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Abstract: Three machine implemented algorithms for computing with integral
orders are described. The algorithms are:
1., For an integral order R given in terms of its left regular
representation relative to any basis, compute the nil radical
J(R) and a left regular representation of R/J(R).
2, For a semisimple order R given in terms of its left regular
representation relative to any basis, compute a new basis for
R and the associated left reqular representation of R such that
the first basis element of the transformed basis is an integral
multiple of the identity element in Q % R.
3. Relative to any fixed Z-basis for R, compute a unique canonical
form for any given finitely generated Z-submodule of Q ® R

described in terms of that basis.
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Some Basic Machine Algorithms for Integral Order Computations

Introduction and Definitions. In the investigation of certain algebraic

questions such as arithmetics in rational algebras and integral group
representations, the concept of a Z-order frequently occurs. A Z-order
is a discrete algebraic structure R, +,.satisfying:
1.1 R, +, . is an associative ring ( not necessarily commutative
or with identity ),
1.2 R, + is a free Z-module of finite rank, i.e., R, + is a
"vector space" over the rational integers with a finite Z-basis. *
For example, the set of all upper triangular n x n matrices with integral
entries, T, forms a Z-order of rank n(n + 1)/2,
Let B = f bl""’bn] be any Z-basis for the Z-order R. The
left regular representation of R with respect to B is the( ring and
z-module ) homomorphism LRB: R -+ Mmm(Z) from R into the Z-order of

n x n integral matrices induced by LRB(bj) = toilz) where

bJ.bk =Eit£lg)bi' The coordinate map VB: R~ Mnxl(z) given by

VB(X) = (xl,...,xn)T where x =% .x.b, is also a Z-module homomorphism.
i1

LRB and VB are related as follows: For any x =Zixibi and y in R,

VB(x-y) = LRB(x)VB(y) =EixiLRB(bi)VB(y). Thus, the structure of R is

*
Basic definitions and theorems for Z-modules can be found, e.g., in

MacLane and Birkhoff, Algebra, for rings in Divinsky, Rings and Radicals

and for orders in Deuring, Algebren.



completely determined by the integral matrices LRB(bi), i=1,000,0
'This concrete representation of R as a set of n, n x n integral matrices
is very convenient for computational purposes, particularly on a machine,
and it will be assumed here that all orders are described by such
representations. Note that B! = (bi,...,b;l} is another Z-basis for
R if and only if b;_ = rjuijbj where U = (u. 1.3) is unimodular, i.e.,
U is an integral matrix with DET(U) = 3l. Moreover, =

1.3 Vg, (x) = u‘TvB(x ),
(x) = UTLR (U,

1.5 LR, (b') =% u. U LR (b, )u'.

B' 73 t it Bt

Since a Z-order R is of finite rank, R, considered as a ring,
satisfies the ACC ( ascending chain condition ) on left ideals. Also,
R contains a unique maximal nil left ideal, J(R), consisting of the sum
of all nil left ideals in R. Thus, by Levitzki's theorem, J(R) is also
theuniquemaximal nilpotent ideal of R. J(R) is called the nil radical
of R. For example, J(Tn) is the subset of all strictly upper triangular
matrices in T and J(Mnxn(Z)) consists of only the zero matrix.

Lemma. R/J(R) is an order.

Proof. It needs only be shown that R/J(R) is free as a Z-module.
By the basis theorem for finitely generated Z-modules, this is tantamount
to showing that R/J(R) is torsion free. Assume that m(r + J(R)) = J(R)
for some r + J(R) in R/J(R) and 0 # m in Z. Then mré J(R). Since J(R) is

k_k

nil, (mr)k =mr = (0 for some k€ N. Since R is free, it is torsion

free. Thus rk =0, i.e., T€J(R) and r = J(R) = J(R).



In most applications of the theory of orders, the order R is considered
as being embedded in the rational algebra Q®R, the tensor product of
Q and R over Z. Q®R can be considered as the algebra of all n x 1 rational
column vectors with multiplication defined by’(xi)(yj) =2i}iLRB“H)(yj)-
It follows directly from the definitions that:
1.6 Q®R is an n-dimensional algebra over Q with
J(Q®R) =Q® J(R).
1.7 O2R/Q® J(R)“‘c’=2 Qa®/J(R).
For example, Q®(I‘n/J(Tn))%Mnx1 (Q) where the operations are componentwise.
Since QGD@/J(R» is a finite dimensional algebra over Q, it satisfies
the DCC ( descending chain condition ) on left ideals. Moreover,
J(Q®R/J(R)))= 0. Thus Q®R/JI(R))is a semisimple algebra. In particular,
Q®R/J(R) nas an identity element e.
The usual initial step in computational problems involving orders
is to determine J(R) and R/J(R). Also, these problems usually require
working with numerous Z-submodules of Q®(R/J(R)).Wepresent here
effective algorithmic procedures to:
I. Determine a Z-basis for J(R) in terms of the given representation
of R.
II. Determine the structure of the order R/J(R) in a normalized
form, i.e., determine a set of defining matrices, Ml""’Mk'
for R/J(R) such that M1 is an integral multiple of the
identity matrix.

III. Determine when two finitely generated Z-submodules of Q®R



described in terms of a basis B of R are equal.

In a second paper we will describe an effective procedure for
embedding R/J(R) into a maximal %-order of Q®GVJ(R» These algorithms
have been implemented on an IBM360/67.

Algorithms. The basic computational procedure used in the algorithms

is unimodular row reduction of an integral matrix. This procedure is
central for many algorithms in discrete algebra, e.g., the basis theorem
for finitely generated abelian groups.

A matrix A = (aij) is said to be in row reduced form ( or row
echelon form ) if it satisfies the following condition:

If aks is the first nonzero entry in the k-th row of A, then
for all i>k and j<s, a'i3= 0.

Lemma. For any s x t integral matrix M = (mijL there is an s x s
unimodular matrix U such that UM is in row reduced form.

The proof of this lemma is given by the following algorithm. The
termination of the algorithm is a consequence of the well-ordering of

the positive integers.

Row Reduction Algorithm.

1 Initialize: J «1, hel, U= (upq)e sxs identity matrix.
2 Search the j-th column of M for an element of minimal nonzero
magnitude, say mkj' If no such element exists, go to step 6.
If mkj is the only nonzero element in the j-th column, go to step 4.
3 Do for i = h,h+l,...,k=1,k+1,,..,s:

Divide mij y mkj getting an integral quotient qi and remainder



ri with |ri|<lmkj| , 1.e., mij = mqui + ri. FOr v = J,eee,t,

me, <0, = Mm.9; and for v = 1,...8, v, € Uiy = W 9y
If r, # 0, k « 1 and go to step 3.
4 Interchange the h-th and k-th rows of M and the h-th and k-th
rows of U.

5 he h + 1.

6 jej+ 1,

7 If j = s or h>t, exit, otherwise go to step 2.

In a machine implementation of the algorithm, devices such as
immediately exiting the search in step 2 and setting q; to m"lj if an
element mkj of magnitude 1 is found can speed up the process considerably
for certain classes of matrices.

The algorithm for I and II is based on the trace bilinear form
T:RXR- % defined by T(x,y) = ’I’RACE(LR.B(x-y)). T is a symmetric
form, and by 1.4 it is independent of basis choice. T is completely
determined relative to a basis B of R by the symmetric integral matrix
MB = ('[‘(b.l,bj)), and T(x,y) = VB(X)TMBVB(y). If U is a unimodular

change of basis matrix carrying B onto the basis B', then M T

Bt = UMBU .

Since DET(U) = #1, DE’[‘(MB) depends only on R. This determinant is

called the Z-discriminant of R, and it is nonzero if and only if J(R) = O.
The relationship between J(R) and T is given in the following lemma:
Lemma. Let RAD(T) be the submodule of elements in R orthogonal

to R, i.e., RAD(T) = { x€R | T(x,y) = 0 ¥ y€R) . Then RAD(T) = J(R).

Proof. For any x €J(R) and yE R, Xey is in J(R) since J(R) 1is



an ideal in R. J(R) is nil. Thus (x-y)k = 0 for some k €N, and, since
LR, is a homomorphism, LRB(X‘,y)k = (0. But any nilpotent matrix must
have zero trace. Hence J(R) S RAD(T). Conversely, if x€ RAD(T), then
"['(x,xk) = 0 for any k >0, i,.e., TRACE(LRB(x)k) = 0 for any k> 1. This
implies that the characteristic polynomial of LRB(x) is of the form z?%,
i.e., that LRB(X) is a nilpotent matrix. Hence by the definition of
LR.., x is nilpotent, Similarly, rex is nilpotent for any r in R, Thus
X generates a nil left ideal in R, and x €J(R).

B

Let U = (uij) be a unimodular matrix such that UM, is in row reduced
form. Then UI-{B is of the block form [‘g‘] where the rows of A are

X-independent ( or, equivglently, Q-independent ). Since MB is symmetric,
where W is a nonsingular d x d integral

0
1 1 = | i 1 — ]
matrix. Let bi Z,_]'ul'g'%" Then B3 (bi} is a Z-basis for R, and the

UMBUT is of the form [”

last n-d elements of B' form a Z-basis for RAD(T) and hence for J(R).
Moreover, the set {b'l+ J(R) I i= 1....,d} forms a Z-basis for
R/J(R). Thus, the set { LRB,(bj'_) \i = d+1,...,n} corresponds to a
$-basis f'or J(R) and the upper left d x d blocks of the matrices
LRB,(b:.'L), i =1,...d, form a set of defining matrices for the order
R/J(R).

The order R/J(R) has zero nil radical, and, for notational simplicity,
we assume henceforth that J(R) = 0, i.e., that Q®R is semisimple, gipce
Q®R is semisimple, Q®R contains an identity element e and LRB(e) = In'
Here, we extend LRB to Q®R in the obvious manner and Irl dendtes the n x n

identitymatrix., B is a Q-basis for Q®R, Hence e can be expressed as



e =T (q,/h )b, with q. and h; in Z and GOD(q;,h;) = 1. Let t = remfh. ] .
"Then Ze N R = Zte, Notethat the coefficients qi/h.1 and hence t can
be constructively determined, e.g., byusing the row reduction algorithm
to solve over Q the 2 xn system of linear equations I =2‘i(xi/yi)LRB(bi)’
X5 and y, in e

From the equations T j(qj/hj)t].(_g) =1,1=1,,.,.,n, it follows by
an elementary number theoretic argument that GCD(qit/hi) =1, i.e., that
the entries in VB(te) are relatively prime. ( Here, as before,
(‘tég)) = LRB(bj) )e Since multiplication of VB(te) by a unimodular ‘
matrix does not change the GCD of the entries, we can use the row reduction
algorithm to construct a unimodular matrix S satisfying
VB(te)TS =(1,0,e04,0). The matrix S_1 is unimodular and has as first
row VB(te)T. Hence, the basis (bj) = S-l(bi) has as first element te,
and the matrices LRB,(b:!L), i=1,.4e,n, form a representation for the
order R of the desired type.

These procedures effectively solve I an3 IT. The row reduction

almorithm also yields an effective procedure for III.

Let H be a finitely generated 7-submodule of Q®R. H can be described

relative to a basis B = (bl') of R bya nonzero integer DH and an integral
. _-k . P <}

matrix F‘H as follows: Say H=g% i=17‘hi’ Then hi =3 j=1qijbj’ qijEQ,

i =1,00e,ke Let DH be the LCM of the denominators of the qi:] and

Fy = DH(qij)' H is completely determined relative to B by the pair
(DH, FH). Moreover, this representation of H by a pair (DH,FH) admits

a normal form.



A representation (D F‘ ) of H relative to B is said to be in

H’
( Hermite ) normal form if:

2.1 DH >0,

2.2 FH = (fiJ’) has no zero rows.

2.3 If is the first nonzero entry in the s-th row of FH’

st

. N . _ . .
then (i) fst 0, (i1) fij 0 for i >s and j <t,

(iii) O Sfit <fst, for 1i<s.

2.4 The GCD of DH and the f. 13 is 1.

If (DH,FH) is any representation of H relative to B, then the
following algorithm gives an effective procedure for determining a

normal form representation, H,F') for H relative to B:

Normal Form Algorithm.

1 D;I.<-|DH| .

2 Apply the row reduction algorithm to FH’ obtaining a unimodular

matrix W such that WFH = (tij) is in row reduced form. Note

that since W is unimodular, the elements 2 1_]/DH

i=1,...,k, form a Z-generating set for H.

3 Delete any zero rows in WFH, obtaining an m x n matrix
1 1
b (fij).

4 Do for i =1,...;n:

Determine the first nonzero entry in the i-th row of F!,

say f"it' If f! <0, f|3 -f'J, J=t,eea,n,

Do for s =1,...,i=1:

< 1
Ifft Oorf‘St t’

i-th row of F}'{ from the s-th row.

subtract Lfét/f:!tt - times the

8



Note that these row operations correspond to unimodular
transformations of Eﬁ. and hence Fﬁ still determines a
Z-generating set ( in fact a Z-basis ) for H.

5 Compute the GCD, say D, of Dﬁ and the f! Y

6 DY« D;{/D; Fl « (1/D)Fﬁ.

In particular, it follows from this algorithm that relative to any
basis B of R a finitely generated Z-module, H, possesses a normal form
representation.

Let B' = (bij) be another basis for R, say Q§i) = U(Eﬁ‘)' If
U%PFH) is any representation of H relative to B, then (DH,FHU—l) is
a representation of H relative to B's If (DH’FH) is a normal form
representation, then (DH,FHU_l) satisfies 2.1, 2.2 and 2.4, but need
not satisfy 2.3.

The utility of the normal form representation is a consequence
of the following lemma:

Lemma. Any two normal form representations of H relative to B,
say (DH’FH) and.(Dﬁ,Fﬁ), must be idetical.

BProof. By 24 and 2.1, DH( Dﬁ ) is the least positive integer
such that DHH CR (D}'{H CR ). Hence DH and DI'{ depend only on H, and

DH = Dﬁ. FLI and Fﬁ are both row reduced matrices by 2,3(ii). Since

neither matrix has any zero rows, the row dimension of FH ( Fﬁ ) is
equal to the Z-rank of H, i.e., FH and Fﬁ are of the same dimensions,
and the sets of elements of H determined by FH(bi) and by Fﬁ(bi) form

L-bases for H. Thus there is a unimodular matrix T such that Fﬁ = TFH.



From an analysis of the entry patterns in T, FH and Fﬁ it follows
that I' is an upper triangular matrix and FH and Fﬁ have the same echelon
pattern. Since T is unimodular, its diagonal entries must be %1, and
2.3(1) implies that they must be positive. Using these observations and
2.,3(iii), an induction argument on the row dimension gives that T must
be the identity matrix, i.e., that ﬁ{= Fﬁ.

The normal form algorithm effectively solves III. Note that for
computations involving Z-submodules of Q®R, it is usually most efficient
to carry all submodules in normal form representation relative to some

fixed basis of R as this eliminates any problems of redundancy.

Implementation. The programs implementing these algorithms are structured

as a sequence of subroutines. The row reduction algorithm program
is coded in System/BéO/OS assembler language. The rest of the routines
are coded in FORTRAN IV.
The subroutines are:
1. ROWFRM, the row reduction algorithm routine.
2, INV, a routine to find the inverse of a unimodular matrix.
3.DE!", a routine to compute the determinant of a square integral
matrix.
L, GCD, a simple Euclid$% algorithm program.
5. RADRDC, the routine to determine J(R) and R/J(R).
6. ID3AS, a routine to transform the basis of a semisimple order
R into one in which the first basis element is a multiple of
the identity in Q®R,

7. NORFRM, a routine implementing the normal form algorithm.

10
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ROWFRM, INV, DET and NORFRM are each O(n3) units of time processes
where n is the row dimension of the matrix. RADRDC and IDBAS are both
O(n4) units of time processes where n is the Z-rank of R.
fxamples,

1. Let T, denote the Z-order of all upper triangular 2x 2matrices

with integral entries. Let R be the suborder of T2 with Z-basis

B = {:bl,bz,bB} where

B A1 P ] I
By [oz] bz‘[ou] b3‘[oz]'

Then,
-6 =16 -8 -3 =20 -12
R(b, )= | 2 6 2| , LR (b)) = | & 10 ,
el |5 8 6 B2 b 8§
';12 -30 -15
8 16 11
and
12 16 16
MB = 16 24 20 .
16 20 22

-
-1 1 0
U = 0o -1 1
4 -1 -2
satisfying
T L -4 0
UMBU = |-4 6 ©
0 0 Q]

fhus J(R) has rank 1 and R/J(R) has rank 2 and discriminant 8.

Let B' be the basis obtained by G%) =U(bi%1hen,

11



C_lo o I EO o -
b1‘E)2]'bé'[o-}'b§’[ocJ’

and, using 1.5,

1

-
2 2 0 2 3 0

LR, (62) = o o o , wR,m)= o 1 of ,

BT o o 9 Bt e 2 2 1
0 o O

LR (bt) = lo o of .

BT 2 2 0

Hence, bl is a basis for J(R) with corresponding matrix LRB'(b’j%)'

3

and R/J(R) is the order with defining matrices
R ) B -
™ o o] * ™ o 1} -
Let S be the order of rank 2 with defining matrices m and m, and basis C.

J(S) = 0, and Q®S is semisimple. The unique solution of xqmy + X m, = I2

T .
is x, =3/2, x, = 1. Ths t =2, and Vo(te)” = (3,2). The unimodular

W o= 1 _]
b3

satisfies VC(te)Tw = (1,0), and

~
1|3 2
D
.

Using 1,5, we obtain the desired normalized representation matrices for

matrix

R/J(R) % S, namely

2 0 a"d 0 0
0 2 n 2 1] -
With this representation, it is easy to see that Q®R/J(R) = 0X0

where the operations on QXQ are componentwise and R/J(R) = 2ZX.Z.

2. Let R be the Z-order of all upper triangular 3x 3matrices

12



with integral entries, and let B = [esk] 1<s<k <3 ) be the natural

Z-basis for R, i.e., ek = (‘is{kj)' Let H be the Z-submodule of Q&R

with L-generating set

1/5 2/3 1/5 1/6 11/30 1/6 1/15 8/15 1/5

hy = 0 0 0}, hy,= 0 0 0 ,h3= 0 o 1/6] ,
0 0 0 0 o0 0 0o 0 o0
1/15 3/10 1/6 1/15 1/3 1/6

h, = 0 o 2/i5}, h5 = 0 0 2/15} .
0 0 0 0 0 0

H is represented relative to B by the pair (DH’FH) with DH =30 and

6 20 6 0 0 o
511 5 0 0 O
F.= |2 16 6 0 5 0
2 9 5 04 O
210 5 04 o

Via the row reduction alqorithm: F,lJ is unimodularly transformed into

1 -21 -19 0 20 0
0 -1 -205 0o -244 0
Fio= ko 0 1 0 56856 0
0 0 0 0 '
0 0 0 0 0 0
The normal form algorithm applied to FI!I yields
1 0 0 0 0 O
o= 01 0 0 0 O
H 0 o1 o 0 O} °
0 0 0010

Hence, H has the unique normal form representation relative to B

(D ,Fi'{), and H has as a Z-basis {(1/30)e11, (1/30)e12, (1/30)e13, (1/30)e23} .

3
Note that in this example a relatively large entry is produced by the
2 row reduction algorithm. These large entries occur often, particularly

in intermediate calculations, and overflow must be watched for.
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