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Abstract

Let R denote a set of linear operations defined on the set P of
C

positive integers; for example, a typical element of R has the form

p(Xyseeerx) = mytmX, +. o.otm x where Mos esos denote certain

integers. Given a set A of positive 1ntegers, there 1s a smallest
¢ -

set of positive integers denoted (R:A) which contains A as a subset

and 1s closed under every operation in R . The set (R:A) can be

constructed recursively as follows: Let Ay = A , and define

Aq =A,_U{p(a): peR, ach, xX. .e x A} (k = 0,1,.0.) ,

then it can be shown that (R:A) = Ay U AU . . . . The sets (R:A)

¢ sometimes have an elegant form, for example, the set (2x+3y:1) consists

of all positive numbers congruent to 1 or 5 modulo 12 . The objective

| 1s to give an arithmetic characterization of elements of a set (R:A) ,

‘ and this paper 1s a report on progress made on this problem last year.

Many of the questions left open here have since been resolved by one of

us (Klarner).
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« ARITHMETIC PROPERTIES OF CERTAIN

RECURSIVELY DEFINED SETS

by

‘ D. A. Klarner and R. Rado

1. Introduction

L We begin with a rough description of the kind of problem treated

in this paper. This will be followed with a review of certain notions

from universal algebra which are going to be used in the precise

y formulationof our problems. We would like to point out at the outset

that only the language and very little of the theory of universal algebra

seem to enter our work.

Consider a set R of finitary operations defined on a set X ,

and suppose A 1s a subset of X . It can be shown that there is a

"smallest" set (R:A) with Ac (R:A) ¢ X such that (R:A) is closed

under all operations in R . This is a rough version of the "definition

i from above" of the set (R:A) . However, there is an alternative -

"definition from below" which involves iteration of the operations in R .

| We define a sequence of sets Byrhysees recursively so that
L . A=ACAC..andAy UA U . . .= (R:A) .

Even though we have a constructive definition of (R:A) 1t 1s often

i very difficult to decide whether a given element x of X is an element

i of (R:A). Such a situation may lead to a search for a simple character-
ization of the elements of (R:A) which avoids the recursive construction.

For example, it will be shown later on that the subset (2x+3y:1) of the

1
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C natural numbers consists precisely of all positive integers congruent

— to 1 or 5 modulo 12 . This case is typical of the class of problems

which will be considered. In general, we seek an arithmetic characteri-

o zation of sets (R:A) of natural numbers where R is a finite set of

finitary linear operations defined on the set of natural numbers, and

A 1s a finite set of natural numbers.

% Let us introduce some notation from universal algebra and give a

precise formulation to our problem. Henceforth, X denotes a set.

Let X , for every natural number =r , denote the set of all r-tuples

. of elements of X . A mapping p which sends X' into X is called
an r-ary operation on X . For every Y cX we put

~y = _T

(1) e(Y) = {o(y): ye¥'} .

In particular,p(f) = # . A finitary operation on X is an r-ary

operation on X for some unspecified natural number r . Henceforth,

% R denotes a set of finitary operations on X . For Y ¢ X , let

(2) R(Y) = U p(Y)
PER

- Henceforth, A denotes a fixed subset of X . Let »(R:A) denote the

_ set of all subsets of X which contain A and are closed under all

operations 1n R . In other words,

.“.

(3) HR:A) = {Y:A cc Yc X;R(Y) c YY} |

Finally, for Tc #(R:A) , T # § , we define the meet of T by
.

(4) At=n 1,
TeT -

and if 7 = ¢ , then we define AT = X .

v
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The Join of T 1s defined by
¢

(5) VI=AS/R:UT) .
TeT

Se It is easy to check that ATe SR:A) . Clearly, VTeAR:A) for all

_ T < #(R:A). Because of its importance, we have a special notation for

the set AR:A) , namely,

 -

(6) (R:A) =/A\AR:A) .

This brings us to the first noteworthy result in the theory of universal

¢ algebra (see Kurosh [1, pp. 93-991).

THEOREM 1. The set (R:A) , ordered by set inclusion, forms a complete

lattice with meets and joins defined by (4) and (5) respectively. The
[§

— greatest element of A(R:A) is X , and the least element is (R:A) as

defined in (6).

¢ The next result provides a construction for (R:A) .

THEOREM 2. Let Ay = A, and A;;, = A; U R(Ai) for 1=20,1...y and

- put A, =A, UA VU. . . . Then
L

_ (7) (R:AY = A, .

L- Proof. By definition, A = Ay C Ac X . Next, let p be an r-ary

operation in R , and select elements SERIES of A. Then there

” exists a number k > 0 such that XyyeeesX, cA. Hence, in view of

L A = AU R(4,) , we have JCIPRPSE cA, c A, . This proves

A_co/(R:A) .

‘



B An easy proof by induction on k establishes that A c Y for
.

k = 0,1,... whenever Y eJ(R:A) . Hence Y es(R:A) implies A CY .

In particular, A c (R:A) . But (R:A) 1s the least element of

— J(R:A) . Therefore A, = (R:A) , and the proof is complete.
A

_ THEOREM 3. Let Yeo R:A) . Then A U R(Y) e#(R:A) and

(8) (R:A) = A U R((R:4)) .
C—

_ Proof. Since A U R(Y) © Y we have R(A UR(Y)) c R(Y) which implies

the first assertion. Put S = (R:A) and, for every X'c X ,

-_ eX! = A Uy R(X') . Then S is the intersection of all X' c X with

X' > ¢X' . Consider one such X' . By definition of S , S cX',

which implies @S c ¢X' ¢ X' . Therefore, by definition of S ,95 CS

~ | and so eS cS . Again, by definition of S , we have S C 95 so

that, finally, S = ¢S , which is (8).

We introduce the following notation:

.

P={1,2,3,...}; N=1{0,L,2. ..] ; J=1{0,1,-1,2,-2,...} ;

[a,b] = {x: xeJ 38 <x <b} for a,bel .

Henceforth, X 1s assumed to be the set P . We shall also severely

limit the scope of the set R . An r-ary operation p on P 1s said

to be linear 1f there exist numbers 8ylyy ee esl, such that

|

(9) p(Xp5 ees) = atmX,+ ® rx

~ for all x5...,x,€P . If a = 0 then p is sald to be homogeneous.

o Henceforth, unless the contrary 1s stated, R 1s assumed to be a finite

set of finitary linear operations on P . Usually, the elements of R

L
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will be listed explicitly, say in the form R = fo, : ie[1L,k]} , and

i N in this case we write (py ( ie[1,k]) :A) instead of (R:A) . A similar
convention 1s adopted when the elements of A are listed. For example,

— we shall consider sets such as (2x+1,3x+1:1) and (2x+3y:1) . An

) r-ary operation p 1s called strictly increasing if

N p(Xq5. 00%) > XqyreerX, for all KppeeesXy €F . An important corollary
| - of Theorem 3 can be derived for sets R consisting of operations of this
} kind.

R Corollary of Theorem 3. Let R be a set of strictly increasing operations
- on P, and Ac P . Then the equation Y = A U R(Y) holds if and only

if Y=(R:A).

Proof. In view of (8), we only have to show that Y = A U R(Y) 1mplies
“

- vy = (R:tA) . Cur assumption implies Yeo(R:A) , so that (R:A) c Y .

If (R:A) # Y then there is a least element x of Y\(R:A) . Then

u X£A , since otherwise we would have xe (R:A) . But the relations
Y=AU R(Y) and xfA imply the existence of an r-ary operation p in

| R together with elements x;,...,Xx, of Y such that JESPRRRYE = x .

nN By hypothesis, p 1s strictly increasing, so that x > STE Sa
Hence x;5...,%x€ (R:A) , and x = p(X1s ees ) ¢ (R:AY , which is the

required contradiction. This completes the proof.

N Another notational convenience we shall employ concerns the addition
N and multiplication of sets of numbers. For neJ and A,B €¢ J we define
CC — nth = {n+ta: aeA} ,

A+B = {at+b: acA; beB} ,

- nA = {na: acA} ; AB = {ab: ach; beB} .



i | For example, the set {atdn: neN} , which forms an arithmetic
progression, may be written as a+dy .

Sets expressible as a finite union of arithmetic progressions enter

_ our investigations in a natural way. For example, consider the set

S = (x+ JESFRRRPE WEL) where a,reP , and p is an r-ary operation

on P such that, with d = p(a,a,...,8) , we have p(x, . ok) =

C o(¥ys...s¥,)(mod d) whenever x. = y.(mod d) for ie[l,r] . Under
these circumstances all elements of S are congruent to a modulo d ,

so that

bo (10)  Sca+adN .

| On the other hand, a simple induction on k establishes that sat+kde§
for all keN , in view of a+(k+l)d = a+kd+ p(ay...,a) . Hence there is

y equality in (10). Furthermore, one can show under various conditions
i that if (R:A) contains an infinite arithmetic progression, then (R:4)

\ 1s expressible as a finite union of arithmetic progressions. For example,

| see Theorem 4 below. Before proving Theorem 4% we must discuss some general
properties possessed by sets expressible as finite unions of arithmetic

progressions.

A set A Cc P is called a per-set if A is expressible as a finite

union of infinite arithmetic progressions. This means that A has the

form

k

(11) A= YU (a; + dN) ’

where keN and a,,d; €P for iell,k] . It is easy to see that a set

A cP 1s a per-set if and only if A = F+dV where F is a finite subset

of P and deP . The name "per-set? is used to remind us of the

periodicity property of such sets which 1s expressed in the following

lemma.



Lemma 1. A set A Cc P 1s a per-set if and only if there exists deP

N such that d&+tAcA .

Proof.

(i) Let A be a per-set defined by (11) with k >0 . Let d be the

~ least common multiple of diy eeerdy . Since g.+d.n+d =
a, + 4, (n+ (4/4.)) for iell,k] and neN it follows that d+A ¢ A .

(11) Suppose that A ¢ P and d+A € A for some deP . For xeA put

f(x) = min(A N (x#dJ)) . Then the set F = {f(x): xeA} has at

_ most d elements, and if F = {a CL a} then

A=0 (ie[1,k]) (a, + dy) = F+dN . This completes the proof.
L_

We conclude from (ii) that per-sets are the sets of the form F+dN

1 with F finite and deP .

We note that the relations d+Ac A and d'+Ac A imply

L (+d) +A = d+( a'+A) ¢ d+A c A .

. Let Pp denote the set of all per-sets. OQur next result shows that
| P has a nice structure.

i
Lemma 2. Let A,Bep . Then AUB,ANBefP . Also, for every finite

| ) set FC A, we have A\Fe®

Proof. By Lemma 1, there are numbers d,d'¢P such that d+A c¢ A and

- d'+*Bc B . Then dd*+ (AU B) cCAUB, di'+ (ANB) c ANB, and the

a sets AUB and ANB are in P by Lemma 1. There exists neP such

that F c [L,nd] . Then nd+(A\F) cA\F, and A\FeP by Lemma 1.

b This completes the proof.

|
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For any sets X,Y we say that X 1s almost contained in Y ,

N and we write

XeyY ,

. if X\Y is finite. We say that X and Y are almost equal, and we
- write

X=Y ,

o- if XeYeX . Clearly, the relation € 1s reflexive and transitive,

and = 1s an equivalence relation. The set ACP is called a pear

- per-set 1f A is almost equal to a per-set. Thus, a near per-set 1s a

set which 1s expressible as a finite union of arithmetic progressions,

each progression being allowed to be finite or infinite. The set of all

- near per-sets has a structure similar to that of P as given in Lemma 2.

. It is easy to see that a set Ac, P 1s a near per-set 1f and only 1f there

1s deP such that d+A « A . We are now ready to state and provea

result which shows how per-sets enter our theory.

> THEOREM 4. Let A be a per-set and R a set of operations of the form

atmx, + . cotm x , Where 8yTyllyy enol, eP , such that the highest

common factor (mys col] has the value 1 . Then (R:A) 1s a per-set.
.

Proof. Assume AR # § . There is deP with dA c A . Put S = (R:R) ;

s = (R:A) ;

f(x) = min(S Nn (x+dJ)) (xe8) ;

S' = {f(x): xeS} .

N Then S' 1s finite and

w SC U (x+dN) = S'+dn .
XES'

3
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We can write S8' in the form 8! = ls] 8,} 5 such that kep ,

and there is me[O,k] such that (i) S15 sees eAtd , (ili) for

each Me [mtl,k] there is an operation p(x, +X €R and indices
As . ooh, € [1,1] such that p(s, seees8y ) €8,+dJ.Then

- 1 r

s;*dN @ A ¢ S for Me[l,m] . Now assume, using an inductive argument,

that oce[m+l,k] and s,*dV & S for all Ae[l,0-1] . We shall deduce

o std @ s . There are indices Ms 3 i My, € [1,0-1] and an operation

Then Speatms, toetmey ds ; Sn, tO & S(ielLr)) . There are
indices Nageoosh, e [1,0-1] and an operation p(X)5 005%) =

a mx t+. . .+mx eR such that play 700008, ) € s;+dJ . Then

. Speatms, * hms, ta ; f+ 8(iell,r]) . There are numbers
p;€P such that s, + dp,+ dV cS for ie[l,r] . Then

1

a+). MSs +dd,m Dp, + alm,N Cc S . There 1s qeP such that gtN C LN .
1

This is a well known consequence of (mys 000m) = 1 . There is teJ such

that a+) m,s = s_+td . Now we have
i A g

s,+td+ alm, + d(gt+N) c 8, + td+ alm, + alm N

=at Lng, +almp + alm, N Cc. .

~ This implies s + df © S . Thus we have proved, by induction, that

5, + di «¢ S for each Me[l,k] . Therefore S* +dN « S , and there is a

finite set F c 8' +dN satisfying (S*+dN)\F c S c S'+dN . Then

~ S = (8'+aN)\F* for some F* c¢ F . Since S*+dNefP it follows from

Lemma 2 that S8&” , and Theorem 4 is proved.

9



| It is worth noting that if the set (R':A') contains an infinite

SE arithmetic progression, and R' contains a non-empty set R satisfying

the hypothesis of Theorem 4, then (R':A') contains a non-empty per-set

| but possibly may not be equal to a per-set.

Before going on to special cases of sets of the form (R:A) we

prove one more fairly general result concerning the multiplicative

structure of sets (R:A) . For the moment we drop the requirement that
L

the elements of R be linear operations. An r-ary operation p op R

1s now sald to be homogeneous if

i for all 8yXq5eesX, €P . We shall show that under certain conditions
the set (R:A) 1s closed under multiplication.

L
THEOREM 5. Let AC P, and let R be a set of homogeneous operations

r on P . PutS = (R:A) . Then AS ¢ S implies SS ¢ S . In particular,

if A = {1} , then SS = S .

| Proof. Let AS ¢ S and teSS . Then there is aeS such that

| teaS = a(R:A) = (R:ad)c (R:SA) c¢ (R:S) c¢ S ,
which proves $8 cS . If, in addition, A = {1} then S = 1S c SS,

and the theorem follows.

In subsequent sections we shall focus attention on a very restricted

class of sets (R:A) where R denotes a finite set of finitary linear

operations on P , and A ¢c P . Section 2 deals mainly with sets of the

form

10



(13) (mx + n; (ie[1,k]):a) ,

where a,k,m,n, yy €P These are sets generated by unary linear

operations on P . In Section 3 we study the sets (mx+ny:1) with

m,neP . The cases (myn) = 1 and (myn) > 1 differ significantly and

are treated separately; most of our results relate to the case (myn)= 1 .

2. Sets generated by unary linear operations

A unary linear operation on P 1s a function of the form

p(x) = mx+n with meP and neN . Throughout this section we deal

exclusively with sets (R:A) where A ¢ P and R 1s a set of unary

linear operations on P , finite except possibly in Theorem8. We may

suppose, without loss of generality, that R does not contain the

identity operation. If R contains an element x+d with deP then

(R:A) is a per-set. We note that for unary operations

(1) R:AY = U (R:a) .
ach

: Hence, 1t 1s natural to focus attention on the case when A contains

exactly one element. The problem treated in this section 1s to find a

satisfactory arithmetic characterization of the elements of a set of the

form

(2) (myx +n, (ie[1,k]):a) ,

11



where k,a,m,-1eP and n;eN for ie[l,k] . The case k = 1 in (2)
.

1s particularly easy. We have to consider the set (mx+n:a) with

m-1leP ; neN ; aeP . Using the construction given in Theorem 2 we find

. (mxtn:a) = {a,am+ n, am + n(mtl), ...)

t t
= {am + n(m’-1)/(m-1): teN} .

- Thus, the set (mx+n:a) has the form G-T , where G is a geometric

progression with positive rational terms, and 7 1s a positive rational

number. This procedure can be carried out for arbitrary k in (2) and

._ shows that--the elements of (2) are precisely the numbers of the form

_ vy + Hy (vy + Ho(oeet py (ve tuia)...))
(3)

“ —

3 where teN ; pi = my (1) 3 ov; = (1) 3 M1), e050 (t) el1,k]. This
L characterization, though not very satisfactory in itself, 1s often a

— step towards something better. For example, the next theorem is an

; immediate consequence of (3).

C
THEOREM 6. Let a,d,k,meP and beN . Then

( (mx+ b+ id(ie[0,k-1]):a)
Ly

-- *) 0 $-1, , t. .S% i= UYU (b(m+ . «etm ~)+am va ¥ ni{o,k-11) .
teN i=0

Proof. The set corresponding to t = 0 on the right of (4) is to be
$

= interpreted as {a} . Let teP . In (3) put by = «+. =H =m. We

12



note that each v; ranges over the set b+d[0,k-1] . Thus, in our
3 case all the numbers of the form (3) comprise the set

g tol }
am + } mm (b+d[0,k-1])

C i=0
t-1

0 - o

= b(m + . etm 1 + amb + d )) m (0, k~1] S
1==0

for each teN . This establishes (4) .

L We can derive an interesting corollary from this theorem with the

i help of the following lemma which deals with representation of numbers

in the m-ary number system.

- ~

Lemma 3. Let k,m,teP and k >m . Then

| t-1 ;
(5) }, uw (0,k-1] = [0, (k-1)(n° + oo. +mP7Y)7]. |

|
Proof. Let Jjel[l,(k-1)(m’+ . ..+m°1)] and suppose that

J-1 am’ . a, qm ’

where Apr vv aygE [0,k-1] . Then there is a number s = min{i: a, < k-1} ,
and we have

_ 0 s-1 S t-1
-1 - k-1 + . oT « oay (k-1) (m nm”) +a m+ ta, qm ,

where a  < k=l . Then

J = (Drm)(@’+ - o#n™+ (an+ Fant
s<i<t *

Since k-m,a +1e[0,k-1] this proves, py induction, that the left hand

side of (5) 1s contained in the right hand side. The opposite inclusion

holds trivially.

15



| Corollary of Theorem 6. If k > m >2 in Theorem 6, then

(mx+b+id(ie[0,k-1]): a)

(©) C oh t 1: = U (am +b 221) + apo, (x-1 a 1).

Proof. Use Lemma 3 to re-write the sum ) (ief0,%-1]) in (4), and (6) 1s the

C result. For a future application we note that (6) remains true if a = 0 .

Cur next result shows that if in Theorem 6 the number k 1s

sufficiently large with respect to given values of a,b,dym , then the

L set (6) 1s a near per-set, and under certain conditions even a per-set.

THEOREM 7. Let a,d,m-leP and beN . Then there exists a number

L K = k(ayb,d,m) such that whenever k > Kk then the set
S = (mx+b+id(ie[0,k-1]):a)

1s a near per-set. Furthermore, 1f d divides the number

L (am+b - 8) (n’-1) / (m-1) for some teP then S is a per-set. Finally,

(7) k(ayb,d,m) < 2+ (am+b-a)(m1) /d

b

Proof. Define, for teN ,

(8) at) = bm’+ coo tn YH) tam’
—

i It follows that
(9) a(t+l) = ma(t) +b

f

for teN . Since the sequence (a(t): tel) satisfies a linear recurrence

14

—



| relation 1t 1s eventually periodic modulo d : moreover, if d divides
| a(t)-a(0) for some teP , the sequence is periodic modulo d . More

| precisely, there are numbers gq,r such that gqeN ; re[l,d] ,

~ (10) a(t+r) = a(t) (mod d)

for all t >q, and if d divides the number

C t
a(t) -a(0) = (am+b ~a)(m-1) / (m-1)

for some teP , then gq = 0 .

4 Now let--us suppose k > m and use the Corollary of Theorem 6.We

find that

L o-1
5 =U (a(t) +d[o, (k-1)(m’-1) / (m-1)]

L aFr-l t+
U uu U(a(trs) +dlo, (k-1)@m 9-1) / (m-1)])

t=q JeN

|

Now choose a fixed tel[g,q+r-1] and consider the set

- (12) U (a(ttrg) + alo, (k-1) (@*%3.1) / (m-1)1)
jeN

| which, as we know, is a subset of &(t)+dN , In fact, the set corresponding
to a fixed j in (12) is a block of consecutive elements of the arithmetic

‘progression (t)+dN . We want to show that the set (12) is almost equal

to a(t)+dV , i.e., that neighboring blocks in (12) abut or overlap for

all large values of J . To achieve this it suffices to make k so large

that

(13) a(trrg)+ d(k-1)(m* TI-1) / (m-1) > aft+ri+r) -4

15



for all large j . But (13) is equivalent to a condition of the form

(14) k >1+ (am+b-a)(m’-1)/d+J

where 8 -0 as j -»e . Thus, 1f Jj 1s sufficiently large, theC

right hand side of (14) is less than

d — t
2+ (am+b-a)(m-1) /d = k' ,

say. Hence, 1f k >K' and te[q,q+r-1] then the set (12) is contained in,

and almost equal to, a(t) .dN. By combining this result with (11) we

obtain

g+r-1

(15) s = U (aft) + an) .
t=q

If d divides a(t) =-a(0) for sane teP , so that g = 0 , then S is

actually contained in the set on the right of (15), because in this case

the set U (te[0,q-1]) on the right of (11) is the empty set. Hence we

. conclude that S is a near per-set provided k > k', and a per-set if
k >«k' and if d divides a(t) -a(0) for some teP . This completes

the proof, except that we still have to show that k >kt* implies the

condition k >m which we imposed just before (17). In fact we have,

since > 29> d+l ,

K* = 2+ (a(m=-1)+Db) (n2-1)a™t
“ -1

> 2+ (1(m-1)+0) ((a+1)-1)d = = ml > m

which completes the proof of Theorem T.

By using (1) and (6) one can obtain results similar to Theorem 7

concerning sets of the form

16
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(mx +b, (1e[1,k]): A}

| with A and LPR b, } finite arithmetic progressions. So far, we
have not found any other class of sets of the form

m;x+n, (ie[1,k]): A)

which have a simple or interesting arithmetic structure. For example,
‘ we have studied the set

0 = (2x+1,3x+1:1)

- which seems to be fairly complicated.

. P. Erd8s has kindly communicated to us the essentials of a result
which shows that for certain sets R of unary linear operations and

\ certain sets A the set (R:A) has density zero and 1s therefore neither

a per-set nor a near per-set. This applies, for instance, to

(2x+1,3x+1:1) .

. THEOREM 8. Let cAI © P m,€P ; n,eN for iel. Let ¢ be a

| ) positive real number such that L(ieT)n; < 1 . Then, if
3 = (mx +n, (ieI) :A)y , we have, for all teN ,

“0 =

(Ltn s |< @-En)  Laclnt) n a) (t/a)°

Corollary o:if Theorem 8. If, in addition, © <1 and if either the set A

1s finite, or A 1s infinite and the series } (ach)a™ converges, then

the set S has density zero and 1s neither a per-set nor a

near per-set. This applies, for instance, to the set (2x+1, 3x+1:A)

whenever Y(ach)a™" < ® for some T <1.

17



Proof. = (ieD)m’ = 1-0 , so that 0 < 8 <1 . For teN denote
by L(t) the set of all mappings \:[1,r] - I with some unspecified

h that “oe <t.W that, f 11 teN
reN , suc a m(1)™(2) oz) < e Now prove at, for a ,

C (16) Lit)| <t%/8

Clearly, (16) holds for t = 0 , Let teP and use induction with respect

C to t . Then, by noting that L(t) has exactly one element with r = 0 ,
and by giving to A(1) in turn each of the possible values, we find that

L(t) | = 1+ 57% 0| = 2 |u(lt/m, 1) | <1+¢,8 [t/m, ]
Lo -

< 1+5™ 7% (1-3) _ 510 - (19-1) < 510

= where [x] denotes the greatest integer not exceeding x .This proves

(16) for all teN . Let aeA and tel and put

| 5, (t) = [1,t] Nn (mx + n, (ieI):a)

| Let yes, (t) . Then we can choose reN and a mapping x:[1l,r] » I
such that

i t2y=n,y+n 1y(n +m (n + e..tn (n + 8)ee.))| A AMD) (2) TA (2) V3) A(r-1)‘(r) (zr) “ee

- = ADA) TTA)”

Hence aeL([t/a]) . Put o(y) . A» . Then ¢: 8, (t)—L( [t/a]) is
an 1njection, and therefore

Is, (+) | < [u([t/a]) |
|

Now, using (16) we find that, with A = [1,t] n A,

18



| 1,t[Lt] 8] < F(aca,) |s_(4) |

< Leen) [L([t/a)] < [(ach,)s it/a)"
-1

- < 87 F (aeh,) (t/a)°

which was to be proved.

C

L_

|
L
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- 5+ Sets Generated by One Linear Operation

: If linear operations p and T are related, then one might expect

the sets {p:a) and {(r:b) to -be arithmetically related. The first

results proved in this section are of this type. We show in Theorem 9
|.

under fairly general conditions that the set (my +m x, + CoH za)rr

| ffi f | f th .
1s an affine transformation of the set (my x + . etm x il) . Using
Theorem 9, we show in Theorem 10 that 1f p and tare linear operations

C

and {p(x):1) is a per-set, then (p(x) +1(y):1) is also a per-set.

All of the results proved 1n this section were motivated by attempts to

. prove the following conjecture.

1 Conjecture 1. Suppose T-1,0; 00pm €P , and (mys eeeom ) =1 .
Then (mx, + coeetmx 21) 1S a per-set.

| 1s a per-set, then it follows from Theorem 10 that (myx, + . cotm X21)
1s also a per-set. Thus, to test Conjecture 1 it is only necessary to

. consider r-sets (r > 2) of relatively prime numbers having no proper

: subset of relatively prime numbers. The following conjecture is weaker
L than Conjecture 1.

| ~ Conjecture la. Suppose r-l,m, 0 ..,mreP with (mys co) =1 .
Then (my + myx, + ceetm X tny + ceetn J 18) 1s a per-set for all

Ty J By « » +s EN and aeP .

Most of our efforts to prove Conjecture 1 have been concentrated on

trying to show that (mx+ny:1) is a per-set whenever (myn) = 1 . For

example, we have succeeded in showing (Theorem 11) that {(2x+ny:1) is

a per-set for all odd numbers n .

20



It would be interesting to know whether the set (mx+ny:1)

~ contains an infinite arithmetic progression for all m,neP . In fact,

a proof along the lines of the proof of Theorem 4% can be given that if

| a,d,r-1,m, .. ..m€P with (a,d) = (mys eeesm) = 1 , and

~ a+dl a (mx, + . eetmx1) = 5s, then S 1s a per-set. This motivates
: a second conjecture.

} Conjecture 2. The set (mx+ny:1l) contains an 1nfinite arithmetic
progression for all m,neP .

The truth of Conjecture 2 1s not enough to prove Conjecture 1.

- In fact, R.--Graham has shown that (3x+3y:1l) is not a near per-set,

but it is easy to prove that 36+U45N is contained in this set.

Evidence in favor of Conjecture 2 1s given 1n Theorem 12 in which it

is shown that (mx+ny:1) contains arbitrarily long arithmetic

progressions for all myneP . This 1s an interesting result because 1it

can be shown in a way similar to that used in the proof of Theorem 7 that

N if (myn) = 1, and {mx+ny:1l) contains a sufficiently long arithmetic

progression, then (mx+ny:l) is a per-set. The sufficiency of the

| length of the progression depends on m , n , the size of the initial

~ term, and the common difference of the terms of the progression. Now

| we present our results.

In order to exhibit the essentially very simple idea behind our

~ next result we temporarily abandon our restriction to linear operations

on P and readmit general operations on J . We also introduce the

convention that 1f x denotes a vector of any dimension, with components

~ x.eJ , then x-t denotes the vector with components x,t . In what

| 21
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follows vectors x , y , 2 , w are assumed to have the appropriate

dimensions.

Theorem 9. Let I be a set and let, for each iel , ps (%) and.

0, (x) be r,-ary operations on J . Let a,Bed\ {0} ; a',B'ed ;

A,BcJ . Then

(1) ap,(x) (1eI):A) + a" = B(o, (x) (ieI):B)+p"

. provided that

— (2) QA+Q' = BB+!

and, for each ieI and each w over J ,
-_

(3) ap, (5 (w=at)+a = Bo, (Z (w-p'))+p"
irat- i‘p t= .

y Proof. Put

- S = (0, (x) (ieI):B) .

- On account of symmetry it suffices to prove that the left hand side of (1)

~ 1s contained in the right hand side of (1), that is, that

(ps (x) (1eI):A) CSR ,
where

~ 2) | |= Bga
R x S + 5 .

First of all we have, by (2),

vo B pa Bl _
RD = B + 5 = A .

- Next, 1f z 1s a vector over R then oz lies over BS+p' -a' and

~ z (az +a -g') lies over S . Hence, for every iel , o,(5 (oz +a -Bt)esS ,
so that ]

- 22



1 ry!

| Eo (5(az+ar -p1)) + E=2 cg ‘
Pur az+a!' = w . Then

| 1 1 Qt
5 (Boy (5(w-p1))+pr) - TF eR.

By (3), this yields

5 (ap, (3 (wan) +a) - & ¢ &
o ita a

‘ that is, p,(z)eR . Thus, R contains A and is closed under each os »
which implies (1).

Corollary 1 of Theorem 9. Let Toys eee, cP with m = m, + ) =0fn 51,
and a,bed . Then

= (5) (m-1) (b +m x, + ® nrxria)ib = (b+ am ~ a) (mx, +..04m X 21)
L

- It is easily verified that the conditions (2) and (3) hold in the case

presented by (5).

b Corollary 2 of Theorem 9.

: (6) +

i Thisisthecase a=0; b =1 of (5).

| . Corollary 3 of Theorem 9. The set (mx. + tmx il) is closed

i under multiplication for all Tomy, . . «yW EP.
Proof. This result already follows from Theorem 5; however, if we

= put b = 0 in (1), we get

+ ) : = es .mx +. ..4nx a) alm x + tm X 1)

which 1s a key element in the proof of Theorem 85.
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| Theorem 10. If Mysees,m€P with (5 0eesm ) = 1 , and
S = (myx, + + +. *mx:1) is a per-set, then

| T = (mx, + . cotmox + ny, + 0 0.7nsystb:a) 1s a per-set for all
a,b,n, 0 ,nseN

1.

Proof, First, note that if an affine transformation maps a per-set

into a set of integers, then this set is also a per-set, Hence, it

C follows that the set

. = (MX + ex tmx + (n+ *ng)atbia)
(which is an affine transformation of S according to Theorem 9) is a

ho per-set. Furthermore, aeQ and Q <T , sO

(mx, + ® tmrxr+tnlyl+...+nsys+b:Q) = T .

| But, since @ is a per-set, and (m, Can) = (mys +e sm yn, ennsn) 1,
Theorem 4 applies, and we can conclude that T is a per-set. This

a completes the proof.

A simple special case of the next result 1s crucial for the proof

of Theorem 11. However, the reader is referred to [1] for a proof of a

more general result.

Lemma 4. Suppose my,m,eP with (m;,m,) = 1 , and let Ug 0 Vp 50, 5 V,
denote 1ntegers such that VitUy >m,-1 and Vou, 21-1 + Then

(7) (my; + mou, + (m,-1) (my-1) my vy + mv, =~ (m,-1) (my-1) ]

c mls] +myluy, vy]

Theorem LI. If n is odd and neP , then (2x+ny:1) is a per-set.

Also,

2



| r-1

(8) (2x + ny:1) =U (2 n+2" -n+ (nn) NW) ’

where r denotes the order of 2 modulo n , and the symbol = was

defined in Section 1l.

Proof. Using the First Corollary of Theorem 9, we have

(9) (2x+ny:1) = 1 +(n+1) (2x + ny + 1:0) .

C From now on we work with the set T = (2x+ny+ 1:0) ; also, let

r-1 5
S = U (2 - 1 + nN) ’

i=0

= where r denotes the order of 2 modulo n . Note that

22% - 1+ Vv. uk}nN) +n(2" -1+mN)+1 c 2 —-1+nN

| for all wve {0,...,r-1} . It follows that So 15sed under the
operation 2x +ny+1 ; furthermore, Qcs , 80

X (10) (2X+ny+1:0) =T 5 .
. Now we show that T = S | gipce 0,1¢T , we have

) (er+l)u(er+n+1) ufo} T ; hence,

(11) R = (2x+L,2xtn+1:0y) c T

The Corollary of Theorem 6 with a = 0 implies

© —]_ t t r . ;
R= U (2°-1+nl[0,2"-1]) = (2™* 14 nfo, 27H 1p

t=0 i=0 t=0

Since RcT , we have

2r-1 -

(12) T21+2(2" 7" -1+n[0,2°" L117) + 1m

Or ® rol tg :
=27 -1+n( Uy (71 -1+2[0,2% 174 nf0,2"H 1 1p)

t=0 i=0
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| Co Tr 2r-1
But n divides 27-1 , sO |[0,2 -1] > n ; also, (2,n) = 1 . Thus,
Lemma 4 applies to the linear combination of intervals which appears on

the right in (12), so we can conclude that

C or Bl red or | rtd
(13) To27 -1+n(U U (2 -1+[n-1,2" +n2 -2n-11))

teN i=0

-15 r

= 2 T-l+n U U la, 2,0, ] 3teN i=0 tt
C

_ oT : _ rt+i | _2r
where a; = 2 +n-2; by 5 = (n+l)2 +2 <2n-2 . Let t be

fixed, teN . The union of the r intervals CHL will form a
~ single interval of integers

g g provided that 3%, +1 < b, +1 for every
ie[0,r-2] . Now we have for ieN , since of-1 > n /

rt+i 2r rt+it
(14) byy + 1-ag gm (127 + eT lone THR

L

b+

| = (0-127 42" L304 13> (0-1) + (@1)2-3n+1 =n 2+1 > 0 .
Thus (13) yields

2r| T 227 -1+n U [a,_.,b ]

} Again, this last union constitutes a single interval since we have

_ rt+r-1, Or + |

| (15) bypt mago = (m1)e LR ORSJP ftSS
rt+r-1, or -

= (n-1)2 +27 =3n +1 > (n-1) 2° Ly oT L3n41
|

1) WL 2 3, 12 k
2 (n-1) +3 (n+l)+ (n+l) -3n+1 = 2 (n -3) tx >0 -

Thus, finally,

(16) T 52°F -1+n(a. +N)
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so that

(17) nNceT |

Now we show

\ (18) 2 Ll+nN eT

for 1 = 0,...,r-1 by induction on 1 ; in fact, we have the case

i = 0 in (17). Suppose (18) holds for some 1 > 0 . Then

T 21+2(2" - 1+ nN) + n(aN)

== ot to 1+ naw + nw) = ZL .

Here we have implicitly used Lemma 5 which we will state and prove at

the conclusion of this proof. Hence, (18) holds also for itl , and this

means (18) holds for i = Oy..s,r-1 +» It follows that

L r-1 3
(19) s= U (2°-1+mN) eT ,

i=0

and this together with (10) implies S = T . This result together with

| (9) implies (8) . It remains to prove the following lemma.

emma Suppose my, Ms, k-leP with (m,, seat) = 1, let

5 =(mx+.+mx :1) , and let A)sesesA denote per-sets such that

Aa S for 1 = 1,...,k . Then

Proof. It 1s enough to prove this for per-sets bypeonshy having the

special form Ay = a +dN with as deP for i =1,...,k . Suppose

N. 1s maximal with N. c N such that a; + dN, C S , then since

A; @ 5; we have N,N . Because S is closed under the operation
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| MX, +o. eetmx and a, tdi, c S , we have

(21) & m(a; +dN,) cS .

Now, using the fact that N a N, for 1 = 1,...,k , note thatAN

k k

C Hence,

k k

(23) )N mA. = y ma, +d § m.N

Lo ~ k 5 | kce} ma +d 2 uN = ) ma, +dN,)SE 5 tron
~ and this together with (11) implies (20). The proof is complete.

L

Theorem 12. If r-1,m ,...,m ¢P , then (mx. + . ..+m x :1) contains
| — 1 r 11 rr

i an arithmetic progression with k terms for all keP .

t Proof. The set (mx, + .—e +m x _:1) contains the set— rr

+ +m+ . j j

| . (Mx +x, nr Lowel) which 1s an affine transformation of the
set (mx, +m,%,:1) . Thus, if (my X; +m 21) contains an arithmetic
progression of length k for all keP = then this is also true for the

set (myx +. co*mx :1) . However, it is easy to show by induction that

~ +

(24) (mn) 4 (m+n-1)m'n"[0, (1 Cc {mx+ny:1l)

for all wveN , so the proof is complete.
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