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Introduction

Substantial progress has recently been made in understanding the
mathematical semantics of programming languages as a result of Scott's
fixpoint theory. Our main purpose in this paper is to introduce the
reader to some applications of this theory as a practical tool for
proving properties of programs.

The paper consists of two parts.

In Part 1 we first introduce the notion of a recursive program and
its (unique) least fixpoint. We describe the computational induction

method, a powerful tool for proving properties of the least fixpoint of

a recursive program. We then illustrate how one could describe the
semantics of an Algol-like program P by "translating" it into a
recursive program P' such that the partial funetion computed by P is
identical to the least fixpoint of P'. Works in this area include those
of McCarthy [1963a, 1963b ], Landin [196L4], Strachey [1966], Morris [ 1968],
Bekic [1969], Park [1969], deBakker and Scott [1969], Scott [1970],
Scott and Strachey [1971], Manna, Ness and Vuillemin [1972], Milner [1972],
Weyhrauch and Milner [1972].

In Part 2 of the paper we illustrate some of the advantages of the

fixpoint approach to program semantics. First, we justify the

;inductive assertion methods of Floyd [1967] and Hoare [1969, 1971].

Other verification methods such as recursion induction (McCarthy [1963a],
[1963b]), structural induction (Burstall [ 1969]), fixpoint induction
(Park [1969], Cooper [1971]), and the predicate calculus approach

(Manna [1969], Manna and Pnueli [1970]) can be justified in much the

same way. Secondly, we emphasize that the fixpoint approach suggests

a natural method for proving properties of programs: given a
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program P , we can translate it into the corresponding recursive
program P' , and then prove the desired properties for the least
fixpoint of P' by computational induction. In contrast to other
existing methods, this approach gives a uniform way of expressing

and proving different properties, including correctness, termination
and equivalence. This makes it very convenient for machine implementa-

tion (Milner [1972]).

Warning: The reader should be aware that some of the results
presented in this paper hold only under certain restrictions which are

ignored in this informal presentation.



PART 1. THE FIXPOINT APPROACH TO PROGRAM SEMANTICS

1.1 Recursive Programs

A recursive program is a LISP-like definition of the form

F(x) <= 7[FI(x) ,
where t[F](x) is a composition of base'functions and the function
variable F , applied to the individual variables x = (x,y,z,,,_)
The following, for example, is a recursive program over the integers
Pyt F(x,y) <= if x = y then y+l else F(x,F(x-1,y+1))
We allow-our base functions to be partial, i.e., they may be

undefined for some arguments. This is quite natural, since they
represent the result of some computation which may in general give
results for some inputs and run indefinitely for others. e include
as limiting cases the partial functions defined for all arguments,
called total functions, as well as the partial function undefined for

all arguments

Let us consider now the following partial functions:

fl(x,y): x+1

fz(x,y): if?x > y then x+1 else y-1 , and

fa(x,y): if (x > y) A (x-y even) then x+l else undefined .

These functions have an interesting common property: For each i

(lsi_<_ 3) » 1if we replace all occurrences of F in the program PO

by fi » the lefthand side and the righthand side of the symbol <=

. . . *
yield identical partial functions, i.e.,~/
7. - '

= 1s an extension of the regular = relation for handling undefined

values. a = b is true if both a and b are undefined, but it 1is
false if only one of them is undefined.

3



f,(x,y) = 1f x = y then y+1_else f,(x,f, (x-1,y+1))-

We say that the functions i‘l , f2 and f3 are fixpoints

of the recursive program Pb
Among the three functions, f5 has one important special property:
for any (x,y) such that f,(x,y) is defined, i.e., (x > y) A (x-y even)
- = = >
both fi(X,y) and fé(x,y) are also defined and j. e the same value as

fB(x)y) . We say that f is "less defined than or equal tolf fl and

3

£, » and denote this by :f‘5 c fl and f = f2 - It can be shown that

3 has this property not only with respect to fl and fé

respect to all fixpoints of the recursive program Pb * Moreover
14

f but with

f3(x,y) is the only function having this property; f5 is therefore

said to be the least (defined) fixpoint of PO .

One of the most important results related to this topic is due to

Kleene {1952], who showed that every recursive program P has a unique

least fixpoint (denoted by fj ).

In discussing our recursive programs, the key problem is:

What is the partial function f defined by a recursive program P ?

There are two viewpoints.

. (a) Fixpoint approach: et it be the unique least fixpoint L

(b) Computational approach: Let it be the computed function C, for

. > " 1"
some given computation rule C (such as "call by name or "call

by wvalue").

We now come to an interesting point: 11 tpe theory for proving

properties of recursive programs is based on the assumption that the



function defined by a recursive program is exactly the least fixpoint #p .

That is, the fixpoint approach is adopted. Unfortunately, many programming
languages use implementations of recursion (such as "call by value" !)

which do not necessarily lead to the least fixpoint (Morris [1968]).3/

Let us consider, for example, the following recursive program over

the integers

P, : F(x,y) <= if x = 0 then 1 else F(x-1,F(x,y))

The least fixpoint £ can be shown to be

Pl
fP (%,y) : 4if x > 0 then 1 else undefined .
1
However, the computed function CP , where C is "ecall by value", turns
1
out to be
Cp. (x,y) = if x =0 then 1 else undefined .
1
Thus, C is properly less defined than f - e.g., C, (1,0) is
Pl Pl Pl

undefined while f_ (1,0) = 1 .
51

There are two alternative ways to view this problem: (a) Existing
computer languages should be modified, and language designers and
implementors should seek computation rules which always lead to the least
fixpoint. "Call by name" is one such computation rule, but unfortunately
it often leads to very inefficient computations. An efficient computation

rule which always leads to the least fixpoint can be obtained by modifying

*
Y It can be shown in general that for every recursive program P and

any computation rule C , CP must be less defined than or eque® to
fp s i.e., Co & T, (Cadiou [1972]).
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over the natural numbers. The least fixpoint f_ (x)

"information" we have after the i-th level of recursion.

"call by value" so that the evaluation of the arguments of a procedure

is delayed as long as possible (Vuillemin [1972]). (b) Theoreticians
are wasting their time by developing fixpoint methods for proving
properties of programs which do ngt compute fixpoints. They should
instead concentrate their efforts on developing direct methods for
proving properties of programs as they are actually executed.

We shall indicate in Part 2 of this paper how the apparent conflict

between these views can be resolved by a suitable choice of the semantic

definition of the programming language.

1.2 The Computational Induction Method

The main practical reason for suggesting the fixpoint approach is
the existence of a very powerful tool, the computational induction method,

for proving properties of recursive programs. The idea of the method is

essentially to prove properties of the least fixpoint #P of a given

recursive program P by induction on the level of recursion.

Let us consider, for example, the recursive program

P,: F(x) <= if x = 0 then 1 else x-F(x-1) ,

of this recursive
Py

program is the factorial function x!

Let us denote by flbd the partial function indicating the

That 1is,



fo(x) is undefined (for all x );

fl(x) is if x = 0 then 1 else x-é%x-l),

i.e., if x = 0 then 1 else undefined ;

fe(x) is if x = 0 _then 1 e;ggux-fl(x-l),

i.e., if x = 0 then 1 else x+(if x-1 = 0 then 1 else undefined)

or in short, if x =0 Vv x = 1 then 1 else undefined ;

etc.
In general, for every i , 12>1,
i . . i-1
f(x) is if x = 0 x:fn 1 else (x-1) ,
which is

iﬁ x < 1 then X! else undefined .

This sequence of functions has a limit which is exactly the least fixpoint

of the recursive program; that is,

Lin{r'(x)} = x!

i —e

This will in fact be the case for any recursive program P : if P
is a recursive program of the form F(X) <= 7[F](X) , and £ (%) is

defined by
0 _ _ -
£ (x) is Q (undefined for all X ), and
i, - T *
(%) is T[f" l](x) for i >1 ,—/

then

2in{* (%))

i —eo

25(%)

¥/

T[fl_l] is the result of replacing all occurrences of F in 7[F]

byf 1.

4



This suggests an induction rule for proving properties of fP : To

show that some property @ holds for fP ,; i.e., cp(fp) , we show that
i .
®(f”) holds for all i > 0 , and that ¢ remains true in the limit;

therefore we may conclude that @(lim{f'}) , i.e., q>(fP) . holds.

i e
Note that it is not true in general that @ remains true in the

limit. For example, for the recursive program P, introduced above,

1 , , . . .
£7(x) 1is the non-total function if x < i then x! else undefined ,

while @{fl}, i.e., fP , 1s the total function x! . Thus for

I - 2

@(f) being " f is not total", we have that Q)(fl) holds for all

i >0, while ltp(lj_m {fl}) does not hold. However, the limit property
1-e

holds of a rather large class of @ (called "admissible predicates" --

see Manna, Ness and Vuillemin [1972]); in particular, all the predicates

that we shall use later have this property.

There are two well-known ways to prove that Cp(fl) holds for all

1 >0, the rules for simple and complete induction on the level of

recursion.

(a) Simple induction:

i+l

if q>(fo) holds and Vi[q)(fi) = @(f" 7)1 holds,

then @(fP) holds

(b) Complete induction:

if ¥i{[¥j such that j < i)(p(f‘j)] = cp(:f‘i)} holds ’ﬂ

then q>(f‘P) holds .

*
Y Note that this includes implicitly the need to prove cp(fo)
for i = 0 there is no j such that j < i

8

, Since



The simple induction rule is essentially the "y-rule" suggested by

deBakker and Scott [1969], while the complete induction rule is the

"truncation induction rule" of Morris [1971]. Scott actually suggested

the more elegant rule

if @(Q) holds and VE[@(f) = @(7[f])]holds,

then ¢(fP) holds »

which does not assume any knowledge of the integers in its formulation.

These rules generalize easily to systems of mutually recursive

definitions.
Example: Consider the recursive programs
P F(x,y,2) <= if x = 0 then y else F(x-1,y+z,z)

3 :

and

P, : G(x,y) <= if x = 0_then y else G(x-1,y+2x-1) .
We would like to prove, using computational induction, that

f, (x,0,x) = 8p (x,0) for any natural number x
P b

(Both functions compute the square of x )
For this purpose, we shall prove a stronger result than the desired
one by simple computational induction. proving a stronger result often
simplifies proofs by induction, since it allows the use of a stronger

induction hypothesis. go, using
. _ 2 2
¢(fy8) : VxVy[£(y,x(x-y),x) = &(y,x"-y) 1,

we try to show that

R i i © A !
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holds. The desired result then follows by choosing x = y . The

induction proceeds in two steps:

() o2, &) , i.c., Vxvyl£(y,x(x-y),%) = (¥, x=¥7) 1 .

Trivial, since Yx¥Vy[undefined = undefined]

o) vile(sh,ed) » o(£ e Y 1.

We assume
1 i 2 2
¥xvy[ £ (v, x(x-y),x) =g (v,x -y") 1
and prove

i+1 i+1 2 2
vxvyl £ (y,x(x-y),x) =g (y,x-y") ]

i+l(

f Vy%(x-y),x) = 1f ¥ = 0 then x(x-0) else fl(y-l,x(x-y)+x,x)

n
|}
()
s

1}

5 .
0 then x~ else fl(y-l,x(x-(y-l)),x)

¥y = 0 then x2 else gl(y-l,xe-(y-l)e)

1]
e
)

by the induction hypothesis

2 2 i
x -0 else g (y-l,(xe-y2)+2y-1)

I}
H
H

oY

]
o
t
oy
[0)
3

il
o0
e
+
—
L
«
-
R
, n
<
o
p

1.3 Semantics of Algal-like Programs

Our purpose in this section is to illustrate how one can describe

the semantics of an Algol-like program P by translating it into a

recursive program P' gych that the partial function computed by P is

identical to the least fixpoint of P! . The features of Algol we consider

are very simple indeed, but there is no theoretical difficulty in

!

extending them,

10
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The translation is defined blockwise: to each block B (or

elementary statement) we associate a partial function fB describing
the effect of the block (or statement) on the values of the variables.
For example,

begin x := xtl; y := y+l end ,
will be represented by the function

f(x,y) = (x+1,y+1) .
Functions are then combined to represent the whole program using the

rule:

m

(x) .

fB]_ '."2& (}E) fBQ(f;[_B

This definition 1is unambiguous, since composition of partial functions

is associative, i.e.,

£, (f

o (X)) = ¢
Bs" By3B, B

15858, = fp i, (5 (D)

All that remains to be done is to describe the partial function
associated with each elementary statement of the language. g,y
simplicity, we shall first consider only a "flowchartable" subset of a

language, with no goto statements or procedure calls. We shall also

ignore the problem of declarations.

1) Assignment statements

if B is X, = E(x) where E is an expression,

fB(x) is (xl,...,xi_l,E(i),xi+l,...,xn) .

2) Conditional statements

if B is if p(x) then B, ,

fB(:Tc) is if p(G) then fBl(i) else % ,

11



and

if B is if p(x) then B, else B

lw 2"

fB(}-c) is if p(x) then f_ (x) else f, (x) .
o "o

3)  Iterative statements

if B is while p(x) do B, ., .

fB()—c) is the least fixpoint of the recursive program

F(x) <= if p(x) t(J-CJF(fBelse X
1
Example: Let us consider the following program for computing in x
the greatest natural number smaller than or equal to Va s 1.e.,
2 2
)

X < a < (x#1)° , where a is any natural number. (The computation

method is based on the fact that 1+ 5+ 5+ (2n-1) = n2 for every
n>0.)
P5: begin integer Xx,y,z;
X =03y 1= 2 1= 1;

while y < a do

begin x := x+1;
[a g P ]

end;
NI

end.

The partial function computed by P5 is identical to the least fixpoint

of P’5 , where

P'S: Fo(a) <= F(a,O,l,l)

F(a,x,y,z) <= 1_fy < a then F(a,xt+l,y+z+2,z+2)
else (a,x,y,z)

12
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L)  got0 statements

There has been much discussion (see, for example, Dijkstra [1968],
Knuth and Floyd [1971], Asheroft and Manna [1971]) about the usefulness

of got0 statements: they tend to make programs difficult to understand

AL~~~

and debug, and one might prefer to use while or for statements instead.

OIS A

Without entering further into this controversy, we shall see that the

semantics of got0 statements is quite complex. 1In particular, it may

P~~~

lead to systems of mutually recursive definitions, and (not too surprisingly)

it is indeed harder to prove properties of programs with goto statements.

N~

We consider two simple cases.

If we have a block of the form

begin . . .y L: By ;.. . ; Bi-l 5 g8oto L Bi+l 3 eee 3 Bn end ,

then we define
(x) to be the least fixpoint of the recursive program

by
goto L,Bi+l;...;Bn

FL(}E) <= fBl;...;. (i%nx .

If we have a block of the form

L: B, ; B

begin ... ; ; ]
egin goto L Bl : ; Bi-l ; ¢ By P41 P e - Bn end ,

NN

then we define

fgoto L:B. 1 - (x) to be the least fixpoint of the recursive program
,l,l..,n

FL(X> <= fB L ;Bn(X)

Note that we have revised our rule of composition, gince

£ ne(x) = £,(f,(X)) is not valid when B is a goto statement.
B;B B''"B

NN

Similarly, if we wish to allow goto's which jump out of

NN

13
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then we

iterative statements or branches of conditional statements,

must change their semantic definition accordingly.

Example: Let us consider anotherversion of .
_— P5 , using only the

operations  successor and predecessor .
P6: begin integer X,y,z;
X 1= 0; yi= 2 := 1;
L: if y < a then
L and AP

begin integer t;

X 1= xtl;
z 1= ztl;
t = z+1;

M: if t > 0 then

o~ NN~

begin y := y+1;

t = t-1;
£2%0 s
fflﬂj
zZ = z+]; g%t;’g’ L;
Sfli‘L;
Eﬂgj

The partial function computed by P6 is identical to the least

fixpoint of Pé where

By Fo(a) <= FL(a,O,J_,J_)

F (a,%,y,2) <= if y < a then FM(a,x+1,y,z+l,z+2)

€lse x, ¥, z)

FM(a,x,y,z,t) <= if t > 0 then FM(a,x,y+l,z,t—l)

else FL(a,,x,y,z+1)

14
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Let us now define the semantics of simple procedures without

parameters. We shall not discuss problems such as "side effects",

parameter passing or the procedure copy-rule for call by name.

5) procedures

(a) For the non-recursive procedure

-

procedure P;B

(where Pis the procedure name and B is its body), we

define

fogll P(x) to be fB(x) .

(b) For the recursive procedure

procedure P; B[P],

we define

fcall P(x)to be the least fixpoint of the recursive

program F(x) <= fB[P](i)

where occurrences of call P will be replaced by F in

PN

the semantic definition of £
B[P] .

6) An answer to the problem of "call by value"

Cur semantic definition of recursive procedures assumes that the

implementation of recursion in the language always leads to the least

fixpoint. If this is not the case, we must change our semantic gefipition:

. : 1
to every program P we associate a recursive program P' gych that

the least fixpoint of P' will always be identical to the partial

function computed by P . Consider, for example, the program

integer procedure P(integer X,y);
2 S

P := if x = 0 then 1 else P(x-1,P(x,y));

15
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b

If the implementation is "eall by name",

its semantics will be

foal1 P(X,Y) is the least fixpoint of

NI~~~

P(x,y) <= if x = 0 then 1 else F(x-1,F(x,y)) -

However, if the implementation is "eall by value" its semantics will be
J

fcall P(X,y) is the least fixpoint of

F(x,y) <= if (x = 0) a def(y) then 1 else F(x-1,F(x,y)) ,
where the (computable) predicate def(y) is true whenever y is

defined, and undefined otherwise.

16



PART 2. APPLICATTON TO THE VERIFICATION PROBLEM

Our purpose in the second part of the paper is to illustrate some

of the advantages or the fixpoint approach to program semantics.

2.1 Justification of the Inductive Assertions Method

e ——————
The most yidely used method for proving properties of "flowchart

programs" . .
1s presently the inductive assertions method, suggested by

Floyd [1967] and Naur [1966]. We shall illustrate the method on the

simple program
P5 above.  To clarify our discussion we shall describe

the program as a flowchart:

LY - y+z

X ~ x+]

— i

Z « z+2

We wish to show that this flowchart program, whenever it terminates,
computes the greatest natural number smaller than or equal to /a P -

2 2
that x7 < a < (x+
- ( 1 for any natural number a

17




———Y

To do this we associate a predicate Q(a,x,y,z) , called an

inductive assertion, with the point labelled @ in the program, and

show that Q must be true for the values of the variables (a,x,y, z)
whenever execution of the program reaches point @ . Thus, we must
show: (a) that if we start execution with a > 0 , then the assertion
holds when point @ is first reached, i.e., that Q(a,0,1,1) holds;
and (b) that the assertion remains true when one goes around the
loop from & to @ , i.e., that (y < a) a Q(a,x,y,2) implies
Q(a,x+l,y+z+2,z+2) . To prove the desired result we finally show

(c) that X2 <ac< (x+l)2 follows from the assertion Q(a,x,y,z)

when the program terminates, i.e., that (y > a) 2 Q(a;x,y,z) implies
% <a< (x+l)2 .

To verify the program, we take

Q(a,x,y,z)'to be (x2 < a) a(y = (X+l)2)A (z = 2x+l).

One can then verify easily that conditions (a), (b) and (c) above,

called the verification conditions, hold.

Hoare's inductive assertion method is actually a generalization of
Floyd's method; Hoare [1969, 1971] realized that if we wish to apply the
method of inductive assertions to prove properties of a large program, we
shall undoubtedly have to break the program into smaller parts, prove
what we need about the parts, and then combine everything together. We
will clearly break the program into pieces in the most convenient way
for the proof, and, since composition of statements is associative, the
way in which we group the statements of the program is irrelevant. For
example, 1if the given program is of the form

P: B ;B2; B35‘Bh s

18
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we can associate the statements in several different ways, e.g.,
((By3 By)s By)s By
(B15 (Bei BB)) 5 Bh ”
(Bys Bp)s (Bss B ,
or
By; (By; (Bss By))
Although the programs do not look the same, all of them yield the same
least fixpoint, and therefore they are equivalent. If we express other
verification techniques using this notation, we find that Floyd and
Naur consider only the first possibility, i.e., grouping statements to
the left, while McCarthy [1963b] and Manna and Pnueli [1970] only
consider the last possibility, i.e., grouping statements to the right.
Following Hoare, we express this idea by writing {R}B{T} f/ to
mean that if R(i) holds before executing the piece of program B and
if B terminates, then T(x) will hold after executing B

We first apply verification rules to each statement of the

program. Examples of such rules are:

(a) assignment statement rule:

R O %i?q implies {R} x, i= E(x) {8}

where Si@Q stands for the result of replacing all occurrences

L

of x; in S by E(x) ;

*/ . .
We prefer this notation to Hoare's R{B}T .

19



(b) conditional statement rule:

{Rl}Bl{T} and {Re}Be{T} implies

. - . - *
{if p(x) then R, else R2} ﬁp(x) then B, else B, {ry, */

(c) iterative statement rule:

{R A p(x)} B {R} implies (R} while p(X) do B {RA~ p(X)} .

We then compose pieces of the program until we get the entire

program, using the following

(d) composition rule:

-

{R}Bl{s} end {S}B,{r} implies {R}Bl;BE{T} ’

(e) consequence rules:

R > S and {8}B{T} implies {R}B{T}, and

{RIB{S} and 8§ DT implies {R}B{T} .

Example. A proof of the correctness of the program p | given above,

could be sketched as follows.

First, we establish, using the assignment statement rule, the

following results:
Since a > 0 o R(a,0,1,1) , where R(a,x,y,z) is

(X2 <a)a(y = (X+l)2) A (z = 2x+1) , we get

(1) (a>0}x:=0; vy :=2z :=1 {R(ay%,¥,2)} .

"
i The reader should be aware of the difference between
(if p then R, else RE) in the mathematical language, which stands

for (p DRy) A (~2 DRy, and (if p then B, else B)) in the
programming language.

20



Since R(a,X,y,z) Ay < a > R(a,x+1,y+z+2,242) , we get

(@) R(a,xy,2) A Y < a8} X 1= xt1; z := 2425 v := yHz {R(a,x,y,2)} .

By using the iterative statement-rule, we get from (2)

(3) {R(a)x)Y:Z)} ER};I—S y < a Egbegin X = x+1;

I := z+2; y := ytz end {R(a,x,y,z) Ay > a} .

We now combine the results of (1) and (3) using the composition rule

to obtain

(4) {8' > 0} PS {R(a’x}Y’ z) A > 8.} .

Since [R(a,%,y,z) Ay > al D X <ac< (x+l)2 , we apply the consequence

rule and finally get

()2 2 0}P x° < a < (x+1)%)

It is quite important that all of Hoare's verification rules can in
fact be proved from the semantics we gave, Jjust by using computational
induction. We shall illustrate this point by justifying two of the most
powerful verification rules: +the rule for ﬂx’j\,‘lv% statements, and the rule

for call of recursive procedures. por this purpose, we need to relate

the notation {R} B {T} to our fB()-c) , the partial function indicating

the change of the values of the variables during the execution of B .

{R} B {T} simply means that whenever R(X) ig true T(fB(i)) is either

true (if B terminates) or undefined. ye can express this by the relation

R(x) = T(£f5(x)) >
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et

adopting here the convention that a = b is true whenever a or b

is undefined.

We are ready now to prove the following rules:

(a) rule for while statements

The verification rule for yhile statements indicates that if the
NSNS

execution of the body of the while statement leaves the assertion R

invariant, R should hold upon termination of the while statement. More

fanar e Vo)

precisely,
R(x)Ap(x) } B {R(X) }  implies {R(X)} while p(x) do B {R(X) A~ p(X)]} .

We therefore-have to prove the following theorem:

¥x[R(x) A D(X) = R(£4(x))]
implies

vx[R(x) = R(fP()-c)) A~ p(fp(}_c))] where

P: F(x) <= if p(x) thﬂF(fB(i)) eli;c .

The proof is by computational induction.

— - 0,- 0,-
L. ¥x[R(x) = R(£(x))A~p(f(x))] 1is clearly true according to our

convention, since R(f%(%)) and ~p(f°(%)) are undefined.

2. We assume ¥x[R(X) > R(fi(i)) A~ p(fi(i))] and show
S i+1 = i+1, - '
¥x[R(x) = R(f" ~(x))A ~p(f1+1(x))] .By definition of £'1
we have

R(£7H(E)) - 12 p(H) then R(F(25(%))) else RE) | 4ng

p(£51(R) = i p(R) then B(F(£(R)) else B
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o ) *
We distinguish between two cases:—/

Case 2A: p(x) is false. Then, R(fl+l(i)) = R(X) ang

p(£*1(%)) = p(X) , so that RE®) = R(EFYE) A ~p(sP*1(F)) is veLid.

Case 28: P(X) is true. Then R(£I(H) = R(F(£5(R)) ana
p(£7HE) = p(£1(£(2)) . By the assumption R(E) A B(F) = R(£,(3))
holds, and since by the induction hypothesis

R(£,(%)) = R(EH(25(R)) A ~ (£ (£5(8))) » ve get

R(Z) = R(£(25(8)) A ~B(£(25(8)) . Hence,

R(Z) » REFIR)IA ~p(#HR)  as desired.

(b) Rule for recursive calls

Let us consider a recursive procedure

procedure P; B[P],

where P is the name of the proeedure and B[P] represents its body.
The verification rule for proving properties of P is quite similar to
computational induction, although its formulation might look rather

paradoxical: in order to prove a property of the recursive procedure P ,

one is permitted to assume that the desired property holds for the

body B[P] of the procedure! This can be stated as follows:

vg [ {(R} g {T} implies {R} Blg] {T} ] implies {R} call p {T} .

As Hoare [1971, p. 109] puts it, "this assumption of what we want to

prove before embarking on the proof explains well the aura of magic which

attends a programmer's first introduction to recursive programming".

*
Y A more rigorous treatment would require checking also the case in
which p(X) is undefined.
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SLe riLisnoweverils easy o Justify. We have to prove the

Tollowing theorem:

VelVR(R(X) = T(g(x) ] implies WRIR(R) » T(f, (%))]]

e ha— ————t—t

VX{R{X) = T(£(X)). where

P: F(x) <= fB[F](;;) . !
i'..__,__ :

The proof is again by computational induction.
R Ko TS . 0,=
«- ¥x{R(x) = T(£(x))] is true,. since T(£ (X)) 5 undefined.

We assume YX[R(X) = T(fi(}-c))] and show ¥x[R(x) = T(fi+l(;£)) 1.
3y the induction hypothesis, R(%) = T(fi(i)) » therefore, by the

assumption of the theorem R(X) = T(f (%)) Thus., from the
i . ’
B[f™]

definition of £11 we get R(x) = T(fl+l(i)) s as desired.

2.2 Translation to Recursive Programs

in the present state of the art of verifying programs, Hoare's metnod

> resumaebly the most convenient for proving the correctness of prograns.

WL, w3s main drawback is that it can handie only "partial corractzess"

AWs ..o, we can oziy show that the fina] results of the wmrogrens
s oL eeluBlY s ze given ingput-output relation. The method, d&oes uot
< Lwede anmy means for preving vermination, and seems rather i -Iitteld

iou proving equivalence DeTWeen programs.

This is another case where our semantic definition of the programm::g

~anguage pays off: properties like termination and equivalence can be

2k



handled in exactly the same way as partial correctness. The idea is

quite simple: To prove some property of a given program P , translate
it to the corresponding recursive program P', and then prove the
desired property for #P" by computational induction. In this method
we actually still benefit from all the advantages of Hoarefs approach
since we may associate the blocks of the program arbitrarily at our
convenience.

To show, for example, that the partial function defined by the

given program P is monotonic increasing, we prove

Wyl (x <) = (F, (%) < £, (1)1 .

Note that it is rather hard to express such a property as an input-output

relation.

(A) Termination
To show that fP is total, or in general that g C #P for some

function g which is total on the desired domain, we cannot simply use
computational induction choosing @(F) to be g & F , as then ¢(fo)
will always be false. However, we can overcome this difficulty by
considering the domain over which our data range as defined by a recursive
program.

For example, the natural numbers can be characterizef/ by the
least fixpoint nmum(x) of the recursive program

N(x) <= 1f x = 0 then true else N(x-1) .

We can now translate any program P over the natural numbers into the
corresponding recursive program P* and show that P! terminates by

simply proving the relation

*
Y Given that 0 , 1 ,~, + , = have their usual meaning.
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vx[mum(x) € mum(fy, (%))]1 -

In other words, fP,(x) is defined and its value is a natural number,

whenever x 1s a natural number.

(B) Equivalence

It should be quite clear at this point that equivalence of two
recursive programs is no more difficult to prove than the other
properties. Consider, for example, the two recursive programs over the
natural numbers
Pﬁ: F(x) <= if x = 0 then 1 else x*F(x-1) ,

and

P8 : G(x,y,2) <= if x y then z_else G(x,y+1, (y+1)-2) .
We want to show that

VX[fP7(X) = &p 8(x,0,l) 1

Note that both ﬁp (x) and g&p (x,0,1) computes x! , but quite
. 5

differently: fP (x) is 'going down' from X to 0 , while &p (x,0,1)

T 8
is 'going up' from 0 to X . This explains why a "direct"computational
induction fails in this case.

However, if we consider the predicate x > y over the natural
numbers to be characterized by the least fixpoint ge(x,y) of the
recursive program

M(x,y) <= if x = y then true else M(x,y+l)) ,

we can show by computational induction that

vx, ylge(x,¥) € [fP7(X) = 3P8(x,y, fP7 (v)) 1]
Then, in particular, for y = 0 we get
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vx[ge(x,0) = (£, (x) = gps(x,o,l)]] >

7
~
- i.e., for every natural number x , either both
fP (x)  and & (%,0,1)
are defined and equal, or both are undefined. T 8
i The proof is by computational induction with
<
_ PE) : WoylFGy) € U () - g, (xy, )11
T - 8 7
. (0] .
It is clear that @(f’) holds. So, we assume that ¢(f5 holds and
¢ show that ¢(f1+l) holds, i.e.,
i+l
VX)Y[f (X,y) c [fP (x) = gp (x’y’fP (y))]] s
7 8 7
J or in other words

¥5,y[ [if X = y (hen true else fi(x,y~+1)) lc =
[£ (X2 (¥)) 11
L. P7 gPB P%
L The proof proceeds easily by distinguishing between the two cases where

X =y and x % YV e

(@) If x =y we get Vx[true Efo ) =f_ (x)] , which clearly holds.
7 F7
(b) If x# v weget vy i
# %,y £7(x,p+1) [f-P7(x) = sps(xmfPT(y))J] .

Using the definitions of

i
V%, y[f (x,y+1) & [f'P8(X) = gpg(x:yq'l:fa?(y‘*l))]] » which holds

by the induction hypothesis.
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