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pg A THREEVALUED (0GICAL CALCULUS AND ITS APPLICATION To THE ANALYSIS OF
- THE PARADOXES OF tHE CLASSICAL EXTENDED FUNCTIONAL CALCULUS
nd
SR D, A, Boohver (Moscow)

Ee nn [Frof Matyematichyeski Sbornik (Reous!| Matnematique), N,S, 4 (1938),

La The three=valyeg system to whigh this study Is devoted ls of
WEEE interest as a (ogical calculus for two reasons; first, It Is based on
5s formalization of cortaln basic and- intuftively obvious rejations
BEER satisfled by the predicates "true", "false" and "meaningless" ae
ge applied to propositions, and as a result the system possesses a
BAS ¥ slear~cut and intrinsically |oglcai Interpretation; gecond, the
tS gystem provides a solution to a aspeolfically logical problem,
AARC analys!s of <the paradoxes of classical mathematical logle, by
hd torrally proving that certain propositions are meaningiess,

Se The paper conglsts of three parts, In the first we devejop
bi * the elementary part of the system «= the propositional calculus == on
MERE the basis of intuitive considerations, In the second part wo outilne
fi the "restricted" functional calculus corresponding to the
ATS propositional cajculus The third and Jast part uses a oertaln
ARIES vaxtens. on" of the functional calculus to analyze the paradoxes of
be tay classical mathamatica| loglc,
Bee ¥
{on We are indebted to Professor V,I, Giivenko for much vajuable
Sahat advice and criticism, in particular, he provided a mora syltable
pr definition of the function a (see I, Section 2, subsection 1,),

PAS & [Typlst’s note: Subscripts are Indicated by +, and + ls used In
REE place of tha Jogical connective ¢ ugsd in the original, § is usdd
Nai for capital Sigma,l
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EE hy PROPOSITIONAL CAL:UsLUS
Hs

La id In order to clarlfy the basic 7satures of the prepositional
RRs: calculus, let us analyze the Intuit! properties of the basic types
PORE of propositions,

ans First, however, we =afl rigorously determine the
a relation between proposition" an. "sentence", Following accepted
LEE usage, we shall say that a proposit!1 le meaningful if lt [8s true or
ASIP false, Morever, a proposition wil “e called a sentence |¢ and only
Aa If It Is meaningful; otharwise we shall oall the proposition
[EEE meaningless, Any sentence IS clear|. a proposition, Any proposition
SIAR: is elther meaningless, true, cr (.i88, I? a proposition A Is
Sanh meaningless then the propositicas "A is fa|se"” and "A [3 trus” are

Eg "meaningless" may be applied to ar: proposition,

id Now |et A and B be any pr.vosltlons, Consider the foilowing
GS propositions:

5 "not=A" "A Ig false

gles: "A ang B" "A |s valld and B ls valeBERNE "A or B" "A Is valid or B Is veilld"

hin We shall call types | ans Il Internal and externa] forms of
ihe affirmation, negation, conjunction, disjunction and {mp|ieatlon,
itl respectively, "A Is meaningless” Is obviously an external form wh]eh
PE does not correspond to any Internal form,

A It Is clear that any Interma| form and its corresponding
ie external form have gifferent "meanings," The essential difference
A between interng! and externyl forms Is ggslily Indlgated py letting A
EE  % (or B) be a meaning|sss proposition, First consider internal forms,
oy | It seers qulte opvious that If A Is a meaningless proposition then
Per | "not=A" Is also mganingiess: similarly, It Is intuitively clear that
oN | any combination of a meaningless preposition A and a proposition B by
oa | the opdrations "ees and =we", "ee- gr easel, "|? cen, then eee" san
rl only ¥leld a new meaningless proposition,
ens ©
ri The glituation Is quite different for external forms, Let A
Sie he a reaningless oroposition, Then, cbvious|y, Its external
Sa | affirmation *A {8 valid" is faise, but not meaningless, similarly,
ber the externa| negation "A ls false" Is false, but not meaningless, If
oes A 1s meaningless, It is easliy scsn that the other external forms
Ca2 P are also never meaningless when A Is a meaningiess propos] tion,gras; - oe 4
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hy In fact, the external forms (conjunction, disjunction and
pe implication) are precisely the corresponding Internal forms With A
RTE and B replaced by thelr external affirmations, Now, salnoe an
NES: extarna| affirmation Is never meaningless, It Is obvious tha*t this
Sie must be true of the external conjunction, external diajunction and
GF external implication. (1)
pT Clearly, the external forms of sentences are formajly
a equivalent to the corresponding internal formg, In other words, the
at tnternal and external forms of a sentence are elther both true or

i This is a partlal explanation of the ambiguous Intuitive
Bo interpretation, stil] widespread In the |iterature of mathematioeal
be logle, of the primitive connectives of ths classical sententlal
i calculus (2), viz,, Interna} and external forms are empjioyed
SRUEN interchangeably for negation, conjunction, disJunction and
TIER implication (see, for example, PRINCIPIA MATHEMATICA, Vol, 1, Part 1,
en se Section A), However this ambigulty has nothing to do with the actual
po nature of the classical forma| sententia| calculus, [ndeed, the
SUMAN: classtcar sentential caloulus does not regard affirmations as
A functions of a sentential varlubie, 1,e,, It considers only internal
EME aff lrmations and therefore admits interpretation only via a systom of
FRNA: internal forms,

i We must admit that, In principle, the system of internal
Ls forms Is of course absojutely adequate for an Intultive
ZRNGS interpretation of the formallsm of classlieaj logic and mathematles,
ERE since tha latter deals with the symbols of the gententia; caiculus,
any | owing to ths Incompleteness of natural janguage It Is rather
dest difficult to find a brlef and convenient verbal expression for the
po internal negation of a sentence of the type "A and B"s nevertheless,
ERIE. in principle ft 1s quite clear that this Internal negation indeed
wes exists and Is even easlly expressed In terms of matural! language,
ys provided one resorts to cortain definitions, which In themselves are
aa quite legitimate,

rn Accordingly, Internal and external forma will be referrad to
Sen as classical and nonclassical intuitive functions of propositional
pos variables, respectively,
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2x able form ¢f propositional caSaIar. | SECTION 2, Truthet

a ¢ lables, The set "true), F (read "YaRRRAS. propositional var three elements: T (readGans variables Compr 150% less") and no others.
i and U (read "meaning | functions of the propes]tionaDYCRI suaPAE. We introduce the wu d by a truth table, as follows,pe Hg h function Is define the arguments; In an“rd variables, Eac ble Systane Ova unio inente 1M heNI: First |ist all poss to the left of the doub |
i right of the double line enter functions we Introduce formalKr uneTEL) As the primitive classical formal Internal conjunctionns 5 internal negation, -a daf ned by the following trut
Ae. anb (read "a and b"}, de b anb
fra i AE -n - TNa oe ow TaE T F T F F
a H
RINSE ULani OO U UGel TB

we lcal functions will be forma| externalVia g Cur primitive nonclassic id") and formal external negation dape |» a (read "a fg val wing truth tables

Eien | T F T
oi U [fy theI te The follow | = denoteBr d no explanation (the symboEA APOR notation and nee D
VR: + 0
A a 0
i A 0we i a = >(>a)
SL Ce 0Bo SoA 4 0 hols “ | =, > and the SymbSHEE ny finlte sequence of symRay y and 80 on, for any
PAE B
Cole id §
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Aad ei ‘go using classleog duced below, | functionsies t to be ome olaaaa Ww define sg
Ds lon and conjune A =b)SENET negat EB) = m{=gwa (Del) (a D b)iT > b) =

Se cb) = [(a | disjunct loai 2} (a > lassica r clasBi tion a ction a hea b", usingFis red The func hb" The fun d "if a, constructedWider tk read lon eee |g cb are easl|y ernalSen EY licatio sb, as extot jmp tons aub, asp, nd formalSR funct ftirmation aFEaRR definitions, ernal a 8!INES Using forma the following leh)Sn ation, we def A b) = (l-a n
re (a vb) = (|-g
FOR (a = b 3rae $6) + 8eho {344 0 (Ca = b) n (pfas (a « b bj)Sed] (D:8) Y lea da)pds ta = =
hl (D9) 0 - (3) Lion weeCE 4 5 = |e unepare. 10) 4 7 nclassical co nJ b e== formalLES (043 D Fhal or no function a orb Ispe =~ formal exte val ld", The d "a Is valld aselcalRes tion aAb =e. id and b Ig ==v |8 rea | or none! "enoEna The func "a ig val ciplunotion === ox tarna valid", op oleEBay roa Ssica oo S n aefare 1S ernal or AIS Hl a-b ls vajld, then ° The functlc "a JsSeg alae or d "If a ls osltlon a", Zb Is reahe I's r he bp fon
hg) Popcs ipoten ulvaloenSa rea t fo b", re equipo a:b Imp leallyRaa equivalen ting to compa propositions d b ars joglere interes of the that a an false «Seo) It Is oither t mean dg not beSE e tr I's ota avt, then hi other, but on 's false, or fromat aquivale ningless,
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La On the other hand, any proposition following from 2 also follows from
PE| b, and vice versa, and in this sense §& and b eo eaulipotent,

BRAN | not only does the truth of either of a,b Imply that of the other:
Pros | now, In addition, if ono Is false, 30 Is the other, and {ft one Is
Pignry | meaningless, so ls the other, If two propositions arg equivalent,
Hr they must be equipotent, but the converse |e generally false, Note
It | that the truth tables of equlivaicnt functions are identical, Hence
SEL equivalence plays the part of “"mathomatloal Idontity" im the
EPRI | propositional calculus, The function +a |s read "a is meaninglessn,

EE | Fina |¥, the function a Is read "a ls pot ve;ld",
Re Using the definitions, we construct the tryth tables of

PEND ta and a! -

wn The truth tabies of the functions aAb, avb, a+b, awb, asb are
CHA also easily constructed,

wr £00 We now give a rigorous definition of formuia, The definition

Shy14 is inductive!ARE | 1) Any propositionaj symbol Is a formula,
GRE 2) 1f A is a formula, ther =A, |=A and >A are formulas,
Le 3) If A and B are formulas, then AnB {s a formula,

SrALR: | To simplify the notation for formulas, We shall use the "dot"
Sa notation [of Principia Mathematical,

Ley The symbols 2, 2c, =, », E, 3 are stipulated to be of equal

ERC | rank, highspr than that of the symbols n, vu, A, v, The |atter hind
SRA: | more strongly than the former,

He | The symbols =, l=» >, + act only on the |etters and
Sor: | parentheses directly following them,

fs | The symbol! always applies to the entire expression below It,
oa p Thus,
a : denotes the formula
Wn (a v b) =» (b v a),
abe NY The formula
wnat EO# B “b ,A, @a < =bV eh ,» «a Vv ea
TN i ‘
TR denotes the formula
ny a’: 6
’ Fo po :



BYSTAA | |

IRENE | |
no (a « b) na «(8 Vv ¢b)]) + (ea v ta),
Cal The definition of the function asb may now be written
LENA a eb, ,z, a+b ,n, be a,

SRE and sO on, | |

SE A formula fis sald to be provable fn: the truth table
yi propositional logle If It has the value T for all possible argument
fe HY values, Provabje formulas are also known as tautologies, Proof Is |
GIS: reduced to verification, verification Is most: systematically and |
SORE simply carried out by constructing a truth table for the functien In |
KEI question, |

a A formula which does not take the value T for any values of
ara its arguments Is known as a contradiction, If A ls a
Sel Rua: contradiction,then X is a tautojogy, Moreover, if one of the formulas

SUES “A, Ry tA, A, Is provabje, then A Is a contradiction,

SER A formula which contains only ‘propositional varlables and |
Ep symbols for the ciasgical functions wijl bs called a olassloal |
RSENS formula, Let Phitasl,,,,saén) be any formula, with a -glven truth
ans: table, The truth table has 3tn rows, Call the sat of rows |n whlen

I no argument ever assumasg the vajue U the fF=subtable of ths formula.Bn It Is olear that the TF-subtable .contalns 2¢n rows, The remaining
rss rows comprise what we shall call the U=su .able of the function,
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ad | UNPRO ORMULAS IN THE PROPOSITIONAL CALCULUS- WIEN. I =

FPO  « THEOREM 1, No classical formula Is provable In the
REA . propositional calculus, Co

BE PROOF, Obvious, since any every ojagsical formula 8&SSUMOS
[PY JRL PY.Sg" By .

RE | tha valueU when one of [ts arguments assumes the value U,
ACET ES

RAT| | THEOREM 11, No contradiction Is provab|e Nn ths
oe Ld. propositional calculus, :

en ) provable formula and contradiction in subsection |,

heer | Examples of contradictions are e formulas

0SE eg A 2a

Rater f a. da,

eh | a

SAE | THEOREM 111, No "‘ormula whose construction invo|ves onijy
iy nonclassical functions can be equivalent to a classical formulas,

SHEE THEOREM IV, The fg (there! A) ¢ bFEC | v NE Tormuid ta 8r8Toré aso Clnnot @vop DO
S| | eaylpogeny go a clagglcal formyla,

gE | Theorems 1]! and IV foilow Immediately from the form of the
AOA truth tables 1 = 6 in subsection 1,

a Pe) i , Ps y t
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ay 3, [IMPORTANT FORMULAS FRO
es
Se THEQREM V, Any formula provable in the olassica| sententlai
a er calculug whioh has the form A > B (4), vhepe A and B oontaln the same
i variables, remains provable In the nonclassical caleulys Tf thea symbe| > batween A and B Ig replaced by + and the vas lao ies are
ene regarded as propositional variables,

wel SE Similar n ;SEs cul larly, any formula provable In the ofassical sententla]
Ng ca Table hich has tha form A 2c B, where A and B conteln the sameeat aa varigDies, remains provable In the cy Xna propositions] oaleujus If 3h
il symbo| 2c betweon A and B Is replaced by I and the variables regarded
ois as propoaltional variabjes,
Sn Ce
faba We prove the first part of the theorem, It Is obvious that

aw If ’ REALL In the 0188s loa) sentenslal caloulys them everyHl ro¥ In =subtable of the ula AeBie 0 orm J /ssidpno the fEs value T, L upction the

aan . Now let one of the variables ati assume the vaius U, Since ATLRS and *¢ classical formulas and both sontSenay ain a¢l by assumption, they
PRE both .ssume the value U, But by the definlilon ef a»b,

dah usu a7,
fo Conssquontly, every row In the Umgubtable of the formula Ae
aE also gives the formula the value T, This proves the theorem,

Lat THEOREM VI, The truth tabls propositional caloujus contalns
AY a subsysism Isomorphic te tha classieal truth table sententlal
ELT calculus; the formulas of this subsystem ars derived from those of
anh the classjcal sententia| calculus by the following transformations
Fi (5) (wa abbreviate “classical sententlal! ecaloulus® by o,8,0,, and
EEert "propositional calculus” dy p,e,}:

As 1) Replace each geCE ch gsantential variable by the orepositiona!
TE eS variable with the samg gymbo|}
SACS 2) replace the cys,0, symbol = by the p,o, symb(| i
SORRY. 3) ! ) " nome " ni
{SE 4) " " " " TH I " "
SERIAL " vi
CRA. 5) " " "oe mew " “-}
LT Hv- 6) " " " " QC WH * " " ©

REE. PROOF, It Is easliy shown by truth tables that the following
formulas are tautologles!

ARE (3) 8 »b ,e, an 0ebang¢
Ed (4) 8 *b ,ny bwo ,% a *g
Zi (3) bs ,aab
Fg (6) an,a<b, »b
S&H (7) a=avb
ne (8) a Vb +bvag

ARRAN 9
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rySxN %
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aa § “GC yn, bec ,9, avbdeac
Sarat a =» ,a = o-NER | (10) “bn, ab +a

TE - f the
Sod

| (12) ava, ls an isomorphic image ©Beat | (1) to (12) |s
Sed The syst ec, formulas:

i a 2 bh s@y a NC a o ¢

ike | REEred a 2¢ ,n, b3C ,3,Ee a 2bFESey "a 9, @ x
CLE TO 8 2b ,n, 8 2b > ~a for the classiaalNIA mEE AV -a, Is Is an axiom syste follows!git | ty as Is Mel Kun LE es or atefiche BUT, tial calculus, | 149d ie sententia (modus ponens ovablere Principle of deduction las, then b [s a priia is Princip b are provable formulas,
a | it 2 and a vebiedn | Form) Rule of Sore Marovable formulas, then aog d b are
| tt aan ipte In Its conventional form,FELT rule, on princip at| ror 3) The subgtitutl f the function a+b thBS th table of ¢ in thea | from the tru | cajouliusens | lon principle is valld rovableTar: | tne deductlo ulag, then b Is a poa followlrg form: b are provable form
oh | If a and ae ¢ the truth table of theeo la examination o Iso holds In thenies | formuia, Furthermore, binatton rule als
Sebi | function a hy then anb Is aREM | nai calgulu formulas,a Pro If a end b are pro

dete | 0ellis ORY ula ftution pra ob Formula, it 1s obvious that the subst This oompletes theBrea & Finally, It ional! c¢aloulus,

Te k proo of the clagsliea 1t would=] morphic Image 111 be called Kei,ae The 180 stabl ished w ontalne ancther= ce We have Just e Itional calculus ¢ Kel bypt 8 e axlsgten he DPODOS ad fromTed “ADR BY oe ential looters tls ontaln =, This g8oondET7 be 68 hic to sententia ¢ no gymbo | tH by ~1tIreeal SYS he gymbo|SLA E aplacing ¢
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NAR very Importanten al additional,
RT lle now proceed to wai ie first Indicatethe asit CTR ional ca ' S8i¢Spey ¥: forruias of the proposition lation betwean classical and nonciaA formulas
A formulasg:
en (18) a « |-a
hy (19) “3 » da
CNR (20) a n ons
en (a1) "5 : ~ a + b, formulas InvojveA {22} & 2 1% to note that the last two othersSh tremely important to i ) while theMRE gts lt 18 extreme | Implication (in one direction),SA only nonpclassica J
Sn involve aquipotence, give the relation betweenSOC The next TWO formulas and classical and nonclassicalSEERA

Ba meaning lessnass on the one ha

es (23) ta I NG
Ps (24) erna. affirmation of aA eh that the externa.AREA Formula (23) shows
TR meaningless proposition is false:
ee (25) vg < >» |=a,

ra The following formulas are Interesting:

SEITE (28) >ely _
in (29) t(a u ~a) I >(a Vv >a)AEar x tv (a wz) = BR.

tr One sees from formuig false or megninglass,El n tium non datue” 1s always fg oloalbarn Te cg! form of “¢ap atlom of ths clas
Formula v 's falsePAE ts always false,

i 0 "tertium non datur® fs the nonclassical "tertium non datur"OTRAS: tatea that lt 1sRaa Formula (28) s |. 8 the »operoposition stating thatHE cannot be meaning sss, rH
EYPARNGS false,

RETA ART ingliess Is alwa y3 " ma mear ng eg the fagt that the classical rortlyLr Formula (i9} gxpresses niy If the nonclassical form lsos tur” Is meaningless If and o he classical "tortium nonWa false, Finally, feymyla If and only if the proposCNR

wy neaninaless, bit be particufarly Important for theEt rl EA Wgl The following formulas
Cr analysis of paradoxes z +ava 8 (31) BS LA =i " = eaFE (32) & ® "a = 12 ta
Ln PER. “a ¢, & « =a iz *a
AP

; Ky ‘ pi}
8 © a g 4“og
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IE RESTRICTED FUNCTJONAL CALCULUS

oh SECTION 1, Basic concepts, notation and definitions
Rains

SETA The variables of the functional calculus fal] Into threo
LTE groups’
SRE 1) propositional variables: a, b, ¢, ,,, XY

Soho 3) varlables for functions of any finite number of oblect
Na variables: fC )y gC Jy, 0espNli¢ Dy D8IC Doyy

Ce Corresponding to these three groups of varlables there are
os three groups of constants; notation for theses wl|! be Introduced eas
SIE K: the need arlses,

Cle The symbol f(x) 1s readi "x has property f", The symbol
Ci re f(x,y) Is read: "x stands In rejatlien f to Y". The symbol (x), the
Ea basic auantifier, Is called the universal symbol, The symbol (x)f(x)
BONE: Is read, "al| x have property Vv,

Gels | The concept of "formula" (sometimes alse galled an
EOS. | "expreasion") Is dofined Inductively by the following rules:
aE 4) Every propositional symbo| is a formula,
Piao: | 2) Any function sympol In which the argument Places are
EIEN es occupied by names of objects or symbols of object variables is a
SRE | formula,

Gt 3) If A is a formula and A ocontalns x as a free varlabje
RC (depends on x) then (x)A Ils a formula,
in 4) If A is a formula, then JA, DA, |=A are formulas,
Ly 52) If A and 8 are formulas, than AnB [s a formuja,
TE 6) If a sudbformula Is In the scope of a universa| symbol for
TE a cartain variable, lt cannot be In the scope of any other unlversal
Lh symbol! for the same variable,

Lata definitions (Ds1) to (Ds1@) of I, Section 2, subsection 1,
HE Will also hold for the functional calculus, therefore, If A Is a
ges forrula,

AE TTA ther tA and A are ajso formulas; if A and B are formulas, then Aug,
RELA AB, A2ecB, AAB, AvB, A+B, A%B, and ASB are al so formulag,
SE|

ARIE: | We now define three new quantifiers using the bagle
aan | quantifier: (ey), 3,, V,!
Gath (D,11) (eX)f (xX) = wm(x)af(x)

5. (D612) 3x f(x) = (ex) |=f(x)
rs Dtri AT TC

rg | (De33) vx f(x) = (x)|lef(x)EE
ic2SES , i N
LE SY:

SG 14
eg“ re, 7 4

Lk so AN LL —
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Sarl

STE Thus, If A Is a formula containing X as a fred variable, then
TEU TE. (ex)A, 3xXA and VxA are formuiag,

Re (ex)f(x) Is read! "There ox|sts at least one x with property 77,Ei = kK he ! ' - *
BEL Ixf(x) Is read! "he proposition f(x) 1s valld for a¢ least one x",
RCE Vxf(x) is read: "The proposition f(x) ls valfd for all x",

BoE | Because of the properties of (x) and (ex) evident from the
Sp: above axiom ayastem, we cali them the classlocal universa] symbol! end
RTx: ipo classical existential symbol, respectively,
Yor PRE ~ . .

PEN The quantifiers Vx and 3x are cafled the nonclassieal
HET universal symbo| and nonclassical existence symbol, respectively,

Fini We now adont the necessary conventions as regards subdlvision
REeth: of formulas by dots: the symbols 2g, 2, », ©, 3, 8, Vv, n, A, V
Ly D predominate over
RRR ths quantifiers; the symbols LY | &, >, ¢ preceding a auantifier act
NERO upon the entire subtormuia consisting of the quantifier and Ita
an scope, All other rules remain as before,

Fo 4 Thus, the expression

a denotes the formu|a
AE SE (x) ( f (x) = Q(x),

Hg the formula

xREC (x) (f(x) A g(x)) = (x) h(x),

(LL 20x), f(x) = glx)

vil PS dix) (f(x) = glx))}, .

er re Vxfi{x)» and 3xf(x), ropjacing they by

Mai (x) f(x), (ex)f(x)e ¥YNTIR), INFN),

be0
ENG LO TE

AL

57A IN
EIA
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TEE We adopt thrae groups of axioms:

aE I: Any tautologlical formula of the propositional calculus |s
eg a provable formula,

Wes 1141) (x)f(x) « f(y),

ATES 1143) (x) f(x) = 3x +f (x),
[RRR 1144) 3x *¢(x) = (x) f(x),

ELE 111 [In modsrn terminology, these "axfoms" would be
Hr called rules of inference, (Tr,)]:

St I1141) Aj] axloms of ]] ars provabje formulas,
re A I11¢2) If A and B are provable formuias, then AnB is a provable
LE formuia,

i 111,3) If A and A+B are provable formulas, then B ls a provable
reer formula (principle of external deduction), Schematlcally}
NEN A
Sia, AB

WEA 11144) Principle of substitutions the following
poe: substitutions, carried out in a provable formula, yield a provable
SE formuiat

ERAT 1) simultaneous substitution of the same expression for all
Nine occurrences of a propositional variable;
SEY 2) simultaneous substitution of the same expression,
SAL TEt dependirg on variabjes x,¥,.s. (and perhaps also other variables),
pana for all occurrences of a functional variable with arguments X, Yesses
Stan 3) an object variable may be replaced throughout by anethsr
REE object varlables or by the name of an obJact In the domain of values
5fs of the variable,
aa 0f course, one should remember that
i 1) the principle of substitution applies only to free
AL variables;
Lr %) a varlable appearing In the scope of a quantifier cannot
Fg be replaced by an expression depending on the quantified variable,

Tin "obJects" In the restricted functional calculus are
La radrid individuals whlch belong to a preassigned, sultably dellneatecd

Sl [1145) Quantifier schema!
rir 1) If B(x) is an oxpression depending on Xx, A an expression
Shi not depending on x, and A«B(x) a provable formula, then A<«{x}B(X) | a
La also a provable formula,

ESR

EPIX

No, 4
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ER SECTION 3, Some provable rules and formulas of the
Bn restricted functional caloulus
Cann Theorem VII, The following rule holds In the restristed
Ag functiona| calculus: 1f A and A>B are provable formulas, then B is a
BRL provable formula (princiole of internal deduction), Sechematlcallyt

CNRS AaB

NAS z=u-

Bilin iy Proof, Lat A and AB be provable formulas, Applying the
tl principle of external doduction I]1[¢3) to the formula A>B and ¢he
BEES: provable formula
RR A228 ,+ AB
SEA (see formula (28), 1, Section 2, subsection 3), we get
TIEN A > B
EE A A 2b ,», A 28
Eyes tevmmmmnroeten-
ERANEES A =» B,
Ar lev» AB Is a provable formula, now, since the formula A Is
Ta | provable by assumption, another appilcation of the oprlngliple of
BAEC external deduction glves

PeSeat 8;
mlb ise,» B Is a provable formula, Q.E,0.

PR Theorem Vil], The restricted functional calculus sontalns a

RRS subsystom Isomorphlic to the classical restricted functional caloulus.
pase Proof, The restricted functiona| calculus contains formulas
al {1) to (12) of ], Section 2, subse~tlon 3, Adding these formuias to
fir iy the axloms of groups I! and Ill, we clearly obtain an i{somorphlec
EET image of the classical functional calcuius} the universal symbol of

FLA the classical c¢alecuius corresponds to the quantifier (x) of ourred calculus, and the classical existence symbol to the quant]fler 3x of
a our calculus, This proves the theorem,

i We shall rataln the notatlon Ké¢i for the isomorphlc (mage of
ER
Ce the classical functional calculus whose existences we have Just
Fang proved,

Bah | It Is now easy t0 describe various ciasses of formulas which
2 vai are provable in the restricted functional calculus,

3 te Le
Sh Note the foliowlng:

te 1) Principle of generalization: Let A(X) be a crovable
CAE formula containing x as a free variable} then the formula

ACESS is also provable,
2x os By

:BEnr 18
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Cay EXTENDED FUNCTIONAL CALCULUS AND ANALYSIS OF PARADOXES

riod SECTION 1, Extended functional calculus
Co ng To analyzes the paradoxes of classical logic with the ald of
ww the formal calculus daveloped above, we must bo capable of
iS constructing any classical formula In our new system, Now the
rH restricted funotional calculus Is obviously |nadeauate for thls
| ourp0se, and we therofore need an extension of the calculus, An
jn exterslon of this type wll! be considered In this section,
pi i Flest, using only certaln ejsments of the system considered
aL above, we construct a new sysiem, which we shall call S48, The first
Li stage 1s the propositional! calculus of S¢@, whieh will include only
THE oy two propositional functions, =~a and and, defined as in [, section 2,
Dae Now Introduce the definitions (ps1), (pe¢2), (D3), In other words,
fv we Introduce the classical connectives but not the nonclassical onss,
RAY The concepts of formuja and proposition are obviously more restricted
JEL than those of I, Section 2, Tautologies and contradictions are
JE defined as before,

eed 1t Is easily seen that no formula [Is provable In tne
EAA oropoSitional calculus of the system S40,
i Ne now construct the restricted functional calculus S+8, We
Li oroceed as In 11, Section 4, up to the definition of formula, The
ty latter concept Is defined by the following rules!
By Ree 1) Every propositional symbol (lin S¢1) is a formujaj
HR 2) Every function symbol In which the argument pjaces ars
[AE cccuplea py obJect names or obJect~variable symbols Is a formulal
ata 3) If A is a formula containing x as a free varlable, then
Je. (x) A Ils a formulai
Sy 4) If A is a formula, then =A Is a formulaj
EASA 5) If A and B aro formulas, then AnB Is a formulaj
Ro: | 6) If a subformula of a formula is In the scope of a
ai. | universal symbol, it cannot be In the scope of any other unlvergal
a: | gymbo| for the same variable,
Fore | Now Introduce definitions (Osi), (Ds2), (D3) and (Deli),es: | Now, If A and B are formulas, then AuB, A2B, A>cB are also formulas,
Cl toe and 1f A is a formula containing x as a free variable. then (ex)A 1s
Soto | also a formuia,
a
ion The notation for formulas remains as before,
Flin The only axioms we retaln are I, 11142) and 11144), Tuas
eds tek *s

oe Loe those involving classical formulas,PSS TR I
ae ha
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lag It Is obvious that no formula is provable In the restrloced |
Fiat A functional calculus Se@, |

REET He now extend the functional calculus S42; this |s ‘done by oo
ENE adjoining all functions and propositions of the system S48 to the aot
SRNR: of objects, beeldes the original Individuals, The object In axioms
A, 11144) must also be Interpreted In this extended sense, Wo are thus
fo dealing with Junctions of functions and propositions, with the
nda argurent places of each funotlon being referred to a definite domain
SRS: of obJogts, An example of such a domain Is the set of gil
TIER propositions in the sense of S¢@ or, say, tho set of functions in the |
a. sense of S40, We shal] call the new 'sygtem the ful! system Sed,

ERIE It !s quite clear that the set of formulas available In ¢he
Bg full system S¢@ |s exactly the same a2 In the unrectricted theory of
Ft types of the extended fumotiona| caloulus of Hii%ert and Ackormann
STA (8), 80 that I? the Initial domain of Individuals Is the sameIn both
eS systems, the varlabjes are aiso the sgme, | |
[Ei It Is obvious that the full system S40 contains’ no provable
HE formulasi the calcujus only "discusses" formu|as, 30 £9 speek, | |

fete He now extend the system S¢p.as follows! a Co
Bs 1) Introduce the nonclassical affiemation and negation of
LEA both functions and propositional variables, With the same properties
CoRR es In I, Section 2, and then Introduce all definitions (Red) to :
ad (0440) gang (Ded2), (De13), a

ge 2) Correspondingly, extend the conogpts of crogosition amg
Pers. function, Of course, when this Is done the ooncapt of formula is
RE also extended, but with one restriction which must ba gmehasized;
ALON Apart from [ndividuals, the universe of obJeats esntalng amily
on AS functions and propositions In the sense of the ful! system S§¢8, In
LE other words, ths Jomaln of obJects remains the same ag that of ¢hs
CA full system 549,
a | |
Br In axioms I, 11142), 11144), the words "proposition,
arti "function",: "formula" must be understood !n the nav, wider aenss,
SNE Howaver, the obJects In part 3) of axlom [11s4) ars inteppratsd wlth
PRR an eye to the above restrlotion, Lo | |
re 5) Introduce tho axloms of group II, as wei! as uxlems |
Fadi 11144), 11143), 11145), with tho words’ "funotion®, “preopositioa®,
Cs "formula" undorstood In thelr new senses, as in the previous
fp paragraph, |
ee We eall the nev system S, Obviously, we must differentiate
Ee within the syatem 35 (and there |s nothing to prevent us from so
es 2 doing) betwoan funct'onal and propositional variables in the sens. of
gE S¢p and functional and propositional varigbles In the extansed sense
aed of S, Functions (propositions) In the sense of Seg will pe os!lad

NAR
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RENE. simply functions (propositions) of classical logics this is aulte
RTC legitimate,‘In view of the relation between S¢P and {he extendedFn | functional, calculus of Hiibort=Agckermann, For the functional
ane 000 var|ables of classical logic we Introduce the notation
FER fak(: ys GokE Dp wuen DHIEKE Dy PSTEkE Taos,
PETS The propositional variables of classical loglec will be denoted bY

POA: For the function and procositional variables of the system S we
EN. i potaln the notation of iI, Section 1,

Ea It |s easy to prove that the system 5 cannot contain any

Cg expressions of classical loglc eauipatent to the formula sack, FirstRRS we observe that, In view of Theorem IV: (I, Section 2, Subsection 2),
[SERS tt will sufflce to show that any expression of classica] leglc of the
RRR form (b¢k)F(ask,bék) Is meaningless |f task Is valid, But this Is

SR. . F(askybsk) must also be meaningless, so that the formuia
Fake ~ tFlask) bik)
eR = | is valla, Consequently, by axiom 1142),
dm 8 3bsk tF(asksbék)
pee and pow axiom 1144) glves |
Figs sh | "ot '(bek) Fladtk,bik),

REE ! Of course, these arguments presuppose that the system S is
Sy or consistent, The consistency of this system Is an as yet unsolved
gERE ©, problem, but a'l| our Attempts to obtain a contradiction have Deon
PRON unsuccessful, so that there Is a considerable empirical basis for the
pike | assurption that S !s consistent,
EN SE
in The system § w!|! be necessary for our analysis of paradoxes
LL. tn the extended functional calculus; It is the framework In which
ST this analysis ts capriod out, |
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pul | SECTION 2, Analysis of paradoxec In glasslical mathematloal |
Ar | loglo
PELE EETA

ORT|

Be ; 1, Genora| Remarks, The paradoxés of the class|oa] extended
Ee unctiona| oafculus fall Into two groups, The paradoxes of the first :
poe group are purely |oglieal In character and thelr formulsSOEs. On reQUiIPrQs
wo nc assumptions bayond the realm of jogleal formulag, Russsi|’s :
ARE paradox |s an examp|e, The paradoxes of the second Qroup require theseddy Tog , -

pe addition of certain formulas containing symbols for individual :
CRE | obJects, functions or sentences, AR example |g Heyi'’s
IE "heterojogliocal™ paradox (9),

rie WIth regard to the first group of paradoxes, the system S |s
PN | adequate to show ¢ | Itioy : ore 0, . hat certain propositions are meaningless, Bya | contrast, vor the sacond group the resuits of our analysis will be
GUE based on premises of the tyhe above, slne® the very formuiatlon of
EEL 4 a [4

Thy | the paradoxes In the classical system dictatas thelr uee,

ize We shall present an analysis of the d }x er paradoxes of Rugseli and

ie | Weyl, In this section a function of one variable will also be ea||edaie Td a property, Wherever possible, we shall abbreviate the symbo! phi¢ 3
ERE by phi,
by
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2ae
eel 2, Analysis of Russell’s oaracax, in the extended
Sn functional calculus of Hilbert and Askermann: Ru%a6(i’s pirldox
ei arises when one considers the: function
i phi(ph!),

SEE which states that a class belongs to Itself, DJafineRE Pd(ph!) = phl{phl),

NE By the provable formula of classicaj |oglc

RTS we can write

ST phi(phl) 2¢ SLU ogFue or, bY the definition of ths function Pd,
EE ohl(ph!) 2e Pdiphl),

id Tke function <Pd belonds to the domain of values of  4heAles aby
IEA varlable phl, Substituting «Pd for nh! in the fast formula, wd ges
fe ~Pd(=~Pd) o¢ Pd(«Pd),
Sa This is Russell’s paradoX,

ake what happens In he system S$? Conaider the funotlon
Coss phlsk(ph!ék)

pee Nots that ths domaln of values of the variable phisk is the same as
vi that of the variable phi Introduced above for the classical version
er of Russell's paradox, aut In the system S we cannot use the formula
ERAT
Le since Tt Is not provable.
AENE
SE However, we do have the provable formula
hits =
aE a 2 a 110)
br Substituting phlikl(phisk) for a In this formuja; we get
Haye phisk(phlisk) 2 phiskipniik},

ih Now, by the definition of the funct fon pdsEFA Z phil ¢
se Oh ones oo ne in of val of the variableEe The fumctlon =~Pd belongs to the domain alues e va
Sh phisi, Substituting «pd for phlsk In the [ast formula, we get
a (a) Pd (=pd) 5 =Pd (~Pd)
pare
en The formula _ }
goin a I ~g ,Z ra (31)peg ay

ne Pd («Pd) E «Pd (Pd) ,3 tPd (.Pd),
INT
En and, by (e),

a Now, by the provable formula (1s
Ets .. we ge
hs t apd (Pd),
Foe
ics|
AA
Re
oe A%%le
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Tt 3, Analysis of Weyl‘s paradox, We flrat carry out a formai
[EL reconstruction of Weyl’s paradox In the classical extended functional
2g cajculus, The statement that the symbol 2 is hetesrolegleal lg
RANEY. expressed by a function H(z) defined as follows!
i H(z) =, (€ phi) , R(Z,phli n «phl{2) (13)

ER Here R(Z,phl} 1s road "z deslgnates phi", the domain of valuesof
EON the variable is the set of symbols designating a opreperty, and the
Eel domain of varlables of ph! Is the set of properties, He adopt as an
LORRY: axlom the statemasnt that the symbol "KH" denotes the function KH alone,
FRAN symboilcally, this axiom Is expressed by the following formulas;
EN 1) R("H")H),
EAST 2) R!"H",phl) 2 phi gx H.

SI Identity is defined in classical logic by the formula
PRR x 2 y =, (f) , #(x) o> f(y) (14)

tel therafora, formula 2) can be rewritten as
iS 2) R("K")ph!l} 2, (f) , f{phl) = FH),

MIEN It now follows from tha definition of the function H that
ELA (a) HOH") > o(g phide ROTH", DRT) a Lphi(®HY),

ine By 2) and the provable formula

Rater 8 get
PRRs R("H",phi) 2, gph!) » g(H),

jEpe Substituting the function =phi("KH") for giphl) In this formula, we
PALL: get
SR R("H",ph!) 3, =~phj ("HI") 2 «=H(WK"),

SHE ~ph("H") n, «phi{"H") 2 «=H("H"},
PPESs In view of the formula

AAAI aph (MH?) ny phI("H") 2 «H("H") ,3 =~H("H"),

FAR R("H",phl) 0 «phi ("KH") 2 «H("H"),
RAEN
Fu Applying a welleknown rule of the H|lbert~Ackormann functional
KET calculus, we can write
pe (¢ phi), R("H"ephi) Nn =phj(PH") ,3 «H("H"),

Se Po In view of formula (a9), we obtaln

faa

SE On the othep hand, by the provable foemula
yo | f(ny = (e x) fix),

| where n !s the name of an object pbajonging to ¢he domain of values ofDik « the variable x, ws geg
SLE R("H",H) n H("H") 2, (¢ phil), R{("Ht, phi) a phi ("KH"),EA 4

Le7h |

PICS SE
, - “J )

* 5 . wr $
PS memmcs 2h om oe 3



. ra

FEL E/T SE -

LS TR AT Cl WT
RERET BREET J 20

c- poy Lt, 7 éi x An 3

nl PRR
Lr -, +: hol LI fig, ~
ANG SPOR

LRN wyoo V a= oe eal a?

Wx EE A -

pom of Frade
fa Wp FFA
t hie ay re
poem gt he " LI
PEIITAA
HL AIT

CA YEAS

Tat nea Or, Ve 6 derTinition of the function H,. og! LE Pr, .
A "ET ww oh

se ARR A F | s
alr m F gr Yar a aE

oF aleewe 8 LH

war - wf by Fy

A ut sincs R("H",H) is an axiom, It follows thaton 3 2 do

. “1 gc EES

TE r. . ted oF vv Ll
rr HE PTH »
CA ER a
Seg Wx FrEs-¥- -

SENN ormuing &Na (B) in combinetion give Weyl’ a

Fa hor) 3 om ERNE b

AUPESE CRE LS
FA a” a p

37, el um Ll oAEAA RR TS

ErgSHAGWa am iPRR, EE TRF i
wr, JU il > La

aud is Fgls awh Bhs :
fon rn he F i

peTHE Ark ret 2
a EET at oi

hey el onyYE heradi RHE
AtTNT en
Ni PAR ry iEl Tn Ae
WE & “Ua ats,ntgre Pars cer X H
Reh: J aEA H
EF otjoo iN, }Haaree
LE SrRES

a Ric A

A Rr F550 oI .

ra Wen frat Yep poke” Zeta] on |)

Frat aR A 3 fk VE

SE pL

ESTf ehRE Cti lp

Wyag ll H
VE AA RL St AE
5 yAEat
ey FLA RE ain A
ISN CaresgtEas PARE ii or KotEP Et Frit \
CARE Lt Tard
pr py Ce Ed

stan HA |
FER aad a AERCa

4ST A ET AOE
“pA. op ot El

Mog Bhaiichaid iy

FEIN RRiAaa El a
FES FR A

+ Le fel gE PRLS,
oe TT Pr ANCE FR

ALi DUA AY [Yblog Fr ooell) 5FreseBy

PLHCPSr Fi

EEA FRALEY)

PETA TS. La p
3aXe(F. HpXr,ER RLF Ph PR STO

Aa TA a =a

id 1%, Sem LCNPaphi?
pesRPS

FRATol ip Jags Es pi

bh SE, : iy
rb To A
Fo © rh Lr
a 22 , 4

Ae - or li
SARS p> i )
ii eeROfui JE ro re toLR TT Cd frie Er §
Su 8 LX
arnt 8
ok gh lil

boi FR - Zak
« HE rl hy % Be" Fa

x ET a
10, se +1 ~~

ET 1
a - 4 A

+ fr Pawoo

SAEnw he ¥or He
A, ow N

Fr FS
SLAY

1 * par? - LI

1H NR7 . Py " F fy
I Fld © Ty :
ky wan,” Ni
<0" “ a Ye¥ AE. SN * OF ot

t be SE

£0 “ -
- N - "
‘ " - tog t

’ JE + - A
CNY ER

- El

v wr”HA TET any Ca



EEC TH)

Lh

rg Now consider the situation In the system S, Slnee the
ERAN: argurent is quite long, we shall omit references to the formulas of

Gea, the propositional calculus used In the proofs, [In each IndlvidyalPRRs case It Is easy to identify the formuia being applied, and to verify
LR its validity by constructing a truth table,

Ld First and foremost, we must define the function H(z) in St
SOD H(Z) =, (€ phi¢k), R(Zyphidk) n «phisk(2),
aA D
AIRTEL: For R(Z,phldk), read: "2 designates phlek",

wt of ol The domain of values of the variable 2 Is the set of symbols
Eat of classical loglec which designate properties, and the domain of

Cdn values of phiék |s the set of properties considared In classlgalIROTON logle, Thus, the variables 2 and phlsk have the same respective
REACES domains of values as z and phi In the classical formulation of Weyi'’s
Ra paradox,

SH Formulas 1) and 2) now correspond to the formulas

Fe aRT 2/1 R{"H",phisk) =, (fek), fik(phliek) « fek(H) (15)

Sag By the definition of the function H,
DERE H{"H") =, (¢ phiék), RI"H",phisk) n «ph}sk("H"),

RTs Using axiom 1141) (11,Sectlon 2), we deduce from 2¢)
SLR

Ne R("KH",phi¢k) =, gék{phisk) » gik(H),SRR
DAE Substituting «phisk("H") for gék(phlik) in thls formula, we get

SPR R("H",phisk)naphisk("H") =,
Cres “phisk("H") a, «ph]sk(TH")cuH{MH")

an Using the provable formula
Es ~ph lok (WHY) a, <DhIsK("H™) © SHI"HM) (o SH{"HM),
A we get
J RCH" phidk) A <phlek("H") < aH("H")

a, Now apply axlom IIls5 (Il, Section 2) (auantiflior schema) to

rnd 3 phisk o RCH", DRI4K) 0 SDRTSREMRTY (0 HEH),
2 Using formula (46) (11, Sectlon 3), we now find
Da (¢ phisk)y REHM, phisk) nN «phlaK{“¥H") ,e <H{"H")
or or, bY the definition of the function HM,

fs On the other hand, by formula (44) (Il, Section 3), woe havegra :

“a (1) R{"H",H) Nn wH("H") «,
SA J phlsk , R("HY;phiéK) n «phisk(nun),
HER
Lm 28
Tele ol - F
PE y73

oot LI a \ )
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r.

FEL ut by formula (49) (Jl, Section an
El: | function H, the definition of the
SPS (11) (rgSori A “tHE 2 ( nl ohiskENS | sph aR) 0 «ph]sk ("MH")

RE follows from formula (11) that
PR (i111) 3 phtsk ,) R(WH®

“iT t. ER [ke og ~tH("H")eg 0 © H{"H")
SA: Forrulag (1) iON ’ and (111) give
gx Sa RAR. R " '" ) "RE 5 n )Cg or (ERT HY) A <HUTHT) oy wtH("HT™) = H("HY)
. E_owr #2

“ i - . } + +. * AX t
EAR RO"H",H) <1 <H({"K")LU Gem *, «tH{(TH") « H("H")
FET ormuia R("H",H) lg an axjom, we get

’ Li as . NWRT or, interchanging the premises,

a other hand, since formula (A') |s provab!| (A?0)  atH{"H® y able, so is the formula
Ta Terr or Ks’ i

SIENA ntHEMHTY ey HOH") © aH("H"M),
BEE Hence, by formula (33) (I, Section 2
TOY formula + Subsection 3), we get th
aa PHC)
i and now, by formuia (23) (I
Sale | » section 2, subsection 3)

ENT.|

Eat

Oras!

Eo ATry a

7 5% Coda “5
Yoel

Lom pe

ELAS

FER

uo 5, Na
de [4 tf -

4 c, 4
- 7 ‘3 ) x

& ‘ 3. 4
CLE .
eo oo ep



rn

Evi 1, The Internal affirmation is considered to be Identical
Tak with the proposition |(tself,

Eel 2e In this paper, "classical sententia] calculus" will have
SRE a specific meaning: a ¢truthetabje calculus adsquate for the
uC sentential calculus of ylibert=Ackermann (grundzuge der theoretiachen
ET Logik) and the sententlal calculus of pRINCIPIA  wATHEMATICA
EATEN: (Whitehead and Russell),

Cel in 3, The symbols =, |=, >, + act only on the Jetters and
ERE parentheses directly foliowing them,

Ry 4. Here and below we shall assume that the classlioali
NR gsentential calculus employs the same symbols as those used here for
ISSEY - classical formulas (in the sense definsd above),

PS 5, See footnote (4),

et 6, A, Heyting, Die formalen Regeln der Intultlonistischen

EEA Kilmogoroff, zur Deutung der intuitionistiaschen Loglk, Math. Ze 35

“Ey 7, Note that the symbol n may also be replaced In Kel by A
ion without replacing the symbol « by =, but this transformation presents

cio 8, See Hi|bert-Ackermann, Grundzuge der theoretischen Loglk
CB (1928), pp, 82-115,

Nerd 9. On the distinction betwean those two types of paradoxes
ACI see: Hilbert and Ackermann, Grundzuge der theoretischen Logik (1928),
ARLE ps 115% fp, Ramsey, The poundations of Mathematics, Proc, London Math,

\ NL Socs» Sery 2, Voi, 25, Part 5 (1926)3 R, Carnap, Abriss der LOQIS¢t!k
AEA (1929), p, 21; Rs Carnap, Dle Antionomien und dle uUnvo||standigkelt
A der Mathematlk, Monatshefte f, Math, und physik (1934),

2 No i0, See |, Section 2, subsection 3, Theorem V,

ENG 11, See I, Section 2, subsection 3, formula (31),

Hoa a\ 12, See I, Section 2, subsection 3, formula (23),
J AAOh 13, See F, Ramsey, The Foundations of Mathematios,

Ge and Ackermann, Grund2uge der theoretischen Logik, po, 83,

a 15, This condition is even weaker than Identity of the funotions
ae denoted by the symbol "H",
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id ON THE CONSISTENCY OF A THREE«VALWED CALCULUS
od D.A, Bochvar
Ee
HA | (Fror Magyematichyesgk] Sbornik (Recuei| HKathematlique), N,S, 12 (1943),
iE pp. 3532369]

A In our paper "A Three-Valued Logical Caiculus and Its
cE Application to the Analysis of paradoxes ,,,"(1) we described a
ET certain threewvaluyegd gystem of mathematical logic, which we called ¢
or (21, )

ed Within the gystem § one can formally prove that certain
a formulas of the classical extendad functional calculus whieh ead to
ng contradictions are meaningless,

a Study of the system S ls thus relevant for the problem of

SORT Any study of the system S Itself must naturally begin with
Fn the question as to whether one can establish |t3 consistency as a
PERS whole, or, at |jeast, the consistency of a fragment large enough to
TE yield results sufficiently characteristic of those achievable In S,

LEI In this paper Wwe shal! present certain results In this
SY dirgctlion; some of them can be extended to a certaln types of caiocu|us
ROG bases or the ciassical sentential calcujus,

i [(Typist’s note! Subscripts are (ndicgted by ¢, and ¢ |s used In
Rie | nlace of the logical connective ¢ used In the original, the
ae following fexlcographic changes were alse made! for propositional
FERRY: varlables, we use |owor case letters rather than capitals) for
a logical formulas, capitals rather than German capltalss for logical
CORA variables, lower cage rather than German J|ower case; and for
oh classical propositional calcuius formulas, primed capitals rather
eee | than German capitals with superscript (@), S is ussd for capital
AONE Sigra, and w for jower case omege,]
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AE

nr Thies section contains a brief resume of the axiom aystem of
[crs S, The basis for the system S Is the propositional ealoulus (¥),
FRY
Ear Let a, b, ¢,,,, be propositional variables, Each ¢! these
CE variables cen assume ons of three ruth values! tT (readt “tr ye"), fF
Fang (reaad "false"), and y (reads "meaningless").

RVI The primitive propositional functions are; -~a (classical or
SAPS internal (4) negation), and (classical or internal conjunction) and
eng lea (nonclassical op external affirmation), These are defined by
PE truth tables;
EE

ny 8 a -a Q b anb a | =a
PME. - - ou W - ww - » - uw eg - = LJ

PRT 7 F T T T T T
FONTS F T T F F F 2
HEC U U F T F U 2

AY SS

Sam F U U

Ee) u U V

rd using the primitive functions, we define the classical
BRED functions:

NTE 0

Le (043) a 2c p = (a > Hb) n (b 3 a)

San and the nonclassical functions:

BEE D

ROENOa: (Ds5) a vos |=auVv |eb
ERLEENF L 0

LePR (D6) a * bz [wg = [eb

ERS (De¢7) a“b3f(a=Db)n (ba)

FUE (D+8) a = b= (a * b) n (=a » «b)
Cn D

Ca (D+1B) a : ~ Jeg
ME (D131) ra = «~(|=a Nn Oa) (5)
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RoR: The concept of formula Is defined as usual, A formula is
ER sald to be provable In the propositional cajouius if {¢ takes ¢he

FRE value T for a|! possible values of the vaciables, Formuias provableSosa: In the propositiona| calculus are also called tautologles, A formula
os which does not take the value T for any values of the variables Is
i called a contragiction, A formula whloh ocon%alng, besides
ar BT propositional variables, only symbols for ¢jassica! funotions, Is
SVEN called a classical formula of the propositional! calculus,

ny The following theorems are valid: ‘-

Rar 1. No classical formula is provabie in the propositional

LT 2, No contradiction Is provebie In the propositional
ERA: calculus, |

RI 3, A classical formula takes the vaius U whenever a
REALS: propositional variable oceurring In It takes the value U,
SE The propositional calculus serves as the basls for the
PENRO restricted functional caloulus, There are throo kinds of varlablss:

a 1, Propositional variables a,b,¢y,,.

ES 3, Variables for functions of any finite number of obJect
BRALE variables? $C Ys 90 doeaer BhIC Ys DBI Yooee

Eve The basic quantifier Is the universal symbol (x), Formulas

js Using the basic quantifier, one defines new quantifiers (éx),
Caiah UR Ix, vx
EE (D312) (¢ x) f(x) 2 (xX)af(x)

PL (D313) 3x ¢#(x) = (& x) |= f(x)

Eo (Dédd4) Vx fix) 3 (x) |=» f(x) (7)

sa The usual restrictions are Imposed on the use of the quantiftlers (8),
AEN The quantifiers (x) and (ex) are called the cjassical universal and
PIAS existential symbols, respectively, in view of thelr prorerties as
SRSEE def lred py tho axioms of the pegtricted calculus, The quant!flers
Cains vx, 3x are called the nonclassical universal and exlstent(el symbols,

Sara The following axioms (Trt In modern terminology, some of
lr these axioms would be called rules of inference, We shall continue
a to use the old terminology,] are adopted In the restricted functional
en] calouluss (9)
SA22
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LET

Ee

BL 1. Every tautologleal formula of the propositional cajoulus
rw is a provable formula,
Ls
Fb: 11, tha follow!lng formulas are provablet

BAS J, *(x)fCx) = 3x f(x)
IER 4, Ax f(x) = (x) f(x),
RRA
LI 111+2, If A and A+B are provable formulas, then B is a provable
ATE. formula, Schematically,

od B.
dans 11142, Principle of substitution, The following substitutions,
SE performed in a provable formula, yleid a provable formulai
FV

lig 1) simultaneous substitution of the same formuja for all
ra occurrences of a propositional variables
PR Av 2) simultaneous substitution of the same formula, depending
PER Se on variables X,y,,,, (and perhaps also other variables) for all
Fe occurrences of a functional variable with arguments x,¥,,,.;

Lav 3) an cobJect var.able may be replaced througheut oy anotheratk object variable or by the nano of an obJjec® in the domain of values
AGG: of the varlabje,

Fe GY The principle of substitution applies only to free variables,
LE Substitution of a symbol containing “the variable bound by a
Ao quantifier for a varlabis In the scope of the quantifier Is not

KEpIFRT 11143, Quantiflar schema,

FPCIIAL 1) If B(x) |s a formula depending on x, A a formula not
or depending on x, and A<B(x) is a provable formula, then A«(x)B(x) Is
iri 3 also 8 provable formula}
TY
RAN 2) If B(x) is a formula depending on x, A a formula mot
STE depending on x, ana B{(x)*A ls a provable formuja, then 3IxB(x)+A Is
Che g also a provable formula,

Rann
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SORE: | |
Los! We now construct an auxiliary systom =~ S,0 (11), |
a | He flrst construct the propositional caloulus of the system
Ra! S¢@, This construction :ti|l1zes only two (classion]) propositionalKy | functions, ~a and anb, defined as before, and then definitions (D411,ee | (D042), (D+3), Formylas are daflned In the usual manner, Tautologles .
iy and contradletlons are defined as before, It Is oasy to: see that no
LE formula Ig provable in the propositional oslculus of Seg, | oo
HE Now, Introducing symbols for functlor and object variables
pan and the quantifier (x), wlth the correspondingly defined concept :of oo
RE | formuja, we construct the restricted functiona calouius Sd, TheAN quantifier (ex) Is gaoaln defined by (D412), He edont axiom | of the CoRONG | restrioted calculus (reformulated for the system Sig) and the |Ce reformulated substitution principle,

ii We now extend the functional cajoulus S¢¢ In precisely the |
Lei samé Way as the classical restprlicted funotional calculus Js extended’
helt bv constructing the extended calculus without the theory of types coa (i2), The resulting system Is galled the fu]| system S48, It IsGAT quite clear that the get of formulas avalieble In the Ul] system Sef
Ei ls precisely the same as that considered I the, extended
Feng HilborteAckarmann functional calculus wlthout theory of types,
Sgn] Obviously, the fuj| system Sep stil] contains no provable formuias,we] The system S Is now obtained by combiningthe full eaystem S¢0 wlth
PR the restricted functional calculus, using the following rules?
hE 1. The universe of obJects of the restricted functional
Woe calcujus Is now stipujated to be that of the full system Sup, Thus, |
A] apart from Indivigug]| variables, quant!flers may bound also variables
Craig for functions and propositions, though only In the sense of ths full Co
ET system S«9, CoNTE ]
Sha 2. There are two kinds of functional variableat funoticna|
er variables In the sense of the ful| system S¢0, .genoted by “he symbols
bo and the functional variables of the restricted functicnm| cajoulus, | |
Bay denoted by | |
RAT The functional varlables of the second kind are tnersby regarded ps
NEE variabies of a more ‘3neral nature, in other words, functionsIn theiE sense of the full system S4@ may be substituted for -tynctional |
DEIR variables of the restricted functional] caloulus, whorgas functions
RA not belonging to the full system S42 may not ba substituted vor
if functional variables of the latter, | |gen

gah Thanks to this last condition, the functional variables of
Bae the restrictes functional caloulus now acquire the wider sense of
rh functional variabjeg In the system § as a whole (13),
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Ea JT ! |
Fea.| Ane jogous conditions are Imposed for the propositional
Agi variables, 1|,e,, propositional va jables In the sense of the full
a system Sg, similar to the conditions imposed on the functions wlth
a| subseript k, Formulas are defined as for the restricted functional
Cie calculus, except that the words "proposition", "function" now donote
ME| propositions and functions in the sense of both the rostriceed
el functional calculus and the ful| system S,0,

ens Functions (propositions) in the sense of the ful] system Si0
PR: wit] be. called sfmply functions (propositions) of classical loglc,
oe | We shall algo speak of fopmulas and vapiableg of claggical 1loglc,
og 8 meaning foemuias and variables in -general In the sense of ths full
Bn system S40,

CN To abbreviate the meaning, formulas of classical |ogie wlll
RE: | be, denoted by capitals with subscript k, and variables of ciagseical
A. | logle In general (lrrecpective of thelr nature) will sometime: be
KR: , dencted (for brevity) by lower case |etters with subscrint k,
Seas | Classical formulas cf the propositional calculus (14) wil] he denoted

Co
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Sr WIth an eyes to & rigorous formulation of our problem, We
or shall first clarlfy the motivas underiving oup specific formulation,
wr To thls end, we flpst turn to the ciaesical axtendsd funct!ons|
RATE calculus without theory of types (In ths sense of Hl lbepteackopmann),
ER [t Is easily seen that the formulation of Russell’s paradox In faot
ln requires only a fragment of the caloulus,

pA Russe||’s paradox can actually be derived ln a more
rE restricted axlom sygtem, whieh we shall ca|| AS (15) 1
RN 1. Any tautologlcal formula of the sontential calou|us
RENE conteining a single sententla| varlable A |s provable,
a 2 It an expression phltphl) Is substitutsd for all
pa acourrences of A throughout a provable formula, the result ls goT provabls formula,

id 3, Define a functional constant F by

Ni (where A(phi(ph!)) is a formula constructed from several axpressions
any phi(phl) using the sententlal connegtives), Any formuis obtsined py
Ps substituting F for all occurrences of a Yunotlonal variable
gh throughout a provabie formula Is agaln provabije,

do. D

Pxaie
Nas | Since tha formula

hy | ls provable, we can use (a) to deduce that the formula
in a F(phl) 2& «phi(phl)
PRAT: ls also provable, Substituting F for ph! In this formula, we getay Russe||'s adox,
Lad F(F) sc =F (F),

el Thus the axiom gystem AS gon¢alns ail the formal
io prerequisites of Russel|’s paradox,

ni Turning now to the system S, we consider a subsystem which we
ed A shall call ASe, Formulas of AS are defined as follows;
Ee lo Any propositional variabie symbol la a formula of ASs
So ¢¢ Any quantifler=free formula of classical |ogle (In the
A sense of the full system S48) is a formula of Age,

AE 3s 1? A Is a formula of AS@, then “A, |=A, dA, °A, and A are
PAR formulas of ASe, [ff A,B are formulas of AS®, then AaB, AyB, A,B,
RT

Ha
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Saaa.
pushy |
Fea |

a ;

i ; A2cB, AAB, AVB, A+B, A#B., and AZB are also formulas of ASw,
Ea:
Zs The axloms of ASe® are!
Er 12, Any tautologlcal formuja of the propositional cale ‘lus
Ge is provabis,

Ea ou, If AsK(vsKtl,,ees véken) Is a fopmuia of ASe belonging
Sp go the full system S+2 and depending only on the varlables vékei
oe (124,25 .40¢N) (these may be propositional or functional variables),
te define a constant function of olessleal logic by
fare 8 Fak(VoroloeoogVoKen)8 AsK(VIKeL,)sy aviken),
SE 5
Eo In this eguallty the |eft and right hand sides may be Interchanged in
Sa any formula (and this may be done slither throughout the formuia or
Sac only at Isolated places) (16),

SZ 38, Principle of substitution!

sie 1) If a propositional vapiabje (17) is replaced at ail Its
ens occurrences In a provable formula by a formula of ASe (belonging to
Np classical logle (18) ), the resuit Is a provable formula,

Ea 2) If a functional variable symbol of classical ioglo Is
sl rep'aced at all Its occurrences In a provable formula by a formula ofie ASe (belonging to classical logle), which depénds on the Same
<1 arguments as the original varlable (and possibly 2jso on other
Np arguments), the result Is a provable formula,
Hs

git 3) If a varlable is replaced at all lts occurrences in aSE orovable formula by another variable with the same domain of vajues
Sods nad or by a constant (as glvern by axiom 2 and belonging to the domain of
1227 varlables of the original varlabje), the result Is a orovable

Re de, Principle of deducgion?

Math 1f F and F=G are provable formuiag, then G Is = provabie
Lor formula,
SAESER ~ompar!ing the axlom systems AS and ASe, It Is naturkl to
rr expect nat were an analog of Russs!|’s paradox derlveable In the
er systom S this would be possible In the narrower axiom system AS§e,
GLa Also relevant to a correct evaluation of tho system ASe and l¢s
Es relation to § Is the fact that the result concerning Russeli’s
Gags. paradox (19) whlch can be proved In S remains valid fn ASe,
oe
WEA Wo now present a proof of the consistency of the axiom system
aa ASe, For brevity’s sake Wwe shall refer to It as ths cajoujus Se,
Sr
ELAS
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Ln In this ssction we shall prove that the calculus AS* ls

SL | A basis for the calculus AS» |s a set of formulas containing:

Er 1) every tauteloglecal formula of the propositional celouluss

id 2) every formula provable by applying substitution (axioms
FE 2, 30) and definition of new constants (axiom 2e) to a tautologieal
nist formula of the propositional oafoulus,

OF We shall danote the operation of substitution by Subst, the

2 The concept of a maximal classical component of a
RoE propositional formula (28), whigh we now dafine, !s essential for our
ha ar argument,
IYRAEET
SAL A component of a formula F |s any subformula G of F, I? F
Pat contelng G mope than once as a subformula, we shall regard each
xd ncopy" of G appearing In F as a component of F, 19 G is a classioal
EEA formula of the propositional calcujus (see Section 1), we shall call
R51 it a classical component of F,
Gar Any classical component of a formula F will be called a
Pak ¢5 mex|imal classical component If It Is not a ocomponant of any other
I classical component,

Eris As an example, consider the formulu
so ~ aub + =ta U wtb,
eds The ocomponants of thlg Tormule are the formulas a, db, a, b, =a, +a,
Si fal i th, =ta, =tb, = aub, =ta VU =¢*b, and =~ aub + «ta U «fb (24), The

RES components are =aub, a, b (22),

TER Lot F be a formula of the propositional calculus, ODslete all
EA lts maximal cjagsical components In succession, from left to rlght,
Be ed and repiace each of them by parentheses enolosing a numsral Whioh
© i A counts the maxima] classical components In order of feletlon, fronHeid Iv left to right, Denote the resulting symbol! (wnleh ls clearly a
Bera certain operator of the propositional calouius) by [F), We oan now
nl hy write tha formula F ag
SPL EB (1) Fos (FI(A'31,,000A%4M)
HALES where A’él, ,,,¢ A'e¢n are the maximal cleaslical oomponengs cf F (some
Fog of which may colnclide) arranged In the order of the numerals assigned
ep) to them when they are raleted frem F, It !s obvious that 1¢ tho form
ay of the operator CF), all A’%l and their numerais ara known, we can
rah reconstruct the formuja F uniquely, It Is alao obvious that If we
i have the formula A and obgsrve the above order of operations in -
AARES
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Nos constructing (i), we can easliy carry out this construction, and It
Ea is moreover uniaues,

et Thus, 1? F |s again the formula
FPA ~ aub © ~ta U =,
aa then
NAY (FI = (1) =» «2(2) Vv «¢(3) (23)

VR and the exprassion (1) Is

SANT propositional calculus, Without further expjanation,

ganck: We now prove two theorems whigh serve as the basis fer our

WERE ls a tauto'oglcal formula of the propositional calculus, then the
BERS formule

fey obtained from F by replacing the maxima] classical components A’ef by
Lh classical formulas 8/4] of the propositional calculus (24) eannot be
SE a contradiction, {,e,, the formula
LS CFI(B adress sB ym)
GE cannot be a tautology,

foil PROOF, Assign the value U to all! propositional variables
Spl appgaring In the formulas In question (3se Seotion 1), Then all the

She components A’+l and B’+} take the value U (25), and therefore both
Phir formulas § and § take the same value, T, sinoe by assumption F Is a
FLY

i tautology, But then, obviously, G cannot be a contradiction, and G6
Fouanet cannot be a tautology of the propositional oajoulus, Q,E,D,

Dey Theorem 11, If a basis of the calculus AS® contains formulas
I A and B, It must algo contaln the formuja ANB,

CAL PROOF, Suppose that a proof of the formuisa A conslsts of
LF some combination of the operations Subst and Def, opplied to a
tak tautological formuia F of the provdositional c=2iculus, while B is
a proved by similiar operations on a tautojogy G, Obviously, the

Bahk formula FnG Is a taut ogy of the propositional cejoulus, 1fhide necaesary, rename the propositional varfabies o? F and 6 In such a
SIA) way that all substitution operations ean now be applied In FNG
ROR py Independant]y to the |eft and right of the conneotive n, 1t Is now
Sen clear that, by applying to the formula FNnG the same comblnatlons of
Lo Subst, Def (except for the names of the varlabies) as applled In the
Tie proofs of A and B, and then renaming the variables (If necessary), we
oo | get the requlred formyla AnB, Q,E.D,
LTE
ey | @



rad We now Introduce some additional definitions,  Glven a
Se forrula F of the calculus AS#, we define an ejamentery component of F
ne to be any subformula of F which does not have one of the forms aA,

FAL. Associate a propositional variable with each elementary
SE component of F, In such a way that different elementary components
RE | correspond ¢¢ differant propositional variables, Replacing each
oe olamentary component of F at all Its occurrences by the gopresponding
ee sropositional variaple, we get a formula whioh we call a prototype of
AEN F, denoted by g(F), Obviously, #(F) Is always a formula of the
apis oropositional calculus: 1.8,» It oontains only propositioncl
PING, varlablss and connectives (27),

IRAE Call a formula F of the oaisulus ASe [rregular if #(F) Is a
ta contradiotion of the propositional cajeuius, |,8,, It never takes the
SES value T,

es. We oan now prove the following!

ib Ja : Theorem 111, A basis of ¢the calculus AS® ocontalns no

LE PROOF, Assume that a olven basis contains an Irregular
SE formula, F say, Its proof starts wlth some tautology A of the
er oropositional calcujus, and proceeds by application of Subst and Def,
Ey Now It Is clear that the only changes effected by these gpargtions In
Bl the structure of the maximal o¢lassical components of A, and
pase: tharaeaftar In the structure of the regu |ting formulas, &re such that
ily the maximal classical components become either formulas of classioal
a loglc op formulas wWhigh contain, apart from formulas of classical
FEA logle, only unchanged propositional variables, We may therafore state
Baha that If A has the form

NE then the prototype of F must have tha form
boprd CAJ(B’31ss400B' 80),
CRRA Hence, by Theorem I, «(F) cannot be a contradiction of fhees propositional calculus, However, this contradicts our assumption
ey concerning F, and the proof [Is complete, Thus, in particular, a
CLE AS basle for the calcujus AS® cannot contain formulas of the form

CEs since their prototypes aro

sh which Is a contradiction of the oropositional calculus,

Le We now proceed to a consistency proof for the calculus ASe,

= Yo this end we need another definition,
Pas Consider the proofs carried out In the ocajoulus ASe,. Fr, F ¥
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Sr We define a normal proof to be any proo? in which the
or principle of deduction (axiom 4s, Section 2) is applied at most ones,
aR and then only at the end of the proof, Obviously, In a normal proof
aE the principle of deduction Is applied (If at aj!) to basls formulas.
NG We now have the fol{owing theorem:

al Theorem lV, Any provable formula A In the calculus AS® has a
SHROT normal proof,

EE PROOF, The theorem is trivially true for basls formulas.
PEE The proof wil] opvious|y be completes if we prove the fo|lowlng two
SR assertions:

ot a) If a formuja G’ Is obtalned by the operations Subst and
rE Def from a formula G which has a normal proof, then G’ also hes a
Ea norme| proof,

SR b) It a formula G Is proved by applying the principle of
RE deduction to formulas F and F<G whigh have normal proofs, then G also
oe: has a normal proof,

Ra We first prove a), Suppose that G Is proved via tho schema

REPL Where, by assumption, F and F+G are basis formulas, Apply to FG gi!
Grin aE Subst and Def operations needed to convert 6 to 6G’, and call the
Ra resulting formula F’=G’, Apply to F al] Subst and Def operations
Sh ed neeged to convert F to F', The resulting formulas F’' and F'eG’
FIA obviousiy belong to the basis,

Pp Now the proof of G' via the schema
CN Fe

pace is clearly normal, so that we have proved a),

HE We now prove b), Suppose that G Is prevad via ths sohema

a By assumption, the basis contalns formulas F¢i and Fsi<F {from whlch
Cin the formula © 1s proved, By theorem I! It follows that the basgls
ef also cortaine the formula

oe ; Analogous reasoning shows that the basis contains formulas
ee CL Fe2, Fé2 «+ (F + 6G), Fo2 n (F32 o (F = G)),
Sh Again by Theorem 1I, we see that tho basis also contains the formuia
ad (1) Fel n (Fé © F) 0 F42 n (Fé2 » (F =» 6)),SA 42
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EEE We now use tho following tautclogy of the propositional calculus?
ROR (a) a n(aesb ncn (c= (bd) «d,
RE) Replace the variables a,b,0,d by the formulas »(Fé¢l), w(F),n(Fs2),
ESE] r(G), respectively, Obviously the resulting formula

FE #(Fe2) Nn (n(Fe2)=(n(FI=n(6))) » »(G)
VERSE is also a tautology, and |s therafore contained In the basis, In
Rarat ageriving (PB) from (a), we ensure that the propositional variables in
PEAR | all prototypes are so chosen that the substitutions converting
PEAS (Feds R(F), 4(Fi2), (CG) to Fel, Fy F42, G,» rpeapoctively, oan be

oo] performed Independently In (RP), Performing theses substitutions, wege Ri clearly get the formula .
BE (2) Fel a (Fel « F) A Fe2 A (Fa2 « (F © G)) =» §, (28)

el] which Is In the basis, with the formulas (1) and (2), We gan nowEpa tS construct the required normal proof via the schema
hed Fol n (Ful 2 F) n Fe2 0 (Fy2 © (F =» G))
we Fal a (Fel » F) a Fi2 A (Fs2 = (F = G)) = G.
VETTES taal etadded Added de de de de dll Ll 2 kl LLL YT LT LX ZX rye

RELA This proves b), and thereby theorem ly,

Seg Theorem V, No frregulapr formula Is provable In the calculus

rn PROOF, Assume that an lerregular formula A Is proveblo In the
EE calculus AS#, Then by Theorem IV, there Is a noemal proof of A, Now
wl VY this normal proof obviousiy starts with a basis formula and ends wlth

a an application of the deduction principles
oe 8
Rr] BaA

es A
rT where E, B<A are basls formulas, By assumption, the prototype r(A)
La is a contradiction of the propositional e¢aloujus, BY Theorem 111,
FAL w{BeA) cannot be a contradietion, Now ,(Bs+A) {8 the same as
ha w(B)»w(A) (29), Conseauently, we can find an assignment of truth
Fes values (32) for ,(B)«,(A) such that
Lr) 7{B) « o(A) 2 T,
LE NOW, Opviously, 3iNge (A) |s a contradiction, this adslgnment 0¢
Sr truth valusa must mgke
Longe #(B) = F or w{A) = T,
Frm Hence the formula
GME w(B) n (n(B)} + w(A))
Cite is always a contradiction of the propositional calculus, But this
Bees formula Is a prototype of the formuja
Cig BA (B « A)
lS which Is In the basis, by Theorem JI, This implies that the bazls
en contains an frregular formula, contradicting Theorem III, 0.,E,D,Sellar

ne An obvious corollary of Theorem V is!
SL Theorem Vi, The calculus AS2 Is consistent,

“Rp
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pads SECTION 4

Sind This section }s devoted to several remarks on the above
ap consistency proof,
EA ’
Be The constryctlve (finltary) character of thla proof Is
RESTA se|f-evident, Without essential ohanges In the proof, certain
SR restrictive conditions In the axioms of AS® can be eliminated,
CPF
Ee Axlom 2# permits Introduction of definitions oniy for
FRY: constant functions which are functions of classical logic, This
RE restriction Is quite natural, for In general there 18 no |nterest In
SE considering In S constant functions defined by formulas of
SEE nonclassical logic, Moreover, |t does not In fact weaken the resuijt,
RAS for such functions do not belong to the universe of objects of the
ar system §, and s0 may always be easly eliminated from aj| proofs,

Be Axlom 3¢ permits substitution only of formulas in the sanse
CL of AS* which are formulas of classloal Icgic, This restriction is
CL also Inessential, For any substitution of formulas of AS Whlgh
PE involve nonglassical connectives may alnays be reduged (34) to
STL substitutions of the permitted varlaety, This can bs achieved by
Sabet suitable cholce of the Initial tautologlos of the propositional
EN calculus, and this cholce In turn may be effected by the method used
RRC: in the proof of Theorem IV, The required red ction Is made possible
Cid oy the fact, that, by axiom 4ie, any tautologloa| formula of tha
paved propositional cajcujus Is provable [n AS», The condition that the
COR calculus AS®# contains no functional variables without subseript k
re (l,e, functional variables in the general sense of the system §) Is
EAE also Inessential, for the previous remark saelly shows that thelr
EY introduction has no effect on tne structure or the nature of the

fa Thus we see that ajl the restrliotions adopted above have a
ney single purpose == to simpilfy the arguments without essentially
Fe weakening the resuly,

ER Jt follows that the consistenoy proof presented in Section 3
A may he regarded as a consistency proof for the system S without
arr quantifiers and the relevant axioms and rules, It ls Interesting
ERSaL that sore of otir regujts may be extended to other forma| systems cf a
rh UY certaln, so to speak elementary, Struoture, We refer here to
ERELE: extended functional calcul! based on the classical sentontial
Re calculus In the same way as the c¢ajoulus ASe® Is based on the
a propositional calecujus, (32)
hl
AE Consider a calculus of this tyne, In which <%he admlsaibie
ont types of variables have been described and the formulas defined,i Assure, moreover, that the axicmg of this oalculus make every
55d tautological formula of the sentential g¢alculiue provable, Introduce
Zon the principle of deduction In Its usual form, and Indicate <¢he
SR admissible types cf definition and substitution,
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Bh

ee Calf a calculus of this kind an elementary extension of the
pny functiona| calculus,
Als
SOE | Under these assumptions, the concepts of basis, prototyose,
ERE irregular formula and normal proof are defined oexactiy as for the
rg calculus ASe, Hence It Is easy to prove the following theorem!

pa Theorem VII, A necessary and sufficlent condition for
ES consistency of an elementary extension of the functional calculus Is
ENE that no basls contain lpreguiar formujas,

Sd Thus, for example, the elementary calculus derived from the
POE. system AS (see beginning of Sectlon 2) by adjoining the princlpie of
SES: deduction Is Inconsistent, since Its basis contains an Irregular
nT formula (Rugssell’s paradox),

REE We now briefly show how the above oonsistengy proof wili
Ne yield a nonfinltary consistency proof for the entire system §S, Only
So PER the raln {ines of the proof will be Indicated,

Bh We flrst oonstruct a new, nonfinitarijy formulated ce|oulus,
EA which we call AS#sw, To this end the propositional caloujus Is
Eh git enriched by admitting countadb|e conjunctions and disJunctions (both
at classical and nonclasslcal), defined as follows:

a 1) The clagslcal countable conjunction

i, has the value U 1¢ for some | (1 = $020 eeeeNeyy)

Soh it has the value F {f for all | (1 2 10200000 Ne0s)
PASENES asl #2 U ,

Sse but for at least one | (131,2,,000Nues)

ISA and the yalye T If for all | (123:2)0000M0¢0?

SHY. 2) asl v Poo U aénn UV 4,44 3 a(=~aél Nog N =aén A TERE )

RP

By vt I) asl A ,,y AANA 4, 3 Je ail n yy nN je adn nn,
RARE: D

id 1
oT 4) B31 V ,. VAIN V 4, 8 [madd Vv ,,, UV |» BIA UV ye

es Tautologles, contradictions and classical formulas are defined as
A re before,

Ma Because of the Introduction of countable conjunctions and
isd digjunctions, the concept of formula In the sense of ASe and the
wn axi{ors le, 2%, 3» ape now ropjaced by formula In the sense of ASauwey) and axloms d1sdw, 2#w, 3asw, respectively, The principle ofRE
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RS deduction ls of course unchanged, As before, we defin® the concepts
nH of basis, maximal classical ocomponant (33), elementary component,
AY orototype, irreguiar formula and normal oroof, Using these too|s one
foi i can now prove the consistency of the oalculus AS#éw, The proof
ri i sroceeds formally as before, but now the arguments are no tonger

SR Now observe that the set of ocopstants {introduced by
Jaman definitions In the system S (34) [s countable, Let theses be
PI Bel, 242) sees RIN ae
A fe TH This bsing so, any proof In tho system S can be converted into a
RCO proof In the system ASesw, by reinterpreting the formulas (x) (x),
RIES (ex)fix), Vx f(x), 3x f(x), prospectively, ag follows!
DRE: f(aslsl) N 4,40 nN fCasisn) 0 4,
Feng fl(asledl) V 400 V f(aslén) Vv ,,,
EEL flastel) A oy A fladlinm) 2 o,,

“ES where aslsl,,,.saslen,,,, Is the domain of vajues of the variable x,
SE then thls Is done, the axioms and rules fer quantifiers In S become
Eas: orovable formulas and derived rules of the system AS#éw (35) This
RETR transformation converts any contrad tctory formula of § Into a

ERE follows that the system S Is consistent,

SR
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HELE

Ce i8, !,e,, a formula of classical logic in the sense of Section 1,

ANI i9, joc. Citys bps 304-305,

RRR 20, By a propositional formula woe mean a formula containing only
Lun propositional variables and propositionai conngctlives,

Aad 21, It Is convenient to regard the entire formula aa & pomponent of
cod i-self, In view of the possibility that tha formula Itssif Is
RARE | classical and Is therefore Its own (unique) maximal ciassioal
es compenent,

EE. 22, Obvious(y, one copy of a faormula 0 may ogcur In a formuia F as a
Sh maximal classical component, while another copy of tho same formula G
RESSCCE occurs In F as a nonmaximal classical component,

RICE 23, Note that even If F and G are different formulas, It may happen
EE that [FJ=[GJ: thus, if the formulas F and G ape Identical go are the
EAT symbols [FJ] and [GJ], but the converse need not he true,

Say 24, B's need not contain the same variables as A’¢l, It is clear
srg that B’¢k Wlil be the maximal classical components of the formula CG,

Pe 25, It follows Immediately from the truth table of the functions =A,
Baan. AnB that a classical pronositional formula takes the value S whenever
Chia at least ones of is arguments takes this vajue,

Er D
ES then Fek(phisk) 1s cleariy an elementary component of any formula of
CE which It Is a subformuyla, But AsK(phiek) cannot he an elementary
guid component of any formula of whigh 1¢ is a subformula,

Fai 27, The prototype of a formuia F Is clearly unlque up to the names
Ses ne of Its propositional variables, [ff necessary, this remaining
a ambiguity can be removed by fixing the propositional variables in a
ae given proof once for all, 30 that each slementary component appearing
So ne in the proof wil] correspond throughout ¢he proof ¢o the same
Lr propositional variable,

gsigl 28, Direct substitution of the formulas Fel, F, Fe¢2, CG for ¢he
a | variables A,8,C,0, In (a) Is not nermitted by the axioms of ASe,
SAL: | singe they nazed not be formulgs of classleal logle, However, this
tel: rostriction Imposed In ASe by the axioms for subatitution, is not

ae 8ggénglal (gee beloy, Sec¢lon 4),
a | 29, See footnote (27),

Li ag 30, Ses Section i,
Pry
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OR

SER 31, In the sense that the final rasult is the same formule, |
Pg~~ gl ; .

SR |

Sor 32, l.98,, not containing quant!fiers and the rejevant axloms and |
SR rules,

33, The construction of the symboj CF] must now Involve &|80
Hs transfiplite numbers of the second number class for enumeration of the |
Ld maximal classical components,

Loren 34, Of course, there are those cgnstants Introduced hy definitions
SET. in the classical extended functional calculus without theory of types
CE (which Is Inconsistent), ! |

kn Te 35, Axloms containing a free varlah|e must first be prefixed by the |
aE corresponding (classical) universal symbol, and then the axioms In
Sed . the nen Interpretation become basis formuias.of the calculus AS®sw,
Ai axiom [1143 (see Section 1) corresponds In AS#sw to a doplved (l,e.,
SAE deducible from the axioms of AS®sw ) rule, consisting of the
RE following two assertions: ’ Cy

anh a 1, Glven a sequence of formulas

Lipids for each n, then so !s the formula Co
PRE: A 2 Bil ny 0 Bsn ,,, EL

TS 2, Given a sequence of formujas |
Sey 344, ,., +» Bn, 4. If the formujia Ben<A |g provabls
AE for each n, then so ig the formula

Beds |
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Review of dochvar'’s "Ona three-valyed |oglca| ocaltulus,,,” by Alon2o
Church, from the Journa)| of Symbollc Logle, 4,2 (June 1939), p, 99,

The author empjoys a threeevalued propositional caloujus
whese character may be Indicated by -the following typiaga]
truth=-tablest (,,., Church gliveg at this point the truth <¢ables for

“yp I=y >» ty ay Nn, 28, », and ¥ ,,,)Opn thig bagis he deve ops &
(three~valuad) system of 1lo09les Introducing flrat a funotlonal
calculus of first order, and then an extended functiona| calculus ==
analogous|y to the treatment of Hi|bert=pAckermann (36%,1), but
without a theory'of types, .

This system |s used for an “analysis” of the paradoxes _of
"Rugsel! and Grelllng, these paradoxes being thought of as taken fpom
a two-=vajued system and therefore expressed In terms of the negat]on
~, If Q@ Is the formula which |eads to the Russel] baradex in a| two-valued system, by means of the equivalence Q 2 =Q, then, in the

| threa=valued system, Q = =~0 Is demonstrable but, Insted of |eading to
paradox, |eads only to *0Q,

The author overlooks that the three=valiuad system Is Itself
| inconsistent through the Prysenge In It of gnother form of the

| Russ®|| parfdoX, in which the negation 8 appears Instead of =a,

. ! ;

} :

Addl ¢lona| comment by Church in Journal of Symbolle Logic review, 5,3
(September 1940), po, 119,

The reviewer would take this opportunity to correct an error
| made In a review of (Boshvar’s"On a thresevajued ,,, "3, In that

| paper the author does not propose an unrestricted threeevajued logle
without a theory of types, Ingstead, he flrst Introduces an

| aux! |lary system (extended functional calculus) $48, Which has no
ruje of types, but whioh employsays propositional sonnectlves only

anb an La and. connectives ge ranadle In terms of these (300truth=tables In the review referred to), Then he extends his
three=valued functional calculus of the flpst order by allowing

| formulas of Se@ to appear In place of the free Individual vapciab|es
| and (propositional or functional) variables of S¢3 to appear In the

place of bound Individual variables, The resulting system does not
have' the Immediate |neconsistency which the reviewer charged, On the
contrary, the suggested alternative to the theory of types is far
from devold of Interest, The major question, It would seem, Is not
that of qonsistency, but whether [t Is possibje to obtain along these
|inay a system adequate to the purposes for which the extended
functional ealoulug Is usually ‘employed, e,0,,» tO the theor, of
finlte cardinal numperg or to analysis --.Bochvar does not discuss
this point,
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