
STANFORD ARTIFICIAL INTELLIGENCE PROJECT

MEMO AIM-164 ee

STAN-CS-72-272

FIXPOINT APPROACH TO THE‘THEORY OF COMPUTATION

BY

ZOHAR MANNA

JEAN VUILLEMIN

SUPPORTED BY

NATIONALAERONAUTICS AND SPACE ADMINISTRATION

AND

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

MARCH 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

Stanford Artificial Intelligence Project April 1972

FIXPOINTAPPROACHTO THETHEORYOFCOMPUTATION

- ly

Zohar Manna and Jean Vuillemin

« Computer Science Department
Stanford University

_ Abstract
C

Following the fixpoint theory of Scott, we propose to define the
|

b semantics of computer programs 1n terms of the least fixpoints of

| recursive programs. This allows one not only to justify all existing
-

verification techniques, but also to extend them to handle various

| properties of computer programs, including correctness, termination

| and equivalence, in a uniform manner.
h

!

i

}
Keywords and Phrases: Verification techniques, semantics of programming

| languages, least fixpoints, recursive programs,
. computational induction

CR categories: 5.23, 5.24

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense under Contract
SD-18% and in part by NASA Contract 2FCZ 713.

The views and conclusions contained in this document are those of the

authors and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced Research
Project Agency or the U.S. Government.

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information. Springfield, Virginia 221°

: B Introduction

| - Substantial progress has recently been made in understanding the
mathematical semantics of programming languages as a result of Scott's

Co fixpoint theory. Our main purpose in this paper is to introduce the

~ reader to some applications of this theory as a practical tool for

proving properties of programs.

The paper consists of two parts.

L In Part 1 we first introduce the notion of a recursive program and

its (unique) least fixpoint. We describe the computational induction

method, a powerful tool for proving properties of the least fixpoint of

L- a recursive orogran. We then illustrate how one could describe the

1 semantics of an Algol-like program P by "translating" it into a

recursive program P' such that the partial function computed by P is

h identical to the least fixpoint of P'. Works in this area include those

| of McCarthy [1963a, 1963b], Landin [1964], Strachey [1966], Morris [1968],
Bekic [1969], Park [1969], deBakker and Scott [1969], Scott [19701],

| Scott and Strachey [1971], Manna, Ness and Vuillemin [1972], Milner [1972],
Weyhrauch and Milner [1972].

{ In Part 2 of the paper we illustrate some of the advantages of the
fixpoint approach to program semantics. First, we justify the

~ inductive assertion methods of Floyd [1967] and Hoare [1969, 1971].

] Other verification methods such as recursion induction (McCarthy [1963a],
[1963b]), structural induction (Burstall [1969]), fixpoint induction

| (Park [1969], Cooper [1971]), and the predicate calculus approach
(Manna [1969], Manna and Pnueli [1970]) can be justified in much the

same way. Secondly, we emphasize that the fixpoint approach suggests

a natural method for proving properties of programs: given a

1

program P , we can translate it into the corresponding recursive

¢ program P' , and then prove the desired properties for the least

fixpoint of P' by computational induction. In contrast to other

— existing methods, this approach gives a uniform way of expressing

¢ and proving different properties, including correctness, termination

and equivalence. This makes it very convenient for machine implementa-

tion (Milner [1972]).

Warning: The reader should be aware that some of the results

presented in this paper hold only under certain restrictions which are

< ignored in this informal presentation.

$

¢

¢

C

C

2

C

oo PART 1. THE FIXPOINT APPROACH TO PROGRAM SEMANTICS

1.1 Recursive Programs)

_ A recursive program 1s a LISP-like definition of the form

. —-— -—

F(x) <= 1[F](x) ,

- where T[F](x) is a composition of base'functions and the function

variable F , applied to the individual variables x = (%,7525 ...) |
C

The following, for example, is a recursive program over the integers

Py: F(x,y) <= if Xx = y then y+l1 else P(x,F(x-1,y+1))

We allow-our base functions to be partial, i.e., they may be
-

undefined for some arguments. This is quite natural, since they

| represent the result of some computation which may in general give
results for some inputs and run indefinitely for others. ye include

L as limiting cases the partial functions defined for all arguments,

called total functions, as well as the partial function undefined for
LC

all arguments

N Let us consider now the following partial functions:

f(x,y): x+1

| £,(%,5) : if2x > y then x+l else y-1 , and
£5(%,¥) : if (x > y) A (x-y even) then x+l else undefined .

These functions have an interesting common property: For each 1

(1<i< 3) , if we replace all occurrences of F in the program BE,
by £. y the lefthand side and the righthand side of the symbol <=

yield 1dentical partial functions, 1i.e.,

Ln 1s an extension of the regular = relation for handling undefined
values. a = b is true if both a and b are undefined, but i1It is
false 1f only one of them 1s undefined.

3

oo £,(x,y) = if x = y then y+l else f, (x, 1, (x-1,y+1))-

| ~ We say that the functions f , f, and f, are fixpoints
of the recursive program Ps .

| Among the three functions, f; has one important special property:

« for any (X,y) such that £2 (%,7) is defined, i.e., (x > 7) A (x-y even) ,
both £, (x,y) and £,(%,¥) are also defined and y..c the same value as

| £2(%,Y) . We say that fs 1s "less defined than or equal to" £, and
C f, » and denote this by £5 - £, and £5 - £ + It can be shown that

Ty has this property not only with respect to fy and £, but with
respect to all fixpoints of the recursive program Fy © Moreover,

b-- £5(x,y) is the only function having this property; £5 is therefore
i said to be the least (defined) fixpoint of P .

One of the most important results related to this topic 1s due to

L Kleene {1952], who showed that every recursive program P has a unique
least fixpoint (denoted by fj).

] In discussing our recursive programs, the key problem 1s:

|] What 1s the partial function f defined by a recursive program P ?
There are two viewpoints.

- (a) Fixpoint approach: Let it be the unique least fixpoint f, .

(Db) Computational approach: Let it be the computed function Cp for
some given computation rule C (such as "call by name" or "call

by value").

We now come to an interesting point: all the theory for proving

properties of recursive programs 1s based on the assumption that the

4

i B function defined by a recursive program 1s exactly the least fixpoint fp .

That 1s, the fixpoint approach is adopted. Unfortunately, many programming

EE - languages use implementations of recursion (such as "call by value" !)

which do not necessarily lead to the least fixpoint (Morris (19681) .%/

|

Let us consider, for example, the following recursive program Over

the integers

C Py : F(x,y) <= if x = 0 then 1 else F(x-1,F(x,y))

The least fixpoint Is can be shown to be
B 1

fo (x,y) : if x > 0 then 1 else undefined .
be 1

| However, the computed function Co , where C is "call by value", turns1

out to be

| Co (x,y) ¢ 1fx = 0 then 1 else undefined .
1

| Thus, Cp 1s properly less defined than fp -- e.qg., Cp (1,0) is
- 1 1 1

. undefined while f_ (1,0) = 1 .
—_— P1

There are two alternative ways to view this problem: (a) Existing

|] computer languages should be modified, and language designers and

implementors should seek computation rules which always lead to the least

fixpoint. "Call by name" is one such computation rule, but unfortunately

it often leads to very inefficient computations. An efficient computation

rule which always leads to the least fixpoint can be obtained by modifying

Lo
It can be shown in general that for every recursive program P and

any computation rule C , Co must be less defined than or eque’ to

He ————— USS

Be

| - "call by value" so that the evaluation of the arguments of a procedure
~ is delayed as long as possible (Vuillemin [1972]). (b) Theoreticians

R are wasting their time by developing fixpoint methods for proving

properties of programs which do aot compute fixpoints. They should

o instead concentrate their efforts on developing direct methods for

proving properties of programs as they are actually executed.

We shall indicate in Part 2 of this paper how the apparent conflict

C between these views can be resolved by a suitable choice of the semantic

definition of the programming language.

L- 1.2 The Computational Induction Method

| The main practical reason for suggesting the fixpoint approach is

: the existence of a very powerful tool, the computational induction method,
. for proving properties of recursive programs. The idea of the method is

essentially to prove properties of the least fixpoint La of a given

| recursive program P by induction on the level of recursion.

i Let us consider, for example, the recursive program
P,: F(x) < if x = 0 then 1 else x-F(x-1) ,

8 over the natural numbers. The least fixpoint fp (x) of this recursive
| program 1s the factorial function x! . °

Let us denote by £* (x) the partial function indicating the

| "information" we have after the i-th level of recursion. That is,

6

|

£9 (x) is undefined (for all x);

1 CL 0
f7(x) is if x = 0 then 1 else x-f (x-1) ,

«

i1.e., if x = 0 then 1 else undefined ;

2 1

f(x) is if x = 0 then 1 else.x-f (x-1) ,

i.e., if x = 0 then 1 else x+(if x-1 = 0 then 1 else undefined) ,

- or in short, if x = 0 Vv x = 1 then 1 else undefined ;

etc.

In general, for every i , 121,

- i ca i-1
f7(x) is if x = 0 x-fn 1 else (x-1) ,

which 1s

« — —-

if x < 1 then Xi else undefined .

_ This sequence of functions has a limit which is exactly the least fixpoint

" of the recursive program; that is,

. i ooLim{f (x)} = x! .
1 —=

- This will in fact be the case for any recursive program P : 1f P

‘ | | - - i=
is a recursive program of the form F(x) <= 7[F](x) , and £ (Xx) is

defined by

O~\ . -

" f(x) is © (undefined for all x), and
. - t - - x

HX) is Tlf HE) for 1 >1 JX

then

- . i,= -

‘ Ln{f(x)} = f(x) .
i ~c0

« LA
[£7 7] is the result of replacing all occurrences of F in 7T[F]

byf 1°.

1

RN This suggests an induction rule for proving properties of In : To

~ show that some property @ holds for fp , i.e., P(£p) , we show that
i

®(f”) holds for all i > 0 , and that © remains true in the limit;

therefore we may conclude that @(lim{f'}) , i.e., P(fp) holds.
w 1 —o0

Note that it 1s not true in general that © remains true 1n the

limit. For example, for the recursive program P, introduced above,

C £5 (x) is the non-total function if x < i then x! else undefined ,

while lim{f"}, i.e., fp + is the total function x! . Thus for
I -o 2

®(f) being " f is not total", we have that o(£) holds for all

L- i >0, while o@(lim {r*}) does not hold. However, the limit property
1-e

holds of a rather large class of @ (called "admissible predicates" —-

see Manna, Ness and Vuillemin [1972]); in particular, all the predicates
L

that we shall use later have this property.

!

{ There are two well-known ways to prove that o(£%) holds for all

| 1 > 0, the rules for simple and complete induction on the level of
recursion.

| (a) Simple induction:
0 . i i+]

i if @(f’) holds and Vi[p(f") = @(f 7) 1 holds,
then ofp) holds .

(b) Complete induction:

if ¥i{[V¥j such that j < 1)e(d)] = o(£h)} holds 2

1 then ?(fp) holds .

Note that this includes implicitly the need to prove (f°) | since
for 1 = 0 there is no J such that J < i .

8

EE The simple induction rule is essentially the "y-rule" suggested by

Co deBakker and Scott [1969], while the complete induction rule is the

"truncation induction rule" of Morris [1971]. Scott actually suggested

the more elegant rule

\

if @(f)) holds and Vf[e(f) = ¢(7[£])]holds,

then Pp) holds

C
which does not assume any knowledge of the integers in its formulation.

These rules generalize easily to systems of mutually recursive

| definitions. _
bo

Example: Consider the recursive programs

L
Pp, : F(x,y,2) <= if x = 0 then y else F(x-1,y+z,2)

| and
P) : G(x,y) <= if x = 0 then y else G(x-1,y+2x-1) .

We would like to prove, using computational induction, that

| fy (%,0,x) = Ep (x,0) for any natural number x .Fs l

" (Both functions compute the square of x .)

For this purpose, we shall prove a stronger result than the desired

one by simple computational induction. Proving a stronger result often

simplifies proofs by induction, since it allows the use of a stronger

induction hypothesis. So, using

¢(f,g) : VxVy f(y, x(x-y),x) = g(y,x -y) 1

we try to show that

Rakein, © * SE|

|

a. holds. The desired result then follows by choosing x = vy . The

. induction proceeds 1n two steps:

i O 0 O 0 2 2
(a) (£7, g) , i.e., VxVIE(v,x(x-y),x)= g (vox -y) 1.

Trivial, since VxVy[undefined = undefined] .
«

. i 1 i+l i+1
(b) vile(£7,87) = @(f “8” 7) 1.

We assume

C i i, 2 2
Vx¥y[£ (vy, x(x-y),x) =g (yo,x -y) 1

~ and prove

i+] i+1 2 2
vxvyl £7 (v,x(x-y),x)=g" “(y,x -y)]

L.

itl = if i(vy, x(x~y),x) = 1f ¥ = 0 then x(x-0) else f (7-1, x(x-y)+x,x)

! = if 2 i
5 = 11 ¥y = 0 then x= else f (y-1,%(x-(y-1)),x)

| = if y = 0 then x2 else g (y-1,x"-(y-1))
by the induction hypothesis

_ os 2 2| = 1f y = 0 then x -0" else eg” (y-1, (x°-y°)+2y-1)
_ i+1 2 2

| = 8g “(y,x"-y7) .
.

- 1.3 Semantics of Algal-like Programs

Our purpose in this section 1s to illustrate how one can describe

the semantics of an Algol-like program P by translating 1t into a

| recursive program P' gych that the partial function computed by P is

identical to the least fixpoint of P! . The features of Algol we consider

are very simple indeed, but there 1s no theoretical difficulty in
/

extending them,

10

- The translation 1s defined blockwise: to each block B (or

Co ~ elementary statement) we associate a partial function I describing

the effect of the block (or statement) on the values of the variables.

: For example,

“ _
begin x := xtl;y := y+l end ,

will be represented by the function

f(x,y) = (x+1,y+1) .

¢ Functions are then combined to represent the whole program using the

rule:

fo 0 8 (x) = £ (8 (x).
ag B A1" "2 2

IL

This definition 1s unambiguous, since composition of partial functions

L 1s assoclative, 1.e.,

| fp (fy 5 (X)) = £ (x) = £ :B . . . = . f xX .3 BiB, B13B,;B; By 52 { B {))
All that remains to be done 1s to describe the partial function

\

associated with each elementary statement of the language. For

| simplicity, we shall first consider only a "flowchartable" subset of a
language, with no goto statements or procedure calls. We shall also

ignore the problem of declarations.

1) Assignment statements

if B 1s X, = E(x) where E is an expression,

f(x) is CO TRF ACFEACOPE SUNPRPRIE .

2) Conditional statements

if B is if p(x) then B, ,

f(x) is if p(G) then f (x) else % ,
1

11

—- and

. if B is Af p(x) then B) else B_,

f(x) is if p(x) then f, (x) else f, (x) .
"1 "2

. 3) Iterative statements

if B is while p(x) do B, .

fp (x) 1s the least fixpoint of the recursive program

¢ F(x) <= if p(x) (x) Ffelse x
1

Example: Let us consider the following program for computing in Xx

L. the greatest natural number smaller than or equal to /a y 1.e.,

x" < ax (x+1)° r where a 1s any natural number. (The computation

) method is based on the fact that 1+ 3+ 5+ (2n-1) = n° for every
% n>0 .)

Ps : begin integer X,y,z;

X t= 0; yy t= 2 = 1;

| while y < a do
begin x := x1;

Zz i= zt2;

Y = Y*2;

. end;

end.

The partial function computed by Ps is identical to the least fixpoint
| of Pe , Where

Pl F(a) <= F(a,0,1,1)

F(a,x,y,z) <= if y < a then F(a,xtl,y+z+2, z+2)

else (a,x,y,z)

12

_ LY got0 statements

| There has been much discussion (see, for example, Dijkstra [1968],
Knuth and Floyd [1971], Ashcroft and Manna [1971]) about the usefulness

of got(statements: they tend to make programs difficult to understand

w and debug, and one might prefer to use while or for statements instead.

Without entering further into this controversy, we shall see that the

semantics of gotO statements 1s quite complex. 1p particular, it may

a lead to systems of mutually recursive definitions, and (not too surprisingly)

1t 1s indeed harder to prove properties of programs with goto statements.

We consider two simple cases.

L_ If we have a block of the form

i begin . . . § L: By ee Bs 1 ; goto Lh ; Bii1 3 eee 3 B, end |,
then we define

f - - . '
Oto LiB, _5...:B (x) to be the least fixpoint of the recursive program

F_(x =

i z() < 55... 8 (hy
If we have a block of the form

| ; begin ...; goto L ; By J ees B. 1 ; Li: B; 3 B.iq HE B_ end ,
then we define

. Ff x) to be the least fixpoi f th rsive program
~ Tgoto L;B.5...:B (x) to be the least fixpoint o e recursive progArr 1 Nn

- n

Note that we have revised our rule of composition, gjipce

fa.pe (X) = fo: (f5(%)) is not valid when B is a goto statement.2 aa WW)

Similarly, if we wish to allow goto's which jump out of

13

- iterative statements or branches of conditional statements, then we

Co must change their semantic definition accordingly.

Example: Let us consider anotherversion of

—_— Pe , using only the
Operations successor and predecessor .

C

Po: begin integer X,y,z; |

X t= 0; y= 2 = 1;

L: if y < a then
C rs -— AIP

begin integert;

N X = xt+1;

z = zt+l;
_ ’

t i= z+1;

L M: 1f t > 0 then

| begin y := v1;
CL = t-1;

goto M;

end;

2 := ztl; gotO IL;

| end;
end.

Th ial f Coe partia unction computed by Fs 1s 1dentical to the least

fixpoint of 24 where

py F(a) <= F. (2,0,1,1)

F: (a,%,y,2) <= if y < a then F(a, x+1,y, z+1, z+2)

Else x, ¥y, z)

F(a: x,y,2,t) <= if t > 0 then Fla, x,y+1,2,1-1)

else Fr (a,%,y, z+1)

14

Let us now define the semantics of simple procedures without

parameters. We shall not discuss problems such as "side effects",

parameter passing or the procedure copy-rule for call by name.

) 5) procedures
|

(a) For the non-recursive procedure

procedure P;B

« (where Pis the procedure name and B 1s its body), we

define

fall p(X) to De f(x) .

(b) For the recursive procedure

procedure P; B[P],
Tae a a a PF PW

; we define
L

£3 .feall p(%) to be the least fixpoint of the recursive

rogram F(x) <= f x| prog (x) sp] (®)

| where occurrences of call P will be replaced by F in
the semantic definition of f

| B[P] .
6) An answer to the problem of "call byvalue"

| Cur semantic definition of recursive procedures assumes that the
_

implementation of recursion 1n the language always leads to the least

. fixpoint. If this is not the case, we must change our semantic gefinition:

| to every program P we associate a recursive program P! such that
| the least fixpoint of P' will always be identical to the partial

| function computed by P . Consider, for example, the program
integer procedure P(integer X,¥);
= S

P := if x = 0 then 1 else P(x-1,P(x,y));

15

LL If the implementation 1s "call by name" its semantics will be

Co fall p(X) 1s the least fixpoint of

P(x,y) <= if x = 0 then 1 else F(x-1,F(x,y)) -

, However, if the implementation is "call by value" its semantics will be
Ne. J

all p(X) is the least fixpoint of

C F(x,y) < if (x = 0) a def(y) then 1 else F(x-1,F(x,y))
where the (computable) predicate def(y) is true whenever y is

defined, and undefined otherwise.

| -.
bo

16

PART2. APPLICATTON TO THE VERIFICATION PROBLEM
a -

B- Our purpose ip the second part of the paper is to illustrate some

of the advantages or the fixpoint approach to program semantics.

“ Ce
2,1 Justification of the Inductive Assertions Method

The most widely used method for proving properties of "flowchart

Programs"]
C 1s presently the inductive assertions method, suggested by

Floyd [1967] and Naur [1966]. We shall illustrate the method on the

~ simple program p | | | |
5 above. To clarify our discussion we shall describe

| the program as a flowchart:

-

1 |
| 0)

y «1

! I |

| . Y “-y+z

- | =rue false

We wish to show that this flowchart program, whenever it terminates,

computes the greatest natural number smaller than or equal to Ja , il.e.,

that x° < a < (x+1)°
= , for any natural number a .

17

: _ To do this we associate a predicate Q(a,Xx,y,z) , called an

_ inductive assertion, with the point labelled &@ in the program, and

Lo - show that Q must be true for the values of the variables (a,x,y, 2)

whenever execution of the program reaches point & . Thus, we must

. show: (a) that 1f we start execution with a » 0 , then the assertion
holds when point @ is first reached, i.e., that @(a,0,1,1) holds;

and (b) that the assertion remains true when one goes around the

a loop from @ to @ , i.e., that (vy < a) 2 Q(a,x,y,z) implies

Qa,x+1,y+z+2, 2+2) . To prove the desired result we finally show

(c) that x < ac< (x+1)° follows from the assertion Q(a,x,y,z)

o when the program terminates, 1.e., that (y > a) a Q(a, x,y, 2) implies

x <ac< (x+1)° .

L To verify the program, we take
| Q{a,x,y,z) to be (x° <a) a (y= (x+1)%) A (z = 2x+1) .

One can then verify easily that conditions (a), (b) and (c) above,

- called the verification conditions, hold.

Hoare's inductive assertion method is actually a generalization of

Floyd's method; Hoare [1969, 1971] realized that if we wish to apply the

method of inductive assertions to prove properties of a large program, we

shall undoubtedly have to break the program into smaller parts, prove

what we need about the parts, and then combine everything together. We

will clearly break the program into pieces in the most convenient way

for the proof, and, since composition of statements 1s assoclative, the

way 1n which we group the statements of the program is irrelevant. For

example, 1f the given program 1s of the form

P: By Bos B33. B), ’

18

~ we can assoclate the statements 1n several different ways, e.g.,

w

or

¢ Although the programs do not look the same, all of them yield the same

least fixpoint, and therefore they are equivalent. If we express other

verification techniques using this notation, we find that Floyd and

- Naur consider only the first possibility, 1.e., grouping statements to

I the left, while McCarthy [1963b] and Manna and Pnueli [1970] only
consider the last possibility, 1.e., grouping statements to the right.

1 Following Hoare, we express this idea by writing {R}B{T} to
mean that if R(x) holds before executing the piece of program B and

-

_ if B terminates, then T(x) will hold after executing B .

We first apply verification rules to each statement of the

program. Examples of such rules are:

|] (a) assignment statement rule:
E(x) . Co .

R D S implies {R} x, i= E(x) {S}
1

where SEC) stands for the result of replacing all occurrences
1

of x, in S by E(x);

NNWe prefer this notation to Hoare's R{BIT .

19

(b) conditional statement rule:

- {R; JB, {T} and (R,1B,{T} implies
- - *

{if p(x) then R, else R,} if p(x) then B, else B, {T}, wi

. (c) 1terative statement rule:

{R A p(x)} B {R} implies {rR} while p(X) do B {RA~ p(¥)} .

C We then compose pieces of the program until we get the entire

program, using the following

(d) composition rule:

Co -

{R}B, {s] and {S}B,{T} implies {R}B,5B,{T} ’

(e) consequence rules:

|
L rR D> S and {S}B{T} implies {R}B{T} , and

. {R}B{S8} and 8 © T implies ({R}IB{T} .

L Example. A proof of the correctness of the program P , given above,
] could be sketched as follows.

First, we establish, using the assignment statement rule, the

| following results:
Since a > 0 o R(a,0,1,1) , where R(a,x,y,z) is

(x° <a)A(y = (x+1)°) A(z = 2x+1) , we get

(1) (a>0}x:=0; v :=z :=1 {R(ayx,y,2)} .

*/ The reader should be aware of the difference between

(1f p then R, else R,) in the mathematical language, which stands

for (p © Ry) A (~p - R,) » and (if p then By else B,) in the
programming language.

20

5 Since R(a,X,¥,2) A ¥ < a D R(a,x+1,y+2z+2,242) , we get

(2) {Rla,x,y,2) A ¥ £8} X i= xtl; 2 1= 242; v = yz {R(a,x,y,2)} .
So

By using the iterative statement-rule, we get from (2)

| (3) {R(a,x,y,2)} ¥hile v < a do begin x := x+1;
"

I i= z+23; y := y+z end {R(a,x,y,z) Ay > a} .

We now combine the results of (1) and (3) using the composition rule

C to obtain

(4) {a > 0} Ps {R(a,x,y, z) AL > a} .

- Since [R(a,%,y,z)A y > al 2x < a < (x1) , we apply the consequence

| rule and finally get
2 2

© a20r KP <a< mn?

| It is quite important that all of Hoare's verification rules can in
-

| fact be proved from the semantics we gave, Just by using computational

induction. We shall illustrate this point by justifying two of the most

| - powerful verification rules: the rule for while statements, and the rule

for call of recursive procedures. por this purpose, we need to relate

the notation {R} B {T} to our £5(x) , the partial function indicating
the change of the values of the variables during the execution of B .

{R} B {T} simply means that whenever R(X) sq true T(£(%)) is either
true (if B terminates) or undefined. ye can express this by the relation

R(x) = T(f5(x)) »

21

adopting here the convention that a = b is true whenever a or b

1s undefined.

a We are ready now to prove the following rules:

B (a) rule for while statements

S The verification rule for while statements indicates that if the

- execution of the body of the while statement leaves the assertion R

invariant, R should hold upon termination of the while statement. More

C precisely,

- R(x)Ap(x) } B {R(X) } implies {R(X)} while p(x) do B {R(x) A~ p(x)} .

- We therefore-have to prove the following theorem:

| YE[R(X) A D(X) = R(£(%))]
| implies

| VEIR(E) = R(£,(X)) A ~ P(£p(X))] where

L P: F(x) <= if p(x) then F(f5(x)) else xX .

| The proof 1s by computational induction.
- | - - O,= O,=. ¥x[R(x) = R(£(x))A~Dp(f(x))] is clearly true according to our

convention, since R(£°(X)) and ~ p(£°(%)) are undefined.

2. We assume ¥x[R(xX) = R(£*(x)) A ~ p(£(x))] and show
ol i+l,- i+], = i

¥x[R(x) = R(f™ ~(x))A ~ p(t 1x) . By definition of pitl
we have

TR _ . _ -

R(£7 HX).- if p(X) then R(£(£5(%))) else R(X) | ng

p(£*1(%)) = if p(X) then P(£(£,(%))) else D(X)

22

We distinguish between two cases: ¥/

- i+1, = _ -
~ Case 2A: p(x) is false. Then, R(f" ~(x)) = R(X) 4g

i - - - i+], = +1,-

p(£1(%)) = p(X) , so that R(X) =» R(£HR)) A ~p(£* HR) is vsLid.

Case 2B: p(X) is t Then R(EILE)) = rie(2. (%)))C : Pp 1s true. en = glX and
i+1l,=\v\ = i - - - -

p(f" ~(x)) = p(f (£5(x))) . By the assumption R(x) A p(x) = R(f5(x))
holds, and since by the induction hypothesis

- i - i -

C R(£5(x)) = R(f (£5(x))) A ~p(f (£5(x))) » we get
- i - i -

R(X) » R(E(£5(%))) A ~B(£(25(%))) . Hence,
- i+l,- i+1,-

R(x) => R(£7 (x)A ~p(£* 12) as desired.

L. -.

(b) Rule for recursive calls

Let us consider a recursive procedure

Y procedure P; B[P],

where P is the name of the procedure and B[P] represents its body.

|
L The verification rule for proving properties of P is quite similar to

| computational induction, although its formulation might look rather
paradoxical: in order to prove a property of the recursive procedure P ,

| - one 1s permitted to assume that the desired property holds for the
body B[P] of the procedure! This can be stated as follows:

i vg [(R} g {T} implies {R} Blg] {T}] implies {R} call p {T} .

- As Hoare [1971, p. 109] puts it, "this assumption of what we want to

| prove before embarking on the proof explains well the aura of magic which

C
attends a programmer's first introduction to recursive programming".

SUNT —| A more rigorous treatment would require checking also the case in
which p(X) is undefined.

25

LL Tas ndwaverls easy To justify. We have to prove the

ne To.lowing tasorem:

VeVX[R(x) = T(g(x)) |] implies Wx[R(x) =» T(f (x)) 13
: Blg]*™// 44}

VXLR(X) = T(£(x)). where ;

| P: F(X) <= fo, (3)B[F] : |

The proof is again by computational induction.

- Re, = - : 0 -
«+ ¥XiR(x) = T(£(x))] is true,. since T(f (x)) is undefined.

bo - = 3 i+1
©. We assume Vx[R(X) =» T(£"(x))] and show ¥Vx[R(x) = T(f —(x))] .

| 3y the induction hypothesis, R(x) = (£1(%)) » therefore, by the
assumption of the theorem R(X) = T(f ; (X)) . Thus, from the

B[f"]
Ca i+1 - itl, =

definition of f we get R(x) = T(f ~(x)) , as desired.

L

| “.2 Translation to Recursive Programs
in the present state of the art of verifying programs, Hoare's metnot

- - Jresumebliy the most convenient for proving the correctness of prograzs.

ovo. , Ts main drawback is that it can handle only "partial correctiess"

©., Wwe can ou.y show that the fina] results of the DULEIEAS

cel an Lome TAPE ST wm lation)
ee eelLBIY oe CzE given input-output relation. The method, does not

ec mwe as any means LOT Proving termination, and seems rather ill-fitted

Lou proving equivalence DeTWeen programs.

This 18 another case where our semantic definition of the programm. ng

-anguage pays Off: properties like termination and equivalence can be

2h

| handled in exactly the same way as partial correctness. The idea 1s

quite simple: To prove some property of a given program P , translate

| it to the corresponding recursive program P', and then prove the

desired property for Tor by computational induction. In this method

we actually still benefit from all the advantages of Hoare's approach

. since we may assoclate the blocks of the program arbitrarily at our

convenience.

C To show, for example, that the partial function defined by the

given program P is monotonic increasing, we prove

Moy (x <¥) = (5, (x) <1, (0)]

ote that it 1s rather hard to express such a property as an input-output

| relation.

1 (A) Termination
To show that LSS 1s total, or in general that g Cc 1p for some

function g which 1s total on the desired domain, we cannot simply use

computational induction choosing @(F) to be g © F , as then (£0)

| will always be false. However, we can overcome this difficulty by
- considering the domain over which our data range as defined by a recursive

program.

For example, the natural numbers can be characterized by the

least fixpoint num (x) of the recursive program

N(x) <= if x = 0 then true else N(x-1) .

We can now translate any program P over the natural numbers into the

corresponding recursive program P' and show that P!' terminates by

simply proving the relation

WJ Given that 0 , 1 ,4,~, + , = have their usual meaning.

25

“

_ vx[mum(x) © mm(£p, (x))]

‘ In other words, fg,,(X) is defined and its value is a natural number,

whenever x 1s a natural number.

| B) Equival. (B) ulivalence

It should be quite clear at this point that equivalence of two

recursive programs is no more difficult to prove than the other

w properties. Consider, for example, the two recursive programs over the
natural numbers

} E,: F(x) <=if x = 0 then 1 else x-F(x-1) ,
- and _

Pg : G(x,¥y,2) <= if x vy then z else G(x,y+1l,(y+1)-z) .

= We want to show that

$ _

vx[f_ (x) = Sp (x,0,1) |P
7 8

Note that both fo (x) and gp (x,0,1) computes x! , but quite

« differently: fp (x) is 'going down' from X to 0 , while Sp (%x,0,1)
T 8

is 'going up' from 0 to x . This explains why a "direct"computational

i induction fails in this case.

.
However, 1f we consider the predicate x > y over the natural

numbers to be characterized by the least fixpoint ge(x,y) of the

recursive program

.

M(x,y) <= ifx = y then true else M(x,y+l)) ,

_ we can show by computational induction that

vx, ylge(x,v) © [f, (x) = Bp, (X:¥: Tp (¥))11 .g]]

Then, in particular, for y = 0 we get

26

| vx[ge(x,0) = [£5 (x) = gp (%,0,1)]1 ,
7 38

, — 1.e., for every natural number x , either both

fp (x) and 8p (%x,0,1)
are defined and equal, or both are undefined. 7 8

) The proof 1s by computational induction with
“

: cif

P(E): WOYFRY) © If, (0) = a (3,2, 3)]] ©
T 8 7

: 0 .

It is clear that @(f) holds. So, we assume that o(£) holds and
C show that Cami holds, i.e.,

Vx yl £4 (x Y= [ff’ y) Eg (x) = ep (%,7, £5 (y))11
7 8 7

or 1n other words

Vx,y[[if X = y then true else et Xytl) 1 © =
| y fen true el £5) Ip 8p (57,2, (¥)) 11.

7 8 7
| The proof proceeds easily by distinguishing between the two cases where

x=vy and x # vy .

(a) X = y we get Vx[true Ext,) = £5 (x)] , which clearly holds.
7 7

b i

(b) If xf v weget vx,y[f'(x,p+1) C [2 (x) = & (x,y,¢ (¥))1]Fr “RB PF, d
Using the definitions of fh and gp we get

7 8

¥x,y[£ = [ff —
VIE (p41) ELE) (x) = 8p (X,7+1,%_ (y+1))]] 5 which holds

8 8 EF,
by the induction hypothesis.

t

27

Co

Co. References

~ ASHCROFT and MANNA [1971]. E. Ashcroft and Z. Manna, "The Translation
of 'Goto' Programs to 'While' Programs", Proceedings of IFIP
Congress 1971.

~ BEKIC [1969]. H. Bekié¢, *'Definable Operations in General Algebra and

« the Theory of Automata and Flowcharts'$ Unpublished memo, IBM,
Vienna (December 1969).

BURSTALL [1969]. R. M. Burstall, "Proving Properties of Programs by
Structural Induction", Computer Journal, Vol. 12, No. 1 (February

_ 1969), pp. 41-48.

> CADIOU [1972]. J. M. Cadiou, "Recursive Definitions of Partial Functions
and their Computations", Ph.D. Thesis, Computer Science Dept.,
Stanford University (to appear).

COOPER [1971]. D. C. Cooper, "Programs for Mechanical Program Verification",

o - in Machine Intelligence 6 (B. Meltzer and D. Michie, Eds.), Edinburgh
University Press, pp. 43-59.

DEBAKKER and SCOTT [1969]. J. W. deBakker and D. Scott, "A Theory of
Programs", unpublished memo (August 1969).

a DIJKSTRA [1968]. E. Dijkstra, "Goto Statements Considered Harmful",
= CACM, vol. 11, No. 3 (March 1968), pp. 147-148.

FLOYD [1967]. R. W. Floyd, "Assigning Meanings to Programs', in
. Proceedings of a Symposium in Applied Mathematics, Vol. 19,

Mathematical Aspects of Computer Science (Ed. J. T. Schwartz),

N pp. 19-32.

- HOARE [1969]. C. A. R. Hoare, "An Axiomatic Approach to Computer
Programming”, CACM, Vol. 12, No. 10 (October 1969), pp. 576-580, 583.

— HOARE [1971]. CC. A. R. Hoare, "Procedures and Parameters: an Axiomatic

. Approach", in Symposium on Semantics of Algorithmic Languages,
Lecture notes Mathematics, Vol. 188 (E. Engeler, Ed.), Berlin,

_ Springer-Verlag, pp. 102-116

KLEENE [1952]. S. C. Kleene, Introductionto Meta-mathematics,
Van Nostrand, Princeton, New Jersey.

KNUTH and FLOYD [1971]. D. E. Knuth and R. W. Floyd, "Notes on
Avoiding 'Goto'! Statements", Information Processing Letters 1

— (January 1971), pp. 23-31.

LANDIN [196L4]. P, J. Landin, "The Mechanical Evaluation of Expressions",
- Computer Journal, Vol. 6,No. 4% (January 1964), pp. 308-320.

28

\

q MANNA [1969]. Z. Manna, "The Correctness of Programs", JCSS, Vol. 3,
No. 2 (May 1969), pp. 119-127.

«

Lo MANNA, NESS, and WILLEMIN [1972]. Z. Manna, S. Ness, and J. Vuillemin,
"Inductive Methods for Proving Properties of Programs", in

Proceedings of ACM Conference on Proving Assertions about Programs,

5 ACM, New York (January 1972).
. MANNA and PNUELI [1970]. Z. Manna and A. Pnueli, "Formalization of

| Properties of Functional Programs", JACM, Vol. 17, No. 3 (July 1970),
pp. 555-569.

McCARTHY [1963a]. J. McCarthy, "A Basis for a Mathematical Theory of
Computation". In Computer Programming and Formal Systems,

“ (P. Braffort and D. Hirschberg, Eds.), pp. 33-70.

McCARTHY [1963b]. J. McCarthy, "Towards a Mathematical Science of
— Computation", in Information Processing: Proceedings of IFIP 62

(C. M. Popplewell, Ed.), Amsterdam, North Holland, pp. 21-28.

“« MILNER [1972]. R. Milner, "Implementation and Applications of Scott%
Logic for Computable Functions", in Proceedings of ACM Conference

: on Proving Assertions about Programs, ACM, New York (January 1972).

~ MORRIS [1968]. J. H. Morris, "Lambda-Calculus Models of Programming
Languages", Ph.D. Thesis, Project MAC, M.I.T., MAC-TR-57 (December 1968).

LN}

— MORRIS [1971]. J. H. Morris, "Another Recursion Induction Principle",
CACM, Vol. 14, No. 5 (May 1971), pp. 351-354.

= NAUR [1966]. P. Naur, "Proof of Algorithms by General Snaptshots",

« BIT, vol. 6(1966),pp. 310-316.
| PARK [1969]. D. Park, "Fixpoint Induction and Proofs of Program Properties",
= in Machine Intelligence 5 (B. Meltzer and D. Michie, Eds.), Edinburgh

University Press, pp. 59-78.

- SCOTT [1970]. D. Scott, "Outline of a Mathematical Theory of Computation",
« Oxford University Computing Lab., Programming Research Group,

Technical Monograph PRG-2 (November 1970).

SCOTT and STRACHEY [1971]. D. Scott and C. Strachey, "Towards a Mathematical
Semantics for Computer Languages", Technical Monograph PRC-6,

| Oxford University (August 1971).
.

STRACHEY [1966]. C. Strachey, "Towards a Formal Semantics", in Formal
Languages Description Languages, (T. B. Steel, Ed.), Proc. IFIP

- Working Conf. 1964, Amsterdam, North-Holland, pp. 198-220.

WILLEMIN [1972]. J. Vuillemin, "Proof Techniques for Recursive Programs",
¢ Ph.D. Thesis, Computer Science Dept., Stanford University (to appear).

WEYHRAUCH and MIINER [1972]. R. Weyhrauch and R. Milner, "Program
Semantics and Correctness 1n a Mechanized Logic", The USA-Japan

Computer Conference, Tokyo (October 1972).

¢
29

