im £(X)
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for any quasi=ascending chain X,

Proof, Apparent from proposition 3,2,

3,6 Thearen, f s =-continuous |ff f Is weakly continuous and
monotons,

Proof, necessity: Suppose f s =-gontinuous, Then f 1s monotone,
s0 that for any agcending chain X

feX1) S €£(X2) € 44 .
Therefore

sup f(X) & |im fC(X),
3y =-continuity,
fisyp X) s sup (X},
80 that
fisyp X) = Iim £C(X),
sufficlency! Let X be an quasi-ascending chaln, We have to show
fisyr X) = sup (X)),
Ay weak continulty,
f(syp X) = 1im fUX),
an!, by monotonlicity,

jim ¢(X) s syp f(X),
so that
fisyp X) s sup f(X),

3,7 Theorem, f |s weakly ocontjnuous Iff for any ==continuous
function g: LeL the following relationship holds,
f(Min g) 3 |im t(gen.0),

where Min § denotes the least fixed point of g, i,e, Infixlg(x)sx),
which cen be expresged as sup(g,n,0) (see section 2,2,)

We need the following lemma in order to prove this theorem,

3.8 Lerma, Let X be a quasieagending chain In L, Then there exigts
an =*=continuous functior f: L~L s,t.

f,n,0 3 Xn for any n,

13



Procf of |emma, The foljowing construction suffioes,

f(x) = X1, xs0}
Xt{nel), x22 and xSX| does not hold for any |
s,t, 1Sn=1, and xS$Xn ho|ds (n2i))
sup X, x$Xn does not hold for any n,

(This congtruction wag given by R, Ml|ner,)

Proof of theorem 3,7, necessity! Suppose g is ==continuoyg, then
Min g = supfg,n,0},

(g,n.U) is a quasi-gscending chaln, so that by weak continulty
f(Min g) = Jim f(g,n,0),

sufficlency: Let x be a aquaslieascending chain In (, Then by |omma
3.9 there exigts an =econtinudus function g s,t,

e,n,0 = Xn,

Assuyre

f(qin @) s (im f(g,n.0),
We note that

Min g = sup X
and

Iim f(g,n,0) s jinm (X)),
Therefore

t(syp X) = 1Iim 10X,

3.9 Theorem, f Is weak|y continuoug If¢
lingup f(X) = flsup X) !
for every ascending chaln X In L,

Proof, The necesgity Is teivial, so that we prove the suffiolency,
Let X be an ascending chaln in L. We orove that

limine €(X) = iimsup f(X)

foliows the latter condition of the theorem, Let a and b denote
fimint £(x) and |imgup f(X). regpectively, We prove agb, We ean
choos® a subsequence Y of X s8.%t,

Iim f(Y) = a,
gince a is |Iminf f(X), Then, by definition,
Iimgup f(Y) 3 a,
14



Ne note that ¥ |s aiso an ascending chain In |, so that
limgup f(Y) 2 f(sup Y)
by the supposition of the theorem, Since Y ls cofinal In X,

sup Y = a3up X,
s0 that

f(syp Y) s flsup X),
But

f(syop X) s b

agaln by the supposition of the theorem, Thus

Iimgup f(Y) = b,

NamelYy.
a = h,
4 AdmissibDility of Fixed=Polint [ndustion
We shall digscuss propertiegs of Dredlicates, For ¢the

conveniance of mathematical description we intrcduce the ordering of
truth vailues such ag

FsT,

This oraering is outside our |oglc, and it must be noted that the
concept of weak continulty of predicates as well as that of
admissipl|ity of indugtion Introduced below can be stated witheut
referring to this orgdering (see 4,6 dDeiow), though |t makes some
argurents more understandable,

Since we considered tota| opredicates when we Interproted
forwulas, the concept of monotoniclty or ==gontinuity has |little
importance as 10n9 asg we assume T and F are not comparab|e with each
other, For, then, the only monotone or continuous predicates are
the ldentically true predicate and the identically false one, We
shall use, hawever, the concepts of monotonicity and continulty of

15



predicates with respect to the above ordering, These ¢oncoepts are
mainly related to the existential auantifier,

4,1 Detfinijtion, Let TO denote the complete two element Iatties,
Namely 70 conslists of O and |, while 0 s |, (YO can be regarded as
a TE~space whose open ssgts are @=( }, (I}, ang (0,1}, which |s aise a
continuous Iattice, as discussed by D, Scott,) We sha|l uee thls
jattice to represent the truth values, 0 and | ecorresponding to F,
t,e, faise , and T, 1,8, true, respectively, so that

FeT,

4,2 Definitlon, A "tputh function” on L s a fynction s,t,
Le*T0,

a) A truth function f “admits Induction weakiy®” [ff
£(g.n.0) = T for every n (n22) (mplieg f(Min @) & T,

Especialiy., f(x) admits induction weakly i t¢(0) s F,
) A truth function f on L "admits induction strongiy"® {ee

1im ftg,n,0) s T Implleg f(Min g) s T,

4,3 Proposition, Let X denote an ascending chaln in L, and f & truth

functior on L,
a) ¢ adrits |nductign weakly {ff

f£(Xn) = T ¢gr every n (0Sn) implies f(gup X) s T,

for any X,

) f adrits Induction strongly If f admits Iinduction weak|ly and ¢(0)
s T,

¢) The foilowing congltions gre equivgignt to egqeh Other,

(i) f admits induction stronaly,

(i) jim f(X) € ¢tlgup X} for any acsending chaln X for whieh
jim f(X) oxista,

SRR R limsup f(X) € f(sup X) for any ascending chain X,

Proof, a) simliar to the proof of theoren 3.7 using lemma 3,8,
b) Suppose

fim $(X) =2 7,
Ther
t(Xn) = T ¢or almost every n, (ses 4,6)

80 that we can chooge a quasieagcending subchaln Ym of X 8,t,
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Y1 50 and f(ym) = T for every m,
By weak admissibiligy,

fisup Y) = T,
By cofinallity,

f(suyp X) = T,

c) we prove that (1) Implies (111}, the rest being left to the
reacér, Suppose

ilimsup f(X) € f(sup X),
1¢ timsup f(X) = F, then |im £(X) = F, so that

vim (X)) § flgup X).

Suppose
timsup f(X) = T,

Then we can choose an ascending subchain Y of X s,t.
lim 1(Y) = *,

By coflnalllity of ¥ in X,
sup Y = syp X,

and, Dy strong admigsibility,

f(sup Y) = T,
Thus
{imgup f(x) = ¢({sup X),

4,5 Theoren, Oof the following conditiong the upper ones are
implieo by the (ower ones,

(R f admits induction weak|y,

(i) t admits ingugtion strongly,

SRAR t ls weakiy continuous.,

(iv) ¢t |sg ==gontinyous,

Proocf, We shall see that (iil) Implies (li), the rest having Deen

proved, Sunpose ? s weakly continuous, and |Im f(X) oexigsts, Then

Iim £(X) s ¢{gup X)o

by weak continulity,
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4,6 Remark, AS noted In the beginning, the concepts of admissiblilty

of induction and weak contlnulty of truth functions are Independant
of the ardering of tryth values, for we can regard the refationship

tim t¢q,n,0) = 7
simply as stating
ftag,n.0) = 7 for aimgst avery n,

because of the finiteness (thence discretenssy, see 5.4) of 10, TYhus
these conditlans can be restated as foljows,

a) A truth function f admits induction weakly |ftf

£(9.,n,0) = T for every n (n2]) implieg f(Min @) s 7,
) f aorits Induction strongly {ff

1(9,n.0) almogt every n Implies f(Min g} = T,
c) ¢ is weakly continyous (¢

f(g,n.,0) = ¢ {MIn Q) ailmost every n,

4,7 Definition, Let x be an goevariadbie, and A a formuia in which at
most X occurs free, A "admits induction weakly w.r,t, x tan D™ 10¢
the truth function determined by A and x In 0 adnmits Industion
weakly, If A is an arbitrary formyla, A waamits induction weakly
w,e.ty, X In D" Iff gvery (Dsx)=instance of A admits iInduction weakly,

A “edmits induction weakly w,r.t, x" (ff A aomits Inductlion
woakly in any D,

We define the concepts that A “admits induction astrongly
w,r.te x (in D) and that A s “weak |y continyous In x (In D)*
simitfariy,

4,8 Tneorem, The indyction axlom ACO)=Vy(ATY)eAlx(y) D) =AlMin x) is
vallag 11f A admits induction weak|y w,r,t, X,

Proof, 4o prove the sufficiency flest., sufficleney: Let D be

any coltlection of Dats, BLOJ*YytBLyleBlaly)))<B(Min a) Do a
D-instance of the indyction axiom, se that at most y occours free In
Blyd. Let Fix) 4encte the truth function determined by Blx]}, and
t(x) tne functien determined by alx), I,0., ea, Brx) adnits
inductlion weakiy in D becauss of the assumption that Alx] does, Thus

F(f.n,0) for any n2d implias F(Min 0},
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whi|e Min f 1Is »(Min a), Assume the truth values of BLO) end
Vy(6Clyleblaly)]) are both T, Then

F(u)zT,

and
F(o)aT imglieg F(f(D))=T for any O,

Therefore we have
F(T,Nn,0)5T every n2bd,

s0 that, by weak admigsibllity of F(x),
F(MIn )37,

Therefore the truth valuye of 8lMin a) ie T, Thus

BLOJ=Vy(BLylebla(y)))eBMIN a) Is valld In D, Hengs the Induetion
axiom lg valid In D,

necesslity: We use the same notations as sbove, BY definition of
vallaity any D=ingtgnge of the axiom must be valld, Theorefore i1 ¢the
truth valuss of &(0) and vy(BCy)-Blaty)])) are both T, I!y0.,
F(f.n,0)3T avery n2d, the truth value of BfMin aj is T, Namely
F(Min f)8T,

4,9 vetinition, ACx] ~admits relativized Induction w,r,t, X" Iff
ACx) makes tne [nduction rule sound, Namely, the rule obtalned from
the schema of induction rule by substituting ALX] in plagcs of the
meta=-variadie A is goynd.

4,19 Theorenm, ACx) admits relativizeo Indyction If ACx] admits
Induction weakly.

Proof, We have to prove the soundness of the foljowling rule,

P e« A[O] Ala)) P == Altta)]

--..-----.-.--.----..-.o.---..--.-.--.-.-.. (.)

P === AlMIp t)

Let C denote C1 & .,, & Cm where P Is Cl, .., , Cmy The rule la
sound 11f (CoACO))(CoVy(aly)oaltly))))=(CoalNnin t)) s wvalld Dby
definitlion, Therefore we shall prove for any U, every Delnstance of
this formuia, say !E-BCO;)-tﬁivvtBth~B[b(y)g))ottoﬂtnln b)) s
vaiid, where b 13 an arbitrary varlab|e=frse term of the same type as
t, l.0, (aoewp)o for some S0, Obviocus|y we have on|y to prove for the
case that b 13 a nane, For, If b I8 not a namg, there |s some name b’
s.t. #bsed’, and the validlty can be establighed easily wusing this
fact and the cage that b is a name, (6t F(x) be the truth fynction
determinegd oy 8(x), and f he «b, Then the following econdition s
gsufficlent,
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If wEzT, F(0)sY, and, #EsT ang F(c)sT tmply F(f(ec))sY for any
celD®o, then F(Min 2T,

Min !t Is w«tMin p) by definition, Assume the premise of the above
gonalitlon, Then by (ndyction, ,

F(f,n,0)=T every n2o,
By the assumption that A(x] admits induction weakly, 80 doeg B8(x], so
that Fly) admits inductlion yeak|y, Therefore

F(Mjn $)37,

4,11 Theorem, ACx] agmits lecf induction if ACx) admits reiativized
Inguction, where by Iecf Indugtion (s meant the relativised rule in
LCF to infer ACy) from yaMin x, ACO): and ala) =« Alx(®)],

Proof, We ses that lcf Induction tule |s a derived rule,
ysMin x, P ees A(O]) ACal, ysMin x, P ==e Alx(a))

.o-.-...-.-.-----.-.o.--o.-.-.v-—-----.oo.-..--.--o---. <@ 'ﬂ‘u.t'oﬂ

ysMin x, P e=e A[MIN x)

-------.....---...-.-.---.--.--.-.-..-.-..-------.o..-. egual ‘ty

ysMin x, P =ee A(y;

4,12 Coreollary, Alx] admits (cf Induction !f ACx] admits Inductien
woakiy,
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] Characterization of Predicates that aamit FixedePolint

Inouction
We study what kind of formulag adnit Induction, For the
rencabllity of proofs we ghall discuss them in termg of tryth

functions that have one argument designated by %, The theorems be(Ow
ca® DO 80 gpp!led to every Instance of formujy thet the results wli)
be regarded as statements about formujas iIn genera! by deflinition
(seo 4,7,) For <this purpose |ogical combinators bejow should be
vundersteocd as functions or functionalis whose values ar® T or F, For
Ingstance VyfF(x,y) denotes ths truth function detepmined by VyAlx,y)
where F(x,y} Is ¢the truth function determined by ACX,y]) in D, The
relation s Is not a loglcal symbol of FLT, but It will be used as @
preclicate later on in connection wigh LCF,

5,1 Theorem, The relationship f(x) $ gi(x) sdmits Induction strongly
It £(x) and g(x) are w~gontlinyous,

Proof, Lot F(x) danote the corresponding truth function, |,e,,

Fix) = 7 fix) $ gix)}
F otherwige,

Let X be an ascending chaln in L., Suppose

I1m F(X) 8 7T,

80 that
f(Xn) S g(Xn) for aimost every n,

Then, by monotanicity of g,
fiXxn) € g(syp X) for a|most every n,
Therefore we can chooge an ascending subchair v of X s,¢,

f(vym) S gt(syp X) for every m,
Thus
sup f(Y) S glgup X),

But, Oy w=econtinuity of f,

fisup Y) = gup fLY),
so that
fisup Y) € glsup X)),

By cofimajllity of Y in X,

subp Y 3 ayp X,
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Thus
fisup X) 5 glsup X))o
'..Q'

S.2 Remark, f(x) € gtx), 7 and g being continuous, Is not aiways
weakiy continuoug, (the fact that It (s not e=continuous beling
welleknpown,) Let N’ be the natural numbers with the Infinlty =
(omega) ordered In the usual sonse, Define f, gi N’eN’ by

fix) = x+},
gix) = x,

Let X be s,¢t.

Xn 3 n each n pg.%, L1Sn¢~,

Then
F(Xn) = F each n,;

but
Fisup X) = 7,

5,3 Theorem, Lot f De¢ an =econtinuous function Into a dlserete
tattice L’, ¢ an glgmentg of L, Then the relationghlip

f(x)=¢
Is woak|y continuous,

Proof, Let X bes an agcending chain In the aomain of ¢, 8y theorom
S.,1, tixnizg gimost every n Imo|les f(Sup X)S¢, Suppose

f(Xn)Zo aimost every n,
We have to prove
fisyo X)zc
Let Yn denote f(Xn) for wach n, B8y monotonicity of ¢,
asYls ,,, YnsY(n+dl)S .,, SO,

where b denotes sup Y, Y must have at least an acoumulating peint,

for, otherwigse, ve coyld choose an ascending chalin Z that s a subset
" Y '.t.

aceicC ,,, <ENnCZ(NeL)IC ,,, <by

which contradicts the alscreteness of L, B8Y monoteniclity such an
sccurulating point |s unique and will de denoted Dy d, Thus
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Ynsd alimget every n,

By the supposition
cra,

By ronotoniclity again, ¢ (s the maximym ejement of ¥, s0 that
asgyp f(X),

By ==continulty,

fisup Xlzgup f(X)
sd
Be,
Thus
flsyo Xd2e,

5,4 Rewark, I!n the above proof we uped “disgreteness™ to mean there
ils no agsconaing chain 9,t,

.(‘1“2‘ N X <xﬂ< s 00 <b.

for any @ and b,

$,5 Thegrom, &) Fix)vG(x) admits indyction strongly If F(x) and G(x)
do
b).F(l)VG(I) is weakly gontinyoys If Fix) and Gix) are,

Proof, e) Suppoge

1imgup FIXIVG(X) = T, ¢ Cr, 4,3,8(131) )
Then elther
iimgup F(X) s ¥
or
timgup G(X) = T,
g0 that either
Flayo %) 8 7Y
or
G(syo X) s T

by strong admissidijfey, Thus
F(ayp X)vGlsup X) = T,
b) By weak sontinu!ty,

Fi(syp X) = FiXn) = a for aimost Overy n

and
Gtsup X) 8 G(Xn) 3 D for a|most every n,



for some a and b, Therefore

F(Xn)Vv3(Xn) = avd for aimost every n,
At the gams time,

F(syp X)vG(sup X) s avb,

5.6 Remark, a) F(x)vG(x) doss not necessarl|y admit Indyetion weakly
even if F(x) and G(x) do, We consiger N’ (see remark 3,2) agalin, Lot

ri(x) = 7 x30;
12 ACxS=}
and
G(x) s T B<xC=}
F Xs@ or xs=w,

Then F and G admit jnduction weakly, and

F(n)vG(n) = Y7 for every n20,
But
Fle)vG(m) =2 F,

b) F(X)vG(X) does nat necessarlly admit Induction weak|y even I1f one
of F(X) and G(x) is weak!y continuous and the other admits Indyotion
weakly, For, In fact, F(x) In the above examp|e | weakly continuous,

5,7 Theorenm, n) F(x)8G(x) admits Indyction weakly |f F(x) and G(x)
do.,

D) F(X)&G(x) admitg Induction gtrong|y If F(x) and G(x) do,

) F(x)EG(xX) 1s weak|y continuous If F(x) and G(x) are,

Proof! left to the rgager,

5,8 Tneorem, -~F(x) Is weakly continuous If F(x) |s.

Proof, Let a dennte the truth value F(sup X), BY weak continuity,
F(Xn) = a for ajmost every n,

Let D denote the truth valye =a, Then

~F(Xn) ® b for a|most every n,

Besiaces,
«F(sup X) = b,

.9 Remark, a) =F(x) does not necessariiy admit indyction weak|y even
If p(x) adnits indyction strongly, Lot pix) be the truth funotlon

determined Dy xS= & =<x, which Is equivalent to xa=, In N, Then
F(x) adrits iInduction strongly because of theorems 5,1 and s,7(b),
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Lot Xn be the neth natura| number for each n, Then

«F(Xn) & 7 for n20,
But

aF (gup X) 3 =F(e) s F,
Thus =F(x) does not admit I(nductlion weakly,
b} By the above argyment, the nsgation of a formula of LCF does not
admit Induyction weakly In general,
5,18 Thearenm, If F(x) and ~F(x) both admit Indyction strongly then
Fix) |s weakiy continyous,

Proaf, We prove thag F(X) Is convergent for any ascending chaln X,
The case that

I imgup F(X) s F

e teiviaj, Suppose

Iimgup F(X) & T,

We prove
Iimint F(X) s T

by contradiotion, Asgume

Itmin? F(X) s F,

s0 that
|imgup «F(X) s T,

By strong admissibiiity,

=Flgup X) = T,
1e040
F(suo X)y = F,

Thus Fix) does not admie Induction strongly, which s a
contradliotion,

5,11 Theorem, a) Ftx)eG(x) admits Induction strengly I¢ F(x) s
wiakly continuous and G(x) admits induction strongly,
) F(X)eG(x) Iy wegkly continuous If F(x) and G(x) are,

Proof, F(x)eG(x) Ilg a tautology of =F(x)vGi(x), s0 that theorems 3,8
and 5,5 suffice,

s,12 Remark, Fix)<G(x) doeg not necessarily admit induction weakiy
even I? F(x) admits Indyction strongly and G(x) |s ==continuous, Lot
Cix) de F, 1,0,, the ldenticalily false truth fynction, Then F(x)=G(x)
s a tautology of Ftx), Conslider the exampie of remark %,9,
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Heresafter ¥y Ig used to Indlicsts the argument Instead of x,

S,13 Theorem, a) VYxF(x,y) admits Induction weakly WePoete ¥ 11 Fix,y)
does.
B) VYxFix,y) admits indyction steongly w,r,t. y If Fix,y) does,

Proot, a) Suppose
YxF(x,0) s T

and

Yat{x,Yn) s 7 for every n,
Then

F(a,0) s T
.nd

F(a,¥Yn) = T 'O' ove,y N,

for any a, Therefore, by weak admigsidility,

F(a,sup Y) s T for any a,

Thus
YxFix,su0 Y) s T,

b) Suppose

{ingup er(x.y) z T.

Ther
| imgup Fla,yn) s T each a,

By strong admissibility,

Ft(a,sup YY) = ¢ each a,

Thus

5,14 Rerark, a) YxF(x,y) Is not necessarily weakly continuous even I

Fix,y) s ¥ x{= and x<y, Or xs=}
F otherwisge,

Then F Is weakly continyeus In ¥, for

IIm Flu,Yn) & F(a,=) s 7 each a¢=,

and
F(e,YN) & F(w,=) 8 T for every N,

for any ascending chaln Yn In N/, HMoreover,

YxfF(x,Yn) = F for evepy N,

so that
1im vxF(x,Y) s F,
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But
YxF(x,8up Y) 8 VxF(Xx,=) = T,

b) YxF(x,y) is not necessarlly weakly continuous even {f F(ix,y) (s
- wegontinyous In vy, for Fix,y) definad above Is ==continuous (n ¥,

because [t is not only weakly continuvous Obut aiso monotone (cf,
theorem 3,6,)

$,15 Theorem, a) 3IxF(x,y) aomits Induction steongly If Fix,y) ls
monotong in y,

b) dxFix,y) |Is monotone and weakly continyous (and therefore
wecontinuous, See theorem 3,6) (f Fix,y) ls.
Proof, a) Suppose
1{m AxFix,Y) = T,
so that for some a and M

Fl(a,YM) = T,
By monotanicity,
F(a,suyp Y) = T,
Thus
IxF(x,syp Y) s T,
b) We prove
IxF(x,sup Y) s |iminf IxF(x,Y) 3 |imsup IxF(Xx,Y)

for sach ascending chaln Y by case analysis, (1) Suppose

{imgup 3xFi(x,Y) s T,

so that

Fta,YM) = 7 for sone a and M,
By renotoniclty,

F(a,¥n) = T ngn,
a0 that

IxF(x,Yn) = T NS,

"..'
Lim 3xr(ﬂ!v, = T,

Algc by monotonici®ty, Fta,YM) = T Imo|les

Fta,syp Y) = T,
so that
IxFix,syp Y) = T,

tii) Suppose

tingup 3xF(x,Y) = F,
'...l
tim 3IxF(x,Y) ¢ F,

Then there exists M(a) for each a, s8,¢t,
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F(a,YMta)),
so that, by monotonicity,
F(a,Yn) s F for any a and n,

totherwise Ftb,Ym) = T, MSm for some b and M, which Imp|les (im
IxF(xsY) = T,) Thys

fim F(a,Y) s F for any a,

80 that by weak continulty,

F(a,syp Y) & F for any s,

Therefore
IxF(x,suyp Y ) & F,

5,16 Remark, a) IxF(x,y) Is not necessarlly weak|y contlinyoys even
I1f F(x,y) |s monotone (and therefore admits Induction gteongly by
theorem 5,15) In y. Let Fix,y) be

VZ(z<ma2(y),

Then F(x,y) is monotane In y, ana

F(x,n) & F for every n and any x,
g0 that

IxF(x,n) = F for svery n,
But

IxF(x,=) ¢ T,
because

F(x,=) = T,

b) 3IxF(x,y) s nct necessarlly weakiy continuous even |? Fix,y) Is
monotone and admit inmduction strongly, Let

Gi{x,y) s T ySx<=}
F ctherwuise,
Namely,
G(x,y) 2 “Fix,¥)»

F(x,y) being the tputh function described In remark 5,14 90 that
G(x,y) is weakiy gomntinuous In y by theorem 5.8, But

IxG(x,n) a T every n,
and
3!5(50', s F,
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é Syntax of Formuizs that aomit [nduction
6,1 Tableg of Inher tance ot adr ;iDility

We summarize the Inheritance of samissibliity of Imdyctien In
the tables so that they can be checked by machines easi|y,

Th3sa tabies ghall de redardec as a part of the postulates of

FLT for technical (logleal) reasong, Since the weak admigsl!bl|lty
of Imduction is an informal concept that |s not effective, we oannot
accept a formal system descrlbed [r terms of that concept, althoygh
we woulg |like to yse the Induction axiem, or ruie, for every formyla
that agmits induction weakly, Ingstead we regcard these tables as an
Inductive definitign, and hence an effective definition, of formulas
that "edmit Inductign ayntactically", Namely we call a formu|a AC 3
to sadmit Induction syntactically I1ff alx) s concluded to admlt
Inductlon weakiy w,r,t, X using only these tables, the primitive
ceses |isted In 11 serving as the base step of Inductive definltion,

We add the foilowing definlition for practical Purposes,

Definition, A formula A Is sald to be “constant w,r,t, x" ¢ oA
does NOt depend on x, A term t i3 an "|cf teerm” 1¢¢? all ¢the
constants and variables occcurring In t are of gontinuous types, A
forrula of the form tSu where ¢t and u are Icf terms Is calied an "jef
awff"

" Obvieusly a sufficient condition for A to be constant w.r t,
x I|s that x doeg not occur free in A, Proofs concerniné the
Inheritance of acmissibility rejated to this condition are left ¢o
the reager,

11, The following congitlions are hierarchical In the sense that the
lower ares the strgonger conditions,

(primitive cases)

I A aamits Indyceion weakiy, | |

.-.-...-.---.-.---..----.-.----------.-o-.--o-.-..-’.‘....-..

| A agmits Induction strongly,! tSyu (t and u are Icf terms)|

.---.---.-.—.-.-...-...-.--.-.--...--'n--.-------.--..-.-....

| A Is weakly continuous, | t=0, t=TRUE, tsFALSE |
! | (t Is an lef term)|
.-..-..--O-.-----.-v--.--.-------.---..--.---------.---.--O.-
I A is constant, | x does not occur free In A, |
-...-..D.-o-.-.-.-.-..0--...-------.-.--------....--...-.O-.-

(1 A adnits rejutlivized Induction and Icf Induction w,p,t, X |If

A acrits induction weak|y w,r,t, X,
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(i) A ls «=continyoys Iff A s weak|y continuous and monotene,
(SRAD] A admits inguctlion weskly w,r,t, x If A |a monotone w.r,t, X,

12, Table for &, v, and =,

It A and B satisfy the conditions stated In the flrst cOlumn

and the first row, regpectively, then A8B, AVB, and A8 gatisfy the
conditions shown in ¢the corresponding places.

I A N\ © ladn, wegk, ladm, str, |weak. cont,iconst, |
---.---.--....-.-.----.-.------—-.----.---.-.-....-..--.-....
[ \op | | | | |
ladm, I&laam, wegk, lagm, weak, |adm, weak, |adm, weak, |
inoak, ivi x | X ! x ladm, weak, |
| e X | x | x ladm, weak, |
.--.-.-------.---....-.---....--.--....--....-..-.--...-.....
iadm, ‘c'ldn. wegk, ladm, str, ladm, ste, '.d.n str, |
iste, Ivi x ‘adm, str., ladm, gtr, ladm, gtr, |
] i~ x | x | X lagm, s¢r, |
.-.-----.---.--.-...--.-.....-....-.-----.----.-..-..........
Iwoak, I&jugm, weak, ladm, str, |weak. cont, |weak, gont,|
lcont, Ivi x ladm, str, Iweak, cont,|weak, gont,|
| "l X '.dM. stre. |“..ko eo"t.".‘k. 0001.‘
lcongt, i&lagm, wegk, |adm, str, Iweak. cont,l|const, |
! Iviadm, weak, tsdm, str, |weak, cont,|const, |
| l=lagm, weak, ladm, ste, |weak, cont,lconst, |

.-..----.--—-.--..--.-.--.-.---.-.---.--.-..-...-..-.-...-..6
13, 7Tabie for =, Vv, and 3,
Al| the conditions are w,r,t, Xx,

{f x and 7 are 1dentical then YyA and 3ys are constant w,r.t, X,

| A ! =A ' VyA } ya |
' ' l !..---------..--..-.-.-.l
| | | IIn genera| |A: monotonel
...-'--.--.---o..-.-.-----------Q-.....-...-...-..-......-..0
laom, weak, | x ladm, woeak, | x ladm, g¢r, |
-..--------..-.-. .---’---....----...-..-'---.-.--..--........
jaam, gtr, | x ladm, str, | X ladm, gtr, |
.....‘-...-..-........-.........'..........-.-.-.--..---.-..-
Iwoak, cont,iweak. cont,ladm, str, | x Iweak, gont,|
.‘.-..------.---...’.-.-.-....-.'-....----.-.-.--.-..........
leonst, {congt, leonst, Jeconsgt, lcongt, |
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6,2 Example of formula that admits Induotion

YuF(x,y) I weakly continvous |f F(x,y) |s antiemonotone and
admits Induotion gtrongly w.r,t, ¥,

For, VaF(x,y) 1o a tautojogy of =3Ix~F(X,Y¥). Suppose Fix,y)
Is anti=monotons and admits indyction sgrongly w,r.t, Yo =F(X,¥) I
monotone, 80 that ~F(x,y) admite Induction strongly bY thearem 3, 4a,
Then F(X,Y) |s weakly continuoys by theorem 4,8, s0 that IxF(x,¥) ls
weak!y econtinuous by theorem 5,40, Thus <IxFix,y) |9 weakly
eontinuous by theorem 4,6, (Ses tables of 6,1)

We can check this rosult by a direct proof as follows,

Proof?, Cease 1) Suppoee

limgup YxFix,Y) & Fo 1,000 |Im YuFix,Y) = F,
Then there exists M g,t,

YxF{x,YM) s F,
80 that there g gome 8 8,%.

F(a,YM) s F,
By antismonotonicity,

F(a,sup Y) s F,

g0 that
VYxFix,sup Y) s F,

Cage 1) Suppose

jimoup YuF(x,Y) s T,
Then,
|imgup Fla,v) = ¥ each &y

50 that

F(a,¥n) = T for every n, etch a,
'.'..
Itm F(n,Y) s T,

(Otherewige limgup F(a,Y) s F Dby anti=~monotonielity,) B8y strong
admissidl|ity,

F(a,Bup ¥) =« ¢ sach a»
80 that
vxF(x,sup Y) o 7,
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? Transiution of LCF Inte FirsteOrder Logic of Typed Theorles

7.1 Axlomatization

In order to axjomatize LCF, flilrst we need to extend the
syntax of terms sSo as to Incliude A-expressions as foliows,

85, If ¢t is an ao=term and x iS &8 Roevarjable, then ixt |9 a
(Poeso)o=term, Any occurrence of x In J\xt |8 not free,

The corresponding Interpretation Is as fo|lows,

05, I1f ¢t is Axulx]) and x is a Ho-variabie, ulal must be a ologed
ag-term for each No=-name & g0 that ,(ulal)e¢Dao, for SOme ®0, WO |Ot
et be the fyngtlon which sends sach rsa€DFo0 onto e(ulal), Suah a
function is known to be continuous(Cid, 71,

Renark, Thne proof of contlinuity of the fungtions represented by
\eexpregsions, namgly <he terms [nvojving the operator )\, requires
inductlion on the structure of terms, The case that sup De’g do not
exist in general has been treated by R, Milinep,

we |introduge an Jrdered base type denoted py Bo, three
Bo-constants J, TRUE, and FALSE, and, a (Bo=®g+@g-eg)o~constant 2 and
an (a,8)epredicate ¢ for ®ach &,

D[Bo) congigty of thres elements, TRUte and FALSEe Dbeling

Incomparable, Hergafter we UsSe tne same symdbol ¢to denote a
Boeconstant and “he teutn valye represented by It,

3Ctiusv), namgly ((3(L))Cud)(v) roads "1f t then y eligse "
and is written as tau,v usually, We (et adb,c be 0, b, and ¢, If a Is
D, TRUE, and FALSE, respectiveiy, for esach a¢go, be¢D%0, and c¢c¢D®0,
This function I3 continyous(idl,

xSy representg thes order relation discussed In ¢the oprevigus
gsectiong, mathematically, Intuitively, however, xSy Means that y Is
wgefinec™ more than or gs much as x, %20 read *x is undefined,” 1f «x
and ¥y are functions, this means y is an extenglion of x as function,

We give the following non=|0glcaj axlioms, An arbitrary
ternm with voids can be substituted In place of tC ), provided that
the variable designated dy x does not occur free (n that term, tex)
and t(Y) agenote the teorms obtalned from It by substituting arbitrary
variaDles designated by x and y, regpectively, in place of its volds,
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reflexivity,

antisymeetry,

transitivity,

extenslionality,

monotonlicity.

Nonjoglcal axions

xExX,

xSy & ySx < xsy,

xsy < a8y,

x€y & y$Z < xSZ,

vZixtz)<y(z)) » xSy,
x<7 =+ x(TIsytz},

xSy < 2({x)S2lYy)

miniral ejoments,

truth vailyes,

conacitionals,

js=corversion,

O¢sx,

0(”’50.

xz0 v xsTRUL v xsFA|SE

.O‘YRUEO
‘O‘F‘LSEI
«~TRYEsFALSE,

O>x,y = 0O,

TRUE:IOY s X,

FALSEax,y = V¥,

(Axelxnd)(y)selyd,
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7.2 Adeguacy

We need to see that aill the inference ruies In LCF oan be
adequately expressed In tha peregent caleculus In the form of theorenms
or cerived rules, which means that we do not fose anything by
changing the loglc, In other words, we acre dealing with an
extension of LCF in that we can prove a theorem A In the new caloulus
1f A Is a theaorem in LCF, and, moreover, we can use any rule of LCF
in the present calculus, We have oniy to examine those rules that are
nslther of the nature of propositionai caiculus nor expregsed as one
of the logleal or ngnjogical axionms,

Ji, abgtraction ruje (LCFI,
tla] s ulal

Axelx) § Mxylxd
Derjvat on,

t(al s ula)
acosoescasscocavemoonrwn A-conversion (and equajity)
Axt(xl(a) S Axu(x)(a)
esesemscnccannnnccccsenscensens (2D Yeintroduction
VyC(axt(x))(y) & (Axulx))(y))
P T TT I I T L LR YL Y L L Ll L ddad i CKtCHl|°ﬂl||t¥

MeCx) $ Axulx]

J2, furction rule (LCF).
)

Axy(n) g ¥
Cerivation,
(Axy(x))(z) = y(2) A=converslion
PP YL T L X Y T 2 <Z> '.lﬂtfoquct"ﬂ
v2ztiaxyi{x))(z) = yl2))
YT YT P T L L Y ] .lt.ﬂ."nl'lt’

Axyl(x) = ¥y

J3, cases rule (LCF),

(t20)  (tsTRUE)  (tsFALSE)
A A A

ceronerTeventenvrsabeserssnse

A
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Derivation,

(t29)  (t3TRYE)  (tsFALSE)
ts0 v tsTRUE v tsFALSE A A A

.-......--.--.-..-o.-...----o-----------..--..-.- V..' :n'n.t;'n

A (twige)

J&, Inouctlion rule (LCF), It suffices to show that any conjunction
of lcf awffs admits induction syntacticaily in the sense of section
6.1, tor LCF is a formal system that carrles out relativized
deduction for thegse gentences, Each tef awff adnits !nduction
strongly w,r,t, any varjable (tad|e 11, 6,1) sudjJect to the type
comformity, So doces any conjunctlun of them (tabie 12, 6.1),

7.3 txampie taken from proof of compller cOrrectness

The following example (s taken from an FLTe|ike proof of
McCarthy=pPainter’s theorem(5], The proof of this theorem In (CF s
discussed in (8] and (131),

we presudpose there are tnhree types called 1languagel,
janguage?, and the meaning soace, These need n0t be bagse types, in
particular the megning space can Do the type (states)e<(states),
Nemely the meaning space Is the set of partial functiong of (states)
Into (tsel|f, A conceptual compiisr carries out a transiation of
fanguagel Into [anguage2, an expression x In languagel being mapped
onto obj(x), He negd not assume caontinuity of the meaning space and
function obj for the present argument, wnich is, however, not an
important polnt, ~e use the foljo#Ing constants, each of them belng
either an Indivigua! constant or a function in the usual sense, The
aster isked constants are assumed to have beon 3Jliven apprepriate
axiors,

constant tyoe comment

isconsc o (1angyagel-bodo tsconst(9)sTRUE,

isvar . ({1eangyagel«do)lo lsvar(a)=TQUE,

lsexo (tangyagei«do)o Isexp((8+a)e(9+d))mTRyE.
arql ) (languagel<langyageilo ardl((8ea)e(9eb))oB%n,
aro2 ] (languagel-ianguageldo arg2(8+a)sa,

obj ) languagel~ianguage?

meani ° languageiemeaning space

meArc . language2=+meaning space

We LSO 2 (languagel, lanjuage2)=predicate Correct(x,y) to mean y Is a
correct object prooram for expression x. correct(x,y) Is not
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eontinuous In generg!, beacausse It Is usuaily gefined by an axiom ||ke
(Ax,1) VxVy(Coprectix,y) = meani(x)asmean2(y)), (®)
The function isexp (s deflned by the fojiowing axiom,

tAx,2) lsexosMin Xf Ax(lscongt(x)aTRUE, (isvar{x)aTRUE,
(f(.rgl(x)):(f(.rgZ(x))=TRuE.FALsE)oFALsE)’).

The theorem we want to prove |s
(1) Yx(i{sexp(x)3TRUE <« Correctix,objix))),

Correct(x,obJ(x)) {9, however, not sufflcient as an (nductlion
hypothesis in genergl, so that we prove first a formula of the form

(2) Yx(lsexp(x)STRUE < A),

vsually, where A Ig the conjunction of a certain generalization of

Correct(x,0Dj(Xx)) and additional conditionsg pecullar to fadh
compliina aigorithm, More concretei|y, we sShall consider a compliar
which works with a coynter, n, Indicating that <the addresses Wwheose
mneronic names are TS(1)s ... ¢+ TS(n) are occupied as temporary
storages, We defing the foliowing constants, the iast three related
to the loading or gljocation, The set of Integers, or addresses, |s
a base type, varsgno(x) Is the number of digstinct variables oceurring
In x, varnol(z,x) dgnotes some numbsring of suech variab|es,

congtant type comnent

comp | . (languagel, integers)<language?

TS integerseinteqers

varno . (languagel, languagsl)=integers varno(a, (8eaj)e(Ped))al,
vargno . languageleintegers varsno((8ea)e(9eb))a2,
toc (languagel, languagel)=integers

In this cese, oBJ(x) |s defind by the following axiom,

(Ax,3) Yx(obj(x)scompilx,8d)),

A typicel form of A (g

3) Ynin2@ < Correctix,compi(x,n)) & Unaffected(x,n,compli(x,n))),

where Uraffected is a (languadel,integers, |anguage2)=predicate s, t,
Unaffected(x,n,y) meang the obJject program y does not destroy the
gontents of the storages corresponding to the prooram varlabdles
eccurrirg in the soyrce program x or any of TS(L), ,,. o, TS(N),

&) The reacer may recal! that = means loQical sguivalenge, whije »

equality [n the strong sense, that Is, = In LCF,
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I1f we make the adiresses adbsolute by the Dejow sxlom, whlgh
corresponds to a oparticular loading obviously, the object program
becores asg flig, 1 below, Occur(z,x) reads 2 occurs in x,

(Ax, @) Vsz(lsvar(:)arnuc~0ccur(z.x)oloe(z.u)-v.rno(z.x)).

vxV¥nl|oc(TSin))svargnoixien),

comp | ((Bea)*(9¢D),n) memory Mmap

(lﬂ'tructlon’ (mn.mon'cs) evPcavowdeoeeentacereonaPed
YT XL Y X X A4 d L L L L LA L Rl lﬂ |lceullu|ltﬂl' '
Ll 7] '-.-.---.--..o.-........|
(313 ned TS(Nne}) 12 1] |
Ll 7] '-.o-.---.-.--.-.-.-.-'.‘
AUD 2 ® 3 ITS(1) |
s10 ned 15(ne2) epec ver e
Ll n+J3 TS(ne}y) Ine2 17S¢n) |
ADD ned TS(H*Z) '.-.--..a.--.--..--.--..'
Ined 1 TS(nel) |
|ned {TSine2) |
Let nsd to get 0pj((Beg)e(9ep)), |eeescvcsscnceconnccocss|

fig, 1 Example of objcet program
and memdry map

Let ACx] genote (3) hersafter, We note that nelther lsexp
nor n occurs free in AlxJ, Then, the formula (2) aedmits |lcf
jnduction w,r,t, "igexp™ as follows,

isexp(x)sTRUE weak, cont, w,r,t, lsexpl
ACx) congt, w,r,t, lsexp;
isexp(x)STRUE « Alx) weak, cont, w.r,t, lssxpl
Yx(isexp(x)sTRYE < A(xJ) adm, str, w.r.t, (genp,

(See tables in gection 6.1,)
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Thys we can iInfer (2) feom (4) and (5) pejow,
te) Yx(0(x)sTRUE < Alx]),

(5) Yx(Ff(X)ETRUE « AlX]) o=

vx((isconati{x)>TRUE, (Isvar(x)aTRUE,
(fcargl(x))a(f(arg2(x))aTRUE,
FALSE).FALSE)))STRUE < ALX)),

we csn improve the readability by the following
consideration, Let p be an (%«Bo)etsrm, Then we (et p and ~“p stand
for the formul|as p=TRUE and psFALSE, respectively, This causes no

comfusicn becauss of the syntax we empioyed, ODviousl|y
p v "p
i{s not va)id, wnije pvep ia, We notice the rejationship
(p>gq,r) = p&a v “pér, (e)
which Is provable in FLY, since this formula Is an abbreviation of

(p3q,r)STRUE = p=TRUE $ a=TRUE v p3FALSE & r®TRUE,

Thus we can rewrite (4; and (5) as follows,
(4’) ¥Yx(0(x) ~ ALx]),

(5) Yx(f(x) =« A(x]) =e

vx(|sconsti(x)visvar(x}v-igconst(x)& " isvar(x)
& flargl(x)i8 f(argdi(x)) = Alx1),

1t must ba noted that there are some sybstitutes {n LCF for
forrulas Ilke (1)-(4), <thouygh <these formyias are nOt a|lowed as
lsgitimate formuias in it and the Interpretation becomes different,
By the deduction theorer In first=order |0QiCc we can also expresd the
sentence (5’) ty a formyla of FLT, replacing =< by < and binding f by
yniversal quantifier, obtaining

5°) VELYX(fix) « ACx}) =
Yx(|secontst(x) v Isvar(x) v “|gconsti(x? &
“tsvapix) & flarglix)) & flarg2(x)) « ACX))),

For such a formula there seem to be no natural substitutes In the
forn of LCF formuiag,

) 1t is a |ittie interesting, and also wuseful, that this oid
relatlionship still holds In a calculus that Includes the undefined
truth Vl'u.o See, [ R Y [2,1,0

38



Discusglions

‘The welgep hag been motivated toward the study described In
this paper through an attempt to transiate his formal sYysStom
representing the eayuivalence of Algolelike statementl2, 3] Into LCF,
For that puUrpose having some predicate calcujus=|lke faclility seems
to be egsentlial, for we reed to express Implication between 3astrong
equivalence In the form of formula,

From the writer’s paing of view, the following are among the
possidle advantages of having some predicate calculus=]lke things
within logic for computable funcxions,

1, (nuran engineering) In not a few cases, the sonventional logleal

operators mMake the welting and understanding of descriptions easler,
Besldes, many people are famiilar With expressions and derlvation In
predicate calculus, egpeclally, of flest-order,

2, t(unaeplying thegrles) In the practical fleld of apollcation of

such a loglc, for Ingtance proving correctness of compllers, we have
to handis underiying theorles whoge representations In oredlcate
calculus seem t0 be natura!, |lke ejementary set theory, We do not
care |f some of the sets Involved in our proof are not computable or
continuous, even I# ¢hey might be In fact computable, There aro also
thecriag of equivalence and correctness of programs which are rolaced
to predicate cajculys,

3, (mega=theoremg) There wll| be many facts sbout the obJects of LCF
that can be stated on|y in the form of meta=theorems of LcF while
significant portion of them could be stated as <theoroms In an
extondeg leglc, Then handiing derived rules and applying already
proved theorems wl|| become more convenlient,

Obviously thege desirable properties will not be obtained
before considepable experiments Moreover ther® myst b©S some
compromise, For Instance, If we wuse entire classical oredliogte
calculus as In the present paper, We ar® out of the LCFellke wopld
that consists of so|e(|y continuous functions, losing some neatness of
the forra|ism and relative simp(lelty of Implementation, tmployling
second or higher order predicate caloulus might glve us more
compiexity as weli as power,

It must be noted that J. McCarthy(4) sugoested that In some
generalization of Sco¢t’s loale using predicate calculus we ghould De
able to Drove the contlinuity of fungtions, It seems thet FLT ls
caPable of doing thyt in splte af the limitgtion thet no oredicete
variables are allgwed, for we have quantiflers ranoing over tyged
sets in effect, A fixedepolint inductlion based mainiy on monotonicity
within second-order predicate calculus has been discussed by O,
Plrkt’)o

39



ACknowledgements

The writer gcknow|edges J, McCarthy, R, Mliner, R, weyhraugh,
and R, London for stimujuting discussions, vajuable suggestions, and
hreipful comments on an eariler draft,

References

(1] Gentzen, G,, Untersuchungen uber das |ogigche Schilessen,
Mathematigche Zeitschelft, 39 (1934+9%),

(2] 1carashl, S,, An axlomatic approach to the squivalence problems
of aigorithms <vith apnlications, Reports of Computer Centre,
University of Tokyo, 1, No, 1 (1968), Alse distributed as!
Publications of Research Ingstitute for Mathematical Sclences, Kyoto
Univarsity, 8, Nos, 33, 34, Kyoto (1969), (Appeard first ast Ph, D,
Thesis, University af Tokyas 1964,)

(33 1losrasn!, S,, Semantics of Algol=!lke statements, Sympesium on
Semantics of Algorithmic Languages, Engeler, E, (ed,)s Lecture Notes
in Mathematics, 188, Springer=Ver|lag (1971),

C4) McCarthy, J., On adding quantifiers to LCF, orivate
comrunication, Stanfopead (1972),

{51 McCarthy, J, & Painter, J,, Correctness of a compiler for
arithmetic exvressions, Proceedirgs of a Symposium |[n ApB|1led
Matrematics, 19, Schwartz, J, 7, (ed,), American Mathematical Soclety
(1967,

C6] Miiner, R,s Implementation and apoilications of Scott’s logle for
computable functiong, Proceesdings of a Conference on Proving
Agssetertions about Prggrams, New Mex|co State Unlversity, SIGPLAN
Notlices 7 (1972),

€73 Mliner, Ry» private communication, Stanford (1972),

(8] Mliner, R, & wWeyhrauch, R,, Proving compl|er correctness In a

mechanizea logle, Machine ([nteilioence 7, Mighle, D, (ed,),
Eairburgh, Edinburgh yYniversity Press (1972, to appear),

(9) vrark, D,s» Fixpolnt induction and proofs of program properties,
Machine Intellligence, 5, Meltzer, B, & Mighie, D, (eds,), Edindburgh,
tdinturgh University Press (1972),

42



Cid) Scott, D., private commynication, Oxford (1969),

(11, Snoenfisid, J, R,, Mathematical L0Qglc, AddisencWegley Pubi, Co.
(1967),

(12) HWang, H,, Logic of many-gorted theorles, Journa| of Symolle
Loalc, 17, No, 2 (1952),

(13] Weyhrauch, R, & Miiner, R,, Program semantics and gorrectness
in a mechanized to9ic, Procoedinags of USA=Japan Compuyter (Conferenge,
Yokyo, (1972, to appear),

41



