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EDMONDS POLYHEDRA AND A HIERARCHY OF COMBINATORIAL PROBLEMS

by

V. Chvatal
Stanford University, Stanford, CA 94305

ABSTRACT

Let S be a set of linear inequalities that determine a
bounded polyhedron P. The closure of S is the smallest set of
inequalities that contains S and is closed under two operations:
(1) taking linear combinations of inequalities, (ii) replacing an
inequality § aj}% < ays where a1, 8y, « . ., & are integers,
by the inequality 2 3'5(:-a with a > [a,]. Obviously, if
integers Xps Xpy oo s X satisfy all the inequalities in S
then they satisfy also all the inequalities in the closure of S.
Conversely, let 2 cj xj‘j ¢y hold for all choices of integers
X15 Xy . KXo that satisfy-all the inequalities in S. Then
we prove that 8 cj}% =< <o belongs to the closure of S. To each
integer linear programming problem, we assign a nonnegative integer,
called its rank. (The rank is the minimum number of iterations
of the operation (ii) that are required in order to eliminate the
integrality constraint.) We prove that there is no upper bound
on the rank of problems arising from the search far largest

independent sets in graphs.



1. Characterizations and good characterizations.

Let us examine the formal structure of the two following

theorems.

THEOREM A (Tutte [17]). Let G be a (finite undirected) graph.
Then the two following conditions are equivalent.
(1) G has a perfect matching (that is, a set of pairwise
disjoint edges that cover all the vertices of G),
(i1) if an arbitrary set S of vectors is deleted from G,
then the number kO(G—S) of odd components (that is, components
having an odd number of vertices each) of the resulting graph G

does not exceed |Sj.

THEOREM B (Gallai [11]). Let G be a (finite undirected) graph.
Then the two following conditions are equivalent.

(1) G 1is k-colorable,

(ii) the edges of G can be directed in such a way that the
resulting directed graph contains no (simple directed) path having

k edges.

Both of these theorems, asserting the equivalence of (i) and
(ii), are characterizations? Yet there is a considerable formal
difference between the two. Theorem A gives necessary and sufficient
conditions for the existence of a certain structure (perfect matching
in G) in terms of the absence of another structure (a set S with

kO(G-S) > |S|). On the other hand, Theorem B gives necessary and



sufficient conditions for the existence of a certain structure
(k-coloring of G) in terms of the existence of another structure
(the directions of the edges of G). Another aspect of this difference
can be illuminated as follows. It is easy to convince one's supervisor
that G has a perfect matching. To do this, one only has to exhibit
the matching. (The question of the difficulty of finding the matching
is irrelevant for our discussion.) It is equally easy (with help of
Theorem A) to convince the supervisor that G has no perfect matching --
one has to exhibit a set S with kO(G—S)>|S|. On the other hand,
while it is easy to convince the supervisor that G has a k-coloring,
Theorem B gives no easy way of showing that G has no k-coloring.
Apparently Edmonds [6] has been the first to turn attention
to this feature of characterizations; he introduced the term "good
characterizations" for the theorems of the first type. Hence Tutte's
theorem is a good characterization while Gallai's theorem is not. Need-
less to say, the words "good characterization" form a nonseparable
entity without any reference to the emotional charge of the adjective
"good". The statement "Gallai's theorem is not a good characterization"
asserts nothing whatsoever about the quality and depth of the theorem.
In our further considerations, the duality theorem of linear
programming will play an important role, It expresses the maximum of
a linear fornlEl ci X, subject to a set of constraints (primal

problem) as a minimum of another form E bi vy subject to other

constraints (dual problem). Hence to show that a feasible primal
solution (xl, Xos o s xn) is optimal, one only has to exhibit a
feasible dual solution (yl, Vos o o s ym) with E c; X, = Z bi i

In a way, the duality theorem of linear programming is a prototype of

a good characterization.



et i A

Our last sentence has more into it than meets the eye.
Actually, Edmonds [7] has shown how to relate Theorem A to the duality
theorem and made it clear that his approach can be adopted in many

different settings. It is the purpose of this paper to study

various questions related to Edmonds' technique.



2. Edmonds polyhedra.

Let G be a graph with vertices Vs Vg oo ey vm and
edges el, s « - s en; for each 3 =1, 2, . . . , m we set
S(j) = {1 : vj is an endpoint of ei}. The problem of finding a

perfect matching in G can be formulated as the following integer

linear programming problem. Maximize

X (2.1)
=1 1
subject to the constraints
x, 20 i=1,2 ...,n, (2.2)
Z Xiil (j=ll 2["'Im)l (2-3)
ies(j)
x; = integer i=1, 2, ..., n). (2.4)

Obviously, every characteristic wvector (Xl”‘z' .. ,xn) of a
set of pairwise disjoint edges satisfies (2.2), (2.3) and (2.4).
Vice versa, every vector (Xl"XZ’ . oo s xn) that satisfies (2.2),
(2.3), (2.4) turns out to be a characteristic vector of a set of
pairwise disjoint edges of G. Hence G has a perfect matching

. if and only if the maximum of (2.1) subject to (2.2), (2.3), (2.4)
equals -2-1m.

Because of the integrality constraint (2.4), we cannot express

the maximum of (2.1) in terms of the minimum of a dual problem. Besides,



if (2.4) 1is dropped then the maximum of (2.1) can increase. For instance,
if G is a triangle then X = X, = Xy = -é-l satisfies (2.2), (2.3) and
yields Z] xi = %. However, the maximum of (2.1) subject to (2.2),

(2.3), (2.4) equals one in this case. Nevertheless, there is a

standard way of getting around the inequality constraint. Qne can

think of the polyhedron P (in the n-dimensional Euclidean space)
determined by (2.2), (2.3). The set F of lattice points inside

P is finite and its convex hull E(P) is another polyhedron. A

moment's reflection shows that the maximum of (2.1) over F equals

the maximum of (2.1) over E(P) —- indeed, F is a subset of E(P)

while the extremum points of E(P) come from F. More generally,

for any polyhedron P and any linear form Z;ci xi,'the problem of
maximizing z:ci xi over the lattice points inside P reduces into the
problem of maximizing E cixi over E(P). 'The latter is an ordinary (non-

integer) linear programming problem that offers the advantage of using the

duality theorem as long: as the list of faces of F'(P) is known,

In general, it seems extremely difficult to determine all
faces of E(P) from those of P. However, in the above case -- when
P is defined by (2.2), (2.3) -- the list of faces of E(P) is
available.  Indeed, Edmonds [7] proved that all the inequalities that

determine E(P) are (2.2), (2.3), and

B om s (2.5)

i

Here S runs through all sets of 2k + 1 vertices (k arbitrary)

and each edge is interpreted as a two-point set. Now, the maximum of



(2.1) subject to (2.2), (2.3), (2.4) equals the maximum of (2.1)
subject to (2.2), (2.3), (2.5), which is, in turn, equal to the
minimum of the corresponding dual program. Therefore Edmonds'
theorem (combined with the duality theorem) yields instantly a good
characterization of graphs without a perfect matching as follows.

A graph G has no perfect matching if and only if there are non-
negative real numbers a5 35 . 5 Ay and b(S), where S ranges

through all odd-cardinality sets of vertices, such that for each

edge e with endpoints Vj’ Vi the inequality

a, + a_ + Z} b(s) >_1
3 k e Cs

is satisfied and
m
1 1
oa, +YN (sl -1 b(s) <=m

Besides, Edmonds [8] proved that the a; and b(S) can be
chosen to be zero or one. Under this added assumption, the above
characterization reduces into Tutte's theorem. Of course, Edmonds'
theorem is more general; it provides a max-min formula for any
weighted matching problem. Edmonds also generalized these results
to the case of optimum-weighted degree-constrained subgraphs of a
given graph (see Section VIII of [7] and also [9]). Since these are
the only cases when E(P) is a proper subset of P but the descrip-

tion of the faces of E(P) is known, we call E(P) the Edmonds

polyhedron of P.



We have seen that the knowledge of the faces of E(P) yields
immediately a max-min formula for the corresponding integer linear
programming problem. Next, we will study the relations between the

faces of E(P) and those of P.



3. The main theorem.

It is easy to see how (2.3) and (2.4) imply (2.5). Indeed,

let S be any set of 2k+l vertices of G. Summing the inequalities

(2.3) for all j with v.:| € S we obtain

D Y N
c

e, S
i

or
- 1l
E X, <k +% .

By (2.4), the left-handside of the last inequality is an integer and
so (2.5) follows. This observation leads us to the definition of a
closure of a set S of linear inequalities. We shall say that an

inequality E aj xj < b Dbelongs to the elementary closure of S

if there are inequalities

n
a,, x, <b, i= ey
jgl RN (=1, 2 m)

in S and positive real numbers )‘l’ >‘2’ e, Am such that

ig‘l Ai aij = aj = integer G=1,2,...,0n,

=



(here [x] denotes the integer part of x). The set of all inequalities
belonging to the elementary closure of S will be denoted by el(S);
for any integer k > 1 we define eX(S) recursively by

k k-1
e (8) = e(e” "(S)). Finally, we set

the set ¢ (S) will be called the closure of S. Evidently, all

vectors (Xl’ X w3 xn) satisfying all the inequalities in S

2’ .

plus the integrality constraint
Xy = integer i=1,2, ..., n)

satisfy also all the inequalities in ¢(S). A converse is given-by our

next result.

THEOREM 1. Let the inequalities

n
jgl aj5 %5 =By =12, «e.., m (3.1

(where aiis bi are real numbers) determine a bounded polyhedron in

the n-dimensional Euclidean space. 1et ¢ , C_ be integers
n

0 €1’ -
such that

Y ey % < e (3.2)

10



holds for any choice of integers X5 xz,.** r Xy satisfying (3.1).
Then (3.2) belongs to the closure of (3.1).

In the proof, we will use the following auxiliary result.

IEMMA 1. Let (3.1) and (3.2) be as in Theorem 1; let c be an integer

such that Z: cj xj < ctl for every choice of reals Xps Xgy o oo X
satisfying (3.1). Then the inequality 2 cj xj < c belongs to the
closure of (3.1).

PROOF of Lemma 1. Let c* be the maximum of E cj xj subject to

the constraints (3.1). By one of the versions of the duality theorem
(see [13], Theorem 8.3.1), there are nonnegative reals >‘1’ >\2, v e s Am

such that E Aiaij = cj G = 1,2, ... , m) and Z hi bi = c¥%,

Since c¢* < c+l, we have [c*] < ¢ and the conclusion follows.

PROOF of Theorem 1. Let c¢* be the maximum of Z ci X, subject to

(3.1); set ¢ = [ec*]. By Lemma 1, the inequality E ci x, < ¢ belongs

i

to the closure of (3.1). If c < <y then we are done. Next, we will

assume C > C and prove that the inequality 2 c, X < c-1 belongs

0
to the closure of (3.1). Repeating this process c-cotimes,we
arrive at the desired conclusion.

Since (3.1) determines a bounded polyhedron, there is an

integer M with |xi| < M whenever (3.1) is satisfied. By Lemma 1,

the inequalities

-x <M i=1, 2, , n)
XiiM (i=1, 2, , n)

11



belong to the closure of (3.1). Given a vector"(ﬂl,sz,. ey sk)
where 0 <k < n and ) € {-M, -M+l, . . . , M} we construct a
linear form (in the xi's)L(sl,sz,. .y, sk) and a number
R(Sl’sz’ e sk) recursively as follows. Firstly, for the zero-

length vector @, we set
L(@) =), c, x,, R(®) = c-1
i1
Secondly, we set

L(S 82’

T R sk) = G%+l+sk) L(Sl’SZ’ ces Sk—l) - X

. * *
R(Sl’ 82’ . . . 14 Sk) = (M+l+sk) R(Sl’ 92’o*a r sk 1) + M .

It follows directly from the definition that
L(Sl’ Sy X%, sk) = L(sl, $55.0. sk‘l) + L{sl, sz,...,sk-l),

R(Sl’ s , sk) ER(sl,sz,.'** , sk—l) + R(sl, 32,...,dk-l)

2" .

whenever > =M. Now, it is easy to establish (by induction on k)

Sk
that

12



L(Sl’ 52’ . = o Sk)
\
=2C x, + ZL(E s8,5.es , si-1) —Ex. ,
i i s.#"M 1 2 s =--}1]_
i 1
> (3.3)
R(Sl’ Sz, e BE = sk)
= (c-1) + L R(sys s, . . ., si-l) + M /
si¢-M 2 s;=-M

Our next observation is essential for the proof.

CLAIM: Let (sl, Sys . s Sk) be any vector with 0 < k < n and

s, € (M, -MH, . . ., M}. If
L(sl, Sps s si_l) =R(sl,sz, A Y (si # -M)
(3.4)
—x.l =M (si = -M)] "’
E c; Xy = ¢
thenxi=si for all i =1, 2, ..., k.

PROOF of the Claim: We proceed by induction on k. The Claim is
trivially true for k = 0. By the induction assumption, the Claim
holds for the vector (sl, Sps + -+ Sk-l) and so the equations

(3.4) with i # k imply xi = si for alli=1, 2, .. . , k-1. If

13



s, = -M then we are done. If S, # -M then we argue as follows.

The equations (3.3) and (3.4) imply that

L(s;s8ys vve , 8 1) = R(Sl’ Sps eee , Sp_q) + 1.
By definition, we have

L(s ' Sk-l) = (M+Sk) L(s s - x

1° S22 - 1’ 820 k=17 " ¥

R(s , Sk-l) = (M+Sk) R(s , S M

10 Sy - 17 o k-1’

Using the last three equations and (3.4) with i = k we deduce

X s which is the derived result. Thus the ¢laim is proved,

k ="k

Now, we are ready for the final coup de grace. Inductively,

we shall sweep through the entire set of inequalities

L(Sl’sz’ . . . 14 Sk)—< R(sl’ 82’ . e 5 Sk.) (3-5)

in a specified order, and prove that each of these belongs to the
closure of (3.1). (In particular, the inequality L(#) < R(#) —-
which comes last in our ordering -- is the one we want.) The linear
order a lexicographic one with each blank -- corresponding to

Si+1? Sk#2? ¢ ¢ ¢ v Sy T interpreted as M+l. More precisely, we say
that (3.5) precedes the inequality L(tl'tZ""’tr) < R(tl’tZ""’tr)
if and only if, either sj < f, or r <j <k where j is the

J
largest subscript with s, = ty for all i < j.

14



CASE 1. k = n. (This case includes the very first inequality in our

set, one with s, = 32=. *x o= sn = =M.) By the induction assumption,

all the inequalities

L(Sl,Sz,---,Si-l) i R(slsszs-"psi-l) (Si % -M) (3.6)

belong to the closure of (3.1). Moreover, the inequalities

-x; <M (s:L = -M) (3.7)
E c; Xy ¢ (3.8)

belong to the closure of (3.1). Summing up (3.6), (3.7), (3.8) and

using (3.3) we arrive at the inequality
L(Sl’SZ’”"Sn) iR(sl,sz,...,sn) + 1. (3.9)

This inequality holds for every choice of reals x1, x X

g0 oo X
that obey (3.6), (3.7) and (3.8). Besides, our Claim implies that
equality in (3.9) can occur only if Xi = s.1 (i =1,2,...,0) and
E Ci X = c. However, these n+l equations are inconsistent with
at least one of the constraints (3.1) -- otherwise the assumption of

our Theorem is violated. Therefore
L(sl,sz,...,sn) < R(Sl’SZ""’Sn) + 1

15



holds for any choice of reals Xps Xgp o 0w X satisfying (3.1),

(3.6), (3.7), (3.8). By Lemma 1, the inequality

L(sl,sz, ces Sn) i_R(sl, Sys v e sn) (3.10)

belongs to the closure of (3.1), (3.6), (3.7), (3.8). As (3.6), (3.7)
and (3.8) belong to the closure of (3.1) themselves, we conclude that

(3.10) belongs to the closure of (3.1).

CASE 2. k <n. By the induction assumption, the inequality

L(sl,sz,... r Sy M) < R(sl, Sy v o - Sk’M)

belongs to the closure of (3.1). This inequality can be written as

(2M+1) L(sl, Sys eee sk) - x < (2M+1) R(s , sk) + M

k 1, SZ’ e s

Besides, the inequality

belongs to the closure of (3.1). Adding the last two inequalities

and dividing by 2M+l we obtain

2M
2M+1

L(sl,sz,.** , sk) < R(sy58,5 «vv , sk) +

Therefore

16



L(sl,sz, cee Sk) < R(sl,sz, cee sk)
belongs to the closure of (3.1).

Now, we have proved that all the inequalities (3.5), including
2 c; Xy < c-1, belong to the closure of (3.1). Repeating this argument

c-c times (as mentioned above) we prove that (3.2) belongs to the

0
closure of (3.1) and finish thus the proof of Theorem 1.
One more remark. It is easy to see that the Edmonds polyhedron

of P can be described by inequalities

2 a x’ .f_ b (i=1,2, . . . m)
j=1 ij 7] i !
*
where all the ai*j's and bi's are integers. Hence Theorem 1 can be

restated as follows.

COROLLARY 1lA. If (3.1) defines a bounded polyhedron P then the

closure of (3.1) determines E(P).,

17



4, The Boolean case and Branch-and-Bound method.

Among the integer linear programing problems, those with

the constraints
X, =0 or 1 i=1,2 ... ,n

are particularly important. The problems arising from combinatorial

considerations have nearly always this form; the x 's usually represent
i

the characteristic vector of a set satisfying specified conditions.

In this section, we turn our attention to these problems. We shall

consider polyhedra defined by inequalities

(4.1)

and present an alternative proof of Theorem 1 within this restricted
class. The proof may be found to be more direct and transparent than
the one given above; besides, it is related in an amusing way to the
branch and bound method. As in the preceding section, we only have to
prove the following statement.

Let cl, ¢y veny ¢, and c be integers such that

(1) the inequality E}Cixi = © belongs to the closure of (4.1),

(ii) there are no integers X)X X satisfying (4.1)

2’ LN 14
and E c X, = C.
Then the inequality Z}gfﬁ‘ic‘l belongs to the closure of (4.1).

18



Actually, we are going to prove that all the inequalities

E ¢y Xt E X, = Z X, £ c-1 + |A] 4.2)
i=1 i€A i€B
where A,B are disjoint subsets of {1, 2, | n} belong to the
closure of (4.1). The proof goes by backward induction on {A] + |B];

the inequality (4.2) with A = B =@ is the one we want. The induction

step is easy. If |A| + |B| < n then there is a subscript k & A U B

and, by the induction assumption, both inequalities
xk+2cixi+8§-2xif_c—l+|A|+ 1
A B
-xkfj-zcixi+g xi‘2x1i°‘1+|A|
A B

belong to the closure of (4.1). Adding them and dividing by two we

obtain

Y, cixi+§xi—§xif_c—l+lA|+!’2—

and conclude that (4.2) belongs to the closure of (4.1). It remains

to verify that all the inequalities (4.2) with |A] + |B| = n belong

to the closure of (4.1). Here, we distinguish two cases.
CASE 1. ), a;. <b, foralli=1,2 ..., n Inthis case, we
j— i
j€A
have



for otherwise (ii) is violated by

1, i€A
Xy =
o, i€B
Setting M = maxlcil we have
(M+ci)xi < M+c1 (i €n)
(M-c,) (-x) <0, (i €B)

M-1) E cy Xy < (M-1)c
Adding these inequalities and dividing by M we obtain
A

1
2°ixi+ﬂ’{"uﬁzxif—c"L'AHﬁ("cJ'Eci)

and conclude that (4.2) belongs to the closure of (4.1).

CASE 2. 8 a;;> by for some i. Setting M = max |a, .| we have
. J i ij -
j<A
_2 )k - €
(M-g )=, “M-ayy (G €4
- S
(M+aij)( xj) <0, (3 € B)
2 aij xj < bi

20



Adding these inequalities and dividing by M we obtain

and conclude that
L ox, - ux < |l -1
A 1 g 3

belongs to the closure of (4.1). Therefore (4.2) also belongs to the
closure of (4.1).
The proof is finished. The reader may have noticed that not

all the inequalities (4.2) are required for the induction leading to

Z}ci X, < c-l. Indeed, we can restrict ourselves only to those with
AUB={132’. - . ,IAI‘l‘IBI}

Then the induction is performed along a binary tree with n+l levels.
All the 2k vertices of the k-th level are labelled by distinct zero-one

vectors (Zl, Zos . e zk) and associated with inequalities

S oen v D )
c, x, + (2z,-1)x, < c-1 + ¥, zi
i=1 i i i=1 i i i=1

Each vertex labelled (zl,zz, cee zk) with k < n has two successors

labelled (z 0) and (2 1) . The

10 293 cer 1 Zypos

inequality assigned to a parent vertex is obtained by adding the

10 Zpr ¢ -1 Zpo

inequalities at its two successors, dividing by two and rounding the

21



right-hand side down to the nearest integer. (Since the right-hand
sides of the successors differ in parity, the rounding always

cuts down exactly one half.) The inequalities at the terminal vertices
are obtained in one of two different ways, according to whether

(Zl, Zos o w0 s Zn) is feasible with respect to (4.1) or not.
The whole picture rather resembles a binary search (in vain)

for a feasible vector (g » z_) that would satisfy

4 .
1’ 72 b n

2 c, zi = c. Actually, it turns out that our method is a translation

of ‘the branch-and-bound method [1] into the language of linear inequalities,

During the search,we are after the inequality E ¢, X, < c-1. Therefore

we split all possible choices of integers , X ;X into two

2>

classes (corresponding to X = 0 and X; = 1) and proceed to prove the

%

inequality in each class separately. The two classes correspond to the

two first-level inequalities. 1Indeed, the inequality
- + —
o UG xgel

is just another way of saying "if X = 0 then E c.x < c-1; if
i i-—

X, = 1 then possibly E ¢; X, = c". Similarly, the inequality

X, + c,x, <
1 le—c '

"y _ : — . 3 —
reads "if X; = 0 then possibly 2 c; Xy < Ci if X 1 then

necessarily Z ¢, x; £ c-1." The dichotomy between X, 0 and x; 1
is taken care of by the rounding device, we go on like this, step by

step, and require one more X, at each step to be fixed at a specified

22



value (zero or one) until we hit the level where all the xi's are
fixed. If they are feasible (Case 1) then they cannot satisfy
Z}ci X, = Ci if they are not feasible (Case 2) then they cannot be
reached at all.

Often, it happens that a k-th level inequality (k < n) belongs
to the _elementary closure of the inequalities (4.1) and E c, xi <.
In that case, we can stop branching out from the corresponding vertex
and simplify the proof considerably. In the following section, we

illustrate this situation (Example 1).

23



5. Combinatorial applications: independent sets in hypergraphs.

Many extremal combinatorial problems can be formulated as
problems of finding the largest independent set in a hypergraph. A
hypergraph H is an ordered pair (V,E) where V is a set and E
a collection of subsets of V (see [2]). A set X C V is called

independent (in H) if there is no A € E with A CX. If V is

finite then the problem of finding the largest set X independent
in H is the following zero-one linear programming problem. Maximize

2 X, subject to

i€v
(5.1)
iéA x; < |A] -1 (A €E),
X, = integer iev). (5.2)

Theorem 1 guarantees that each inequality E xi < Xy valid under
iev

constraints (5.1), (5.2) belongs to the closure of (5.1). Therefore

a solution to the above problem can be always obtained through a series

of elementary closure operations,

EXAMPLE 1: Hamiltonian circuits in graphs.

The problem of determining whether a given graph G* = (V¥, E*)
has a Hamiltonian circuit is one of the above kind. The corresponding
hypergraph H = (V,E) has V = E* and the collection E includes two

different kinds of sets A:

24



those consisting of three distinct edges of G* that have

1)

all one vertex in common;

(i)  those consisting of circuits in G* having less than |V*| edges.
It is quite easy to see that each independent set of size |V*|
Thus

in H constitutes a Hamiltonian circuit in G* and vice versa,

G* has a Hamiltonian circuit if and only if the corresponding zero-

one linear programming problem has a feasible solution with

AR T
iexE*

As an example, we consider the Petersen graph with edges

enumerated as in Fig. 1. Setting up the linear programming problem,

we arrive at constraints

t=1,2,..., 15 , (5.3)

) (5.4)

etc

and many "circuit constraints" of the type (ii), that is

25



X, + x +X8+X14+X10+X5_<_5 (5.5)

etc. j

It is notoriously well-known that the Petersen graph has no Hamiltonian

circuit. Equivalently, one has

X, <9 (5.6)

for every choice of integers X15 Xgs o« -y Xy satisfying (5.3), (5.4),
(5.5). The integrality constraint is essential here -- indeed,
setting X, = -% 1=1,2 ..., 15 we satisfy (5.3), (5.4), (5.5)

and violate (5.6). We are going to show that (5.6) belongs to the
closure of (5.3), (5.4), and (5.5), giving thus a proof of the non-
existence of a Hamiltonian circuit in the Petersen graph.

Let us consider the binary tree in Fig. 2. {ith each of its

vertices (labelled A, B), we associate an inequality

15
121 xi+.é.xi—2‘xif—9+lAl
= i€A i€B

It is not difficult to prove that the inequalities assigned to the

terminal vertices belong to the closure of (5.3), (5.4), (5.5).

(Fig. 2)
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For instance, the inequality corresponding to A = {9, 14, 1}, B = ¢

is obtained as the sum of the inequalities

X, +x, +txg <2, 8+ x12 tx14 22,

x9 + x13 + x15 <2 , xl+x5 +x6§_2,

10 + X,; 4 x14 <2, X, + X, + %X, <2
11 = 17 "2 7 =4

'The inequality corresponding to A = {1, 9}, B = {4, 13, 14} is a sum

of the inequalities

10 * 11+ *14 2 2

X + x5 +x,. < 2,

x+x+x12+x + x. <4,

Similarly, every other inequality corresponding to a terminal vertex

of our tree can be obtained as a sum of a subset of (5.3), (5.4), (5.5).
As in Section 4, the inequality at each parental vertex (labelled A,B)
can be obtained by taking the sum of the two inequalities assigned to

its descendants (labelled A U{k}, B and A, B U{k}), dividing by two
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and rounding the right-hand side down. Thus we conclude that (5.6)
belongs to e5 (S) where S is the set of inequalities (5.3), (5.4),
(5.5).

The application of this technique to the problems of existence
of Hamiltonian circuits is discussed in detail in [5]. In particular,
[5] contains the following "one-two-three theorem". Given any graph

G= (V,E) consider the S of inequalities

<1 (i1 €E) ,

1
]

[N
[~

2 vewn,

< Wl -1 W CvVv, o0 <|w <|v]).

»
A

If the maximum of Z X, subject to the constraints S and so called
i€E
"comb inequalities" (which belong to el(S)) equals |V| then G has

the following properties:

(1) deletion of k vertices from G always results in a graph
with at most k components (in other words, G is l-tough),
(ii) V can be covered by pairwise disjoint circuits (in other words,
G has a 2-factor),
(1ii) given any u, v, w € V there is a circuit in G that passes

through all three wu, v, w (in other words, G is 3-cyclable).
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o wEeme

EXAMPLE 2: Moser's cube oroblem.

Let us consider the three-dimensional tick-tack-toe cube
with 27 points (0,0,0), (0,0,1), ..., (2,2,2). Our objective is to
select as many of these 27 points as possible without choosing three
collinear ones. Assigning to each point (a,b,c) a variable Xy
with 1 = 9a + 3b + ¢ + 1 (see Fig. 3) we arrive at the following

integer programming formulation of the problem.

(Fig. 3)
27
Maximize Z x, subject to
i-1
0 <x <1 i=1,2 ...,2N
X + X, + X4 < 2
X, + X + Xc < 2
Y (5.7)
X + X + xg <2
Xy + Ky o+ Xpy S22
x, = integer iA=1, 2, «e., 27)
(Altogether,  we have 49 constraints of the form Ky X 4 X <2,
corresponding to 49 collinear triples.) Setting x; = 2/3 (1 = 1,2,...,27)

we satisfy all the inequalities (5.7) and obtain E x, = 18.  However,

29
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can be shown that every choice of 17 points out of our 27 always contains
a collinear triple. Equivalently, the inequality Z Xy < 16 belongs

to the closure of (5.7). This can be shown as follows. We have

[« 1¥;] o ajwn
~—~ ~
” .

., (3]
+ +

J-\N ><
+ +
w

< o
-

| A

wion

[« (%]

(x7+x + x

wlH
~~
»
[

+

"
v

+
»
0

-

| A
wiro

W]k

(x3+x5+x

M=

(x2 +x_ +x

Adding these inequalities up we conclude that

26
2(x1+x3+x7+x9) + (x2+x4+x6+x8) +x5,i [‘5‘] =8

belongs to the closure of (5.7). Multiplying the last inequality by
k) and adding the inequalities

5
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2 4

B (x3 + X + x7) <3 >
L (%, +x. +x,) <=

5 X2 XS X8 i 5 2 ’
1 2

we find that

2(x, + %, + x, + xg) + (x2 + x

4é
1 3 7 + X+ x8) + sz'i D?;]- 8 (5.8)

4

belongs to the closure of (5.7). Now, we set

A = xl + x3 + x7 +x9 + x19 + x21 + x25 + x27,

B = x2 + x4 + x6 + x8 + XlO + x12 n x16 + x18 + x20 + X22 + x24 + X26’
C=x5+x, | X3+ X5 4 X7 4 %30

14 -

Hence ais the sum of variables assigned to the corners of the cube,
B corresponds to edges, C to faces and D to the center of the cube.

The inequality (5.8) applies to the points in the bottom horizontal
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plane. Adding up nine inequalities of this sort (corresponding to

nine planes perpendicular to one of the coordinate axes) we obtain

6A + 4B + 4C + 6D < 72

Adding up all the 12 contraints corresponding to lines that join

centers of edges via centers of faces we obtain

2B + 2C < 24

Dividing the sum of the last two inequalities by six we arrive at

5 Xx; =A+B+C+Dzx16
i=1
which is the desired result.

More generally, one can consider the 3"-cube and ask for the
largest size f(n) of its subset containing no three collinear points.
It is easy to show that f£(1) = 2, £(2) = 6, £(3) = 16; recently
Chandra proved that f£(4) = 43. It is not difficult to show that
f(n) <c. 3% /n, see [4]. Moser [16] conjectured that f(n) =<K3n);
this, apparently difficult, problem is still unsettled. Perhaps the

technique indicated here could help to solve Moser's conjecture.
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6. Combinatorial applications: coloring of hypergraphs.

A k-coloring of a hypergraph H = (V,E) 1is a partition

= Ueao
Vv Cl U C2 ) Cy

such that each C, is independent in H. 1In a coloring problem, one
asks for the smallest %k such that H admits a k-coloring. The
coloring problems include the celebrated four-color conjecture as well
.as the problems of Ramsey's type [3]. At first, it seems that the
coloring problems are different from those considered in the previous
section. Yet there is an easy way of reducing them to the previous
type. Given a hypergraph H = (V,E) and a positive integer k we
consider the hypergraph H* = (V¥%, E*) where V* = V x {1,2,...,k}
and E* includes two kinds of sets Ax*:

(i) all the sets A* = A x {j} where A €E, 1< J <k,

(1i) all the couples A* = {(v,i), (v,j)} where v €V, i # j.

A moment's reflection shows that H is k-colorable if and only if H*

contains an independent set of size [V|. An amusing consequence of
this trick goes as follows. Every algorithm that finds the largest
independent set in a graph (with n vertices and m edges) within

f(n,m) steps can be used to check the k-colorability of a graph

within f(nk, mk + n(g)) steps.
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EXAMPLE 3: Ramsey's theorem.

It is well-known that, whenever one colors the 15 edges of a
complete graph with six vertices by two colors (customarily, red and
blue are used), a monochromatic triangle is bound to pop out. Guided by
the philosophy explained above, we can formulate this statement as

follows. The maximum of

T = Y (X,. | Yi:)
1.i i<j<6 i] + 71ij
subject to
X, . X X, <2
i3 + Tik 4 Tik - \
(1 <1i<3j<k<6)

Vg ¥ gty 22
= X3 <0 ? (6.1)
-¥iy = 0 (1<1i<3<6) /

and

x,, = integer, = integer

1 Vi3

does not exceed 14. (Here xij = 1 corresponds to the edge {i,j}

colored day-glow orange [19] and Yiy = 1 corresponds to {i,j} colored

vermilion.)
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We proceed to show that T < 14 belongs to the closure of
(6.1). We easily find that T < 15 does so. Indeed, this is just the
sum of all the inequalities %j' + ij: 1. Actually, the maximum
of T subject to (6.1) equals 15 and can be attained by setting
¥ T Y437 7

Now, adding up the inequalities
¥12 + ¥13 + *p3 =
X120 + X1 T ¥y S
X) 4+ x14 T x34 £ 2

Vo3 ¥ Vo T Vg 22

x oty sl (13 # 23, 24, 34)

T <15
we obtain the inequality

< 35.

2(T + x,, + x +x14)_

12 13
Hence
T + x + x 4+ x < 17

12 13 14 —

belongs to the closure of (6.1), In the same way, we deduce

TH Xy %34 %5 2170
T + x12 + x14 + x15 <17,
T + x + x + x < 17

13 14 15
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Adding up the last four inequalities and =< 30 on the top, we

obtain

3(2T + x,, + x

12 + X

+ xlS) < 98

13 14

Therefore

+ x + x. . < 32

2T + x + x 14 15

12 13

belongs to the closure of (6.1). Similarly, we obtain

2T + x + X + x + x

In

32,

12 13 14 16

2T + x + X

12 + X

+ x., < 32,

13 15 16

2T + X1 t Xyt X+ X< 32 ,

15 16

2T+ x + X + X

13 14 + %, < 32

15 16

Adding up the last five inequalities and 2T < 30, we arrive at

4(3T + x,, + X,, + X +x15+xl6)il90’

12 13 14

so that

3T + x + x

12 VP ¥zt %

14 + xlS + xl6 < 47

belongs to the closure of (6.1). By the same series of arguments, the

inequality

T4 Y12 + Y13 + Y14 + YIS + ¥pg < 47

belongs to the closure of (6.1). Adding up these''two inequalities and all
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X, +y,, <1 (2 <i<j<b)

we arrive at 7T_< 104. Therefore T < 14 belongs to the closure
of (6.1).
The astute reader has noticed that our proof simulates the
standard one. We investigated colorings where some of the edges can
be left uncolored butno monochromatic triangle occurs; the total number
of colored edges is T. We start by observing that X1p = Xyq _ Xp, = 11s
incompatible with T = 15 (in other words, if in a full coloring all
three edges {1,2}, {1,3}, {1,4} are colored day-glow orange then we
run into a contradiction -- either one of the triangles 123, 124, 134
is day-glow orange or else 234 is vermilion). Equivalently,
T + X5 t x50t X4 S 17. Thus only two of the three edges {1,2},
{1,3}, {1,4} can be colored day-glow orange. Now, symmetry and
common sense show that only two out of the five edges {1,2}, {1,3},
{1,4}, {1,5}, {1,6} can be colored day-glow orange
(3T + x + x + x + x,. . + x

12 13 14 15 16

getting this inequality from T + X4 + x1j + X < 1.7 1is painfully

slow. Similarly, only two out of the five edges {1,i} can be colored

< 47). However, the process of

vermilion (3T + Vg * V93 F Y14 t Y5t Y16 < 47) and so the coloring
can never be full (T < 14). Along the same lines, one can translate

the entire proof of Ramsey's theorem into the closure operation language.
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7. A hierarchy of combinatorial problems.

A T.V. commerical for our main theorem would read

COMBINATORICS = NUMBER THEORY + LINEAR PROGRAMMING (7.1)

Indeed, a host of combinatorial problems can be formulated as integer
linear programming problems, Then the process of solving them can be

split into two parts, that is

(1) determining enough new inequalities that belong to the
closure of the original ones,
(ii) solving the resulting ordinary (non-integer) linear programming

problem.

The first phase depends heavily on the divisibilityproperties of the
linear combinations of our original coefficients. Hence a justification
of the slogan (7.1). (It is not exactly a strong one, but then again --
we all know how the T.V. commercials are.)

Now, we ask how vital a role the part (i) plays. It turns
out that for certain, rather important and naturally arising combinatorial
problems, all the vertices of the underlying polyhedra P are lattice
points, that is E(P) = P. In these cases (that include network-flow
problems, matchings in bipartite graphs, etc.), the phase (i) becomes
void and the desired max-min formula turns out to'bejust a special case
of the duality theorem. For a more detail, see [14], [18]. Next, we

consider an arbitrary problem of maximizing a linear form E ci x, subject

i

to a set S of linear inequalities plus the integrality constraint
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Xy = integer G=1,2,...,n).

Our Theorem 1, resp. Corollary lA, guarantees that there is a positive
integer k such that the desired maximum equals the maximum of E C x
i

subject to (a finite subset of) linear constraints ek(s)' The smallest

such k will be called the rank of the problem. pence the problems

of finding a maximal flow through a network have rank zero and so do

the problems of finding a maximum-weighted matching in a bipartite

'graph.  Edmonds' theorem shows that the problems of finding a maximum-

weighted matchinginan arbitrary graph have rank one (the added

inequalities (2.5) belong to el(S)). The higher the rank of a problem,

the more involved the phase (i) of its solution. 1p 3 way, one may

classify the difficulty of solving an integer linear programming

problem by its rank.  (However,there is no indication of a relation-

ship between the rank of a problem and its computational complexity.)
Finally, we turn our attention to the search for a largest

independent set in a graph G = (V,E). The set of all cliques (that

is, maximal complete subgraphs) in @ will be denoted by ¢ ; each

23 X, subject to
icsv

= <0 aev,
Yyox, <1 L€y, (7.2)
i€a *

X, = integer (i €v).
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We are going to show that these problems can have arbitrarily high rank.

An inequality jp, a, %, <b will be called positive regular

if a, >0 (3=1, 2
j - (J [ 1

» ) and b > max(al, 8 . . an) > 0.,

A strength of such an inequality is the ratio (2 aj) b-1 . A linear
inequality will be called negative regular if it reads

-x. < 0.
3§ -

LEMMA 2. Let S be a set of linear inequalities

n

jglaijxjf_bi (i=1,2,...,m)
where, for each i =1, 2, ..., n, the ith inequality reads -x < 0

i -

and, for each i = n+l, n+2, . . .

, m, the ith inequality is positive

regular of strength < s. Let the inequality

=T 5 < (7.3)

1
belong to e (8). Then (7.3) can be written as a linear combination

of the negative reqular inequalities in g and a positive regular
inequality of strength <«

<

2s that belongs to el(S).

PROOF. There are nonnegative numbers )\1, )\2, cee s such that
m
E m
a, = r.a,, ==\, + E A, a integer (3 =1,2,. n)
e B o
2 )
i=1 i1 i=n+1 11



Set

)\i—[)\i], i=1,2, ..., n

T i=nt,n1-2, ..., m.

Then all the ui's are nonnegative and (7.3) can be written as a sum

of inequalities

] ¢x) <0, (7.4)
( u, a,.) x f_[ p, b ] . (7.5)
j=1 4=1 T AT 3 —Lygp EH
For each 3 =1, 2, . . ., n we have

m m
DM ags = ~=0, - D)+ YA, a,, = integer
=1+ . J i=pt1 T 1

m
Besides, we have X, = [A,] < 1 and 2 X. a.> 0. Therefore each
3 ] - 1 ij -

n+l
m

c, = Z‘, W, a,. 1s a nonnegative integer. If ¢, = 0 for all
ioy; i N
j=1,2, .. ., n then (7.3) is- a sum of inequalities (7.4) and we
are done. Next, we assume ¢, > 1 for some k. Since b, > 244 for
all i =ntl,n+2, . . . , mand j =1, 2, C.., n, we have

m m

E Ay by )N A . >c

i=n+ T B Y
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for each j and so b i_cj for each j. Hence (7.5) is positive

reqular and b > 1. Then 2b = 2[2 )\i bi] > 2 )\i bi and so

) ¥ o4, (5
2s'b > A .(sb,) > A, ( a,,)
t=p1 Y Tyl 1S 1
m n n
T u(D a0 = D oe
-1 i j=1 ij j=1 J

Hence (7.5) has strength < 2s and the proof is finished.

A repeated application of Lemma 2 yields

THEOREM 2. Let S be a set of regular inequalities; let k be a
positive integer. Then each inequality that belongs to ek (S) can
be written as a linear combination of negative regular inequalities
that belong to S and a positive regular inequality that belongs to
ek(s). Besides, if all positive regular inequalities in S have
strength < s then all positive regular inequalities in ek(s) have

strength < 2k-s.

COROLLARY 2A. Given any N there is a graph G such that the problem

of maximizing ‘év X, subject to (7.2) has rank greater than N.
i

PROOF'. Erdos [10] has shown that given any n there is a graph G

0/2 vertices that containsneither a complete subgraph

with more than 2
with n vertices nor an independent set of n wvertices. Let k be
the rank of the corresponding problem. Then the maximum of E X,

subject to ek(S) does not exceed n-1 and so, by Lemma 1, the inequality
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iev

k+1
belongs to e (S). By Theorem 2, the strength of each positive

. . \ k+
reqgular inequality in e 1(S) is smaller than (n-1) 2k+l. Hence
we have
V].@-1)"* < (n-1) 2¢7
and so

RHL o, gn/2 -2

If n is sufficiently large (with respect to N) then the last inequality

implies k > N which is the desired conclusion.
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8. APPENDIX: Relations to Gomory's algorithm.

An alternative proof of Theorem 1 can be based on Gomory's

integer programming algorithm [12]. Here we begin with a set of

inequalities
- X < 0
(8.1)
n
j§1 aij XJ < bl
n
j§1 5 X <<y (8.2)
where aij’ bi’ cJ. are integers, the polyhedron defined by (8.1) 1is
bounded and (8.2) holds for every choice of integers X19 Xgy o o oy X
. that satisfy (8.1). Gomory describes a way of generating new constraints,

called cuts, that are satisfied by every choice of integers xl’XZ""’xn
satisfying (8.1l) as well as all the previously generated cuts, It

turns out that these cuts belong to the closure of (8.1); an account

of this is given by Hu ([15], Section 13.3). Gomory proves that, after

a finite numbercof cuts are generated in a systematic fashion, the
maximum of E ci xi, subject to (8.1) and the added cuts, can be
attained by integers xl, Xos v xn. Therefore, by the duality
theorem, (8.2) belongs to the closure of (8.1). Now, to prove Theorem 1
in its full generality, one has to get rid of the inequalities Xj >0
in (8.1) as well as to get around the . integrality assumption placed
upon a’ij’ bi' However, these modifications can be carried out in quite
a routine manner.
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