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Abstract

Let n , b, d be positive integers. D. Hanson proposed to
evaluate f(n,b,d) , the largest possible number of edges in a
graph with n vertices having no vertex of degree greater than d
and no set of more than b independent edges. Using the alternating
path method, he found partial results in this direction. We complete
Hanson's work; our proof technique has a linear programming flavor

and uses Berge's matching formula.
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1. Introduction

Erdds and Rado [5] proved that given any positive integers n, k
there is always an integer a with the following property: if F is
any family of more than a sets, each of cardinality n , then some
k members of F have pairwise the same intersection. Let us denote
the smallest such a by ¢(n,k) . Some results on ¢(n,k) can be
found in [5], [1] and [3]. Obviously, ®(2,k) is the maximum number
of edges in a graph containing no vertex of degree greater than k-1
and no set of more than k-1 independent edges. The values of @(2,k)
have been determined by N. Sauer (to appear):

k(k-1) if k is odd,

P(2,k) = (1)

(k{UQ + k -1 if k 1is even.

O} =

D. Hanson [6] considered a little more general problem. By an
(n,b,d)-graph we shall mean a graph G such that

(1) G has n vertices,

(11) G contains no set of more than b independent edges,

(iii) G contains no vertex of degree greater than d .

The largest possible number of edges of an (n,b,d)-graph will be
denoted by f(n,b,d) . In the Greek alphabet notation of [7],

f(n,b,d) is the maximum of g(G) subject to the constraints
p(G) = n , By(@) <b , A(G) <d.
Obviously, f(nm,b, ) = f(n,b,n-1) whenever d > n-1 . Similarly,

f(n,b, d) = f(2b+1,b,d) whenever n < 2b+tl . Hence we can restrict

ourselves to the case n > &l , n >2b+l .



Apart from the most difficult case (d odd and < 2b , n small) ,
the values of f(n,b,d) have already been obtained by Hanson [6].
His proof technique is based on the alternating path method. yo will
adopt a different approach, related to linear programming. This
technique simplifies the proofs and enables us to complete the
evaluation of f(n,b,d) without much additional effort. Tpe result

-

goes as follows.

THEOREM. Let n,b , d be positive integers with n > 2b+1 .

A, If d<2b and n_<2b-l[ b J then

a
[S52]
2(n-
mn{ , bd+ [éf;’) } if d is odd,
f(n,b,d) =
gd if d is even.

B. f a b
I <2 and n>2b+[[d+l] then

_ b d
f(n,b,d) =bd + [I[d+1]:] [??]

c. If d > 20+1 then

max{(2b+l) s [—ﬂd—-ﬁl]} if n<b+td ,

f(n,b,d) =
bd 1if n>b+d

In proving that f(n,b,d) cannot exceed the values given by our

Theorem, we shall make use of Berge's matching formula [2]

B1(6) = min 3 (p(G) + [8] -ky(c-5)) . (2)
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Here Bl(G) is the maximum number of independent edges in G ,

P(G) 1s the number of vertices of G, S runs through all the subsets
of the vertex-set of G and finally, kO(G-s) is the number of odd
components (i.e., components with odd number of vertices) of the
S-deleted graph G-S

On the other hand, we shall construct (n,b,d)-graphs having
f(n,b,d) edges. Then we shall use the following simple proposition:
given any nonnegative integers nys0,,d with 1 < d < n#n, and
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(d-l)nl+ dn, even, there is a graph G with n,+n, vertices, n, of

them of degree d-1 and the remaining n, of degree d . Actually,

this statement is a corollary of a general existence theorem due to
Erdds and Gallai [4]: Let dl > d2 > . 00> dn be nonnegative integers.
A necessary and sufficient condition for the existence of a graph G

with n vertices Upplny eyl g each U, of degree di , 1is that

n
E d, be even and
i

k n
Z. 4, < k(k-1)+ z min{d., k}
i=1 j=k+1 t

for each k = 1,2,...,n-1 .

We conclude this section with two observations made by Hanson [6].

Firstly, Sauer's formula (1) appears to be a corollary of the theorem.

Indeed, one has

n n-o k 2

?(2,k) = max f(n,k-1,k-1) = lim f(n,k-1,k-1) = (k—l)2+ [ﬂ:'-[-lf'—l]
[]

Similarly, the theorem implies that a graph with n vertices and at

most b independent edges can have at most



£(n,b,n-1) = max{(*%) , b(n-b)+ ()]

edges. This has been proved by Moon [8]. As noticed by 1. A.Bondy,

Moon's result follows instantly from Berge's matching formula (2).

2. Upper Bounds

LEMMA 1.

£(n,b,d) < me)(min ang » [ no(d;n-no)_] ) m mm{(‘:)’[%]})
. 1=l

where the maximum runs over all partitions

n=n_ +4n_+n +...+nm

into nonnegative integers with m = tn ) -2b and all p (L<i<m)

i
odd.

Proof. Let G = (V,E) be an arbitrary (n,b,d)-graph. By Berge's
formula (2), there is a set S c V with k,(G-8) > n+ [S| - 2b et

the odd components of G be ¢ G . Then M >m = n+ lsl -2b .

l, 2,.-., M

Let us denote |S| by n, and the number of vertices of each g,
i

0
(1 <i<m) by n; ; let us also set
mil
n =n- n.
mn j=0 *

Then n ~ has the parity of n-n-(m-1) = 2b-2n+1 and so all n,'s with
1<1i<mare odd. We denote by x the number of edges of G having

both endpoints in S , by y the number of edges of G having exactly
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one endpoint in § . For each i = 1,2,...,m-1 we denote by , ipe
i

number of edges of G, and finally we denote by z, the number of

the remaining edges in G . Obviously, we have
E‘X+ysd_no (5)

Y < mp(nng) (4)

ni dnl
Z; Smin , L= (L <i<m)

Summing (3) and (4) and using the integrality of x+y we obtain

v < [ no(d;n- O)] ' ©

Besides, (3) itself implies

~~

5)

®Y < dn (7)

Now, the desired conclusion follows from (5),(6),(7) and the fact

that G has exactly x+ y+ z,+ z,+ . t1 edges.
LEMMA 2.
b a
£(n,b,d) < bd+[ = ] S (8)
- 12]

(In particular, f(nm,b,d) < bd whenever d > 2b+l .) Besides,

if d is odd then

2(n-b
£(n,b,d) < bd+ [7&;3—11 o y - (9)
Proof: Let n, b , d be given. For each positive integer s , we

set



(s) if s <d+1,

g(s) = min{(3) , (L] -

(=] if s > a+l
To each partition
n=n,+n. +...+n
0 1 m - (10)
with n, >, > . . . > nm and all the n;'s (i = 1,2,...,m) odd,

we assign a positive integer __ e spallest subscript k > 1 such
that n, =1 for all 1 >k . Among all the partitions (10) which

maximize

' no(d+n-no) o
min {dno ,[ 5 3) + iz=:l g(ni) p (1)

we choose one with minimum k .

If k >1 then necessarily n, > d+1 for all i with 1<i<k

Indeed, it is not difficult to check that

s < d =g(s) +g(t) < g(s+t-1)

*
Now, if n, < d then set n, _ * *

(i # k-1,k) . Then

m m *
igl g(n;) < :z_:l &(n)

L * *
and so the partition n = no+ni+ . --+ﬂ; maximizes (11). However,

we have

I{i: i>1, n§= 1}| > {i: 1> 1, n, = 1}]

contradicting the minimality of k .
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Now, we shall distinguish three cases.

Case 1. ny < d . Then necessarily k = 1 and so n1 = n-n-(m-1) =
2b-2n0+1 - Since 1< ny <d, we‘have
d-1
b - - < n, <b . (12)

Lemma 1 yields

£(n,b,d) < dn_+ ): g(n,) = dn +( ) <2b'2no+l>
i=1 2

2b 2no+l
Since F(no) = dn, + is a convex function with
2

F(b - ==) = F(b) = bd and n, satisfies the constraints (12), we
have f(n,b,d) < bd . Hence in this case both inequalities (8),(9)

are satisfied.

Case 2. n, >d*l , d even. Here Lemma 1 gives

k dn, .
f(n,bd)<d-n+zg ) =mang+ p St -an + 3
__l °=

= dn. + -g— (n—no-(m-k)) = bdt k . $.

Besides, we have k(d+1l) < 2 n. = n-n-(m-k) = 2b+k-2no > 2btk

i=1

and so k < [%] .But then

£(n,b,d) < bd+ k - g- < ba+ (22 .%

which is the desired inequality (8).




Case 3. n

2 &l , d odd. Again, Lemma 1 yields

1
m k dn.,-1 k
f(n’b)d) < dn. + Z g(n ) = dn_+ 1 = dn +d- k
S = = 3 n, -s =
°© 35 71 0 o 2 0" 2 321 172
—an + 2 (n-n_ ~(m-k)) - K pa+ x .41
0o 2 0 2 - 2

i < k. h .
We have n, > &1 whenever 1 < i < k . Moreover, eac ni(L<i<k

is odd while d+1 is even. pence we have n, > &2 whenever

1<ic<k.

k
Besides, we have k(d+2) < Z n.1= n-n-(m-k) = 2b-2n tk and so

i=1 0
" [ 2b-2n
0

2n-2b

2b-2
k < __& < 2n-2b .
- a+l = a+3 B

: 2n-2b
f - £ilzed
1 nO < 2b-n+ 3 then
2n-2b
k -
_<_n+n0 2b < [ 3 ]
: 2b-2n
'"Moreover, since n.6 > 0 we have k O:’ 2b
’ 0 2 ’ S [—d+l < [_d'*l] . The
inequalities
2(n-b 2b
k< [JdIB—l] » k< [dTl] P) f(n,b,d) < bdtk ' 7

yield the desired results (8), (9).




LEMMA 3.

£(n,b,d) < max{(?2Y) [Jﬂﬂn

Proof: Let n, b, d be given and let (10) be a partition which

maximizes (11). Then Lemma 1 yields

im0 < 0T ( )
i=1

This can be written as f(n,p,d4) < H(no) where

n.(d&n-n.) 2b-2n +1
H(n,)) = 0—20 +( 0

is a convex function of n, .Since n

we have 0 <ny < b . Therefore

£(n,b,d) < max{H(0),H(b) } = max {<2b2*1> = d;n-b }

and the desired result follows by integrality of f(n,b,d) .

bR Constructions

LEMMA 4. If d is odd, n > 2b and

[2§n-b!

33 1(a~1) > (n-2b)d

then  f(n,b, d) > [%d

10

0]

n ( d+n-no) ( n-n,- (m-1)>
. .

(13)
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. 2(n-b
Proof: Set m = [_ﬁ__l] and n. = 2b-ptm . As 2b < n , we have

a+3 0
2b(1 - =35) < n(l+ =2 - 2
a+3’ = a+1 ~ a+3

and so

o(pn-
=2b-n+[idi15b)] < B

0
which can be written as

nod < I‘l—I‘lO

Besides,, (13) yields nod >m . Now, let us set

fdno if n is even ,

a:
16110-1 if n is odd .

We have

a = dngn = ngtn = nytn-2b = M (nod 2) (14)
and

nn, > dny > a > dn-1 > m-l . (15)

Set n, = g+2 for 1 = 1,2,...,m-1 and
ny=n-) n, =2n-2b-m(a3)+d+n > d+2

By (14) and (15), a—m 1s an even nonnegative integer not exceeding
m s
Z (n;-1) . Let s be the greatest integer with a-m > ) (n;-1) 5
i=1 .

i=1

then 0 < s <m . Set
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1 if s+l <i<m

Obviously, each &, is odd and E: a = a .Take disjoint graphs
i=1

G Gm where each Gi has' exactly n, vertices, a.:L of them

l,G2,...

of degree d-1 and the remaining D;-8,  of degree d . The a vertices

of G LJGE u.. .U Gm having degree d-1 will be enumerated as

Add a new set S of n, vertices VisVos e e

each v, to all the vertices u; with (i-1)d < j < min(id,a) and

join

call the resulting graph G .

If a = dn, (1.e., if n is even) then all the n vertices
of G have degree d ; if a = dny-1 (i.e., if n is odd) then n-1
vertices of G have degree ( and the last one has degree d-1 . In

both cases, G has [%ﬁl edges. Since kO(G-S) >m ,

G contains at most b independent edges.

LEMMA 5. If d is odd, n > 2b and

2§n-b!

[S555-1(a-1) < (n-2b)d (16)

then

£(n,b,d) > ba+ [28-b), o

d+3

, 2(n-b .
Proof: Set m = DT%%Tl] and n, = 2b-ntm . Then (16) yields

nd <m . Set n, = &2 for i = 1,2,...,m-1 and

12
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m-1
no=n-} Ny = 2n-2b-m(a+3) +d+2 > d+2

m i%0

Take disjoint graphs Gl’GQ""’Gm“ where each G; has n -1 vertices

of degree d and one vertex u of degree d-1 . Add a new set S
of n, vertices VirVps..» Join each v, to all the vertices y,
J

with (i-1)d < j < id and call the resulting graph G . Obviously,

all but mqbd vertices of G have degree d ; the remaining n-n.d
0

vertices have degree d-1 . Hence G has exactly

1 _ d-1
5 (nd - (m-nd)) =bad+m - e
edges. Since ky(G-8) = m = n -2b+|S|. G contains at most b

independent edges.

To make this paper self-contained, we need three more lemmas; these

are due to Hanson [6].

b
a+
[ 1

LEMMA 6. If d <2b and n_> 2b+[—-——] then
2

b 7.4
f(n,b,d)_> bd[ rresd BRSSP
(=5~]

Proof: Case 1, dodd. Set m = [é?%] r 1y = &2 for 1 = 1,2,...,m-1

and

D, = 2b+tm - (m-1)(d&+2) = 2b-m(d+l) +d+2 > a+2

Take disjoint graphs Gl’G2"“’GIn where each Gi has ni-]_ vertices
of degree d and one of degree d-1 . add n-(ob+m) isolated vertices

and call the resulting graph G . Clearly, G has

-21-' ((2b+m)d-m) _ bd+m-%

13
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edges and at most

m ni] m n, -1 1 m
Z[?=,z = = 3 ”i'm> =D

i=1

independent edges.

2b .
Case 2, d even. Set m = [Ti'] ) ny = a1 for 1 = 1,2,...,m-1
and

N, =2b+m- (m-1)(d+1) = 2b-md+d+1 > d+1

Take disjoint graphs Gy5Gys--+5G  where each G, has n, vertices,
m i i
all of degree-d . Add n-(2btm) isolated vertices and call the

resulting graph G . Clearly, G has

(2btm)-d = bd+m . $

PO

edges and at most

m n, m n,-1 m
E[*}]=Zle=% ni"“>=b

i=1

independent edges.

LEMAT. If d isemn,dS 2b ang n < 20+ [22] then £(n,b,d) > L
. Proof: Set m = n-2b ; then m(d+l) < n . For each i = 1,2,...,m-1 R

set ni = 4+l ; set also nm = n-(m-1) (dtl) > #1 | Let G be a disjoint
union of graphs GGy 0 @@@ where each G; has n, vertices, all of
degree d . Then G has exactly 51 dn edges and at most
m n m n,-1l

i i 1
Z[?]=iz_ 7= = 3 (@m) = b

i=1 1

independent edges.

14
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LEMMA 8.

2bt+l

(1)  If a>2b, n >2b+1 then f(n,b,d) > (7,7) -

(ii) If d>b, &1l <n <da+b then g(n,p,4q) > [bfn;d-bz]
(1ii) If d >b, n > b+d then f(n,b,d) > bd

Proof:

(1) Take a complete graph with 2w+l vertices, add n-(2b+l) isolated

vertices.

(ii) If b(d-nt+b) is odd, take a graph Gy with b-1 vertices
of degree d-nt+b and one of degree d-n+b-1 . If b(d-nt+b) is even,

take a graph Q) with b vertices of degree d-ntb . Add n-b new

vertices, join each of them to all the vertices of G, and call the
resulting graph G . Obviously, the degrees of vertices of G do not
exceed max{d,b} = d ; since each edge of G has at least one endpoint
in G, , we conclude that G has at most b independent edges. Finally,

G has exactly

edges.

(1i1) Take a complete bipartite graph with b vertices in one part

and d in the other; add n-(b+d) isolated vertices.

15
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