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ABSTRACT

For given data (ti ’ yf) ¢ d=lyeeo,m

of nonlinear models of the form

we consider the least squares fit

n
Fla , o ;t) = J):1 85(a) oy(g 5 t) , g er®, g R"

For this purpose we study the minimization of the nonlinear functional

& 2
I'(E', 2:) = 121 (yi - F(?J o, ti)) .

© It is shown that by defining the matrix [«I»(a)}i j= 9 (@ ; t.) , and the
~ 3, J~ 1

modified functional ry(a) = | y - Qg)i'*(g;) Y ng ' it is possible to
optimize first with respect to the parameters o , and then to obtain, a
posteriori, the optimal parameters g The matrix §+(g) is the Moore-
Penrose generalized inverse of #(¢) , and we develop formulas for its

Fréchet derivative under the hypothesis that Qgg) is of constant (though

not necessarily full) rank. From these formulas we readily obtain the deri-

vatives of the orthogonal projectors associated with QQ!) , and also that

of the functional g, (@) . Detailed algorithms are presented which make exten-

sive use of well-known reliable linear least squares techniques, and numerical

results and comparisons are given. These results are generalizations of those

of H. D. Scolnik[20].



1. Introduction

The least squares fit of experimental data is a common tool in many

applied sciences and in engineering problems. Linear problems have been well-
studied, and stable and efficient methods are available (see for instance:
Bjorck and Golub [3], Golub[8]).

Methods for the nonlinear problems fall mainly in two categories:

(a) general minimization techniques; (b) methods of Gauss-Newton type. The
latter type of method takes into consideration the fact that the functional
to be minimized is a sum of squares of functions (cf. Daniel [ 5], Osborne [1k4],
Pereyra [15]). The well-known reliable linear techniques have been used
mainly in connection with the successive linearization of the nonlinear models.

Very recently it has been noticed that by restricting the class of models to

L be treated, a much more significant use of linear techniques can be made (cf.

[2, 9, 12, 13, 17, 20]).

-

L In this paper we consider the following problem. Given data (t’, v.) s
i’ Y1

T

. N A _ (A AN A A A
i=1,. . ..mn, find optimal parameters a= (a1 seees as) ) o= (a1 oo, ak)

that minimize the nonlinear functional

m n
1.1 = - . 2
. (1.1) r(a , @) 12::1 [y, Jg g5(a) ;a5 £,)1° .

—

Throughout this paper a lower case letter in bold face will indicate a
column vector, while the same letter with a subscript will indicate a component
of the vector. Matrices which are not vectors are denoted by capital letters,

and the (i,j) element of (say) a matrix A will be indicated by either a.
1]
T
or {A}i 5 The transpose of a vector u is indicated by u . Given a
2

~ ~

function f(t) , we shall denote by f the vector whose components are



1
(f(t1) , f(te) seees f(tm)) . The scalar product of two vectors u and v

~ ~

is indicated by

(B’X‘)=Vru

P~ o

The only norm which will be used is the Euclidean norm, v “2

23

s

Given a matrix A and a vector b, then we say

e

A

b

2

t

O if X = Atg where AF is the Moore-Penrose pseudoinverse.
We shall use the symbol D for the Fréchet derivative of a mapping and
V for the gradient of a functional. We assume that the reader has some
familiarity with pseudoinverses and Fréchet derivatives and their properties.
L A useful reference for the pseudoinverse is [19]; for details on the formalism
and manipulation of Fréchet derivatives, we suggest [6, chapter 8].

Let

L [Q}i’j—wj(g;ti) (i=1,-..,m;j=1, 2,-‘.,11) »

and

8@ = (5@, &) ,...e @) .

With the given notation, we can rewrite (1.1) as

11 ra, @ =y - e ga) |°.
Our approach to finding a critical point or a minimum of the functional (1.1'")

requires two additional hypotheses:

n
H-1. For any vector be R™ , the system of nonlinear equations

(1.2)  gla) =»,

-2a



has a solution (not necessarily unique).

H-2. The matrix $(x) has constant rank, r < min (m, n) for o ¢ QCR ,
- —_ ~

{1 being an open set containing the desired solution,

Our aim is to be able to deal separately with the parameters Q5 and then
proceed to obtain the parameters a , as it was done in [9, 20] whose results
this paper generalize. The reader should also note the independent results
obtained by Pérez and Scolnik [17], who in addition deal with nonlinear
constraints.

In order to obtain this separation of variables, we consider, as in

[9, 17, 20], the modified functional
(1.3) @ =lg-t @@yl

which will be called the variable projection functional. opce optimal para-

meters 3 have been obtained by minimizing (1.3), then auxiliary parameters Q

~

, +
are obtained as Q = 8(@) y , and finally we take g as any solution of the

system of equations (1.2).

We shall show in Theorem 2.1 the relationship ‘between critical or minimal

points encountered considering the original functional r@b 29 and those obtained
from the functional r2QE) and §+(g)z . Both for our proof and for the numer-
ical algorithms of Section 5, we need to develop formulas for the Fréchet deri-
vative of the pseudoinverse of a matrix function. 1In Section 4, we develop

these formulas and obtain the derivatives of the projectors and the Jacobian

of the residual vector. The only hypothesis necessary on the rankof the matrix
is that it should be constant on an open neighborhood of the point in which the
derivative has to be calculated. This is necessary since otherwise the pseudo-
inverse is not a continuous function, and therefore it could hardly be differ-

entiable. Our proof is coordinate-free. For the full rank case,

-3~
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similar formulas have been obtained by Fletcher and Lill [7] (without)

proof), by Hanson and Lawson [10], and by Pérez and Scolnik [17 J. 1n (7} and

[ 17) this is used to deal with constraints via penalty functions. 1p [17] the
authors choose to work with components, and also obtain a formula for the rank
deficient case which is given in terms of the factors of a certain decomposition
of the original matrix. OQur formulas, besides being coordinate-free and thus
much more convenient for algebraic manipulation, are given exclusively in

terms of the original matrix, its derivative, and its pseudoinverse. The
formula for the rank deficient case seems to be new.

In Section 5 we give a detailed -explanation of how to implement the method
in an efficient way and in Section 6 we present some numerical examples and
comparisons. Extensive use is made of linear least squares techniques.

The authors wish to thank Professor Olof Widlund of the Courant Institute
for his careful reading of this manuscript, and to Miss Godela Scherer of the
Instituto Venezolano de Investigaciones Cient{ficas for programming assistance.
We are also pleased to acknowledge the kind hospitality and stimulating con-
versations with Dr. H. D. Scolnik of the Bariloche Foundation where this
work was initiated in July 1971. Several helpful suggestions were made by

Miss Linda Kaufman and Mr. Michael Saunders.



2. A class of nonlinear least square-s problems whose parameters separate.

We are going to consider in this paper models of the form:

n
(2.1) (s, o5 t) = ;1;1 85(a) o;(z; t)

s k .
where a e R”, o e R", and the functions gj » oy 5 are continuously differ-
entiable with respect to a , and g respectively. We shall call the functions
g. autonomous, to distinguish them from the @5 which are dependent on t

We remark that the parameters g and g form two completely disjoint sets.

The independent variable t could be a vector itself as in [9, 17].
This requires only small notational changes and we shall not pursue it here.
Given the data (ti’ yi) ri=lye0e, m . m> s+ k, our task is to find

the values of the parameters a , a, that minimize the nonlinear functional:

(2.2)  ra, @) =|ly-nl o |I°-= Im: (v - n (g @5 8007 .

i=1
The approach to the solution of this problem is, as in [9, 17, 20], to
modify the functional r(a, @) , in such a way that consideration of the auto-

nomous parameters a is deferred.
~

In what follows we shall call §(x) the matrix function

(2.3) 2(2) = [ (@) ,.00, g, @] .

For each fixed @ , the linear operator

~

(2.4) Py (q) = 2(@) @Z(a) ,

~

is the orthogonal projector on the linear space spanned by the columns of the

matrix &(a@) . We shall denote the linear operator (I - P ) by PL
3 &) () *



=

l "
P@( ) is the projector on the orthogonal complement of the column space of
o

¢(a) . Similarly,

(2.4%) P=23"%

¢

is the orthogonal projector on the row space of ¢ , and pl =T P

@ L]
When there is no possibility of confusion we shall omit either

the matrix subindex or the arguments in projections and functions, or both.

Taking b as a new parameter vector, we consider the following auxiliary

model:
n
(2‘5) n1 (RJ o t) = Z bj(Pj(g} :t) .
J=1
We define similarly the functional r1ﬂ% a) = ||y - n1”2 .

For any given & we have the minimal least squares solution

(2.6) 3* = §+(g) y -

Thus,
Py
(2.7) S (2 @) = r (%, a) = [l x - 2@ (@) dl” - ”R@(g) iy :

The modified functional is then the variable projection functional that

we mentioned earlier and can be rewritten as:
(2.8) (@) = |7, 2
. I = ’
2@ = 1Py I -

Once a critical point (or a minimizer) é is found for this functional, then
§ is obtained by replacing « by Q in (2.6). Finally, by hypothesis pg-1,

£ is-obtained as any solution of the system of nonlinear equations

~

(2.9) gla) =5 .



The Jjustification for employing this procedure is given by the following

theorem:

!
t
|
|
l

Theorem 2.1 Let r(a, @) and :
(~’ l nd rz((g be defined as above L. o ooooipo

in the open set QC Rk

§ (@) has constant rank r < min (m, n)
~ — 5] .

A
(a) /:If % 1t & critical point pr a global minimizer in ) of r,(a),
and a satisfies: -
¢ (2.10)  g®) =3} 5,
@te_n :a:r‘) is a critical point of -r(’ay 2) (or a global. minimizer for o € o)
. and r(é\, é) = re(g) .

AN A
(b) If (g, @) is a global minimizer of 2f~uy\ for

@ L ooe
. A —— . ~ €
L then ¥ is a global minimizer of rgg) 1-11_ 0 %g rg(é}) = r(é\? Q)

~

Furthermore, if there is an unique Q

among the minimizing pairs of r(gj g) '

then é.t must satisfy (2.10).

We shall postpone the proof of this Theorem until the end of Section
4
. where we obtain a convenient expression for the gradient of the functional

o) .




3. Algorithmia I. <Residual calculation.

One of our main points in the algorithmic part of this paper is to empha-

size, when possible and appropriate, ipe yse of stable and efficient linear
least squares techniques. Thys it is convenient to review some of the tools

and introduce the necessary notation.

If Q is an orthogonal matrix then, for every vector Z

ez]| = iz

It is well-known (cf. [8, 10, 18]) that every m X n matrix & (m > n)

of rank r <n , can be orthogonally transformed into "triangular® form viz
2 (A

there exist Q, Z orthogonal, such that

T

(5‘1) Q.@Z = ":E“ 0 _=_-T,
0] o
where T is an r X r upper triangular and nonsingular matrix. Then
Q.
z )

Due to the isometric properties of the orthogonal trans:

formation Q,

-8-



the least squares problem can be expressed as

min || y - #b [|° = nin || @y - @) .
b ~ b ~ ~

~ ~

21}1'
Calling § = and partitioning it as ¥ b i
g Y= p g y= I } (m-r) ° we obtain

~,

e f—m

A T 'y
(3.2) b=z |—H

~

A simple computation shows that:
: A il .2 -2
6.3 lg-elm =15z =1zl .

Therefore, one can evaluate the nonlinear functional ré(a) of (2.8)
for any value of @ in the following way: First the orthogonal matrix Q(a)
that is used in the reduction of QQz)is determined; simultaneously, y = W,

is computed, and finally

G.4) @) = 1| 5, P

is evaluated.

For minimization techniques not requiring derivatives this is all that
is needed. For iterative techniques using the gradient of the functional or

4
the Jacobian of the residual. vector functioni%( ) y , we shall provide in the
) ~

next section formulas which will also be useful in the proof of Theorem 2.1.



Id . . . . '
4. Frechet derivatives of pseudoinverses, projectors, and residual vectors.

In this section we develop formulas for the Fréchet derivative of the
pseudoinverse of a matrix function. This leads to expressions for the deri-
vatives of the associated orthogonal projectors, .4 for the residual vector

function

(’4" l) £2 (g) = PQL(Q) X .

As an aid to those readers not familiar with these concepts, we observe

that an m X n matrix function A(e) is a nonlinear mapping between the

~

. k
linear space of parameters « € ™ and the space of linear transformations

-i:(ﬂ-n 5 Rm) . Consequently, DA(Q) will be, for each @ , an element of
k n m
, R7)) . Thus,l)ﬂ@g) could be interpreted as a tridimensional

ERT, LR
tensor, formed with k (m X n) matrices (slabs), each one containing the

partial derivatives of the elements of A with respect to one of the variables

@, ., Still in another way, each column in the k-direction is the gradient

of the corresponding matrix element.
Since all dimensions involved are different, it will be always clear
in the algebraic manipulations how the different vectors, matrices, _, 4 tensors

interact.

- Lemma 4.1. For any @ € Q, an open set of Rk, let B(%) be an m x n full
- column rank matrix function, and Eﬂa)_ip n X m full row rank matrix function .
If Bdgg C(ql are Fréchet differentiable in Q , then
C
(4.2) D®U=-§DBE+G§BY1D§I§,
. (53) D" =-c"'Doct + 2 DC ()

-10-
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proof. Since B has full column rank, then B+ = (IBT B)-1BT , and

o) - o B E + (8 ) 'DE
But,
DE B)7! = (8 B)! D3 B) 8 B)™! .

Therefore,
(v1)  DB) - @ 8 DB -DE s B

1
Developing D(B B) and regrouping, we obtain (4.2). Since ¢’ has full

column rank, (4.3) follows readily from (4.2). .
. 4
Since ?AQZ) = AA+ , QAQZ) = I - AA+ , it follows that
+ +
(4.5) DPA=DAA +2 DA) ,

and

L
(4.6) D?, - -Dp, .

If A(y) has full column rank, then from (4.5) and Lemma k4.1 we obtain
4.7 Dz, p Da a* + (P*Da A"

(4.7) A Fa A

Similarly, if A has full row rank:

+ 'y + 447
(4.8) DAP = A DA Rak (A" Da AF )

We shall prove now that formulas (4.7) and (4.8) are valid in the rank
deficient case. For this purpose we shall prove first an auxiliary Lemma,
and then obtain the derivative of the pseudoinverse of an arbitrary matrix

function.

Let A(@) be an m X n matrix function, Fréchet differentiable,

-11-



and with constant rank r < min (m, n) , on an open set Q C Rk . Let B(a)

be a maximal set of independent columns of A(w) in Q@ , and let C

o~

It is well-known (see, for instance, [16]): (1) C has full row rank, (2)

= B+A .

A =B, (3) A+ = C+B+ . Due to our hypothesis, B(a) can be formed with

the same columns of A(g) on a neighborhood of every o € Q ,
~

Other useful

relations that we shall use below are

- - _ . ptpd _
AA+ = 3A BB+ = PB ; B ?A =0 ;
+ o+ L Loyt
CA+=BAA=B+;PAB=O;PAA+ <0 .

Lemma 4.2. With A, B , and C defined as above, the following formula is

valid in Q :

rd

(..9) BDSE pz=(m A+,

Proof: From Lemma 4.1 we get

B D B+ =-PBDB B+ + (DB B+)T P;
3 + +7 L
= -PA[)B B + (DBB) Ik
Therefore,

(4.10)  BD B+ PX - (B BY) B,

On the other hand, since A = BC ,

+
Da A = Ds CA++ BDC a+ = Ds B' + BDC a‘t .

-12-



Thus,

or

(DAA.'-TPJ.: T4
) , = (DB B) P,

4

and this last expression together with (4.10) proves the Lemma.|

-

k
Igteorem 4.3, _< " pe an open set and for g € Q let A(e) be an

m x n Fréchet differentiable matrix function having fixed rank r < min (m, n)

Then for any g e Q :

o+ + 7 T d i T
(4.11) D 2+ =-a*Dar + +a"a* Da P +,P DA A+

A A+

proof: With B and C as above, we have that

DAt - D(C+B+) _ bt Bt 4 otDE
and hence by (4.3)

D" - ¢'De cofshs cPl pc o't 4 ctpEt
since

(CCT)_1 =¥ ot

Substituting
DC = D(8'A ) = DB* 4 « 8'Da |, ¢*s* = A%, Pt =P

in the last expression we get:

-13-
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(4.12) Da"*

-A'Da a+ + ¢'DBY - ¢'DB* An++ P Dc' +T 4+

+ + ot b T
= -A'DA A+ + C' DB PA"'AP‘ Dc ¢t At

But,

1 T+ o+ T+T 4 T —
(4.13) AP DCc A = ,PDA A A +,P A Dt ¢ At

LIRS &

= 4PDA A" A+,
T

since APA =0

Substituting (4.13) into (4.12) and using the relationship C+DB+ P, =

+ + + 4+ T T
ABDB P =AA DA P, + given by Lemma L,2, we finally obtain the

desired result.

Corollary 4.3. Let A(a) be as in Theorem 4.2. Then, for any a € Q-

~

(4.14a) Dp, - D@AAT) = PZ'._l\'DA At 4+ (P;DA A™) ,
(h.1kb) DP = D@A"a) = A™Da AP'L + (A"Da AP*)T

Proof: Obvious. T

From this result it is now easy to derive an expression for the gradient

of the functional ry(g) [see (2.8)), provided the matrix 8(g) has constant

rank on an open neighborhood of the point in which the gradient is calculated.

In fact:

(4.15) ro(a) = || P;(&’,) ¥ “2 _{ PLZ , PLZ y

and

-1h-



T + 7 T
2vr(a)=-y P [P'Ds 238 De Py .
. 1+
Since F& =0, we finally obtain:
T +
(4.16) % v ry(@) y PDE ¢y .
Now we have the elements for proving Theorem 2.1.
-
Proof of Theorem 2.1.
_ - 2
. From (2.2) we have that r(a, @) = ¥ Q(g“)g(gg“ .
Therefore,
(4.17 = - !
. ) 391, 2 = -(y-3g) (Ds g +éDg) .
L Assume now that « is a critical point of ra(g) , and that Q satisfies
A +
(4.18)  g(a) = 8¥(Q)y .

~ ~ v

Then,

(419) 3 9r(E 8 = -(By) (Ds ¢’y + sDg)

= %Vrg(é) P

T
since y P'l'

A A . . . .
3 QQD'% =3 . Thus (2,. g) is a critical point of r(fb' g) p

log . . . . .
Assume now that @ is a global minimizer of re(g) in Q and A
: . A A
satisfies (4.18). Then clearly, r(gf, g) = r2<§) . Assume that there

, % % * *
exists (&, @) , @ e Q, such that r(a, g*) < r(é\‘, Q) Since for any
@ we havery(e) < r(a, @) ; then it follows that ry(a’) < r(a’ @M <

A . . .
r(’%, o) =r2(g) , which is a contradiction to the fact that o was a global

-15-
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minimizer of re'(g) in Q . Therefore (2/3.\, Q) is a global minimizer of

~ ~

r(a, @) in Q0 and part (a) of the Theorem is proved.

A AN R A )
Conversely, suppose that (g.) g) is a global minimizer of r(E’ g) in
1 , then as above

rg(f/z\) Sr(é\: Q) .

-y

*
Now let & be a solution of g(a) = §+('c/g\)x .

Then we have

A * A A A
rp(@) =r(g, <@ 9,

. A A D .
but since (g) E’) was a global minimizer we must have equality. TIf there was

an unique & among the minimizers of r(E,,, @) , then ax =Q . We still

A . . . . ~ ~
have to show that @ is a global minimizer of rg(a). Assume that it is not.
Thus, there will be Ee Q , such that re(g) < r2(§2 . Let & be a solution

of ga) = §+@y .  Then re@) =r(a, @) < ra(@) = r(g, ,@) , which is a

_ A A o
contradiction to the fact that (g, ) was a global minimizer of r(a, ) . I

-16-




5. Algorithmia II. Detailed implementation of the Ge.uss-Newton—Marguardt

algorithm.

We shall now explain in detail how to apply the results of Section k
to the Marquardt modification of the Gauss-Newton iterative procedure; we make
extensive use of linear least squares techniques. We shall include an econo-
mical implementation of the Marquardt algorithm devised earlier by Golub

(see also [11,14]),

We define the vector

Zola) = P;(Q)Z ,

~

The generalized Gauss-Newton iteration-with step control for the nonlinear

least squares problem

(5.1) mcvin r (@) = mciyn Iz || = mi;l " P;(g)zu

is given by
G.N., Starting from an arbitrary o° :

2+1 L
(5-2) & =g’ - 4Dz, @) 5 ), (1=0,...) .

The parameters t, > O, which control the size of the step, are used
. - £+1 p/ .
Lo prevent divergence. Usually ta =1 , unless r2(g ) > r2<g) , in

which case t, 1is reduced. Another use of the parameters t, is to minimize

£ L
I+1

. . £yt )
rg(g ) along the direction [Dze(g )] 52(2,' ).

Marquardt's modification calls for the introduction of a sequence of non
negative auxiliary parameters v, >0

G.N.M._ Define

Z '
ro(a) ry(a)
KZ = 2 ££ = 0 } n ’

v,

where for each £, Fy 1is the upper triangular Cholesky factor of an n X n



symmetric positive definite matrix M, .

Then the Gauss-Newton-Marquards

iteration is given by

£+1 Ji +
2: =3"K2£,,¢’ £>O.

Reasons for this modification are well-known. .
For more details and an

. . - f th f thi
interesting study of the convergence of this method we refer to [14]. We

ish to make explicit now the "two-stage™ o . :
i xpLict v o-stage orthogonal fyctorization” given in

[11] and [1%4], in order to show how to take advantage of the special structure

« of the problem.
. _ i+ 2 2 1

Calling E‘ = g -a, DP =D£2(2’, ) = DPQI.

L. and dropping the superscript 2 from here on in, one step of the Marquardt
algorithm is equivalent to solving the linear least squares problem
N -r, ()

L 0
L In the first stage of the orthogonal factorization of K an m xn

orthogonal matrix Q is chosen so that

L Q:DP=R1=}n ﬁl
O

Thus,
Q 0 DP DP R1
0 In VF Q1 vF vF ?
-rp(@) T
Q = =] .
9 0

R; and ?Nare saved for future use.

-18-




In the second stage we choose an (mtn) X (mtn) orthogonal matrix

to reduce

B
A= to "triangular®™ form.
vF

For this purpose we shall use successive Householder transformations as in

[3], from where we adopt the notation.* '

On reducing the first column of A, which is of the form:

C.(N
311
1 .
31”‘ : i W= vl
0 J
W
0
Lo
e use o) L1 g (0,0
where
u1(1) = sien (31(1“)("1 v lag D s

2 2
9, = (a“ + W )l& >

(1)
'le+1 =4,
u§1) =0 , otherwise,

By = E/u“)ru(‘l) )

Now we observe that when Q(1) is applied to a vector, any component

i T f
corresponding to a zero component o ‘2(1) is left unchanged. 14 particular,

-19-



the band of zeros in A is preserved Thus, in this first step we only need
to transform the elements of rows number { and m+1

" Consequently,
2
A( ) =Q (1)A will have the schematic form:

O )} .

A(2) o
Sl
O } i

~

where the asterisks indicate the modified elements.

It is now clear that at step k , a(k)

O
A(k) - O

0.0
526

O

The matrix A(k+1 )

will have the form

e

, k=1,..0,n , 1is obtained as follows:

i) ok= (( (k)2+lz1 ((k) ))ﬁ:

m+1k

ii) By = (oy(op + Iaﬁz)l))_1 ,

k .
111)ui<>=0 for l<k,k+1si_§m,m+k<i;
u(k)— sign ( )(0 +| (h>')
k - Si9 ak.k k ek

u.i(k) _ a(ik)

-20-



—--

|_l
N
]
I

)

) (k) . & () (x
J Bk[uk akj + i§1 a'm+i,k a m-l)-i,jI s J=k+1,...,n .

<
]

Finally,
v) a%ﬂ) _ a??) ) u1(k) . %=k; m+, ..., m+k;
et J J J=k+1,...,n;
k+1) . wa(ky
ay < - sign (akk )cyk -

These formulas are similar to those given in [3], but are modified to

take advantage of the structure of the matrix A .

Osborne's version of Marquardt's algorithm, modified for our present

problem, is presented in the detailed flow-chart of Figure 1.

The parameters
DECR and EXP are the factors by which v is either decreased or increased.
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Fipurce Marquardi's algorithm (Osborne [14])

If iter = O then

Set initial values

Iter ¢ 0; qeao°

W

ve U L oe /g
iy i

Co@ute
DP ¢—Dr,(a) ;
e -ixro(a)s
P Y

IC& 0

e
N

1
First Stage
Reduce [DP3b] to

iriangmlar form:

DR' =
o =Tl
O >
Suve DR, T,

=

%

Secon Stgge

Reduce to

Lriangular

form:

?
((lagd| < lodle) Ae<e

-

no

v & EXP ¥y

Reset DR';r

DRAO!=‘41;

Iter ¢ Iter + 1

Lo
Gel Ao as solution of

C. ompute

€ lzpla + a)f®

?

ftmax < Itel)

22~

e(~]r1-r0|;
| C&IC + 1,
7
no

)

| N T

v € DECR * V ’

yes




We will evaluate D;‘_e'(g) = DP(;(Q)}L for a given ¢ , according to
4 1 + 4 .1 T
(5.4) DPQ(Q)X = -(P§ Da) & y-¢ (P§D§)~X s

which is readily obtained from (4.1ka).

In many applications, each component function wj depends only upon a
few of the parameters {a%}f=1, and therefore its derivatives with respect to
the other parameters will vanish. Tho;émvanishing derivatives will produce
m-columns of zeros in the tensor D§. 1In order to avoid a waste of storage
and useless computation with zeros it is convenient to introduce from the
outset the k X n incidence matrix E = (ejt) . This matrix will be defined

as follows:

%t = 1 iff parameter @, appears in function ¢3 3
e.. = 0 otherwise.
Jt

We shall also call p the number of nonzero derivatives in Dg§:p = 2: e
tyJ
The nonzero derivative vectors can then be stored sequentially in a bidimensional

ot

J

array B(mxp) . In our implementation we chose to store the nonzero m-columns
varying first the index corresponding to the different differentiations, and then
that corresponding to the different functions. This information can then be
decoded for use in algebraic manipulations by means of the incidence matrix E ,

We now introduce some notation in order to describe the compressed storage
of the nonzero columns of the tensor D& in a more explicit fashion. We

define, for t=1,...,k ,

8, = { set of ordered indices for which 5t AF 0, j=1,...,m);
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We write the matrix B in partitioned form

B = [B1,BE,...,Bk] s

where

B = [1' s s ey . ]. .

o . 1
A step-by-step description of the computation of [E%x follows.
We assume that the rank of 8(y) is computationally determined and equal to
r < min (m,n)

a)  compute &(z) ,D8 (@) -

b) Form the m x (n+p+! ) array

(o]
1]

[2(2) 5 v ; D2(g)) =[A; y 5 B].

c) Obtain the complete orthogonal factorization of A (cf. Section 3):

- - <lrxr

>
3]

Also v

(%J s Vs and C will be sf{dredlin the array G ) Note again that (see Section 5):

1 - T 010
oy = Q-

OO In ‘km_

d) Get the intermediary values:

2l



Cad

-

(i.e., Remember that the nonzero information

D = of D is stored in the last P . oiymns
and last m-r rows of G);
v
= e 2|07
Yo | } mex
0"
e) U = e ; -——_~
= V =
nxk Qx n=® v
~E

(transposition in the tensor D§ refers to transposition within the "slabs"
corresponding to the different derivatives, and must be interpreted adequately
when decoding the information from the compressed storage array G ; the

appropriate ALGOL-60 code for computing U with our storage convention would

be (assuming that C = QB is stored in the same place B is :

nié— n+1 3
Lé&—nt

for te 1 step 1 until k do

for § €1 step 1 until n do

if E[j,t] = O then U[j,t]e 0 else
begin Lé&I1 ; acumé&—0 ;

for i¢- n1 step 1 until m do

acumé-~ acum + G[i,L] X G[i,n1] ;
U[j)ﬁ]f‘-acum

end ; )

—ttins

f) Compute S =2 . U
nxk

Solve the k , rxr lower triangular systems:

T™W=3F , where § contains the first r rows of S
rxXk

-25-



~~

Store W in the first r rows of the mxk array B . Compute 5835 and

store the nonzero information in the last m-r rows of B

g) Finally, the mxk matrix B is obtained as:

5 e DA AR I BN R
CPRei= o) TRy TR

- "

We emphasize the systematic use made of the triangular orthogonal decom-
position of the matrix &(¢) . We also warn the reader about the correct
~
interpretation of the algebraic operations in which any tridimensional tensor

intervene, as we exemplified in (e) .

-26-
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6. Numerical experiments.

We have implemented three different algorithms based on the developments

of the previous sections for the case g(a) — a and rank & = n .
The methods minimize the variable projection functional r2QZ)==“P§ Q)XHQ
first, in order to obtain the optimal parameters é ' and then complete

the optimization according to our explanation in Section 2. The algorithms

differ in the procedure used for the mini;nization of rz(a).

Al. Minimization without derivatives. e yse PRAXIS, a FORTRAN version of

a 'program developed by R. Brent [4], who very kindly made it available to us.
All that PRAXIS essentially requires from the user is the value of the functional
for any o . This is computed using the results of Section 3. In fact, the
user has only to give code for filling the matrix & for any o, and our

program will effect the triangular reduction and so on. It turns out that

many times (see the examples) the models have some terms which are exclusively

linear, i.e., functions ¢3 which are independent of @ . Those functions

produce columns in #(a) which are constant throughout the process. 1f they

are considered first, then it is possible to reduce them once and for all,

saving the repetition of computation. This is done in our program.

A2. Minimization by Gauss-Newton with control of step (see (5.2)).

The user is required to provide the incidence matrix E and the array

of functions 3 and non-vanishing partial derivatives: G . gee Section 5

for a more detailed description.

A3. Minimization by Marquardt's modification, gg explained in Section 5 with




Fz =1 . User supplied information is the same as in A2,

Test problems.

necessary data can be found.

Pl. Exponential fitting.

n, (’%, o t) = a, + age

The model is of the form:

N -ozet

+ ase
3

The functions @, are obviously P, (o 5 t)

1’ %+ 1(35 t) = €

Problems 1 and 2 are taken from Osborne [14], where the

.t
J

So the different constants, in the notation of Section 2 are: n=3, s=3, k=2 .

For the problem considered, m=33.

The number of non-vanishing partial derivatives: p=2 .

The number 9_{ constant functions: NCF =1 .

In Table I we compare our results for methods Al, A2, A3, and those

obtained by minimizing the £4311 functional r(a, a) .

P2, Fitting Gaussians with an exponential background.

ny(a, @5 t) = a,

e

2
-a1t e-ag(t-as)

+8.2

The functions ‘pf are:

-o/1t
o (25 t) = e

5 ‘Pj(g‘; t) = €

Thus: n=4, s=b, k=7, m=65 , p=7 .

- (t-o.
J(

Results for this problem appear in Table II.

+ aje

j+3)

3

2

-ozj(t-ozé)e

)

+ a,e

Jj=2,3,4 .

--cxu(t-cx,?)2

P3. " Iron Mossbauer Spectrum with two sites of different electric field gradient

and one single line [21].
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The model here is the following:

2
hi(g,g, t) = a, + ayt + a3t

r 1

u 1 N g1> + 0‘502 - t\2 + 1 +(a1 "00502 -t)2
| o _ o,
—-a I b) I 3.
- a, B 01 + 1
o, + O, - th2 - 0, -
1+ ( 4 s~ Y 1+ o 5?5 t)é
% .L. \ g
- 8 1
%6 o, - t2 :
1 +‘ 1 )
og

Clearly, wj(g; t) = t7, §=1,2,3 ; and o), ®5 ; ¥y are the functions
inside the square brackets.

Here: n=6, k=8, NCF=3, p=8, m=188, s=6 .

For this example we wish to thank Dr. J. C. Travis of NBS who kindly
supplied the problem and results from his own computer program.

Comparisons are offered in Table III.

The qualitative behavior of the three different minimization procedures
used in our computation follows the pattern that have been expounded in recent
comparisons (Bard [1]). Gauss-Newton is fastest whenever it converges from
a good initial estimate. As is shown in the fitting of Gaussians (Table II),
if the problem is troublesome, then a more elaborate strategy is called for.
Brent's program has the advantage of not needing derivatives, which in this
case leads to a big simplification. On the other hand, it is a very conservative
program which really tries to obtain rigorous results. This, of course, can
lead to a long search in cases where it is not entirely justified.

As a consequence of our Theorem 2.1, and of our numerical expc. ace, we

strongly recommend, even in the case when our procedure is noi used, to obtair
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initial values for the linear parameters when ngi)= aj by setting

a® §+(2f)y', This is done in our program for the full functional and in

the program of Travis with excellent results.

The computer times shown in Table I and Table II correspond to the CPU
times (execution of the object code) on an IBM 360/50., All calculations
were performed in long precision; viz.‘li’hexadecimal digits in the mantissa
of each number. We compare the results of minimizing the reduced functional
when the Variable Projection (VP) technique is used with that of minimizing
the full functional (FF) for various minimization algorithms. 1In order to
eliminate the coding aspect, we have used essentially the same code for
minimizing the two functionals. The only difference was in the subroutine
DPA which computes in both cases the Jacobian of the residual vector.

In the FF approach, the subroutine DPA computed the m X (nt+k) matrix

B as follows: the first n columns consisted of the vectors &h(d) while

the remaining columns were the partial derivatives

op. (a)

1 aj T’%__i ~ 5 (2=1,2,...,k)

These derivatives were constructed using the same information provided by the

M

2 (y - s(@a) = -
3, J

user subroutine ADA. We also obtained from DPA in the FF case, the automatic
initialization of the linear parameters, viz. a.==Q'Ya°h[ .
~ "~
For the numerical examples given here, the cost per iteration was somewhat
higher for the VP functional. However, we see that in some cases there has
been a dramatic decrease in the number of iterations; this has been observed
previously (cf. [12]). Thus, in these cases the total computing time is much

more favorable for the VP approach. This was especially true for a.. three
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methods of minimization when the exponential fit was made and when
Marquardt's method was used in the MSssbauer spectrum problem,

For {he Mossbauer spectrum problem, we used two sets of initial

values. We used those given by Travis [21], (say) B°, and also
+
B® ~ B° < 0.05 E?. For B° , the value of the functional is 3.04L67X 108

~ ~

while for E?, the value of the functional is 6.405x 108; the final

estimates of the parameters yielded a residual sum of squares less than

8
3.0kl x 107 .  When Brent's method was used on the full functional,

the method did not seem to converge, put for the reduced functional,
Brent's method converged reasonably well, 1pn fact, after twenty minutes
Brent's algorithm applied to the full functional with B° did not

~ —

achieve the desired reduction in the functional.

The results we have obtained in minimizing the full functional for the
first two problems using the Marquardt method, and those of problem 3 with
Newton's method and 2;, are consistent with the results reported by Osborne
and Travis.

From a rough count of the number of arithmetic operations (function and
derivative evaluation per step are the same for both procedures, so that the
work they do can be disregarded), it seems that for almost no combination of
the parameters (m, n, k, p) the VP procedure will require fewer operations
per iteration than the FF procedure. It is an open problem then to determine
a priori under what conditions the VP procedure will converge more quickly
than the FF procedure when minimization algorithms using derivatives are used.

Another important problem is that of stability, The numerical stability
of the process and of the attained solution must be studied. By insisting on
the use of stable linear techniques, we have tried to achieve an overall

numerically stable procedure for this nonlinear situation. Since the standards



of stability for non-linear problems are ill-defined at' this time,

hard to say whether we have succeeded in obtaining our goal.
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Exponential fit.

Table I

Number of Number of Time
Method Functional Function Derivative (seconds)
Evaluations Evaluations
FF 1832 —_ 191.00
Ay
VP v 100 _ 9.00
FF 11 11 5.05
Ay
VP L L 3.20
FF 32 26 12.55
A
VP 4 L 3.12
A
r(8, 8) , 7,(@) < 0.5465 x 10-4
Table II
Gaussian fit.
Number of Number of
Method Functional Function Derivative Time
Evaluations Evaluations (seconds)
FF 11 9 23.35
A3
VP 10 8 26.82

r(®, 8) , r,(d) < 0.048

Methods Al and A, were either slowly convergent or non-convergent.

2
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MOssbauer Iron Spectrum.

Table III

NEEEér of Number of
Method Functional Initial Function Derivative Time
Values Evaluations Evaluations (seconds)
FF * %
Ay .
VP B 65 0 70,00
A, FF B L L 3h.34
vp g b I 41.64
FF B’ 7 7 52.27
VP ¥ 6 6 59. €0
A FF 8, 16 16 118.22
VP 2 3 3 35.35
FF i 18 18 130.50
VP B 6 6 61.92
8

r@, 8, r,(8)<3.0444 x 10

~— T
(B =(80, 49, 5, 81, 24, 9.5,100, k) )

¥ Did not converge in finite amount of time.
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Crext s IVER PRUGKAM FUR USE OF VARPR(O IN PROBLEM 1: FITTING OF TWO
L EXPONENTTIALS AND UNE CONSTANT TERM.
IMPLICTIT REAL*8(A-HyU~Z)
DVIMERMSTUN Y(200) o TU2C0) ALF(20) AC(20)
=XTLANAL ADA
CALL LUER(NgMy G NUFUNy Yo T9ALF)
CALL VARPR(}‘N'M'KG'NCFUN'Y't,ALF’AC'ADA’
, CALL EXIT
\. TND

SUBRLUTINL VAKPRGINy My KG9y NCFUNy Yy T9ALF9AC s ADA)
IMPLICIT REAL*8(A~He0-2) -
CuMMiaN A(200920) 3 AAL200910)9E(20920)+B(220,20) 2UKK(200),
¥ BETA(20) 4P
. INTEGER P
L IMUNSIUN UKL1{Z20),8B5T1(20),2(2G),DR(20420),ZPR(200),DEL (20)
* g ALFAKG) g ALFL1(20)9AC(20)4Y(M),T(M)-
EXTERNAL ADA
NGNLINcARLcAST SQUARES PROGRAMFOR LINEAR COMBINATIONS OF NONLINEAR
FUNCTIUNS.
WRITTENT NFURTRAN 4 - LEVEL G.INTHIS SUBROUTINE THEREARE WRITE
STATZMENTS USING UNIT 3 AS OUTPUT. THAT UNIT NUMBER IS INSTALLATION
DEPENDENT
MINIMIZATICN3Y USBURNE-MARQUARDT ALGORITHM (OR GAUSS-NEWTON WITH STEP
CUNTHOLUYMAKING THE SMALL CHANGES INDICATED IN THE SECOND LINE AFTER
INSTRUCTIUNLABELEDS9s ANDAFTER LABEL 61).
Set 'THEDIFFERENTIATION OF PSEUDOINVERSES AND NONLINEAR LEAST SQUARES
PRLUCLEMS WHUSEVARIABLES SEPARATE'*B8Y GENE H. GOLUB AND V.PEREYRA,
STANFURL Ue TECHNG REP. 2619MARCH 1 9 7 2 .
¢ = NUMBER UF OBSERVATI ONSe.
N = HUMUOER OF FUNCT I GNS .
K = NUMBLR UF NUNLINEFAR VARIABLES.
NCFUN = NUMBER SFCONSTANTFUNCTIONS, ILE.FUNCTIONS PHI WHICH DO NOT
CEPENDUPON ANY PARAMETERS ALPHA.THEY SHOULD APPEAR FIRST.
s L Y = M- VECTUR 1JF UBSERVATIONS.
T = Y=VECTNROFINDEPENDENT VARIABLE,
i L C={NZKG)INCIUVENCEM ATRIX.E(I3J) =1I1FF VARIABLE 3 APPEARS I N
AL T = KU=VECTIR OFINITIAL VALUES. ONOUTPUT IT WILL CONTAIN
THE OPTIMAL VALUES OF THE NONLINEAR PARAMETERS.
AC = N =VECTUR UF L INEAR PARAMETERS (OUTPUT).
:‘,:::=="<;::;‘:a:=¢;;t*;t=*****%‘-******#*#****#****##**#***************##*****#**********#***
CUNT 12U
THE US £ MUSTPROOVIDE ASUBRUOUTINE THAT FORGIVEN ALF WILL EVALUATE
TH: FUNCTIUNS PHIANDT H E | RPARTIAL DERIVATIVES D PHICI)N/D ALF(J), AT THE
SAMPL. PGINTSST . THE VECTUR SAMPLED FUNCTION PHI (I) SHOULD BE STORED IN
C FHL I-TH COLUMN UOF THE (M X {(P+N+1)) MATRIX A.THE NONZERO
DiRIVATIVESCULUMNVGCTURS SHOULD BE STORED SEQUENTIALLY IN THE MATKIX A
STAKTINGINTHEC OL UMNN#2, IF ITER=0 (THE FIRST TIME THIS SUBROUTINE IS
CALLED) o THEMATRIXESHUULD BE FILLED.WITH THIS MATRIX THE STORAGE OF
THe DERIVATIVES ISEXPLAINEDIN THE FOLLOWING CODE:
L = N+1
DU 13 Jd=1,KG

- r—

I R el i i o N o R N R

-

\

o
1

o

O

<
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DU 10 1=14N
IFE{TJ))10910,11
11 L=L+1
DU 10 K=1,M
AlKeL) "=YDPHI(I1)/ DALF{J) (T(K))
10 CONTINUE
THt N+1-TH COLUMN NF A IS RESERVED FOR THE VECTOR OF OBSERVATIONS Y.
THE SUBROUTINEHEALDING SHOULD BE: ( ISEL =0 : FUNCT. AND DER, MUST B E COMP
ISEL = -1 ¢ ONLY FUNCTIONS MUST BE COMP. ISEL =1 s ONLY DER. NECESSARY)

SUBROUTINE ADA(NyM,KGyA,EoITERyPyTyALF¢ISEL)

(ITER IS ANITERATION COUNTER PROVIDED BY VARPRO).
If IS ASSUMED THAT THE MATRIX PHI (ALPHA) HAS ACWAYS FULL COLUMN RANK

e WG WTIIW  INSVIATNG

****#********#*******#*t***#*#****t**t#**tt***tt**tt#tt#*O*#*t*tt*#t**#**t***
. ITeR=0 ’

CH¥x%x%xTH: THREEFULLOWING PARAMETERS ARE USED IN THE CONVERGENCE TEST (BETWEEN

ooOococ OO0 600 o O

c INSTRUCTIONS NUMBERZ200 A N D 400)2EPS1 1S A RELATIVE TOLERANCE FOR
- c DIFFERENCE BETWEEN TNO CONSECUTIVE RESIDUALS; ITMAX IS THE MAXIMUM
C THE SIZE OF THE CORRECTION. EPS2 IS A RELATIVE TOLERANCE FOR THE
C NUMBERUFFUNCTION AND DERIVATIVE EVALUATIONS ALLOMWED .
L. | TMAX=%0
£EPS1=10D-4
( EPS2=50D-6
ChRk ks
L KG1=KG+1

D O 101=1.M
10 AUl N+1)=Y({1)
L 2 CALL OPA(N,M/KG,NCFUN,ITERyITERSR, Yo ToALF,ADAY e e e
CT=1.Du e e e e e aaaaa
I f‘lTER OEQ. O,
L_ *WRITE{3,104) 1 TER,R
IC=0
IFCITER) 35543
5 CONTINUE
~ XNU=0,
Ckpk
" Cx%x&k [F GAUSS-NEWTON IS DESIRED REMOVE THE NEXT FOUR (&) STATEMENTS (SEE
. C ALSU LABelL 61) .
DD 4 I=1,M
DO 4 J=14KG
4 XNU=XNU+3 ({1 9Jd) %x%2
XNU= USQRTIXNU/Z (M%Ki5))

WRITE(3,105)XNU
C¥x¥xxkfDUCTIUN GF 8 TOTRI ANGULAR FORM,
3 00 30 I=1,K6
SGMA=0

DU 11 1 1= oM

11 SoMA=SGMA+B( 11, I)%%2
SGMA=DSORT(SGMA)
IF(BUI+1))12412,4,13

12 St=-1.
GO Tu 14
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| R Sl;glo
3 14 UKLI(I)=S5u%(SGMA+DARS(B(I,1)))
i BETI(1)=1e/(SGMAX(SGMA+DABS(B(1,1))))
BUI 41 )=~SG*SGMA
Ii=1+1
- 23 hu 1S 12=114K61
N ACUM=UK LI )*B(1412)
: S 16 13=]1.M
lo ACUM=ACUM+B(I3,1)*B8(13,12)
1 Z{12)=8ET1(I)*ACUM
ul 30 J=114KG1
BllyJ)=B8(1eJd)-UKLII1)%*2(J)
DO 30 J2=11.M
30 BUI29J)=81124J)-BlI2,1)%2(J) -
Cxxxxk3AVE TRIANGULAR FUORM AND 2°.
CU 40 I=1,KG
DU 40 J=19KG
49 DRUTeJI=B(I9J)
DU 41 I=leM
41 (PRI1)=B(I+KG1)
LRex ek REDUCT 1uNe SECUND PHASE.
50 [F(XNU .iEQe 0eDRIGO TO 300
DU ol K=1l4K6G
Kl=K+]
B{MeKy K )=XNU
DU 42 J=K1lgKG1
42  BIM+KeJ)=0.D0
SoMA=B (K9 K ) *%&2
(RIY "’1 J=14K
2 3EMARSGMATB(J+M oK ) %2
SGMA=DOIQRTISGMA)
[FLUBIKK) 152952453
b SuG=~-1,
GU T 54
53 §G=1.
5¢ UKLI(K)=SG*{S6MA+DABS (BIKyK)))
BrTI{K)=1a/7(SGMAX{SCMA+DABS(B(K.K))))
UK K)==3G¥SGMA
U 59 J=K1 K61
ACUMFUKLIK ) *BLK,J)
IH(K +tQe 1MIG0 TO 55
Ke=K~-1
M) 96 [=L4K2
IM=]+M
Do AQUMSACUME2(IM K )*8( IMeJ)
55 ZUJ)=LeTU(K)*AC UM
DU 57 J=K14KG61
tlKed)=3IKyJ)=UK1(K)I*Z( J)
vl 57 131,4K
Hi=xe1
20 UMl d) (Ml od)=B(MIK)XZ{U)
sy GUNTINUE
CxxxxxSULVE FUR DELTA-ALF.
© 30 Ng=KG~1
: UELIKG)=3{KGeKG1)/BIKGyKG)
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ALFIIKG)=ALF{KG) +DELLKG)
U 53 I=1,N2
11=K5~1
12=11+1
ACUM=B(11,Ki51)
DU 59 J=12+,K06
59 ALUM=ACUM=-B(I1,J)*¥DEL(J)
DLLEIL)=ACUM/B(I1,11)
58 ALFI(I1)=ALFUIL1)+DEL(]1)

Cxxxx%GET NEW RESIDUAL.
310 ITER=ITER+]

1SEL=-1
WRITE(34103)ITER

WRITE(35800)(ALFL{1),1=1,KG)
IFCITER .GT. ITMAX) GO.TO 400

DU 9090 I=1.M

900 A(IoN+1)=Y (I)

CALL DPA(NyMyKGoNCFUNg ITERy ISELsRLsYsToALF1,ADA)

IC=IC+1

WRITE(3,107)IC,yR1

IFIR-R1)61,60,960
61 CUNTINUE

CrxxxxIF GAUSS—-NEWTON IS DESIRED REMOVE THE

C JEOXNUDILI1041114110

Clll TT=0.5*TT7

c LO 112 I=1,K6

Cll12 ALFI(I)=ALF(])+TT*DEL(])
C GU TU 310

Cxkktk

110 XNuU=1.5%XNU

CHxxxxKETRIEVE TRIANGULAR FORM OF FIRST PHASE.

Cxxxkx JF

C

WRITE(3,106)XNU

DU 62 I=1,K6
DG 62 J=1.KG
62 BlIyJ)=0R(I,J}
D0 63 I=1,.M
63 UlviGl)=lPR!"
ot Tl %9
0  EPS=R-K]
K=Kl

ACL=U,

UDAC=y,

DY 65 I=1,KG

ALF(I}=ALF1(I)

ACC=ACCH+ALF (] )*%x2
05  DAC=DACH+DEL{])**2

ITERATION,

IFUIC EQe 1 ) XNU=Q.5®XNU
WRITE(3,5200)1ICeXNU
ACC=DSQKT(ACC)
DAC=iSQRT(DAC)
AC1=0AC/ACC
WRITE(3,108)AC1

IC 1S GREATER THAN 1 THENNU HAS BEEN INCREASED DURING THIS
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L

C*¥%%x*KcOUCTIUN UF A TO TRIANGULAR FORM, COMPUTATION OF ¥=QYs AND

C

120
120
135

5C0
10
104
10b
10¢
13
16 3
2 0
299
219
215
BY v

110

1

1

3 FURMAT (1HO,!

0 (0sAC oLte ACC*EPSL JAND. EPS ,LE.

it (J“ ] \,J b U
ISkl =1
G'J T} ).
Nl=N-]
ACINI=AINgN+1)/A(NyN)
ifT (N ofihe 1)GUTUL1 .35
Du 130 I=1eN1
Il1=N-1
{2=11+1
ACUM=A(114N+1)
U 120 J=124N
ACUM=ACUM=-A(TI1,J)*AC(J)
AC(11)=ACUM/ALI1,11)
WITE(3,209)
WRITE(3,210)CAC(I)9I=14N)
WRKITE(3,215)(ALF(I),I=1,KG)
WRITE(3,209)
RETURN

ITER="I3'.

R*EPS2))

PARAMETERS ')

FORMAT(1HO,* RESIDUAL'415,015.7)

FORMAT(1HO+®* NU='4D15.7)

FOURMAT(1HOs' N U WA SINCREASED TO®*4D15.7)

7 FOKRMAT({1HOs 59" NEW RESIDUAL'$D15.7)
FURMAT(1HO THENORM OF THE RELATIVE CORRECTION 1S8=%,D15.3)
FURMAT(1HGe 1S, NUIS*D15.7)

FORMAT(LHO,50('*%))

FUKMAT(1HO,¢ WEIGHTS'//(4D15.7))
FURMAT(1HO9' NONLINEAR PARAMETERS®//(4D15.7))

FURMAT ( 1HO 94020410 )
e ND

SUBRUUTINE DPA(NyMeKGoyNCFUNo ITERS ISEL Ry Yy
CxxxxxOUMPUTATION OF THE DERIVATIVE OF THE VARIA

IMPLICIT REAL*8(A~Hy0-2)

Ty
BL

A
E

LF,ADA)
PROJECTION,

CIIMAON A(ZOOQZU"AA‘ZOO'IO)’E(ZO,ZO,’B‘ZZO'ZO)’UKK‘ZOO"

* pETA(20) 4P
INTEGER P

DIMENSION ALF(KG)3Z(120)9X(20),U(20520)9Y(M),T(M)

EXTERNALADA

LALL AUA(N'M'KG,A' E,ITER.P'T’ALF' ISEL,

N1=N+1

Ne=1

IF(ISEL.GT.0)GO TO 111
IFUITER «GTe O)INZ2=NCFUN+1
DO 11C I=1yM

DG 119 J=N24N
AA(L4J)=A(14J)

SELECTIVE COMPUTATIONOFQB ACCORDING TO VALUE OF ISEL.

1DJ 38 I=1¢N
Il1i=1+1
IFUISEL «GT40) GO TO 22
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SUMA=0,
D01 1 11=I.M
11 SOMA=SIGHA+AL 11, T )**%2
SOUMA=DSQRT(SGMA)
lF(l\(I,[))lZQlZ,lB
12 Su=-1,.
GUTs 14
7 I1=NCFUN+1
13 GU TU 20
14 SG=1.
UKK(I)=SO*(SGMA+DABStA(I,1)))
SETA(I)=1./7(SCMA*(SGMA+DABS({A(I,1))))
All yI)==-SG*SGMA
I1=111
8 IF(ISEL)Z20421422
20 NN=N1
- GO TOZ23
21 NN=N1+P
GOTO 2 3
22 NN=N1+P
I11=N+2
23 001 5 i2=114NN
t ACUM=UKK(I)*A(I,12)
- D01 413=111eM
lo ACUM=ACUM+A(I3,1 )*A( 13, 12)
‘ 15 2Z(I12)=ETA(I)*ACUM
— D31 7 J=11¢NN
AlI,J)=A(],Jd)-UKK(I)*2(J)
DU 1 7 12=1114M
“ 17 A(I29J)=A(124J0)-A012,1)%2(J)
30 CONTINUE
IFLISEL «GTL.0)GO T O 50
Rzoo
= DU 40 I=NlyM
; 40 R=R+A(I4N1)*%x2
IF{ IStL .LT. O)RETURN
(*x+x%xD-SNAKE IS CONTAINED NOM IN AlI¢4J)oI=NtlyeeegM3 J=N#25000sNsP+]1,
C CUMPUTATIUN OF X.
50 NZ2=N-1
4 X{N)=A(NyN1)/A(NyN)
IFIN .EQe. 1) G O TO 310
f DO 300 I=1¢N2
! I11=N-{
I2=11+1
ACUM=A(I14N1)
VDO2 0 0J=124N
- 200 ACUM=ACUM=ALI1:J)*X(Jd)
3G X(I1l)=ACUM/AlIl,I1)
C*x%xx%xCOMPUTATION O F U .
310 L=N1
D0 80 J=14KG
DU 60 I=1.N
[IFCE(TL2J))TO9T70,471
' 70 UlLed)=0.

r
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s Ty 6D
1 L=L+1
ALUM=0,
11 600 K=N14M
003  ACUM=ACUM+A(K,L)*A{K,N1)
JiTyJd)=AliUM
00  CuiNT INUCE
C*xxx&CUMPUTAT TUN UF W (STORED IN UPPER PART O F 8).
DU B8O J=1,KG
B(1ed)=U{1sJ)/A(1l,1)
DO 30 I=24N
ACUM=U(I43)
{l1=1~1
DO 7 9 L=1le11 - v
7 9 ACUM=ACUM~A(L,] }*B{LyJ)
BU BUIeJ)=ACUM/A(I,1)
c*****com’:ur,:n(m OF D.SNAKE* X{STORED IN LOWER PART OF B).

. o9 o0 I=N1'M
L=N1
D09 0J=1,KG
ACUM=0Q,
0 0900 K=1yN
IF(E(KyJ))900,900,92
| 3 2 L=L+1

ACUM=ACUM+A(f,L ) *X(K)
900 CUNTINUE
96 B(Iy.J)=ACUM
Cxxx*kxFINALLY,DPA(ALF)*Y IS PRODUCED AS QT8.
DO 9 5 Kl=1,N

-

< K=N-K1+1
S DO 93 I=1,K6
K2=K+1
ACUM=UKKI(K)*B(K, 1)
L DO 94J=K2,M

3 4 ACUM=ACUM+A(J,K)*B(Js1)
; 93 ZUI1)=BETA(K)*ACUM
L DO 96J=1sKG
BIKyJ)=B(KyJ)-UKK(K)*Z(J)
DO9 6l=K2yM
[ 9 68(1sJ)=B(IyJI-A(1,K)*Z(J)
- 9 5COUNTINUE
CHxxxx%CUMPUTATION OF ETA=ORTOGONAL COMPONENT OF Yy RESPECT OF A.
DO 120I=1sM
ACUM= Y(I)
DU 119 J=1,N
119 ACUM=ACUM—AA( 1.,J)%X(J)
120 B( I,KG+1)=ACUM

- RETURN
END
i C
C ____________________________ —— -
C

SUBKOUTINE ADA(NyMyKGeAsE9 ITERyPyToALF4ISEL) }
C OSCORNE'S EXPONENTIAL FITTING.TWO EXPONENTIALS AND CONSTANT TERM.
IMPLICIT REAL*8(A-H,0-2)




- INTEGER P
DIMINSTON A(200+20 )4E(20420) 9 ALF(KG) o T (M)
L=0

. IFCITER «6Te GIGOU TO 5

L*****IN THIS CASE THE INCIDENCE MATRIX E IS:

(]

E(l,1)=0C.
E(1,2)=0.
E(2,1)=1,
6(2’2,=00
5(3'1,:00
E{3,2)=1.
P=2
DO 4 I=14M
4 All,1)=1.00D0
S IFUISEL «GT. 0)GO TO 16
DU 1 0 I=1e¢M
AlI,2)=DEXP(~ALF{L+1)%T(1))
1 0 AlI3)=DEXP{~ALF(L+2)*T(]))
IF{ISEL)14,15,16
1 bDO 17I=14M
A(Iy5)=-T(I)*DEXP{-ALF(L+1)*T(I))
1 7AUI46)=-TUI)*DEXP(-ALF(L+2)%*T(]))
14RETURN
15 DO 20 I=1,M
AlI95)==-T(I)*Al1,2)
N 2 0 A(I96)==T(I)*A(I,3)
RETURN
END

aCCoe
O~ C

L
L SUBRUUTINE LEER(NyMyKGyNCFUNg Yy ToALF)
IMPLICIT REAL*8(A-Hy0-2)

DIMENSION Y(200),T(200) 4ALF(20)
CHexxk| £ER  REAUS THE DATA.SEE FORMATS 1004102,
1 REAU(1491004 END=500)N, My KGyNCFUN9 (TUI)sY(I)oI=1,M)
100 FORMAT(4I5/(2D15.7))

WRITE(3,1C1)NyM ’KG,NCFUNo(IyT(I’oY(I) I=1,M)
10i FORMAT (1H1,' NON LINEAR LEAST SQUARES PROGBLEM®//* NUMBER Of - FUNC

- ¥TIONS=9Y ,13,3X "NUMBER OF 0OBS
*ERVATIONS=',13//7 ° IVUMBEFROFVARIABLES ='.13.'NUNBEROF CONSTANT
* FUNCTIONS=',13/7/ I
, ®*7(1) Y{I)*/7/7(15,2D020.7))
N1l=1 .
RcAD(15102) (ALFUI) yI=N1,KG)
102 FURMAT{(4D20.7)
WRITE(3,103)(ALF(])sI=N14KG)
103 FURMATULIHCS® INITI AL NONLINEAR PARAMETERS*//7(4D20.7))
WRITE(3,104)
104 FURMAT  LHU5G("%%))

r——
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KETURN

CALL EXIT

ENUV

D
(@]
'

Y7~




NUN LINEARLLASTSQUARES PROBLEM

NUMUER OF FUNCTIUNS= 3

NUMBEROF VARIABLES =

1 T(1) Y(I)
1 0.0 0.8440000D0 0
2 0e4100CC0OCD V2 C«9080000D0 O
3 020000000 02 0.93200000 o0
4 0.3200000D 02 0.93600000 o0
, ) 0.400000CD 02 0.92500000 00
6 0 .50G0000D 02 0.90800000 GO
7 0.60000000 €2 0.88100005 0Q,
8 C.7000000DO0 2 0.85C0000D00 O
9 0.80000000 02 0.81800000 oo
10 0.90000000 02 0.7840000D0 ©
11 0.1000000DO0 3 0.75100000 oo
12 0.11000000 03 0.718000000 ©
13 0.12000000 C3 0.6850000D 00
14 0.1300000003 0.6580000D0 00
15 0. 140000000 3 0.6280000D 0 O
16 0.13000000 03 0603000000 0
17 0.16000000 0 3 0.58000000 00
18 0. 17C0000D 03 o« 55800000 00
19 0.18000000 03 053800000 00
20 0.1900000D 03 0.5220000D0 00
21 0.20000000 O3 0.50600000 00
22 0.21000000 03 0+.49000000 00
23 0e 22000000 03 C.47800000 00
24 0.23000000 03 0.4670000D 00
25 04240000000 3 0.45700000 00
26 0250000000 3 0.44800000 00
27 0.26000000 03 0.43800000 00
28 C.2700000D0 3 0.4310000D0 00
29 0.2800000D 03 0.4240000D0 00
30 0429000000 03 0.4200000D0 00
~ 31 0.300~0000 03 0.41400000 00
32 0.31000000 03 0.4110000D0 00
33 0.3200000D 03 0.40600000 00

NUMBER OF UBSERVATIONS= 33
2 NUMBER OF CONSTANT FUNCTIONS= 1

INITIAL NONLINEAR PARAMETERS
| 0.1000000D-01 0.20000000-01
*****#*****##*#****#*************#*t*t*t##tt*##t**
RESIDUAL C 0.49178610-02
NU= (e244494GCD Cl
ITER= 1 PARAMETERS
0.1295068873D-01 0.2183209327D-01
1 NEW RESIDUAL 0.5609383D-04
1 NU IS 0.12224 70D 0 1

THE NORM UFTHE RELATIVE CORRECTION IS=
_hR

0.1370 00



ITER= 2 PAKAMETLKS

Ue1292835923D~01 Ue21999673600-01
I NUW RUSIDUAL 0.5465443D0-04
1 ~U IS C.5112350D0 00
THE NURM OF THE RELATIVE CORRECTION IS= C«663D-02
ITEek= 3 PARAMETERS
- U.12878376470-01 2210022751D~-01
1 NEWRESIDUAL 0.5465016D-04

INU IS 0.3056175000

s THENORM OF THERELATIVE CORRECTIUN IS= 0.439D-02
ITER=4 PARAMETERS
0.1286831632D~01 02212108054D-01

L 1 NEW RESIDUAL 0.5464895D0~-04

1 NU 1S 0.1528088D 0 0
. THE NORM OF THE RELATIVE CORRECTION IS= 0.905D-03
. **********##*******#**************##*t**t*#*#*****
WEIGHTS
0.37541320 00 01936239D 01 -0.1465082D 01

NONLINEAR PARAMETERS
L 0.1286832D-01 0.2212108D-01

F ok ok Aok R Kok R R OR A K Ak ok R Rk R ok R ok ok ok
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