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We consider the class of linear recursive programs. A

linear recursive program is a set of prccedures where each
procedure can make at most one recursive call. The

conventional stack implementation of recursion requires

time and space both proportional to n, the depth of recursion.
It is shown that in order to implement linear recursion so as

to execute in time n one doesn't need space proportional to

n: n€ for arbitrarily small € will do. It is also known that
with constant space one can implement linear recursion in time
n°. We show that one can do much better: nl*€ for arbitrarily
small €. We also describe an algorithm that lies between

these two: it takes time n.log(n) and space log(n).

It is shown that several problems are closely related to the
linear recursion problem, for example, the problem of

reversing an input tape given a finite automaton with

several one-way heads. By casting all these problems into

a canonical form, efficient solutions are obtained simultaneously
for all.
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1. Introduction

We consider the following two problems.

(1) The linear recursion problem

A linear recursive program is a set of ALGOL-like procedures
each of which ccntains at most one procedure call. All parameters are passed
by value. There is one specified procedure that is evaluated with certain
given inputs. The problem is to compile a given linear recursive program into
an efficient program without recursion. The reader may wonder at this point
what is wrong with the conventional stack implementation of recursion since
that represents about as fast as one can hope to go. The problem is that it
takes a great deal of space. In this context efficiency refers to space
efficiency. On the other hand, most compiler Qriters are aware of an
implementation that requires space for just one or two values but takes a
great deal of time - proportional to the square of the recursion depth. On
comparison with this algorithm efficiency refers to time efficiency.

For a treatment of some problems related to the linear

recursion problem see Chandra [1972].

(2) The_schema problem

A schema is a progfam in which the base functions and predicates
are left uninterpreted. A schema along with a given interpretation
characterizes a computation. The following recursive definition specifies
a schema:

Compute F(a) where

F(y) = if p(y) then h(y) else g(y,F(f(y))).

This schema has been considered in some form or the other by



several authors e.g., Paterson and Hewitt [1970], Hewitt [1970], Garland and
Luckham [1971], Strong and Walker [1972]. The base functions f,g and h,

the individual constant a, and the predicate p are not interpreted. 1In this
schema there is some implicit storage allocation, i.e., the value of y is
stored while F(f(y)) is computed, and the two are then used to obtain
g(y,F(£(y))). The problem is to translate (or compile) this recursive
schema into an efficient flowchart schema that does its storage allocation
explicitly.

We solve the linear recursion problem by first converting it to
the schema problem and then solving that. In some sense the schema problem
looks like a simplified version of the linear recursion problem where there
is just one procedure which consists of a single if-then-else statement.

However, the use of a schema as an intermediate step in the solution has some

other bonuses stemming from the fact that the base functions and predicates

. of the schema are uninterpreted. Hence, by specifying appropriate inter-

pretations one immediately obtains solutions for several different problems
that can be modelled by the schema (as shown in Appendix I).

Section 2 defines the schema problem and the linear recursion problem
in somewhat greater detail and shows how the latter can be reduced to the
former. The reader may safely omit this section, though it may be desirable
to read subsections 2.1 and the first part of 2.2, which define the schema
problem and the linear recursion problem. Section 3 presents the main results
of this paper. Efficient solutions for the schema problem are given, and space-
time tradeoffs are considered. Section 4 demonstrates some practical aspects
of these results. In Appendix I (Section 5) we mention two other problems that
can be reduced to the schema problem. Most of the detailed algorithms are nut
inserted in the mainstream of the paper to allow for ease in reading. These

are given in Appendix II (Section 6).

N



2. Translation of the Linear Recursion Problem to the Schema Problem

2.1 A Definition of the Schema Problem

A flowchart schema has a finite number of variables. We use the

symbols Y{s¥5s¥z»+++ to represent variables. The schema we consider has a

3
zero-ary function a (i.e., an individual constant), a unary predicate p,

unary functions f and h and the binary function g. Statements in the schema

are of the following types:

Start statement: START
Halt statemeat: HALT (y)
Assignment statement: ¥ - a

y]-_ = g(YJ- ’yk)

Predicate test: if p(y) then goto L, else goto L,
‘where L, and L, are arbitrary labels. Any statement may be labelled, and

1 2

unconditional goto statements are allowed. While the schema is called a
"flowchart schema' for the reason that it can be represented as a flowchart,
we use the more compact and convenient ALGOL-like notation. We also allow the
use of block structures and 'while-statements' with the understanding that
these features may be translated by using goto statements to get a 'legal"
schema.

A flowchart schema with arrays has the following additional features:

cl,ce,c ye e counters that can have nonnegative
3 integer values
Al’AE’AB"'° one-dimensional, semi-infinite arrays

that may be subscripted with counters.

For convenience we will frequently use identifiers other than those given

N
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above for counters, variables and arrays. For this reason the artifice of
declarations can be used to clarify the meaning of identifiers, where
necessary. The type data is used to identify variables, 'counter for
counters, and array for arrays. The following operations on counters and
arrays are allowed:

Counter operations: ce=c+1

ce~—c -1

0

.~ C,
1 J
ifc =0 then goto L1 else goto L2

Array operations: y - Aic]
Alc) -y

The execution of each statement is assumed to take a unit amount of
time. The space required is the number of variables, counters and the
number of array locations from zero to the maximum ever referénced.

We may consider the use of additional statements that may be assumed
to take unit amounts of time each. An example is the test of equality
between two variables. This case is briefly considered by Chandra and Manna
[1972). Other examples include the comparison of the values of two counters,
halving and doubling the values of counters, multiplying two counters etc.
While these operations are Certainly useful, their direct application in the
algorithms to be described results-bnly in a factor in time efficiency
(though equality tests can also detect looping).

The given recursive schema is

Compute F(a) where

F(y) - if p(y) then h(y) else g(y,F(£(y))).

The problem is to translate this into an efficient equivalent flowchart



schema (with and without arrays).
For any interpretation, if there is an integer n such that:
p(£7(a)) is true,
and Yk < n p(fk(a)) is false,
then the term to be computed is
g(a,g(£(a),(£(£(a)), ... g(£" 7 (a),h(£(a))) ... ))).
If, for any interpretation, no such n exists then the schema divergés for
that interpretation. The time and space bounds will be considered in terms
of n.

.2 Reduction of the linear recursion problem to the schema problem

A linear recursive program is a set of ALGOL-like procedures
having the following features:
(a) There are no global variables. This imposes no constraints
because we allow procedures-to return a vector of arguments.
(b) Each procedure is loop-free. Loops can be eliminated by
using recursive calls instead (McCarthy [1962]). However,
standard techniques exist for implementing iteration; and
we do not wish to complicate matters by considering this
case as well.
(¢) Each procedure can call at most one other procedure. This
is the crucial reason why the program is called '"linear'.
Now, given a linear recursive program we will first '"erase' the
definitions of the base functions and predicates to get a linear recursive
schema. The reason for this is that we are not interested in the detailed
implementation of the basic operations like addition, multiplication, cons

(in LISP), test for zero, etc.

\n



A linear recursive schema is a set of non-looping procedures.
The first statement of each procedure is the start statement. Subsequent
statements may be assignment, test, or return statements. As mentioned
earlier, we will use ALGOL-like notation to represent the flow of control.
The variables used in the procedure body may be formal parameters (called
by value) or local variables. No global variables are allowed. The "type"
of a variable may be data or boolean . Data variables may take values
from some domain D1 (to be specified with the interpretation), whereas
boolean variables take values from the domain B = {true,false}. Further,
procedures may return a vector of valueép This is important because side
effects are not allowed. The same effect could be achieved (very inefficientl

by calling several procedures in sequence each of which returns a single value

but even this mechanism is not available to us since linear recursive schemas

can have at most one procedure call in every path from the start statement

to a return statement. It is assumed that the given linear recursive schema

S1 has no illegal reference, i.e., no variable is referenced unless it has

been assigned a value. This assumption is not strictly required for we

can augment the domains D, and B by adding one ''undefined element' to each.

1

This represents only minor modifications of the discussion below.

The given linear recursive schema S1 is to be reduced to the

standard form
S: Compute F(a) where
: F(y) « if p(y) then h(y) else g(y,F(f(y))).
The reduction to the standard form is effected in two steps:
1. If the given recursive schema S, has d distinct procedure

1

definitions, combine them into one procedure by adding 1og2(d) boolean



‘only on the schema S

variables which are tested at the start of the new procedure. Also, the

vector of arguments and the vector of values returned are padded with arbitrary

S t

constants so that they both have the same type, say D x B ; i.e., the

1

vector may be represented as <y1,y2,...ys,zl,zg,...zt> where all the y's
are of type data and all the z's are of type boolean. The single procedure

obtained in this manner will be called F., and the schema (the procedure F,

2’
along with the initial values) will be called S, -

2. Now, given the schema S, and the interpretation I, for its

2 1

functions and predicates (over the domain Dl) it is our objective to produce
an interpretation I (over some domain D) for the constant a, the functions
f,g,h and the predicate p such that the schema in standard form effectively

computes the same value as S It is a requirement that the time taken to

o
compute the new base functions a,f,g,h and the predicate p be dependent

5 and not on the number of recursive calls required for

its computation under I1 (with the usual assumption that the base functions

and predicates in I, take unit time to compute). If this requirement is

1
satisfied then the assumption (in the schema problem) that each basic
statement takes a unit (or bounded) amount of time, is justified.

S t
The domain D is D x B, i.e., each element in the new domain

1
is a vector of data and boolean values.

The zero-ary function a is defined to be that element of D
which is the vector corresponding to the arguments initially supplied to
the procedure F2 in the schema 82.

The predicate p 1is defined as follows: for any vector
veED, vs= <y1,...,ys,zl,...,zt>, if FE(yl""’ys’zl""’zt) executes

a recursive call then p(v) is false, else p(v) is true.



The function h is defined as follows: for any vector
VED, V=<y,eees2, >, if p(v) is false then h(v) is arbitrary, but if
p(v) is true (i.e., there is no recursive call) then h(v) is the vector
returned on execution of Fz(yl,...,zt).

The function f is defined as follows: for any vector
VED, V=<yse2> if p(v) is true then £(v) is arbitrary, else it
is the vector argument of the recursive call to FQ.

The function g 1is defined as follows: for any v € D,

1°V2
vy = <y1,...,zt>, if p(vl) is true then g(vl,vg) is arbitrary, else it
is the value that would be returned by F2(y1""’zt) if v, were substituted
for the value of the one recursive call executed.

For somewhat greater detail the reader is urged to examine the
example presented below.

The interesting thing about the translation presented above is
that it is reversible. Given I and the schema S, or a schema equivalent
to it, one can substitute the values of the constant a, the functions f,g,h
and the predicate p to obtain a schema equivalent to the original schema
Sl. In this manner, once we have an efficient, non-recursive flowchart
program equivalent to S, on substitution we obtain an efficient program
equivalent to Sl.

It should be noted, however, that the word "efficient' as used
above denotes only the order of space-time dependence on n -the number of
recursive calls. Blind substitution for the constant a, the functions i,g,h
and the predicate p would result in some redundant computations, for examn e.
in a computation of f£(v) immediately following p(v) (see the example

below). A practical compiler based on this method would find it relatively

simple, however, to avoid this duplicated effort.

(@¢]



2.3 An Example

The given linear recursive schema S1 has the following base functions:

a; a zero-ary function (an individual constant),
f1 a binary function,
f2 a ternary function, and

pl,pQ unary predicates.

The schema Sl is:

§,: Compute y, where <y, ,y,> - Flb(al);

Fla(yl’ye) ~ START data y_; boolean z

5’
vy = £ (yy5¥5)5

1?

if pl <yl)

th begin <y_,z.> ~ F 3
then begin <y,z; 16 (Yo ) 3

then RETURN(ya)

else RETURN(fE(yl,yg,YB));

end

else if pg(yg)
then RETURN(ye)

else begin y5 - Fla(yl’YQ);
RETURN(yB);
end .

iy

F1b<Y1) - START data y2, boolean zl;

if p,(y;)
then begin <y,,z,;> = Fy, (y;);
RETURN(ye’true);
end
else begin y, = Fy,(y},y;)s
RETURN(y, , false) ;

end



Step 1: a boolean variable z_ is added. z_, = true signifies a call

2 2
to Fla’ z, = false signifies a call to Flb' The boolean variable zq (below)
plays the role of z, in the above definitions of F1a and Flb' A

"redundant' data variable y), is added to match the padded data element in
the vector returned. Beth the argument vector and the return vector have

type D1 X D1 x B. The resulting schema S2 is:

SQ: Compute Y1 where <y1,y2,zl> - Fg(al’al’false)’

FQ(yl,yp,zQ) - START data ya,yu; boolean 2,5

if z, '
(1) - - - then begin y, - fl(yl’y2);

if py(y,)
2y - - - then begin <y5,yh,zl> - Fg(yg,al,false);
. iz

) - - - then RETURN(yB,aI,true)

else RETURN(fe(yl’yE,yB),al,true);
end
clse 1f p,(y,)
then RETURN(yO,al,true)
) - - - ~ else begin Vs 02> - Fg(yl,yg,true);

IETURN(yB,al,true);

end;
(5) - - - end
o . .
6y - - - else begin if po(yl)
then begin sy 02> - Fg(yl,al,false);
P RETURN(yD,al,true);

- end

10



else begin <y2,yu,zl> - Fg(yl,yl,true);

RETURN(yg,al,false);

end
(8) - - - end.
Lines (1) - (5) effectively define F ,» and lines (6) - (8) define
Flp- Line (2) invokes a call to F,p+ Since F,  takes only one argument,
the value a. is padded. Line (4) is a call to F F., really returns

1 la“ la

just one value. So return statements such as in line (3) are padded with
two elements: a, and true. Flb returns 2 values, so only one value needs

to be padded when F, returns: e.g. a; in line (7) is the padded element.

Step 2: the standard schema is:

S: Compute F(a) where

F(y) = if p(y) then h(y) else g(y,F(£(y))).
The required interpretation I for S follows. The definitions of p,h and g
below can be simplified. We choose not to do so for the sake of clarity.
D = D1 X D1 x B
= <
a al,al,false>
p(<y1,y2,z2>) = if z, |
then if pl(fl(yl’yg))
then false
else if pg(yg)
then true
else false
else if pg(yl)
then false

else false

11



h(<y1,y2,22>) = if z,
then 1f py (£ (v1.5,))
then arbitrary
else if pe(yg)
then <y2,al,true>
else arbitrary
else if pg(yl)
then arbitrary
else arbitrary
f(<y1,y2,22>) = if z,
then if p, (£, (y,,¥,))
then <y2,a1,false>
else if p2(y2)
then arbitrary
else <f1(yl,y2),y2,true>
else if pd(yl)
then <y1,al,false>

else <y1,y1,true>

then if p,(f,(y;,v,))

then if xi

then <w true>

l’al’

else <f2(f1(yl,y2),y2,w1),a1,true)

else if P2<y2)
then arbitrary

else <w true>

1,a1,

12



else if p2(yl)

then <wl,a1, true>

else <w ,false>.

1'%

12.1
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3. Solutions for the Schema Problem

3.1 Introduction

In the previous sections it was shown that the linear recursion
problem can be reduced to the schema problem. .Appendix I presents two
other problems that can be converted to the schema problem. Algorithms
for this problem are now déscribed, and the other problems can be solved
by substituting the appropriate interpretations for the functions and
the predicate of the schema.

The schema is:

Computer F(a) where

F(y) « if p(y) then h(y) else g(y,F(£(y))).

Let n be the depth of recursion i.e., n is the smallest integer
for which p(fn(a)) is true. Then the computation may be represented by

the following:

Define t(n) to be h(f"(a)).
Vi<n define t(i) to be g(fi(a),t(i+l)).
Then the desired output is t(O) - assuming, of course, that n exists,

for if n does not exist then the schema loops forever. Essentially this
rule is used in all algorithms below. They differ only in the way they
compute fi(a).

The standard implementation uses a stack:

START

counter c; array A;

Cv-O;

X +« a;

13



(1) - - - while - p(x) do_
begin
Alc] -~ x;
x ~ £(x);

Co—C+1;

(*) - - - end;
y = h(x);
(%) - - - while c # 0 do
| begin -

cw~c =1,
y ~ g(Alcl,y);
(h) - - - end;

HALT (y) .

The array A acts as push-down stack. The first loop (lines (1) - (2))
implements recursive calls, and the second loop (lines (3) - (4)) pops the
stack to compute the final value.

This implementation takes time and space both proportional to
n - the number of recursive calls.

1t is also well known that the recursion can be implemented using
only a constant amount of memory and time proportional to n2 (see for
example Garland and Luckham [1971]). One program that avoids even the use
of counters is presented below. In this program the variables LA and v,
¢ffectively play the role of counters. Counters are implemented by letting
the term fifa) (i < n) represent the value n - i. A counter, e.g., W,

can be set to its maximum value n by an assignment statement Wy o a, the

14



counter can be decremented by Wy f(wl), and it can be tested for zero by

p(wy)-
START
X ~ a;
while — p(x) do x ~ £(x);
y ~ h(x);
1 "3
while —‘p(wl) do
begin
X ~ a;
Wo = ¥y
while —1p(w2) do

begin
x « £(x);
W, - f(wg);
end;
y « 8(x,y);
end;
HALT (y) .

It is shown in this paper that with a constant amount of memory

the time can be brought down to nl+€

the best one can hope to do.
to n

. (S
just n

for any arbitrarily small positive €.

one does not need space proportional to n

2

This answers in the negative, a conjecture due to Hewitt [1970] that n is

as in the stack implementa:

It is also satisfying that there exists an algorithm whose

Further, to solve the problem in time proportior.nl

on.



space-time tradeoff falls '"midway' between these two algorithms; it takes

space proportional to log(n) and time proportional to n.log(n).

Time ) ~ Space

, n n stack implementation

n n® linear-time algorithm (sec. 3.2)

n log n log n log(n) algorithm (sec. 3.3)
i n1*€ 1 constant-space
| algorithm (sec. 3.4)
| S
—
[ n 1 conventional constant space
! program

%.2 Linear-time algorithm
The main problem encountered in flowcharting the given recursive
. . , . . . i+l
schema is that of inverting the function f 1i.e., given a value £ (a),
to find f (a). This cannot be done directly because the function f is
not invertible. The stack implementation solves this problem by storing all
the values
S 2oy n,

a, f(a), £ {a), ..., f (a),
and picking them off in reverse order. The constant-space algorithm above,
on the other hand, doesn't really save any values as such, but rather computes

~

a, fla), f;(a),...,fl-l(a),fl(a). A control mechanism is used to keep the
count .

Between these two extremes of saving all values, and saving none,

there exist schemes for saving an intermediate number of carefully spaced

16



values. We first informally describe an algorithm that is linear in n

but requires space proportional to nl/2 (order-2  algorithm). We then
present a generalization of this algorithm which takes space nl'/k (order-k
algorithm). Details are given in sec. 6.1 of Appendix II.

Order-2 algorithm

We use the notation v(i) to stand for the term fi(a). Thus v(0)
stands for the constant a itself.

Let n be a perfect square and let m denote /m. 1In the
initialization phase the following values are calculated and saved:

v(0), v{m), v(em),...,v((m-2)"m),

v((m=1)*m), v((m-1)*m+l),...,v((m-1) *m+m-1).

Now the first m values (right to left) can be picked off and used in the
computation of the final output. Each step takes a constant amount of time.
‘The following values are left:

v(0), v(m), v(2m),...,v({m=-2)*m).
A redistribution can now be performed to compute and save the values

v((m-2)*m+l), v((m-2)*m+2),..., v({(m-2)*m+m-1).
Another set of m values can now be picked off before a second distribution
is required; and so on.

The following are the contributions to the computation time:

1. The first initialization phase - takes time proportional to n.

2. Picking off values - n steps, taking constant time each -
total proportional to n.

%, Redistribution -~ /n  steps, each taking time proportional
to /m - total proportional to n.

Thus the overall algorithm is linear, and takes space 2% /n . We

7



call the above an order-2 linear-time algorithm.

It can be generalized

to an order-k linear-time algorithm as follows.

Order-k algorithm

Let n >

(1)
v(0), v(n—(m-l).mk-

vin-m.m

I V<n-m)) V(n_<m-l))9

Set counters c,

1
y = h(v(n)).

Cc

Se

rt

The

for m steps do

from right to left.

O be a power of k, and let

The initialization phase:
1
)

-2), v(n—On-l).mk~2) y see, v(n-2m

o)

main computation phase:

y «~ g(x,y), where

") Redistribution phase:

m denote

o0

compute and save the values

, v(n-(m-E).mk-l),...,v(n-2mk-1),

k-2)’
., v(n=2), vgn-l),

k-1 - m-1.

-—

seee = C

"pick off" the last m values, i.e.,

x takes on the saved values

’5.1) Level 1 redistribution:
If ¢ = O then goto step 3.2.
Redistribute m-1 new values by steps of 1 using the latest
saved value.
R -1.
Goto step 2.
.%.2) Level 2 redistribution:
If ¢, = O then goto step 3.3.
Redistribute m-1 new values by steps of m wusing the

latest saved value.

c, — c.-1.
0T 5

I3

C m.

-—

1

Z
<

| Goto step

.1.

16



Level 3 redistribution:

~~
N
NY
~—~

If c5 = 0 then goto step 3.4.

Redistribute m-1 new values by steps of m2 using the latest

saved value,

Goto step 3.2.

(3.k=1) Level k-1 redistribution

1f O then goto step 4.

Ck-1" ,
Redistribute m-1 new values by steps of m = using the latest
saved value.
Cr-1 "~ € -1.
Crop ~ M-
Goto step 3.k-2.
(4)  HALT(y)

v(o) ... o o v(n)

]

' ' : . tor ot LU,
_.' ,- n(k-e)/k
\—M‘a/\____)

- | Qe |-

Figure 1

19



Figure 1 shows the values saved on the initialization phase.

Figure ” shows the computations in somewhat greater detail for the order-1,

the order-", and the order-4 algorithms with n =

-y

16. 1In Figure 2, adjacent

squares represent values a,f{a),...,f (a). Squares marked X represent

values that have already been used in building up the final output.

denote values that are saved at that stage of the algorithm. Note that

the order-1 algorithm is precisely the conventional stack implementation of

7

recursion.

Order-1 lincar-time algorithm

Figure ’a

LI i | X
t t t tot ot s
l_ ]J | xIx| x| x|x
' 1 tot ot 1

L} J ! x x| x| x! x|x xjx;
r ottt

I——;—]J XX x| x|x x[xiﬂxxxix;

Order-: linear-time algorithm

Figure 2b

| B L L |x
' ' : R
I | '
N l X XX
b t tot

All values are saved

After initialization

After first redistribution

After second redistribution

After last redistribution

Initialization

After first level-1 redi.t.

Up-arrows ¢



+ + t - After first level-2 redist.
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Figure 2

The discussion above is a simplified version ignoring the
important case when n 1is not the k-th power of any integer. The
total algorithm is described in Appendix II. The main differences from
the simplified algorithm are:

(1) the initialization phase is somewhat more complex,

(2) 1level-k redistributions too are called for.

Nevertheless, the space-time considerations below remain valid.

Space requirements

The maximum number of saved values in the simplified algorithm

1 :
is (k-1).n /k+l. For the general algorithm the number of saved values is

at most
n

(k=1). L“l/kJ * kS
"

A small amount of extra storage is required for counters (proportional to k)

and some variables for manipulating values (constant number).

Thus, asymptotically, the data-space requirement is proportional

to k.nl/k.



Time requirements

The main components contributing to the running time are the
following:

1. The initialization phase: proportional to n.

rd

The computation phase: n steps, each taking constant
time - total proportional to n.
. S 1-1/k . .
3. Level 1 redistribution: n steps, each taking time
nl/k - total proportional to n.
L. Level 2 redistribution: nl-g/k steps, each taking time

ng/k - total proportional to n.

k+l. Level k-1 redistribution: nl/k steps, each taking time nlql/k

total proportional to n.

Thus the total running time is proportional to k.n.

In summary

There exist linear-time algorithms that take space significantly
. ) 1/k .
less than the conventional stack algorithm - merely n™’  where k 1is the
order of the algorithm. It is interesting to note that the constant of
proportionality increases linearly with k. The running time too increases
linearly with k. It is for this reason (i.e. the constants of proportionality
do not increase too rapidly with k) that high-order algorithms can be

appealingEin practice.



5.% The log(n) algorithm

Before we go on to describe a class of constant-space
algorithms we mention an algorithm lying between the linear-time and
the constant-space algorithms. It can be approximately described in terms
of the class of linear-time algorithms as follows: if n is the depth of
recursion and p = logg(n) th2n execute the order-p linear-time algorithm.

The idea behind the method is the following. We convert the
given linear recursive program into a 'nonlinear' recursive program which
is then implemented by the usual stack method. The result is significant
savings in space at the expense of extra- camputation. The algorithm is

. . . i
given below. As before we use the notation v(i) to represent f (a).

Main program:

(1) Compute n, v(n).

(2) set y ~ h(v(n)).

(3) vy = G(v(0), n, ¥y).

(k) HALT(y).

Recursive procedure G(x,i,y):
(local counter j),

(1) 1f i

O then RETURN(y).

(2) 1f i

1 then RETURN(g(x,y)).
{3) Set j ~ i/2  (integer division).
)y =6 (x), i-3,).
(5) ¥y~ G(x, j, y).
(6) RETURN(y).
The procedure G works by dividing the given 'interval' into

two parts, and calling itself recursively on the second half, and then on
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the first half of the interval. The algorithm takes space proportional to
log(n) and time proportional to n.log(n).

5.4 Constant-space algorithm

We would like to implement constant-space algorithms using only
a finite control, i.e. we do not wish to use arrays or counters. It has been
shown (sec. 37.1) however, that bounded counters in the range O-n can be
implemented without the use of an explicit counter. We will thus allow
ourselves the liberty of using bounded counters. We have to be a little
careful because incrementing a counter is no longer a unit operation, but
makes time proportional to n. Decrementing—a counter and testing for zero,
however, remain unit operations.

As before, we will first informally describe the order-2

algorithm and then generalize to the higher order case, leaving the

details for sec. 6.2 of Appendix II.

Order -2 algorithm

Let n be a perfect square and let m denote /n . 1In the
initialization phase n,m are evaluated and‘two values are saved - V(O)
and v{n-m). The latter is now used as the base for computing v(n-1),
v(n-';,..., vin-m) in that order. The advantage obtained by using v(n-m)
as the base as against v(0) is that the average computation time for each
term is only ./n instead of n. Now after the m values have been evaluated,
it is time to reset the base to v(n-2m). This, of course, takes time n,

but then these resets have to be done quite infrequently - /n times. The

main contributors to the computation time are (1) the initialization which

e . . 1/2
takes time n”~' , (2) the actual computation: n steps taking n / average -
5z ‘= 1/2 .
total n” 7, and (7) resets of the base value - n steps averaging n -
total n” . Thus the total computation time is just n when 2 value=z

are saved.
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Order-k algorithm

Generalizing this to an order-k constant-space algorithm

let n >0 be a power of k, and let m denote nl/k.

(1)

N

)

i

The initialization phase: compute and save the values

X1 = v(0),

k-1
k-1

P - v(n-m ),

k-2

Xy = v(n-m).

Set counters cj e« Cp = ... = Cr-1 = m-1,

Set y ~ h(v(n)).

The main computation phase: &pick off" the m ‘values to the
right of xg (including XQ itself) using X as the base,
and apply to y.

The reset phase:

(5.1) Level 1 reget:
If ¢, = then goto step 3.2.

Reset x, to a position m steps to the "left'" using x, as

the base.

Cl - Cl'l.

Goto step 2.
(3.2) Level 2 reset:
If ¢, = O then goto step 3.3.
Reset x_. to a position m2 steps to the left using X,

1

as the base.

Goto step 3.1.
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(*.k-1) Level k-1 reset:

If Chron = O then goto step k.

Reset Xy o to a position m steps to the left using

Xk—l as the base.

c -1.

k-1 7 k-1
Crop — M-
Goto step 3.k-2.
(4) HALT(y).
Figure 3 demonstrates the order-1, order-2 and order-4 algorithms
for n = 16. Note that the order-1 algorithm is precisely the conventional

)

n~ constant space algorithm.

o 1 2 34k 16

4 L] | | Ix]

Order-1 constant-space algorithm

Only one value saved.

Fig. 3a
L] | L x|
t t After initialization
X1 XX VXF;Q
N 1 After first reset
L_ J l AL 1 ’] XI XlX {X X]X|{X]|X Xl
* i i After second reset
j: } x| x| x| x| x| x{x|x]|x xxx_ﬂ
+ After last reset

Order-:- constant-space algorithm

Fig. Zb
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X
+ t i) 4 Initialization
1 t 4 After first level-1 reset
1
XIx|X | X| X
+ + After first level-2 reset
X XI XI X XX| X{X]| X
* After first level-3 reset
1
X1 X {[E} X Vﬁl_x Xj &J
t ' i . After subsequent level-2 and

level-1l resets

Order-4 constant-space algorithm

Fig. 3c

Figure 3

The above description deals with the simplified case where n
is a k-th power. The general case is given in Section 6.2 of Appendix II,

and differs from the above only in technicalities.

Space requirements

The algorithm saves k values. Strictly, v(0) does not have
to be saved as it is simply the constant a. In addition, there are a fixed
number of bounded counters and additional variables for manipulation of
values. Thus the data-space is constant (with respect to n), and
propoftional to k. The size of the program (the number of states of the

automaton for the automaton problem - see Section 5.1) grows linearly with k.

Time requirements

The running time can be divided into
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1. The initialization phase: proportional to n1+1/k.

2. The computation phase: n steps averaging nl/k each -

nl-l/k 2/k l+1/k.

3. Level 1 resets: averaging n each - total n

L. Level 2 resets: nl-g/k averaging n3/k each - total nl+l/k.

.

k+l. Level k-1 resets: nl/k averaging time n-total n1+1/k.

n1+1/k

Thus the total running time grows as and the constant

of proportionality is linear with k. n

In summary

Given a fixed amount of space one can do significantly better

o, . . 1 k
than n ; in fact the running time can be made n +1/

for arbitrarily
large k. Storage space grows linearly with k, as does the camplexity (size)
of the program (or finite state automaton).

Constant space algorithms can be quite attractive because all
values used in the camputation could be stored in the registers of a
computer, and in any case the addressing is easier than the log(n) and the
linear-time algorithms.

It is fascinating to note that if we let p represent log,(n)
then the effect;of the order-p linear-time, the order-p constant-space, and
the log(n) algorithms is (approximately) the same with regard to the running
time and storage requirements.

The relationships between the algorithms described above is

shown in Figure 4.
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L. Conclusions
Solving a problem by first converting it into a problem-schema is an
interesting concept that merits a great deal more study. The advantage
gained is that the solution of the schema can be used to solve several seemirgly
unrelated problems. An associated advantage is that conversion to a schema
usually helps to formalize the problem too. An example of this is the
delineation of the kind of statements allowed in a schema. Because of this,
however, some care has to be exercised when optimal solutions are required
because in this case conversion to a schema requires more stringent conditions:
for each construct in the schema there Ehould exist a corresponding base
problem construct, and vice versa. Also, simple changes in the ground rules
of the base problem can significantly alter the corresponding schema problem.
It was not our objective in this paper to give optimal solutions, just
to give good solutions and observe the space-time tradeoffs one can expect.
It may have been obvious to the reader that the constant-space algorithms,
for example, are not optimal. The number of base operations required (other

than the control mechanism) for the order-k constant-space algorithm is

k. n1+1/k
2
whereas
11k 1+1/k
.
1+1/k

is feasible with the same space, representing a 6% improvement for the
order-2 algorithm, 9% for order-3 and 184 for order-10; and even in the
limit our simple algorithm does not become arbitrarily bad compared with

the other. The price paid for the improvement is the somewhat greater

complexity of the control structure, and an increased number of counter
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operations (which were neglected).

It is reasonable to ask whether the algorithms described can have any
real practical significance. Exact machine times for the algorithms are
difficult to evaluate owing to machine dependent questions like register
allocation, indirect addressing machinery, cache allocation, parallelism and
swapping (in a time shared system). We can approximate times, however, by
using reasonable assumptions. In the program we assume that each of the base
routines (the functions f,g and h, and the predicate p) takes 40 micro-
seconds' to evaluate and that operations on counters entail negligible cost.
Storing a value (all data variables) is aséumed to take 4 machine words,
and 64K words of core are available to the user. The following table gives

the running times for the various algorithms for recursion depths of 16K,

LK, 256K, and 1M.

Linear - time Const-space
n k=1 k=2 =6 Log(n) k=6 k=2 k=1
1CK 1.97 sec 3.27 sec 5.71 sec | 6.55 sec | 10.4 sec Lk4.2 sec 89.5 min
Gh K impos. 13.1 sec 22.8 sec |28.8 sec | 47.5 sec  5.75 min 59.7 hr !
LK impos. 52.4 sec 86.5 sec { 126 sec | 3.67 min  L45.4 min 20 days |
1M Iimpos. 3.49 min 6.51' min | 9.09 min | 21.3 min 15 hr 1 year

It is clearly indicated that for large recursion depths the stack
implementation is not attractive; and for very large recursion depths even
the order-2 linear-time algorithm would approach the memory capacities if
implemented on present day minicomputers (8K words required for 1M recursion

depth). And finally it should be pointed out that even for relatively small

31



recursion depths higher-order linear-time (and even some conétant-space)
algorithms may be preferred as background jobs in a time sharing system
because they need not be swapped out as their core requirements are quite
nominal.

In the preceding discussion the model of computation assumes that the
size of the data structure remains bounded as computation proceeds. Often,
it is more reasonable to assume that the size of the data increases with
the depth of recursion, as does the time for a unit operation on the data.
The algorithms presented in this paper retain their significance under theée
conditions, and if anything, become more useful vis a vis the stack algorithm
because space restrictions become more severe. For example, if both time
for a unit operation and the size of the data structure increase linearly
with the depth of recursion, the stack implementation would take space and

(]

time n“ whereas the so called "linear-time' algorithm would take space

/
n1+1/k and time k.ng, and the ''constant-space' algorithm would take

2+1/k

k.

space k.n and time k.n
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5. Appendix I

.1 The automaton problem

What is the time required for a finite automaton, with an
arbitrary number of reading heads, to output the symbols on its input
tape from right to left? The heads can only read from left to right, but
the automaton has the capability of taking some reading head and setting
it to the same position on the input tape as some other head (note that an
automaton without this capability cannot even perform the given task for
arbifrarily long input tapes). )

To reduce the automaton problem to the schema problem the

following correspondence between the finite state automaton and the schema

may be set up:

Finite state automaton Schema

Head i variable ¥i

Move read i to the right vi ~ £(y;)

Set head i to the same position

as head j : Yi = Y;

Test if head i is on the last

character of the tape p(yi)

The output file a special variable y

Output the first character from
head i y - h(yi)

Add to the output file from
head i . y = g(yi,y)

On comparison with the recursive schema

Compute F(a) where
F(x) = if p(x) then h(x) else g(x,F(£(x)))
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we see that if x represents a square on the input tape then F(x)
represents the value of the output file with all characters on the right
of x (and including it) written in reverse order. This is obtained by
first writing all characters on the right of x, i.e. F(£f(x)), and then
appending x to it, i.e. g(x,F(f(x))).

Thus the automaton problem is reduced to the schema problem
{(without arrays), but with the constraint that the functions h and g
can be used only in conjunction with the special variable y as in the
statements described, and that the statement y ~ h(y;) cannot be
executed more than once. ’

The reduction is one-way i.e. a solution of the schema problem
(with the constraints) gives a solution of the automaton problem. Of
course, the automaton may do fancy things e.g., it may check if its
entire tape contains just one character, repeated over and over again, and
in this special case it could produce its output in time 2n. However, the
flowchart schema cannot do this as equality tests are not allowed.

It may be argued that the variable y requires not just a
unit amount of space but space proportional to n. However, since the
finite state automaton is not expected to remember the contents of its
output file we may consider that y takes zero space. Hence the
assumption that all variables také unit space gives a value for memory
requirement one greater than the number of heads requircd by the automaton.

“.7 The list problem

Given a one way list, to output the elements of the list in
reverse order. We are not allowed to change the pointers of the list

itself as in the case where the list structure is common to several
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concurrent processes; and we ask what are the time-memory tradeoffs.

0] 0 > 0 >0 ,,, —>0
This problem is a generalization of the automaton problem because our
random-access computer has several features not available to the finite
automaton; the number of pointers into the list structure can vary with the
size of the given list, two pointers can be tested to see if they happen
to point to the same node, etc. In the special case where we restrict
our computer to have the capability of a finite automaton we obtain the
automaton problem.

The reduction of the list pfoblem to the schema problem is

analogous to the reduction of the automaton problem, except that in this

case counters and arrays are allowed. Arrays can be used to hold pointers

into the list. Pointers are analogous to the heads of the automaton. However,

as the arrays are semi-infinite, the number of pointers can increase with
the size of the list structure. As in Section 5.1, there is a special

variable y representing the output file and the only operations allowed

on y are y e h(Yi), and y - g(Yi:Y)~
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. Appendix II

6.1

The Linear-Time Algorithm
START
counter l,m,n,co,...,ck,do,...,dk;

data x,y;

array AO,...,Ak;

STEPl: if p(a) then HALT(h(a));

(1) ---

O

(3) ---

6 ~ 0; X ~ a;
while —p(a) do begin x ~ f(x); n - n + 1 end;
m e nl/k;
d = 1; dem; den; ; d =m ;
O 3 1 ’ 2 3 e e ey ’

£ e-n; x~ a;

A[0] ~ x;

vhile ¢+ >d_ do

. d
begin £ -~ £ =~ dk; X o~ f k(x); S = Cx + 1; Ak[ck] ~ X end;

ANL0] = x5
while £ > dO do

d
beginlo— l-do; x.-fo(x); Coo-co-l-]_; A[co] —~ x end;

| OSTER2: y » g(Alcy],y);

if ¢, = O then goto STEP3;
CO—CO - 1;
goto STEP2;
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STEP*:

STEPZ.1: if ¢y = O then goto STEP3.2;

A O] = x = Ale ]

for ¢~ 1 step 1 until m-1 do A ] - x - de(x);

ot

o)
goto STEP2;

STEP?%.k: if = O then goto STEPL;
Ck v—Ck‘l; }

A L0) = x - ale]s

. dy -
for ¢ — 1 step 1 until m-1 do Ak-l[ck-l] -x « £ k-1(x);

——"k-1
STEPL: HALT(y).

The program follows the algorithm of Section 3.2 very closely.
In the initialization phase (step 1) line (1) computes the value of n.
Line {/ ) assigns to the counter m the largest value such that mkg n.
Note that this can be done just with the operations of +1, -1 and test
for zero in linear time. Line (3) computes the relevent powers of m
{these can be computed simultaneously while m  is being computed). The
counters CrvreerCy denote the number of values saved at each level. There
is some overlap in values saved which could be avoided. As shown the
initialization phase involves two passes over the range of data values a
through fn{a). This can be done in a single pass for k=1 since all

increments are constant (one) independent of the value of n.
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6.2 The Constant-space Algorithm

START

counter 2,m,n,co,...,ck,do,...,dk;

data y,xo,...,x.k;

STEP1: if p(a) then HALT(h(a));

neo; xe~a;

while —p(a) do begin x « f(x); n =~ n + 1 end;

y « h(x);

m e nl/k;

while £ > dk do

begin - £ -d; x - fdk(x); ¢ = ¢ + 1 end;

XO - X3

while £ >d_ do

o)
. dg .
begin £~ £ -dj; x — £0(x); €y = ¢y + 1 end;

STEP2: vy « g(fco(xo),y);

ii_co = 0 then goto STEP3;
CO - CO - l;

goto STEP2;

STEP3? :

STEP3.1: {f c; = O then goto STEP3.2;
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c1*d .
XO ~ £ (Xl),
cO —m - 1;
goto STEP2;

STEP3.k: if ¢, = O then goto STEP4;

k
Cp - S 1;
%eep = £ ()5
ék-l —m - 1;

goco STEP3.k-1;

STEP4: HALT(y).

The initialization phase is shown here for the case where explicit
counters are allowed. It closely parallels the initialization phase in the
linear-time program (Section 6.1). The rest of the program can be implemented
using only the counter operations -1 and test for zero which means it can be
directly implemented without any explicit counter (see Section 3.1).

The initialization phase can be implemented without any explicit
counters as follows. Variables m,co...,ck,do,...,dk are used to
represent the corresponding counters in the rest of the program. 1In addition,
variables m’,x’,c'o,...,c'k are used as temporaries. We make use of the

following nonrecursive procedures for convenience in defining the operation

of the program.

procedure invert (c’);
begin local c,d;
ce—a; dec’;
while —p(d) do begin ¢ ~ f(c); d ~ £(d); end;

return(c);

end;
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procedure multiply (cl,cz);
begin local dl’dé’ val;

- C.

val ~ a; 1

d1
while —p(d;) do
begin
' d2 - c55
vﬂil.s—vp(dg) do
begin
val ~ f(val);
d, - f(dg);
end;
d; - f(dl);
end;
return(invert (val));
end;
procedure right (x,c);
bﬁ_g_i:g_ local d,val;
val « x; d ~ c;
while —p(d) A —p(val) do
begin
val ~ f(val);
d ~ £(d);
end;
return(val);
end;
The initialization part can now be written as:
STEP1: if p(0) then HALT(h(a));

if p(£(a)) then HALT(g(a,h(f(a))));
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m’ « a;

y ~ hlinvert(m’));

TRY: m’ « £f(m’); m ~ invert(m’);
L~ a;

- m;

TRY1: if p(cl) then goto TRY:

c. ~ f(cl);

c,, ~m;

TRY, : if p(c,) then goto TRY ;

c, - f(cg);

TRY, : gf.p(ck) then goto TRY

k-1’
- f(ck);
if p(¢) then goto FOUND;
L~ £(1);
gggg_TRYk;
FOUND: m « f(m); comment: m has now been found;

d ~ invert(f(a));

d, «~ m;

L~
1

. = multiply(d,,d,);

f d - multiply(dl,dk_l); comment: d.,...,d, have been determined;
X +~ a,
¢/ ~c' - . - w oay



X o~ X,
while —p(right(x,dk)) do

X . .o .
begin x « rlght(x,dk), ¢’y - f(c'k) end;

X -~ X3

0
while ﬁp(right(x,do)) do

4

. . . ’ .
begin x « rlght(x,do), e’y - f(c O)end,

o - invert(c'o); s invert(c’k);

comment: this completes the initialization;

This completes the description of the constant-space algorithm.
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