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ABSTRACT: We consider the class of linear recursive programs. A
linear recursive program is a set of prccedures where each
procedure can make at most one recursive call. The

| | conventional stack implementation of recursion requires
time and space both proportional to n, the depth of recursion.
It is shown that in order to implement linear recursion so as

| to execute in time n one doesn't need space proportional to
n: n€ for arbitrarily small € will do. It is also known that
with constant space one can implement linear recursion in time

n°. We show that one can do much better: nlt€ for arbitrarily
small €. We also describe an algorithm that lies between

these two: it takes time n.log(n) and space log(n).

. | It is shown that several problems are closely related to the
linear recursion problem, for example, the problem of

| reversing an input tape given a finite automaton with
several one-way heads. By casting all these problems into
a canonical form, efficient solutions are obtained simultaneously
for all. |
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1. Introduction

We consider the following two problems.

(1) The linear recursion problem

| A linear recursive program is a set of ALGOL-like procedures

| each of which centains at most one procedure call. All parameters are passed

oo | by value. There is one speci fied procedure that is evaluated with certain
| given inputs. The problem is to compile a given linear recursive program into

an efficient program without recursion. The reader may wonder at this point

| what ie wrong with the conventional stackimplementation of recursion since

that represents about as fast as one can hope to go. The problem is that it

| takes a great deal of space. In this context efficiency refers to space
efficiency. On the other hand, most compiler writers are aware of an |

implementation that requires space for just one or two values but takes a

great deal of time =- proportional to the square of the recursion depth. On

comparison with this algorithm efficiency refers to time efficiency.

For a treatment of some problems related to the linear |

| recursion problem see Chandra [1972].

) (2) The schema problem |

A schema is a program in which the base functions and predicates

are left uninterpreted. A schema along with a given interpretation

characterizes a computation. The following recursive definition specifies

a schema:

Compute F(a) where

F(y) = if p(y) then h(y) else g(y,F(f(y))).

This schema has been considered in some form or the other by

: .



several authors e.g., Paterson and Hewitt [1970], Hewitt [1970], Garland and

| Luckham [1071], Strong and Walker [1972]. The base functions f,g and h, |

the individual constant a, and the predicate p are not interpreted. In this

schema there is some implicit storage allocation, i.e., the value of y is

stored while F(f(y)) is computed, and the two are then used to obtain |

g(y,F(£f(y))). The problem is to translate (or compile) this recursive |

schema into an efficient flowchart schema that does its storage allocation

explicitly. :

| We solve the linear recursion problem by first converting it to

the schema problem and then solving that. In some sense the schema problem |

looks like a simplified version of the linear recursion problem where there

is just one procedure which consists of a single if-then-else statement.

However, the use of a schema as an intermediate step in the solution has some |

other bonuses stemming from the fact that the base functions and predicates

| . of the schema are uninterpreted. Hence, by specifying appropriate inter-

| pretations one immediately obtains solutions for several different problems

| that can be modelled by the schema (as shown in Appendix I). | |

Section 2 defines the schema problem and the linear recursion problem

in somewhat greater detail and shows how the latter can be reduced to the |

former. The reader may safely omit this section, though it may be desirable |

| to read subsections 2.1 and the first part of 2.2, which define the schema .

problem and the linear recursion problem. Section 3 presents the main results

| of this paper. Efficient solutions for the schema problem are given, and space-

time- tradeoffs are considered. Section L demonstrates some practical aspects |

of these results. In Appendix I (Section 5) we mention two other problems that

| can be reduced to the schema problem. Most of the detailed algorithms are nol
inserted in the mainstream of the paper to allow for ease in reading. These

| are given in Appendix II (Section 6).

5



2. Translation of the Linear Recursion Problem to the Schema Problem

5 2.1 A Definition of the Schema Problem

- | A flowchart schema has a finite number of variables. We use the

symbols YY sYgseee to represent variables. The schema we consider has a
zero-ary function a (i.e., an individual constant), a unary predicate p,

unary functions f and h and the binary function g. Statements in the schema

| are of the following types: | |
Start statement: START |

- Halt statement: HALT (y)

| | Assignment statement: y =~ a

yy = £(y;)

| yi = 8(y;%)

| y. = hy) |
| Predicate test: if p(y) then goto L, else goto L,

| ‘where Li and L, are arbitrary labels. Any statement may be labelled, and
unconditional goto statements are allowed. While the schema is called a

| "flowchart schema' for the reason that it can be represented as a flowchart,
we use the more compact and convenient ALGOL-like notation. We also allow the

use of block structures and 'while-statements" with the understanding that

| these features may be translated by using goto statements to get a '"legal

schema. |

A flowchart schema with arrays has the following additional features:

| €126pCzs counters that can have nonnegative
| ] integer values

Ap aBoshgs ee one-dimensional, semi-infinite arrays
| that may be subscripted with counters.

For convenience we will frequently use identifiers other than those given

>



| above for counters, variables and arrays. For this reason the artifice of

declarations can be used to clarify the meaning of identifiers, where

necessary. The type data is used to identify variables, ‘counter for

counters, and array for arrays. The following operations on counters and |

arrays are allowed: |

Counter operations: | c~=c¢c +1 |

ce~—c -1 |

Cc, = ©

| if c¢ = O then goto L; else goto L, oo
Array operations: y ~ Alc]

Alc] ~y Is

| The execution of each statement is assumed to take a unit amount of | oo |

| time. The space required is the number of variables, counters and the | oo

. number of array locations from zero to the maximum ever referenced. | .

| We may consider the use of additional statements that may be assumed oo

to take unit amounts of time each. An example is the test of equality |

| between two variables. This case 1s briefly considered by Chandra and Manna N

[1972]. Other examples include the comparison of the values of two counters,

halving and doubling the values of counters, multiplying two counters etc. |

While these operations are certainly useful, their direct application in the

algorithms to be described results only in a factor in time efficiency oo
(though equality tests can also detect looping). | | |

- The given recursive schema is |

Compute F(a) where |

F(y) — if p(y) then h(y) else g(y,F(f(y))). |

The problem is to translate this into an efficient equivalent flowchart



schema (with and without arrays). |

h For any interpretation, if there is an integer n such that:

p(£(a)) is true,

and vk <n p(£<(a)) is false, |

then the term to be computed is

g(a,g(£(a),8(£(£(a)), «oo g(£7(a) h( (@)) oo ND.
| | If, for any interpretation, no such n exists then the schema diverges for
- that interpretation. The time and space bounds will be consideredin terms

of n.

.'.2 Reduction of the linear recursion problem to the schema problem

A linear recursive program is a set of ALGOL-like procedures
|

having the following features: | |

(a) There are no global variables. This imposes no constraints

| because we allow procedures-to return a vector of arguments.

(b) Each procedure is loop-free. Loops can be eliminated by

| using recursive calls instead (McCarthy [1962]). However,

standard techniques exist for implementing iteration; and

we do not wish to complicate matters by considering this

| case as well.

| (c) Each procedure can call at most one other procedure. This

is the crucial reason why the program is called "linear.

Now, given a linear recursive program we will first "erase' the

definitions of the base functions and predicates to get a linear recursive

schema. The reason for this is that we are not interested in the detailed |

implementation of the basic operations like addition, multiplication, cons

(in LISP), test for zero, etc.

) >



A linear recursive schema is a set of non-looping procedures.

The first statement of each procedure is the start statement. Subsequent

statements may be assignment, test, or return statements. As mentioned

earlier, we will use ALGOL-like notation to represent the flow of control. |

The variables used in the procedure body may be formal parameters (called

by value) or local variables. No global variables are allowed. The "type"

of a variable may be data or boolean . Data variables may take values

from some domain D1 (to be specified with the interpretation), whereas |

boolean variables take values from the domain B = {true,false}. Further, |

procedures may return a vector of values. This is important because side - oo

effects are not allowed. The same effect could be achieved (very inefficientl |

| by calling several procedures in sequence each of which returns a single value -

but even this mechanism is not available to us since linear recursive schemas :

can have at most one procedure call in every path from the start statement oo

to a return statement. It is assumed that the given linear recursive schema oo

Sq has no illegal reference, i.e., no variable is referenced unless it has

been assigned a value. This assumption is not strictly required for we |

can augment the domains D, and B by adding one "undefined element" to each. oo

This represents only minor modifications of the discussion below. -

The given linear recursive schema S1 is to be reduced to the
standard form |

S: Compute F(a; where | |

: F(y) = if p(y) then h(y) else g(v,F(£(y)))- E

The reduction to the standard form is effected in two steps:

1. If the given recursive schema Sq has d distinct procedure

| definitions, combine them into one procedure by adding log, (d) boolean

oo 6 |



| variables which are tested at the start of the new procedure. Also, the

vector of arguments and the vector of values returned are padded with arbitrary

; constants so that they both have the same type, say D," x B=; i.e., the

vector may be represented as DA CL ERR SAT FER where all the y's |
| are of type data and all the z's are of type boolean. The single procedure

: obtained in this manner will be called Fos and the schema (the procedure F,

| along with the initial values) will be called S, |
| 2. Now, given the schema S, and the interpretation I for its

| functions and predicates (over the domain D,) it is our objective to produce
| an interpretation I (over some domain D) for the constant a, the functions

f,g,h and the predicate p such that the schema in standard form effectively

| | computes the same value as S, It is a requirement that the time taken to
compute the new base functions a,f,g,h and the predicate p be dependent

| only on the schema S, and not on the number of recursive calls required for
| its computation under I (with the usual assumption that the base functions

and predicates in I take unit time to compute). If this requirement is |

satisfied then the assumption (in the schema problem) that each basic

FT statement takes a unit (or bounded) amount of time, is justified.
S t

| The domain D is D, x B, i.e., each element in the new domain

is a vector of data and boolean values.

| The zero-ary function a is defined to be that element of D
which is the vector corresponding to the arguments initially supplied to

the procedure F, in the schema S,

The predicate p is defined as follows: for any vector

veED, v= RATER AI ITRRRRE ES if NCIERERIS SPL IPE N executes
a recursive call then p(v) is false, else p(v) is true.

. i}



| The function h is defined as follows: for any vector

VED, V=<y;,e..,2 >, if p(v) is false then h(v) is arbitrary, but if
p(v) is true (i.e., there is no recursive call) then h(v) is the vector

returned on execution of Fo(yyse-es2,)-
The function f is defined as follows: for any vector

v €D, v= SERRE IS if p(v) is true then f£(v) is arbitrary, else it |

is the vector argument of the recursive call to Fy.

The function g is defined as follows: for any VisVoE D,

vy = YpseeeaZ > if p(vy) is true then g(vy,v,) is arbitrary, else it
is the value that would be returned by Fo(yyseees2,) if v, were substituted

for the value of the one recursive call executed. |

For somewhat greater detail the reader is urged to examine the

| example presented below.

- The interesting thing about the translation presented above is

that it is reversible. Given I and the schema S, or a schema equivalent

to it, one can substitute the values of the constant a, the functions f,g,h

and the predicate Pp to obtain a schema equivalent to the original schema

S1° In this manner, once we have an efficient, non-recursive flowchart |
program equivalent to S, on substitution we obtain an efficient program

equivalent to 8, - :
It should be noted, however, that the word "efficient" as used

above denotes only the order of space-time dependence on n-the number of |

recursive calls. Blind substitution for the constant a, the functions i,g,h

and the predicate Pp would result in some redundant computations, for examn a,

in a computation of f(v) immediately following p(v) (see the example |

below). A practical compiler based on this method would find it relatively |
| simple, however, to avoid this duplicated effort.

- |

| | |



2.3 An Example

The given linear recursive schema Sq has the following base functions:

a; a zero-ary function (an individual constant),

£ a binary function,

| £, a ternary function, and

Pq5P; unary predicates.

The schema Sq is: |

S,: Compute y, where <y,,y,>~ Foals

yp = £(y15¥5)3

| if Py (yy)

then begin <y,,z;> - Fin (vs)s |

if 2,

: oo then RETURN(y , )

else RETURN(£, (v,,¥,5¥3)) 3 |
| end

else if P, (¥,) |
then RETURN(y,,)

else begin Ys = Foo (v1v50s
RETURN(y) ;

end .

| - -
|

| F..(y;) = START data y,, boolean z,;
if p(y |

on. yoo then begin <y,,z,>~ Fop(yq)s
RETURN(y, true); |

end

else begin y, = F,_(v,,¥;);

| RETURN(y,, false);

| i end .

| | | 9



Step 1: a boolean variable Z, is added. z, = true signifies a call

| to F,_, 2, = false signifies a call to Frye The boolean variable zy (below)

| plays the role of Z, in the above definitions of Fig and Fly A

| "redundant' data variable y), is added to match the padded data element in |
the vector returned. Beth the argument vector and the return vector have |

type D, x Dy X B. The resulting schema S, is:

S,: Compute y, where <Yp1Y5027> © F (a;,a, false): |

hy { \ . .
FY Ye 520) START data YY), 5 boolean Z15

if z,

(1) - - - then begin y, ~ £1(yysy5)5

if py (yy) |
(0) = = = - :2) then begin YY), 521 F,(y,,a; false);

LL “1 |

(7) - - - then RETURN(y, a, , true) | |

| else RETURN(£, (vy; ¥,,¥5) a; true); |
end :

| | else if p,(y,)

then RETURN(y,, ,a, ,true) ||
| - - = 1 - rue, |Ch) else begin Yea) 021” F,(yy,¥,,tru J |

FETURN(y a, true); |
end; |

| (5) = = = end
/ ~~ - .

(6) = = = else begin if P, (vq) |

| then begin V5oY) 12> F,(y,,a,,false);

| CY --- RETURN(y, ,a; true);
| B end

| 10 |
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| else begin <y,,y, ,z;> - Fo (y,,y, true);

RETURN(y,, ,a, , false);

end

| Lines (1) - (5) effectively define F,,» and lines (6) - (8) define

Fip- Line (2) invokes a call to Fipe Since Fih takes only one argument,
| the value a, is padded. Line (4) is a call to F,,- F,, really returns

just one value. So return statements such as in line (3) are padded with

two elements: a, and true. Fig returns 2 values, so only one value needs

to be padded when Fig returns: e.g. a, in line (7) is the padded element.

: Step 2: the standard schema is: |

S: Compute F(a) where

| F(y) = if p(y) then h(y) else g(y,F(£(y))).

The required interpretation I for S follows. The definitions of p,h and g

below can be simplified. We choose not to do so for the sake of clarity.

D = Dy Xx D, X B |

| a = <a,,a,,false>

P(<ys¥5,2,>) = if 2,

then 1f py(£)(y;,5,))

then false |

| else if P, (v5) |
then true

else false

else if Py (¥q)

} _ then false

else false |

11 :



h({< - 4

then if P(£,(yy>v,))

then arbitrary

else if P, (v5)

then Vysap true

else arbitrary

else if P, (v;)
then arbitrary

| else arbitrary

then if py (£;(yy5y,))

then <y,,a,,false>

else if P, (v5)

then arbitrary

else <f(y;,¥,),y,,true>

else if P, (yy) |

then <y,,3;,false>

else yp», true> |

8(<Y 5Y,02,70 WW, x, >) =

if 2, |

| then if py (£,(yy5¥,5))
then if Xq |

then Ww, ,a,,true>

else <t, (£,(y15¥,) 5,59) a; true)

else if P, (v5) -

then arbitrary

else <w, ,a,,true> |

12



| else if P,(v;)
then <w_,a_, true>

1° 1

else w,,ay,false>.

| |
-

| |

12.1
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| 3. Solutions for the Schema Problem |

| 3.1 Introduction

| In the previous sections it was shown that the linear recursion

problem can be reduced to the schema problem. Appendix I presents two

other problems that can be converted to the schema problem. Algorithms

. for this problem are now described, and the other problems can be solved

N by substituting the appropriate interpretations for the functions and
the predicate of the schema.

| The schema is:

Computer F(a) where

F(y) = if p(y) then h(y) else g(y,F(£(y))).

Let n be the depth of recursion i.e., n is the smallest integer |

for which p(£"(a)) is true. Then the computation may be represented by

| the following:

| Define t(n) to be h(f (a)).
Vi<n define t(i) to be g( £5 (a),t(i+1)).

Then the desired output is t(0) =~ assuming, of course, that n exists,

| for if n does not exist then the schema loops forever. Essentially this

rule is used in all algorithms below. They differ only in the way they

| compute £1 (a). :

The standard implementation uses a stack:

| i counter c; arrayA;

c ~ 0;

| X ~ a;

. . 13
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| (1) - - - while— p(x) do_

begin |
Alc] ~ x;

x — f(x); | |

c —Cc + 1;

y = h(x); |

(3) - - - while c #0 do oo

c Cc = 1; |

y — g(Alcl,y); - E

HALT (y) . |

The array A acts as push-down stack. The first loop (lines (1) - (2))

implements recursive calls, and the second loop (lines (3) - (4)) pops the |

stack to compute the final value. | |
This implementation takes time and space both proportional to | |

n - the number of recursive calls.
It is also well known that the recursion can be implemented using

only a constant amount of memory and time proportional to n° (see for | |

example Garland and Luckham [1971]). One program that avoids even the use

of counters is presented below. In this program the variables wy and W, oo

¢lfectively play the role of counters. Counters are implemented by letting

the term ta) (i < n) represent the value n - i. A counter, e.g., Wi

can be set to its maximum value n by an assignment statement Wyo a, the

| | oo



counter can be decremented by Wi = £(w,), and it can be tested for zero by
| p(w).

START

X ~ a; | : |

: while— p(x) do x ~ £(x);

y = h(x);

| | | Wy = aj | } |
© while= p(w) do

begin

| wy £(w,);
oo X ~ a; |

| Wy = Wis | |

| while= p(w,) do

x « £(x);

Ww, - fw, ); |
oo end;

y « g(x,y); |

HALT (y).

It is shown in this paper that with a constant amount of memory

the time can be brought down to nite for any arbitrarily small positive €.
| This answers in the negative, a conjecture due to Hewitt [1970] that ne is

the best one can hope to do. Further, to solve the problem in time proportior.nl

to n one does not need space proportional to n as in the stack implementa’on.

just n=. It is also satisfying that there exists an algorithm whose

15 |



space-time tradeoff falls '"'midway' between these two algorithms; it takes

space proportional to log(n) and time proportional to n.log(n).

Time_ Space |

| n n stack implementation | |
AE|

| n n linear-time algorithm (sec. 3.2)
|
| n log n log n log(n) algorithm (sec. 3.3)
| 1+€
| n 1 constant-space
| algorithm (sec. 3.4)
|
| ee eeeee= mm mere ee oe :

n 1 conventional constant space |
SN2 4.5 -¢HE

%.2 Linear-time algorithm

The main problem encountered in flowcharting the given recursive

: : : : : i+1,
schema is that of inverting the function f 1i.e., given a value f (a),

to find f (a). This cannot be done directly because the function f is

| not invertible. The stack implementation solves this problem by storing all

the values | oo

£02) £ p fy |a, (a), (a), “ooo. (a), | -

and picking them off in reverse order. The constant -space algorithm above,

| on the other hand, doesn't really save any values as such, but rather computes oo
| .
| a i-1 i : :
| a, flay, f(a),...,£7 “(a),f (a). A control mechanism is used to keep the

count.

| Between these two extremes of saving all values, and saving none,

: there exist schemes for saving an intermediate number of carefully spaced

| 16



values. We first informally describe an algorithm that is linear in n

| but requires space proportional to RYE (order-2 algorithm). We then

present a generalization of this algorithm which takes space pf" (order-k

| algorithm). Details are given in sec. 6.1 of Appendix II.

| Order-2 algorithm

We use the notation v(i) to stand for the term f(a). Thus v (0)
stands for the constant a itself. |

Let n be a perfect square and let m denote /n. In the

initialization phase the following values are calculated and saved:

v(0), v(m), v(em),...,v((m-2)%m),

| v((m=1)%m), v((m=-1)*m+1),...,v((m=-1)*m+m=-1).

Now the first m values (right to left) can be picked off and used in the

| | computation of the final output. Each step takes a constant amount of time.

‘The following values are left:

oo v(0), v(m), v(om),...,v((m=2)%m).

| A redistribution can now be performed to compute and save the values |

E v((m-2)*m+l), v((@m=2)*m+2),..., v((m-2)*mtm-1).

- | Another set of m values can now be picked off before a second distribution
| is required; and so on.

oo The following are the contributions to the computation time:

| 1. The first initialization phase - takes time proportional to n.

2. Picking off values - n steps, taking constant time each -

| total proportional to n.

%, Redistribution - /n steps, each taking time proportional

to /n- total proportional to n.

Thus the overall algorithm is linear, and takes space 2% /n . We

oo 17



| call the above an order-2 linear-time algorithm. It can be generalized

to an order-k linear-time algorithm as follows.

Order-k algorithm

Let n > 0 be a power of k, and let m denote nl/K, oo

(1) The initialization phase: compute and save the values

v(0), v(n-(m-1).m° 1), vin-(@-2) m5) LLL v(n-ems LY

vin-m.m< 2), v(n-(m-1).m" 2), cons v(n-2m* 2),

v(n-m), v{n-(m-1)), ..., v(n-2), v(n-1), |

Set counters Cl = Cy = vor mC q+ m-1. | |
Set y « h(v(n)). | oo

(>) The main computation phase: ''pick off" the last m values, i.e., |

for m steps do y « g(x,y), where x takes on the saved values | oo

from right to left.

| . ©) Redistribution phase: | |

‘5.1) Level 1 redistribution: | |

If y= O then goto step 3.2. | | N
Redistribute m-1 new values by steps of 1 using the latest

saved value. oo

c; "Cy -1. | -
Goto step 2. | oo

(7.2) Level 2 redistribution:

If c, =0 then goto step 3.3.

| Redistribute m-1 new values by steps of m using the
latest saved value.

oo ¢, = €ym1 | |

| ’ c,- m.

| Goto step 3.1. 18 | oo



(3.3) Level 3 redistribution: |

If Cy = O then goto step 3.4.
| Redistribute m-1 new values by steps of mn" using the latest

saved value,

C_, «~ C - 1
| 3 5

Goto step 3.2.

(3.k-1) Level k-1 redistribution

If c= © then goto step 4.

| Redistribute m-1 new values by steps of LE using the latest

saved value.

1-1 - Cr -1 ~1.
+-

Cron © MW.

| Goto step 3.k-2. |
| |
| (+) ~~ HALT(y)

| vio) ... V(n)

| t to t Pro

- |  (k-2)/k

~| le)

Figure1
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Figure 1 shows the values saved on the initialization phase.

Figure ©» shows the computations in somewhat greater detail for the order-1, |

the order-,and the order-4 algorithms with n = 16. In Figure 22, adjacent |
1c

squares represent values a,f{a),...,f “a. Squares marked X represent

| values that have already been used in building up the final output. Up-arrows 1

denote values that are saved at that stage of the algorithm. Note that

| the order-1 algorithm is precisely the conventional stack implementation of

recursion.

| 0 1 5h 16 |

HEEEREREEENENENE
| J EE NE SUN SNE SE SE EE SE EE EE EE All values are saved

Order-1 lincar-time algorithm |

Figure ’a | |

| Ler
n 4 $ SS After initialization

| | | | | | | | | | | [x |x] x | x x]
1 1 SE SEE SR | After first redistribution

CL LD LT Pex xx] x]x] x] «fx -
| ? LON ES NE After second redistribution oo
1

| Co
4 ] ' i Co

bor | After last redistribution |

| Order-- linear-time algorithm |

| Figure 2b

;

EEE EEEEEEENEREEERD
t t t +4 Initialization

| ‘ t t 1 After first level-1 redi.t.
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| _ I | dl

| LLL TPT TTT Pala ofl of
' 4 + - After first level-2 redist.

LL TTT] [xx] xlxle]xfx]x]x
) ' After first level-3 redist.

LETTPex xxxfxfx]x]x]
t t tt | After subsequent level-2

Order-i linear-time algorithm and level-l redistributions.
Figure 2c

oo | Figure 2

| The discussion above is a simplified version ignoring the

important case when n is not the k-th power of any integer. The |

| total algorithm is described in Appendix II. The main differences from

no the simplified algorithm are:

oo (1) the initialization phase is somewhat more complex,

(2) level-k redistributions too are called for. |

| Nevertheless, the space-time considerations below remain valid.

Space requirements

| The maximum number of saved values in the simplified algorithm

is (k-1).0 E41. For the general algorithm the number of saved values is

at most |

(k-1). = ee |
| a"k |

A small amount of extra storage is required for counters (proportional to k)

and some variables for manipulating values (constant number).

Thus, asymptotically, the data-space requirement is proportional

to k.nt/K. | |
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Time requirements | | |

The main components contributing to the running time are the

following:

1. The initialization phase: proportional to n. | |

2. The computation phase: n steps, each taking constant

time - total proportional to n.

5. Level 1 redistribution: al 1k steps, each taking time oo

nl/E - total proportional to n. |

| L. Level 2 redistribution: RETA steps, each taking time |
| 2k - total proportional to n. | oo

k+l. Level k-1 redistribution: nl/E steps, each taking time al-1/k E
; total proportional to n. |

Thus the total running time is proportional to k.n. |

In summary

There exist linear-time algorithms that take space significantly |

less than the conventional stack algorithm - merely nL/k where k is the | |
order of the algorithm. It is interesting to note that the constant of

| proportionality increases linearly with k. The running time too increases | |
linearly with k. It is for this reason (i.e. the constants of proportionality i} | |

do not increase too rapidly with k) that high-order algorithms can be |

appealingin practice. |

| no |



oo | 5.5 The log(n) algorithm

Before we go on to describe a class of constant-space

algorithms we mention an algorithm lying between the linear-time and

the constant-space algorithms. It can be approximately described in terms

oo of the class of linear-time algorithms as follows: if n is the depth of

| recursion and p = log, (n) th 2n execute the order-p linear-time algorithm.

oo | The idea behind the method is the following. We convert the

: | ~ given linear recursive program into a ''monlinear" recursive program which

oo is then implemented by the usual stack method. The result is significant

savings in space at the expense of extra- camputation. The algorithm is

given below. As before we use the notation v(i) to represent (a).

Main program: |

| (1) Compute n, v(n).

| a (2) Set y « h(v(n)).

oo (3) y= 6(v(0), a, ¥).

. (4) HALT (y). | |

Recursive procedure G(x,i,y): |

(local counter j), |

- (1) If i = 0 then RETURN(y). |

oo (2) If i = 1 then RETURN(g(x,y)).

- - (3) Set j ~ i/2 (integer division).
oo (4) y= a(x), 1-1,y).

(5) v= G(x, i, vy).

| (6) RETURN(y).

oo The procedure G works by dividing the given "interval" into

| two parts, and calling itself recursively on the second half, and then on

23 oo
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the first half of the interval. The algorithm takes space proportional to

| log(n) and time proportional to n.log(n).

5.4 Constant-space algorithm

We would like to implement constant-space algorithms using only |

a finite control, i.e. we do not wish to use arrays or counters. It has been | | |

shown (sec. 3.1) however, that bounded counters in the range O-n can be |

implemented without the use of an explicit counter. We will thus allow

ourselves the liberty of using bounded counters. We have to be a little

careful because incrementing a counter is no longer a unit operation, but |

makes time proportional to n. Decrementing a counter and testing for zero,

however, remain unit operations. |

As before, we will first informally describe the order-2 |

algorithm and then generalize to the higher order case, leaving the |

details for sec. 6.2 of Appendix II.

Order-- algorithm

Let n be a perfect square and let m denote /n . In the |

initialization phase n,m are evaluated and two values are saved - v (0)

and v{n-m). The latter is now used as the base for computing v(n-1),

v(n-';,..., vin-m) in that order. The advantage obtained by using v(n-m) |

as the base as against v(0) is that the average computation time for each

term is only ./n instead of n. Now after the m values have been evaluated, oo
~ it is time to reset the base to v(n-2m). This,of course, takes time n,

but then these resets have to be done quite infrequently - /n times. The

main contributors to the computation time are (1) the initialization which

takes time a (2) the actual computation: n steps taking nl/2 average -
| Iz 1/2 :

total n” ~, and (3) resets of the base value - n steps averaging n -

total ni Thus the total computation time is just nC when 2 value= |

are saved. |

2



Order-k algorithm

Generalizing this to an order-k constant-space algorithm

1/k
let n> 0 be a power of k, and let m denote n ‘

| (1) The initialization phase: compute and save the values

k-1

| Xp oo © vin-m 7),

Xo - v(n-m). |
Set counters cy «= Cp = ... =C —- m-1,

| Set y « h(v(n)).

(2) The main computation phase: ''pick off" the m values to the

right of xy (including x itself) using x; as the base,

| and apply to y. |

| (5) The reset phase:
(3.1) Level 1 reset :

If c; = then goto step 3.2.

Reset x, to a position m steps to the "left" using x, as
oo the base.

cq - c, ~1L. :

| Goto step 2.

(3.2) Level 2 reset:

| If c¢5,=0 then goto step 3.3.

Reset Xq to a position we steps to the left using x
as the base. |

| | -— - 1.| Cc, = C,

| C, =m

Goto step 3.1.
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: (7.k-1) Level k-1 reset:

If ¢,_, = 0 then goto step I.
| oo. k-1

Reset SHR to a position m steps to the left using |

; X, _1 as the base.

| C11 7 Ck-1 -1.

| SI — mM.

Goto step 3.k-2. |

(4) HALT (y). oo

| "Figure 3 demonstrates the order-1, order-2 and order-4 algorithms

i for n = 16. Note that the order-1 algorithm is precisely the conventional
2)

n~ constant space algorithm.

: ]
o 1 2 3b 16

CT SU

t Only one value saved.

| Order-1 constant-space algorithm

Fig. 3a |

| HENNEEEE EEY |
| ! t After initialization |

| CTT IT TEL ET] Ded odelsl A
‘ 1 After first reset |

* } t After second reset |

; Lo] | x] x | X| x] x] fx] x]x x x | X| x|
J After last reset

Order-:;- constant-space algorithm

| Fig. 7b |



i y ror Initialization |

t t $ After first level-1 reset

CLL PLE ETT TT alle fx] x
| } $ After first level-2 reset

t | _

| EERRRERREEEBERE
t After first level-3 reset

. | 4 LL

co LLL EET]Dell xx [x [xlxx] x
oo + ’ $ ] After subsequent level-2 and

, level-1l resets

Order-4 constant-space algorithm

Fig. 3c |

Figure 3

oo The above description deals with the simplified case where n

| is a k-th power. The general case is given in Section 6.2 of Appendix II,

oo | and differs from the above only in technicalities.

| | Space requirements

The algorithm saves k values. Strictly, v(0) does not have

| to be saved as it is simply the constant a. In addition, there are a fixed
|

number of bounded counters and additional variables for manipulation of

values. Thus the data-space is constant (with respect to n), and

proportional to k. The size of the program (the number of states of the

automaton for the automaton problem - see Section 5.1) grows linearly with k.

Time requirements

) a The running time can be divided into



1. The initialization phase: proportional to a LHL/k
| 1/k

2. The computation phase: n steps averaging n each -

total RES
1-1 | |3. Level 1 resets: n /k averaging n2/K each - total 1H/E

4. Level 2 resets: al2/k averaging oo K each - total RES

k+l. Level k-1 resets: a L/K averaging time n-total a L/k |
: 1+1/k

Thus the total running time grows as n and the constant

of proportionality is linear with k. ]

In summary |

Given a fixed amount of space one can do significantly better oo

oo 1+1/k |
than n ; in fact the running time can be made n for arbitrarily :

large k. Storage space grows linearly with k, as does the complexity (size) |

| of the program (or finite state automaton). |

Constant space algorithms can be quite attractive because all |

values used in the computation could be stored in the registers of a

computer, and in any case the addressing is easier than the log(n) and the |

linecar-time algorithms.

It is fascinating to note that if we let p represent log,(n) |

then the effect ,of the order-p linear-time, the order-p constant-space, and

the log(n) algorithms is (approximately) the same with regard to the running

time and storage requirements.

The relationships between the algorithms described above is oo

shown in Figure 4. |

| |
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| L. Conclusions | |

| Solving a problem by first converting it into a problem-schema is an

| interesting concept that merits a great deal more study. The advantage

gained is that the solution of the schema can be used to solve several seemingly

i unrelated problems. An associated advantage is that conversion to a schema

= usually helps to formalize the problem too. An example of this is the

| delineation of the kind of statements allowed in a schema. Because of this,

however, some care has to be exercised when optimal solutions are required

| because in this case conversion to a schema requires more stringent conditions:

| for each construct in the schema there should exist a corresponding base

problem construct, and vice versa. Also, simple changes in the ground rules

of the base problem can significantly alter the corresponding schema problem.

| It was not our objective in this paper to give optimal solutions, just

| | to give good solutions and observe the space-time tradeoffs one can expect.

| | It may have been obvious to the reader that the constant-space algorithms,

| for example, are not optimal. The number of base operations required (other
| than the control mechanism) for the order-k constant-space algorithm is

x. J 1+1/k
- 2

| whereas

| kk 1+1/k
oo un |

| 1+1/k
is feasible with the same space, representing a 5% improvement for the

order-2 algorithm, 9% for order-3 and 18% for order-10; and even in the

i limit our simple algorithm does not become arbitrarily bad compared with
: - the other. The price paid for the improvement is the somewhat greater

]

complexity of the control structure, and an increased number of counter
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operations (which were neglected).

| It is reasonable to ask whether the algorithms described can have any
real practical significance. Exact machine times for the algorithms are

difficult to evaluate owing to machine dependent questions like register |

| allocation, indirect addressing machinery, cache allocation, parallelism and

swapping (in a time shared system). We can approximate times, however, by |

using reasonable assumptions. In the program we assume that each of the base

routines (the functions f,g and h, and the predicate p) takes 40 micro-

seconds’to evaluate and that operations on counters entail negligible cost.

Storing a value (all data variables) is assumed to take 4 machine words, | |

and 6LK words of core are available to the user. The following table gives

the running times for the various algorithms for.recursion depths of 16K, |

CLK, 250K, and 1M. | oo

| Linear - time Const -space || n k=1 k=2 k=6 Log (n) k=6 k=2 k=1 | :
.

1CK 1.97 sec 3.27 sec 5.71 sec |6.55 sec | 10.4 sec Lk.2 sec 89.5 min |

Gis K impos. 13.1 sec 22.8 sec {28.8 sec | 47.5 sec 5.75 min 59.7 hr |

CB0K impos. 52.4 sec 86.5 sec | 126 sec | 3.67 min 45.4 min 20 days |

JRE: impos. 349 min 6.51 min | 9.09 min 21.% min 15 hr 1 year |

It is clearly indicated that for large recursion depths the stack

implementation is not attractive; and for very large recursion depths even

the order-> linear-time algorithm would approach the memory capacities if | |

implemented on present day minicomputers (8K words required for 1M recursion

depth). And finally it should be pointed out that even for relatively small

31



| recursion depths higher-order linear-time (and even some constant -space)
| algorithms may be preferred as background jobs in a time sharing system

because they need not be swapped out as their core requirements are quite

nominal. |

In the preceding discussion the model of computation assumes that the

| size of the data structure remains bounded as computation proceeds. Often,

it is more reasonable to assume that the size of the data increases with |
| the depth of recursion, as does the time for a unit operation on the data.

The algorithms presented in this paper retain their significance under these

conditions, and if anything, become more useful vis a vis the stack algorithm

because space restrictions become more severe. For example, if both time

for a unit operation and the size of the data structure increase linearly

| | with the depth of recursion, the stack implementation would take space and

oo time n° whereas the so called "linear-time" algorithm would take space

| k.nltL/E and time k.n", and the ''constant-space' algorithm would take

space k.n and time k.n2 tk,
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Hb. Appendix I

| ».1 The automaton problem

oo What is the time required for a finite automaton, with an

| arbitrary number of reading heads, to output the symbols on its input |

tape from right to left? The heads can only read from left to right, but

| the automaton has the capability of taking some reading head and setting -

it to the same position on the input tape as some other head (note that an

| automaton without this capability cannot even perform the given task for

arbitrarily long input tapes). ]

To reduce the automaton problem to the schema problem the |

following correspondence between the finite state automaton and the schema

| may be set up: | |

Finite state automaton Schema

| Head i | variable y,

Move read i to the right vi = £(y;)

Set head i to the same position |

as head j : Yi = Yj

Test if head i is on the last |

character of the tape P(yi)

The output file a special variable y

| Qutput the first character from
head i y h(y;)

| Add to the output file from

head i y = 8(y1,¥) |

On comparison with the recursive schema

Compute F(a) where
F(x) ~- if p(x) then h(x) else g(x,F(£(x)))

55 |



| | -"

we see that if x represents a square on the input tape then F(x)

| represents the value of the output file with all characters on the right

of x (and including it) written in reverse order. This is obtained by

first writing all characters on the right of x, i.e. F(£f(x)), and then |

appending x to it, i.e. g(x,F(£f(x))).

Thus the automaton problem is reduced to the schema problem

(without arrays), but with the constraint that the functions h and g

| can be used only in conjunction with the special variable y as in the

statements described, and that the statement vy « h(y;) cannot be

executed more than once. |

The reduction is one-way i.e. a solution of the schema problem

(with the constraints) gives a solution of the automaton problem. Of | |

course, the automaton may do fancy things e.g., it may check if its

entire tape contains just one character, repeated over and over again, and

in this special case it could produce its output in time 2n. However, the

flowchart schema cannot do this as equality tests are not allowed.

It may be argued that the variable y requires not just a |

unit amount of space but space proportional to n. However, since the

finite state automaton is not expected to remember the contents of its R

output file we may consider that y takes zero space. Hence the

assumption that all variables take unit space gives a value for memory | .

requirement one greater than the number of heads required by the automaton. |

“.7 The list problem |

Given a one way list, to output the elements of the list in

reverse order. We are not allowed to change the pointers of the list

itself as in the case where the list structure is common to several

3h |



concurrent processes; and we ask what are the time-memory tradeoffs.

| o—> 0 —m8mmmm™>Q —m8> 0 ,,, —> 0

This problem is a generalization of the automaton problem because our

random-~access computer has several features not available to the finite

| automaton; the number of pointers into the list structure can vary with the

size of the given list, two pointers can be tested to see if they happen

to point to the same node, etc. In the special case where we restrict

our computer to have the capability of a finite automaton we obtain the

automaton problem.

| The reduction of the list problem to the schema problem is

analogous to the reduction of the automaton problem, except that in this

case counters and arrays are allowed. Arrays can be used to hold pointers

into the list. Pointers are analogous to the heads of the automaton. However,

: as the arrays are semi-infinite, the number of pointers can increase with
the size of the list structure. As in Section 5.1, there is a special

variable v representing the output file and the only operations allowed

on y are y « h(y;), and y ~ g(yi,y)-

|

|
|
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| (v. Appendix II

6.1 The Linear-Time Algorithm

| START |

| counter bm,n,eqseee,6p5doseeesdy
data x,y;

array Anseee sf;

STEP1l: if p(a) then HALT(h(a));

n - O; xXx ~ a;

| (1) --- while —p(a) do begin x « f(x); n ~ n + 1 end;

(”) --- m ~ otk.

--— -— . d . - . . > .| (5) dy = 1; dem; dem”; Lou5 dem;
: f en; XxX «~ a;

5a he 0;

A [0] «x3;

while / >d, do |
| d
| : - f = . — fk : - : - :
oo begin # d, 5 x ~ f ¥(x); ¢, = + 1; Ale] x end;

ALO] «x; :

while £ > dq do

DEL 0 > 70 0 ’ 0

" STEP2: vy ~ g(Alc,] VY);

if c, = 0 then goto STEP3;

goto STEPZ2;
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STEP”: | | |

| STEPZ.1: if cy = O then goto STEP3.2;

Cy = Cy” 1;

ALO) = x = Ajleg | |

| for c, ~ 1 step 1 until m-1 do Ale] -X ~ £90 (x) ;
goto STEPZ; |

STEP%.k: if Cp = O then goto STEP;

| Cr + Cy - 1; ] | |
A 1 [0] =x Alcel;

| + fore, -1lstepl until m-1 do A lc, 4] -X - £1 (x); |
STEP;: HALT (y). | | |

| The program follows the algorithm of Section 3.2 very closely.

| In the initialization phase (step 1) line (1) computes the value of n. |

Line {/) assigns to the counter m the largest value such that mn < n.

Note that this can be done just with the operations of +1, -1 and test |

for zero in linear time. Line (3) computes the relevent powers of m

‘these can be computed simultaneously while m is being computed). The

counters TERRE denote the number of values saved at each level. There
is some overlap in values saved which could be avoided. As shown the

| initialization phase involves two passes over the range of data values a

through £7a). This can be done in a single pass for k=1 since all

increments are constant (one) independent of the value of n.

|



: 6.2 The Constant-space Algorithm

START n |

| counter £ym,0,C05 000 ,Cy dose esd;

data YsXyo seer Xy

STEP1: if p(a) then HALT(h(a));

neo; Xe« a; |

~ while—p(a) do begin x « f(x); n = n + 1 end; |

: y ~ h(x);

2 k

| d, —- 1; 4 - m; d, - Mm ; ... 3 d, -m ;
| I ~~ Nn; X ~ a;

Ca mC = sre mC = 0; :

Xi = X3

- : while { > d, do
. di

begin 2 « f -d,; x = £ %(x); c, ~ ¢ t+ 1 end;

| xy — %

while > d, do_

begin { ~ { = dy; X — £ (x); Sy = 4 + 1 end;

STEP2: y « g(£70(x,),y);

| if c, = 0 then goto STEP3; | |

goto STEPZ2;

STEP?:

| STEP3.1: if c¢; = O then goto STEP3.2;

: - Cy = Cp - 1;

| ”



| x, a £17 (x);
C4 — m - 1;

| goto STEPZ2;

| STEP3.k: if c¢, = O then goto STEP; |

| Ce To "Ls
| k-1 ~ EK (x)

cy —m ~- 1; ]
goco STEP3.k-1; |

| STEPL: HALT(y). | -

The initialization phase is shown here for the case where explicit

| counters are allowed. It closely parallels the initialization phase in the :

linear-time program (Section 6.1). The rest of the program can be implemented |
using only the counter operations ~1 and test for zero which means it can be

| directly implemented without any explicit counter (see Section 3.1).

The initialization phase can be implemented without any explicit

| counters as follows. Variables MyCheeesCyndyseee,dy are used to
| represent the corresponding countersin the rest of the program. In addition, |
| variables mx iel ne! are used as temporaries. We make use of the
| following nonrecursive procedures for convenience in defining the operation | |

of the program.

procedure invert {(c’);

| c —a; dec’; |
} _ while —p(d) dobeginc ~ f(c); d ~ £(d); end;

return(c) ; | |

end;
| 39 |



| procedure multiply (eyse,)s |
| begin local d,,d;, val;

val « a; 4, - Cis

while —p(d) do

| begin

| | d, - C55 |
while —p(d,) do |

| val « f(val);

| d, ~ £(d));

_ ne

d; ~- £(d;)s | | |

| return (invert (val));

| end;

| procedure right (x,c);

begin local d,val; |

| val « x; d ~ c; | |

E while —p(d) A —p(val) do

} begin

val ~ f(val);

d ~ £(d); |

return (val);

end;

The initialization part can now be written as:

I STEPL: if p(0) then HALT (h(a)); |

if p(£(a)) then HALT(g(a,h(£(a))));
40 |



| m’ ~ a;

y — h{invert(m’));

| TRY: m’ « f(m’); m +~ invert(m’);

| © ~— m,

TRY, : if p(c,) then goto TRY:

| cp - fc); |

Cc, —m;

TRY, : if p(c,) then goto TRY; |

C,, += £(e,); |

| c, — m;
> |

IRY, : if p(c,) then goto TRY, _,;

SCWE |

if p(4) then goto FOUND;

goto TRY, 5 |

| FOUND: m «~ f(m); comment: m has now been found;

| d, «~ invert (f(a)); |
: OU

dy — m;

d, — multiply(d,,d,); |

SE multiply (d,,d _;); comment: d.,...,d, have been determined;

| ¢/ —c’', - ... —c! «a;
. - {_ 1 k

| Lh 1 -

| | |
.



X = X,

| k

| while —p(right(x,d )) do |
: : Coal ’ :begin x ~ right (x,d ); ch f(c 1) end;

while —P(right(x,d )) do |
i . . . / 4 .

begin x «~ right (x,d,); cy = f(c o)end;
: rN. : — i ry.Cq + invert (c 5) cer 30 invert (c E

comment: this completes the initialization;

This completes the description of the constant-space algorithm.
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