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ABSTRACT

For given data (t, / y.) y i=lyeeeyM , we consider the least squares fit
of nonlinear models of the form

“ n

Fla, gt) = py 85a) p(x; t) , a R®, o R™,

For this purpose we study the minimization of the nonlinear functional
L.

- 2

L "It is shown that by defining the matrix {8 ()}, j= © (@ ; t.) , and the~~ 3 J “~~ 1
Co +, 2

optimize first with respect to the parameters a, and then to obtain, a
|

posteriori, the optimal parameters AN The matrix 8 (a) is the Moore-

Penrose generalized inverse of § (a) r and we develop formulas for its

~ Fréchet derivative under the hypothesis that &(@) is of constant (though

not necessarily full) rank. From these formulas we readily obtain the deri-

vatives of the orthogonal projectors associated with § (a) , and also that

of the functional 5, () . Detailed algorithms are presented which make exten-

sive use of well-known reliable linear least squares techniques, and numerical

results and comparisons are given. These results are generalizations of those

of H. D. Scolnik([20].
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| 1. Introduction

i The least squares fit of experimental data 1s a common tool in many
| applied sciences and in engineering problems. Linear problems have been well-

studied, and stable and efficient methods are available (see for instance:

| Bjorck and Golub [3], Golub[8]),

a Methods for the nonlinear problems fall mainly in two categories:

(a) general minimization techniques; (b) methods of Gauss—-Newton type. The

. latter type of method takes into consideration the fact that the functional
to be minimized is a sum of squares of functions (cf. Daniel [ 5], Osborne [1k],

Pereyra [15]1). The well-known reliable linear techniques have been used

mainly 1n connection with the successive linearization of the nonlinear models.

Very recently it has been noticed that by restricting the class of models to

| be treated, a much more significant use of linear techniques can be made (cf.

[2, 9, 12, 13, 17, 20]).

L In this paper we consider the following problem. Given data (t., ys) ,
i=1,.. ..m, find optimal parameters 8 = (8, yeees 2) d= A, _ Ay

i that minimize the nonlinear functional
IT n

(1.1) ra, a) = F Ivy, - ¥ ea) g(a; t.)]°.
i=1 j=1 J d~" 1

Throughout this paper a lower case letter in bold face will indicate a

column vector, while the same letter with a subscript will indicate a component

of the vector. Matrices which are not vectors are denoted by capital letters,

and the (i,j) element of (say) a matrix A will be indicated by either a
i

or tA}; ; . The transpose of a vectoru is indicated by Ww . Given a |
function f(t) , we shall denote by f the vector whose components are



| (£(t, ) , £(t,) yoees £(t )) . The scalar product of two vectors u and v
1s indicated by

(u , Vv) =viu |,

The only norm which will be used 1s the Euclidean norm, . ov | (v , v)

Given a matrix A and a vector b , then we say

AX = b

+ +

C 1f X = Ab where A 1s the Moore-Penrose pseudoinverse.

We shall use the symbol D for the Fréchet derivative of a mapping and

L V for the gradient of a functional. ye assume that the reader has some

familiarity with pseudolnverses and Fréchet derivatives and their properties.

L A useful reference for the pseudoinverse is [19]; for details on the formalism

and manipulation of Fréchet derivatives, we suggest [6, chapter 8].

Let

| (8);5 = oy(@ 5 8) (=1,00m 5 d=, 200m)
and

:

With the given notation, we can rewrite (1.1) as

1.1) ra, @)=ly- a gl) |°.

Our approach to finding a critical point or a minimum of the functional (1.1')

requires two additional hypotheses:

n

H-1. For any vector be BR" , the system of nonlinear equations

(1.2) g(a) =p,

“Dua



| B has a solution (not necessarily unique).
oo H-2. The matrix 3 (or) has constant rank, r < min (m, n) for ae 0c RE ,

{}] being an open set containing the desired solution.

Our aim is to be able to deal separately with the parameters @ 5 and then

5 proceed to obtain the parameters a, as it was done in [9, 20] whose results
this paper generalize. The reader should also note the independent results

obtained by Pérez and Scolnik [17], who in addition deal with nonlinear

« constraints.

In order to obtain this separation of variables, we consider, as in

[9, 17, 20), the modified functional

2 (13) rp @=llg-t ry,
which will be called the variable projection functional. once optimal para-

meters a have been obtained by minimizing (1.3), then auxiliary parameters {

are obtained as B = 5(8) y , and finally we take 2 as any solution of the
system of equations (1.2). *

| We shall show in Theorem 2.1 the relationship ‘between critical or minimal

points encountered considering the original functional r(a, a) and those obtained

from the functional r,(a) and t (@)y . Both for our proof and for the numer-
ical algorithms of Section 5, we need to develop formulas for the Fréchet deri-

vative of the pseudoinverse of a matrix function. In Section L, we develop

these formulas and obtain the derivatives of the projectors and the Jacobian

of the residual vector. The only hypothesis necessary on the rankof the matrix

1s that it should be constant on an open neighborhood of the point in which the

derivative has to be calculated. This is necessary since otherwise the pseudo-

inverse 1s not a continuous function, and therefore it could hardly be differ-

entiable. Our proof 1s coordinate-free. For the full rank case,

_ 5.
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! similar formulas have been obtained by Fletcher and Lill [7] (without)

proof), by Hanson and Lawson [10], and by Pérez and Scolnik [17 J. In [7] and

3 [ 17] this is used to deal with constraints via penalty functions. In [17] the

| authors choose to work with components, and also obtain a formula for the rank
deficient case which 1s given in terms of the factors of a certain decomposition

| of the original matrix. Our formulas, besides being coordinate-free and thus

much more convenient for algebraic manipulation, are given exclusively 1in

terms of the original matrix, its derivative, and 1ts pseudoinverse. The

- formula for the rank deficient case seems to be new.

In Section 5 we give a detailed -explanation of how to implement the method

in an efficient way and in Section 6 we present some numerical examples and

C comparisons. Extensive use is made of linear least squares techniques.

The authors wish to thank Professor Olof Widlund of the Courant Institute

) for his careful reading of this manuscript, and to Miss Godela Scherer of the

% Instituto Venezolano de Investigaciones Cient{ficas for programming assistance.
We are also pleased to acknowledge the kind hospitality and stimulating con-

versations with Dr. H. D. Scolnik of the Bariloche Foundation where this

| work was initiated in July 1971. Several helpful suggestions were made by
Miss Linda Kaufman and Mr. Michael Saunders.
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2. A class of nonlinear least square-s problems whose parameters separate.

We are going to consider in this paper models of the form:

n

(2.1) n(a, Qs t) = ) g; (a) ?; (as t) ,J=1

her ae RS ak
where ae , @¢€ , and the functions Jj » Ps , are continuously differ-
entiable with respect to a , and « respectively. We shall call the functions

8 autonomous, tO distinguish them from the P; which are dependent on t .
C We remark that the parameters ga and g form two completely disjoint sets.

The independent variable t could be a vector itself as in [9, 17].

This requires only small notational changes and we shall not pursue it here.

the values of the parameters a , ¢ , that minimize the nonlinear functional:
L

(2.2)  x( 2_ § 2mY =lly-redf= TL G;-nat))?.
L i=

| The approach to the solution of this problem is, as in [9, 17, 20], to
= modify the functional r(a, @) , in such a way that consideration of the auto-

nomous parameters a is deferred.

In what follows we shall call $(y) the matrix function

(2.3) 8 (0) = [1 (@) 5oees 0,(@]

For each fixed « , the linear operator

(2.4) 3 (a) 2 (a) t(2),

1s the orthogonal projector on the linear space spanned by the columns of the

matrix #(@) . We shall denote the linear operator (I - P ) by PB
~ 8 (or) JCA

-5-



i Pg ( 1s the projector on the orthogonal complement of the column space ofa

8 (0) . Similarly,

; 1s the orthogonal projector on the row space of ¢ , and oP = T = 5 .
| | When there 1s no possibility of confusion we shall omit either

the matrix subindex or the arguments in projections and functions, or both.

| Taking b as a new parameter vector, we consider the following auxiliary
; model:
~ n

(2.5) nb, a3 8) =} Piola; t)
J=1

We define similarly the functional r, (b, a) = | y - n, | :L. Ft ~~ ~~

| For any given @ we have the minimal least squares solution
k-. * N

(2.6) b =8 (a) y-

L . Thus,
: * + 2 +

(2.7) min r (da) =r (55, a) =| zg -2@2 () 7 =F, yl

The modified functional 1s then the variable projection functional that

we mentioned earlier and can be rewritten as:

| (2.8) (@) = ||P. 2

Once a critical point (or a minimizer) a 1s found for this functional, then

B is obtained by replacing « by a in (2.6). Finally, by hypothesis H-1,
A 1s-obtained as any solution of the system of nonlinear equations

~6-



The justification for employing this procedure 1s given by the following

theorem:

|

Theorem 2.1 Let r(a, a) and
| SCOTCHFesFR, A) r fe) be defined as above  . _. o.oo tpor
| k —

in theopenset QC QR" | §(¢) has constant rank r < min (m, n)~~ ——————————————————————————————————— -— J .

(a) If A iis ‘ys .

ER a critical point {or a global minimizer in Q ) ofA ot ry (a) 3
and a satisfies:

C A + A
(2.10) g(a) =¢ (@) y,

(then 2) is a critical point of x(a, a) (or a global. minimizer for « e ())
AA A

| and r(a, a) = ry (a) .
Lb.

A A So

(b) If (a, @) is a global minimizer of af{~uy' for gq Ry
A : 7 ~ oo id A A

L then @ is a global minimizer of (9 in Q and r, (&) = r(a, a) -

| Furthermore, if there is an unique 8 among the minimizing pairs of x(a, 2)
then a must satisfy (2.10).

We shall postpone the proof of this Theorem until the end of Section
4

. where we obtain a convenient expression for the gradient of the functional

roe)

7-



5. Algorithmia I. @Residual calculation.

One of our main points 1n the algorithmic part of this paper 1s to empha-

L size, when possible and appropriate, the use of stable and efficient linear

least squares techniques. Thus it is convenient to review some of the tools

and introduce the necessary notation.

: If Q 1s an orthogonal matrix then, for every vector Z
lz] = liz] .

L It is well-known (cf. [8, 10, 18]) that every m X n matrix & (m > n)

of rank r <n, can be orthogonally transformed into "triangular" form viz
’ x

there exist Q,Z orthogonal, such that

-

(3.1) 3 7 T* Q = T 0 g T,

| 0] o

L where T is an r X r upper triangular and nonsingular matrix. Then
- ~ 1
T 0

+ Tmt 1

® =Z7 Q =7 Q,
_ 0 | o

and consequently,

I 0

P, = 5" ! i - T ° |
0 0 0 I °

m-r

(Similarly, though we don't use it in oura
I 0 O

gt te =z HE] at HE Z .)0 0 0 T
n-r

Due to the isometric properties of the orthogonal trans: :
4 1 LC PIOP 1 J formation Q ,

_8- |



| the least squares problem can be expressed as

| _ min | y_- ¢b I = min | f - Rb .
| b b ~

Calling y = and partitioning it as ¥ = | ¥.
| gy =a IY 9 y 221} (m-r) , We obtain

“ A o-1=y
(3.2) b=z |—=| Lo.

A simple computation shows that:
C

63) lg-8 IF -1z ygf=1 5°LTE 3 = doll -

- Therefore, one can evaluate the nonlinear functional r,(a) of (2.8)

| for any value of a in the following way: First the orthogonal matrix Qu)

L that is used in the reduction of &{w@) is determined; simultaneously, y = Ng
1s computed, and finally

L

3.4) rye) =| 7 IP
| od Io

1s evaluated.

= For minimization techniques not requiring derivatives this 1s all that

1s needed. For iterative techniques using the gradient of the functional or

) 1

the Jacoblan of the residual. vector function ¥ (a) y , we shall provide in the
next section formulas which will also be useful in the proof of Theorem 2.1.

-9-



4. Fréchet derivatives of pseudoinverses, projectors, and residual vectors.

In this section we develop formulas for the Fréchet derivative of the

| pseudoinverse of a matrix function. This leads to expressions for the deri-

: vatives of the associated orthogonal projectors, _,,4 for the residual vector

function

|

(4.1) r, (a) = Py y ¥ -~~ ne ~ -

As an aid to those readers not familiar with these concepts, _. .pserve

| that an m X n matrix function A(y) is a nonlinear mapping between the

linear space of parametersa € Re and the space of linear transformations
th ’ R™) . Consequently, D A(g) will be, for each ao , an element of

| LR" , SR" , R™)) . Thus, DA(a) could be interpreted as a tridimensional
tensor, formed with k (m X n) matrices (slabs), each one containing the

partial derivatives of the elements of A with respect to one of the variables

®, . Still in another way, each column in the k-direction is the gradient

of the corresponding matrix element.

Since all dimensions involved are different, it will be always clear

in the algebraic manipulations how the different vectors, matrices, and tensors

interact.

- k
Lemma 4.1. For any @ € 0, an open set of R, let B(a) be an m x n full

~ column rank matrix function,and C(@) an n x m full row rank matrix function .

If B{od C(x) are Fréchet differentiable in Q , then
C Ed ~ HN —_— i

(+2)  D() = -E'DeE+ (¢ 8)” DB F

. (4.3) Dc’) =-c"Dcc’ + oP Dc’ (cc)

-10-

¢



= proof. Since B has full column rank, then B = (B B) yg , and

+ c, I -1 T T - 1

oC DB) = DB B) B + (8 B) DB .

But,

Tov T _\~1 T T =
D(B B) = -(B B) D(B B) (B B)~! .

= Therefore,

(ko) D(B)-(BB) [DB -p@B = B].

“ T T
Developing D(B B) and regrouping, we obtain (4.2). Since C has full

column rank, (4.3) follows readily from 4.2). §
[] 4 1

Since Fale) = AA+ , Fao) = I - AA+ , it follows that
C_

+ +

(4.5) DP, = Da A +a DA) ,

= and

C L

8 If Ax) has full column rank, then from (4.5) and Lemma 4,1 we obtain

4 7 Dz > Da AT + (PrDA I)
| (4.7) AA A

| Similarly, if A has full row rank:
+ L + dT

| (4.8) D,p = A DA Ra (A DA AF) :
We shall prove now that formulas (4.7) and (4.8) are valid in the rank

| deficient case. For this purpose we shall prove first an auxiliary Lemma,
- and then obtain the derivative of the pseudoinverse of an arbitrary matrix

~ function.

| Let Ala) be an m X n matrix function, Fréchet differentiable,

-11-



1 and with constant rank r < min (m, n) , on an open set } C RE. Let Ba)

be a maximal set of independent columns of Aa) in © , and let C = Bil

oo It 1s well-known (see, for instance, [16]): (1) C has full row rank, (2)

A=B, (3) A+ = C+tB+ . Due to our hypothesis, Ba) can be formed with

the same columns of A(g)on a neighborhood of every « € Q , Other useful

\. relations that we shall use below are

AA+ =P, =BB+ =P; BPr= 0 ;

C + + 1 L 47
CAt= BAA" = B+ ; PB=0; PAT =0.

A A

b- Lemma 4.2. With A, B , and C defined as above, the following formula is

| valid in 0 :
C+ 4 4

(4.9) BDB PP, =(DA a+," P. .

| A A

Proof: From Lemma 4.1 we get

L
T

B D B+ =-P, DB B+ + (DB B") P

- -P. DB B' + ( DB pty ptA A

Therefore,

4.10 v bo op( ) BD B Py (DB B') PF,

On the other hand, since A = BC ,

+ + +
Da A = Ds CA++ BDC 2+ = DsB + BDC A

-12-



Thus,

P'Da a*- p'Ds ptx A — “A B ,

| or

T 4 T
| (DA af = ood

) Pp, = (DB 8") Py

~ and this last expression together with (4.10) proves the Lemma, |}

Bteorem 4.3 C RESSE OLC Bede = be an open set and for « € Q let A(x) be an
Y — I ~y ~~

mXx n Fréchet differentiable matrix function having fixed rank r < min (m, n) .

Then for any go e¢ Q :

h,1 + =.oaf + + aT +! T 4 i T T
L_ (h.11)D 2+ =-A"Dax AA Da P,+,PDA A+ A+

| proof: With B and C as above, we have that

| + ++

L DA = p(B) = bc" 8° + cD,

| and hence by (4.3)
+ + +. + } T +

| DA" =-cDcc's+ppc cB + cps,
he,

since

T

| (cc)1 oc” ot

Substituting

DC= D(A ) = + + +_+ + LD(B'A ) = DB A+BDA, c's oat, plo pt
in the last expression we get:

-13-



(4.12) DA" = -A"Da a+ + ¢'DB* - ¢'DB" 22++ Fp ota
A

x - -a*'Da a+ + cDP+ PP DC ot

] But,

| 1 TH+ T+ + T
(4.13) P DCCA = ,PDAA A | +747 +

T “47

= 2 PDA A A+,

T

C since APA = 0 .

Substituting (4.13) into (4.12) and using the relationship cps’ P, =
+ + + + 7 7

ABDB P, =AA DA P, , given by Lemma 4,2, we finally obtain the
C.

desired result. ii

L

Corollary 4.3. Let A(a) be as in Theorem 4.2. Then, for any ao € Q-

1d i ~ || +

© (hla) Dp, - DAT) = P.DA AT + (P,Da AT)A A ’

L + L T
(h.140) D,P = D@A') = a'Da ,p + (a'Da ,P') .

Proof: Obvious. T

From this result 1t 1s now easy to derive an expression for the gradient

of the functional r, (a) (see (2.8)), provided the matrix &(g) has constant
. rank on an open neighborhood of the point in which the gradient is calculated.

In fact:

4 2 1 1

(5.15) ry(e) = | Pow) LIT = (Py, Py),

and

-1h-



_ I 1 + 4 I 1
2 re)= ww P [PDs 8%8 Ds Ply.

| 4 +
Since Fpl = 0 s we finally obtain:

| (4.16)  % v roa) ty PDs 8'y

Now we have the elements for proving Theorem 2.1.
-.

Proof of Theorem 2.1.

_ _ 2
C From (2.2) we have that r(a, 2) = | J ¢(a)e(a)| :

Therefore,

bh, 1 - 'B27) 29x,@) = -(z-8g) (De g+aDg)

i Assume now that 8 1s a critical point of x, (a) , and that A satisfies
(4.18) 2) = a (A. g(a) = & (a)y .

Then,

. AOA 4d 7 +

(4.19)  zv rE go) =-(Fy) (Ds ¢'y + &Dg)

| since y PrDg = 0 Thus (a, @) is a itical int of r(J Fseg = 0. a,@) is a critical point o r(a, a) /

A [] [] [] [] []

Assume now that @ is a global minimizer of r, (2) in Q ng A
AA

satisfies (4.18). Then clearly, r(a, @) = r, (8) Assume that there
| %  * * *

exists (a, @') , @ € 0, such that r(a, o") < r (8, 2) . Since for any

a we have r, (a) < r(a, a) » then it follows that ry (a™) < r(a”, a’) <
AA A CL

r(a, a) =r (2) , which is a contradiction to the fact that g was a global

-15-



: minimizer of ry (a) in Q . Therefore (&, A) is a global minimizer of
| r(a, @) in 1 and part (a) of the Theorem is proved.

Conversely, suppose that (a, a) 1s a global minimizer of r(a, a) in

(2 , then as above

. A AA
roe) < ra, @ .

* + ,A

Now let a be a solution of g(a) = (@y .

- Then we have

~ A * A A A

ro(@) =r(g, 2) <re, 9),

Co AA CL
but since (a, a) was a global minimizer we must have equality. If there was

an unique a among the minimizers of r(a, a) , then ax* = Bb . We still

have to show that @ 1s a global minimizer of r,(2). Assume that it is not.
( - A —Thus, there will be a 2 , such that r, (2) < ry (@) . Let a be a solution

+ ——

of g(a) =¢& (@)y . Then r, (2) = ra, 2) < r,(®) = r(8, 2) , which is a
_ oo A A Cocontradiction to the fact that (ag, ¥) was a global minimizer of r(a, @) . I

C

~16-



g D. AlgorithmiaII. Detailed implementation of the Gauss-Newton-Marquardt
n algorithm.

i We shall now explain in detail how to apply the results of Section L

| to the Marquardt modification of the Gauss-Newton iterative procedure; we make

: extensive use of linear least squares techniques. le shall include an econo-

mical implementation of the Marquardt algorithm devised earlier by Golub

\ (see also [11,14]).

We define the vector

i

tL xo) = Proyy
a .

. The generalized Gauss-Newton iteration-with step control for the nonlinear

[ least squares problem
he

(5.1) min r, (a) = min | 25 (a) I = min I Ps (a) I
| ~ ~~ r~y

1s given by

\ - G.N. Starting from an arbitrary o°:

(5.2) oot Lt Dre] (of

The parameters Ly > 0, which control the size of the step, are used
| £+1 2
to prevent divergence. Usually t, =1 , unless r, (of ) > rsa’) , in

which case t, 1s reduced. Another use of the parameters t, is to minimize
£+1 : : £y4+ J)

r, (of ) along the direction [Pr (a )] ro(a )
Marquardt's modification calls for the introduction of a sequence of non

negative auxiliary parameters Vv, > 0 .

G.N.M._ Define

4 2

role) rol)

Z ? 3, @] ‘{ n ?
vy

where for each £4 , F, is the upper triangular Cholesky factor of an n Xx n

-17-



] symmetric positive definite matrix M, . Then the Gauss-Newton-Marquardt
iteration 1s given by

| oft . +

Reasons for this modification are well-known. :
For more details and an

| interesting study of the convergence of this method we refer to [1h]. We
i sh k lici he "two-stage Co.

wish to make explicit now the "two-stage orthogonal factorization” given in
[11] and [14], in order to show how to take advantage of the special structure

L of the problem.

Calling h = oft! _ G2 £ 1
= «®, DP=Dr,(e)= DPy

L and dropping the superscript {f from here on in, one step of the Marquardt

algorithm is equivalent to solving the linear least squares problem

N ry (a)

L 0

| In the first stage of the orthogonal factorization of K an m xn
orthogonal matrix Q is chosen so that

— _ 4 _ —

Thus,

Q 0 DP DP R

| —=q[—]| = 1 J

0 I VF VF VF

TW |x
Q —] = |—] .

Q 0

R and r are saved for future use.

~18-



In the second stage we choose an (mtn)Xx (min) orthogonal matrix Q
| to reduce

| R]
: A = to "triangular" form.
| vF

Fe For this purpose we shall use successive Householder transformations as in

[3], from where we adopt the notation.*

On reducing the first column of A, which 1s of the form:

“

a{1)0!

NONE

LC .
Q

| Me
« 0

L Lo.

(1| we use Q ) =T = pul) (1h ,
| where

(1) (1) (1
Wl = sign (aj) (0 + lags) ’
2 2

94 = (ay, + Wu 2 >
(1)
WH = MW ,

1

ul ) =0 , otherwise,
T

Now we observe that when of) is applied to a vector, any component
di t Zero t of 1

corresponding to a component o ul ) is left unchanged. 1, particular,

-19-



the band of zeros in A 1s preserved. Thus, in this first step we only need
to transform the elements of rows number 1 and m+{ .

x (2) (1) Consequently,
- A =Q A will have the schematic form:

oy).
| (2)

/} iO
where the asterisks indicate the modified elements,

It 1s now clear that at step k , a(k) will have the form

: woo |
O0A0

SWO YY
(k+1)

| The matrix A , k= 1,.00,n , is obtained as follows:
i) (E92 TE) jegok= 3% = Bnei, x) )®

11) Py (0, (0 F Ja 1) ’

oy (kK) |
iii) ug =0 for Ik , k+1<i<m,m+k<i;

Up ) = sign (a) (0, + jae) ;
(k k

~-20-



| iv) y = By o (6, (x) ,
y. =B fu 6); () + 3 2 (8) 5 (8) ;

Finally,

| v) 2 (41) = a8) | (kK) Vi LG THmis
, 1] l J J=k+1,...,n;k+1, : va(ky
a. = - sign (ay Joy : oo

These formulas are similar to those given 1n [3], but are modified to

¢ take advantage of the structure of the matrix A .

Osborne's version of Marquardtts algorithm, modified for our present

problem, is presented in the detailed flow-chart of Figure 1.
The parameters

Lo DECR and EXP are the factors by which v 1s either decreased or increased.

:
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= Fipurc Marquardt's algorithm (Osborne [1L4])
i Set initial values

Iter¢ 0; geo

Compute

Ye xa)
2

IC& 0

x If iter = 0 then 1 no yes
2 2 ?ve [1 DPT /km)| & PR (lag) < fle) ne < e,)

First Stage
1 Be a ——

Reduce [DP3b] to \l |
& triangmlar form:

DR? —

cd
O ’ - v € DECR * V

Suve DR , T

1H 3 : no yes
Second Stage

4 Reduce to JDR'. 7 v & EXP *— yy Iw

triangular |O Reset DR';r
form: vF ; 0 | —

DR

O NE r.é r| yes v 1
QL O x 2 ea + do

Compute
Gel Ax as solution of == 2

~ 16 lzple + all”;
DR Ay = » 5

Iiler Iter + 1 :

« IC& IC + 1

' no

?

Ttmax < Ite)

yes

20.



We will evaluate Dr, (a) - DF; (QL for a given o , according to

(5.4) DF; (Py D oy - ¢" (p;De)]sf= Fp Da) ty Fe?) y

which is readily obtained from (k.1lka),

In many applications, each component function 9, depends only upon a

re few of the parameters CRNEE and therefore its derivatives with respect to
- sam

the other parameters will vanish. Those vanishing derivatives will produce

m-columns of zeros in the tensor Dd. In order to avoid a waste of storage

« and useless computation with zeros it 1s convenient to introduce from the

outset the k x n incidence matrix E = (est) . This matrix will be defined
as follows:

C_

© = 1 1ff parameter @, appears in function Ps ;

i e. = 0 otherwise.
Jt

<

- We shall also call p the number of nonzero derivatives in D3 :p = )} © .
£53

The nonzero derivative vectors can then be stored sequentially 1n a bidimensional

C array B(mxp) . In our implementation we chose to store the nonzero m-columns

— varying first the index corresponding to the different differentiations, and then

that corresponding to the different functions. This information can then be

C decoded for use 1n algebraic manipulations by means of the incidence matrix E ,

We now introduce some notation in order to describe the compressed storage

of the nonzero columns of the tensor D% in a more explicit fashion. We

L define, for t= 1,...,k ,

3 8, = { set of ordered indices for which © 5 A 0 , J=1,e..,n};

L
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ow. (a)

\ We write the matrix B in partitioned form

B = [BysByseet,B] ,
| where
N

B= [4,. 54, ]t p FLL | » - Is 9Te A AE

A step-by-step description of the computation of Dry follows.
“

We assume that the rank of &(g) is computationally determined and equal to

r < min (m,n) .

. a) Compute &(x) , D(a).
b) Form the m x (n+p+! ) array

G =[8(x); x; De(@)] =1[a; xy; Bl.

L

c) Obtain the complete orthogonal factorization of A (cf. Section 3):

I A _

o | o O
- - =I rxr

Also v=; C=QB

C ~ : : : :

(T >» Vo and C will be s al in the array G ). Note again that (see Section 3):1 - 0 10

Yop = < .

d) Get the intermediary values:

C

~ok-
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E _ 0 0 (i.e., Remember that the nonzero information
D = « C of D is stored in the last P .5lumns

| 0 Ler | and last m-r rows of G);
. ~

+ T T v Vv r
x=aly-z |= oo APT

1% Yo | } mr

u i T T T 0 T 0
¢) U = (PD2) y-D& Q = Dev =o09 |=

nxk 0) T ~ v
m-x ~p

(transposition in the tensor D§ refers to transposition within the "slabs"

“ corresponding to the different derivatives, _,4 must be interpreted adequately

when decoding the information from the compressed storage array G ; the

appropriate ALGOL-60 code for computing U with our storage convention would

C be (assuming that C = QB is stored in the same place B is :

nlé— n+1 3

p LE nt
S

for té& 1 step 1 until k do

i for j e 1 step1 until n do
if E[j,t] = O then Ufj,t]e 0 else

| begin L&I+1 ; acumé&-0;
for i¢& nl step 1 until m do

~ acumé~ acum + G[i,L] X G[i,n1] ;

Ulj,t]e—acum

end ; ) .

f) Compute S =% . U .
nxk

Solve the k , rxr lower triangular systems:

TTW=2 , Where S contains the first r rows of S .
rxk

-25-



| Store W in the first rr rows of the mxk array B . Compute Dex and

store the nonzero information in the last m-r rows of B .

g) Finally, the mXk matrix B is obtained as:

Be DF Q B&B Box = -Q'Ba y = = + UX) = - ‘

We emphasize the systematic use made of the triangular orthogonal decom-

position of the matrix &(¢) . We also warn the reader about the correct

~ interpretation of the algebraic operations 1n which any tridimensional tensor

intervene, as we exemplified 1n (e) .

(\

\

C

«

(.

C
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: 6. Numerical experiments.
| We have implemented three different algorithms based on the developments

- of the previous sections for the case g(g)= a and rank& = n .

The methods minimize the variable projection functional r,(2) = Ie; tl”
: first, in order to obtain the optimal parameters 2 / and then complete
~ the optimization according to our explanation in Section 2. The algorithms

differ in the procedure used for the minimization of r, (a).

‘ Al. Minimization without derivatives. je use PRAXIS, a FORTRAN version of

§ a 'program developed by R. Brent [4], who very kindly made it available to us.

All that PRAXIS essentially requires from the user 1s the value of the functional

bo for any a. This is computed using the results of Section 3. 1, fact, the

i user has only to give code for filling the matrix & , . any a , and our
program will effect the triangular reduction and so on. It turns out that

L many times (see the examples) the models have some terms which are exclusively

linear, 1i.e., functions 9: which are independent of ® . Those functions
~ produce columns in 3 (a) which are constant throughout the process. If they
i are considered first, then 1t 1s possible to reduce them once and for all,

| saving the repetition of computation. This is done in our program.

A2. Minimization by Gauss-Newton with control of step (see (5.2)).

The user 1s required to provide the incidence matrix E and the array

of functions P; and non-vanishing partial derivatives: G . gee Section 5
for a more detailed description.

A>. Minimization by Marquardt's modification, zs explained in Section 5 with

~ -27=



3 Ly = I . User supplied information is the same as in A2,

Ee Test problems. Problems 1 and 2 are taken from Osborne [14], where the

necessary data can be found.

~ Pl. Exponential fitting. The model is of the form:

- ~Qy t - a ~a,t
hy (2s 2 t) = ay + ape tase

-o.t

The functions ®; are obviously Py (a 3; t) = 1, Dy NE t) =e J , j=1,2 .

So the different constants, in the notation of Section 2 are: n=3, s=3, k=2 .

For the problem considered, m=33. The number of constant functions: NCF =1 .

L. The number of non-vanishing partial derivatives: p=2 .

. In Table I we compare our results for methods Al, A2, A3, and those

obtained by minimizing the fy11 functional r(a, a) ]
b

L

P2, Fitting Gaussians with an exponential background.

| a, t ay (tot) ey (ta) a, (t-o )
h(a, IE t) = a,e + ae + aze 5 + a) [ .

L The functions 9 are:
= 1 (2; t) = © ’ Ps; (2; t) =e / 2 J=2,3,k4 .

Thus: n=b, ssh, k=7, m=65 , p=7 .

Results for this problem appear in Table II.

P3. "Iron Mossbauer Spectrum with two sites of different electric field gradient

and one single line [21].

_08-



The model here 1s the following:

n (a, o¢;t) =a, + a.t +a £°
In ~~ 1 2 3

B |
L + - ~0. -2 0. 5a, th2 + a, Sa, ty2
P= Cl Te

—a I 3 I 2
|

- a. Be EERE ————— + ——————————————————————————————

p) @), + 0.5. ~ ty2 ¥ - Oba. ~ t,2
| % iy \ os

- a
6 a, - £2

“ 1 “| La |*8

. J : .

Clearly, ®, (2 t) = t9, j=1,2,3 ; and¢) 5 » @g are the functions
L. inside the square brackets.

! Here: n=6, k=8, NCF=3, p=8, m=188, s=6 .
For this example we wish to thank Dr. J. C, Travis of NBS who kindly

"\ supplied the problem and results from his own computer program.

| Comparisons are offered in Table III.
The qualitative behavior of the three different minimization procedures

| used 1n our computation follows the pattern that have been expounded in recent
comparisons (Bard [1]). Gauss-Newton is fastest whenever it converges from

_ a good initial estimate. As is shown in the fitting of Gaussians (Table II),

] if the problem is troublesome, then a more elaborate strategy is called for.

. Brent's program has the advantage of not needing derivatives, which in this

case leads to a big simplification. On the other hand, it is a very conservative

program which really tries to obtain rigorous results. This, of course, can

lead to a long search in cases where it 1s not entirely justified.

As a consequence of our Theorem 2.1, and of our numerical expc: nce, we

strongly recommend, even in the case when our procedure is no’ used, to obtain

-29-



initial values for the linear parameters when g(a) = a; by setting

: | a’ . 8" (of Yy . This is done in our program for the full functional and in
a the program of Travis with excellent results.

The computer times shown 1n Table I and Table II correspond to the CPU

times (execution of the object code) on an IBM 360/50. All calculations

> were performed in long precision; viz. 1h hexadecimal digits 1n the mantissa
) of each number. We compare the results of minimizing the reduced functional

) when the Variable Projection (VP) technique 1s used with that of minimizing

~ the full functional (FF) for various minimization algorithms. In order to
- eliminate the coding aspect, we have used essentially the same code for

minimizingthe two functionals. The only difference was in the subroutine

a DPA which computes in both cases the Jacobian of the residual vector.

3 In the FF approach, the subroutine DPA computed the m Xx (n+k) matrix

| B as follows: the first n columns consisted of the vectors 2; (2) while
Se the remaining columns were the partial derivatives

n

i= iN (vy - ¢(2)a) = - 2 a op; (@) , (1=1,2,...,k)
C Our J=1 ET
N These derivatives were constructed using the same information provided by the

_ user subroutine ADA. We also obtained from DPA in the FF case, the automatic

‘ initialization of the linear parameters, viz. a’ = CY )Y,
—- For the numerical examples given here, the cost per iteration was somewhat

higher for the VP functional. However, we see that in some cases there has

“ been a dramatic decrease in the number of iterations; this has been observed

2 previously (cf. [12]). Thus, in these cases the total computing time is much

more favorable for the VP approach. This was especially true for a.. three

‘

-30-
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: methods of minimization when the exponential fit was made and when

| BN Marquardt's method was used in the Mossbauer spectrum problem,
| For the Mossbauer spectrum problem, we used two sets of initial

values. We used those given by Travis [21], (say) 8°, and also

| B° ~ B° I 0.05 ge. For 8° , the value of the functional is 3.04k67X 108

: while for Bg, the value of the functional is 6.405% 109, the final
| estimates of the parameters yielded a residual sum of squares less than

3.0440 x 10° . When Brent's method was used on the full functional,

‘ the method did not seem to converge, put for the reduced functional,

Brent's method converged reasonably well, 1p fact, after twenty minutes

Brent's algorithm applied to the full functional with B° did not

- achieve the desired reduction in the functional.

The results we have obtained 1n minimizing the full functional for the

- first two problems using the Marquardt method, and those of problem 3 with

Newton's method and 8, are consistent with the results reported by Osborne
and Travis.

i From a rough count of the number of arithmetic operations (function and

| derivative evaluation per step are the same for both procedures, so that the
work they do can be disregarded), 1t seems that for almost no combination of

the parameters (m, n, k, p) the VP procedure will require fewer operations

per iteration than the FF procedure. It is an open problem then to determine

a priori under what conditions the VP procedure will converge more quickly

than the FF procedure when minimization algorithms using derivatives are used.

Another important problem is that of stability, The numerical stability

of the process and of the attained solution must be studied. By insisting on

the use of stable linear techniques, we have tried to achieve an overall

numerically stable procedure for this nonlinear situation. Since the standards

3]



of stability for non-linear problems are ill-defined at' this time, it 1s

SE hard to say whether we have succeeded in obtaining our goal.

"

{
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Table I

Exponential fit.

HY Number of Number of Time

Method Functional Function Derivative (seconds)
Evaluations Evaluations

FF 1832 —_ 191.00

« Aq
VP am 100 — 9.00

FF 11 11 5.05

Ao
VP L L 3,20

“ SS

FF 32 26 12.55

A
VP L L 3.12

A AY, r (RB)< 0.5465 x 10-4C r(a, a) o\@) < 0.5 X 10-

.

Table II

Gaussian fit.

~ Number of Number of
Method Functional Function Derivative Time

Evaluations Evaluations (seconds)

C ee__

FF 11 9 23.35

_ Az
VP 10 8 26.82

C

r(8, @) , r,(@) < 0.048
e

Methods Ay and A, were either slowly convergent or non-convergent.
«
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Table III

| Mossbauer Iron Spectrum.

Number of Number of |

Values Evaluations Evaluations (seconds)

FF ° *
1 °

VP 8 65 0 70.00

« .
A, FF B i N 3h, 3h

vp B } 41.64

FF B 7 7 52.27

to VP A 6 6 59. 60

As FF ¥ 16 6 118.22

L VP £ 3 3 55.35

i FF 3 8 18 130.50
VP Bg 6 6 61.92

r®, 8), r,(8)<3.0444 x 10°
CC» T

(B =(80, 49, 5, 81, 24, 9.5, 100, 4) ) |

¥ Did not converge in finite amount of time. |

ne
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- Credx) (IVER PRUGKAM FUR USF OF VAKPRO IN PROBLEM 1: FITTING OF TWO
3 C EXPONENTIALS AND UNE CONSTANT TERM.

IMPLICIT REAL*8(A-HoU~Z)

| VIMEMSTUON Y(200) 3 TU2C00) yALF(20)4AC(20)
sXTLoNAL ADA

CALL LUZ R(NgMy KGa NUFUNg Ye To ALF)

| CALL VARPRUOINy My KGyNCFUN, Yo Ty ALF, AC4ADA)
CALL EXIT

| “NO
t---""~""~"""""°""-" "T°" "T°" "T°" "T°" °C" CCT CTT TTT TT TTTTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT mmm

SUBROUTINL VAKPRG UN, MeyKGyNCFUNsYs ToALF3AC ADA)
IMPLICIT KEAL*B{A-He0-2) PR |
CUMMIUN A(200920) 5 AA0200910)9E(20920)9B(220920)UKK(200),

* BETA(20),P
INTEGER P

LIMONSIUN UKL{Z20),B5T1(20),2(2G),DR(20,20),ZPR(200),DEL (20)
* 2 BLEA(KG)ALF1{20)0AC(20)YIM),T(M)-
EXTERNAL ADA

NGNLINcARLcCAST SQUARES PROGRAMFOR LINEAR COMBINATIONS OF NONLINEAR

 ¢ FUNCT IUNS.,

LC WRITTEN NFURTRAN4 - LEVEL G. INTHIS SUBROUTINE THEREARE WRITE
C STATEMENTS USING UNIT3 AS OUTPUT. THAT UNIT NUMBER IS INSTALLATION

SY DEPENDENT

| C MINTMLIZLZATICNSYUSBUORNE-MARQUARDT ALGORITHM (OR GAUSS-NEWTON WITH STEP
C CUNTHOLUOYMAKINGTHE SMALL CHANGES INDICATED IN THE SECOND LINE AFTER

. C INSTRUCTIUNLABELEDS9s ANDAFTER LABEL 61).
VL Set YTHEDIFFERENTIATION OF PSEUDOINVERSES AND NONLINEAR LEAST SQUARES

L C PRLUCLEMS WHIUSEVARIABLES SEPARATE*BY GENE H. GOLUB AND V.PEREYRA,
C STANFURD Ue TECHN REP 261 MARCH 1 9 7 2

IC t= NUMBERUF O8SERVATI ONS.

tL N = NUMGTR OF FUNCT | UNS.
C Ki = NUMBER UF NUNLINFAR VARIABLES.

- C NCFUN = NUMBER SFCONSTANTFRFUNCTIONS,ILE. FUNCTIONS PHI WHICH DO NOT
CEPENDUPON ANY PARAMETERS ALPHA.THEY SHOULD APPEAR FIRST.

*L Y = M=- VeCTuUR JF UBSERVATIONS.

( T = 4=VECTURIFINDEPENDENT VARIABLE,

iL [= ANZKG)INCIUVENCE MATRIX .E(IsJ) =1IFF VARIABLE 3 APPEARS I N

FUNCTIUNITl. P= SUMO FEl(ILJ).
AL = KUVECTIROF INITIAL VALUES. ONOUTPUT IT WILL CONTAIN

THE OPTIMAL VALUES OF THE NONLINEAR PARAMETERS.

AC = \N =VECTUR UF LINEAR PARAMETERS (OUTPUT).
HR AR AT XT AR ARR RAR 3 Xe ak de Ae era aoe de dk of ak kok de of ole a de ole ok de sk afk ok dae sede ae sie lol sie Skok of 3c alk ok of dK ode de ok dk ole ak oe oak ok ok dk ok

CUNT IE

C THE US Ed MUSTPRIOVIDEA SUBROUTINE THAT FORGIVEN ALF WILL EVALUATE

C TH: FUNCTIONS PHI AND T H E | RPARTIAL DERIVATIVES D PHICI)/0D ALF{(J), AT THE
SAMPLC. POGINTSST . THE VECTUR SAMPLED FUNCTION PHI (I) SHOULD BE STORED IN

C Fhe I-TH CULUMN OF THE (MX (P+N+1)) MATRIX A. THE NONZERO

C Ui RIVATIVESCULUMNVECTURS SHOULD BE STORED SEQUENTIALLY IN THE MATKIX A

STAKTINGINTHEC OL UMNN+2, IF ITER=0 (THE FIRST TIME THIS SUBROUTINE IS
CALLED)oy THEUMATRIXESHOULD BE FILLED. WITH THIS MATRIX THE STORAGEOF
THe CERIVATIVESISEXPLAINEDIN THE FOLLOWING CODE:

L = N+1

DU 17 Jd=1 KG
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TC DU LO I=ly4N
5 C IF (E{TI+J))10,10,11

| c 11 L=L+1

C AlKgL) "=D PHI(I1)/ DALF{J)(T(K))
vo Cc 10 CONTINUE

| C THE N+1-TH COLUMN If AIS RESERVED FOR THE VECTOR OF OBSERVATIONS Ye.
| C THE SUBROUTINE HEADING SHOULD BE: ( ISEL =0 : FUNCT. AND DER, MUST B E COMP

C ISEL. = -1 : ONLY FUNCTIONS MUST BE COMP. ISEL =13:0M.Y DER, NECESSARY)
C

| L
. C SUBROUTINE ADA(NyMyKGyAyEy ITERyPyTyALFy ISEL)

C

C

C (ITER IS ANITERATION COUNTER PROVIDED BY VARPRO).

C If IS ASSUMED THAT THE MATRIX PHI (ALPHA) HAS ACWAYS FULL COLUMN RANK
C ASMA hha b tibia d edd dt ddd Sb LORS ETRE SRA- ITeR=0 To To

Cxkx%xx%xTH: THREEFULLOWING PARAMETERS ARE USED IN THE CONVERGENCE TEST (BETWEEN

Cc INSTRUCTIONS NUMBERZ200 A ND 400)2EPS1 IS A RELATIVE TOLERANCE FOR
ul DIFFERENCE BETWEEN TNO CONSECUTIVE RESIDUALS; ITMAX IS THE MAXIMUM

C THE SIZE JF THE CORRECTION. EPS2 IS A RELATIVE TOLERANCE FOR THE

C NUMBERUFFUNCTION AND DERIVATIVE EVALUATIONS ALLOMED.

L_ | TMAX=%0
EPS1=10D-4

=PS2=50D-6

| Chk kb
KG1l=KG+1

D O 101I=1.M

3 10 AU] N+1)=Y(1)

L 2 CALL UPAINJMyKGoNCFUNyITERSITERsRsYoToALFoADA) ee ee aaa
CT=1.Du mm mm mm mmm om om ee

| *XWRITE(3,104)1 TERR
1C=0

; IF{ITER) 39543
5 CONTINUE

- XNU=0,

Cofkik

| CadokdE[EF GAUSS-NEWTON IS DESIRED REMOVE THE NEXT FOUR (4) STATEMENTS (SEE
. C ALSU LABclL 61) .

4 XNU=XNU+3(1 oJ) ¥%2

XNU= DSQRTIXNU/ (M%Ki5))

WRITE(3,105)XNU

Cex DUCTIUN OF 3 TOTRI ANGULAR FORM,
3 00 30 I=1,KG

SGMA=0 :

11 SoMA=SGMA+B( 11, I) %%k2

SOMA=ISIURTISGMA)

IF(B(Iy1))12412,13

GO Tu 14

~40=



LC
ET 1s SG=1le.

3 14 UKLI(I)=5uL%{SGMA+DABS(B(I,1)))
F BETL(1)=1e/(SGMAX(SGMA+DABSIB(1,1)))) g
Co BOI oI) =~=SG*SGMA

[L=1+1

= 23 Du 1D [2=114K061

oC ACUM=UKtI) *B(1412)
LL - Si 16 13=]1.M

lo ACUM=ACUM+B(13,1)*B(13,12)

15 Z{12)=0ET1(I)*ACUM
ul 30 J=11,KG1

; BllyJ)=801,d)-UKLII)*2(J)

CT DO 30 Je=11,M
30 BlI24J)=81124d)-Bl1I2,1)%2(J) -—t

Co CHuxxx SAVE TRIANGULAR FURM AND 2°,

CC 40 I=1.K6
BU 40 Js19KG |

40 OR(19JI=B(19Jd)
oC dU 4] I=leM

41 (PKRI1)=B(]4KG])
. LArxxsxREDUCTIuNe SECOND PHASE.

| bd [FLEXNU +tQe 0eDQIGO TO 300 ]
BDU ol K=s1KG6G

Kl=K+]

Te BIMAK 9K )=XNU | |
JU 4d J=K]1 KGL | |

472 BUIMtKeJI=0.D0

Md Bl J=14K

20 SOMASHSGMA+D(JM GK ) R%2 |

Co SGMA=DSURTISGMA)
[FLOIK KI )IDLeD02453

GU Ti 54%

53 8G=1l.
. 954 UK1(K)=SG*(L56MA+DABS(BKK) ))

3 TI{K)=1e/(SGMAX{SCMA+DABS(B(KsK))))

BAK K)==5G*SGMA

JU 59 JsK1l,KG1 | |

| ACUMFzUKLIK)I*B(K, J) |
[H(K +tQe 160 TO 55

Ke=K~1
. .

MH) 2926 1=1l.K2 :

IM=]+M

Do ALUMSACUME2(IM, K)*8( IM, J)

95 ZS) =LeTIAK)*ACUM

BU 57 J=K14K061

n CR d I= {Ko Jd)~UKL1(K)*Z( J)
Vi H7 114K :
r=n8+1

2f  AMigd)si(dled) =B(MI K)XZLU)

) su CUNTINUE
Cxxxx%xSULVE FUR DELTA-ALF.,

a duu Ng=KG=1 |
: DELIKG)=G{KG¢KGl)/BIKGyKG)

iy

.



San ALFIIKG)=ALF{KG)+DEL KG)
: CU 53 [=1,N2
3 11=KG~1

[2=11+1

| ACUM=B(11,K51)

Fo DU 59 J=12,K6 | | |
: 59 ALUM=ACUM=-B(I1,J)%0EL(J)

_ DLLEIL)=ACUM/3(I1,11) oo
58 ALFI(I1)=ALFUI))+DEL(]1) |

| Cxxxx%xGET NEW RESIDUAL.
310 ITER=ITER+]

« ISEL=-1

WRITE(3,103)ITER |
| WRITE(358U0)(ALFL{1),1=1,yKG)

IF{ITER GT. ITMAX) GO TO 400
DU 900 [=1eM |

900 A(IJN+1)=Y (I)

CALL DPA(NyMyKGoeNCFUNg ITER9ISELsR1yYoToALF14,ADA)
IC=IC+1 | |
WRITE(3,107)IC,R1 }

> IFIR-R1)161460,60

61 CONTINUE
. C¥exxxIF GAUSS-NEWTON IS DESIRED REMOVE THE C FROM THE NEXT SIX (6) STATEMENTS
LC JFIXNUILI10,1114110

Cll] TT=0.,5%7TT | |

oC IF(TT LT. 5.074)G0 TQ 400
| C LO 112 1I=1,KG6
C112 ALFI(I)=ALF(})+TT*DEL(])
.C GU TU 310 |

\ Cxdktok |
L110 XNu=1.5%XNU | |

WRITE(3,106)XNU a

| C*xxxkxKETRIEVE TRIANGULAR FORM OF FIRST PHASE. |DU 62 I=14K06

D0 62 J=1.KG - |
62 BlI4J)=DR(1,J} | | |

D0 63 I=1.M |

~ 63 BU14KGLI=ZPR(]) | |
ol Til S90

0  LEPS=R~-R] | |~ K=K1

| ALF(I)=ALF1(I)
ACC=ACCH+ALF(])*%2

65 DAC=DACH+DEL(])**

CxxxxxIF IC |S CATR THAN 1 THENNU HAS BEEN INCREASED DURING THIS
IFUIC JEQe1 ) XNUY=nQ.5%XNU
WRITE(39y200)ICeXNU
ACC=DSQKT (ACC)

DAC=0LSQRT (DAC)

AC1l=0AC/ACC

WRITE(3,108)AC1

2



It (GAC oJLte ACC*EPS] AND EPS ,LEe R¥EPS2))

x CUT dao

[SHEL =1

Gi, TJ 2

4.19 Nl=N-1

ACIN)I=A(NgN+L)/A(NSN)
ii (N eile 1)GUTL 1.35

Hu 130 I=1lgN1
I1=N-1

{(2=11+1

ACUM=A(1]14N+1)

120 ACUM=ACUM=-A(I1,J)*AC(J)

120 AC(11)=ACUM/ALI1,11) - 9

135 WKITE(3,209)

WRITE(39210)(AC(I)eI=14N)
WNRITE(3,215) ALF(I)eI=1,KG)

« WRITE (3,209)
5C0 RETURN

1 0 3FURMAT(1HO,? ITER=%,13,° PARAMETERS?)

104 FORMAT(1HQO,? RESIDUAL? y159D015.7) .
105 FORMAT{(1HO.* NU=?'4D15.7)

106 FORMAT(1HOs' N U WAS INCREASED TO®*,D15.7)
( 1 37 FORMAT1HOs 159" NEW RESIDUAL'$D15.7)

15 3 FURMAT(1HO.' THENORM OF THE RELATIVE CORRECTION 1S=%',D15.3)

20 FURMAT(1HGe1S,’ NUIS?* D157)
2099 FOSRMAT(1HO,50('*%))

210 FUKMAT(1HO,' HWEIGHTS'//7(4D15.7))

21H FURKMATU(1HOs' NONLINEAR PARAMETERS®//14D15.7))

Yq BU0 FURMAT(1HO 94020410)
LNT

C

(mm rm ct rr rr cr a rr re cr cr rr er > > aon = = = oo mr on

L

SUBKUUTINE DPA(NyMeKGyNCFUNyITER ISEL9RyY» ToALF9ADA)
C Cxxxx%xUMPUTATION OF THE DERIVATIVE OF THE VARIABLE PROJECTION.

IMPLICIT REAL*8(A-Hy0-2)
CMHC A(200920) 9AA(2004910)9E(20,5,20)9B(220,20) yUKK(200),

* pETA(Z20)oP

INTEGER P

DIMENSION ALF(KG)9Z(120)4X(20),U(20020)9Y(M),T(M)
L EXTERNAL ADA

CALL ADA(N MyKGyAsELITER)PeT,ALFyISEL)
Nl=N+1

Ng=1

IF{ISEL.GT0)GO TO 111

IFU{ITER «eGTe OJINZ=NCFUN<+1

L DO 11C I=14M

LG 11D J=NZ2eN

110 AA([,Jd)=A(14J)

C*x¥xx3xcODUCTIUN UF A TO TR] ANGULAR FORM, COMPUTATION OF ¥=QY9 AND
C SELECTIVE COMPUTATIONOFQB ACCORDING TO VALUE OF ISEL.

1 1 10J33 I=1¢N

Il1i=1+1

IF{ISEL GT.) GO TO 22

43

bh



2 [FUITER «Te O eANDUe | «LE NCFUN)GOT O 7
SoMA=0,

D0 1 1 11=I,M

Ll SGMA=SCHMA+AL11, 1 )%x%x

. SOGMA=DSQRT(SGMA)

N Ir (A(I41))12,12413
12 Soe=-1.

Gd Tu 14

7  [1=NCFUN+1

13 GU Tu 20

14 SG=1.

UKK{I)=SG*(SGMA+DABS(A(I,1)))

SETA(I)=1./(SCGMA®(SGMA+DABS(A(I,1))))
A{Il 3I)==-SG%SGMA

I1=111

8 IF(ISEL)Z20421422
20 NN=N1

tC GO TO23
21  NN=N1+P

GOTO 2 3
X 22 NN=N1+P

I1=N+¢2

23 0015 12=11sNN

L ACUM=UKK(I)*A(I,12)
” DO 1 4 I3=1]11.M

lo ACUM=ACUM+A({I3,1}*A( 13, 12)

| 15 Z(I2)=bETA(I)*ACUM

D3 1 7 J=119NN

AlI,J)=A(14J)-UKK(I)*2(J)

DU 1 7 12=1114M

" 17 A(I124J)=A(125J)-A012,1)%2(J)
30 CONTINUE

IFCISEL«GT. 0)GO TO 50

| R=0,
DU 40 I=N1,M

y 40) R=R+A(I4N1)**2

| IF{ IStL JLT. QO)RETURNC**xxkD-SNAKE IS CONTAINED NOM IN A(loJ)ol=NtlgeeesM3J=N*25,.c. N+P],
C CUMPUTATIUON OF X.

| 50 N2=N-1X{N)=A(NysN1)/A(NgN)
IFI(N .EQe 1) G O TO 310

D0 300 I=1¢N2

| [1=N-1
= [2=11+1

ACUM=A{I1,4N1)

VU2 0 0J=12¢+N

- 200 ACUM=ACUM-ALIl,J)*X(J)

3CG X{Il)=ACUM/AlIls11)
© C*¥%x¥x%x*COMPUTATIONO F U.

310 L=N1
DO 80 J=1,KG

DU 60 I=1,N

[IFLE(I,Jd))T0eT0,71
70 UlILed)=0.

“Yh.



[ ~~ seo TY 60
a [1 L=L+1
: ACUM=0,

| Dil 600 K=N1eM

| 602  ACUM=ACUM+A(K,L)*A{KoN1)
| | JT 9g J) =ALIM
j ou CuiNT INUC

| CFxxXCOMPUTAT TUN UF WwW (STORED IN UPPER PART O FB).

DU BO J=14,KG
S{1ed)=U(19J)/A01,1)

| DO 80 I=2,4N
ACUM=U(TI44)

{1=1-1

DL7 9 L=1l,11 - =

7 9 ACUM=ACUM=A(L,I }¥B(LyJ)
Bu BIIesJ)=ACUM/A(I,I)

CHEXEECOMPUTAT ION OF D.SNAKE* X{STORED IN LOWER PART OF 8B).
“ DO9 0I=N1l,M

L=N1

BU 9 0J=1,KG

- ACUM=Q,

0 0900 K=1yN

IF(E(KyJ))900,900,92
3 2 L=L+1

ACUM=ACUM+A{T,L )*X(K)
900 CUNTINUE

90 BlIyJ)=ACUM

© Cxxx¥xFINALLY,DPA(ALF)xY IS PRODUCED AS QTB8.
DO9 5 Kl=1yN

q K=N-K1+1
. DU 93 I=1,KG6

K2=K+1

ACUM=UKK(K)*BI{K,I)
L DO 94J=K24M

3 4 ACUM=ACUM+A(JK)*B(Js])
' 93 ZUI)=BETA(K)*ACUM

| DO 96J=1yKG
| B(KyJ)=B(KoeJ)-UKK(K)*Z(J)

DO9 61I=K24M

| 9 68(LaJ)=8(I,J)-A(14K)%®Z(J)
he 9 5 CUNTINUE

Cxx¥xk%xCUMPUTATION OF ETA=0RTOGONAL COMPONENT OF Ye RESPECT OF A.
DO 120 I=1,M

§ ACUM= Y(I)

119 ACUM=ACUM—AAL 1l.J)*X{(J)
120 8U [¢4KG+1)=ACUM

" RETURN

NO

iC

Cm mm re ee eee
C

SUBKUOUT INE ADA{NsMsKGyA Eo ITERy Py ToALF 4 ISEL) }
C OSCGRNE'S EXPONENTIAL FITTING.TWO EXPONENTIALS AND CONSTANT TERM,

IMPLICIT REAL*8({A-H,0-2Z)

© =45-



pn - INTEGER PO
or DIMINSTON A(200420 Js EC(204520) 0 ALF (KG) TM)

L=0

IF(ITER +GTe G)GU TU 5

. Ckxxxx[N THIS CASE THE INCIDENCE MATRIX E IS:
C

C ¢ 0

C 1 O

L GC 1

| C

E(l,1)=0C.

| tE(l,2)=0.

| E(591)=0. )

P=2

DO 4 I=1,M

4 All,1)=1.0D0

5S IF(ISEL GT. 0)GO TO 16

DUO1 0 I=1¢M

All 2)=DEXP(-=ALFI{L+1)%T(1))
1 0 AlI3)=DEXPE(-ALF{L+2)*T(]))

C IF {ISEL)14,15,16
1 Db DO 171I=1¢M

A(T y5)=-T(I)*DEXP(-ALF(L#1)%2T{(1))
1 7A{I46)=-TUI)*DEXP(-ALF(L+2)%*T(1))

| 14RETURN

15 D0 20 I=1,M

ALLy5)==TULI*Al1,2)
. 2 0 A(T 96)=-T(I)*A(I,3)

RETURN

END

| C
Crt.

CC

| SUBRUUTINE LEER(NyM9KGyNCFUNgYsTy ALF)
IMPLICIT KEAL*B8(A-H,0-2)
DIMENSION Y{200),7(200),ALF(20)

| Cx kk EER REAUS THE DATA.SEE FORMATS 1004102.

Lo REAU(L91009 END=500)NyMgKGyNCFUNp (TLID) 9 Y(I)oI=1,M)
100 FORMAT(415/(2D15.7))

WRITE(391C1INgMaKGoNCFUN9 (TI T(I)pY(I)oI=1,M)
101 FORMAT(1H14' NON LINEARLEAST SQUARES PROBLEM®*//* NUMBER Of- FUNC

- *TIONS=" ,13,3X ? "NUMBER OF OBS
*ERVATIONS=%,13// * NUMBER OF VARIABLES =%,13,'NUMBEROF CONSTANT
* FUNCTIONS=',13// ’ |

*T(1) Y{I)*/7/71]15,2020.7))
N1l=1 ]

| Re AD(Lly 102) (ALFUI)y1=N1,KG)
102 FUORMAT(4D20.7)

WRITE(3,103)(ALF(])yI=N1,KG)
103 FURMATU(LIHO,? | N1T1 AL NONLINEAR PARAMETERS®*//714D20.7))

WRITE(3,104)

104 FURMAT |( 1HOU 5G (" %2))

46.



~ RETURN
500 CALL ©XxIT

! END

]

|

|
;

.

~
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I NUN LINEARULLCASTSQUARES PROBLEM
NUMBER UF FUNCTIONS= 3 NUMBER OF USSERVATIONS= 33 |

._ NUMBERUF VARIABLES = 2 NUMBER OF CONSTANT FUNCTIONS= 1

T(1) Y(I)

Oe 0 . 844000000 0

2 0e10CCCO0D D2 Ce9080000D0 ©
3 Oe 20000C0D 02 0.93200000 oo

: 4 0.3200000D 02 0.93600000 oo

a 5 0.400000CD 02 0.92500000 00

6 0 .5JG0000D 062 0.90800000GO

7 0.60000000 ©2 0.88100005 0Q,
8 Ces7000000D0 2 0.85C0000D0 0
9 0.80000000 02 0.81800000 oo

10 0.90000000 02 0«7840000D0 ©

g 11 0.1000000DO0 3 0.75100000 oo
12 0.11000000 03 0718000000 O

13 0.12000000 C3 0.6850000D00

. 14 0.13000000 03 0.6580000D 00
15 C+ 1400000D0 3 0.6280000D0 ©
16 0.13000000 03 0603000000 0

C 17 0.16000000 0 3 0.58000000 0O0

18 0. 17C0000D 03 ~ « 55800000 00

: 19 0.18000000 03 053800000 00
; 20 0«1900000D 03 0652200000 00
~ 21 0.20000000 03 0.50600000 OO
| 22 0.21000000 O03 0 «49000000 00

\ 23 0e« 22000000 03 Ce4780000D 00
L 24 .  0.23000000 03 0.4670000D 00

25 042400000D0 3 0.45700000 00
26 0250000000 3 0.44800000 00

| 27 0.26000000 03 0.43800000 00

28 Ca2700000D0 3 043100000 00
29 0.2800000D 03 042400000 00

30 0.2900000D 03 0.4200000D0 00
=~ 3 1 0.300~0000 03 0.41400000 OO

32 0.31000000 O03 0.41100000 00
33 032000000 03 0«.40600000 00

INITIAL NONLINEAR PARAMETERS

| 0.1000000D-01 0.20000000-01

babi dd LL EL EE EE EE EL Te Tr TT LT] Puy

RESIDUAL C 0.4917861D0-02

NU= Ce2444940D Cl

ITER= 1 PARAMETERS

0.1295068873D0-01 0.2183209327D0~-01

1 NEW RESIDUAL J05609383D-04

1 NU [5S 0.1222470D 0 1

THE NORM UF THE RELATIVE CORRECTION 1IS= 0.1370 00

_hR



ITER= 2 PARAMETEKS

Z 0.1292835923D-01 Ge21999673600-01
: I NEW RESIDUAL  0.54654430-04

CC 1 n~U IS 0.6112350D 0C

© THE NURM OF THE RELATIVE CORRECTION IS= 0.6630-02

j [TEk= 3 PARAMETERS

_ 0.12878376470-01 0.22100227510-01

1 NEW RESIDUAL 0.5465016D-04

INU IS 0.3056175000

C THE NORM OF THERELATIVE CORRECTIUN IS= 0.4390-02

ITER=4 PARAMETERS

0.12868316320~-01 0.2212108054D-01

L 1 NEW RESIDUAL 0.5464895D-04

1 NU 1S 0.1528088D 0 0

{THE NORM OF THE RELATIVE CORRECTION IS= 0.905D-03

J HARK 3 a ok dea kk ok 3k dk dof 3 si a of ol ok ae fe fe ok si of ok of of Reed ale ok ok 3 kak ak ok ok dk ok

© MEIGHTS

.0.37541320 00 041936239D Ol =0.14650820 01

NONLINEAR PARAMETERS

y 0.1286832D0-01 0.2212108D-01
| Fe 203 feAe ea oe Ae deal a de oa ol ge ak coke see ole doe oe ook kof dal oR A ol ok oR al ok kk

49.


