
STANFORD ARTIFICIAL INTELLIGENCE PROJECT

MEMO A[M-168

STAN-CS-72-287 AD 7 4 6 1 4 6

ADMISSIBILITY OF FIXED-POINT INDUCTION IN FIRST-ORDER

LOGIC OF TYPED THEORIES

BY DDC
Clo c ILE

SHIGERU |GARASHI ll me oev weCIVIL U ES

~ D

SUPPORTED BY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
| AND

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 4&7

A

ATOa

Reproduced by pm)NATIONAL TECHNICAL prere

INFORMATION SERVICE

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORDUNIVERSITY



STANFORD ARTIFICIAL INTELLIGENCE PROJECT | MAY 19072
MEMO AlM«168

COMPUTER SCIENCE DEPARTMENT

REPORT (CS=287

AUMISSIBILITY OF FIXED=POINT INDUCTION IN FIRST«ORDER

LOGIC OF TYPED THEORIES

by

| ®)

Shigeru lgapaghl

ABSTRACT! First-order l|o0qlc Is extaundec go as to dea| with typed
theories, egpecially that of continuous ‘uncticns with
fixeo=point induction formall!zed by D, Scott, The transistion
of his formal system, or the XA caloulus=orlented system
derived ang Implemented oy R. Milner, Into this logle
amounts to adding predicate calcujus features to then,

In such a 109!c the fixedepoint Induction axioms are no
longer valid, in general, so that we characterize formulas
tor which Seottetype induction Is applicable, In terms of
syntax which gan be checked by machines automatically,

To Se pregented at the Symposium on Theoretical Programming,

Novosibirsk, August 1972,

This research was supported In part by the Advanced Research

Projects Agency of the Office of the Secretary of Defense under
Contract SU=183 and in part by the National Aeronautics and Space
Administration under Contract NSR 05-020-500.

The views and conglusions contained In this document are

those of the author and should not be interpreted as necessarily
representing the official policles, slither expressed or Implied, of
the Advanced Research Projects Agency, the National Asronaytics and
Space Agministratior, or the U, S, Government,

Reproduced n the USA, Avaliable from the Nationa| Teohnleal

Infcrmation service, springfiela, virginia 22151,

a) Acdress after 1 July 1972: Research [nstitute for Mathematical
Sciences, Kyoto University, Sakyoku, Kyoto 686, Japan,



CONTENTS

1, Introduction PI 1

2, FlregteOrder Logic of Typed Theories ceets 2

2,1 Language besos &
2,2 Interpretation e000 4
2,9 Teuth functions associated with formulas ,,,.. 4
2,4 Lo3!cal axioms and rules tee 00 A

J, Weakly Continuous Functions seers &3

4, Admissibility of Fixed=Point Induction ceees $5

5 Characterization of Predicates that

agmit Fixed=point Induction cover 2%

6, Syntax of Formulas that admit Induction ,,,.. 29

6.1 Tabjeg of inheritance of admigsibdbliity TERK 29
6.2 Cxamp|® of formula that admits Induction ,,,.. 31

7, Transiation of LCF (nto First-Order
Logie of Typed Theories PEE |

7.1 Axiomatization oP ge 060 32
(Taple of monlogical axioms; crete 33

7.2 Adequacy EE L
7,3 Example taken from proof of complier

corerOCctness epee 39 :

Discussions seven 39



Aorissinillity Of FixedePolint Induction In FirsteOrder Loslo
0f Typed Theor les

by

Shigery lgapaghli

i Introduction

D, Scott postulated a logle of typed functions combined wlth
fixed-point Inductionfi@), R, Milner modified this 'oglc Into a
forral system called LCF 30 as to handie A=expressions convenlentiy,

and implemented it in an (nteractive proof checker) Since anearly period Of this (Implementation it has peen thought thet some
pregicate calculug=|ike facli|lty may be needed for some or Other
reasons, so that in the machine version of LCF are Included a kind of
universal quantifier and Implication, the iatter being one [evel
lower than the Implication Ingcluded in the original |ogle, These
operators, however, can be used In quite a restricted manner, fOr
they are only abbreviations of jegitimate formulas In LCF, Especially
implication cannot be nested,

The writer geviged a formal means tO carey Out derivations of
a predicate calculus whose objects were typed A=oxprogslions within
LCF, which calculys included the universal quantifier as well as
usual propositiona| operators but not the existentia| quantifier,
which could not be replaced by negation and universal quantifleation
since GentZen’s intyltionistic system was used as the basis. J,
McCarthyl(4) proposed to use the full classical predicate calculus as
a super=gstructure of LCF, quantifiers ranging over LCF objects, He
suggested aso some generalization of such a system, The formal
system discussed in the present paper is In the essentials along the
last | ine, The main purpose of the present paper Is to allow
Scott=type fixed-point indugtion as much as possible in the intended
logic,

This point wi|i be explained more coOnorotely, Suppose f and ¢
are continuous partial functions, The predicate fag, where the
equality means the “strong eaual lity", I,e,, If one side Is undefined
go Is the other, 1s not continuous, But as in Scott's loglec wo gan
use fixedepoint induction In order to drove this equality, Then
what wil) happen to the following formuia which we are going to alow
in the Intended lo3ic?

Yx(f(x)sg+g(x)3sh(x)),

with the ax|om
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fzMin AfAxJ(f,x),

- being Implication In the classical sense, Min <¢he ninimaf

fixed=point of the function to which (It is prefixed, and J(f,x) a
terre In LCF, It turns out that if all the functions Invoived In the

expression J(f,x) are continuous, which condition Ig rather natural
in order tO consigep (tg fixed-point, and the range of f (sg digscreze,
like a ooolean function, then we can apply fixed-point Induction
without incurring Inconsistency, even if 9g and h are non=gontinueus
functions, In fact the continuity of 3 and h does not matter In thls
case, for fixeoepoint Indugtion Is not sound uniess the above
conditions are satigfled,

we shall give a syntactic characterization of the formujas
tor which fixed-point induction is sound, 80 that machines can cheok
autoratically whether or Not a given formuia admits application of
the inference rule corresponding to fixed-point Induction,

4 First-Order Loglc of Typed Theories

Wwe consider a kind of infipitely many=-sorted (jrsteorder
logic In the classical sensel32), The objects are Individuals In the
Jysua! sengc together with functions of Individuals or previously
defined functiong, tach type can De regarded as a sort, Only
objects are typed, and we do not consider predicate variables, the
Intendeg formal system wli| be aboveviated as FLT, we ohall
partially tollow gheenfle|d’s stylelil),

2,1 Language

Types

Al, We presuppoge that there are a number of <types galled the
"base types”, Some of the base types can be “ordered types®, Types
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are denoted by «, 0, etc,» und the ordered types are postfixed by the :
jetter “0%, (lke so, No relationships between & and 0 are assumed
if both @ and «0 happen to be base types, Types other than the Dase
types are called the "function types”,

A2, 1f ao and 8 are types, so |g 80, Both slee2+ ,,, ean and
81, 92) s.¢ +GNe3 gre used as the abbreviations of Vie(®2e( ,,,
e{anedd),, 22,

AS, {tf «0 and [Bo are types, which must be ordered types, 30 Is
(€g=00)0,

Because of this construction we can consistent|y abbreviate
ng"g excedt the outmost one, For instance, (%o<(Po+(Poefo)olo)o Is
sobreviated dy (%«f.PeB)o,

Alphaoet ,

Yne alphapet of the |[ntended formal system consists of
s-congstants and cevariabies for each type «, {e3, ese
,en)epredicates, (,e,, predicate constants, for each n=tuple (®1, ,.
,an) of types (n22), and the following logical symdols,

{[f & is a base type, an S=congtant or variadlie can be called an
individual constant oc variable, Othervwige, an @Gegongstant or
varigbie can be called gq function constant of varigble, 1% must be
noted that functions of arbitrary finite oraer appear, An (S81, ,..
,an)~predicate is an Nn argument predicate In the usua| sense, the
{=th argument being of types «i for each | (1S5iSM),

xe shall use several defined symbols whieh are standard In
foglc ag follows,

& «Vv =

The symbol <« gtands for Impilcation, and £ for logical egulvalenge,
Thus «= reang function In the text and implication {in formulas,

Terns

Bl, i1f a |s apn s=congtant, then a is an «tern, If x ls an
s-varitble, then x |s an Steen,

R2, 1t t {s an a=%term and u Is an Ga=term, then ¢tiy) Is a
R-term, t(u) cgn be algo written as (t WW), and (eCu?ilv) as
tl{uosVv)d,
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B83, [tf ¢ is an (@geso)o=term, then Min t ls an So-ternm,

B84, [t ¢ Is 3a @geterm and &¢ Ig a function types, then ¢ is an
S=¢8 pM.

| Formulas

Ci. [f ¢ and y are a=termg, then t=u (s a formula,

ce. 1f D is an (%1s «es sSn)=predicate that Is different from &,
and tl! is an Sieterm for each | (1SiSn) , then pits seo otN) ls a
formule,

cs. If A is a formula, then «A Is a formula,

C4, 1 A and § are formulas, then AvBR, ASB, and A+B are formulas,

CS. I1¢ A is a formula and x is an Sevarciable, then VxA and 3Ixa
are forxulias,

2,2 Interpretation

Wa choose a noneempty set O(®), or U@, for each base tyhe «
as the domain of Ingividuals of type @, 1f © |s an ordered Date
type, “eo assume further that DO is an ordered get (L, £) satisfying
the following congitions,

| (1) (Le. S) has the least element, (.e, inf L, Which shall be denoted

(13) (L, S$) Is an ==tndyctively ordered set in that | ls non=ompty
and every noneempty countable set X such that XsL and X Is Iinearly
ordered has sup X In L,

That L is noneemoty is a part of the standard definition of ¢the
inductively orcered set, which Is automatically satisfied In this
cose, The symbol "=* reads “omega®™ through out this paper, IN Some
case, !t can be read "aleph naught”,

Suppose Da and DB have been defimed, We (ot OD(e=B] be the
set of all the functions of D® (nto Op, If © and p are ordered typo,
we let UL(3+B)o0) pe the set of all the w=continuoyg functions
belorglng to D[®+7) together witn the order relation § defined by

so 11f f(x)Sgix) for any xele,

where the =~econtinuijty is defined as follows,
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Definition, A “sequence” X In a set | is a function of the e0t of
the positive Integers into L, Xn denoting the neath teem X(N), X
is weitteon as (Xn) gometimes, A "monotone Increasing” sequence X
in (Lo S$) 's a sequence In (L, S$) such that

X3 $ x2 £ ,,. £ Xn 8 ,,, .

f 1s "==gontinuoysg” I?f

f(sup X) 3 gqup F(X),

for any monotone increasing sequence X in (L, S$), where f(X) denotes

the set (f(x)IxgX),

Remark, tf Is ==continuous In this sense iff f(sup X) = gup ff(X)
for any countable directed set XL, (See section 3,) This property
will be called the =econtinuity, while a stronger definition of
continuity Is that f(gup X) sg sup f(X) for any directed set Xe. f Is
salac tO De "monotoneg” If! f(x)Sf(y) whenever xSY, The =econtinulity
implies the monotonicity, which can be shown as fol |ows(10],

Supcose xsy, Let X1 be x and Xn be y for any n22, 50 that X is a
monotone increasing sequence, By =econtinuity, f(sup X) = sup F(X),
But suc X = y, and f(x) S$ sup f(X), Therefore f(x) Ss f(y),

by this construction 0%0o can De shown tO satisfy the
concitions (1) and (11), so that the inductive definition works, In
fact, the function g: Deoe<Dpo such that

g(x) = 0 for any x€¢Dwo

is the (east element of D[(eo<Bo)o), and, for each asend!nd ochaln
(fn) in DCla0<P0)3), the function nh; Q®o<0Rfo that maps each element x
of Ds0 onto supiftnix)) Is sup(fnl,

With eacn a=constant a In FLY Is associated an element ae of

Dg, Nith each (gl, ,., senlepredicate p In FLY ls associated an
nary relation pe in Dei® ,.. ®Dan. Such a coj(ection Of Dg’s will De
oenoted by D, and FLT(D) wil] denote the (angyage obtained from FLT
by 80dinrg a new e=-constant, cajled a “name”, for each o/ement of os,
for each €,

A teem Is “closed” If no variables occur free In It,
Especially, a variable=froe term is closed in this gsoense, We yse
this terminology becaous® we ghall extend the gyntax of terms later
in order to axlomagize LCF, In which Axx |s a closed term, though £3
is not varladble=freg, We define an S=jindividual et for each ologed
a=tgrm t by Induction on terms,

Ci, If ¢t 1s an indalvidyal symtol, then t must be an e=constant
since t 1g closed, we let «tt be aee¢le,

5



D2. 1¢ ¢ Is u(v), then u must be a closed sep=term and v & Closed
S=toPrM, 30 that syut¢D{Ee?) and sveds, We (et s(u(v)) be eylev ),

Ds. If ¢t Is Min y, then u must be a closed (eo<sp)o=teorm, 00 that
eu 8 an =~continuoys function of type So+%g, Let f denote VU, We

let ot bg Int(xigixlax) (with resSDget to the ordering of So)» nemg lythe loagt fixed polt of 1, which Ig ghgua to Oxigt ag foliguslill,
Let f.,Nn,x denote

F0fC ,., T(X),e,)) (f occurs n times),

for each n28, Especially, f.8,x is x, Then supi{f.n,0), or
suo (ft .n.0128n<=) gtrigtiy, ls in fact Infix|{f(x)x), BY =egontinuity,

f(sup(f n,0})) = sup(f(f.n,0))
= gupl(f,.tne}),0)
gs gupl(f.n,0l18nC=)
< sup(f,n,d),

Gy wonotonicity (gee the above remark),

sup{f.n,2) < f¢lsupl(f,n,0)),

Thus

t(supi(f,n,0)) 3 syplif nD),

Namely sup(f.n,0) is a fixed point of f, (et a De an element of Do
such that f(a)sa, ince D<a, f(0)SP(g)=g, Dy monotonicity, Then, by
mathematical inauct]on. f,n,0%a for gny n, 30 that supift ,n,0)Sa, Thus
sup(ft,n,0)zinfixieix)ex},

D4, It t Is a cloged Yo=term and ®0 is not a base type, then ete
| Deg and DeocDe, sp that wTEUS,

A truth vgiye is either T or F. T means "¢tryuo™ and F
"faise”,

A tormula ig "clogsed™ If no varianies occur froo In It, We
define a truth value wa for each closed formula A In FLY(D) by
Induction on formulas, A[ J, or tL J, genotes a formula, or a term,
with voids, and Alx), or $x), results of replacing them by Xx,

£1. It A is g¢zy, then t and u must be closed s«tgrms for &
certain a, since 5, is closed, We let

eAsST (ff sezey,

£2, If A {8 PLT) «us otn) where p |s different from =, we (et

é



£3. It A is «Bs then we let

td, 1f A is BvE, then woe jot

vA3T [ff «BsT or «CaT,

ES. If A Is 3IxBCx] and x |s an sevarigbd.e, then Bla) Is closed
for cach G=name a, We (0%

vAsT (ff «(BCal)sT for some C=name a,

A "D-instance” of a formula ALx1, ,.,. ,%n] of FLT Is a closed

forrula Of the form ACaL, ,.. oan] In FLT(D), where al leo an S|=ngme
1f x| is an €levariable (1sisn), A formula A Of FLT Is "vaild® In D
If sA’3T for every Dei{ngtance A’ of A, [In particular, a ecloged
formule A of FLT 1s valid If wA=T,

2.3 Truth functions associated with formulas

To study the properties of formulas we shall consider truth
tunctions, namely functions whose values are the truth vajues T end
F, associated with formulas (In the natural manner, For the
convenience of the later description we yse the following
torrinologles,

Let x be an Sevarisble, and A(x) a formula (n which at most x

occurs free, Since Ala) Is @ closed fromula fOr each Sengme a, we
can define a function f. OD®«(T,F) that sends each ae onto the truth
value wala), f is called "the truth function determined by A and «x
In DO", of, If there is no ambiguity, "the truth function determined
by A"

Let ALxY, ,.. .%n) be a formyia in which at most var iab|og
x1, eee ’ XN, respectively of type ei, ,.,. » SN, OCCUTP free, A
“9, xi)einstance” of ALX1, sco. oXNJ In FLT is a formula (n FLT(D) of
the forme Alal, .., ,a(l=13,xl,a(1¢1), see o8N) whore al, .,. + 40 are
names of type ®1, ,.. » ®n, Thys at most xi occurs free (n formulas
that ere (Dsxl)einstances of a formula (1518Sn), Therefore each
(D,xl)=ingtance determines a truth function,

ALX1l, ++. sxn) also “determines” an n=gry truth function
olaiie .,. ©o0Le®n) « (T, F) that goends each n=tuple (ale, ,,., +An0)
onto eAlal, «cc 20N].,
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2.4 Logical axioms and rules

We shall accept the following axioms and rules for FLT,

Rule of substitution, In the bejow schemata of axioms or rules,
arbitrary varlad|eg can De substituted In place of a, x, y, 2, xi,

yi, 21d) eve + XPy yn, Ins Bng Wy ardjteley terms In p8%e of $0 wove AQNd g, an apbit,a,y Neary ppedicage in laos 0 e SON Nn, and
an arbitrary formylg [a place of A, 8, and g, subject to the
restrictions that the results of substitutions should be well=formed
foresulas and that any free Occurrence of varjadios shoujd be kept
free, On the Induction axlom are (mposed the additienal resteletion

that only those formuiag Of the form AL ) that “admit |nduet]ensyntacticaliy* are gubstituted In ojace of AL J, The effostive
definition of formuiag that admit (nductien gyntactically Is glven
in section 6,1,

Logical! axlomg

propositional axiom, ~AVA,

identity axiom, XS x, |

equality axiom, XS8y © Zsw * x(2)sylw),

X8y * Mijn x 8 Min y,

X13YL © ,0q © XNOYN © pix, ,., oXN) © PlYL, coy 0M),

gstationariness axiom, X(Min x) 3 Min x,

indyction axiom, ACOJevy(AlYy)ealx(y) ])aAlMIn x],

Rules of inference. we shal] accept all the rules In Gentzen’s
system of Natura! Deduction(i], or NJ, with the following
modification of the guantiflee~intradyction and elimination rules,
(a gegsignates a variable In thig section.)

Velntroguction rule, Yeo |imination rule,

ACa) YxACx]
CY LY I X <a)d XYXrI X J

VxA(x) Ale)
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3-introduction rule, Jeelimination rule,

(aad)

Ale) IxA(x] C
coves Soar eR PORe <a>

IxAlx) C

Restriction In the Yees|iminatlion ryis and the 3=introdustion rule,
the eilminated or Introduced bound variable, ceplacing x, must be of
the sare type a» the corresponding term, replacing ¢, In the
Ve=introgugction ruje and th Jes{imination rules the Introduced or
elirinatead bounos vyvarlagble, replacio a, must de of the game type as
the corresponding free variable (eigenvariadbie), replacing a,

<a> [Indicateg the restriction, in the original NJ, that the ]
free variagbie substituted In place of a occurs only In ¢he piaces
explicitly cesignated by a, Thus, for Instance, In the
Yelirtroouction ruie the free variable replacing a must net occur In
the formula designated by VYxALx], nor [n any assumption formula Of
that foe-myia,

AS aopearg |n the above rule we use ( ), Instead of £ 1 In
the original notation, to Indicate the assumption formuja whiah lg
not carried beyond the bar, Besides, we shal| use A ~« R gometimes,
as well as ( }), to denote that A [Ss an assumption formulas of 8, and
Al, veo +o AN ==e B11, .,, » Bn to denote a "geguent™, in the sense of
Gentzen's LK, For instance, the veo|imination rule can pe expressed
In the foilowing ways, and wa shal! use all of them In the sequel! for
the convenience of gegcription,

vegjimination rule,

(A) (8)

AvB C (

Cc

Infer C from AVB, A~<(, and Ee=«(C,

Infor P «ae C fpom P e~e AVE, A,P e+« C, and 8,P eee (C,

An Inference rule of the last form, (,0, a rule to Infer os

sequent from other segquents is calied a "refativi eg” Inference rule,
A sequent of the ‘oem AL, ,., +AMm ==2 31, ,,s Bn is “vallg In DO" jf¢
the formula A38,,.8A™ « Blv,,,vBn {is valld in 0, A refativiged
Inference rule Is "gound™ iff the consequence af the rule Is valld In

0D (as sequent) whgngver all of Its premises are valid In D, for any
D,

9



We oan treat the logical axioms In the form of Inference

rules, We ist them In the generalized forms for the practical
derivation, These ry les are derived rules actually,

propositional rule, ldentity rule,

wAVA tat

squality ruie, stationariness rule,

tsu Alt)

Alu) t(Min tisMin ¢ |

induction rule,

AfoJ Alaj=alt(a)])
POS POPP PP AO POW ITT w {a>

ACMIpn ¢]

<a> (indicates the same restriction as described above, Thus the
variable substituteg In place of a must not occur free {n AlMIn ¢],
nor In ALOJ, nor in any assumption formula of aAlMIn t),

Apparently the induction axiom, or rule, Is not acceptable
uniess some adequate restriction, [lke the one Indicated (n the rule
of subgtitution, |s (mposed on [(t, First, In order to Instantigte
this axjom by a namg b, substituting b In piace 0f XxX, bb must De
wecontinruous SO that Scottetype fixed point Induction makes sense,
which restriction ig satisfied In the present formalism, for Min b Is
not a weli=formed term otherwise, Second, even (f MIn b represents an
wecontinuous function of an appropriate type, there exist many
formulas which make this axlom not valid, The maln Durpese of this
caper Is to characterize those formulas for wnich the Induction axlom
Is vallig, so that they admit the application of this rule,

10



3 Weakly Continyous Functions

The validiey of the induction axiom pefjects the properties
of truth functions psgociated with formulas of FLT, The flest such
property wlll ne called the weak continuity, Jt must be noted that
most of the truth functions determined oy formulas of FLT are ot
continuous, ghg wg gre Going to e8%3p!ish somes criterly for sugh
non~continuous predicates to make the jnductlion axiom valld, The
weak continuity can be defined for functions, sO that we discuss this
oroperty In general,

Through out this section, | denotes an ==indugtively ordered

pet with the leagt geleament O (see section 2,2), and LL’ a compiete
fattice, Namely, L* is an opaered set such that Inf X and sup X
exist for any subset X of L’, O and | shall denote ths |sast siament
of L*, or Inf L*, and the greatest element of |’, or suo L',
respectively,

Let X bs a sequence In LL’, We conglidaer the monotone

increasing sequence Y defined by Yn s Infi(Xmim2n), and the monotone
decreasing sequence 2 defined by 2n = gup(xmim2n), which are
wel l=def?ined by compiteteness, Then, by completeness again, sue Y and
Inf 2 exist, which are called "{iminf X" and “|imsup X" respectively,

3,1 Definition, A sequence X {im ag complete lattice L’ Is
“eornvergent" (ff |

imine X = limsuo X,

In such a case we define [I"m X DY

lim X 2 (imlnf X

2 |imsup X.

A ssquence X in an ordered set Is a “quasi-ascending chain” If? It ls
an ascending chain ge there exists a number M s,¢,

X1 € X2 € ,,, € XM 2 X(M+1) = ,,, = X(Mén) 5 ,,, ‘

In the Jatter case X Is sald to be "semi=finite”,

3,2 Proposition, Let f De & function st, 7: Le’, f(X), [,8, ¢the
sequence (f(Xnl)l, |g convergent for any seni=~finite X, and

lim f(X) 8 f(gup XJ),

Proof, Apparently

11



im f(X) = (XM) and XM = sup X,

where M satisfies the condition of definition 3,2,

3,3 Propositicn, Let ff be a function s.t, ff: Le’, f ls

wecontinuous Iff

f(gup X) = sup F(X),

for any countable directed sot X s.¢. XC,

Proof, The sufficiency ts trivial, We Drove the necessity.

Let X be a countable directed set s5,t, XSL, Thon we Can choose a |
quas i=agcending chain Y s,t, YeXx and Y is cofinal In X so that a

sup Y 3 sup X,

Suppose f ig ==continyous, Then, by ==continuity, |

fisup Y) = sup f(Y), |
But

sup f(Y) S sup fiX),
gince

Y ¢ X,

Thus
f(syp X) s f(sup Y)

s sup ¢(Y)
€ sup ¢(X),

By ronotonicity (gee the remark in sagtion 2,2),

f(x) € tigsup X) for any x¢X,

since

x £ syp X.
$0 that

sup f(X) § f(sup X),
Therefore

f(syn X) s sup F(X),

3,4 Definition, Let | De an w=inductively ordered get, and L’ a
compiete lattice, ¢¢: LL’ is "waakly continuous” (f¢

f(syp X) = Jim F(X),

for every ascending chain X In L. (This relationship implies that (Im

F(X) axists, for the left hand side always exists,)

3.5 Proposition, f Ig weakly continuous (f¢

f(syp X) = (im F(X)
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for any quasi=ascending chain X,

Proof, Apparent from proposition 3,2,

3,6 Theoren, f |s =~continuous [ff ff Is weakly continuous and
monotone,

Proof, necessity: Suppose f is =e-gontinuous, Then f |g monotone,
s0 that for any agcending chain X

fLX1) S 1(X2) € 4» ]

Therefore

sup f(X) 8 (im F(X),

dy ==continulity,
f(syp X) s sup F(X),

so that

fisyp X) = |im £(X),

gufficlency! Let X be an quasi-ascending chain, We have to show

f(syp X) = sup f(X2,

By weak contizulty,

f(syp X) 8 lim F(X),

an!, by monotonicity,

fim €(X) = sup f(X),

so that

fi(syp X) s sup f(X),

3,7 Theorem, f |s weakly continuous iff for any ==continuous
function g: LeL the following relationship holds,

f(Min g) 3 |im f(g,n,0},

where Min § denotes the least fixed point of J, i,0, Infix|o(x)zx),
which can be expressed as sup(g,n,0) (sees section 2,2,)

We need the following lemma In order to prove this theorem,

3.8 Lerma, Let X be a quasieagending chain In L, Then there oxigts
an ==continuous function f: L=L s,t,

f.n,0 = Xn for any n,

13



Proof of |emma, The foljowing construction suffices,

f(x) ss Xi, xs0}

X(nel), x23 and xSX| does not hold for any |
s,t, 1¢n=1, and xSXn holds (n2l)}

sup X, x$Xn does not hold for any n,

(This construction wag given by R. Mliner,)

Proof of theorem 3,7, necessity’ Suppose 9 is ==continuous, then

Min g = sup{o,n,0)},

(g,n.U} is a quasi-gscending chain, so that by weak continylty |
f(Min g) = iim f(g,n,0),

sufficiency: Let x be a aguasieascending chain In (, Then by |emma
3.8 there exigts an =econtinydug function 9 s,t, |

o,n,0 3 Xn,

Assure

f(qin a) 8 (im f(g,n,0?,
We note that

Min g = sup X

and

im f({g,n,0) 8 Jim f(X),
Therefore

f(syp X) = 1im (XI),

3.9 Theorem, ff Is weak|y continuous ff |
I tiagup F(X) = fisup X) '

for every ascending chaln X in L,

Proof, The necessity Is trivial, so that we prove the sufficiency,
Let X bs an ascending chain in LL. We orove that

imine ¢£(X) 3 {imsup F(X)

foliows the latter condition of the theorem, Let a and b denote
fimint ¢(x) and limgup f(X)s» regpecCtively, We prove agh, We ean
choose a subsequence Y of X s8.%,

lim f(Y) = a,

since a is Iiminf f(X), Then, by definition,

|imgup f(Y) 3 a,

14



Ne note that ¥ Is ajso an ascending chain In (|, so that

limgup FLY) 3 f(sup Y)

by the supposition of the theorem, Since Y Ig cofinal In X,

sup Y = s.tp X,

so that

f(syo Y) 8 flsup X),
But

f(syp X) s Db

agaln by tne supposition of the theorem, Thus

Iimgyp f(Y) = 0b,

Namely.

a = h,

4 AdmisgtiDility of Fixed-Point I[nguction

we shall! discuss properties of Dredicates, For ¢the
convenience of mathematical description we introduce the ordering of
truth values such ag

F £7,

This oragering is outside our |oglo, and it must be noted that the

concept of weak continuity of predicates as well as that of
admissipliity of indugtion Introduced below can be stated without
referring to this ordering (see 4,6 Delow), though It makes some
argurents more understandable, |

Since we considered total predicates when we Interpreted
forvuilas, the concept of monotonicity or =epgontinuity has [ittle
importance as 10n9 as wo assume T and F are not comparable with each
other, For, then, the only monotone or continuous predicates are
the I(dentically true predicate and the identically false one, Ne

shal) use, hawever, the concepts of mgnotoniclity and continuity of
1%



predicates with respect to the above ordering, These concepts are
mainly retated to the existential avantifier,

4,1 Definition, Let TO denote the complete two element Ilattios,
Namely TO consists of O and |, while 0 Ss |, (Y0 oan be refered asa TB~space whose gpgn sets are @=( }, (|), and (0,1), which Is also a

continuous lattice, ag discussed by D, Scott,) We et § vee thiejattice to represent the truth values, 0 and | corresponding to fF,
t,o, faise , and 7, 1,0, true, respectively, so that |

4,2 Definition, A "truth tunction” on L Is a function s,t,

LeTO, |

a) A truth function f "admits Induction weakly” Ra

f(g.,n.0) = T for every n (n22) (mplieg f(Min gg) so T,

Especially, f(x) admits induction weakly if (0) = F,
Bb) A truth function f on L "admits (nduction strongly” {ee

lim t(g,n,0) s T Impijeg f(Min g) = T,

4,3 Proposition, Let X Adendote an ascending chaln in L, and f a truth
function on L,

a) f adeits Induction weakly (ff

f(Xn) = T for every n (0sSn) implies f(gup X) = T, |

for any X,

p) f adrits Induction strongly If f admits Induction weak|y and (0)
s T.,

¢c) The following congltions gre equivgignt to egqch Other,
(1) f admits induction strongly,

SRR jim f(X) € flgup X? for any acsending chain X for whieh
jim LX) exists,

SEER limsup F(X) € f(sup X) for any ascending chain X,
Proof, a) similar to the proof of theoren 3.7 using lemma 3,8,
b) Suppose

fim f(X) 3 7,

Ther

f(Xn) = T ¢or almost every n, (ses 4,6)

so that we can choose a quasieagcending sudbchaln Ym of X s,¢,
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YL = 0 and f(ym) 2 T for every Wm,

By weak aagmissibilicy,

f(sup Y) = 7,

By cofinallity,

f(sup X) 8 T,

c) we prove that (1) Implies (111), the rest being left to the
reacodr, Suppose

limsup f(x) S f(sup X),

1¢ limgup F(X) = F, then |im f(X) = F, s0 that

vim f(X) § f(gup X).

Suppose
imsyup f(x) 3 T,

Then we can choose an ascending subchain ¥ of X s,t.

lim (YY) = *,

By coflinmaillity of Y in Xo

sup Y = syp X,

and, Oy strong admigsibility,

f(sup YY) = 7,

Thus

|imgup f(x) = f(gup X),

4,5 Theoren, Of the following conditions the ubPper ONS A&FS
impliec by the |Oower ones,

(i) f admits induction weakly,

(ii) f admits induction strongly,
(iil) f ls weakly continuous,
(lv) tf ig ==goOntinyous,

Proof, We shall see that (iil) implies (li), the rest having Deen
proved, Sunpose ? |s weakly continuous, and iim f¢(X) oxigts, Then

lim £(X) 5 ¢{gup X)o

by weak continuity,
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4,6 Remark, AS noted In the beginning, the congepts of admissibility
of induction and weak continuity of truth functions are Independant
of the ordering of truth vaiues, for we can regard the retationshile

tim f¢a,n,0) = 7

simply as stating

fig,n.0) = 7 for almost avery n,

because of the finiteness (thence discretensyy, see 5,4) of T0, Thus
these conditions cen be restated as fol jows,

a) A teyuth function f admits induction weakly itf

f(g.,n,0) = T for every n (n2]) implies (Min g) = 7,

b) f aorits Induction strongly iff

ftog,n,0) atmogt every nN implies (Min gg} = T,

ce) f is weakly continyous ff

f(g,n.0) = #£i{MIn Q) almost every n,

4,7 Definition, Let x be an acevariadie, and A a formula in which at
most X occurs free, A "agmits induction weakly wW,r,t, x In OQ" |O¢
the truth function determined by A and x in 0 admits Induction
weakly, If A is an arbitrary tarmula, A "admits induction weakly
woe ty, Xx In 0D" iff every (Dox)=instance of A admits Induction weakly,

A "admits induction weakly w,r,t, x% (11 A admits Induction
weakly in any 0D,

Jie define the concepts that A "admits Induction strongly
w,r,ts Xx (in D)" and that 4A is “weakly continuous In x (In D)*
simitariy,

4,8 Theorem, The indyction axiom ACO) =vy(ACYI<AlX(y)))=AlMIn x] I»
valld I1¢ A admits induction weakly w,r,t, X,

Proof, 40 prove the sufficiency flest, sufficlency: Let D be
any collection of Dats, BLOJ+¥ytBlyleBlaly)))«BlMin a] be a
Deinstance of the indyction axiom, so that at most y ocoyrs frees In
Blyds Let Fix) 4<enate the truth function determined by Bix], and
#(x) the function determined by atx), i.,0,, ea, BCX] adnits
Induction weakly in D because of the assumption that Alx) does, Thus

F(t.,n,0) for any n2d implies F(Min 0),
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while Min f Ig (Min a), Assume the truth values of B[O) end
Vy(6Cy)ebla(y))) are both T, Then

F(U)2T,

and
F(D)aT imglijeg F(f(D))=T for any 0,

Therefore we have

F(T,n,0)sT every nad,

so that, by weak admigsibility of F(x),

F(MIn 37,

Therefore the truth value of B(MIn al le T, Thus
BLOJ=YY(BLYyl-blm(y)])eBlMINn a) Is valld In D. Hemnos the Industion
axiom lg valid In OD,

necessity: He use the same notations as above, BY definition of
valliolty any D=ingtgnge of the axiom must be valid, Thegorefore if the
truth values of 6&r0) and vyiBCy)<Blatyl)])) are both T, [404
F(f.n,0)8T avery n2(, the truth values of BrMin a3 is T,. Name | y

4,9 vetinition, ALx] “aomitg relativizZed Induction w,p,t, x* ff
A(x) makes the Induction rule sound, Namely, the rule obtained from
the schema of Induction rules bY substituting ACx) In places of the
meta=-variadie A Ig goynd,

4,18 Theorem, ACx) admits relativizeo induction If ACx] admits
induction weakly,

Proof, We nave to prove the soundness of the foljowing rule,

P eee A[O] Afa)) P ==< A(t(a)]
ppp SPY LT LLL LL LLL LLL A ddd add hha {a>

P wen ACMI pn t)

Let C denote C1 & .,, & Cm where P Is Cy .., s Cm, The rule la
sound If (CeAL0))a(CoVy(alyJoaltiy))))<(Coalnin t)) (sg wvalld by
definition, Therefore we shall prove for any LD, every Delnstance of
this formula, say (E«BL0J)=(E-Vy(BLy)+BLD(y))))(EB(MIn lle ls
valid, where 0 13 an arbitrary varlab|e=frese term of the same type as
t, 1.0, (@oemp)o for some 80, Obvious|y we have only tO prove for the
case that b Is a nane, For, If b Is not a name, there |s some Name Db’
s.t. obsed’, and tha validity can be establighed easily using this
fact and the cage that b is a name, (€6t Fix) be the truth fynetiendetermined oy B(x), and f he «sb, then the following condition |e
gufficlent,
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If sEsT, F(O)sT, and, #EsT ang F(cisT imply F(ft(e))sT for any
ceDso, then F(Min ¢)sT,

Min t Is wiMin p) by dafinition, Assume the premise of the above
gonalitlon, Then by (ndyction,

F¢f,n,0)=T every no.

By the assumption that A(x] admits induction weakly, so does B(x], so
that Fly) admits induction yeak|y, Therefore

F(Min F237,

4,11 Theorem, Ax) admits lcf induction if Atxd admits relativizedinguction, where py Icf Indugtion (s meant the relativised rule In
LCF to infer ACy]) from yaMin x, ALO], and Ala) =< A(x(®)],
Proof, ue see that lcf Induction rule Is a derived rule,

ysMin x, P eee A(Q]) Alal, ysMin x, P ==e Alx(s)]
Ippaper r LL LEE DLL LL Al blob dd dade ddedded dint <A> Indyation

ysHin x, P o=e AMIN x)
ppp rr Pep PY LL LE LIL LLL LLL Ll dda idedebaiadat ditt egua|lty

ysMin x, P =e Aly)

4.12 Corollary, Alx] admits (cf Induction If A(x] admits Induction
woak iy,
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S Characterization of Predicates that agmit FixedePolint

Inguction

We Study what kind of formuliag adnit Induction, For the
rencabliity of proofs we shall dlscuss them in terms of truth
functions that have one argument designated by x, The theorems below

caM Db 80 gpplleg to every instance of formujy thet the results wii)
be regarded as statements about farmujas in genera! by definition
(seo 4,7,) For <thig nurpose logical combinators below should be
Jyndersteecd as functions or functionals whose values are ¥ or fF, For

Instance VyfF(x,y) denotes the truth function determined by VyA(x,y)
where F(x,y}! Is ¢the truth function determined by ACX,¥y] in D, The
relation § Is not a logical symbol of FLT, but It will be used as a
preclicate later on in connection with LCF,

5,1 Theorem, The relationship f(x) S$ g(x) admits Induction strongly
If f(x) and g(x) arg w~gontinyous,

Proof, Let Fix) danote the corresponding truth function, |,e,,

F(x) = 7 fix) $$ gix)}

F otherwlge,

Let X be an ascending chaln in L., Suppose

lim F(X) 8 7,

80 that

(Xn) S 9(Xn) for aimost every Nn,

Then, by monotanicity of g,

fi{Xn) £ g(syp X) for a|mosSt every n,

Therefore we can choose an ascending subchalir vv of X s8,¢,

fcym) S a(syp X) for every m,

Thus

sup f(Y) § gigup X).

But, by w=econtinuity of f,

fisup Y) = gup FLY),

so that

fi(osup Y) € glisup X).,

By coflrajlity of Y in X,

sub Y 3 ayo X,
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Thus

fisup X) 2 glsup XJ,
{e@or

§5.2 Remark, fix) € glx), ? and g being continuous, Is not aiways
weakly continuous, (the fact that (tt (ss not e=continuous being
wo! leknpwn,) Let N’ be the natural numbers with the Infinity =
(omega) ordered In ¢hp usual gonse, Define ff, gi N’eN’ by

fix) = x4,

g(x) ®& x,

Let X be s.%.

Xn 3s n each n g.t, 18n(~,

Then

F(Xn) 5 F each n,

but

5.3 Theorem, Lot f Dg an =econtinuous function Into a dliserete
lattio® L’, ¢ an glgment of LL, Then the relationship

f(r)sg

ils woak|y continuous,

Proof, Let X Oe an agcending chain In the aomalin of f, By theorem

S,1, t(xnlizg aimost every n Impjlles f(SuUD X)Sg, SUPPOSE

f(Xn)®o0 almost every n,

We have to prove

f(syp X)zc

Let Yn denote f(Xn) for seach n, By monotonicity of f,

asYls ..., YnsyYi(n+l)s o0e sb,

where © denotes sud Y, Y must have at least an accumuating point,
for, Otherwise, ve coylg choose an ascending chain Z that ls a subset

ad£i< ,., CINCE(NeL)IC ,,, <b,

which contradicts the aiscretenesss of L°, B8y monotenigity such an

sccurulating poling js unique and will oe denoted dy d, Thus
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Ynaed almaget every n,

By the supposition

cad,

By ronotonigcity again, d ls the max|mym element of YY, 80 that

asgyp f¢(X),

By =-~continulity,

f(sup Xdsgup F(X)

sd

Be,

Thus
f(syp Xd2¢,

5,4 KRewark, In the above proof we used "disgreteness™ to mean there
is no ageooenaing chan 9,¢t,

agx1<x2¢< ,,, <Xn ,.. <b,

for any @ and b,

$,5 Theorem, 8) Fix)vG(x) aamits indyction strongly If F(x) and G(x)
do,

b) Fix)vGix) is weakly gontinuoys If Fix) and G(x) are,

Proof, a) Suppose

limgup FIXIVG(X) = T, ( Cf, 4, 3,08(1i1))
Then elther

| imgup F(X) = 7
or

|imgup G(X} 8 T,
go that either

Fisyo X) 8s 7
or

G(ayo XxX) so T

by strong admissipi|iey, Thus

) F(syp X)vGlsup X) = T,

db) By weak gsontinutty.,

F(syp X) = F(Xn) = a for a|most every n

and

| Glsup X) ® G(Xn) 3 D for a|most every n,
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for sOMe a and b, Therefore

F(Xn)vS(Xn) = avd for a|most every n,

At the games time,

F(syp X)vG(sup X) = avd,

5.6 Remark, a) Fi(x)vG(x) does not necessarily admit Induction weakly
even If F(x) and G(x) do, We consiger N°’ (see remark 5,2) again, Lot

r(x) = Y x30;

F PCxS=}

and

G(x) = 7 BEC}
F xsl or xs»,

Then F and GC admit induetlion weakly, and

F(n)vGin) = 7 for every n20,

But

F(e)vG(=) = F,

Bb) F(xX)vG(x) does nat necessarliy admit Induction weak|y even If one
of FIX) and G(x) is weakly continuous and the other admits Induction
weakly, For, In fact, F(x) [In the above exampje 9 weakly continuous,

S,7 Theoren, a) F(x)8Gix) admits Indyction weakly if Fix) and G(x)
Jo.

b) F(X)&G(Xx) admitg Induction gtrongly If F(x) and G(x) do,
ce) F(x)&G(X) 1s weagk|y continuous If F(x) and G(x) are,

Proof! left to the rgager,

5,8 Theorem, ~F(x) Is weakly continuous If F(x) Ils,

Proof, LOL a denote the truth value F(sup X)., BY weak continuity,
F(Xn) = a for ajimost every n,

Let © denote the truth valy® =a, Then

~F(Xn) & Bb for aimost every n, |
Besidges,

~F(sup X) = 0b,

$.9 Remark, a) =F(x) does not necessarily admit Induction weak|y even
If f(x) adnits induction strongly. Lot fix) be the truth fynotlon
determined Dy xS= & «<x, which Is equivalent to xa», In N’, Then
F(x) adrits Induction strongly because of theorems 5,1 and $,7(b),
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Let Xn be the neth natura| number for each n, Then

«F(Xn) 8 T for n2P,

But
oF (gup X) 8 «F(e) s F,

Thys ~F(x) does not admit Induction weakly,
8) By the above argument, the negation of a formula of LCF does not
admit Induction weakly In general,

$S.18 Theorem, If F(x) and «~F(x) both admit Induction strongly then
F(x) Is weakly continyous,

Proof, We prove that F(X) Is convergent for any ascending chain X,
The case that

|imgup F(X) ss F

lg telvia|, Suppose

|itmgyup F(X) © T,

We prove
liming F(X) os 7

by contradiction, Assume

itmin? F(X) s F,

80 that

By strong admissibility,

~Flgup X) = T,

IY XY)

F(s,0 X) = F.
Thus Fix) does not admite induction strongly, which Is a
contradiction,

5.11 Theorem, a) Fix)eGix) admits Induction strongly If F(x) ls
waak ly continuous and G(x) admits induction strongly,
B) F(X)«G(x) lg wegkly continuous (ff F(x) and G(x) are,

Proof, FiXx)eG(x) Ig a tautology of =F(x)vG(x), s0 that theorems 3,8
and 5,5 suffice,

$.,12 Remark, Fix)<B(x) does not necessarily admit induction weakly
even If F(x) admits indyction strongly and G(x) (s ==cOntinuous, Lot
C(x) be F, |,e,, the ldenticalily fa|se truth function, Then Fix)2G(x)
ils a tautology of Fix), Consider the example of remark $,9,
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Hereafter ¥ lg used to Indicate the argument Instead of x,

S$,13 Theorem, a) VxF(x,y) admits Induction weakly w.ret, ¥ If Fix,y)
does.

B) VYxF(x,y) admits indyction steongly w,r,t: y If Fixsy) does,

Proot, 4a) Suppose

VxF(x,0) s 7

and

Yxt{x,¥Yn) s 7 for every Nn,
Then

F(a,0) so 7

and
F(a,Yn) = T foe Ove,y Nn,

for any a, Therefore, by weak admigeidility,

F(a,sup Y) s T for any a,

Thus
vxFix,suo Y) 8 T,

b) Suppose

limgup YxFi(x,y) = 7,

Then |
| imgup Fl(a,yn) s T each a,

By strong admissibility,

F(a,sup Y) = ¢ each a,

Thus |
vyxF{x,sup Y) ss YT,

5.14 Rerark, a) ¥YxF(x,y) Is not necessarily weak|y continusus even If
F(x,y) Is, Let F be 8,¢,

F(x,y) s x{* and x<y, Or XxS8=j
F otherwise,

Then F Is weakly continuous In y,» for

lim Flu,Yn) = F(a,=) s ° each ad=,

and

F(e,YN) & F(w,=) 8 T for every Nn,

for any ascending chaln Yn In NN’, MoroOVeP,

VYxfF(x,Yn) = F for evepy Nn,

so that
im vxFi(x,¥) s F,
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But

YxF(x,8up Y) 8 VxfF(x,=) = T,

b) vYuF(x,y) is not necessarily weakly continuous even If Fix,y) Is

 wegontinyous In vy, For Fix,y) defined above Is ==continuous In ¥,
because (t is not only weakly continuous but also monotone (cf,
theorem 3,6.)

$.15 Theorem, a) IAxfFi(x.y) admits induction strongly (ff Fix,y) ls

monotone in y,
b) IxXF(x,y) Is monotone and weakly continuous (end therefore
wecontinuous, See theorem 3,6) If Fix,y) is.

Proof, a) Suppose

im IxF(x,Y) = T,

go that for some a and M

F(a, YM) = T,

By monotanicity,

F(a,syp Y) = 71,
Thus

IxfF(x,sup YY) s T,
b) ko prove

Ix (x,syp Y) ® |iminf IxF(x,Y) 3 |imsup IxF(x,Y)

for sach ascending chaln Y by case analysis, (I) Suppose

| imgup 3xF(X,Y) = T,

g0 that

F(a,YM) = 7 for sone & ang N,
By renotoniclty,

F(a,¥n) = T HEN,
a0 that

IxF(x,Yn)} = T MEP,

1,08,»
[im Af CxrY) = 7,

Algo by monotonic i%y, F(a,YM) = T Imo|les

F(a,syp YY) = 7,

so that

IxF(x,syp Y) = T,

(it) Suppose

timgup 3IxF(Xx,Y) = F,

fo@00
lim IxF(x,Y) ¢ fF,

Then there exists M(a) for each a, s.%t,
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F(a, YM(a)),

so that, by monotonicity,

F(a,Yn) s F for any a and n,

(otherwise Fi(b,Ym) 5 T, MSm for some b and HM, which Imp|les (im

IxF(x,Y) 2 T,) Thys

lim F(a,Y) 3 F for any a,

go that by weak continuity,

F(a,syo Y) = F for any a,

Therefore

IxF(x,syp Y ) = F,

5,16 Remark, a) IxF(x,y) Is not necessarily weakly continyoys even
If F(X,y) Is monotone (and therefore admits Induction geteongly by
theorem 5,15) In y. Let Fix,y) be

VZ(z2<me2(y),

Ther F(x,y) is monotone In y, and

F(x,n) = F for every n and any x,

a0 that

IxF(x,n) = F for every n,
But

Inf (x,=) 3 Ty
because

F(x,=) = T,

b) IxF(x,y) 1s net necessarlly weakly continuous even [f Fix,y) Is

monotone and admit {mduction strongly, Let

G(x,y) s T¥ ySx<=}

fF octherwise,
Namely,

Gix,y) 2 ~Fix,¥),

F(x,y) being the truth function described In remark S,14 90 that
G(x,y) is weakly eontinuous In y by theorem 5.8, But

IxG(x,n) a T every n,
and

InG(x,=) s fF,
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é Syntax of Formuizs that aomlit [Induction

6,1 Tables of Inheritance oft adr sibility

We summarize the Inheritance of samissibliity of Imduction In
the tables so that they can be checked by machines easily,

Th3sa tabisg ghall be redarcdec as a part of the postulates of

FLT for technical (logical) reasons, Since <he weak admigsibi||ty
of Iimduction Is an informal concept that Is not effective, we cannot
accept a formal system described |r terms Of that concept, although
we woulg I|lke to use the Induction axiom, or rule, for every formula
that admits induction weakly, Instead we regard these tables as an
Inductive definition, and hence an effective definition, of formulas
that “aamit Inductign syntactically", Namely we call a formula AC
to sdmit induction syntactically Iff ACx) is concluded to admit
induction weakly w,r,t, x using only these tables, the primitive
ceases listed In 1: serving as the base step of inductive definition,

We add the following definition for practical purposes,

Definition, A formula A Is sald to be “constant w,r.t, x" [ff ga
does NOt depend on x, A term t is an "|gof term” If? all the
constants and variables occurring in t are of ogontinuous types, A
formula of the form tSu where t and u are (cf terms is called an "lef
awfft"

' Obviously a sufficient condition for A to be constant w rp t,
x Is that x apes not occur free in A, Proofs concerning the
inheritance of acmissibility rejated to this condition are left to
the reager,

11, The following congitions are hierarchical In the sense that the
lower are the stronger conditions,

(primitive cases)

i A admits indyceion weakly, | |

| A agmits Induction strongly,! t€u (t and u are icf terms)|
belated dah dal ddl AX Ld AA LAL ALL AL TL LEY EXE ERT LE TY TF ¥ FY FOF JF prupapappugpegpuges

| A Is weakly continuous, | t=0, t=TRUE, tsFALSE |
! (t Is an (ef term)|

I A is constant, | x does not occur free In A, |
hdl dd bd ddd Aad AA AF LX EA ELIE LE LEE TE XX XE TX JT ¥ FON Pg Py gsi gape

(12 A admits relutivized Induction and Icf induction w,p,t, Xx If
A acrits induction weak|y w,r,.t, Xx,
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(il) A ls ==continyoys ft A Is weak|y continuous and monotone,
SRAR A admits inguction weakly w,r,t, X if A |g monotone WePot, X,

12, Table for &, v, and =,

If A and B satisfy the conditions stated In the flrgt cOlumn
and the first row, regpectively, then A888, AVE, and A-8 satisfy the
conditions shown in ¢he corresponding places.

ddd Add Ad AAA A AT ETL DL ALL LL ELL LEY 1 LY FET J PAY PI pp ipey yy appa

| A \ © ladn, weak, ladm, str, |weak. cont, iconst, |
CA BA KX A J BL N X X X JN JN JEW Jer Sprague greg J ee tale AA lL A A AX NA J ZX J XT 3S PY RYY X |

| \op | | | |
imdm, |18lagm, weak, lagm, weak, |adm, weak, |adm, weak, |
inoak, ivi x { xX adm, weak, |
i jo x x | x lagdm, weak, |

jadm, I&ladm, wegk, ladm, str, ladm, gtr, |adm, gtr, |
ister, vi x ‘adm, str. ladm, gtr, ladm, gtr, |
| BY x [ x | x lagm, ser, |
dad dd A A Ad AA A Ad AT EI AA LX Ad TE I XZ IIT TE TX FY FT EY YY PI TTI

Iwoak, I&|agm, weak, ladm, str, |weak, cont, |weak, eont,|
lcont, Ivi x ladm, str, Iweak, cont, weak, gont,|
| || X ladm, str. weak, cont, weak, cont, |

icongt, I&ladm, wegk, (adm, str, Iweak. cont,|const, |
! Iviagm, weak, isdm, ste, (weak, cont, |conse, |

|=lagm, weak, ladm, ste, |weak., cont, |const, |
Ald ddd Add AL AX A EL A EAL Ad A ALL LAX LE L EEL EY IT YY YY FE PY EY rr

18, Table for =~, ¥, and 3,

Al| the condi tions are w,r,t, Xx,
if x and 7 are Identical then YyA and 3ya are constant w,r.t, X,

| A | aA | VyA | yA |
| | | lesmncncsccccocrnsccncna|
| | |In genera] (A: monotone!
Lda Ad Ad AA A EX AXE LL LL ELLE Ld LA ELE LLL LX LF TY TF JF ¥ YT FY Fry papas

ladm, weak, | x ladm, weak, | x adm, g¢r, |

jagm, gtr, | X ladm, stp, X adm, str, |
ddd dl dad AA dd AX LEE XL XL ZL Ed Jd XX 4 XL RX ELLE LE EE FY T FF YY FFP Ppp

| weak, cont, iwsak, cont, ladm, str, | X Iweak, gont,|
Add Ad A Ad A Ad A Ad ASE LL XA EI LLL EEL EL LER LX TELE TXT TT FY JY Pryrapupugrapsgss

leonst, lcongt, leonst, leconst, lcongt, |
bd dade Al Ad Adal dd A EX LX LA Ea A XX 4 Ld Ed A A A I I YT PR EY PT FY TI ey
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6,2 Example of formula that admits Induotion

YuF(x,y) Is weakly continuous If Fix,y) Is antiemonotone and
admits induction gtrongly w.r,t, V¥,

For, VaF(x,y) 1s a tautology of =3Ix=F(X,¥), Suppose Fix,y)
is antiamonotone and admits Induction strongly w,r.%, ¥, ~Fix,y) I»
monotone, 80 that «F(x,y) admite Induction strongly OY thegrem 3 48,
Then F(x,Y) Is weakly continueys by theorem 4.8, 80 that WxF(xn,y) ls
weak !y oontinuous by theorem 5,40, Thus <IxFix,y) |g weakly
continuous by theorem 4,6, (Ses tables of 6.1)

Ne can check this rogult by a direct proof as follows,

Proof, Case |) Suppose

limgup YxFix,Y) s Ff» le@o0 | Im Vafix,Y) s F,

Then there exists M g,t,
YxFi{x, YM) 8s F,

80 that there Ig some 8 8,¢%.

F(a,YM) = F.

By antiemonotonicity,

F(a,sup Y) = F,

g0 that

YyxFix,sup Yy = F,

Cage (1) Suppose

| imoup YxF(x,Y) s T,

Then,

| imgup Fla,Y) & 7 each a

so that

F(a; ¥n) = T for every nn, elgch a,
e040

lim F(a,Y) = 7,

(Otherewige |imgup F(a,Y) s F Dy anti=monotonielity,) By strong
admissidl|ity,

F(ua,sup YY) eo ¢ each a,

80 that
vxF(x,sup Y) oo 7,
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? Transiution of LCF Inte FlrsteOrder LOQic of Typed Theories

7.1 Axlomatization

In order to axjomatize |CF, flrst we nesd to extend the
syntax of terms so as to Include A=expressions as follows,

BS, If ¢t is an eo=term and x is @8 RoevarjaDle, then Xxt Is a

(Poeso)o=term, Any occurrence of x In \xt (8 not free,

The corresponding Interpretation Is as follows,

OL Jf ¢ Is Axulx]) and x is a Hoevariabis, ula) must be a ologed
ag-term for each No-name a 30 that ,(ulal)e¢Deo, for some 0, WO Jot
et De the function which sends each sa€DFRo0 onto e(ula)l), Suah a
function is known tp be contlinuous(Cid, 7),

Renark, The proof of continuity of the functions represented by

Aeexpregsions, namely <%he terms [nvojving the operator )\, requires
induction on the structure of terms, The case that sup De’g do not
exist in general has been treated by R, Miinep,

| we Introduce an QJrdered base type denoted py Bo, three
| Bo-constants J, TRUE, and FALSE, and, a (Bo=Sge<@g-eg)o~constant 2 and

an (a,8)eprecdicate ¢€ for ®ach ©,

OD(Bo) congigts of threes slements, TRUtLe and FALSEe being
Incorparabloe, Hergpafter we ySe tne same symbol ¢to demote a
Boegconstant and <he teutn vajye represented by It,

| 3(t.usv)e namely ((3(2))(u))(v) roads "If t then y elise vv"
and is written as tau,v usually, we (et a3b,c be 0, b, and ¢c, If a Is
D, TRUE, and FALSE, respectively, for each a¢Bo, beD®0, and ¢c¢0®0,

| This fumction Is continyousliB],

xsy represents the order relation discussed In the previgus

gectiong, mathematically, |[ntuitively, however, xSy means that y Is
ngefinec™ more than or gs much as x, x3) read "x Is undefined," If x
and y are functions, this means y ig an extenglion of x as function,

We give ¢the following non=|o0glca} axioms, An arbitrary

term with voids can be substituted In place of tL ), provided that
the variable designated dy x does not occur free In that term, tex)

and t(y) oenote the terms obtained from it by substituting arbitrary
variables designated by x and y, regpectively, in place of its voids,
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Nonjogtlcal axions

reflexivity, xEX,

antisymemetry, xSy & ySx < xs3y,

xsy < a8y,

transitivity, x€y A yS€Z <~ xSI,

externsionality,
VZixtz)<y(2)) » xSy,

x€y * x(2)sy(2},

monotonicity, xy = 2{x)S2(y) z aust De an
sg=-variable,

miniral ejoments,

O¢x,

truth values, xsD v xsTRUE v x=FA|SE x must be a
go-variabije,

=O TRUE,

~3sFALSE,

-TRUESFALSE,

conaitionals, Oasx,y = 0,

TRUZO9x,y 8 X,

FALSEax,y = V¥,

\=corversgion, (Axelxd)(y)se(yld,
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7.2 Adequacy

We need to see that ail the inference ruies In LCF can be
adequately expressed In tha pregoent calculus In the form of theorems
or oerived rules, which means that we do not (ose anything by
changing the logic, In other words, we acre dealing with an
extension of LCF in that we can prove a theorem A In the new calculus
if A (8 a theorem in LCF, and, moregver, we can use any rule of LCF
in the present calculus, We have oniy to examine those rules that are
aslther of the nature of propositions] calculus nor expressed as one
of the loglcal or ngnjogical axjons,

Ji, abstraction ruje (LCF),

tla) § ula]
pepper YY XY XT X XX J {a)

Axelx) § Ixylxld

Der jvat on,

ta] S$ ula)
Jp. Aeconversion (and equaijlity)
Axt(xlta) S Axu(x)(a)

ppapapaeepaepes FRY ITIL E PX TE ELL LAA A dy (a> Yeintroduyction
vy((axt(x))(y) & (Axulx))(y))
ppppepepaur YY TY EXT Po PY ELE LL LL 2d extenglonmallty

MeCx) S$ Axyulx)

J2., furction rule (LCF),
)

Axy(n) g ¥

Cerivation,

(Axy(x))(z) 3 y(2) A=gconversion
pipapnpeppepep ey pou PY FY EX EL EL J <2 Yeintroduction

vztiaxy(x))(z) = y(2))
ooo deea® goes "Gases extengionality

Axy(x) = ¥

JI, cages rule (LCF),

(¢s50) (taTRYE) (tsFALSE)
A A A

A
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Derivation,
(¢=9) (t3TRYE) (tsFALSE)

tsD v tsTRUE v tsFALSE A A A
ppp TT PE PY PE TIL IL LL LEL Ad ddd Sed hdd vegliimination

A (twige)

J&, Inouctlion rule (LCF), It suffices to show that any conjunction
of lef awffs aamits Induction syntactically in the sense of section
6.1, for LCF is a formal system that carries out relativized
deduction for these gentoénces, Each cf awff admits Induction
strongly w,r,t, ary variable (table 11, 6,1) subject to the type
comformity, So does any conjunctlun of them (table 12, 6.1),

7.3 txamplie taken from proof of compl ler correctness

The following example Is taken from an FLT=| ike proof of
McCarthy=painter’s theorem{5]), The proof of this theorem In (CF ls
discussed in (8) and (13),

ne presudpose thers ares three typas called I1anguagel,
language2, and ths meaning space, These need not be bage types, In
particular the megning space can De the type (states)e(states),
Namely the meaning space Is the set of partial functions of (states)
Into (tse |f, A conceptual compiisr carries out a transiation of
languagel Into languagel, an expression x in |anguagel being mapped
onto ObJj(x), We negd not assume cantinyity of the meaning space and
function obj for the present arqQument, which is, however, not an
important point, we use the foljo«ing constants, each of them being
either an Indivigua! constant or a function in the usual sense, The
aster isked constants are assumed to have ben 3Jliven sporecpriate
axioms,

constant tye comment

isconsc o (langyuagel-«bolo isconst(9)s TRUE,
isvar (1angyagel=<do)o lsvar{a)sTQUuE,
sexo (langyagel-<do)o Isexp((8+n)e(9+D))mTRut.
aril (lanquagel<langyuagello argl((8eale(9eb) Isla,
arQ2 . (lamguagel<iangyagello arg2(8+a)sa,
obj ® languageleianguage?
meani languagelemeaning space
mearc * languageZ2=emeéaning space

We us® a (languagel, lanjuage2)=predicate Correcti(x,y) to mean y Is a
correct object program for expression Xx, correct(x,y) Is not
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continuous In general, because It Is usually defined by an axiom [Ike

(Ax,1) VxVy(Correcti(x,y) = meani(x)amean2iy)), (®)

The function isexp is defined by the following axiom,

(Ax,2) lsexosMin Xf Ax(lscongt(x)aTRUE, (isvar(x)aTRUE,

(flargl(x)ia(tlarg2(x))arRyk,FALGE) FALE) )), |
The theorem we want to prove |s

(1) VYx({sexp(x)STRUE « Correctix,obj(x))),

Correctix,obJj(x)) {s, however, not sufficient as an Induction

hypothesis in generg!l, so that we prove first a formula of the form

(2) Vx(}sexp(x)STRUE < A),

vsually, where A Ig the conjunction of a certain generalization of

CorrocCct(x,0DJ(Xx)) and additional conditiong peculiar to Sach
complliira aigorithm, Moro cONncretely, we Shall consider a complioer
which works with a coynter, n, Indicating that the addresses Whose
mneronic names are TS(1)» ... +» TS(n) are occupied as temporary
storages, We defing the following constants, the last three related
to the loading or gl|ogcation, The set of integers, Or addresses, Is
a base type, vargng(x) Is the number of distinct variables oceurring
in x, varnolz,x) rgnotes some numbsring of such variab|es,

constant type comment

comp | ® (languagel,intesgers)<language?
TS integers<inteqers

varno » (languagel, languagel )-integers varno(a, (8+aje(9¢d))al,
varsna ® languagelieintegers VRrsno((B8ea)e(9+b))e2,
toe (languagel, languagel)=integers

In this cose, ODJj(Xx) |g defind by the following axiom,

(Ax,3) Yx(obj({x)scompi(x,¥d)),

A typical form of A |g

(3) Vn(n2@ < Correctix,comp|(x,n)) & Unaffected(x,n,compi(x,n))),

where Uraffected is a (languadgel,integers,language2)=predicate s,t,
Unaffected(x,n,y) means the object program y does not destroy the
contents of the storages corresponding to the prodram variadies
eccurrirg in the soyrce program x or any of TS(L), ,,. » TS(N),

@) The reacer may recall that = means logical squivalenge, while »
equality In the strong sense, that Is, = In LCF,
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If we make the adiresses absolute by the Dejow exlom, whlch
corresponds to a particular loading obviously, the object program
becores as fig, 1 below, Occur(z,x) reads 2 occurs In Xx,

(Ax, 4) VzVx(isvar(2)sTRUE=Occur(Z,x)el0e(Z,x)svarno(Z,Xx)),

vxV¥nlloc(TS(n))svargnoixien),

comp | ((Bea)*(9¢D), nN) memory map

(Instruction) (mnemonics) eroevonteseenntacavonsdPed
pope TF FX XXX NK JN J J "YY XY FX XX LK J 13 laccumu lator |

Ll! H |mcevcesrecccsccennanacvoa |
00 1 a 11 la
¢Tp ned TS(nel) |2 Io
LI ¢ |ecernennossensesecnscon |
AUD 2 b 13 1ITS(1)
10 ned 1S(ne2) epee vere
Ll n+3 TS(ne}) | ne2 |TS(n) |
ADD ned TS(ne2) |ecncaoncccocsncssssscnna |

| ned ITS(nel)
| ned TSine2) |

Let nsl@ to get op jl (8egle(fep)). | rmecavessenceconssancse |

fio, 1 Example of objcet program
and memary map

Let ACx) genote (3) hersafter, We note that nel ther isexp
nor mn occurs free in A(x], Then, the formula (2) edmits |cf
Induction w,r,t, “igexp®” as follows,

isexp(x)=TRUE weak, cont, w,r,t, lsexpl |

A(x) const, w,r,t, lsexpi

isexp(x)STRUE « AlxX) weak, cont, wW.r,t, lssxupl

Yx{isexp(x)sTRJYE < A(xj) adm, str, w,r.t, lgexp,

(See tables in gection 6.3,)
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Thys we can infer (2) from (4) and (5) be|ow,

(4) Yyx(0(x)STRUE « ACX]),

(5) Yx(Ff(X)ETRUE « A[X]) e-

vx((isconsat{x)>TRUE,(isvar(x)aTRUE,
(fcargl(x))a(f(arg2(x))aTRUE,

FALSE) FALSE) ))sTRUE « ALXx]),

We cen {improve the readability by the following
consideration, Let p be an (2«Bo)etgrm, Then we (et p and “p stand
for the formulas p=TRUE ano psFALSE, respectively, This causes no
comfusicn because of the syntax we employed, Obviously

Pp VY Tp

is not valid, whije pv~p ia, We notice the rejationship

(p2q,r) = pga v “pér, (®)

which is provable in FLT, since this formula Is an abbreviation of

(p>Q,r)STRUE = p=TRUE & a=3TRUE Vv p3FALSE & rsTRUE,

Thus we can rewrite (4) and (5) as follows,

(47) Yx(O0(x) = Af(x]),

(5?) Yx(f(x) © A{X])) =e

vx(isconst(x)visvar(x)v-igconstix)&8 isvar(Xx)
& flargl(x))8 f(argldi(x)) « ALXx]),

It must ba noted that there are some substitutes in LCF for

formulas Ilke (1)-(4), <thauych these formulas are not tli9ves aslegitimate formuias in it and the Interpretation becomes different,
By the deauction thearer In first-order 10Qic we can also express the
sentence (5’) ty a formula of FLT, replacing =« by « and binding f by
yniversal quantifisp, obtaining

(52°) VE(UYx(fix) « ACx]) =
Vx(jseontst(x) v (svar(x) v “|gconati(x? &
“tsvapix) & f(arglix)) & f(arg2(x)) « A(CX)}),

For such a formula there Seem to be no natural substitutes In the
forn Of LCF formuiag,

a) Jt is a |ittie interesting, and also useful, that this oid
relationship still holds In a calculus that Includes the undefined
truth valye, See, e.g.» [2],
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Discussions |

‘The welger hag been motivated toward the study described in
this paper through an attempt to translate his formal sYSEOm
representing the eautvalence of Algolelike statement(2, 3) inte LCF,
For that purpose having some predicate calcujus=|lke faclilty seems
to be essential, for we reed tO OXpregs implication between strong
equivalence In the form of formula,

From the writee’s paint of view, the following are among the
possible advantages of having some predicate ecalculus=ilke things
within fogic for computable funccions,

1, (huran engineering) In not a few cases, the conventional (oolecal
operators Make the welting and understanding of descriptions easler,
Besides, many people are famiilar with expressions and derivation In
predicate calculus, esgpeclally, of flest=ordep,

2, (unceplying thegrleg) In the practical fleld of appllecation of
such a logle, for Instance proving correctness of compl ers, we have
to handie underiying thedrlieg whose representations In predicate
calculus seem t0 be naturl!, |lke ejementary set theory, We do not
care If some of the sets Involved in our proof are not computable Or
continuous, even If ¢hey might be In fact computable, There are aso
theories of equivalence and correctness of programs which are rolaced
to predicate cajculys,

3, (mega=theoremg) There wii! be many facts about the obJects of LCF
that can be stated only in the form of meta=theopomg Of LCF, while
significant portion of them could be stated as theorems In an
extendeg logic, Then handling oerived rules and spplying alroady
proved theorems wll| become more convenient,

obviously thege desirable properties will not be obtained
before considerable experiments Moreover there myst bE some
compromise, For Instance, KT, we use entire ciaselcal orodiocete
calculus as In the present paper, we are out of the LCFeilke world
that consists of soje|y continuous functions, 10sing some neatness of
the forrajlism and relative simplicity of Implementation, Employing
second or higher order predicate calculus might give us more
compiexity as weli as power,

It must be noted that J. McCarthy(4) sugoested that In some
generalization of Scogt’s logle using predicate calculus we should De
able to Drove the continuity of functions, It seems thyt FLY ls
caPable Of going thot in spite of the limitation thet NO oredicqte
variables are allowed, for we have quantifiers rancling over 134 edsets in effect, A fixedepoint induction based mainly on monoten 4 pov
within second-order, predicate calculus hag Deen discussed by 0.
Park(9J,
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