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Some Basic Machine Algorithms for Integral Order Computations

by Harold Brown

Abstract: Three machine implemented algorithms for computing with integral

orders are described. The algorithms are:

1, For an integral order R given in terms of its left regular

representation relative to any basis, compute the nil radical

J(R) and a left regular representation of R/J(R).

2. For a semisimple order R given in terms of its left regular

representation relative to any basis, compute a new basis for

R and the associated left regular representation of R such that

the first basis element of the transformed basis 1s an integral

multiple of the identity element in Q %® R. |

3. Relative to any fixed Z-basis for R, compute a unique canonical

form for any given finitely generated Z-submodule of Q ® R

_ described in terms of that basis.
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Some Basic Machine Algorithms for Integral Order Computations

Introduction and Definitions. In the investigation of certain algebraic

questions such as arithmetics 1n rational algebras and integral group

. representations, the concept of a Z-order frequently occurs. A Z-order

1s a discrete algebraic structure R, +,.satisfying:

- 1.1 R, +, . 1s an associative ring ( not necessarily commutative

or with identity ),

1.2 R, + 1s a free Z-module of finite rank, 1.e., R, + 1s a

_ "vector space! over the rational integers with a finite 7-basis. ©

For example, the set of all upper triangular n x n matrices with integral

" entries, I , forms a Z-order of rank n(n + 1)/2,

Let B =f Diyecs,b be any Z-basis for the Z-order R. The

left regular representation of R with respect to B is the( ring and

_ Z-module ) homomorphism LR: R = M on (2) from R into the Z-order of |

n x n integral matrices induced by LRy(b,) = 9) where
~ — (3) : . :

b.sb Zits b, « The coordinate map Vg: R= M_1(2) given by
_ T _

_ V(x) = (X{1eeesx ) where Xx =¥,x.b, 1s also a Z-module homomorphism.

LRg and Va are related as follows: For any x =I.x,b, and y in R,

. Va(xey ) = LR (x)Vo(y) =Z x, LRy(b, JV (y). Thus, the structure of R is

. *

Basic definitions and theorems for Z-modules can be found, e.g., 1n

MacLane and Birkhoff, Algebra, for rings in Divinsky, Rings and Radicals

and for orders in Deuring, Algebren,
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completely determined by the integral matrices LRy(b, ), i=1,¢e0,n

BN 'This concrete representation of R as a set of n, n x n integral matrices

_ 1s very convenient for computational purposes, particularly on a machine,

and 1t will be assumed here that all orders are described by such

representations. Note that Bt! = (Byreeesb 1s another Z-basis for

R 1f and only if b, = zg; bs where U = CR. 1s unimodular, 1i.e.,
U is an integral matrix with DET(U) = 11, Moreover,=

1.3 Vg, (x) = UV (x),
1.4 LRy, (x) = UT LR (x0,

- 1.5 LRy, (bY) =2 pu, UTLRy(b,JU.
Since a Z-order R 1s of finite rank, R, considered as a ring,

RN satisfies the ACC ( ascending chain condition) on left ideals. Also,

_ R contains a unique maximal nil left ideal, J(R), consisting of the sum

of all nil left ideals in R. Thus, byLevitzki's theorem, J(R) is also

- theuniquemaximal nilpotent ideal of R. J(R) 1s called the nil radical

of R. For example, J(r ) 1s the subset of all strictly upper triangular

} matrices in I and JM (2)) consists of only the zero matrix.

| Lemma. R/J(R) is an order.

Proof. It needs only be shown that R/J(R) is free as a Z-module.

By the basis theorem for finitely generated Z-modules, this 1s tantamount

to showing that R/J(R) is torsion free. Assume that m(r + J(R)) = J(R)

for some r + J(R) in R/J(R) and 0 # m in Z. Then mre J(R). Since J(R) 1s

nil, (mr)¥ = m<r¥ = 0 for some kE€ N. Since R is free, it is torsion

free. Thus rK = (0, i.e., r€J(R) and r = J(R) = J(R).
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In most applications of the theory of orders, the order R 1s considered

as being embedded in the rational algebra Q ®R, the tensor product of

QO and R over Z. Q®R can be considered as the algebra of all n x 1 rational

column vectors with multiplication defined by (x; )(y 3) = 23%; LRg(b,; )(y 4).
It follows directly from the definitions that:

1.6 QRR is an n-dimensional algebra over Q with

J(Q®R) =Q®J(R),

} 1.7 QRR/Q® J(R)"3 Qe@/JI(R).

For example, ef, [I(T NEM (Q) where the operations are componentwise.
Since Q®®/J(R)) is a finite dimensional algebra over Q, it satisfies

the DCC ( descending chain condition ) on left ideals. Moreover,

J(Q®R/J(R)))= 0. Thus Q@R/JI(R))is a semisimple algebra. In particular,

Q®R/JI(R)) nas an identity element e.

The usual initial step 1n computational problems involving orders

is to determine J(R) and R/J(R). Also, these problems usually require

working with numerous Z-submodules of QRR/J(R). We present here

effective algorithmic procedures to:

I. Determine a Z-basis for J(R) 1n terms of the given representation

of R. |

II. Determine the structure of the order R/J(R) in a normalized

form, i.e., determine a set of defining matrices, Miveoost,

for R/J(R) such that M, is an integral multiple of the

identity matrix.

III. Determine when two finitely generated Z-submodules of Q®R



described in terms of a basis B of R are equal.

In a second paper we will describe an effective procedure for |

embedding R/J(R) into a maximal %-order of QR®R/J(R). These algorithms |

have been implemented on an IBM360/67.

Algorithms. The basic computational procedure used in the algorithms |

is unimodular row reduction of an integral matrix. This procedure 1s

central for many algorithms in discrete algebra, e.g., the basis theorem

for finitely generated abelian groups.

A matrix A = (2; ,) is said to be in row reduced form ( or row |
echelon form ) if it satisfies the following condition: |

If a is the first nonzero entry in the k-th row of A, then |

for all i1>k and j<s, 8aypq™ 0.

Lemma. For any s x t integral matrix M = (my J), there 1s an s x s
unimodular matrix U such that UM is in row reduced form.

The proof of this lemma 1s given by the following algorithm. The

termination of the algorithm 1s a consequence of the well-ordering of |

the positive integers. |

Row Reduction Algorithm.

1 Initialize: J «1, hel, U-= (ug) € sxs identity matrix.
2 Search the j-th column of M for an element of minimal nonzero

magnitude, say mo 5° If no such element exists, go to step 6. |

If my 5 1s the only nonzero element in the j-th column, go to step 4. |
3 Do for i = h,h+l,...,k=1,k+l,...,s: |

Divide ms 5 by ms getting an 1ntegral quotient a and remainder
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L; with | r. | <|m | , i.e., mij = Me 534 + r,. For v = Jreeest,

Mey “0% = Mev and for v = 1,...s, Uiv © vy 7 Mv

If r, f 0, k « 1 and go to step 3.

4 Interchange the h-th and k-th rows of M and the h-th and k-th

rows of U.

5 heh + 1,

6 je J+ 1,

7 If Jj = s or h>t, exit, otherwlse go to step 2.

In a machine implementation of the algorithm, devices such as

immediately exiting the search in step 2 and setting q; to mo if an

element my 5 of magnitude 1 is found can speed up the process considerably
for certain classes of matrices.

The algorithm for I and II is based on the trace bilinear form

T:RXR= 7 defined by T(x,y) = TRACE(LR (x.y)). T is a symmetric
form, and by 1.4 it 1s independent of basis choice. T 1s completely

determined relative to a basis B of R by the symmetric integral matrix

My = (1(b;,0,)), and T(x,y) = INEIB NRE) If U is a unimodular
change of basis matrix carrying B onto the basis B', then Mp a m0
Since DET(U) = #1, DET (My) depends only on R. This determinant is

called the Z-discriminantof R, and it 1s nonzero if and only if J(R) = 0.

The relationship between J(R) and T 1s given 1n the following lemma:

Lemma. Let RAD(T) be the submodule of elements in R orthogonal

to R, i.e., RAD(T) = { x€R | T(x,y) = 0 ¥ y€R} . Then RAD(T) = J(R).

Proof. For any x €J(R) and y€ R, Xxey is in J(R) since J(R) is
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3 an ideal in R. J(R) is nil. Thus (xo y)K = 0 for some k €N, and, since

| LR, 1s a homomorphism, LR, (x-y)" = (0. But any nilpotent matrix must
have zero trace. Hence J(R) C RAD(T). Conversely, if x€ RAD(T), then

(x, x5) = 0 for any k >0, i.e., TRACE(LR, (x)) = 0 for any k> 1. This
implies that the characteristic polynomial of LRy(x) is of the form zt,

i.e,, that LR (x) 1s a nilpotent matrix. Hence by the definition of

LR.., X 1s nilpotent, Similarly, rex is nilpotent for any r in R, Thus

x generates a nil left ideal in R, and x €J(R).

Let U = (uy 5) be a unimodular matrix such that Uy is in row reduced

form. Then UM, 1s of the block form 1] where the rows of A are
) X-independent ( or, equivalently, Q-independent ). Since My 1s symmetric,

| UIA 1s of the form id where W is a nonsingular d x d integral
matrix. Let bs = 8 Then B83! = (o1} 1s a Z-basis for R, and the

L . last n-d elements of B' form a Z-basis for RAD(T) and hence for J(R).
Moreover, the set { by+3(r) | 1 = L,eea,d } forms a Z-basis for

~ R/J(R). Thus, the set { LR, (bf) | i = d+l,...,n } corresponds to a
$-basis f'or J(R) and the upper left d x d blocks of the matrices

LR, (b!), i =1,...d, form a set of defining matrices for the order
R/J(R).

The order R/J(R) has zero nil radical, and, for notational simplicity,

we assume henceforth that J(R) = 0, i.e., that Q®R is semisimple, gipce

JR®R is semisimple, Q@®R contains an identity element e and LR, (e) = I.

Here, we extend LRy to @®R in the obvious manner and I dendtes the n x n

identity matrix, B is a Q-basis for Q®R, Hence e can be expressed as
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e =I, (a,/h Jb, with d- and h, in Z and GCD(qy, hy ) = 1. Let t = Lcvfh, .
"Then Ze NR = Zte., Notethat the coefficients a; /h, and hence t can
be constructively determined, e.g., byusing the row reduction algorithm

to solve over Q the 4 xn system of linear equations I. = 5, (x, /y; JLRg(b, ),
Xs and ys in 4.

From the equations& Jay/n ed) =1,1i=1,...,n, it follows by
an elementary number theoretic argument that GCD(q; t/h, ) =1, i.e., that

the entries in Vylte) are relatively prime. ( Here, as before,

Or _ LR(D,) )e Since multiplication of V (te) by a unimodular |
matrix does not change the GCD of the entries, we can use the row reduction

algorithm to construct a unimodular matrix S satisfying

Vo(te)'s = (1,0,400,0)s The matrix sg? 1s unimodular and has as first
TOW Vo (te) Hence, the basis (bj) = 57H (b, ) has as first element te,
and the matrices LRg, (bs), i=1,.4s, n, form a representation for the

order R of the desired type.

These procedures effectively solve I an3 IT. The row reduction

alvorithm also yields an effective procedure for IIT,

Let H be a finitely generated 7-submodule of Q®R. H can be described

relative to a basis 3 = (b..) of R bya nonzero integer Dy and an integral

matrix Fo as follows: Say H=g «7h, Then h, = $2193 305» 35 €4
i =1,eee,ke Let Dy be the LCM of the denominators of the % 3 and

Fy = Day 5). H is completely determined relative to B by the pair
(Dy, JR Moreover, this representation of H by a pair (Dg Fp) admits
a normal form.



A representation (Dy, Fy) of H relative to B is said to be in

( Hermite ) normal form if:

2.1 Dy >0,

2.2 Fy = (£5 4) has no zero rows.

2.3 If fi is the first nonzero entry in the s-th row of Fis

then (1) ft 0, (ii) Ts 5 0 for i >s and j <t,

(111) O <fiy <t, for 1<s.,.

2.4 The GCD of Dy and the f. I] is 1.

If (Dy Fp) 1s any representation of H relative to B, then the

following algorithm gives an effective procedure for determining a

normal form representation, (Df, Fl), for H relative to B:

Normal Form Algorithm.

1

1 Df « ba .

2 Apply the row reduction algorithm to Firs obtaining a unimodular

matrix W such that WF, = (t 5) is in row reduced form. Note

that since W is unimodular, the elements 2 5(ty 5/Dp)os,
i=1,...,k, form a Z-generating set for H.

3 Delete any zero rows 1n WF obtaining an m x n matrix
S10 — 1

Fi = (£15).
4 Do for 1 = 1,...;n:

Determine the first nonzero entry in the i1-th row of Fibs
! 1 < lo. -f!., J = coe ye) say fly. If fi 0, Fis « ti; J t, i!

Do for s =1,.,.,1~1:

1 << ! | i ! - ;If fit 0 or fot >Elis subtract Le /e0 times the

1-th row of FY from the s-th row.
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| Note that these row operations correspond to unimodular

transformations of Fis and hence Fo still determines a

Z-generating set ( in fact a Z-basis ) for H.

5 Compute the GCD, say D, of Dy and the f! 17

| 6 DY « D!/D; Fl « (1/D)FL.
In particular, 1t follows from this algorithm that relative to any

| basis B of R a finitely generated Z-module, H, possesses a normal form

representation.

Let BY = (b; ;) be another basis for R, say (bs) = U(b; J. If
| (Ds Fy) is any representation of H relative to B, then (DW FU) is
/ a representation of H relative to B's If (Dy, Fy) is a normal form

| representation, then (Dg FU) satisfies 2.1, 2.2 and 2.4, but need
not satisfy 2.3.

The utility of the normal form representation 1s a consequence

of the following lemma:

Lemma. Any two normal form representations of H relative to B,

| say (Dg, Fy) and (D}, Fl), must be idetical,

Proof. By 24 and 2.1, Dy ( DY ) is the least positive integer

such that bH CR (DH CR). Hence Dy and DY depend only on H, and

Dy m= Df Fy and KF} are both row reduced matrices by 2.3(ii). Since

neither matrix has any zero rows, the row dimension of Fu ( Fh ) 1s

equal to the Z-rank of H, i.e., Fy and Fo are of the same dimensions,

and the sets of elements of H determined by Fy (Db. ) and by Fi(b. ) form

Sa L-bases for H. Thus there is a unimodular matrix T such that Fy = TFH.
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From an analysis of the entry patterns in T, Fu and Fy it follows

that I' 1s an upper triangular matrix and Fy and Fh have the same echelon

pattern. Since T is unimodular, its diagonal entries must be £1, and

2.3(1) implies that they must be positive. Using these observations and

2.3(iii), an induction argument on the row dimension gives that T must

be the identity matrix, i.e., that Foo = Foe

The normal form algorithm effectively solves III. Note that for

computations involving Z-submodules of Q®R, it is usually most efficient

to carry all submodules in normal form representation relative to some

fixed basis of R as this eliminates any problems of redundancy.

Implementation. The programs implementing these algorithms are structured

as a sequence of subroutines. The row reduction algorithm program

1s coded 1n System/360/0S assembler language. The rest of the routines

are coded in FORTRAN IV.

The subroutines are:

1. ROWFRM, the row reduction algorithm routine.

2, INV, a routine to find the inverse of a unimodular matrix.

3.DE!', a routine to compute the determinant of a square integral

matrix.

4, GCD, a simple Euclid% algorithm program.

5. RADRDC, the routine to determine J(R) and R/J(R).

6. ID3BAS, a routine to transform the basis of a semisimple order

R into one in which the first basis element 1s a multiple of

the identity in Q®R,

7. NORFRM, a routine implementing the normal form algorithm.
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ROWFRM, INV, DET and NORFRM are each 0 (nd) units of time processes

where n is the row dimension of the matrix. RADRDC and IDBAS are both

on’) units of time processes where n 1s the Z-rank of R.

fxamples,

1. Let r, denote the Z-order of all upper triangular 2x 2 matrices

with integral entries. Let R be the suborder of Ts with Z-basis

B = {by 00053 where
2 3. . _ 231, . _ Is 6by BE ,- [2 2 y= [28

Then,

6 -16 -8 8 -20 -10
R(b,)= | 2 6 2} , LR (by)= | 4% 10 4&1

1-12 =30 -=15

8 16 11

and

12 16 16

16 20 22

The row reduction algorithm applied to My yields the unimodular matrix

1 1 0

4 1 2

satisfying

7 4 4 0
UMLU = J-4 6 0

0 0 O

Thus J(R) has rank 1 and R/J(R) has rank 2 and discriminant 8.

Let B' be the basis obtained by (b!) =U(b! ). Then,
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and, using 1.5,

2 -2 0 2 3 0

| 0 0 0

LR, (b1) = : E .
Hence, bl is a basis for J(R) with corresponding matrix LR, (bd),

and R/J(R) is the order with defining matrices

1 oOo 0] 2 oO 1} °

Let S be the order of rank 2 with defining matrices m, and m, and basis C.

J(S) = 0, and Q®S 1s semisimple. The unique solution of X my gr X,M, = L

is x, =3/2, x, = 1. Thus t =2, and V. (te) = (3,2). The unimodular
matrix

i 2

satisfies VU(te)'W = (1,0), and

Wl = k q ‘
Using 1,5, we obtain the desired normalised representation matrices for

R/J(R) = S, namely

2 0 “Jo o

: ] and E 1 .
With this representation, it is easy to see that Q®R/JI(R) £ 0QXOQ

where the operations on QXQ are componentwise and R/J(R) = 27X.7.

B 2. Let R be the Z-order of all upper triangular 3x 3matrices
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| with integral entries, and let B = om l<s<k <3} be the natural
| Z-basis for R, i.e., ek = (§. § .)e Let H be the Z-submodule of Q&R

sk 157k]

with L-generating set

1/5 2/3 1/5 1/6 11/30 1/6 1/15 8/15 1/5

hy = |0 0 0}, hy= JO 0 0 , hy= 10 0 1/6] ,
O O00 O 0 O 0 0 0 0

1/15 3/10 1/6 1/15 1/3 1/6

h,= J] 0 0 2/15}, hy = 1 0 0 2/151
0 0 0 0 0 0

H is represented relative to B by the pair (Ds Fy) with Dy = 30 and
6 20 6 O¢ 0 o

511. 5 0 0 ©

Fu = 12 16 6 0 5 0 .
2 9 5 04 0
210 5 04 0

Via the row reduction alqorithm: Fy 1s unimodularly transformed into

1-21 -19 20 0

0 -1 -205 0 -244 0

FLo= LO 0 1 0 56856 0
| 0 0 0 0 I0 0 0 0 0 0

The normal form algorithm applied to Fh yields

1 0 0 0 0 O

m= 0 1 0 0 0 O
H oO 01 0 0 Of °

oO 0 0 01 O

Hence, H has the unique normal form representation relative to B

(Dy, Fit), and H has as a Z-basis { (1/30)ey;. (1/30)e,,, (1/30)e, 5, (1/30)e,,} .

"Note that in this example a relatively large entry 1s produced by the

row reduction algorithm. These large entries occur often, particularly

in intermediate calculations, and overflow must be watched for.
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