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EDMONDS POLYHEDRA AND A HIERARCHY OF COMBINATORIAL PROBLEMS

by

V. Chvatal

Stanford University, Stanford, CA 94305

ABSTRACT

Let S be a set of linear inequalities that determine a

bounded polyhedron P. The closure of S is the smallest set of

inequalities that contains S and is closed under two operations:

(1) taking linear combinations of inequalities, (11) replacing an

inequality ¥ a, Xs < ays where ay, 85, - . . , & are integers,

by the inequality )! a. Fs a with a > [a,]. Obviously, if
integers Xi Xos owes x, satisfy all the inequalities in S

then they satisfy also all the inequalities in the closure of S.

Conversely, let y 5 X, < cq hold for all choices of integers
X15 Xs RETR X that satisfy-all the inequalities in S. Then

we prove that Lc x 2 ¢y belongs to the closure of S. To each
integer linear programming problem, we assign a nonnegative integer,

called 1ts rank. (The rank 1s the minimum number of iterations

of the operation (11) that are required in order to eliminate the

integrality constraint.) We prove that there 1s no upper bound

on the rank of problems arising from the search far largest

independent sets in graphs.



1. Characterizations and good characterizations.

Let us examine the formal structure of the two following

theorems.

THEOREMA (Tutte [17]). Let G be a (finite undirected) graph.

Then the two following conditions are equivalent.

(1) G has a perfect matching (that 1s, a set of pairwise

disjoint edges that cover all the vertices of G),

(11) 1f an arbitrary set S of vectors is deleted from G,

then the number ky (6-5) of odd components (that 1s, components

having an odd number of vertices each) of the resulting graph G

does not exceed IS].

THEOREM B (Gallai [11]). Let G be a (finite undirected) graph.

Then the two following conditions are equivalent.

(i) G 1s k-colorable,

(11) the edges of G can be directed in such a way that the

resulting directed graph contains no (simple directed) path having

k edges.

Both of these theorems, asserting the equivalence of (1) and

(ii), are characterizations? Yet there is a considerable formal

difference between the two. Theorem A gives necessary and sufficient

conditicns for the existence of a certain structure (perfect matching

in G) 1n terms of the absence of another structure (a set S with

k,(G-8) > S|). On the other hand, Theorem B gives necessary and
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sufficient conditions for the existence of a certain structure

(k-coloring of G) in terms of the existence of another structure

(the directions of the edges of G). Another aspect of this difference

can be illuminated as follows. It is easy to convince one's supervisor

that G has a perfect matching. To do this, one only has to exhibit

the matching. (The question of the difficulty of finding the matching

1s irrelevant for our discussion.) It is equally easy (with help of

Theorem A) to convince the supervisor that G has no perfect matching —--

one has to exhibit a set S with ky(G-S) > |S]. On the other hand,

while it 1s easy to convince the supervisor that G hasa k-coloring,

Theorem B gives no easy way of showing that G has no k-coloring.

Apparently Edmonds [6] has been the first to turn attention

to this feature of characterizations; he introduced the term "good

characterizations" for the theorems of the first type. Hence Tutte's

theorem 1s a good characterization while Gallai's theorem 1s not. Need-

less to say, the words "good characterization" form a nonseparable

entity without any reference to the emotional chakge of the adjective

"good". The statement "Gallai's theorem 1s not a good characterization"

asserts nothing whatsoever about the quality and depth of the theorem.

In our further considerations, the duality theorem of linear

programming will play an important role, It expresses the maximum of

a linear form b! cil X; subject to a set of constraints (primal

problem) as a minimum of another form 3 b, ys subject to other

constraints (dual problem). Hence to show that a feasible primal

solution (X15 Xs + we 3 x) is optimal, one only has to exhibit a

feasible dual solution (yy; Fos = + «i Y) with 3 c; X; = ¥ by yy
In a way, the duality theorem of linear programming 1s a prototype of

a good characterization.



Our last sentence has more into 1t than meets the eye.

| Actually, Edmonds [7] has shown how to relate Theorem A to the duality

| theorem and made it clear that his approach can be adopted in many

| different settings. It is the purpose of this paper to study

various questions related to Edmonds' technique.

|

|
|
f

[

|

|
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2. Edmonds polyhedra.

Let G be a graph with vertices Vis Vos «+o 4 V andm

edges 15 8s «+ «ys es for each J =1, 2, . . . , m we set

S(3) = {1 : vs is an endpoint of e, }. The problem of finding a
perfect matching in G can be formulated as the following integer

linear programming problem. Maximize

) X (2.1)
i=1 1

subject to the constraints

x; 20 i=1,2, ...,n, (2.2)

2, x<1 G=1,2,...,n, (2.3)
iss (3)

X; = integer i=1, 2, «.., mn). (2.4)

Obviously, every characteristic vector (15%, Cs x) of a

set of pairwise disjoint edges satisfies (2.2), (2.3) and (2.4).

Vice versa, every vector (215 Xo, . ons x) that satisfies (2.2),

(2.3), (2.4) turns out to be a characteristic vector of a set of

pairwise disjoint edges of G. Hence G has a perfect matching

if and only if the maximum of (2.1) subject to (2.2), (2.3), (2.4)

equals =m.
Because of the integrality constraint (2.4), we cannot express

the maximum of (2.1) in terms of the minimum of a dual problem. Besides,
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if (2.4) 1s dropped then the maximum of (2.1) can increase. For instance,

if G is a triangle then X; =X, = X; = = satisfies (2.2), (2.3) and

yields 3 X1 = 2. However, the maximum of (2.1) subject to (2.2),
(2.3), (2.4) equals one in this case. Nevertheless, there 1s a

standard way of getting around the inequality constraint. OQne can

think of the polyhedron P (in the n-dimensional Euclidean space)

determined by (2.2), (2.3). The set F of lattice points inside

P 1s finite and 1ts convex hull E(P) is another polyhedron. A

moment's reflection shows that the maximum of (2.1) over F equals

the maximum of (2.1) over E(P) -- indeed, F is a subset of E(P)

while the extremum points of E(P) come from F. More generally,

for any polyhedron P and any linear form ¥ C; Xi the problem of

maximizing > cy x1 over the lattice points inside P reduces into the

problem of maximizing 5 C;X, over E(P). 'The latter is an ordinary (non-
integer) linear programming problem that offers the advantage of using the

duality theorem as long: as the list of faces of F'(P) is known,

In general, it seems extremely difficult to determine all

faces of E(P) from those of P. However, in the above case -- when

P is defined by (2.2), (2.3) —— the list of faces of E(P) is

available. Indeed, Edmonds [7] proved that all the inequalities that

determine E(P) are (2.2), (2.3), and

Bs x; 2k (2.5)
Here S runs through all sets of 2k + 1 vertices (k arbitrary)

and each edge 1s interpreted as a two-point set. Now, the maximum of
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(2.1) subject to (2.2), (2.3), (2.4) equals the maximumof (2.1)

subject to (2.2), (2.3), (2.5), which is, in turn, equal to the

minimum of the corresponding dual program. Therefore Edmonds’

theorem (combined with the duality theorem) yields instantly a good

characterization of graphs without a perfect matching as follows.

A graph G has no perfect matching if and only 1f there are non-

negative real numbers 815 8,55 . 5 a and b(S), where S ranges

through all odd-cardinality sets of vertices, such that for each

edgee with endpoints Ver Vie the inequality

35 + ay +L bs) > 1
: 1s satisfied and

; m

)) a, +71 3 Is] - 1) bs) <3m
i=1 S

Besides, Edmonds [8] proved that the a, and b(S) can be

chosen to be zero or one. Under this added assumption, the above

characterization reduces into Tutte's theorem. Of course, Edmonds’

theorem 1s more general; it provides a max-min formula for any

weighted matching problem. Edmonds also generalized these results

to the case of optimum-weighted degree-constrained subgraphs of a

given graph (see Section VIII of [7] and also [9]). Since these are

the only cases when E(P) is a proper subset of P but the descrip-

tion of the faces of E(P) is known, we call E(P) the Edmonds

polyhedron of P.
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We have seen that the knowledge of the faces of E(P) yields .

immediately a max-min formula for the corresponding integer linear

programming problem. Next, we will study the relations between the

faces of E(P) and those of P.



3. The main theorem.

It is easy to see how (2.3) and (2.4) imply (2.5). Indeed,

let S be any set of 2k+l vertices of G. Summing the inequalities

(2.3) for all J with v., € S we obtain

2 Nx £2,
e, CS
i

or

y, x, < k +2 :
C

e, S

By (2.4), the left-handside of the last inequality is an integer and

so (2.0) follows. This observation leads us to the definition of a

closure of a set S of linear 1nequalities. We shall say that an

inequality } a, x ZX b belongs to the elementary closure of S
1f there are inequalities

3 a,. XxX, <b, i=1,2, ..., m
j=1 ij 3 i

in S and positive real numbers A,, A, .., A such that
1° "2 " m

m

py Aj 83; = a; = integer G=1, 2, . . ., n),
i=1

[3 A, b <b
j=1 + 1



,

(here [x] denotes the integer part of x). The set of all inequalities

belonging to the elementary closure of S will be denoted by el (8);

for any integer k > 1 ye define eK (s) recursively by
k k-1

e (8) = e(e "(S)). Finally, we set

d(s) = U ek (3) ;
k=1

the set c¢(S) will be called the closure of S. Evidently, all

vectors (x5 Xos ov ow x) satisfying all the inequalities in S
plus the 1integrality constraint

xy = integer i=1, 2, ..., n)

satisfy also all the inequalities in (Ss). A converse is given-by our

next result.

THEOREM 1. Let the inequalities

n

PIETY x; <b, 1=1, 2, eo. , m (3.1)
j=1

(where 855 b, are real numbers) determine a bounded polyhedron in

the n-dimensional Euclidean space. [et Cas Cp» + + + c_ be integers
such that

3 Cs Xs 2 ¢C 3.2
RE (3.2)
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holds for any choice of integers Xs Xppe *¥ rx satisfying (3.1).

Then (3.2) belongs to the closure of (3.1).

In the proof, we will use the following auxiliary result.

LEMMA 1. Let (3.1) and (3.2) be as 1n Theorem 1; let c¢c be an integer

such that ) Cy %, < ctl for every choice of reals Xis Xgp + «oy Xo

satisfying (3.1). Then the inequality ) ¢5 Xs < Cc belongs to the
closure of (3.1).

PROOF of Lemma 1. Let c* be the maximum of y 5 Xs subject to
the constraints (3.1). By one of the versions of the duality theorem

(see [13], Theorem 8.3.1), there are nonnegative reals As As Coe A
d = 1 -— 1 = x| such that } i243 Cj (3 1,2, ... , m) and ) hi b, c¥*,

| Since c¢* < ctl, we have [c*] < c¢ and the conclusion follows.

| PROOF of Theorem 1. Let c* be the maximum of ) ci Xs subject to

| (3.1); set ¢ = [c*]. By Lemma 1, the inequality ), ci Xx; <C belongs
| to the closure of (3.1). If c¢ < Co then we are done. Next, we will

assume C > CH and prove that the 1nequality 3 c, xX, < c—-1 belongs

oe to the closure of (3.1). Repeating this process c-c times, we

arrive at the desired conclusion.

Since (3.1) determines a bounded polyhedron, there 1s an

integer M with x, | < M whenever (3.1) 1s satisfied. By Lemma I,
the inequalities

- x, <M i=1, 2, ...,n)

xX, <M i=1, 2, ...,n
11



belong to the closure of (3.1). Given a vector (8 5, Coe. 5.)

where 0 < k <n and s; € {-M, -M+1, . . . , M} we construct a

linear form (in the x,'s) L(s,, Sys + + ey 8.) and a number

R(s;, Sys + we S;.) recursively as follows. Firstly, for the zero-

length vector @, we set

L(@) =}, c, x., RM®) = c-1 .ii

Secondly, we set

Ls, S00x =) = (Mt1l+s, ) L(syss,, cee, 81-1’ - Xe

a. S — Ss *

It follows directly from the definition that

R(sy> Soi CL ’ sy.) Rlsysmys. ** ’ S11) + R(s,, Borers) 1)

whenever Si > =M. Now, 1t 1s easy to establish (by induction on k)

that
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L(sys Sos « == = 5.)

=%c, x, + YL ,6,,.es , si-1) - ox, ,ii 1°72 i
s. FM Ss _ =-M
1 I

(3.3)

R(sy5 So oe =m = 8.)

= (c-1) + L, R(sy, 5, . . . , si-1) + 5M.
gs, F—M 1 2 3, =~M
i °i

Our next observation 1s essential for the proof.

CLAIM: Let (545 Sys + wo 81.) be any vector with 0 < k < n and

s, SM, -MH, . . ., M}. If

L(s;s So» * oo s,-1) =R(s;58,, c eo eo 7 s,-1) (54 # -M)
(3.4)

xX, = M (s, = -=M)

Te, x, =c

then x, = si for all 1 =1, 2, ..., k.

| PROOF of the Claim: We proceed by induction on k. The Claim is

trivially true for k = 0. By the induction assumption, the Claim

holds for the vector CY Spgs + + + Sp-1) and so the equations

(3.4) with i # k imply xi = si for alli=1, 2, .. . , k-1. If
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8, = —M then we are done. If 5). # -M then we argue as follows.
The equations (3.3) and (3.4) imply that

L(s 585, see 4 81-1’ = R(s,, Sos eee S11) + 1 e

By definition, we have

L(sys Sys + + 4 5,1) = (Mts, ) L(s;s 5,5 Co Sp_1) - x.

R(s;5 Sos EE 8.1) = (Mts, ) R(sy> Sys « =m» S11? . M .

Using the last three equations and (3.4) with 1 = k we deduce

X, _ 8 which 1s the derived result. Thus the claim is proved,

Now, we are ready for the final coup de grace. Inductively,

we shall sweep through the entire set of inequalities

L(s;»s,, ce ey 5.) < R(s 5 Sys + ce 5.) (3.5)

in a specified order, and prove that each of these belongs to the

closure of (3.1). (In particular, the inequality L(#) < R(®) —-

which comes last in our ordering —-- 1s the one we want.) The linear

order a lexicographic one with each blank -- corresponding to

S41? Span? +c +r Sy TT interpreted as M+l., More precisely, we say |
that (3.5 recedes the 1inequalit

(3.9) p gq y L(t ityseeest ) < R(E st, ,000,E )

1f and only 1f, either 5 < or r < j < k where j is the .

largest subscript with 5, = ty for all 1 < 7.

14



CASE 1. k = n. (This case includes the very first inequality in our

set, one with s, = 8=. xx = 5 = -M.) By the induction assumption,

all the inequalities

L(s;58,se0058,-1) < R(s;58,5++58;~1) (sy # -M) (3.6)

belong to the closure of (3.1). Moreover, the inequalities

-X; <M (s, = -M) (3.7)

2 cy x; Sc (3.8)

belong to the closure of (3.1). Summing up (3.6), (3.7), (3.8) and

using (3.3) we arrive at the inequality

L(s)s8ysec+58) SR(s;s8,500058) + 1. (3.9)

This inequality holds for every choice of reals x1, Xos + + 1 Xo

that obey (3.6), (3.7) and (3.8). Besides, our Claim implies that

equality in (3.9) can occur only if X, = 5. (i =1,2,...,0n) and

), cy, X = c. However, these ntl equations are inconsistent with

at least one of the constraints (3.1) —-- otherwise the assumption of

our Theorem 1s violated. Therefore

L(8158,5++458 ) < R(s 38,500.58) + 1

15



.

holds for any choice of reals is Xpy oo vy x satisfying (3.1),

(3.6), (3.7), (3.8). By Lemma 1, the inequality

L(s;ss,s von s ) <R(sys Sys + wo» 8) (3.10)

belongs to the closure of (3.1), (3.6), (3.7), (3.8). As (3.6), (3.7)

and (3.8) belong to the closure of (3.1) themselves, we conclude that

(3.10) belongs to the closure of (3.1).

CASE 2. k <n. By the induction assumption, the inequality

L(sys8,, cee Spo M) < R(s;, Spr + wo Sy 0 M)

belongs to the closure of (3.1). This inequality can be written as

(2M+1) Ls Sys een S,.) - xX < (2M+1) R(sys Sys ees Si.) + M .

Besides, the inequality

x, <M

belongs to the closure of (3.1). Adding the last two inequalities

and dividing by 2M+1 we obtain

2M

L(sy,8,,. ** , 5.) < R(sys8,5 «vn, 5; + ovr

Therefore
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L(s; 58,5 cee 8,.) < R(s;58,5 cen 8.)

belongs to the closure of (3.1).

Now, we have proved that all the inequalities (3.5), including

2 ¢; ¥; £ cL, belong to the closure of (3.1). Repeating this argument

C=C, times (as mentioned above) we prove that (3.2) belongs to the

closure of (3.1) and finish thus the proof of Theorem 1.

One more remark. It 1s easy to see that the Edmonds polyhedron

of P can be described by inequalities

Foal b (i=, 2a,. x, < =,4y. . . , Mm)
j=1 py i

%

where all the ays and b,'s are integers. Hence Theorem 1 can be
restated as follows.

COROLLARY 1A. If (3.1) defines a bounded polyhedron P then the

closure of (3.1) determines E(P),

|
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4, The Boolean case and Branch-and-Bound method.

Among the integer linear programing problems, those with

the constraints

x, = 0 or 1 i= 1, 2, * se y n)

are particularly important. The problems arising from combinatorial

considerations have nearly always this form; the x 's usually represent
1

the characteristic vector of a set satisfying specified conditions.

In this section, we turn our attention to these problems. le shall

consider polyhedra defined by inequalities

0 <x; <1 i=1, 2, © se , 1)

. (4.1)

RST i=1, 2, ...,m

and present an alternative proof of Theorem 1 within this restricted

class. The proof may be found to be more direct and transparent than

the one given above; besides, it is related in an amusing way to the

branch and bound method. As in the preceding section, we only have to

prove the following statement.

Let cl, cys vee y ¢ and c be integers such that

- (1) the inequality > ¢;X, = C belongs to the closure of (4.1),

(11) there are no integers Xs Xpy eno, Xx satisfying (4.1)

and ¥ c.,x; = C.

Then the inequality Ly gx < ool belongs to the closure of (4.1).
18



| Actually, we are going to prove that all the inequalities

h

2 i *5 + ), SF HE £ cl + A] (4.2)
i=1 i€A i€B

| where A,B are disjoint subsets of {1, 2, ..., n} belong to the

closure of (4.1). The proof goes by backward induction on {A{ + |B];

| the inequality (4.2) with A = B =§ is the one we want. The induction

step 1s easy. If |A| + |B] <n then there is a subscript k ¢ A UB

| and, by the induction assumption, both inequalities

Xe they x +N x- Fx <cel+ a] +1
| A B

| - x te, x, +1, x, = 0% < cl + [A]
A B

belong to the closure of (4.1). Adding them and dividing by two we

| obtain
¥

}, cx. +), x =x, < c-1+|A|+ :ii i i — 2
A B

and conclude that (4.2) belongs to the closure of (4.1). It remains

to verify that all the 1nequalities (4.2) with |A| + |B| = n belong

to the closure of (4.1). Here, we distinguish two cases.

CASE 1. py 343 < b, for all 1 =1, 2, . . . , m. In this case, we
j€A

have

Yc, <c
i€a 1

19



for otherwise (11) 1s violated by

1, i €A

xX, =

0, i €B

Setting M = max |c_ | we have

(Mtc Ix, < Mic, (i € a)

(M-c.) (=x) <0, (1 € B)

M-1) y! c; X; < M=-1)c1 ——

Adding these inequalities and dividing by M we obtain

3 + | -\ cc+ [Al += (c+ Te)“iF TAIT RS M i
A B A

and conclude that (4.2) belongs to the closure of (4.1).

CASE 2. > a,.> b, for some i. Setting M = max |a,.| we have
1j i igJEA

—_a x. — iE

Mta,.)(-x,) < 0, © Btay) (xy) < (j € B) |

), 353 X, < b, ] |

20



Adding these inequalities and dividing byM we obtain

1

¥ gm 4 oxy < [Al +g 0p - a,CUR ia

and conclude that

Lox yux < [al 1
pn J BJ

belongs to the closure of (4.1). Therefore (4.2) also belongs to the

closure of (4.1).

The proof is finished. The reader may have noticed that not

all the inequalities (4.2) are required for the induction leading to

IH X, <c-1l. Indeed, we can restrict ourselves only to those with

AUB=1{1,2, . . . , |a| + |B|} .

Then the induction 1s performed along a binary tree with n+l levels.

All the 2K vertices of the k-th level are labelled by distinct zero-one

vectors (245 Zos + ows 2.) and associated with inequalities

c, x, + (2z,-D)x, < c-1 + y zii —— °
i=1 toga 1TH i=1

|

| Each vertex labelled (215255 coe z,) with k <n has two successors
| labelled (zy, Zys + + «1 Zp, 0) and (21s Zgs «+o, 2p» 1). The

inequality assigned to a parent vertex is obtained by adding the

inequalities at its two successors, dividing by two and rounding the

21



!

right-hand side down to the nearest integer. (Since the right-hand

sides of the successors differ in parity, the rounding always

cuts down exactly one half.) The inequalities at the terminal vertices

are obtained in one of two different ways, according to whether

(z,, Zor ows z_) is feasible with respect to (4.1) or not.

The whole picture rather resembles a binary search (in vain)

for a feasible vector 24s 255 . «5 2) that would satisfy

EH zl = c. Actually, it turns out that our method is a translation
of the branch-and-bound method [1] into the language of linear inequalities,

During the search,we are after the 1nequality Ye, x, < cl. Therefore

we split all possible choices of integers Xi» Xyy + 0 + X into twon

classes (corresponding to Xx, = 0 and X; = 1) and proceed to prove the

inequality in each class separately. The two classes correspond to the

two first-level inequalities. Indeed, the inequality

—X + )] G x < cml

is just another way of saying "if x, = 0 then}, c,x< c-1; if1 i-

X;, = 1 then possibly NCH x = ¢"., Similarly, the inequality

x) Flex, <c ’

"1 f = 1 = . d =reads "1 X41 0 then possibly CH X, c; 1f xq 1 then

necessarily 3 C. x, = c—1." The dichotomy between x, 0 and x, 1
1s taken care of by the rounding device, ye go on like this, step by

step, and require one more x, at each step to be fixed at a specified

22



: value (zero or one) until we hit the level where all the x,'s are
fixed. If they are feasible (Case 1) then they cannot satisfy

; ICH X, = Cj if they are not feasible (Case 2) then they cannot be
| reached at all.

| Often, it happens that a k-th level inequality (k < n) belongs

| to the _elementary closure of the inequalities (4.1) and EH xi < co

| In that case, we can stop branching out from the corresponding vertex

and simplify the proof considerably. In the following section, we

illustrate this situation (Example 1).

;
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5. Combinatorial applications: independent sets in hypergraphs.

Many extremal combinatorial problems can be formulated as

problems of finding the largest independent set in a hypergraph. A

hypergraph H is an ordered pair (V,E) where V is a set and E

a collection of subsets of V (see [2]). A set X CV is called

independent (in H) if there is no A € E with A CX. If V is

finite then the problem of finding the largest set X independent

in H 1s the following zero-one linear programming problem. Maximize

y x, subject to
i€v

0 <x 21 1 € WV),

(5.1)

Y, x,< |a] -1 (A€ E)
=

Xx; = integer (1€V) . (5.2)

Theorem 1 guarantees that each inequality y xi < X valid under
iev

constraints (5.1), (5.2) belongs to the closure of (5.1). Therefore

a solution to the above problem can be always obtained through a series

of elementary closure operations,

EXAMPLE 1: Hamiltonian circuits in graphs.

The problem of determining whether a given graph G* = (V¥, E¥)

has a Hamiltonian circuit 1s one of the above kind. The corresponding

hypergraph H = (V,E) has V = E*¥ and the collection E includes two

different kinds of sets A:

24



(i) those consisting of three distinct edges of G* that have

all one vertex 1n common;

(11) those consisting of circuits in G* having less than |V#| edges.

It 1s quite easy to see that each independent set of size |v |

in H constitutes a Hamiltonian circult in G* and vice versa, Thus

G* has a Hamiltonian circuit 1f and only 1f the corresponding zero-

one linear programming problemhas a feasible solution with

Dox = bel
i€E*

As an example, we consider the Petersen graph with edges

enumerated as in Fig. l. Setting up the linear programming problem,

we arrive at constraints

0x <1 4 =1,2..,15 , (5.3)

ten "star constraints" of the type (i), that is

+ +x, +x, x, 22 )

(5.4)
Xo, + x3 x5 22

etc

and many "circuit constraints" of the type (ii), that is
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SII TL BASSE

Xt xX) + Kg FX, FX FX 200 , (5.5)

etc. J
It is notoriously well-known that the Petersen graph has no Hamiltonian

circuit. Equivalently, one has

15

Lx, <9 (5.6)
i=1

for every choice of integers SERST AT satisfying (5.3), (5.4),

(5.9). The 1integrality constraint is essential here —-- indeed,

2 ,.

setting x, = 3 (1 =1,2, ..., 15) we satisfy (5.3), (5.4), (5.5)

and violate (5.6). We are going to show that (5.6) belongs to the

closure of (5.3), (5.4), and (5.5), giving thus a proof of the non-

existence of a Hamiltonian circuit in the Petersen graph.

Let us consider the binary tree in Fig. 2. With each of its

vertices (labelled A, B), we assoclate an inequality

15

> X, + y X; 3 X, < 9 + lA]Pan = i —i=1 1€A 1<B

It 1s not difficult to prove that the inequalities assigned to the

terminal vertices belong to the closure of (5.3), (5.4), (5.5).

(Fig. 2)
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For instance, the inequality corresponding to A = {9, 14, 1}, B=¢

1s obtained as the sum of the inequalities

Xx, +x, +t xq <2 , *8 + x12 * x14 £2,
X

9 + x13 + x15 <2 SEE tx, <2

*10 + X,, + x14 < 2
11 X = > x; tx, tx, <2

‘The inequality corresponding to A = {1, 9}, B = {4, 13, 14} is a sum

of the inequalities

X10 FT ¥11 + ¥14 = 2»

xX; + x5 % Xe = 2

Xq + x, + x, < 2

- x14 < 0 ’

+ 4
X3+ xg tXpy + Xpg T Xg Z9.

Similarly, every other inequality corresponding to a terminal vertex

of our tree can be obtained as a sum of a subset of (5.3), (5.4), (5.5).

As in Section 4, the inequality at each parental vertex (labelled A,B)

can be obtained by taking the sum of the two inequalities assigned to

a its descendants (labelled A U{k}, B and A, B Yk}), dividing by two
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and rounding the right-hand side down. Thus we conclude that (5.6)

belongs to e’ (S) where S is the set of inequalities (5.3), (5.4),

(5.5).

The application of this technique to the problems of existence

of Hamiltonian circuits is discussed in detail in [5]. In particular,

[5] contains the following "one-two-three theorem". Given any graph

G= (V,E) consider the S of inequalities

0 < Xi =< 1 (1 €E) ,

y XS 2 (v EV),
NEL

Lox, <ul - 1 Ww Cv, o0<]|w <|v]).
iCwW

If the maximum of 2 xX. subject to the constraints S and so called
i€E

"comb inequalities" (which belong to el (sy) equals |V| then G has

the following properties:

(1) deletion of k vertices from G always results in a graph

with at most k components (in other words, G is l-tough),

(11) V can be covered by pairwise disjoint circuits (in other words,

G has a 2-factor),

(iii) given any u, v, w € V there is a circuit in G that passes

through all three wu, v, w (in other words, G is 3-cyclable).
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EXAMPLE 2: Moser's cube oroblem.

Let us consider the three-dimensional tick-tack-toe cube

with 27 points (0,0,0), (0,0,1), ... , (2,2,2). Our objective is to

select as many of these 27 points as possible without choosing three

collinear ones. Assigning to each point (a,b,c) a variable X

with 1 = 92a + 3b + ¢ + 1 (see Fig. 3) we arrive at the following

integer programming formulation of the problem.

(Fig. 3)

2

Maximize 3 x, subject to
| i-1

| 0 <x, <1 (1=1, 2, . . . , 27)

Xy + X, + X3 < 2

<

xX, + Xo + Xe < 2

oo (5.7)

xX; + Xe + Xq <2

X) + Xp + Xg7 22

X, = integer i=1, 2, «ce. , 27)

| (Altogether, we have 49 constraints of the form Xj FX + XS 2,: —_

corresponding to 49 collinear triples.) Setting x, = 2/3 (1 = 1,2,...,27)

we satisfy all the inequalities (5.7) and obtain 3 Xx, = 18. However, it
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can be shown that every choice of 17 points out of our 27 always contains

a collinear triple. Equivalently, the inequality 2 xg < lo belongs
to the closure of (5.7). This can be shown as follows. We have

> 5

6 (xp tx tx) 3,

5 5

5

6 (X3 + xg +x) 3,

5 5

6 (Xx; + xg +X) <3,

1 2
3 (% +X +x) <5,

1 2

3 (gv x5 +x) <3

1 1

e (x, tx, +x) <3 R

1 1
6 X4 tX5 TX) ZF

Adding these inequalities up we conclude that

(x, +x, +x, +x.) +x < [287 =
20x) + xg + x, + xg) + Xp FE FX A xg) +x [FF] =8

belongs to the closure of (5.7). Multiplying the last inequality by

8 and adding the inequalities
30



2 4

5 (x, + Xe + Xg) ZT

2 4

5 (x, + Xs + X-) <5 >

Lo + + ) -—

1 2

5 (x, + X5 + XZ 3

we find that

d(x. + x, +xo +x) f(x, +X +x +x) 42x < []=8 (5.8)
1 3 / 9 2 4 6 8 5~ "5

belongs to the closure of (5.7). Now, we set

C= Xs +X) 4 X37 F154 X17 + ¥23

D—
= "14

|
Hence als the sum of variables assigned to the corners of the cube,

B corresponds to edges, C to faces and D to the center of the cube.

The inequality (5.8) applies to the points in the bottom horizontal
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plane. Adding up nine inequalities of this sort (corresponding to

nine planes perpendicular to one of the coordinate axes) we obtain

6A + 4B + 4C + 6D < 72 .

Adding up all the 12 contraints corresponding to lines that join

centers of edges via centers of faces we obtain

2B + 2C < 24 .

Dividing the sum of the last two inequalities by six we arrive at

2]

2, Xx; =A+B+C+D x16
i=1

which 1s the desired result.

More generally, one can consider the 3'-cube and ask for the

largest size f(n) of its subset containing no three collinear points.

It 1s easy to show that f£(1) = 2, £(2) = 6, £(3) = 16; recently

Chandra proved that f(4) = 43. It is not difficult to show that

n

f(n) <c. 3/ vn, see [4]. Moser [16] conjectured that f(n) = o(3™);

this, apparently difficult, problem 1s still unsettled. Perhaps the

technique indicated here could help to solve Moser's conjecture.
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6. Combinatorial applications: coloring of hypergraphs.

A k-coloring of a hypergraph H = (V,E) 1s a partition

V = Cy JC, U oN

such that each C. 1s independent in H. In a coloring problem, one

asks for the smallest k such that H admits a k-coloring. The

coloring problems include the celebrated four-color conjecture as well

‘as the problems of Ramsey's type [3]. At first, it seems that the

coloring problems are different from those considered in the previous

section. Yet there 1s an easy way of reducing them to the previous

type. Given a hypergraph H = (V,E) and a positive integer k we

consider the hypergraph H* = (V¥,E*) where V* = V x {1,2,...,k}

and E* includes two kinds of sets A*:

(i) all the sets A* = A x {j} where A €E, 1< Jj <k,

(11) all the couples A* = {(v,i), (v,j)} where v €V, i # j.

A moment's reflection shows that H is k-colorable if and only if H*

contains an 1ndependent set of size |V]. An amusing consequence of

this trick goes as follows. Every algorithm that finds the largest

independent set in a graph (with n vertices and m edges) within

f (n,m) steps can be used to check the k-colorability of a graph

within f (nk, mk + nC) steps.

33



|

EXAMPLE 3: Ramsey's theorem.

It 1s well-known that, whenever one colors the 15 edgesof a

complete graph with six vertices by two colors (customarily, red and

blue are used), a monochromatic triangle is bound to pop out. Guided by

the philosophy explained above, we can formulate this statement as

follows. The maximum of

T = ) (X,. | Vi.)
i 1<i<j<6 1] + 1]

subject to

| )
| *1 4 Fk 4 Fak =

(1 <i<j<k<56)

Ys + Yi + Yi < 2

- x,. <0 (6.1)
ij —

|

| -¥i3 20 (1 <1i<j<6)

®ip boyy 2d

and

x, 5 = 1nteger, Yi; = 1nteger

: does not exceed 14. (Here x3 = 1 corresponds to the edge {i,j}

colored day-glow orange [19] and Vig = 1 corresponds to {i,j} colored

| vermilion.)
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We proceed to show that T < 14 belongs to the closure of

: (6.1). We easily find that T < 15 does so. Indeed, this 1s just the

sum of all the inequalities X5- + Y5:5 1. Actually, the maximum
of T subject to (6.1) equals 15 and can be attained by setting

X = = 1
5 Yi" 2°

Now, adding up the inequalities

Xjg + X13 + Xp3 £7

X1g + ¥14 T Xp £2

X19 + x14 + x34 £2

93 F You T V3 £2

*1 5 + Yi <1 (ij # 23, 24, 34)

T < 15

we obtain the inequality

2(T + X19 + X) 3 + X14) < 35.

Hence

T+ x, ESERIES 17

belongs to the closure of (6.1), In the same way, we deduce

THxp4 ¥3 4 %5 20

T+ x, +x, +x:<17,

T+ x33 + x, + X50 < 17 .
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| Adding up the last four inequalities and 2 < 30 on the top, we |

obtain

3(2T + Xyp * Xpg3 + Xp, HF Xs) < 98 |

Therefore

2T + X19 + X13 + X14 + X15 < 32

belongs to the closure of (6.1). Similarly, we obtain

2T + X19 + X13 + X14 + X16 = 32 ,

2T + X19 + X13 + Xs + X16 < 32 ,

2T + Xpg + Xp X15 + X16 © 32 ,

Adding up the last five inequalities and 2T < 30, we arrive at

GGT + x5 + Kya + Xp, + Xt X16) < 190 ,

so that

3T + X19 t Xp txt Ko + Xp< 47]

belongs to the closure of (6.1). By the same series of arguments, the

inequality

3T Ly y :12 + 713 + Y14 + Y15 + Yip 47

belongs to the closure of (6.1). Adding up these''two inequalities and all
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X;3 Tyg sl (2 <i < j< 6)

we arrive at 7T_< 104. Therefore T < 14 belongs to the closure

of (6.1).

The astute reader has noticed that our proof simulates the

standard one. We investigated colorings where some of the edges can

be left uncolored butno monochromatic triangle occurs; the total number

of colored edges is T. We start by observing that Kip = Xyq _ Xq, = 1 is
incompatible with T = 15 (in other words, if in a full coloring all

three edges {1,2}, {1,3}, {1,4} are colored day-glow orange then we

run into a contradiction -- either one of the triangles 123, 124, 134

1s day-glow orange or else 234 1s vermilion). Equivalently,

T + X15 t Xa t X14 S 17. Thus only two of the three edges {1,2},

{1,3}, {1,4} can be colored day-glow orange. Now, symmetry and

common sense show that only two out of the five edges {1,2}, {1,3},

{1,4}, {1,5}, {1,6} can be colored day-glow orange

(3T + X19 + Xy 5 + X14 + Xe 4 X16 < 47) . However, the process of

getting this 1nequality from T + X14 + ST t Xp < 1.7 1s painfully
slow. Similarly, only two out of the five edges {1,i} can be colored

vermilion  (3T + Vig t Yig3 F Yiu tT Yy5 T V62 477) and so the coloring

can never be full (T< 14). Along the same lines, one can translate

the entire proof of Ramsey's theorem into the closure operation language.
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7. A hierarchy of combinatorial problems.

A T.V. commerical for our main theorem would read

| commmatorics = NUMBER THEORY + LINEAR PROGRAMMING | (7.1)

Indeed, a host of combinatorial problems can be formulated as integer

linear programming problems, Then the process of solving them can be

split into two parts, that 1is

(1) determining enough new inequalities that belong to the

closure of the original ones,

(ii) solving the resulting ordinary (non-integer) linear programming

problem.

The first phase depends heavily on the divisibilityproperties of the

linear combinations of our original coefficients. Hence a justification

of the slogan (7.1). (It 1s not exactly a strong one, but then again --

we all know how the T.V. commercials are.)

Now, we ask how vital a role the part (i) plays. It turns

out that for certain, rather important and naturally arising combinatorial

problems, all the vertices of the underlying polyhedra P are lattice

points, that 1s E(P) = P. In these cases (that include network-flow

problems, matchings in bipartite graphs, etc.), the phase (1) becomes

void and the desired max-min formula turns out to'bejust a special case

of the duality theorem. Fora more detail, see [14], [18]. Next, we

consider an arbitrary problem of maximizing a linear form Y, ci x, subject
to a set S of linear inequalities plus the integrality constraint
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X, = integer G=1, 2, ...,nn).

Our Theorem 1, resp. Corollary lA, guarantees that there is a positive

integer k such that the desired maximum equals the maximum of 3} Cc x
11

subject to (a finite subset of) linear constraints eX (s). The smallest

such k will be called the rank of the problem. gence the problems

of finding a maximal flow through a network have rank zero and so do

the problems of finding a maximum-weighted matching in a bipartite

'graph.  Edmonds' theorem shows that the problems of finding a maximum-

weighted matchingilnan arbitrary graph have rank one (the added

inequalities (2.5) belong to e! (S)). The higher the rank of a problem,

the more involved the phase (1) of its solution. 1 4 way, one may

classify the difficulty of solving an integer linear programming

problem by its rank.  (However,there is no indication of a relation-

ship between the rank of a problem and its computational complexity.)

Finally, we turn our attention to the search for a largest

independent set in a graph G = (V,E). The set of all cliques (that

1s, maximal complete subgraphs) in ¢ will be denoted by c ; each

A € 7 will be seen as a subset of V. The problem is to maximixe

) xy subject to
icv

—% < 0 1a ev),

Y, x, <1 AET) , | (7.2)iCA

x, = integer (1 €V).
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We are going to show that these problems can have arbitrarily high rank.

An inequality }, a ¥; <b will be called positive regular

if ag 20 (3=1, 2, . . ., n and b > max (a, a5... , a) > 0.

A strength of such an inequality 1s the ratio Ol a) b-1 A linear
inequality will be called negative regular if it reads _x < 0,

—_— J w——

LEMMA 2. Let S be a set of linear inequalities

| n

PATRI oo d=1,2,..., mn

where, for each 1 =1, 2, ... , n, the ith inequality reads =x < 0
i —-

and, for each 1 =ntl, n+2, . . . | m, the ith inequality is positive

regular of strength < s. Let the inequality

y a x, <b (7.3)

belong to e (8). Then (7.3) can be written as a linear combination

of the negative regular inequalities in g znd 3 positive regular

inequality of strength < 2s that belongs to el (5).

PROOF. There are nonnegative numbers Apo Ags cee SA such thatm

y ma, = A.A, ==A, + MA, a.,.= integer G=1,2,.. . ,n)
Ue oY

3 ¥
i=1 14 i=n+l or
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Set

Ao gd i=1,2, ...,n

| Ago i =ntl,n1-2, . .. , mm.

Then all the W's are nonnegative and (7.3) can be written as a sum

of inequalities

[A] (x,) <0, (7.4)

( Wu, a,.) Xx, | u, by) . (7.5)j=1 m1 TOR 3 7Lg id

For each J =1, 2, . . . , n we have

) yHe awe = =(A, = [A.]) + A, a,, = integer
i=1 1H I i=n+1 = 3

| m

| Besides, we have A, = [Ax,] < 1 and y A. a ,> 0. Therefore each
) ! j=n+l © J =

| c. = 5 Hi ay. 1s a nonnegative integer. If c¢, = 0 for all

j=1,2, .. .,n then (7.3) is- a sum of inequalities (7.4) and we

are done. Next, we assume ¢ > 1 for some k. Since b, > 2 5 for
all 1 =n+tly,n+2, . . . , mand j =1, 2, C.., n, we have

A, b, > A, a,. > Cc,

j=n+l ~ 77 d=p+1 CRT J
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for each j and so b ay for each Jj. Hence (7.5) is positive

regular and b > 1. Then 2b = 203) A b, | > 5 Aq b, and so

m m n

2s'b > } A (sb) > Noa, (5 a.)
iit — i ij

i=n+l i=n+l j=1

m n n

> 3 wu, ()) a) = 4 cy
i=1 j=1 j=1

Hence (7.5) has strength < 2s and the proof is finished.

A repeated application of Lemma 2 yields

THEOREM 2. Let S be a set of regular inequalities; let k be a

positive integer. Then each inequality that belongs to £ (9) can

be written as a linear combination of negative regular inequalities

that belong to S and a positive regular inequality that belongs to

k CL CL
e (8). Besides, if all positive regular inequalities in S have

strength < s then all positive regular inequalities in (5) have

strength < 2X. s.

COROLLARY 2A. Given any N there 1s a graph G such that the problem

of maximizing 5 X, subject to (7.2) has rank greater than N.i

PROOF . Erdos [10] has shown that given any n there is a graph G

with more than 2/2 vertices that contains neither a complete subgraph

with n vertices nor an independent set of n vertices. Let k be

the rank of the corresponding problem. Then the maximum of HE
k

subject to e (S) does not exceed n-1 and so, by Lemma 1, the inequality
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>) X. <n-1
i€y *

k+1 CL
belongs to e “(S8). By Theorem 2, the strength of each positive

k+

regular inequality in e Les) is smaller than (n-1) KHL, Hence

we have

V|. (a-1)"1 < (n—1) Pktl

and so

gk+1 S 0/2 (n-1)"2

} If n 1s sufficiently large (with respect to N) then the last inequality

) implies k > N which 1s the desired conclusion.

43



6. APPENDIX: Relations to Gomory's algorithm.

An alternative proof of Theorem 1 can be based on Gomory's

integer programming algorithm [12]. Here we begin with a set of

inequalities

- XxX < 0

n

LB 35 Xs < b.
n

Lz c, x; fc (8.2)

where 2457 bss 4 are integers, the polyhedron defined by (8.1) is

bounded and (8.2) holds for every choice of integers X19 Xp9 + + +g X

~ that satisfy (8.1). Gomory describes a way of generating new constraints,

called cuts, that are satisfied by every choice of integers X1sXgs eee sX
satisfying (8.1) as well as all the previously generated cuts, It

turns out that these cuts belong to the closure of (8.1); an account

of this is given by Hu ([15], Section 13.3). Gomory proves that, after

a finite numberrof cuts are generated in a systematic fashion, the

maximum of ), cl x1, subject to (8.1) and the added cuts, can be

attained by integers X10 X55 0 5 Xo Therefore, by the duality

theorem, (8.2) belongs to the closure of (8.1). Now, to prove Theorem 1

in its full generality, one has to get rid of the inequalities Xs > 0
in (8.1) as well as to get around the . integrality assumption placed

upon UL bye However, these modifications can be carried out 1n quite
a routine manner.
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