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Abstract

L LL
An n-omino 1s a plane figure composed of n unit squares joined

together along their edges. Every n-omino 1s generated by joining

the edge of a unit square to the edge of a unit square in some

€
_ (n-1)-omino so that the new square does not overlap any squares.

Let t(n) denote the number of n-ominoes, then 1t 1s known that the

= sequence ((t(n))H/™ : n= 1,2,...) increases to a limit 6 , and

3.72 < © < 6.75. A procedure exists for computing an increasing

sequence of numbers bounded above by © . (Chandra recently showed

_ that the limit of this sequence is © .) In the present work we give
L

a procedure for computing a sequence of numbers bounded below by © .

Whether or not the limit of this sequence 1s 0 remalns an open

question. By computing the first ten terms of our sequence, we have
—_—

shown that 0 < 4.65.

This research was supported by the Office of Naval Research under grant

. number N-00014-67-A-0112-0057 NR O44-402, and by the National Science
Foundation under grant number GJ-992. Reproduction in whole or in part
1s permitted for any purpose of the United States Government.
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C A PROCEDURE FOR IMPROVING THE UPPER BOUND
FOR THE NUMBER OF n-OMINOES

D. A. Klarner and R. Rivest

‘ Computer Science Department
Stanford University

« 1. Introduction

We begin with some definitions and a formulation of the problem

treated in subsequent sections. Also included in this section 1s a

. brief indication of some of the known results dealing with the n-omino

enumeration problem. Some of what follows together with more details

may be found in [3]or [4].

. Let C denote the set of all integer points in the Cartesian

plane, that is, C = 1x1 where I denotes the set of all integers.

Elements of C are called cells, and two cells are said to be connected

C if the distance between them in the Cartesian plane is 1 . The set of

cells C may be regarded as the vertex set of an infinite planar

graph R whose edges consist of all pairs of connected cells in C .

C For each natural number n , let R(n) denote the connected subgraphs

of R having exactly n vertices. Clearly, R(n) has infinitely

many elements for each number n , but we are only interested 1n certain

\ equivalence classes defined on R(n) by means of the automorphism

group o of R .

The automorphism group < Of R consists of isometries of the

- plane which map C onto C ; more precisely, an element of o/ 1s the

] restriction of such an isometry to C . An important subgroup J of

C



corresponds to the set of translations of the plane which map C onto C .

All of the elements of 2 may be formed by combining the elements T

with combinations of some of the following isometries of the plane:

reflection along the x-axis or y-axis, 90° , 180° , or 270° rotation

about the origin.

Two elements of R(n) are said to belong to the same translation

class 1f one of these elements can be transformed into the other by an

element of T . The set of all translation classes induced in R(n)

by T is denoted T(n) . Representative elements of the translation

classes induced 1n R(4) by 3 are shown 1n Figure 1. In the figure,

boxes have been drawn around the cells of the animals, and the

vertices and edges of the graphs have not been indicated in the

conventional way.

Two elements of R(n) are said to be the same 1f one of them can

be transformed into the other by an element of J . The set of equivalence

classes induced in R(n) by o 1s denoted S(n) . Representative

elements of the equivalence classes induced in R(4) by oo are shaded

in Figure 1.

Let t(n) = |T(n) | and s(n) = IS(n) | , then it follows from the

definitions that

(1) 5 t(n) < s(n) < t(n) < 8s(n) (0 = 1,2y..4) .

Furthermore, it was shown in {3] (i) that the limits

(2) 6 — lim (t(m)Y? | or — 1im (s(n)
n —e n-—o

exist, (ii) et =6 , (iii) e > ((n)) 1/2 for all n , (iv) and
© > 3.72 . This last result was an improvement over © > 3.14 and
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® > 3.20 given in Eden [1], and [5] respectively. Also/Eden showed

: that

Sn

mw o< (A)
and since

1/n
| : Sn _ 21(+) wn ((B)) = %

n—oo

it follows from his result that 0 <6.75. Thus, the best bounds on

© after [3] were

3.72 < eo < 6.75. -

Read [6] (for more details see also [4]) gave a method for computing

the generating function for the number of elements of T(n) involving

n-ominoes whose cells occupy no more than r rows of cells in the

plane. For example, when r = 2 this generating function is

(1+ 2) /(1-2x+x . In general, Read's method gives rise to a

rational function p,.(x)/a,.(x) with p_ and q, relatively prime

polynomials such that a,.(0) = 1 . Thus, 1f the largest real root

of a,.(1/x%) is a,  , then it follows that @&, <Q,4 <6 for

1 =1,2,ee. . Therefore, this method leads to a procedure for

improving lower bounds on 0 indefinitely. It might be remarked that

the amount of work required by this method to improve the bound 3.72 < ©

(proved by an entirely different method in [3]) appears to be prohibitive.

An alternative procedure for improving lower bounds on © indefinitely

was proposed by the late Leo Moser. Consider the set W(n) of translation

classes of n-ominoes X such that X has exactly one cell in its

bottom row and more than one cell in all other rows; also, one cell in

4



i
: the top row of X 1s to be distinguished from the other cells. For

Co ~ example, W(l) has one element, W(2) 1s empty, and W(3) has four

| elements. Figure 2 illustrates the elements of W(4) ; the distinguished

| cells in top rows are marked with a cross. Now we use elements of

Be W(n) to construct elements of a set T*(n) consisting of translation

classes of n-ominoes X such that X has exactly one cell in its

bottom row and a distinguished cell in its top row. Let t*(n) = IT*(n) |

“ then it is easy to see that

*

(5) t(n-1) <t (n) < nt (n) ,

LC and this implies

. * 1(6) im (£* (0)? = 6
n —e

*

. Now we estimate t*(n) from below. Every element X eT (n)

corresponds to a unique sequence (X15 co Xy) with X, eW(ny),...,X, eW(n,)
!

L where k , Dyseesn, are certain numbers uniquely determined by X

| with n = n, +. etn, . This sequence 1s found by cutting X into pieces
with lines running along the bottom of each row of X containing

| exactly one cell. The element X; lies between the i-th and (i+1)-st
of these lines, and the distinguished cell in the top row of Xs 1s

§ either the distinguished cell of X (in case 1 = k )s or it 1s the
cell joined to the unique cell in the bottom row of Xir1 . Letting

w(n) = [w(n) | , it follows that

n

(7) tx(n) = LL win) . .ew(ny)
k=1

where the inner sum extends over all compositions (ngs. Com) of n
_ * *

} into k positive parts. If (w (1),w (2),...) is any sequence of
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Figure 2. Elements of W(4) .
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“

: non-negative numbers such that w*(n) < w(n) , then of course

“
* * Ww

® tm> LL vm). ew).1 k
k=1

Setting

w

on ¥* n
(9) f(x) = ) w (n)x"

n=1

we have

~

f(x y I * * n
n=1

“ where the inner sum extends over all compositions (ny 5eeesm,) of n

into exactly k positive parts for k = 1,2,... . The coefficient of

XH in the power series in (10) 1s a lower bound for t*(n) so long

- as 1 <w (n) <w(n) . Thus, if we define

L n
(11) £(x) = L winx

n=1

“ * *

and define a sequence (t,.(1),%.(2),...) by

f (x) p.
Tr * n

(12) Tr x t(n)x"
r n=1

L

then 1t follows that

¥* * *
(13) t, ,(n) <t.(n) <t (n)

“-

forr = 1,2, andn = 1,2,... . Furthermore, 1f we put

: * 1/n
(1%) ¢,. = lim (t_ (n))7" ,

ko Nn —o

- then Pq < Ps <...<96. Finally, we come to the computation of P.. .

“ /



Since £.(x)/ (1 - f(x) is a rational function which generates a

sequence of increasing positive integers, 1t follows that P.. 1s equal

to the largest real root of the equation f.(1/%)-1 = 0 . Thus, Moser's

procedure comes down to enumerating the sets W(1),...,W(r) to find P,.

One has more and more work to find improvements by this method, and

indeed, so far no one has had the ambition required to calculate ?.

for a large enough number r to improve the bound 3.72 <6 .

So far we have seen two procedures for improving lower bounds

on © indefinitely. No such procedure is known for improving the upper

bound on 0 , and it 1s our goal in this paper to show that such a

procedure exists. Furthermore, we shall achieve a considerable

improvement over Eden's bound 0 <6.75. The next section deals

with combinatorial aspects of this problem which lead to a technical

problem involving generating functions. This problem 1s dealt with

in the third section, and in the final section we discuss the calculations

which lead to our new upper bound for 6 .
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2. n-Ominoes Viewed as Sequences of Twigs

In this section we develop an idea which originates with Eden [1].

We begin with a description of this idea, reformulating 1t so that our

development appears straightforward. The idea 1s that a unique planted

plane tree Ee embedded 1n R may be associated with each n-amino X .

The tree Eo is then interpreted as a sequence of "twigs", that is,

certain small subtrees also embedded in R . Eden's set of twigs E

(shown in Figure 3) is finite, and each YeE 1s assigned a weight

-w(Y) = £5 , where a denotes the number of cells in Y less 1 ,

and b denotes the number of "dead" cells in Y . (Dead cells are

colored black in Figure 3.) Let BS denote the set of all sequences

of elements of E having length k for k = 0,1,..., and define the

weight of FeE® to be W(Y) = xw(Y,) : ow (Y,) where ¥ = (Yq5 0 ees¥y)
~ for k = 1,2,... , and define the weight of the empty sequence to be x .

It turns out that sequences of twigs corresponding to elements of

T (n) have weight oy , and the sum of the weights of all finite

- sequences of elements of E 1s

-1 © k

YeE k=0 YeE

~- 0
= YY L wid .

k=0 Fept

_ Since (YeE)w(Y) = v(1+x)° , the generating function given by (1) is
® co n+l

. (2) —4 - L of =} hi (25)
1 -y(1+x) n=0 n=0 m=1

-

Thus, 1f it 1s shown that there exists an injection of T(n) into the

- set of finite sequences of E having weight xy" , then we are

N 9
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: justified in concluding that the coefficient e(n,n) of xy" in

this power series 1s an upper bound for t(n) . Hence, 1if 1/e 1s

the radius of convergence of the "diagonal? power series of (2), that

| 1s, the power series
: co

~ (3) Y. e(mm)z’
n=0

then 6 < € where 0 is defined in ($1.2). Rut,

“ 3
(4) e(n,n) = (2) and §& mE y
and this is Eden% result mentioned in {l.

CL. It remains to describe an injection of T(n) into the set of finite

| sequences of elements of E having weight xy . Suppose XeR(n) ,

: then a spanning tree Ey of X which 1s at the same time a planted plane
1 tree embedded 1n R may be defined as follows: Assign labels 1 and 0

to the left-most cell in the bottom row of X and the cell below this

L one respectively, then draw an edge from cell 0 into cell 1 . Now

| we define a process which generates a spanning tree of X assigning
labels 1l,...,n to the vertices of X . The process consists of a

sequence ofn steps P(l),...,P(n) which may be described in general.

P(i): An edge has been drawn from cell Js into cell 1 .

. Three cells together with cell J; surround cell i which for the

| moment we call a; » by » ©; going clockwise around cell i from
cell Jy If a, is a cell of X and has not been labelled earlier

in this process, then an edge is drawn from cell i into a; and

aq 1s assigned the successor of the last label used in this process.

Repeat this for b. and c; + and go onto P(i+l) or stop if
1 =n. It can be shown easily by induction that carrying out

11



P(1l),...,P(n) creates a spanning tree of X which is also a planted

plane tree embedded in R . At vertex i in this tree we find exactly

one of the twigs shown in Figure 3, denote this twig by Y, , and

define E . (Yy5 00057) . See Figure 4 for an example of a spanning

tree created by this process; the sequence of twigs in this example is

(Ey, Es Eq Ex Ec Eg Eg Eg my Eg) , and

xw(E)) Le W(Eg) = Ke XY XY Yo KOY KY oT J KY KY = 0,10

Now we show that the weight of Ey = (Yyse00s¥y) is xy for
all XeR(n) . To see this, we need the concept of the partial planted

plane trees embedded in R which are formed by the sequences (Yq eees¥y)
for k = 1,.0.yn . Modify step P(i) above by adding the operation of |

coloring cell 1 black. (Assume that all cells of X are white

initially.) Carrying out modified steps P(1), ...,P(k) gives rise to

the partial planted plane tree having twigs ECEIRIRIT . Suppose

xw(Y,) Co WY) " xy , then it is easy to show by induction that the
number of black cells (which we call dead cells) in the partial tree

1s Db, and the total number of cells in the partial tree 1s a . Since

every cell of X 1s colored black after carrying out modified steps

P(1l), ...,P(n) , and since X has n cells altogether, it follows that

WE) = xy :
Finally, if X,X' eR(n) , and X is a translation of X', then

By 1s a translation of Boe . Thus, the spannipg tree of a representative

element of a translation class of n-ominoes 1s representative of the

spanning trees of all the n-ominoes in the translation class. This

completes the description of an injection of T(n) into the set of

finite sequences of elements of E having weight yr .

12
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Our development of Eden's idea now follows naturally. The spanning

tree By of XeR(n) may be viewed as a sequence of elements selected

from a set of "larger" twigs. For example, such a set of twigs may be

defined for k = 1,2,... as follows: Let E(k) denote the set of all

partial planted plane trees Z embedded in R such that (1) the

dead cells of Z are connected to the root of Zwith a path of length

less than k , and (2) Z must be a sub-tree of the partial spanning

tree of some polyomino. The weight of an element YeE(k) is defined

to be w, (Y) = a where a denotes the total number of cells in
Y less 1 , and b denotes the total-number of dead cells in Y .

The weight of a sequence Y = (Yy500e5Y) of elements of E(k) 1s

defined to be W, (Y) = x, (Y,) : cow (TY) . Every n-omino X gives rise
to a unique sequence of elements of E(k) , and 1t can be shown by

induction that the weight of such a sequence 1s xy . It follows from

these definitions that E(l) = E and the elements of E(l) are shown

in Figure 3. The elements of E(2) are compactly represented by the

drawings in Figure 5 which are interpreted as follows; Each drawing

represents the collection of twigs having in common the dead cells

marked as black vertices. The elements of each collection are obtained

by including all subsets of the cells marked with square vertices as

white cells of a twig. The sum of-the weights of all the twigs in each

collection 1s written below each drawing.

Following (1), the sum of the weights of all finite sequences of

elements of E(k) is given by

-1 ©

(5) «{1- ) veo = Y. e, (myn)xy"YeE(k) m, n=0

and the coefficient e, (n, n) of xy 1s an upper bound for t(n) .

1h
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Furthermore, it can be shown that erp (mon) < e, (n,n) fork = 1,25...

and all n, 1n fact, for any fixed k , strict inequality must hold

for all sufficiently large n . (Since our final result does not

depend on these claims, we shall not bother to prove them.) Thus, if

1/¢€, denotes the radius of convergence of the diagonal power series

of the power series given in (5), we have €&, >& >... >6 , where ©

1s defined in (1.2). In the next section we show how to compute an

upper bound for € 3 in fact, 1t follows from the results proved there

that €,=6.75,8,<5.50 , and & < 5.25 . The amount of work
required by this procedure for k = 4 or 5say, may not be

prohibitive, and the upper bound for 0 might be further improved by

this method. However, there 1s a set of twigs more efficient than the

extension of Eden's set and it is the procedure associated with this

set that we plan to push to the limits of our computing ambition.

There are eight L-shaped U-sets of cells near a given cell u

which we call L-contexts of u ; rather than take space to define these

L-sets precisely, we merely picture them in Figure 6. Using this

concept, we describe the set of twigs L shownin Figure 7. Each

element of L 1s composed of the following things: (1) a root

cell along with a specified L-context of this cell, (11) a set

(possibly empty) of open cells which 1s linearly ordered, and

(iii) each open cell is assigned one of its L-contexts. In Figure /

we have marked the L-context of a twig's root cell with asterisks, the

root cell itself 1s colored black, the open cells are colored white, and

the L-context assigned to each open cell 1s indicated with an L .

Where necessary (that 1s, 1n twigs Ly and Lg ), the linear order
} assigned to the open cells of a twig 1s indicated by numbering them.

16
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Every element XeR(n) corresponds to a unique n-term sequence of

elements ofL . Just as in Eden's method, this sequence 1s constructed

algorithmically by assigning a linear order to the cells of X at the

same time assigning an element of L to each cell of X .The left-

i most cell u in the bottom row of X 1s cell 1 of X . The L-contextU of u which consists of the cell to the left of u and the three

cells below u form the L-context of a twig (which we will specify in

- a moment) whose root isu . Let w and y denote the cells connected

to the right and above u , and let x denote the cell(# u)

connected to w and y . The twig assigned to u (that is, cell 1

-. of X ) 1s (1) Ly , 1f WX, V £X , (11) L, , 1f Wy X£X , yeX ,

; (111) Ly , if wi , x,yeX , (iv) Ly , if y€X , weX , (v) L, ,
if w,yeX . It 1s easy to check that (1)-(v) cover all possible

| situations. The L-context of a twig is interpreted as a set of cells

whose status of belonging or not belonging to X 1s known. This is the

| case with the root of the twig assigned to u . Note however that this
| 1s true for cell 2 of twigs Ly and Le only after the twig assigned
) to cell 1 has been specified. Now the linear order assigned to the

cells of X and the assignment of twigs to the cells of X 1s carried

out by doing Q(2), +..,q(u) where Q(i) is defined as follows: Suppose

labels 1yeeesds 1, have been given to cells of X with Js 1 the

last label given any cell. Go to cell i of X which is the open cell

of a twig assigned to yet another cell of X , and let the L-context

specified be the L-context of the twig to be assigned to cell 1 . All

previously labelled cell of X are deleted, and cell 1 1s viewed as

the root cell of some connected component of X . Now the twig assigned

to cell 1 1s determined in the same way as for cell 1 , and the open

19
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cell (or cells) belonging to this twig 1s (are) labelled 1+J, (or

tj, and 2+j. according to the linear order specified by the linear

order of the open cells of the twig). Note that generally the L-context

of cell i may require one to reflect and/or rotate the appropriate

twig to be assigned to 1t. The sequence of elements of L assigned

to X by this method is defined to be Lg = (Xpse00sX) whereX, is

the twig assigned to cell 1 by Q(i1i) . The spanning tree and sequence

of twigs generated by this method corresponding to the decomino shown

in Figure 4 is shown in Figure 8.

Clearly, a common sequence 1s assigned to the elements of a

translation class of n-ominoes, and n-ominoes belonging to different

translation classes are assigned different sequences. Hence, there 1is

an injection of T(n) 1nto the set of n-sequences of L . Furthermore,

. if the elements of L are given the weights w(L,) =v, w(L,) = Xy,

Ww(Lsz) _ xy > w(Ly) = XV , w(Lg) CS , and the weight of a sequence
X = (XX . .) of elements of L is defined to be W(X) = xw(X)w(X,) ... ,

then WL) = xy to all XeR(n) . Thus, there is an injection of
T(n) into the set of sequences of L with weight xy .

Letting f£(myn) denote the number of sequences of L having

weight xy" | we can use (1) with L in place of E to find

0

(6) Y  t(mn)xy —E—
m, n=0 1-y(l+2x+ ox 9

©

i ) xy(1+ 2x+ 2x2) ® .
n=0

Thus, {(n,n)is equal to the coefficient of 21 in (1+ 2x + 2x°)" ,

i that 1s,

20
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n

(7) t(n,n) = PN (orm) ’
but

(8) 2 (sx e+ 1mPko1) ne l Zz r (, whl WEY (EY)K=0 ) ’ LO er AEE yn-2k-1 Jo /2

< Z(4+ 4 1) < (2+2/2)"%
It follows that

(9) 6 = lim (£(n)) L/D < lim (£(n,n))/™ < 2+2/2 < 4.83,
n —o n—e -

which is already a substantial improvement on Eden's bound © <6.75 .

We can improve further on 6 < 4.83 using L in analogy to our

improvement on © < 6.75 using E .

Consider the infinite set H of twigs generated from the set of

twigs L in the following way. Every partial spanning tree of a

polyomino 1s a member of H , where the spanning tree is generated with

the procedure Q corresponding to the set of twigs L . Each twig XeH

1s like a polyomino except that (1) 1t has a unique root cell

indicated, (11) a particular L-context is associated with the root

cell, (iii) a spanning tree of X 1s indicated, (iv) all nonterminal

nodes of the spanning tree are dead cells, and (V) sane of the terminal

nodes of the spanning tree may be open cells, each with an associated

L-context. Thus, the subset of H consisting of n-cell twigs with no

open cells is isomorphic to T(n) .

A partial order < may be defined on H as follows: For any

X,YeH put X < Y whenever

22



(1) X has fewer cells than Y ,

(11) the root of X has the same L-context as the root of Y ,

(111) the spanning tree of X is isomorphic to a subtree of Y

rooted at the root of Y .

. In essence, X <¥ whenever Y can be "grown" from X by repeatedly

applying the process Q to the open cells of X . The element ¢

(a twig of no cells) is considered to be the smallest element of H .

- The covering relation of H ordered by < is a tree with root p .

. A finite subset C (£ {#}) of H is called a cut if every element

of H is comparable to some element of C (for example, the set L

-_ forms a cut of H). A cut is said to be minimal if no other cut is

properly contained in 1t.

Given a minimal cut C , it is easy to show that the spanning tree

| of any n-omino X can be uniquely decomposed 1nto a spanning tree
| corresponding to elements of C | The set of twigs corresponding to X

| are ordered by the label assigned to their root by the process Q .
The set C of twigs thus forms a "complete" set of building blocks,

=~ that 1s, a set of twigs capable of constructing any n-omino. Furthermore,

using the weight function w defined on L , we define the weight of

an element X = (X 5 eeesXy) of C to be w(X) = w(X,) : ce W(X) , and

the weight of a sequence Y = STREETS 9) of elements of C is
defined to be W(Y) = xw(Y,) : ce w(¥5) . Thus, if Cy denotes the
sequence of elements of C corresponding to XeR(n) , then W(Ly) = w(Cy) :
Hence, there is an injective mapping of T(n) into the set of all

sequences of C having weight xy .

Next, suppose C and C' are minimal cut sets, and every element

of C is dominated by some element of C?' , then we write C <(C!' . It

25



1s rather easy to prove that if £. (m,n) denotes the number of

sequences of C with weight xy , and if C < C' , then

to (n,n) > Ln (nym) . The point is, if sequences of elements of C
and C' are converted into sequences of elements of L , then the

sequences giving rise to the number Lay (n,n) constitute a subset of

the sequences giving rise to the number {n(n,n) . Thus, for each

sequence (C15Chs.. of minimal cuts with C; <C, < ..., we have

(10) L, (nn) 24s (myn) >... >t(n)
1 2

To calculate £, (n,n) we use (1)- with C; in place of E :
i

X = m n
CT)J— S— A Pe

1 - y w(T) * myn=0 i
TeC.

1

Thus, estimating 2 (n,n) in (11) presents us with the problem of
i

estimating from below the radius of convergence of the "diagonal function"

of a rational double power series. We want to use the fact (implied

by (10)) that if l/h, denotes the radius of convergence of
n

. (n,n)x" , then
1

This 1s the problem treated in the next section.
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: 5. The Diagonal of a Rational Function
h In this section we tell how to find a lower bound for the circle

| of convergence of the diagonal of a double power series which represents

oo a rational function. More precisely, suppose P(x,y) and Q(x, ¥y) are
“

polynomials with integer coefficients such that P(0,0) = 1 and

Q(x,y)/P(x,¥) 1s 1n reduced form, then consider the representation of

Q(x,y)/P(x,y) as a power series
.

Q(x =
(1) F(x,y) = apy) = )) £(myn)x y .

’ m, n=0

-_ The diagonal of F(x,y) is defined to be

® n
| (2) Fn(z) = y f(n,n)z" .

n=0

i

L In Section 2 we encountered the problem of determining an upper bound for

t (3) ® = lim inf (£(n,n))L/™ ,
n-—-oo

_ that is, pT is a lower bound for the radius of convergence of Fp (2) :
To solve this problem, we use the integral representation for Fp (2)

- given in [2].

We can suppose there exist positive constants & and B such that

the power series in (1) represents F(x,¥y) for all x and y such

that |x| <a, J|y| <p . Thus, the function F(s,zs*)s © is

represented by the Lauren-t power series

“1, -1 =
(1) F(s,zs )s™~ =) f(m,n) zg" Rt

m, n=0

inside the circular annulus A = {s: |s | <Q, jz |]s™ < B} =
{s: |z Is™* < |s | < a} which is not empty provided |z | <OB . Note
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that the residue of F(s,zs T)s t at s = 0 is just F(z) . Thus,
if C 1s a circle inside A with its center at s = 0 , then we can

apply the residue theorem to conclude that

1 -1, -1

(5) F(z) = <= J F(s,zs )s “ds ;
C

furthermore, the integral on the right 1s the sum of the residues of

F(s,zs )s at the singularities enclosed by C . Now we take into

account the special form of F(x,y) .

There exist numbers u,v with w = uv , together with polynomials

Py(2);..0 te P_(z) with integer coefficients such that

wr “3
(6) P(x,y) =}, vB __j (xv) + © xP, (x)s . J

J=0 J=1

Using this form of P(x,y) , we have

v- -1
-5 —1 S Sy ZS(7) F(s,zs Ns = asa)2 ‘

y P.(z)sY
j=o ¢

There exist functions x; = 1,(2)5 00m = n (2) such that

W 5 W
(8) Y p(z)s? = B(2) TT (5-1) ;

in fact, the functions ns co) are distinct provided the polynomial

on the left in (8) is irreducible. We shall assume the x's are

distinct and treat this case only.

Suppose "s is inside C for 7 = 1,...,t , and I. 1s outside
C for j = t+l,...,w . Then we can combine (5),(7) and (8), and sum

the residues of F(s,zs st at ” for J = 1,...,T to find
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: ta - w -1
© R@ = aah) Bo) TT (ron)u j=1 k=] J K

~ ktJ

Hence, the singularities of F(z) form a subset of the roots of the

| equation

W

(10) R(z) = P(z) TT (n(2) -m(2)) ©
Jsk=1

JFk

- and a lower bound for the radius of convergence of Fy (2) 1s the

” minimum modulus of all these roots. Tf it is known that
L

{f(nyn): n = 0,1,...} is an increasing sequence of integers, 5 lower

| bound for the radius of convergence of F(z) 1s the smallest real
root of (10). Note that if the x's are not all distinct, then the

L product in (10) is 0 , and this test fails.
Finally, R(z) , the function defined by the left member of (10),

} 1s symmetric in SE cof, 5 SO R(z) can be expressed as a polynomial
in B./P , . . B/E. _ Consulting Uspensky [7, pages 277-291], we

| see that R(z) 1s closely related to the descriminant of s'P(s, 2870)
regarded as a polynomial in § | Furthermore, the descriminant of a

polynomial can be computed in terms of its coefficients by means of

Sylvesterts determinant... Applying the formulas given in Uspensky, we

find

(11) (B (2))"" 2 R(z)= det M(z) ,

where M is a (2w-1l) x (2w-1) matrix whose first w-1 rows consist

of cyclic shifts of (PsP ys ++ +sP050, 0 44,0) > and the next w rows

consist of cyclic shifts of (vB, (w-1)B__,, +s P50, ® .*,0)
Thus we are led to the following conclusion: If F(x,y) is a

rational function with the form given in (1), and if the diagonal

2



Fy (2) of F(X,y) generates an increasing sequence of integers, then

an upper bound for ® defined in (3) 1s the largest real root of the

polynomial equation

(12) det M(1/z) = 0 .
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4. Computational Results
“

A sequence (MoPpshzs ee) of upper bounds for © were computed
corresponding to a sequence of increasingly larger minimal cut sets

CpCore se of H . The minimal cut Cs 1s defined to contain all
|

twigs having at most 1 dead cells. Thus, we clearly have C, < Coin ,

1 = 1,2, Coe

oo The computation was performed on the PDP-10 at Stanford
~~

University% Artificial Intelligence Center with a program written

in SAIL, an AIGOL dialect. The results are summarized below. The

computation of Ao required approximately one hour of computer time.“

In addition, the largest real root of equation 12 of Section 3 for

. Si A
C10 was found to be 7.005 Since 10 must be smaller than MN ,

% however, we disregard this root as a spurious one introduced by

replacing Fr (2) by R(z) , and select the smaller root 4.65. Fran
the table we conclude that

. (1) 1im (t(n)) 2 = 6 < 4.65 .
Nn —e

N

. : le, i
1 5 4.83

2 21 4.83

3 93 4.83

- 4 409 4.80
5 1803 4.77

. 6 7929 4.74

7 34928 4.72

- 3 151897 4.70
9 656363 4.67

10 2821227 4.65

Table 1
.
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