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Abstract: Jack Edmonds developed a new way of looking at extremal
combinatorial problems and applied his technique with a great
success to the problems of the maximal-weight degree-constrained
subgraphs. Professor C. St. J. A. Nash-Williams suggested to use
Edmonds!' approach in the ccntext of hamiltonian graphs. In the
present paper, we determine a new set of inequalities (the “comb
inequalities") which are satisfied by the characteristic functions
of hamiltonian circuits but are not explicit in the straightforward
integer programming formulation. A direct application of the
linear programming duality theorem then leads to a new necessary
condition for the existence of hamiltonian circuits; this condition
appears to be stronger than the previously known ones. Relating
linear programming to hamiltonian circuits, the present paper can
also be seen as a continuation of the work of Dantzig, Fulkerson

and Johnson on the travelling salesman problem.
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0. Introduction

During my work on this paper, I enjoyed useful and inspiring
discussions with Professor J. A. Bondy, Professor Jack Edmonds,
Dr. Steve Gallant, Professor C. St. J. A. Nash-Williams and Professor
Richard Rado. 1In particular, Professor Nash-Williams suggested to
explore the relations between hamiltonian circuits and linear programming
and to use the term "weakly hamiltonian graphs" for graphs admitting
certain functions related to hamiltonian circuits. I also thank

Miss Laurel L. Ward of McGill University for computing assistance.

If V is a set, we define [V] = {A ¢ V:|A‘ = 2} . A graph is an
ordered pair G = (V,X) where V is a set and X c [V] . All the
graph-theoretical definitions not given here can be found in [12].

A graph is n-cyclable if given any set S € V with wl = n there 1is

a cycle passing through all points of S . A graph is t-tough if, for
each set S ¢ V, the S-deleted subgraph G-S has at most max{|S|/t,1}
components (see [2]). If T,W are disjoint sets, we define

[T,W] = {a: |A] =2, anNT P, ANWEPY . For a fixed graph

G = (V,X) and sets T,W c V , we set g(T) = [X nitll,

q(T,W)-—|X n [T,WJ| . The subgraph (T,X N [T]) induced by T will
be denoted by G(T) ; the number of components of G(T) will be denoted
by k(T) .

If V is a set, we denote by mqu the set of all proper non-
empty subsets of V ; we denote by expOV the set of all odd-cardinality
subsets of V . We denote by N the set of all nonnegative integers.
If £ is a real-valued function defined on S then we write T

rather than 2: fi(x) .
xeSNT



1. Edmonds polyhedra

Let us begin with a set of inequalities

n
.Zla(i,a')X(i) < b(j) (i =12 . ..n) (1)

(a(i,j), b(J) being real numbers) which determine a bounded subset of
the n-dimensional Euclidean space R . Then the set S of the lattice

points of Rn (i.e., the points

x = (x(1),%(2),...,x(n))
where the x(i)'s are integers) satisfying (1) is finite. 1ig convex
hull is a polyhedron which can be characterized by a new set of
inequalities

n

*/. . . . *

z a (1,3)x(i) < b*(J) (3 = 1L,2,.0u,m) . (2)

i=1
The polyhedron determined by (1) will be denoted by P , the polyhedron

determined by (2) will be denoted by E(P)

Next, consider the following couple of linear programming problems:

- maximize i c(i)x(i) subject to xeS (3)
i=1
Il

- maximize Z . ¢(i)x(i) subject to xeE(P) ) (L)
i=1

Since the vertices of E(P) come from S and S is a subset

of E(P) , we have

max ) c(i)x(i) = mex Y c(i)x(4) .
xeS xeB(P)



Therefore every optimal solution of (3) is an optimal solution

of (k). Conversely, every basic optimal solution of (4) is an optimal

solution of (3).

Hence, if we know how to pass from the inequalities (1) to the
inequalities (2), we can reduce the integer linear programming problem
(3) to the ordnary (continuous) linear programming problem (4).
Naturally, starting from the inequalities (1), one can always determine
the (finite) set S and, in turn, the inequalities (2). In practice,
however, this process may be extremely lengthy.

Apparently the only case where (2) has been explicitly determined
for quite a wide class of polyhedra (1) is the case of the maximum-
weight degree-constrained subgraphs. Here one begins with a graph
G = (V,X) and a weight-function c: E - R . The problem of finding a
maximum-weigh-t matching in G is the following integer linear programming

problem: maximize 2: c(x)f(x) subject to

xeX
fl{ulh,vi<l  (uev) (5)
f(x) > 0 (xeX) (6)

f(x) = integer

The inequalities (5), (6) determine a polyhedron P in the
Euclidean space RX .  Edmonds [6] proved that E(P) is characterized

by the inequalities (5),(6), and

£ < 5 (W]-1) (F e emyy) (7)



Recently, another proof of this theorem has been found by Balinski [1].

The inequalities (5) generalize into
f[{ul,vi< du) (WV) (8)

where d is an arbitrary function d: V - N . Every integer—valued

function f satisfying (8) and the inequalities
0<f(x) <1 (xeX) (9)

satisfies necessarily the inequalities

£-(IWluy) < [g_-w_2+_h_r_[] (Weexp V,Y < [W,VH]) . (10)
Indeed, (8) and (9) imply

s(W1UY) < 2 ¥ el v+ f-Y) < % (aw+ Jx))
ueW

and (10) follows by the integrality of f. (Let us note that (7) 1is
a special case of (10) withd =1, Y =¢ and |W| odd.)

Conversely, Jack Edmonds proved ([6], Section 8, polyhedron II)
that, if P is defined by (8) and (9), then E(P) is determined by
(8), (9) and (10) . Now, the duality theorem of linear programming

implies that
max f+X = min z

where f ranges over all integer-valued functions satisfying (8), (9)

and

2 = ¥ a(u)a(u)+bex+ )5': o (w,v) (28 X

ueV

where a,b,c ranges over all functions



a: V - [0,m)

b: X - [0,) (11)
c: D ={(WY): We exp v,Y < [W,V-W]} = [0,e)
subject to the constraints
a(u) + b(x) + L c(W,Y) > 1 (xeX) . (12)

UEX xe[W]UY

Actually, one can choose the functions (ll) minimizing 2z in a very

particular manner (see [ 8], Theorem (19)). Indeed, it can be shown that

max £+X = min(d-S+ q(T)+ L, [ﬂ%ﬂmﬂ’)—]) (13)
W

where the minimum ranges over all partitions V = RUSUT and the
summation is extended over all (point-sets of) components of G(R)

Now, with each partition V = RUSUT , one can associate the functions

(11) by setting

a(u) = 1 if ueS
0 otherwise
)1 if xelT]
b(x) = {O otherwise

c(W,Y) = 1 if W is a component of G(R) and Y = [W,T]
27 7 1 0 otherwise.

Then the constraints (12) are satisfied and z becomes the

expression in the right-hand side of (13). In a similar fashion,

Berge's maximal matching formula [2] (see also [7], Section 5.6) relates

to the polyhedron (5), (6), (7).



At this point, a proper credit should be given to Professor W. T.
Tutte. Berge's maximal matching formula and the formula (13) appear
to be just corollaries to his factor theorems contained in [13] and [1L].
Edmonds made it quite explicit (see Section 5 of [7] or Section 1
of [6]) that his approach to maximal-weight degree-constrained subgraphs
can be applied in other settings. Indeed, many combinatorial problems --
from the four-color conjecture to the determination of Ramsey numbers to
the questions of existence of block-designs -- are essentially integer
linear programming problems. In each case, the polyhedron P is defined

in a rather simple way. The above examples show how the knowledge of

the corresponding polyhedron E(P) -- which will be called the Edmonds
polyhedron of P —- combined with the duality theorem of linear

programming could be used in solving each of these problems. Professor
Richard Rado pointed out to me that even the knowledge of an in-between
polyhedron contained in P and containing E(P) -- or equivalently, the
knowledge of inequalities which are implied by (2) but not by (1) alone
-~ could serve as a heuristic tool in obtaining correct combinatorial
results. (In the next section, we determine such an in-between polyhedron
related to hamiltonian circuits in graphs.) In this context, we mention
recent work of Hammer [11] who uses Boolean functions to characterize
the lattice points contained in P

There is also a link between the Edmonds' polyhedra approach and
Gomory's integer linear programming algorithm [9], [10]. (Gomory's
"eutting planes" correspond to the added inequalities in (2).) However,
a more detailed discussion of this link exceeds the scope of the

present paper.



2. Weakly hamiltonian graphs

Let G = (V,X) be a graph. Obviously, the characteristic function
f: x -» {0,1} of a hamiltonian circuit in G (if there is any) satisfies

the contraints

0 < f(x) (xeX) (1k)
Y £(x) < 2 (uev) (15)
£l < la]-1  (Qeexd V) . (16)

By a comb in G we will mean a set

K = uw,] (17)

where wl's are subsets of V with W, # V and |WiﬂWO| =1 for
all i = 1,2,...,n . The inequalities (15), (16) and the integrality

of f imply that

n
20 00T < folr X (I ]-2) - (5 (18)

for each comb (17) in G . Indeed, one has

or. U [Wi] <Z£f(x)+£f[W]+Zf[W-W]S

uewo uex i=1

n
o |+ L (g]-1)+ {: (J|-2) =

i=1 i=

IN

n
2w, | +2 Z (fw;[-1) -»n
i=1

so that



n
£ Ul ] < [, |+ if;l( W, |-1) - g . (19)

Now (18) follows since the left-hand side of (19) is an integer. The
right-hand side of (18) will be called the rank of the comb (17) and

denoted by r(K) ; then (18) can be written as
£1K < r(K) . (187)

In particular, if each Wi (i = 1,2,.44,n) contains just two vertices
and these vertices are adjacent then

n
Y= U [Wi] c [WO,V-WO']
i=1

and (18) reduces into

n 1
£ (W, U vy _< |wo| + =] = |WO|+ (= lY|1.
The last inequality is also a special case of (10) with d = 2

By a weakly hamiltonian function on G we will mean any function

f: X - [0,») which satisfies (14), (15), (16), (18). G will be called

weakly hamiltonian if it admits a weakly hamiltonian function £ with

£fX = |V| . As we have shown, the characteristic function of a
hamiltonian circuit is weakly hamiltonian and so every hamiltonian
graph is also weakly hamiltonian. The duality theorem of linear
programming yields at once the following characterization of weakly
hamiltonian graphs.

A graph G = (V,X) 1is not weakly hamiltonian if and only if there

are functions



a: vV - [0,)
b: exp* v - [0,®) (20)
c: D - [0,®)

(where D is the set of all combs in G ) such that

Y a(u) +]me>+£cm>zl<mm (21)
XelQ

uex el xeK

and z < |V]| where

2= 2w + L ( RI-DP@+L r(K)e(K)
v * D
exp V .

Restricting ourselves to a rather special subclass of functions
(20) we obtain a weaker theorem which may, however, seem to be more

elegant.

THEOREM 1. If G = (V,X) 1s weakly hamiltonian then there is no
partition V = RUSUT into pair-wise disjoint (possibly empty) sets

with T #V and

Is|+ L (& a@®T) ] < x(T) (22)
T 2

where the summation is extended over all ccxnponents H of G(R)

Proof: Assume that there is a partition V = RUSUT with T £V

which satisfies (22). Define the functions (20) by



)1 if ueS

a(u) = {:0 otherwise

11 f(Q[Q]) is a component of G(T)
0 otherwise

b(Q) =

1 if (WO,[WO]) is a component of G(R)
c(K) = and {wi: 1 <i<n}= [WO,T]

0 otherwise

Then the constraints (10) are satisfied and we have

N
I

2ls]+ (Iz} - () + LI, + 5 alip)] -

I

2ls|+ o] x(m+ R+ L [Fa@®@D] =
H

|v|+ |s|+ %q(R,T) 1 -x(T) < |v|

]

so that G is not weakly hamiltonian.

TIEOREM 2. Let G = (V,X) be a graph and m a positive integer. Let

there be subsets w’wO’Wl""’w2m+l of V such that

2mt+1 ‘ 2mt+1
V=wu u Wi:) > X =[W,v] U U [Wi]
i=0 ! i=0

I‘NI =m ) Wi ﬂW=¢ (i = O’l,ono’m)
i>0 = W, NW,|=1 | W, | >2
i>j>0 :winw.=¢

Then G is not weakly hamiltonian.

10



Proof: Define the functions (20) by
() = 1 if uew
&t = Y 0 otherwise

*
b(Q) = 0 for all Qeexp V

2mt+1

1 if K= y [w.]
. 1
1=0

0 otherwise

Then the constraints (21) are satisfied and we have

omt1
z = 2|+ |W0l+,zl: (W 1-2) - (22 - pla

so that G is not weakly hamiltonian.

THEOREM J. Let G be a graph and n a positive integer such that
2ntl 2n+l

V= U W. 1 X = U [W]
1=1 " 3=1 %

W.NW, =9 , 5§i<jawiﬂWj=¢

1 2

i<2 <j =W, n wj|=1.
Then G is not weakly hamiltonian.
Proof: Define the functions (20) by

a(u) =
kto otherwise



if Q =Wﬁ'(W1UW2)’ i>3

W]

b(Q) =

0 otherwise

“ontl
if K = [wi] U ( U [Wj] , ief{L2}
\J=3

W|—

0 otherwise .

Then the constraints (21) are satisfied and we have

2 L ¥ AL ACE
z == ([ |+, D) + % (W l-3) + 3 4 (g |+ (s |-1) -n
3 LY 2 3325 01 e R - T
2nt+l
5y _ 1
= L Wgl-Ga-5) = fvi-3
1=
so that G is not weakly hamiltonian.
COROLLARY (One-two-three theorem). If G is weakly hamiltonian then
(1) G is l-tough,
(ii) G has a 2-factor,
(iii) G is 3-cyclable.
Proof: (i) If G is not l-tough then there is a set S ¢ V with

k (G-S) > max{|s|/t,1} . Evidently, S can be chosen to be non-empty.

Setting T = V-S and R = ¢ we obtain a partition as in Theorem 1

which satisfies (22). Therefore G is not weakly hamiltonian.
(ii) Every weakly hamiltonian function f satisfies the constraints
(8), (9) and (10) with d = 2 . From Edmonds' theorem discussed in

Section 1, it follows immediately that every weakly hamiltonian graph

has a 2-factor.



An alternative proof makes use of Theorem 1 and Tutte's factor
theorem [14]. Let G = (V,X) be a weakly hamiltonian graph with no
2-factor. Then, by Tutte's theorem, G admits a partition V = RUSUT

with
8|+ L1 2a@®D] < |r| -q(1) . (23)

Since \T‘ -q(T) < k(T) , Theorem 1 implies T = V . But then (23)
reads |X| . q(T)'<|T| . V| . Hence G cannot be l-tough (not even

2-connected) contradicting (i).

(1i1)  Watkins and Mesner [15] characterized graphs which are not
5-cyclable. Their theorem can be stated as follows: If G is not
3-cyclable then either

(A) G is not 2-connected or

(B) there is a set S ¢ V with $|= 2 , k(G-s) >3 or

(C) G is a graph of Theorem 2 with m = 1 or

(D) G is a graph of Theorem 3 with n = 2
In the first two cases, G is not l-tough and so, by (i), not weakly
hamiltonian. In case (C), G is not weakly hamiltonian by Theorem 2,

in case (D), G is not weakly hamiltonian by Theorem 3.

13



3. Afterthoughts

(1) Professor Jack Edmonds drew my attention to an interesting

observation which is closely related to his concept of a good characteri-

zation (as explained in [5]). A good characterization of graphs having
a l-factor is provided by Tutte's theorem [13]. Once a l-factor in
(V,X) is exhibited, it is easy to check that it is a l-factor indeed.
On the other hand, if UBX) has no l-factor then there is a set Sc V
such that the number kb(S) of odd components (i.e., components having
odd number of points) of G(V-8) exceeds lS| . Again, once such a

set S is exhibited, it is easy to compute kO(S) and check the
inequality kO(S) > s .

With hamiltonian and weakly hamiltonian graphs, the situation is
different; besides, these two cases are -- in a way —— complementary to
each other. It is easy to recognize a hamiltonian circuit in a given
graph (although it may be exceedingly difficult to find one) but so far
we know no good way of recognizing that there is no such circuit. On
the other hand, it may be exceedingly difficult to check that a given
graph is weakly hamiltonian -- indeed, the number of constraints put
upon weakly hamiltonian functions grows very fast with the size of G .
However, it is much easier to check that G is not weakly hamiltonian.
Indeed, if G is not weakly hamiltonian then there exist functions (20)
satisfying (21) and z < |V| ; moreover, these functions can be chosen to
have altogether at most |X| nonzero values. To check (21) and z < |V|

is relatively easy.

14



(2) One can think of real-valued functions defined on X as of

the points of the \X|-dimensional Euclidean space RX . In this space,
the hamiltonian functions are the lattice points in the polyhedron (1),
(15), (16). The weakly hamiltonian functions form a polyhedron which is
contained in (1), (15), (16) and contains the Edmonds polyhedron of
(14), (15),(16) . Finding other linear inequalities which are satisfied
by all hamiltonian functions, one would arrive at a better definition of
weakly hamiltonian graphs (so that the weakly hamiltonian functions in
the new sense would constitute a proper subset of the weakly hamiltonian
functions as defined here). This process could eventually lead to the
determination of Edmonds polyhedra corresponding to (14), (15), (16).
For instance, the Petersen graph (see Figure 1) is weakly hamiltonian
(the corresponding weakly hamiltonian function is obtained by setting
f(x) = % ) but not hamiltonian. (Using the "1-2-3 theorem", one can show
that every weakly hamiltonian graph with less than ten points is

hamiltonian.)
(Figure 1)

Hence one may try to find new linear inequalities, satisfied by all
hamiltonian functions and violated by every function f that is defined
on the line-set X -of the Petersen graph and which satisfies f«X = 10
However, here comes a bit of a surprise.

The 15 x 15 matrix

15



1101010101001 11
011011101010011
101100110111001
111100000111101
101100110101101
011010101101011
010111011011100
011111000011110
0l10111011010110
101101010110101
101110100001 111
010111101011010
101010101101110
101010101101011
101101110-101100

is nonsingular and its rows are the incidence vectors of hamiltonian

paths in G (with lines enumerated as in Figure 1l). Since the rows

15
are linearly independent and satisfy the linear equation Z,auiJ==9 '

12
the hyperplane }J X3 = 9 contains one of the faces of E(P)
j=1

Equivalently, the inequality
£X <9 (2k)

must be included in the minimal set of inequalities describing E(P)

What happens here? We want to find a set of linear inequalities
which would enable us to show —— via the easy part of LP duality theorem --
that the Petersen graph is nonhamiltonian. However, we find that one of
the inequalities in this complete set is the inequality (24), which is
equivalent to the desired conclusion. With a refined taste for pathetic

exclamations, one can say that the vicious circle is closed. In order

16



to prove that the Petersen graph is nonhamiltonian, we must assume that
the Petersen graph is nonhamiltonian.

But is the situation really that bad? Let us have a look at another
example. Let us consider the graph G = (V,X) 1in Figure 2 and the

15 x 15 matrix

ORPRPOO0OO0OO0OO0OO0OO0OO0O0OOOH
oOrorrRrLrRrRLRRLRRLRRPRORRLO
PFoRRPRRPRPRPRPRLROR
e i NeololNoNoNoNoR N NolNe]
PorRrRrRPRRRPRRPRPRRPRPPORR M
OprorRrrFRPRPRRLRERPRPLROR
SleleoNoloNoNoNoltl NoNoNoNoNe)
PFRrRrRrRRPRPOORRERRRER L
PR, RrRRPRPROORRR
OCrhoo0ocOoORrORRERREREQO
HFooorororooorog
FPorrorocoocooor oo o
Poroorrrrorrromun
PFooroocoocooorororgo
® hroorooroooo0o0O o
~

which is nonsingular. Again, the rows of this matrix are the incidence
vectors of hamiltonian paths in G and so the inequality f:X < 8 must
be included in the description of the related Edmonds polyhedron. But

turn the pages back to Theorem 3 before giving out more cries of despair.
(Figure 2)

This graph is not even weakly hamiltonian. To prove that G is non-
hamiltonian, we only need the basic inequalities (15), (16), (18).

Therefore the mere presence of the inequality

£X < |v]-1 (25)

17



among those determining the Edmonds polyhedron of hamiltonian functions
on G is not as disastrous as it may have seemed to be.

Nevertheless, our observations seem to indicate that the chances of
determining completely the Edmonds polyhedra associated with hamiltonian
functions may be quite low. There may be a jungle of graphs which are
weakly hamiltonian yet not hamiltonian and which require the inequality
(25) to be included in the complete description of the related polyhedra.
(The Petersen graph is one of them, but who knows, there may be much
worse ones.) If this is the case then the complete description of the
polyhedra would necessarily involve showing that the jungle consists of
nonhamiltonian graphs only. And this by-product itself may be dangerously

close to a characterization of nonhamiltonian graphs.

(3) If, contrary to all our pessimism, the Edmonds polyhedra of (1),
(15), (16) were known then the travelling salesman problem would be
reduced to a continuous linear programming problem. This approach to

the travelling salesman problem has been adopted by Dantzig, Fulkerson,
and Johnson [4]. They noticed that, for practical purposes, one can often
manage just with the inequalities (15) and (16) in order to prove the
minimality of a tour (i.e., a hamiltonian circuit in a line-weighted graph).
In solving the 42-city problem, however, they were forced to use two

more linear inequalities (pointed to them by I. Glicksberg of RAND Corp.).
The graph (V,X) they dealt with was a complete graph with points

1,2,...,42 ; the first of the two additional inequalities read
f-X =42 3 f£.(1b4,15)+ £ -£:[S,V] < 0 (26)

where S = {15,16,19} and Y is the set of lines

18



{14,15} , {15,18}, {17,16},{16,18},{20,19}, (19,18},

Actually, (26) is satisfied by every weakly hamiltonian function. To

see this, set W, = V- {15,16,19,18} , W, = {14,15} , W, = {17,16} ,
W5 = {20,19} . Then (18) implies

f'U[Wi] < 38+3- {%} = 39
and so

feX+ foY- £:[S,V] = f~(U[wi] U [{18},V]) < 39+2 = L1 .
Therefore

X+ £(14,15) + £-Y- f-&v] <42
and (26) follows.

As for the other condition -- denoted by 67 in [5] —- the

situation is much more messy. Idon't see any way of deducing this

(more complicated) one from (15), (16) and (18); perhaps it is independent
of them. If this is the case, a more general formulation of that

condition would yield an improved definition of weakly hamiltonian
functions. (Dantzig, Fulkerson and Johnson exhibit a non-integral function
([4], Figure 18) which satisfies (14), (15), (16) but violates their

condition 67. Perhaps this function is weakly hamiltonian.)

(4) This paper should be considered as a work in progress. The idea,
and the definition, of weakly hamiltonian graphs, is a dynamic one.

It is the author's hope that more people will find more restrictive
linear constraints on hamiltonian functions, improving thus the present
definition of weakly hamiltonian functions and graphs. And one day this

process may lead to —-- well, let us not be over-ambitious.
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