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Abstract

Let n , b , d be positive integers. D. Hanson proposed to

evaluate f£(n,b,d) , the largest possible number of edges in a

graph with n vertices having no vertex of degree greater than d

and no set of more than b independent edges. (Using the alternating

1 path method, he found partial results 1n this direction. We complete
Hanson's work; our proof technique has a linear programming flavor

L and uses Berge's matching formula.
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1. Introduction

| Erdos and Rado [5] proved that given any positive integers n, k
there 1s always an integer a with the following property: if F is

any family of more than a sets, each of cardinality n , then some

k members of F have pairwise the same intersection. Let us denote

the smallest such a by (nk) . Some results on @(n,k) can be

found in [5],[1] and [3]. Obviously, ¢(2,k) is the maximum number

of edges 1n a graph containing no vertex of degree greater than k-1

and no set of more than k-1 independent edges. The values of @(2,k)

_ have been determined by N. Sauer (to appear):

| oo if k is odd,P(2,k) = (1)

(k-1)° + k -1 if k is even.
C

D. Hanson [6] considered a little more general problem. By an

- (n,b,d)-graph we shall mean a graph G such that

(1) G has n vertices,

) (11) G contains no set of more than b independent edges,

) (1ii1) G contains no vertex of degree greater than d .

The largest possible number of edges of an (n,b,d)-graph will be

denoted by f(n,b,d) . In the Greek alphabet notation of [7],

f(n,b,d) 1s the maximum of g(G) subject to the constraints

p(G) = n , B(G) <b , AG) <d.

Obviously, f(n,b,d) = f(n,b,n-1) whenever d > n-1 . Similarly,

f(n,b,4d) = f£(2b+1,b,d) whenever n < 2btl. Hence we can restrict

ourselves to the case n> #1, n > 2b+l

2



| Apart from the most difficult case (d odd and < 2b , n small) ,
the values of f(n,b,d) have already been obtained by Hanson [6].

| His proof technique 1s based on the alternating path method. yo will

adopt a different approach, related to linear programming. This

technique simplifies the proofs and enables us to complete the

evaluation of f(n,b,d) without much additional effort. Tne result

goes as follows. }

THEOREM. Let n,b , d be positive integers with n > 2b+1 .

A, If 4 <2b and n <»{ =x] then~ — ay
2

. nd. 2(n-b d-1

min{[="], bd+ (Blah) + =5-} 1f d 1s odd,
- t(n,b,d) =

nd 1f d 1s even.

B. If 4d <2b and n > 2b+ pgs then
- — [4dL 2

| _ LE
£(n,b, d) [mr] 1)2

| © ec. If d > 2b+l then
2b+1 b(n+d=- :

max{(*3 7), (REAR) ifn <ora,
~ f(n,b,d) =

bd if n>b+d .

In proving that f(n,b,d) cannot exceed the values given by our

Theorem, we shall make use of Berge's matching formula [2]

. 1

B,(G) = min 5 (p(a) + [8] -k,(a-8)) . (2)
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Here B, (G) 1s the maximum number of independent edges in G ,

P(G) 1s the number of vertices of G , S runs through all the subsets

of the vertex-set of G and finally, k(G-8) is the number of odd

| components (i1.e., components with odd number of vertices) of the
S-deleted graph G-S .

On the other hand, we shall construct (m,b,d)-graphs having

f(n,b,d) edges. Then we shall use the following simple proposition:

given any nonnegative integers ny,d with 1 < d < nin, and

(d=1)n, + dn, even, there is a graph G with no +n, vertices, ny of

them of degree d-1 and the remaining n, of degree d . Actually,

this statement 1s a corollary of a general existence theorem due to

Erdds and Gallai [4]: Let 4 >d, >. . . >d be nonnegative integers.

A necessary and sufficient condition for the existence of a graph G

“ with n vertices Uppy eves each uy of degree d, , 1s that
n

i Y a. be even and= i
i=1

k n

| I a, < k(k-1)+ 1 mind, ,k]
i=1 i=k+1 |

| - for each k = 1,2,...,n-1.
We conclude this section with two observations made by Hanson [6].

-~ Firstly, Sauer's formula (1) appears to be a corollary of the theorem.

Indeed, one has

?(2,k) = max f(n,k-1,k-1) = lim f(n,k-1,k-1) = (k-1)° + Ap JE :
n n-—o [=]

2

Similarly, the theorem implies that a graph with n vertices and at

most b independent edges can have at most
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£(n,byn-1) = max{(*%h) , b(n-b)+ (2)2

edges. This has been proved by Moon [8]. As noticed by i. A.Bondy,

| Moon's result follows instantly from Berge's matching formula (2).

2. Upper Bounds

LEMMA 1.

n (d+n-n.) m n dnos 0 0) ‘ .f(n,b,d) < we mie] ap | ly) I} + )) wan 1).[4]))- i=1
-

i where the maximum runs over all partitions
N= ny+n, +n, +. .40

| into nonnegative integers with m = m+n, ~2b and all n, (1 <i<m
odd.

Proof. Let G = (V,E) be an arbitrary (n,b,d)-graph. By Berge's

formula (2), there is a set S c V with k(G-8) > n+ [8] - 2b | et

the odd components of G be Gy5Gns eves Gy . Then M >m = n+ H “2b .

Let us denote [S| by n, and the number of vertices of each g,
1

(1 <i<m) by n, ; let us also set

in =n - n. .

m joo 1

Then n has the parity of n-n-(m-1) = 2b-2n+1 and so all n,'s with
1<1< mare odd. We denote by x the number of edges of G having

both endpoints in S , by y the number of edges of G having exactly



one endpoint in S . For each i = 1,2y...,m-1 we denote by , the
1

number of edges of G, and finally we denote by z the number of
the remaining edges in G . Obviously, we have

EY < dn, (3)

y < ny(n-ny) (4)

n. dn,
z, <min Lz (1<i<m) . (5)

Summing (3) and (4) and using the integrality of x+y we obtain

n (d+n-n_)0 0

he

i Besides, (3) itself implies
®Y £ dn (7)

Now, the desired conclusion follows from (5),(6),(7) and the fact

| that G has exactly x+ y+ Zit Zt te edges.

— LEMMA 2.

b d

- v 27]

(In particular, f£(n,b,d) < bd whenever d > 2b+l .) Besides,

if d 1s odd then

(nv), @

Proof: Let n , b , d be given. For each positive integer s , we

set



S

_ S ds

g(s) = min{(;) , [FI] =
) ds

| [=] if s > a1.
To each partition

n=na,+tn, +...+n

0 1 m : (10)

withm 2m, >. +. >10 and all the n's (1 = 1,2,...,m) odd,
we assign a positive integer __ tno smallest subscript k > 1 such

that ng = 1 for all 1 > Kk . among all the partitions (10) which
maximize

n.(dn-n_) I

[ min { dn | Zofenmny 3) + g(n,)( 0’ 2 Z 1 (11)
L we choose one with minimum k .
| If k >1 then necessarily n, > a+1 for all i withl<ig<k .
-

Indeed, 1t 1s not difficult to check that

- s < d =g(s)+g(t) < g(s+t-1) .

* Now, if n, < d then set n. * *
J Kk = k = 1, Ny q1= ny 10 -1 and n, =ni

(i # k-1,k) . Then

| g(n,) < g(n,)i=1 x *
and so the partition n = n+ 4 *

p 0 fi . SAL maximizes (11). However,
we have

fi: i >1,n= 13> fi:1 > 1, n, = 1}]y ai 3] 1: 1 y n, =

contradicting the minimality of k .
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Now, we shall distinguish three cases.

Case 1. n; <d . Then necessarily k = 1 and so n, = n-n-(m-1) =

2b-2n +1 . Since 1< ny < d, we have

d-1

b - 5 X ny =< b. (12)

Lemma 1 yields

m [=n 2b-2n +1

f(n,b,d) < dn +) g(n.)= dn_+ ) = ang 0 ) .- 0 . i 0) 0)
i=1 2 2

eb-2n +1
Since F(n,) i dn, + 1s a convex function with

2

F(b - £3 = F(b) = bd and n, satisfies the constraints (12), we
. have f(n,b,d) < bd . Hence in this case both inequalities (8),(9)

are satisfied.

Case 2. ny, > atl, d even. Here Lemma 1 gives

In kK dn, a kK
1=1 i=1 i=]

d

i ; = dn, + 3 (n-n,-(m-k)) = bdt k 0 3.
kK

Besides, we have k(d+l) < 3 Nn. = n-0;- (m-k) = eb+k -2n, > 2btk
= | i=1

2b

and so k < [=] .But then

d 2b ol

which is the desired inequality (8).



Case 5. ny > dl, d odd. Again, Lemma 1 yields

f(n,b,d)< dn + } g(n,)= dn_+ —=— =dn_ += n, - = =
0 15 i 0 i=1 2 oO 2 iol i 2

: k 4-1= dn, + 5 (n-1,-(m-k)) - 5 = bd+ k 5

We have n, > d&+1 whenever 1 < i <k .. Moreover, each ni (1 <1i<k
i. 1s odd while d+l 1s even. Hence we have n, > @&2 whenever

1<ic<k.

d _ +X
Besides, we have k(d+2) < 3 n. = n-n-—(m-k) = ween and sOi=1

Lo eb-2n.,
-_ d+1 |

2n=-2b

Tf n, > eb -n+ “gs then
|.

| f <| =o | [ema]
| — d+1 — d+3 g

2n=-2bi - ———— then1f ny, < 2b n+ 33

i 2n-2b
£snrng=e < [Sst

~ : | r eb-2n ob
'Moreover, since ny > 0 , we have < 1 JS Fry + The

- inequalities

2(n-b) 2b C 7

yield the desired results (8), (9).
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LEMMA 3.

2b+ b(d+n-b) ,

£(n,b,d) <max{(%FL)| (R&A)

Proof: Let n, b, d be given and let (10) be a partition which

maximizes (ll). Then Lemma 1 yields

n,(d+n-n ) mn n, n_ (&n-n n-n_-(m~1l

} i=1 2 - o

This can be written as f(n,b,d) < H(n,) where

| n.(d+n-n_) 2b-2n +1
0 2

| 2

1s a convex function Of n, .Since ny = n- ) ne. < n-m ~ 2b-n, ,i i=1 =
we have 0 <n, <b . Therefore

£(n,,4) < max{(0),K(b) } = max Gx Meu)
and the desired result follows by integrality of f(m,b,d) .

5. Constructions

LEMMA 4. If d is odd, n > 2b and

2(n-b _

S55 > (2p) (1)
nd

then f(n,v, 4) > [=] .
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: _ r2(n-b

Proof: Set m = (2Lnsh) and n, = 2b-mtm . As 2b <n, we have

2b(1 - 2) < n(l + == - <2.)#3) 3 +1 T FF>

and So

2(n-bn= 2b-n+ [A0R); <n
0 n+ | d+3 IZ d+1

which can be written as

n.d < n-n, .

Besides,, (13) yields nd > m . Now, let us set

(dn, if n is even ,
a=

dn -1 if n is odd .

_ We have

| a = dn +n = nytn = ny tn-2b = Im (mod 2) (1k)
N and

L n-n, > dn, 2a > dn, -1 > m-1l . (15)

| Set n, = &#+2 for i = 1,2,...,m-1 and
m-1

i mens L n, =2n-2b-m(@+3)+d+rp > d+2 .
By (14) and (15), am 15 an even nonnegative integer not exceeding
m s

y. (n,-1) . Let s be the greatest integer with a-m > ) (n,-1) §
i=1 i=1 ’

then0 < s <m . Set
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n, if 1<i<s,

| \
a, = a—m-— Lr (n,-1)+1 1f 1 = s+1 ,

i=1

| 1 1f s4l <i <m .
1 “

Obviously, each a, 1s odd and y a. = a .Take disjoint graphs
i=1 *

G1sGns ee G where each Gy has' exactly n, vertices, a. of them
of degree d-1 and the remaining n,-8. of degree d . The a vertices

of Gy U G,, uy. . .U G having degree d-1 will be enumerated as
L

UpslUny eer Add a new set S of n, vertices Vis Vps oes join

| each v. to all the vertices us with (i-1)d < Jj <min(id,a) and
call the resulting graph G .

- If a = dn (L.e., if n is even) then all the n vertices

of G have degree d ; 1f a = dn, -1 (1.., if n is odd) then n-1

vertices of G have degree ( and the last one has degree d-1 . In

both cases, G has +21 edges. Since k,(G-8) > m ,
G contains at most b 1ndependent edges.

LEMMA 5. If d 1s odd, n > 2b and

2(n-b

(B20) y(g-1) < (n-2b)d (16)
then

£(n,b,d) > bd+ Eat), ®

. 2(n-b

Proof: Set m = [2h and ny = 2b-ntm . Then (16) yields
nd <m . Set n, = &2 for 1 = 1,2,...,m-1 and
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m-1

n =n-} ng = 2n - 2b -m(d+3) +a+2 > d+2 .
1=0

| Take disjoint graphs G19Gps ve esG ~ where each G, has n,-1 verticesof degree d and one vertex u, of degree d-1 . Add a new set S

of oN vertices Vis Vas .wes Join each A to all the vertices u,
with (1-1)d < J < 1d and call the resulting graph G . Obviously,

all but m-n.,d vertices of G have degree d ; the remaining n-n.d
0

vertices have degree d-1 . Hence G has exactly

> (nd- (nnd) =ba+m. Zk
2 : = n 5

edges. Since k,(G-8) =m =n -2b+ |S], G contains at most b

- independent edges.

. To make this paper self-contained, we need three more lemmas; these
are due to Hanson [6].

LEMMA 6. If 4 <2b and n > 2b ii.] then[==]

f(n,b,d) > bd] —=—— |. [2

Eb) |=] ES2

Proof: Case 1 d odd Set m = [22 n, = f = 1- 4 . d+1 4 i - d+2 or 1 = 325 0 ee,m=1
and

n= 2b+m - (m-1)(d+2) = 2b -m(d+l) +d+2 > d+2 .

Take disjoint graphs G17Gps es CG where each Gy has n, -1 vertices
of degree d and one of degree d-1 . agg n-(2b+m) isolated vertices

and call the resulting graph G . Clearly, G has

((2btm)d-m) bd +m. 2
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edges and at most

ol m n. m -

Pla] fn af. N
independent edges.

Case 2 d even _ [2b _ ._
Lase 4, + Set m = [+], n, = al for i = L,2,...,m-1

and Co

n,=2b+m- (m-1)(d+1l) = 2b-md+d+1 > d+1 .

Take disjoint graphs G;5Gy5...,G where each G, has n, vertices,m i i

all of degree-d . Add n-(2b+m) isolated vertices and call the

resulting graph G . Clearly, G has

: (20#m).d = bdtm 0 2
- edges and at most

|

| m n, m n,-1 1 mgE =.5 =| L mm) =n
| 1=1 1=1 d=]

independent edges.

LEMMATT. If d iseven,d< 2b jng pn < 2b+ 122] then f(n,b,d) > u :

Proof: Set m = n-2b ; then m(d+l) < n . For each i = 1,2,...,m-1

i set n, = a1 ; set also n= n-(n-1) (d+1) > #1 _ Let G be a disjoint
union of graphs yy ’ Af where each Gs has n, vertices, all of

. degree d . Then G has exactly ; dn edges and at most

3 E} f n,-1 1— = — = — (n-m) = b
. i 2 pl} 2 2

independent edges.
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| (1) If d>2b, n > 2b+1 then f(n,b,d) > (7h .
(ii) If d>b, &l <n <a&b then g(n 1,4) > Rlatd-b),

(111) If d >b, n > b+¥d then f(n,b,d) > bd .

Proof:

(1) Take a complete graph with 2b+1l vertices, add n-(2v+1l) isolated

vertices.

(11) If b(d-ntb) 1s odd, take a graph G, with b-1 vertices

of degree d-n+b and one of degree d-ntb-1 . If b(d-nt+b) is even,

| take a graph G, with b vertices of degree d-ntb . Add n-b new
vertices, join each of them to all the vertices of Gy and call the

- resulting graph G . Obviously, the degrees of vertices of G do not

exceed max{d,b} = d ; since each edge of G has at least one endpoint

) In G, , we conclude that G has at most b independent edges. Finally,
G has exactly

b(d- b -

; 2{d-ntb) + b(n-b) = 2latd=b),
edges.

(111) Take a complete bipartite graph with b vertices 1n one part

and d in the other; add n-(b+d) isolated vertices.
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