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Abstract
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p(xl,“.,gg = mytmXyt ..t mX where Moy evesll, denote certain
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set of poé&tive integers denoted (R:A) which contains A as a subset

and is closed under every operation in R . The set (R:A) can be

constructed recursively as follows: Let A.O = A , and define

Ay =8 U{p(a): peRyaehr, x. .e xA] (k = 0y1y...) ,

then it can be shown that (R:A) = AOtJAl U. . . . The sets (R:R)

¢ sometimes have an elegant form, for example, the set (2x+3y:1l) consists
of all positive numbers congruent to 1 or 5 modulo 12 . The objective
is to give an arithmetic characterization of elements of a set (R:A) ,

¢ and this paper is a report on progress made on this problem last year.
Many of the questions left open here have since been resolved by one of

us (Klarner).
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ARITHMETIC PROPERTIES OF CERTAIN

RECURSIVELY DEFINED SETS

by

D. A. Klarner and R. Rado

1. Introduction

We begin with a rough description of the kind of problem treated
in this paper. This will be followed with a review of certain notions
from universal algebra which are going to be used in the precise
formulation of our problems. We would like to point out at the outset
that only the language and very little of the theory of universal algebra
seem to enter our work.

Consider a set R of finitary operations defined on a set X ,
and suppose A is a subset of X . It can be shown that there is a
"smallest" set (R:A) with Ac (R:A) ¢ X such that (R:A) is closed
under all operations in R . This is a rough version of the "definition
from above" of the set (R:A) . However, there is an alternative
"definition from below" which involves iteration of the operations in R .
We define a sequence of sets AO"Al"" recursively so that
A =AO§Alg «.. and AO UAlU . . . = (R:A)

Even though we have a constructive definition of (R:A) it is often
very difficult to decide whether a given element x of X is an element
of (R:A). Such a situation may lead to a search for a simple character-
ization of the elements of (R:A) which avoids the recursive construction.

For example, it will be shown later on that the subset (2xt3y:1) of the



natural numbers consists precisely of all positive integers congruent

to 1 or 5 modulo 12 . This case is typical of the class of problems

which will be considered. 1In general, we seek an arithmetic characteri-

zation of sets (R:A) of natural numbers where R is a finite set of
finitary linear operations defined on the set of natural numbers, and
A is a finite set of natural numbers.

Let us introduce some notation from universal algebra and give a
precise formulation to our problem. Henceforth, X denotes a set.
Let X , for every natural number r , denote the set of all r-tuples
of elemenpf of X . A mapping p which sends X" into X is called

an r-ary operation on X . For every Y cX we put

(1) oY) = {p(¥): yex*} .

In particular, p(@) = § . A finitary operation on X is an r-ary

operation on X for some unspecified natural number r . Henceforth,

R denotes a set of finitary operations on X . For Y ¢ X , let

(2) R(Y) = U p(Y)
p€eR

Henceforth, A denotes a fixed subset of X . Let (R:A) denote the
set of all subsets of X which contain A and are closed under all

operations in R . In other words,

(3) JR:A) = {Y:A c Y ¢ X ;R(Y) c Y}

Finally, for TC (R:A) , T # § , we define the meet of 7 by
(%) AT=n T,

TeT

and if T =§ , then we define AT = X .



The join of T is defined by

(5) VT=A#R:UT)
TeT

It is easy to check that ATe SR:A) . Clearly, VTes(R:A) for all
T < #(R:A). Because of its importance, we have a special notation for

the set AJ(R:A) , namely,
(6) (R:A) =/\AR:A)

This brings us to the first noteworthy result in the theory of universal

algebra (see Kurosh [1, pp. 93-99]).

THEOREM 1. The set o(R:A) , ordered by set inclusion, forms a complete
lattice with meets and joins defined by (4) and (5) respectively. The
greatest element of A(R:A) is X , and the least element is (R:A) as

defined in (6).
The next result provides a construction for (R:A) .

THEOREM 2. Let Ay = B, and Ajpp = A; U R(AL) for i=20,4..., and

put AQ=A0UA1U. . . . Then

(7) (R:A) = A,

Proof. By definition, A = AO c A°° c X . Next, let p be an r-ary
operation in R , and select elements X,....X, of A. Then there

exists a number k > 0 such that XpyeeesX, €A . Hence, in view of

By = A U R(Ak) , we have p(Xl,.-.,Xr) €A, € A, . This proves

A eo(R:A) .



An easy proof by induction on k establishes that Ak c Y for
k = 0,1,... whenever Y e¢g(R:A) . Hence Y eo(R:A) implies A, C Y
In particular, A“ c (R:A) . But (R:A) is the least element of

J(R:A) . Therefore A, = (R:A) , and the proof is complete.
THEOREM 3. Let Yeo/R:A) . Then A U R(Y) €s/R:A) and

(8) (R:A) = A U R((R:R))

Proof. Since A U R(Y) € Y we have R(A U R(Y)) ¢ R(Y) which implies
the first assertion. Put S = (R:A) and, for every X'c X,
®X' = A U R(X') . Then S is the intersection of all X' c X with
X' o X' . Consider one such X' . By definition of S, S cX',
which implies ¢S c ¢X' ¢ X' . Therefore, by definition of S ,95 cS
and so @S c ¢S . Again, by definition of S , we have S € 958 so
that, finally, S = @8 , which is (8).
We introduce the following notation:
P ={,23..}; N=1{0,L2 . ..] ; J={0,1,-1,2-2,...};
[a,b] = {x: xeJ ;8 <x <Db} for a,bed
Henceforth, X is assumed to be the set P . We shall also severely

limit the scope of the set R . An r-ary operation p on P is said

to be linear if there exist numbers 8ylhyy ooyl such that
(9) p(Xl,...,Xr) = atmx;+ ® . imrxr

for all %xy5...,x P . If a = 0 then p is said to be homogeneous.
Henceforth, unless the contrary is stated, R is assumed to be a finite

set of finitary linear operations on P . Usually, the elements of R



will be listed explicitly, say in the form R = {pi: ie[1,k]} , and

in this case we write (pi(i£[l,k]):A) instead of (R:A) . A similar
convention is adopted when the elements of A are listed. For example,
we shall consider sets such as 22x+l,5x+l:l) and (2x+3y:1) . An

r-ary operation p 1s called strictly increasing if

1
of Theorem 3 can be derived for sets R consisting of operations of this

p(xl,,m.,xr)>>x e Xy for all xl,.n,xreP . An important corollary

kind.

Corollary of Theorem 3. Let R be a set of strictly increasing operations

on P, and Ac P . Then the equation Y = A U R(Y) holds if and only

if Y=(R:A).

Proof. In view of (8), we only have to show that Y = A U R(Y) implies
y = (R:A) . Cur assumption implies Yeo(R:A) , so that (R:A) c Y .

If (R:A) # Y then there is a least element x of Y\(R:A) . Then
xfA , since otherwise we would have xe (R:A) . But the relations
Y=A U R(Y) and xfA imply the existence of an r-ary operation p in
R together with elements x,...,x, of Y such that p@af..”xr)== X
By hypothesis, p 1s strictly increasing, so that x > XXy

Hence x PR S (R:A) , and x = p@ﬁ}.“,gp € (R:A) , which is the

1
required contradiction. This completes the proof.

Another notational convenience we shall employ concerns the addition
and multiplication of sets of numbers. For neJ and A,B ¢ J we define
ntA = {n+ta: aeA} ,

A+B = {at+b: aeA; beB} ,

nA = {na: aeA} ; AB = {ab: acA; beB} .



For example, the set {atdn: neN} , which forms an arithmetic

progression, may be written as atdN .

Sets expressible as a finite union of arithmetic progressions enter
our investigations in a natural way. For example, consider the set
S = (x+ p(xl,...,xr) :a) where a,re¢P , and p is an r-ary operation
on P such that, with d = p(e,a,...,a) , we have p(Xl,...ﬁr) =
p(¥1s...s¥,) (mod d) whenever x. =y, (mod d) for ie[l,r] . Under

these circumstances all elements of S are congruent to a modulo d ,

so that

(10) T Sca+adN .
On the other hand, a simple induction on k establishes that a+kde$§
for all keN , in view of a+(k+l)d = a+kd+ p(a,...,a) . Hence there is
equality in (10). Furthermore, one can show under various conditions
that if (R:A) contains an infinite arithmetic progression, then (R:4)
is expressible as a finite union of arithmetic progressions. For example,
see Theorem 4 below. Before proving Theorem 4 we must discuss some general
properties possessed by sets expressible as finite unions of arithmetic
progressions.

A set A c P is called a per-set if A is expressible as a finite

union of infinite arithmetic progressions. This means that A has the

form
k
(11) A= U (ai+ a.N) ,
i=1 *
where keN and ai’di€P for ie[l,k] . It is easy to see that a set

A c P is a per-set if and only if A = F+dN where F is a finite subset
of P and deP . The name "per-set? is used to remind us of the
periodicity property of such sets which is expressed in the following

lemma.



L

Lemma 1. A set A c P is a per-set if and only if there exists deP

such that d+Ac A .

Proof.

(1) Let A be a per-set defined by (11) with k >0 . Let d be the
least common multiple of dl’“"dk . Since %.+%.n+d =
a, +d,(n+ (d/di)) for ie[l,k] and neN it follows that dtA ¢ A .

(ii) Suppose that A ¢ P and d+tA C A for some 4P . For xeA put
f(x) = min(A N (x+dJ)) . Then the set F = {f(x): xeA} has at
most d elements, and if F = {al, L ..ak} then

A=0U (ie[l,k])(ai+ dy) = F+dN . This completes the proof.

We conclude from (ii)that per-sets are the sets of the form F+dN
with F finite and deP .

We note that the relations d&A c A and d'+A c A imply
(&+a') +A = d+( d'+A) ¢ d+A < A .

Let p denote the set of all per-sets. OQur next result shows that

P has a nice structure.

Lemma 2. Let A,Bep . Then AUB,ANBeP . Also, for every finite

set FC A, we have A\FeP

Proof. By Lemma 1, there are numbers d,d'eP such that d+A c A and

d4Bc B . Then dd*+ (AUB) cAUB, dd'+ (ANB) c ANB, and the

sets AUB and A N B are in P by Lemma 1. There exists neP such
that F ¢ [1,nd] . Then nd+(A\F) c A\F, and A\FeP by Lemma 1.

This completes the proof.



For any sets X,Y we say that X is almost contained in Y ,

and we write

XY ,

if X\Y is finite. We say that X and Y are almost equal, and we

write

e

X=Y ,

if X@eY& X . Clearly, the relation ¢ is reflexive and transitive,
and = 1is an equivalence relation. The set Ac P is called a near
per-set if A is almost equal to a per-set. Thus, a near per-set is a
set which is expressible as a finite union of arithmetic progressions,

each progression being allowed to be finite or infinite. The set of all
near per-sets has a structure similar to that of P as given in Lemma 2.
It is easy to see that a set Ac, P is a near per-set if and only if there
is deP such that d+A @ A . We are now ready to state and prove a

result which shows how per-sets enter our theory.

THEOREM 4. Let A be a per-set and R a set of operations of the form
atm¥x, + . o.tmx where 8,Tylyyeeesl €P such that the highest

common factor (ml,. ..,mr) has the value 1 . Then (R:A) is a per-set.

Proof. Assume AR # § . There is deP with dtA ¢ A . Put S = (R:A) ;
s = (R:A ) ;
f(x) = min(S N (x+dJ))  (xeS) ;
8' = {f(x): xes} .

Then §' 1is finite and

SC U (x+dN) =8'+dN
XES'



We can write 8' in the form 8! = {sl,. . ..sk} » such that keP ,
and there is me[0,k] such that (i) 813 ceer8y eAtd , (ii) for
each MNe[mtl,k] there is an operation p(xl, ,..,xr)eR and indices

A . .,)»re[l,x-l] such that p(shl,...,sxr) € s,+dJ. Then

1
s,td @ A ¢ S for Ae[l,m] . Now assume, using an inductive argument,
that oe[m+l,k] and s,tdN @ S for all Ne[1l,0-1] . We shall deduce
s;#df @ s . There are indices My oo s € [1,0-1] and an operation

p(xl,...,xr) = atmx;+ . ..+mXx eR such that p(s, , 0 o )esc+dJ .
1 r

Then Sc€a+m15x1+ ...+mrskr+dJ H Shi+dN§ S(ie[1,r]) . There are
indices )T";""}'r € [1,0-1] and an operation p(xl,...,xr) =

a+mxt . . . +mx R such that p(shl,l...,shr) € 8,+dJ . Then

soea+mls}\l+ . eetms, +dT sh+idN§S(ie[l,r]) . There are numbers

pieP such that 8, + dpi+ dN ¢ S for ie[l,r] . Then
i

a+z My +d£mipi+ d}:miN € S . There is qeP such that g+N ¢ ZmiN .
i

This is a well known consequence of (ml,...,mr) = 1 . There is teJ such

that a+Zmis)\ = s;+td . Now we have
i

s0+td+ dZmipi+ d(g+N) c so+td+ dZmipi+ dZmiN

—a+ ), mEy* alm.p, + dZmiN c.

This implies s + df € S . Thus we have proved, by induction, that
S%.+ dN @ S for each Me[l,k] . Therefore §' +dV & S , and there is a
finite set F c 8" +dN satisfying (S'+dN)\F c S c 8'+aN . Then
S = (8'+aN) \F' for some F' ¢ F . Since S8'+dNeP it follows from

Lemma 2 that S&” , and Theorem 4 is proved.



It is worth noting that if the set (R':A') contains an infinite

arithmetic progression, and R' contains a non-empty set R satisfying
the hypothesis of Theorem 4, then (R':A') contains a non-empty per-set
but possibly may not be equal to a per-set.

Before going on to special cases of sets of the form (R:A) we
prove one more fairly general result concerning the multiplicative

structure of sets (R:A) . For the moment we drop the requirement that
the elements of R be linear operations. An r-ary operation p opn R

is now said to be homogeneous if

(3-2) p(&'){l,axz,.'.,a.xr) = ap(xl,...,xr)

for all ByXpyeenrX, €P . We shall show that under certain conditions

the set (R:A) is closed under multiplication.

THEOREM 5. Let AcC P, and let R be a set of homogeneous operations
on P . Put S = (R:A) . Then AS ¢ S implies SS ¢ S . In particular,
if A = {1} , then SS = S

Proof. Let AS ¢ S and teS8S . Then there is aeS such that

teaS = a(R:A) = (RiaA) c (R:SA) c (R:S) ¢ S,

which proves SSc S . If, in addition, A = {1} then S =18 c SS ,

and the theorem follows.

In subsequent sections we shall focus attention on a very restricted
class of sets (R:A) where R denotes a finite set of finitary linear
operations on P , and A ¢ P . Section 2 deals mainly with sets of the

form

10



(13) (mx + ni(ie[l,k]):a) ,

where a,k,m,nl, conny €P . These are sets generated by unary linear
operations on P . In Section 3 we study the sets (mx+ny:l) with
m,neP . The cases (myn) = 1 and (myn) > 1 differ significantly and

are treated separately; most of our results relate to the case (myn) = 1

2. Sets generated by unary linear operations

A unary linear operation on P is a function of the form

p(x) = mx+n with meP and neN . Throughout this section we deal
exclusively with sets (R:A) where A ¢ P and R is a set of unary
linear operations on P , finite except possibly in Theorem 8. We may
suppose, without loss of generality, that R does not contain the
identity operation. If R contains an element x+d with deP then
(R:A) 1is a per-set. We note that for unary operations
(1) (R:A) = U (R:a)

achA
Hence, it 1is natural to focus attention on the case when A contains
exactly one element. The problem treated in this section is to find a
satisfactory arithmetic characterization of the elements of a set of the

form

(2) (mixi-ni(ie[l,k]):a) ,



e

where k,a,m.-le¢P and nieN for ie[l,k] . The case k = 1 in (2)

i
is particularly easy. We have to consider the set (mx+n:a) with

m-1leP ; nelN ; aeP . Using the construction given in Theorem 2 we find
(mx+n:a) = {a,am+n,am2+n(nr!-l),...}
t t
= {am” +n(m”-1)/(m-1): teN} .

Thus, the set (mx+n:a) has the form G-t , where G is a geometric
progression with positive rational terms, and 7 is a positive rational
number. This procedure can be carried out for arbitrary k in (2) and

shows that--the elements of (2) are precisely the numbers of the form

\)l-l- ul(\)2+ p.2( eset p._b_l(\)t‘!- uta,) ...))

(3)

= \)l+ ul\)2+ “lu2v3+ -.o+ul--out_l\)_t+uloovuta 9

where teN ; pi = mx(i) 3oV o= n)\(i) 5 ML), .00 (t) €[1,k]. This
characterization, though not very satisfactory in itself, is often a
step towards something better. For example, the next theorem is an

immediate consequence of (3).

THEOREM 6. Let a,d,k,meP and beN . Then

( (mx+ b+ id(ie[0,k-1]):a)

(L) k=1 .
= U (b(mO + . ..+ mt'l) +amt+d i ml[o:k'll)
teN i=0

Proof. The set corresponding to t = 0 on the right of (4) is to be

interpreted as {a} . Let teP . 1In (3) put b= . . =W =M. e



note that each v, ranges over the set b+a[0,k-1]

Thus, in our
case all the numbers of the form (3) comprise the set

e )
am + } m (b+d[0,k-1])
=0

=bm + . ..+mt-l)+ b

t-1 .

am’+ a4 ) m0,k-1] ,_
1==0

for each teN . This establishes (k).

We can derive an interesting corollary from this theorem with the

help of the following lemma which deals with representation of numbers
in the m-ary number system.

Lemma 3. Let k,m,teP and k >m Then
t-1 N

(5) Z m~[0,k-1] = [o, (k-l)(mo+ .._+mt'l)] .
i=0

Proof. Let Jje[l,(k-1) (mo+ ..+mt'l)] and suppose that

1 agn eyt
where aj, . . 8y € [0,k-1] .

Then there is a number s = min{i: a < k-1} ,
1

and we have

where as < k-1

J = ((k-1)+(1-m)) (m’+

. e +ms-l)

+ (as+l)ms+ Z
s<i<t

a,m:L

Since k-mya +le[0,k-1] this proves, py induction, that the left hand

side of (5) is contained in the right hand side. The opposite inclusion
holds trivially.

13
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Corollary of Theorem 6. If k >m >2 in Theorem 6, then

(mx+Db+id(ie[0,k-1]): a)
(6)

teN

Proof. Use Lemma 3 to re-write the sum Z(ie[o,t-l]) in (4), and (6) is the

result. For a future application we note that (6) remains true if a

Cur next result shows that if in Theorem 6 the number k 1is
sufficiently large with respect to given values of a,b,dm , then the

set (6) 1s a near per-set, and under certain conditions even a per-set.

THEOREM 7. Let a,d,m-le¢P and beN .

k = k(a,b,d,m) such that whenever k > K then the set

S = (mx+b+ id(ie[0,k-1]): a)

is a near per-set. Furthermore, if d divides the number

(am+b -a)(mt-l)/ (m-1) for some teP then S is a per-set. Finally,

(7 k(ayb,d,m) < 2+ (am+b -a) (md-l) /d

Proof. Define, for teN ,

(8) a(t) = b+ oo tm®™L) + an®
It follows that

(9) a(t+l) = mo(t) +Db

for teN . Since the sequence (a(t):

14

t i t
_ t m -1 m -1
= U (am +b(m_l )+d[0,(k-l) —1 1) -

Then there exists a number

satisfies a linear recurrence



relation it is eventually periodic modulo d ; moreover, if d divides

a(t)-a(0) for some teP , the sequence is periodic modulo d . More

precisely, there are numbers q,i' such that qeN ; re[l,d4] ,
(10) a(t+r) = a(t)(mod d)
for all t >q, and if d divides t_hemnumber

a(t) -(0) = (am+b -a)(u’-1) / (m-1)

for some teP , then g = 0

Now let--us suppose k > m and use the Corollary of Theorem 6.We

find that
Q'l t
S = U (at) +dlo, (k-1)(m’-1)/(m-1)]
(21) q+r-1il:.=o
U u U(a(t+rs)+do, (k-1)(@™™3-1) / (m-1)1)
t=q JeN

Now choose a fixed te[g,q+r-1] and consider the set
(12) U (a(t+rg) + [0, (k-1) @™%3.1) / (m-1)1) ,
JeN
WhiCh, as we krlOW, is a subset of a(t)+dN . In fact, the set corresponding

to a fixed j in (12) is a block of consecutive elements of the arithmetic

‘progression Q(t)+dN . We want to show that the set (12) is almost equal

to a(t)+dN , i.e., that neighboring blocks in (12) abut or overlap for

all large values of j . To achieve this it suffices to make k so large
that
(13) a(t+ry) + ak-1) (" TI-1) / (m-1) > aft+ri+r) -a

15



for all large j . But (13) is equivalent to a condition of the form

(1) k >1+ (am+b -e.)(mr-l) /d+ 53 ,

where Bj -0 as j »e . Thus, if j is sufficiently large, the

right hand side of (14) is less than
d
2+ (am+b-a)(m -1) /d = k',

say. Hence, if k >k' and tel[q,qtr-1] then the set (12) is contained in,
and almost equal to, a(t) .dN. By combining this result with (11) we
obtain

gtr-1
(15) s= U (at) + aw) .

t=q
If d divides a(t) -a(0) for sane teP , so that g = 0 , then S is
actually contained in the set on the right of (15), because in this case
the set U (te[0,q-1]) on the right of (11) is the empty set. Hence we
conclude that S is a near per-set provided k > k', and a per-set if
k >k* and if d divides a(t) -a(0) for some teP . This completes
the proof, except that we still have to show that k >k implies the

condition k >m which we imposed just before (17). In fact we have,

d

since rﬁj>2 >4+l

K!

2+ (a(m-1)+b) (md-1)a"t
> 2+ (1(m-1)+0)((a+1)-1)a™" = m1 > m

which completes the proof of Theorem 7.
By using (1) and (6) one can obtain results similar to Theorem 7

concerning sets of the form

16



(ux+ D, (1e[1,k]): A}

with A and {bl,..., bk} finite arithmetic progressions. So far, we

have not found any other class of sets of the form
(miX+ ni(ie[l:k]) :A)

which have a simple or interesting arithmetic structure. .. example
4

we have studied the set

S = (2xt+1,3x+1:1)

which seems to be fairly complicated.

P. Erd8s has kindly communicated to us the essentials of a result
which shows that for certain sets R of unary linear operations and
certain sets A the set (R:A) has density zero and is therefore neither
a per-set nor a near per-set. This applies, for instance, to

(2x+1,3%+1:1) .

THEOREM 8. Let fcA,I < P ; m eP 3 n,eN for ieI. Let o be a
positive real number such that Z(ﬁﬂﬁgg < 1 . Then, if

S = (mix+ni(ie1):A) , we have, for all teN ,

Le]n s | < @ -En) " L(aels,t) 0 4)(t/a)°

Corollary o:f Theorem 8. 1If, in addition, ¢ <1 and if either the set A

is finite, or A is infinite and the series Z(adDafc converges, then
the set S has density zero and is neither a per-set nor a
near per-set. This applies, for instance, to the set (2x+l,3x+1:A)

whenever ¥ (aeA)a™™ < @ for some % < 1 .
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Proofd t (ieI)m{cr = 1-5 , so that 0 < 8 <1 . For teN denote
by L(t) the set of all mappings r:[1,r] = I with some unspecified

reN , such that m)\.(l)m)\(e) ...mk(r) <t.We now prove that, for all teN ,
(19 )] <t .

Clearly, (16) holds for t = 0 . Let teP and use induction with respect

to t . Then, by noting that L(t) has exactly one element with r = 0 ,

and by giving to A(1) in turn each of the possible values, we find that

lL(e) | = 1+ T lele/m D) | < 2+ 857 t/m 1

< 1457 4%(1-8) = 8717 - (17-1) < 87T

where [x] denotes the greatest integer not exceeding x .This proves

(16) for all teN . Let aeA and teN and put

Sa(t) = [1,t] n (mix+ ni(ieI):a.)

Let yeSa(t) . Then we can choose reN and a mapping ):[l,r] » I

such that

"2V IR TR M@ @ G T P (0) P TR () <)

zmx(l)m)\(e)...mk(r)a .

Hence )eL([t/a]) . Put o(y) . » . Then ¢:Sa(t)~L( [t/a]) is

an injection, and therefore

Is,(8) | < [L(i/al) | .

Now, using (16) we find that, with A = [L,t]n A,

18



[L,tlns| < Z(aeAt) s, (t) |

< L(aeay) [L(lt/al)] < Y.(aca )67t /a1°
<571 (ac,) (t/a)°

which was to be proved.

19



3.  Sets Generated by One Linear Operation

If linear operations p and T are related, then one might expect

the sets {p:a) and (1:b) to -be arithmetically related. The first

results proved in this section are of this type. We show in Theorem 9

L

under fairly general conditions that the set (m +mx. + . +m x :a)

0 11 rTr°

' ' f ' f . -

1s an affine transformation of the s:et (mlxi+ . "+mrxr'l> . Using

Theorem 9, we show in Theorem 10 that if p and tare linear operations
¢

and {p(x):1) is a per-set, then {p(X)+1(y):1) is also a per-set.

All of the results proved in this section were motivated by attempts to
( prove the following conjecture.

Conjecture 1. Suppose r-l,ml,...,mreP , and (ml,...,mr) =1.

—

Then (mx + . ..+mrxr:l) is a per-set.

If r-2,ml,...,mreP ’ (ml""’mr l) =1, and (m X e '+mr-l r- l'l>

is a per-set, then it follows from Theorem 10 that (m X, + . ootmx :1)
rr

— r

is also a per-set. Thus, to test Conjecture 1 it is only necessary to

consider r-sets (r > 2) of relatively prime numbers having no proper

ro

subset of relatively prime numbers. The following conjecture is weaker

Y

than Conjecture 1.

‘ - Conjecture la. Suppose r-l,m m, o .., mreP with _.,mr) =1.

(ml, .
Then (mo+mlxl+ ceetm X +ny, 4 ...+nsys:a.) is a per-set for all

Ty nl, . . .,nseN and aeP .

Most of our efforts to prove Conjecture 1 have been concentrated on
trying to show that (mx+ny:1l) is a per-set whenever (myn) = 1 . For
example, we have succeeded in showing (Theorem 11) that (2x+ny:1) is

a per-set for all odd numbers n .

20



It would be interesting to know whether the set ({(mx+ny:1l)
contains an infinite arithmetic progression for all m,neP . In fact,
a proof along the lines of the proof of Theorem 4 can be given that if

a,d,r-1l,m ..m_eP with (a,d) = (ml,..un5) =1, and

1
a+dl @ @H§l+ . ..+mﬁgrﬂl) = s, then S is a per-set. This motivates

a second conjecture.

-

Conjecture 2. The set (mx+ny:l) contains an infinite arithmetic

progression for all m,neP .

The truth of Conjecture 2 is not enough to prove Conjecture 1.
In fact, R.--Graham has shown that (3x+3y:1) is not & near per-set,
but it is easy to prove that 36+U5N is contained in this set.
Evidence in favor of Conjecture 2 is given in Theorem 12 in which it
is shown that (mx+ny:l) contains arbitrarily long arithmetic
progressions for all myneP . This is an interesting result because it
can be shown in a way similar to that used in the proof of Theorem T that
if (myn) =1, and {mx+ny:1) contains a sufficiently long arithmetic
progression, then (mx+ny:l) is a per-set. The sufficiency of the
length of the progression depends on m , n , the size of the initial
term, and the common difference of the terms of the progression. Now
we present our results.

In order to exhibit the essentially very simple idea behind our
next result we temporarily abandon our restriction to linear operations
on P and readmit general operations on J . We also introduce the
convention that if x denotes a vector of any dimension, with components

x,eJ , then x-t denotes the vector with components x,-t . In what
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follows vectors x , y , 2z , w are assumed to have the appropriate

dimensions.

Theorem 9. Let I be a set and let, for each ieI , pi(}_:) and.
oi(}_c) be r,-ary operations on J . Let a,Bed\ {0} ; a',B'ed ;
A,BcJd . Then

(1) p, (x) (1eI) 28) + &' = B(o (x) (1e1):B) +p*

provided that

(2) CA+a* = BB+pB!

and, for each ieI and each w over J ,

(3) G, (5 (w-0") +a' = Boy (5 (w-p1))+p' .

Proof. Put

S = (oi(g)(iel):B) .

On account of symmetry it suffices to prove that the left hand side of (1)

is contained in the right hand side of (1), that is, that

(o (x) (3eD) :A) SR

where

Q
First of all we have, by (2),
B grat _
RD g B+ EZ A
Next, if z is a vector over R then az lies over pS+p' -a' and

B
so that

22
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e

— r r—

Bo(R(azrar-p)) + B g

Pur az+Qat = w_o. Then

1 1 Qr

g (Bo(5(w-pr))+pr) - Z € R.
By (3), this yields

5 @0y (5an) +a) - L e R,

»

thet is, p;(z)eR . Thus, R contains A and is closed under each Py 5

which implies (1).

Corollary 1 of Theorem 9. Let r,ml,...,mreP with m = m1+ 0 EO@ >1,

and a,beJ . Then

(5) (m-l)(b+mlx1+ ) tmrxr:a)+b = (b+am—a.)(mlxl+ eeetm %rzl)

It is easily verified that the conditions (2) and (3) hold in the case

presented by (5).

Corollary 2 of Theorem 9.

(6) (m=1) (1+myx) + . etmox 20)+1 = (myx; + ...+mrxr:l) .

Thisisthecase a=0; b =1 of (5).

. Corollary 3 of Theorem 9. The set (mf‘l+ .+mrxr:1,) is closed

under multiplication for all Tl . . «yM €P.

Proof. This result already follows from Theorem 5; however, if we
put b = 0 in (1), we get
+ oo s = eee H
(mp % + . tmox :a) a(mlxx-r o X 1)

which is a key element in the proof of Theorem 5.
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Theorem 10. If Myye..m €P with (ml,...,mr) =1, and

S = (mlxl+ . . *mx:1) is a per-set, then
T = (mlxl+ . ..+mrxr+ nlyl+ o 0.?nsystb:a) is a per-set for all

a,b,nl, o ,nseN
Proof. First, note that if an affine transformation maps a per-set
into a set of integers, then this set is also a per-set, Hence, it
follows that the set

Q= (meX, + su tmox + (nl+ . .+ns)a,+b:a,)
(which is an affine transformation of S according to Theorem 9) is a

per-set. Furthermore, aeQ and Q cT , so
(mlxl-!- . tmrxr+nlyl+...+nsys+b:Q) =T
But, since Q is a per-set, and (ml,_ ,.,mr) = (ml,...,mr,nl,...,ns) =1,

Theorem 4 applies, and we can conclude that T is a per-set. This

completes the proof.

A simple special case of the next result is crucial for the proof
of Theorem 11. However, the reader is referred to [1] for a proof of a

more general result.

-Lemma 4. Suppose m, ym,eP with (ml,,m2) = 1, and let up s vy sy 5V

denote integers such that vl-ulzmz-]_ and Vol zml-l - Then
(7) [mlul+m2u2+ (ml'l) (me'l):mlvl"’ m2v2 - (ml-l) (mQ-l)]

c mylup,vl +mylu,vy) .

Theorem 1. If n is odd and neP , then (2x+ny:1) is a per-set.

Also,
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v

r-1 | .
(8) (x+ny:1) = i[io(eln'b 2 -n+ (n2+n)N) ’

where r denotes the order of 2 moduwlo n , and the symbol = was

defined in Section 1.
Proof. Using the First Corollary of Theorem 9, we have

(9) (2x+ny:l) = 1 +(n+1)(2x+ny+1:0) .

From now on we work with the set T = (&x+ny+ 1:0) ; also, let

r-1 5
S= U (27-1+nN) ,
i=0

where r deﬁbtes the order of 2 modulo n . Note that

u
2(2 -l+nN)+n(2v-l+nN)+1 c 2u+l-1+mv

for all wve {0,...,r-1} . It follows that S ;o [10sed under the
operation 2x +ny+1 ; furthermore, 0es , so

(10) (2X+ny+1:0) =T c g .

Now we show that T =S | gince 0,1eT , we have

(2T+1)U(2T+n+l)u{o}g T ; hence,

(11) R = (2x+l,2xtn+1:0) ¢ T

The Corollary of Theorem 6 with a = 0 implies

® 4 t r-l e s .
R= U (2"-1+n[0,2%1]) = (27" - 1+nf0,2"* _17)
£=0 i=0 t=0
Since RcT , we have
2r-1 -
(12) T2 1+2(2% -1+0[0,27 L 1)) 4 g
oy © r-1 bt
=27 -1+n( U U (@ o1+2[0,02 L _ 174 nfo, TP _ -
£20 120 > ] [ » l]))
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But n divides 2%-1 , so {[O,eer'l-l] >n ; also, (2n) =1

. Thus,

Lemma 4 applies to the linear combination of intervals which eappears on

the right in (12), so we can conclude that

r-1

2 - -
(13) ToeT-1+n(u u (@ i.14 [n-1,2%7 +n2™* Lo _17))
teN i=0
-1
2r r
=27 =-1+n Uy U [a,:,b..] ,
teN i=0 v b1
+1 ;
where ati = 2rt 1+n—2; bti = (n+1)2rt+1+22r-2n-2 . Let %t be

fixed, teN . The union of the r intervals (a5 5q] Will form a

single interval of integers i
g g provided that 3, 1+1 < b+l for every

ie[0,r-2] . Now we have for ieN , since 2f.1 > n ,

(1%) b, + 1l-a T4 T onpa ot

¢, 111 = (BF1)2

n+2

rt+i

= (-2 42" LBne 1> (n-1) +(1)2-3n+1 —n2+1 >0 .

Thus (13) yields

T 222r-l+n u [

a b, . 4]
ten °07 BoT-L

Again, this last union constitutes a single interval since we have

r‘b+r-l + 22 rt+r

_ r
(15) bt,r_l+l 8410 ° (n+tl)2 ~-2n-2+1-2 -n+2

rt+r-1 2 -
= (n-1)2 +2 230 41 > (n-1)2" L4 0% Lap4q

2 (n-1) % (n+1) + (m+1)% - 3n+1 =% (n-%—)2+§- >0

Thus, finally,

(16) T 5 22r-l+n(aOO+N)

4
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so that

(17) N g T
Now we show
(18) 2’ l+nNaT

for i = 0,...,r-1 Dby induction on i ; in fact, we have the case

i =0 in (17). Suppose (18) holds for some i > 0 . Then

T o1 +2(2% - 1+ V) + n(nN)

i+l i+l

=2 -l+n(2N+nN) = 2 -1+nN

Here we have implicitly used Lemma 5 which we will state and prove at
the conclusion of this proof. Hence, (18) holds also for i+l , and this
means (18) holds for i = 0y.esyr-1 . It follows that

r-1 N
(19) s= U (2°-1+nN) =T ,

i=0
and this together with (10) implies S = T . This result together with

(9) implies (8) . It remains to prove the following lemma.

S.emma Suppose My, Mys, k-leP with (ml,, Dmmk) =1, let

S=(mx+.+mx:1) , and let Ayseeph denote per-sets such that

.Aig S for i = 1,...,k . Then
(20) mA+teotmA C S

Proof. It is enough to prove this for per-sets Al""’Ak having the
special form Ai = ai+dN with a5 deP for i =1,...,k . Suppose
Ni is maximal with Ni_c N such that ai+c11\li € S , then since

Ai G 5, we have N, & N . Because S is closed under the operation
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*e v+
mlxl+ . +mkxk , and a,1 dNig S , we have

k
(21) i2=:1 mi(ai+ d'Ni) cs .

Now, using the fact that N a l\Ti for i1 = 1,...,k , note that

k k
(22) N < 12—:1 m.N gigl mN, ..
Hence,
k k
(23) igl mA. = L ma, +d i}i m.N

and this together with (11) implies (20). The proof is complete.

Theorem 12. If r-l,ml,...,mrep , then (mx + . ..tm x :1) contains
rr

an arithmetic progression with k terms for all keP .

Proof. The set (m X, . -e +mrxr:1) contains the set
+ +m+ . : ; - :
(mx  Hnx , T +mr.1) which i1s an affine transformation of the

set  (myx, + :1) . Thus, if (mlxl+m2x2:1) contains an arithmetic

fo%o
progression of length k for all keP | then this is also true for the
set H11>i+ . eotm X :1) . However, it is easy to show by induction that

(24) (m+n) v, (m+n-1)m’n lo, (u:v)] c {mx+ny:1)

for all wveN , so the proof is complete.
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