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ABSTRACT: We have two main purposes in this paper. First, we
clarify and extend known results about computation of
recursive programs, emphasizing the difference between
the theoretical and practical approaches. Secondly,”we-—
present and examine various known methods for proving
properties of recursive programs. We discuss in detail
two powerful inductive methods, computational induction
and structural induction, illustrating their applica-
tions by various examples. Wevalso briefly discuss some
other related methods. -

-

Our aim in this work is to introduce inductive methods to
as wide a class of readers as possible and to demonstrate
their power as practical techniques. We ask the forgive-
ness of our more theoretical-minded colleagues for our
occasional choice of clarity over precision.
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we have twe malin purposes in this paper.
First, wo clarify and extend nown results abtout
computation of recursive prosrans, cmphazizing
the differe :=» between the theoretical and practi-
cal approac.cs. Secondly, we present and exesine
various nown methods for proving propertles af
recursive prograns. We discuss in detail two
powerful inluctive methods, corpatationnl induc-
tion and structural induction, illustrating their
applications by varicus examples, We also briefly
digcuss gome other related methods.

our aim in thiz work is to introduce induc-
tive methods to ag wide & class of readers as
ponsible and to demonsirale their power as practi-
cal “echniques. We agk the forglveness of our
mire thecreticaleminded colleagues for cur ccca=
gional choice of clarity over precisicn.

Imtroduction

Many different inductive methods have been
uged to prove propertics of prograss. Well-known
rethods inciude for example recursicn induction,
structural (nduction, inductive asseriions, coopus-
eational irduction, truncation induction, and
fixedpoint Induction. Our intention in thiz paper
13 to prescat and cxamine these methods, iillustra-
ting their applicaticu for proving properties of
recurcive programs.

In Sestion I we give the theoretical tack~
cround pececsary o underctand the fixeipoint
approach to recursive progranms {essentially follcw-
ing Ssott (21379, 19701} as well as the practical
computatic:zl approach. We em zize that while
exizting inuuctive methods prove propertics of the
tleact Tix~ipoint function' of & recursive progras,
in practice the function computed by some common
computation rules differs from it. We briefly
suggest "Tixedpoint? computation rules which asgure
that the cooputed functien is identical to the
least Tixedlpoint.

In Section 11 we exanine compu taticnal induce
tion methols, l.¢., methods in which the induction
1% Tesed on the steps of the computation. We
first preront the extremely simple induction method
intrcduces by Scott (deBakker and Jeolt t1970],
Scott (1% ]). Examples arc presented which intro-
duce varicis applications of the method. We also
digouss ancther computational induction nethod,
tyuncation induction {Morris [19711). A related
method, called fixedpoint induction, is described
in Park {1 3}.

We describe the structural induction method
snd itz application Tor proving propertice of
prograne In Seetion II1. IThis method was sugsested
explicitly by Burstall {1942], although 1t was
often used previcusly, for example by MNeCarthy and
Painter {1 7] for proving ihe correctness of a
compiler ani by Floyd [1977] for proving termina-
tion of flcwehart programs. Our intention in
+hig section iz to emphasize, by means of sppro-

priately chosen wiaeples, that the cholce of n
suitacle partial ordering on the data stracture
and & suitable inducticn hypothesis lcads to simple
and clear inductive proofz. Although we chow that
coeputational Induztion and structural induetion
are escentially cquivalent, there are practical
reasons Tor kecping both of them in =ind. Compu-
sational industion iz vest suited for proving the
correctness and equivalence of prograng, znd
becauge of its simplicity it iz particularly con=
venient for machine implementatlon (Milner [1a72a,
15725]). On the other hand, termination of
prograns iz usually casier to ghow by structural
induction.

In Sesticn IV, we introduce two addiziconal
methods: recursion induction (MeCarthy (196351},
which wag actumliy the rirst method proposed for
proving properties of recursive programs, and
inductive assertions {introduced by Floyd {1547]
and Naur |17 7] for flowchart programe and genera-
1ized by Manns and Pouell [1970] for recursive
prograns). We show that any proof by these methods
can be effectively translsted o a proof by compu-
tational induction.

1. RECURGIVE PROGRAMS

In this
partial func

seetion, we introduce s theory of
-
zive progrond A

t+s relation to recur-
ty computations.

Partial Puncticnd

w

We wizh to conside

%
i
i
:
i
1]

dormain Dl into & range Do s i.2., functicona
wnich may be undefined for some arpuments. Ffor
cxanple, the quotient function x/y y mapping
RxR {pairs of real mubers) inte R, is usually
considered ¢o have no value if y =0 . Pariial
Mmetione arise naturally in connection with compu~
tation, as s computing process may give results
for seme arcunents and run tnderinitely for others.
In developing a theory for handling partial
fMumetions it is convenient to introduce the special
element w to represent the value undefined. We
1et o' dencte D U (W], assuming «fD by conm-

venticn; when D i3 the cartesian product

+ *

Alx...:An,ve ict D bpe klx...n\:.

=

Tne recoarch reported here wal supported by the
Advanced Regearch Profects Agency of the Office of
the Secretary of Defense under Contract So-13%.



Any partial function ¢ mapping DJ. into !1:_,
then be considered asz a total funciion zapping
into D; i if £ iz undefined for drsl » We

A} e w.

Since we shall conszider compositlons of
partial nmctiam:; ¥e =ay need to compute functions
with zsome arguments being undefined. Thus we must
extend every fmction mapping D, into D':,_ s
function mapping D; into ﬁ; ; such extensions
are discussed in the next section. Partial predi-
cate: are of course a fpecial case, since a par-
tial predicate is a partial functicn into

{true, falze] .

i

&
'L

The Ordering © con the Domain

To definc appropriate extensions of partial
functions from Dl into l.)2 to total functione
from D; into D; s We Tirst Introduce the
partial ordering C on every extended domain
p" .~/ The partisl ordering o iz intended to
correspond to the notion 'is less defined than',
and accordingly we define it by letting we 4
for all dcD’ . Note that distinct elememts of b
are unrelated oy C: for distimet 2 ana &
ia D, neither agbd nor bca holde. If DY
is the cartesian product A;x s xA; s we define
(al,...,sn)z_:_ (bl,...,bn) when &
cach 1, I<i<n.

Exarple. If D = {a,b} , then D* » {a,b,u] and
@xD)" = [(ayw), (wya), (8,03, v ey (a,1), (bya), (byb)
The partial orderings on D' and (DxD)" are
descrived in the diasras=s below, where each con=
necting line indicates that the lower element is
less defined than the upper element. {Lines im~
plied by transitivity or refiexivity are not
chown.)

15 '.,1 for

0

</ A partinl ordering is a binary relation vhich
is reflexive ((Ya){agca]} , antizymmetric
((va;p)lacbabcama iz identical to v,
and trangitive {{¥a,b,c}{a c ba bCcwace]).
As usual, we write acb if ach and a e
not identical to b, ag?b if act does
not hold, ete.

a b {8,a} {a,b), {&;a} {t,b)
A\ 4 | e )
- {a,&) Wy a) ‘(;b) (b, w)
TN
{Dyw)
) x0)" « p*xp*

Honctonic Functions

Any function £ cooputed Ly o progrem has the
broperty that whenever the input X is less defined
than the input ¥ , the output f£{x)
defined than £(y) . We therefors require that the
extended functicn f frem D) into D) be
nonotonie, i.e.,

iz less

Xcy izplies f£(x) ¢ f{y) .

we Icv (D; - ‘-:)‘3) dencte the set of all monotonic
functions from :}; inte :}; .

If ¢ has only one argument, monotonicfity
requires that o{w) be w., with cne exception:
the constant function £{x) = ¢ for all xeo' .
IT T hags many arguments, i.e., Dl B Alt con "l‘:-.’
it may have rmany different ronotonic extensionz.

A particularly important extenzien of any function
ic called the matural extension, defined by letting
:'{:il,...,in)t te @ whenever at least one of the
d fz w. Thiz corresponds intuitively to the
.-‘\-'..".ct. tons computed by programs which must know all
thelr Inputs before beslmning execution {e.g.,

Algol ecall oy value).
Examplez. {a)

-
X in D into itzel?, 1z obwiously monotomic.

The identity function, mapping any

(v} The quotient functionm, mapping (x,¥) into
x/y , extended to a total function by letting xfo
be W for any x in R, becomes monctonic by
the natural extension: let xf@ and wiy bve w

Torany x and y in R .

{¢) The cquality predicate mapping DxD into
{M,Mi can be extended in the following
particulary interesting wayzs:
{1) The natural exteazion (wcak equality),
denoted by = , yields the value w whenever
&t leazt one of its argurments iz @ . The weax
equality predicate ii of course monctonic.

Y We assume all the functions of our examples to
be naturally extended, unless otherwize noted.



(44) Another extension (strong equality),
denoted oy =, ¥ields the value true when

both arruments are @ and false when exactly
cre argment iz w ; in other words,
and only if xcy and YC X . The strong
equality predicate ic net a monotonic mapping

xsy if

frem ' x2* nto {true, false,w} , since
(wd) = (4,d) but (we a) gl@rd) (iee.,

false f “rue ) for ded .

{d} The if-then-slsze functien, mapping
l"t_ztx_e,&_l_._:_g}xnxb into D, s defined for any
a,bch by letting

the value of (i true then s else b} be &,
and

the wmlue of {if falze then & else b} be b.

It can be extended to a :onotmic functicn mapping
{t_r_ue,!‘n.sc} 0" xd" into o' by letting, for
any ﬂ’b!:’ »

the valuve of {1f truc then a else ) ve a,

the value of {if false then w elze b} be b,
ani

the value of {gwmn%b) be w .

Note that this is not the natural extensicn of
if-then-glse. )
Comporiticn of Punctions

An i=portant cperation onm functions iz compo-
sitieon, which mllows functions to be defined §n

iepler functionz. If £ ig & funetion

froe D: .:o :)f & function freem D;
into D, » .hm the com Elticn el £ and g
it the n:::ct.ion from !31 into D defined by
e{f(x}) for every x in D; ® It iz easy to
show that, if ¢ and € are monotonic functions,
50 ig their compositicn.

temz of ¢

ad g

Examples. (a) The funetion f, given by
f{x} = (4 & = O then 1 else x) , is defined by
composition of tne weak equality predicate, the
constant Munctionz ¢ and 1 » the identity
function, and the if-then-else function.
all these functicns are monctonic,

Since

f iz monctenic.
(b) The function ¢, given by f{x) =

(1T x = w then O elze 1} , defined using tn
nonmonotonic predicate =, 1z not monotonie,

since flw) 50 and £{0) = 1
tut r(@) £ £(0) ).

{iuﬁa; mgo 3

{e} The functions 1‘,. and E‘e y Siven by

£,(2) = g(if p(x) then 5y (%) elze n (x))

f(x} = if p{x} then a(n, (x)) else g(b,(x)),
are defined by composition of if-then-clse, P8
hl and h, . If By hl and h, are rono-

tonic, £, and There iz an
interesting relation botween these wwo functions:

{i) :‘,,g:}grlfx) Tor any x5 (4i) 1if

r¢ monotaonic,

nlw) = w, then £ (x) = :‘l(x) for any x . We
shall uge theze results (and a similar result when

£ haz several arguments) often in later proofs. )

The Ordering C on Punctions

Let £ and ; be wwo nenotoaic functions
mapping 3; imto D; We say that ¢ € g s read
ined than g ", if f{x) < < e(x)
Tor any x in B: i this relation is indccd 4
partial ordering on {D}_ -D;) « Two functions
end o arc equal, feg, tff ce amd gcf
{that iz, f g, irr f{x) = g{x)

1 the function whicn is
is w for any xr_D; .
Tor amy function .

" £ i2 less def

e

for every
’.

chl) « ¥e denote by

always undefined: ([Yx)

lote that o ¢

Infinite insreasing cequences

Hefc £, «vs of functions in (D,

are called cu:s*-*:. It ean be chown that
ot o2 it

*

has a unique limit function in (D,

denoted by

+
any chain
-
"D:) ’
li::f!‘i} » which hac the characteristic
1

properties that e iiz{fij for every L, and
i

for any function g  guch that :‘i cg for

every {1, we have 11::{1‘1} " I ‘
i
Example. Jonsider the zeguence of functions

f32fysvee  Over the natural nusbers defined by
£5(x) = (1f x < 4 then x! else @) .
iz & chain, az P T4y fOX every 1
lim{rl} iz the factorial function.

Thiz cequence

Q

Continucus Functionals

We now consider & function 1 rapping the
set of functiona (D] = D) into itself, called a
functional; thas isy = ;a.kes any monotonic
function £ as its argurent and vields & =ono-
tenie function e{f] az its value. Aas for




funetions, it is natural to restrict ourselves to
monotonic functionals, i.e., t such that fCg
irplies =ifjgctig] forall [ and g in
(D; - D;) . For our purposes, however, we require
that functionals satisfy o stronger properiy,
called continuity:

chain of functions

v is continuous i for any

rac_:!'l_c_rzg...

we have

tif,] e i} el g e

t{l:n(tl}] . 1?(1:1:&}} .

We usually specify a functicnal T by campos
gition of known monotonic functions and the func-
tijon variable F , denoted by <t{Fl{x) ; vhen F
is replaced by any imown menotonic function g,
the composition rules determine  tlgl{x) . It
can easily be shown that any functional defined by
composition of monotonic functiomez and the function
variable P 15 continuous.

Ex ez, fa) The jdentity functional *
defines by 71[}'1{3:‘1 z F{x} , mapping any § in
{D; - D:\_} 4o itself, iz clearly continuous.

(v} The censtant functional v _ defined by
<[F{x) = g{x) , mapping any f i=n (a; -D;)
into the function g , iz continuous.

{e} The functional 7t defined dy tirl{x) =

(if x = © then 1 else F(x+1)} is constructed by
compozition of monotomic functione (if-then-else ,
additicr, weak equality, and the constant functions
0 and 1 ) and the function variable F ; It i3
Given any =onotonic function
g over the integers, t{g] ir another monotonic
function over the integers:

therefore continuous.

ir g =, then lg){x) » {if x = O then 1 clze w)i

if g{x) = x-1,then tigl(x) = (if x=0 then 1 else X}

{d) The functional t defined by <{Fi{x) =
{if wx({F(x) = x] then F{x) elsew) iz monotonic
but not contimucus; if we conzider the chain

8 S8 S o where gi(x) s (if x < § then X
elre @) , *rIgil e) forany 1 so that
1‘?:{1[31]} w [ , whereas ﬂ.lin(gi}} is the

identity function. m;

Fizedpoints

The fundamental property of a continuous
functional T ~apping {D; --3;) into itself i=
trat it has & unigue least-Tixedpoint ?‘ » having

tie two characteristic properties: P ® t{F, ]

and, for any & , = w7i{:]

irplies F c¢& -
We can soopute I-‘, as the limit of the chaln
acrlllic L £13 NP follows from Kleene's

first recursion theorem {19501
Examples. All the functionals in the following

exampler are defined by composition of monotenic
functions and the function variadble ¥ and are
tharefore continucus by construction and have
unigue least fixedpoints.

(s) The functional t over (8 =N') , given ty
tiFlix) = (If x = O then 1 else F(x+1)),
has as fixedpointz the functicns
,;n{:) l(z_{xnoge_qlt_:ggn)

for each ncli’ .
The least fixedpoint iz
?g(:] s {if x = O then 1 else W} .

(b)

the functional 7
t{Fi{x) =

is F\t{x) z {f x > 100 then x=10 else 31 .

7The only tand therefore least) fixedpolnt of

over the integers given by

if x > 100 then x-10 else FF{x+11}) ,

{c) The :“-métionu + over the integers, defincd
h}-

f{?](xl;ﬁﬁ} =

if %, « x, then x;#1 eise FlxpFlxy~Lxel))
has as fixedpoints the functicns
!‘{xl,xz) = xlvl 3
.;{xl,xe) = if X, > X, then %+l else x,-1 and
n{xl,xe) = if {xI > xe} A (xl-xe even)
then x}_‘rl else w
the latter being the least fixedpoint F {Morriz
{15481} o

3

We consider a functional Tt over {D; -9;)"'

to be given by coordinate functionals



'l)arq'?n s SO that 11?1, !I'Q',Pnl is

(tliFl,,..,rnj,...,-:ni?l,...,i‘nl) « It follows
directly from the definition of the ordering on
(n; ~00)" that ¥ s continuous 18 cach ¢ A
is nont;nnm. A continuous functional T over
(0} =D3)" has a unique least fixedpoint

F_ = ’(F y-vap? ) 3 that iz
t Ty ; R

(a) T 1

™ ?1.“:1""’?! Tforalli,1<4<n;
n
{b) For any fixedpoint ¢ = (gl,...,g.h} of ¢,
1.¢4, & ‘11{81""’8‘.':} for all i
{i<i<n), l-" cg forall ¢
i

(t<i1¢cn) .

Examble. Consider the functional tEFl,Pal o
“1“1"?2]’72{?1‘?23) over
>
=12, vhere:
TP, Hx) = (12 x = 0 then 1

elze ?l(x-.l) + 92(3-1)}
and
t:-,{rl,?'e](x) = (if x = O then O else 7 (x-1)).

For any nell’ , tne pair (g,+h,) defined by

gn(x) = (if xe0 v x=1%hen 1 else {x-1}'nel)

and

hn{x} z (i x =~ 0 then © else n)

—

iz a Tixcdpoint of T , cince S, = %xign,hn} and

b, = Toleph ] (and therefore {g,h ) =

tls,h, 1) The least fixedpoint iz the pair:

((if x 0 vxel then I elze w) ,

{if x -0 then O else w)) .

(B

Recursive Prosrarms

So far, wa have been concerned only with
functions considered abstracily, as purely rmathe-
=atical oblects. For example, we thought of the
Tactorisl function as a certain =apping between
arquments and values, without considering how the
mapping iz specified. To continue our dizcuszsion
we must introduce at ihis point s “prograsming
language™ for specifying functions. A function
will be specified by a piece of code in the syntax
of the lancuage and then will be cxecuted accord-
ing to computation rules siven ty the samontice of

the language.

In the rest of this paper we use for {llustra-
tion a particularly simple language, chosen because
of its sirilarities to familiar languaces guch as
ALGOL or z.zsy.-'-’ 4 progreas in our languspe,
called a recursive definition or recursive progra=,
iz of the form

F{x} <= z[F}(x)

where T{Fl{x) i3 an cxpression representing com-
position of mown monotonic rfunctions and prodi-
cates and the nmct_im variable F , applied to the
{ndividual varisble X .— For example, the
Tollowing is & program for coamputing the factorial
function:

F(x) <= 1f x = @ then 1 else x-F{x-1) .
Thiz program resembles the ALGOL declaration

integer procedure £(x);

f:e if x = 0 then 1 else x*f{x-1);
and the LISP definition
oErFnE
(F (Laspa (X)(cond ((z=rOP X) 1)

(T {7TDES X (F (SUsL NN ..

Of course cur programs are reaningless until
we describe the semanties of our lanuascy f.Cey
how o compute the function defined by 8 progranm.
The next step iz therefore %o sive computatlon
rules for executing prograns. Qur aim iz to char-
acterize the rules such that for every progras
Fx} <« 7{F¥{x) the computed function will be
exattly the leact Tixedpeint !‘1 .

& Although cur prosramming langcuage iz very siz=-
pie, it iz powerful enough to express any
"partial recurcive™ function, hence ty Church's
thesiz any “computable™ function {see, for
example, Minsky [1347]).

:/ We shall purposely be vasue in cur definitions
in thiz section to avoid the introduction of
the notion of sehemas and interpretations.

For a formal approach, See Nanna and Pnueli
[1970] or Cadto: [1972].



Czputation Sequence

Let F{x) <= T{F]{x} be a progras over scme
imain 3 . Firoa siven input value aed' {for
4 Jy the progras 1z executed by ceastructing o
seguence of term: =;’t1”‘2"" s S8licd & Spa-

tation regquence for 4, as follows:

{1} The first term L, is F{d} ;

{2} For eash i, 120, the tem tiﬂ. is
ottained from ti in two steps:  Uirst

{a) substitut.ion: same occurrences of F
{see below) in ti are replaced by
t[F] simultanec.”'y; and then

(t) si=plification: kuown functions and
predicates are replaced by their values,
whenever possitle, until no further
simplifications can be made;

{3} The sequence iz Tinite and tn iz the final
term in the gequence if and only if no fur-
iher substitution or simplification can be
applied to tn (that is, when "n is an
elesent of ' }.

Cecputstion Rules
A computation rule C tells usz which cocur-

rences of ¥ should be repisced by tiF! in each
substitution step. For a given computation rule
€ , the program defines a partial function ?c
mapping )

into ' as Tallows: 1If for input
:HD' the computation scquence for 4 is finite,
¥e say that i’-‘c(d) iz defined and Fc(d) e
if the computation segquence for d is infinite,
we oay thad !‘c(d} =W

The following arc examples of typical compu-
tation rules:

{a) Xlieene's computation rule: Replace all
occurrences of F simultanesusly. We denote
the computed function by ?x -

{b) leftwost-innercost rule: Replace only the
leftnost~innermost occurrence of F  (that
is, the leftnost occurrence of F  with all
arguments free of F's . We denote the
ecocputed function by Pu « Thiz Iz the rule
which corresponds to the usual stack-imple-
mentation of recursion for lansuages 1ike
LICP or AILGCL. Any procedure evalustes all
s arguments before execution.

{¢) leftnest outermost rule: Replace oaly tue
leftmost~outermost occurrence of £ . We

dencte the compated funciion ny ?m -

Examplie 1. We consider the recursive definition of
the "Ol-function®™ over the integers:

F{x} <= if x > 100 then x-10 else F(F{xell})) .
We illustrate the computation coquences for X = 99
using the three rules.
{8} Using Klcene's rule:
iz ¥(99)
if 95 > 100 then 29-10

4
0

else F(F{99*11)) [scubstitution]
t, is F{F(110)) {sizplitication}

if {if 110 > 100 then 110.10
eise F(F(110+11))] > 100
then [if 130 > 100 then 110-10
elge F(F{1lo+11))]-10
elze F(F{{if 120 > 120
then 110-10
clse F(F{11+11)) P11}
[substitution}
., is F{F{in1)})
‘gili_gul>zﬁotn_mm-m
else F(F{111+11}}} > W0
then [if 111 > 180 then I1N-10
else F(F{111e11})]-10
else F(F{[if 111 > 170
then 111-10
elze F(F{11le11}) b11))

{substitution]

{si=piificaticn]

t, 8 9, [oimplification]

In short, omitting simplifications and underlining
the ococurrences of F used for substitution:
F(99) = E(£(210)) = E(F(111)) =91 . Thus,

PK(‘EB) a9l .

(o) Using the leftmost-innermost rule:

E(99) =F(E(110)) ~E(100) =F(F(111)) =F(101) =31 .
Tius, E‘u{?ﬁ} =31 .

{c) Using the leftmost-ocutermost rule:

F{99) - F(F{110))

= if {130} »>120 ;r_s:_q F{110}-10 else F{R{F{L10}+11}}
- F{r{Fl210)+21}) « ...

= 1f P(110)+11 > 100 then F{110)-3 elzg ...



- 2(113)-9 =61 .
?m(gs) =2 9L .

Thug,

1

A Lmporzant property of :—‘c ghould be
=erticned at this point (Cadiou [1572)):
for ary computaticn rule €, the cormuted Smetlon

T. _ir lscs defined than the leas: fixedipoint,
-
£.e., ?C == F,: s but they are nct necessarily

A program may consist in general o a system
of retursive definitions of the form

riti) <= rl[zrl,...,rﬁ}(i)

FR) <= TolFyp e P HR)

LR RS

?_1{-'2) <= 73“"13--'3'5‘11(;3) »

where cach ¥ i is an expresszicn representing &
composition of known moncteonic functions and
predicates end the function variables
Fl’ :‘_._ paue ,?n applied to the individusl wvariables
X - (xl,...,xk) « The generalization of the com-
mtnt{cn rules to gystems of recursive defini-
fons iz straightforward; the computed function
Fc of tie systen can be described as

(c »Fa ,...,F Y » where each ?c is computed
r i

ac de., ribed above. The results of this sectioz

i1l held for systems of recursive definitions.

Flupeint Cooputat!

Aall the rethods for proving propertics of
provrans degerited in the rest of thils paper are
bazed on the asruxption that the computed Sunction
f¢ vqunl Lo the leart fiicdpoint. We are therefore
intercsiod only In the cesputation rules that yield
the loaat

fixedpolints We call guch computation

rules fixedpoint ¢ tation rules.
Let alii,...,!"ﬂl(d} dencte any term, where

we use guperseriplc to distinguish the Indiviiual
oceurrendes ©f F In G . Suppofe that we choose
for substitution the occurrences rl....,rg {Tor
scee 1, 1<€8<k) of F in . We say that
this iz a safe substitution if:

TR [ NE 0 PUT SO =

Inmtuitively, the substitution iz safe i7

of F‘“‘T‘,...,P“ are nct relevant:
= X

Il
geespl ™

yeensF 1d) 3@

the wmlucz
as long as
are not imewn, the walue of

;i?l,...,?“':(ij cannot be .c:crci:xed; hence, there
is no need 0 cempute B e
A sade gooptstion rule s any coputation
uses only safe substituticns. It can te

ghoam that any zafe csmputation rule {3 3 fixedpaint

ule which

cftzost-cutcimort nile are
zale, they are both lixudpeint rulec.

The leftrost=tmermost rule, however, is not
oxzple il
that iz,

gafc. The following liustrates a proyran
the leftaost-

Annermost r..le is not a fixedpoint rule.

for which F i el

ple 2. Consider the progras over the integers

F(x,¥) <= if x = O then 1 else F(x-1,F(x-¥,¥))

The least fixedpoint 7 s

?‘,(x.y) = (1f x >0 then 1 else )

We campute F{1,0) using the leftmost-inner—ozt
camputation rule:

(1,0} = F(0,£(1,0) = F(O,F(GE(L,0))) - ...

and so one The sequence is infinite, and therefore

:-"u{Z,-'J) ztw. In fact

FLI{::,;J] = ($£ x=0 v {x>0Ay>0A {y divides x})
then 1 else @) ,

which {3 strictly les

8 defined than !‘1 .

This exzz:plt iz closely related to an exarple of

In practice, the fixedpoint computation rules
descridbed g0 far (Kleenets rule and the lefirmost-
cutermost rule) lead to very inefficlent computas
tions. In the rest of this gection we describe and
f1lustrate a fixedpoint computation rule, callied

the noyral computation rule, which leads to effi-

In fact; since our computatian
151y computed
he normal computation rule
can be showm to perform the minirmum pozzible muber
of gubstitutionz {Vuillepin [1972]).

By thir rale, ti*l is odtained from t.i by
substituting ¢{¥! for one occurrence of F
hosen as follows: to roplace the
lel=cst-outermost 'accurrcme of F &n "l by
<i{F] , and start to evalaate the neceszary tests in
the new terns, in order to eliminate th
connectives. I this is poszibtle, we are done.

cient computations.
rules do net allew the reuse of previo

values of the progran,

we try fin



Qthervise, we choose a now occurrence of 7 in

oy

%, waich corresponds to the first ¥ wd o
:;z‘. <aring the previous evalusticn, ani repear
the process.

In cther words, the {dex it to delny the
ezaluation of the arjuzents of the function vari-
able: F as much as possidle. This rule is
juite close to Algol (O "call by name™ for pro-
ccdures. However, there are two Important
differences: {a) absolutely no zide offects
are allowed, and (b} ecach argument of the
procedures is evaluated at mcst once, namely the
first time (if ever) it is necded.

we dencte the computed function by I-‘N + The
normal rule iz safe, and it iz therefore a fixed-
peint rule. The rule can be implemented in
progrooming languages with almost no cverhead,
and provides an attrattive alternative <o call
by wvelue, which iz not a fixedpoint rule, and

call bty nane, which is not efficient.

Exaeple ‘. Consider the progrms over the natural

mbers

Fixyy) <« if x w0 then 3+l

else if y =0 then F{x«1,1)
else F{x=1,F{x,y-1)}.

We shull compute F{Z,1) using the norral compu-

taticon rule. The cecurrence of F chosen Tor

cubstitution iz underlined.

(3,1) - ¥F(1,F(2,0)) - F(LF(1,1))

I

".f

- ?(19?5 {1,2))) =% {11;‘:,; 1,0)+1)
F(0,F(1,2))
F{O,¥{1,1))+1 - F(1,1)+2

i
"

LEO,1)¢1) = £(1,3) =
- FL,2)+1 -

- D0, F(1,0))%2 = Z{1,2)+5 ~ F(D,1)¢3 =5

Hote tiet In F(LF(2,0)) , for exarple, the

inner cceourrence of F  wag chozen for substitue
tion, rince trying to substitute for the outer F
would lead to
if1 - 0 then ...
else i€ F(2,0) = O then ...

else <ae

which requires testing for the value of F(2,0)

We compare below the mumber of cubetitutlions
requirod Jor each computation rule o this

exxrple.

hHormal rule: l:*
Reme’s rule: 23
Lefineste

wnermost: 1M

T Y ¥ s -
ol -cutermost: it

:-‘.;(.\:,;.-} LR A (%5} 1z mown as “Ackersann's
mn:‘.i‘cn" » ':’-'s function is of special interest
in recurcive functiom theory because it grows
fzster than any primitive recursive Minctiong
F(00) =1, £ (LY =3,

P 3,3 - A1, am

for example,

F(2,2) 7,

16
2‘.‘.
PR =2 3
T
=
Example L. Consider the program over the
irtegers:
F{xsy} < if x = 0 then 1 clse F{x=1,F{x=y,¥))

We ghall compute F(Z,1) , uting the normal

cerputation rule:
F(2,1) = £(1,7(3,1))
- E(0,F(2-F{1,1),F(L,1)}) -1 .
We zgerin compare the substituticons required:
licrmal rale: 3
Floene®s rule: 7

Leltrost-innermost: 7

L

Lefimoct-outer=ost:



17, COMPUTATIONAL DDUCTION

—

Tie first methou we chall decorite I com-
ceptually very cimple: in order Te prove some
propert. of & progras, we show that It iz an
imvariest during the courge of the computation.
For gimplicity, we shall first ejplain the
rethod {or sizple progra=g, contizting ol a
gingle recursive definitiom, then generalize to

more couplex progranl.

CEE’.at.iml Inducticn for & Single Recursive
Pefinitior

To prove the property P(F,) of the functica
F‘ defined vy F <s 1{F] , it %2 sulficlent to:

{&} Cuheck that P iz true defore starting the
corputation, l.e., P) ; and

{t) Show that, {f P 45 true at one step of the
corpatation, it remaing true after the next
s1epy ie€., P{F) implies PlT{F]} for

every F oo
in chor

feee PUY) and YPIB(T) = P{t[F])], infer B(f) .

L 4
Since this rule s not valld for any P ,~

»e f
we ghail only concider admigsitle predicates—

*;

- Qorcidey, Tor exsmple, the recurctive deflini-
ticn over the natural mumbers F(x} < if x =0
shen 1 elge x+Fi{x-l} , and the preilcate

pior: Pz e w A x fw] o Then PR -]
YFIP(F) = Plz[F]}] hold: eince Folx) iza
totnl function (the fastorial functien),
.1‘{':‘1} doer not hold.
o A clnst AP cof
delined ag:
(iPy = (AP) A (AP) | YX(EP)
(EPY = (=P) v (FP) | &(X) | ofFI(X) ¢ BIFI(X)
where Q%) iz anmy first order predicate,

and x and § are two contimusus functionals.

=iggible predlcates can be

wnten are cimply conlunctions of inequalities:

X and B arc two cantinuous

{ >0 . Therefore, sinte aie:lmu c 51}‘,} Tor
any 1, afr'lA]] g8lF,]. By definition of
the 14sit, this tplies = al*iall ¢ 8le, ),

and, a being continuous,

BiF_} .

T

"

A7, ) = alu=te}]) = 2= alei(Q])
t 1

Exarple 1. We wigh to show that the progran
F(x) <= if p(x) then x else F(F(nr(x)))

definer an idempotent Duncticn, L.e€., that

s ¥, . Oy p and h, we understand respele

function. We prove P(F.) , wher P13
s - ==
'F,:.'-‘ BF 5 Letay” u,E‘TS‘ cFla(Fc .’T‘?} .

{a) Show PUL  (Lseey Ftﬂem 5

5‘,:’{2;’_:&}) = F, (u)

L 1
e if pla) then @
elze T (5 (n(a}))
deflinitlion of F
T
s ifwthen W
eplge P IT (hiw)
(5, (n(e)))

since plu) s w

5 W definition of

ifwghenn glze b

B aKx) . definition of



(L} Sucd YP[P(F) = P(r{F])] , i.e.,

’ﬂ’{?r? £ F o E“,‘S{E‘} = tfF]

Fo 7lFH=)) s ¥ (4L pix) themt x «
else F(F(n(x))))

definition of 1

% 12 p(x) then F (x)
else F (F(F(n(x))))

distridbuting F_{
over conditional,
since E. Wy = w

s if p{x} then x
cise F {P(F(5(x))))
definition of !'"‘

z if pix) then x
- else F(F{h(x)))

Induction hypothesis

= T[Fi{x) . definiticn or <

™
-

The next exanple uses as ferain the sct :'
of finite firings over & given finite alptabet ¢,
includin- the empty string A . There are three
basic functions:

- hix}  sives the nead (first letter) of the

string x ;

t(x) cives the tatl of the string «x
% with itz Dirst letter removed);

&% concatenates the letter & 4o the

string x .

{i-ﬂo.

Yor exasple, h(ED)} =13, t+{XD) =C5 ,
B+CD = BCD . There functions catisfy the following

propertics, for every xcT and ycz' :
Blxey) = x 5 t{xey) =y, xeyda,

and y £ Awh(y)et(y) =y

Exerple 2, The prograx
F(xs3) <o (3£ x =, then ¥ else h(x)-F(z(x),¥))

defines the apwend function F!(x,y) » denoted
X*¥ -« We shall show that append ic associative

o This cootem iz sometimes called flinear LIOP'.
There iz no Aifficuity involved in generalizing
our proefs Lo real LISP pro-rass.

(1.ev, that (j2) = (xoy)ez ) by proving K(E,),
where P(F) iz F(x,y)%z = F(x,yvz) .
(a) P :
Ax,y)rz 2w definition of O

# ifwa= A then 2

clre hiw)+(t{w)*z)

definition of append

E & since w= A isw

v {xvy,2) . definition of R

() YFIP(F) = P(z(F])}

TIFI(x,y*2) = if x = A then yez
else h(x)-F(e(x),y*z)

definition nf ¢

w

-
5
"
5
=

then y*z

clee h{x)<{F{t(x),y)%e)

induetion hypothesis

+ A then yez
elge (h{x)F{e{x),y))*=

1%

definition of append
% (4fx < A then y
else hi{x)-F{t(x),y))*=
distributing append
over conditional,

since Wz z @

a T{Fa,y)s .
definition of ¢

This proef was done formally with the ICF proof
enecker (Uilner [1972a}).

Parallel Induction
We chall now present an application of sompu-

tation induction to proving broperties of two
programs: F o< tl{F) and ¢ < oG] . To prove
P{Ft.:}a) ,‘-w!':cre P{F,3) 1z an ad~iscidle
predicate, it is sufficient to:

-

7 That iz, a confunction o* inequalitics
alF, 6] ¢ 8[F,6] , where a mng B are contin-
uous functionals.

¥



{(8) Prove P} ;
(b) Snow that P(F,G) implies P{r[F],2lG])
ferany F oand G .
That iz,
fren, PLQ) and (Y9,0) IP(5,3) = P2(55,2(5]))

infer 9(!;,(;,) .

Exasple 3. Conzider the prograns
Flypyarys) <= 4Ly, = 0 thea y,
elze F(y,~1, ¥, *¥,¥.)
et - 7
Clypr¥pr¥y) <= ify) =0 then y,
else 0(3'1'1::-'2*@1-1)-

We want to show that both programz may be used to
compute the squaring function; more precisely,
that Pt(x,o,x) = Ga(x,o) for any natural nusber
X . Let

P(F,G) s WXWIF(y,x(x-¥),%) = G(y,x -y°)] .

We shall prove P(F‘,G:) which, for y = x,
simplifies to F‘{x,o,x) = G (x,0) .

(3) PELA) : Dy,x(x3),%) = Ay,x°-v3) by
definition of {1 .

(®) (¥#,G) {P(5,3) = P(x(F),olG])] :

TUFIHyx(x-y)yx) e $£ v = 0
then x{x-0}
else Fly-1,x{x-y)*+x,x)
® H ¥ =90
then x
else Fly-l,x(x=~{y=1)),x)

®if vy =0
2

then x
elze G(y-1,x"-(y-1)%)
induction hypothesiz
] 3_{_ y=0
then x2-02
else G(y-1, (x"-y%)e2y-1)
w o[G) (¥, x*=7) . n

Example L. Consider the two programs(Morris l1971)
P(x,y) <= if p(x) then y else h(F(k(x),y))
G(x,¥) <= if p(x) then y else G(x(x),h(y)) ,

where p stands for any naturally extended partial
predicate, and h and k  for any naturally exten-
ded pertisl functions. In order to prove that
?‘,(x,y) ] :.J(x,y) for a1l x and y , we zhall
concider
P(FG) : Wy {7 y) sG{x,v) A

(CIERL165 )RR IRTERE § 53 BN
We prove !’{I-‘,,J“j » ¥hich irplies f, =G, as
follows:

{a) PO :

Qx5 = Axy) ] A 1208(3)) = 8(@x¥))] ,
since h{w} =zw .

(v) (¥7,6){P(F,G) = P(x[F],c[G])} :

(1) *[FI{x,3) = if p(x) then y

else n(F(k(x),y))
= 1f p(x) then y
elre h{G(k{x),¥))

industion hypothesis

"

if p(x) then ¥
else G{k{x};h{¥)}
induct ion hypothesis
= 2{G1{x:y)
(2) o{ai(xn(¥)) = it p{x) then hiy)
e d
else G(kr(x),n"(y))

= 17 p(x) then h(y)
else h(G(k(x),h(¥)))

induction hypothesis

e R{o[Gi{x,¥)) -

Cg%tatior.n}. Induction for & Set of Recursive
Definitions

Wc shall state the computational induction
principle for a program concisting of two recursive
definitions,

.71 <s :l{Pl,?ZI

Fe <= ggirllrel b
the genermlization toc a syzten of n (n >2)
recyraive definitianz is straightforward.

Te prove P(?;r 1 Fy )} » where P(}‘l,!'a) iz an

i 72

admizsidle predicate, i¥ {s sufficient to:



(a) Prove PLQY)
{d) Show that, for all Fy ana Fos
P(F,F,) implies P, FisF, I"z!'l’F 3=
That is,
T PELA) and (W5 ){P(F,T,) =
Bt 5y, 7, L, R, E,0 ,
infer (7, ,F ) .

In the following examples, we omit variables
and parentheses whenever possible.

Euagze S

Fy <= if p then F F,h else Fag

Consider the progras

FE <= if q then 1‘5‘2?1 else ™

?5 <= il p then ?sz?kh clse !}‘,‘g
in which p and q ztand for any naturally ex-
tendel pertial predicates, and r, 8 and h for

any raturally extended partial fMunetions. To prove

that ?’tl & ? » let ?{Fl,f.,y. 53?&) ve
(!-‘ j)"{? = IF, ) ; we show that

P{F'l"'a, ,:1b) as follows:

(a} !’5"’!,.‘.,“} :
=) AR eM s true since flo) e

{b} L V.:‘l’ .n,?k}{l‘f}'z, "I."F)i) =

Pt!li?l,..."?!i “...,‘Ll“l, rawyld J&J‘}

’1“‘1’*‘2’ 5,?,*} ® 1f p then ¥ IF h else ?,,g
* 1f p then F,f¥,a else Ty
induction hypotheszis
2 13{?1, FQ,Pth]
1_:{}‘1,5'2,?3,2-‘5} % if q then !'FEFI else
® 7(if q then F.F, elze h)
® £{if q then f!‘,.i‘j else h)
induction hypothesis

* 25y (PP Fr, )
0

Transformations which Leave F, Invariant

We can use computaticnal induction to prove
uselul thecrem: atout recurséve de“initions. For
example, (f we =odify & recursive definition
F <= 2[P] Ly replacing same occurrences of F in
t[P] by either t{F] or ? ¢ he Dunction com-
puted by the new progras is prc.:i:ely the
original & .

T

To prove this, let usz write TF] a2{r,r!,
where we uge the second arguzent in t'[F,¥] to
distinguish the occurrences of F which we wish
to replace. wWe define « [?i = t'{Pt{P]] and

TLAF] = ern, 2] 3 our bm is to show that

F = F r ?‘ + We show this in two steps:
]. 2 ’
{m) (rfl c ?7) and {F,? c 5") - This part iz

eagy since by definition of rl and ':2 s

- 3 ™~ -
r: u‘!ll}'ti !!‘?{F‘,I » That is, .r* iz a

Tixedpoint of Loth 1‘.‘ and 1T, , therefore,

=
i% Iz more defined <han both P and ¥ .
T2 2

{v) {Fg = ?tl} and (F‘, cF, J + This can te

<

shown by computational induction. {Hint:

prove P\'F sF r? } where P{‘l’Fg’?}) is
"1
(F, cr,}au-‘ c}‘)n{?l_thlf}h{? SF).)

Exasple €. To prove that ¥(x) <u AL x > 10 then
X=10 else F(F{x*13}} and G(x) <= if x > 10 then
X~10 else G{x+l) define the same function over
the natural nus=bers, one just hags to replace
F{x*13) by the alue of F‘Exr.LS,S » Which iz xe?
cince x+13 > 1o . =1
Example 7. Consider the Tellowing progras (Morris
{1971 1)Y  over the positive natural numbers:

E‘(x}<- Ex»l&n_o
glse {if even(x)
then F,(x/2)
else ?1(:1:013)

Fo(x) <= if X = 1 ther

—

C elze PP {x))

® 5
2 1e s ot imown whether the functicn F, o (x} is

defined for all x or noty a computer y;ogm
checked that it i3 defined for all positive

integers up to g 3 "05 .



F.ox) <= if x = 1 thenl
elge (if even{x)
thar x/2
s g (%Y1
else £, (7, (<)) -

We chall prove that F. = 1-"? by trang-

1 2
forming the definition of !1 and FE respec-

tively, until we reach the sane recurgive Zefini-
tion.

vipgt, ¥ ® T
4 v
1 : 3

y Where:

7jiFi(x) = (3£ x = 1 then O
else (if even(x)
then F{x/2)
else 7,[FI(3x+1)}) -

Since [odd{x) and x > 1] imply [even(3xel)
and ‘xel > 1},

Fx) 8 (if x = 1then O
eise (if even(x)

then F(x/2)

clse F{‘—x-:-}-'))} »

Also F_r s F

B where TIF,F.] ¥ 1 0F,%. 050

Ny~

L8y

TELF ) = L

14
P
W
o

« Where
2
et{F P, Hx) w (ifx =1
then O
else {if even{x)
then F.{x/2)
2 PR % 40 3
size £, (%, (%, (<MW
The result ?‘_L‘?‘_‘ E 'Ffa
from the definition of ?2 by considering the
whree cases for x = 1 @ true, false,
undefined{w) . Thus

1z essily establiched

?'j{?z,?,‘}(:) r (if x = I then O
elge (Lif even{x}

then !’2{ x/2}

2
Pinaily, we consider
Ul?z,F.i{x) x {if x = 1 then O
elze {if even(x)
then F (%/2)
2x+1

c1se 7,(ZR))

.:-‘}1 = 1{:—‘2} ; since ?‘,‘ = F,: and
s ¥ as desired. —
¥ T2 -

for the progra=:

i *3
Fl <= i p then ?:Pz.“e‘.’ else g
F, <= il q then F.h else k
I-‘_‘ <= if p then ?lE‘Lf else &
FL <= if g then Fe?:n else ?2§=

we first change the definitions of :‘1 and F

P‘l <= if p then F.T F.f elze g

+F

and

respectively, and then prove by corputational
induction that:

{E‘! @ F’F) A {y’".—.?f‘ z :-'L) .

The reader chould be aware of Lne difTiculties
involved in proving that ?‘f B ’.-',7 without the
1 3

abave modificationc, )

Truncation Inducticn

1f for some continuocus functional t we define

+he zequence of functions s‘

:’" = tiiﬂl 5 fa2a,

by letting ¥

© . and o' aert) forall i,

fhen the szame argurent used to establish the valid-
{ty of computaticnal induction alro shows the
wmiidity of the tauwlgg very similar rule:



frow B(%) ana (viemdip(r)) ep(et'hy),
infer 9(?‘,) 2

The resemblance of thir rule to the usual —athe-
oatical inducticn on natural mumbers succests that
we consider a similar rule using complete induc-
tion over natural n-.-..-.-.berz.:/ Norrisz [1971] called
it truncation induction. More precisely,

In order to prove P{F_r) » PIF) being an
adniszible predicate, we show that for any natural
nusber {, the truth of P(f) forall <t
implies the truth of PB(f') . That is,

from (Y4 {[(¥ien such thar s <O)p()]arich)] ,
infer ’P‘{P,) -

The validity of this rule is established by first
using induction on N to chow that P{#") holds
Tor. a1l nell ; one can then use the proof given

above for the walidity of computational induction.

When the progri®: consisis of a gystem of
recursive definitions zuch as

Pl <= fl[Plg - --’Fkl

“aw

Fk <= Tk{?l, ...’Fkl »

ve let 2 ve &,....0 ,

(exzr’},...,fkir‘};. amd F,obe (F,

f‘hx ve

”“’F"n) -
the truncation inducticn rule iz then precisely

the zax+~ as above.

Example 3. {Morris [1971)). We conzider azain
{zee BExarmple 4) the twe prograss:

F{x.¥) <= (if p{x) then y elze h{F{k{x), 1))

G{x,y) <= if plx} thea » elze G{u{x),n({¥N),
whers p stands for any naturally extendeq partisl
predaats, and h oand X
tended partial functions.

in order to prove that both prograzs define
the same function, we check that

for any naturally ex-

‘3 | r;’“ >

i when applied o natural nunbers, these two
inductions are rquivalent; *tiug truncation
induction and compotational induction ars
equivelent from a theoretical pains of
view. Eqperience {n using both methods chows
that they are &lso equivalent in practice.

1%

b
- *g° andthat 2 ¢ for all n > . (We
treat the cases for n . O ani n = 1 separately,
since to prove o ,:;r‘ we have 10 use the induc-
tion hypothesis for both n-1 and n-2 .)
{a) !“‘xr,o: da20.
{r} fl " ﬁi H
N £
(%3} = If p(x) then v else af I'Jik(x.y))
s if p{x) then v else w
2 Q
# i€ p(x) then y else v (k{x),hiy))
s (x5 -
(<) !n = g0 for n>2:

= |
P(x,7) = 1f p(x) thea ¥ elze (£ (x50

dofiniticn of &

e if p(x} then y else h(,;n.likx,:;))
induction nypcethesis (n-1)
a2 if p{x)} then ¥
else h{if p{k(x})
then y
N2 .2,
else ¢ "{x"{x),u{y}IN}
definition of &1
% i€ p(x) then y
elze (1f pik(x))
then niy)
a-2,.2,
else hgo (X" {x),h({y)))
= if p{x) then y
elze {if pix{x))
then hiy)
N2, 25
else kT (& {x),h{y))
. Induction hypothesiz {n-2)
® if p{x} then y else :""l{k{x},h(;;}}

definition of £1

-1
w §f plx) then ¥ eise " “(x(x),h{y))

—

induction hypothesis {n-l)

definition of &°
-

-

It iz often useful %o define slightly different

sequences of functions :‘i and then apply a geners

alized fore of tm-::n.:fnn induction, 33 illustrated
in the next example. Kleene's first recursicn

theorem can again be used to establish the

n
g (%)



validity of such generalized truncaticn induction
rules.,

Example 10. We consider again the progras
F(-_i_."p:henaelzem,
where 3 iz the identity function. We zhall prove

that };'?‘, = ?‘, « For this purpose we define the
sequence of functions l‘i in the following way:

1‘0 8

& x2(0)

f'zsgpthm.;else!ml!‘nh for n>¢C;
note that for n >»2, it is not necezsarily the
cage that £ = t"[Q] .

We shall prove the desired result by genera-
lized truncation {nduction, letting the induction
hypothesis te T ogte | gvb

We first check the cazes n = 0 and nwl
{the detatls are omitted); then, asguning that

the indvcticn hypothesis s true for a1l i <n »
we get

e 4L p then § else i)
definition of &7
* 1L p then £7 g1ze UMMy
=ifp then 5 elce !"“:fn.lfnh
definition of £

hen § elze £ oFME,

P then J elze

(B
o+

induction hypothesis

P i definition of ™%

® o
By complete induction, it follows that &% ¢'2 .
t’"" for all nel ; then Xleene's theores can de
used tc establish that F"}“ ® ?t » as desired. )

IIi. STRUCTURAL INDUCTION

One faniliar method of proving assertions on
the domain ¥ of natural nusbers iz that of
cosplete induction: &n order %o Prove thal the
statement P{c} i true for every natural number
€ 5 We zhow that for any natural nusber a » the
truth of P(b) for all d <a implies the truth
of Pla) .

That is,

7

fros (¥aeD}{{i¥eed z.t. b < aiP{b}l = P(nj]! =
infer (Yed)P{c) .

Since this induction rule is not valid fo-
every ordered dor_aia,:-"l we shall first charactspize
the ordered domaing which are feood® for indrotion.
We then prezent a general rule Tor proving state-
ments over guch docaing, called structural induce
Lion; complete induction, asz well az rany other
welleinown induction rulez, iz a special case of
Structursl induction. Fin 1y, we zive seversl
examples using structural induction Lo prove proe
perties of recursively defined functions.

Well-founded Setn

A partially orderad set (5, <} ccncists of a
get § and a partial ordering < mn S .:/ A
partially ordered set (S, <} which contains n
infinize decreasing sequence a, > 8 >3, > ...
of elements of § iz called a well-founded set.

Examples. (a} The set of all real aumbers between
¢ and 1, ¥ith the usual ordering £ iz partial-
1y ordered tut nct well-Tounded (consider the in-

finite decreasing cequence

-

> >{i:-... ¥

0l
e

(b} The get 1 or integers, with the usual
ordering < . Is partially ordered but not well-
founded {consider 0 > -1 % -2 s .., :

{c} The se* N orfn tural molders, with the usual

ordering <, i{: wellefounded,

{4} If © iz anv alphabet, then the pet 1‘_' of
all finite strincs over T (i.2.. cequences of
letters of I ), with the substring relation

(W, < v, iff ¥ iz a gubstring of *, }» 8 °
wellefounded. -

Structural Inducticn

We may now state and prove the rule of struce
R L
tursl induction on well-founded setg, ot/ Suppose

=7
= €.f., it iz valid over the natural nu=bers with
ordering «< but fails over the integers with

ordering < f{concider P which is always
false).

E 2 3

—/ lote that the ordering need not “a total, i.e.,
it Is porsicle Shat for zome %, beS , neither

& <b nor b <a Bolds. )

Structural induction is sorelizes alse crlled
Hoetherian induction. wWhen the ordering «

is total, f.e., a «<b or b x & holde for
any 8,93 , it is called transfinite induction.

A

ey LN




P i3 8 total predicate over the well-founded set

(53,«}) « Ifforany a in §, we can prove inat
the srutn »f Pla} is ixpliied by the trath of
Pz} forall T <a, then P{e} is wrue Tor
every ¢ in § . That is:

frem (¥asSH{[{¥DeS 3.2. b < 2)P{b)] = Pla)} ,

infer (¥:¢S)P{c) .

To prove the validity of tuis Tule, we thow
trat if the assumptiocn iz satisfied, there tan Ye
no element in § for which P does not hold.
Congider the set A of elements acS such that
pPla) false. A is nonempty.
Then, there iz & least element a. such that
ak i for any &A 3 othewi.n: there would e
an infinite descending sequence & S . Then, for
any element b fuch that b <a., ple} =ust
hold; that i3, (Y¢S s.t. B <ag}?{b) . 31t
the asrurprion then implies that P(;a) , in cone
tradiction with the fact that ‘Dd + Therelore
A must be empty, i.¢., P} =ust hold for all
elements C<S .

is Let us asgume that

caticns .

We now give geveral examples using etructural
inducticn to prove propersies of recursive
prograns. Such proofs require sulitable
cholces of both partial ordering « and of the
predicate P . Scme of
partial crdering to be chogen is not always the
utual partial ordering on the domain.
ples fllusztrate that it

the

the exarples show that the

Oiher exanm-
iz often useful %o prove a
more gemeral regult than the desired thecrem.

Exacple 1. {Cadiou) Factorial functiens.
Consider the two prograns
}'1{:) <+ if X = O them 1 else x+F, (x=1)
and
Folx) < Fylx,22)

?-.‘(x,}', s} < if x =y then = else F,{x,y*1, {y*1)2)

}’gl and .32 compute XU = 1o3+ ...ex Tor every
X<l in wo different ways: ¥ by *geing up!

Th

froe O %o x and r, by 'going dowm® frem X
) ;

We wish %o show that ?‘ The
2

proof uses the predicate P(x) @

0 C . l}'t.

1

16

- (18- fop won [ armi =
(Y7 2.8 ¥ 2 x:{-!‘fuu ‘!?“\}‘3}} = -‘1{?}} »

e -

and the usual ordering on matural numbers.

(8) If x=0, PO s WIE Gyi (5 e
t X
¥ (¥}, waich iz clearly true by definiticn
b
' o
of F, -

(%) If x>0, we azsume P(x'} Zfor all x! <x

p{x) .

angd show

Forany ¥

Sa%s ¥

T
;
{gince x ™ O}
= F, {y,yexe1, T {y-x+l})
: 2 T,
definttion of T
f‘

™ industion Nypethesis
(since (x-1) <x and (x-3} €3}

P{x) holds for

then,

2.
-

have 7 s ¥ A
T K

of elements of S (i.e., on elements of g

18 (Bypseerd ) = (Bryveesd,
1 CRR- S | n

&, =D, A ves AR, L, =b, . AR <B for some i,
1 1 i1 i.l i 3
1<i<n. Itis easy to show that i (3. <}

ol
is well-founded, sc i (§ ,:_(_'} . Fer example,

{a} TFor the natural numbers with the usual
erdering <, the st (K", <) iz well-
fomded: (o0, (1".;»".:,32{?‘." n, <=y oF
(ny, ==} A E::3 < 52} (ncte that  8.§.
{1,100% < {3,1) ).

h 3
{5) For the alphadet T = (A,F,...,3}] with the

weual ordering A < B < T < ses < Z 5 the 32t



ks
{r, ;.} of wards of lengith three s vell-
Tounded. [liote thgt this s the ugunl
tlphavetic order: €8sy ADK < BAT < CAD «

SAT o

Zxample 2. Ackermann®s function,
Consider the Progras

Alx,y) <= if x=0 then 1
glse if 7 <0 then A(x-1,1)
else A{x-l,&(x,;-l}).

We wish to show thae s\'(X.}'} is defined for
LY Xyel , i.e., that the computation of &'(z,y)
always temminates. We thall use the structural
induction rule applied on (4%, <) . Assuming
2

that A'('x',y‘) is defined for any X', %'y szueh
that (xt,y') g {x,¥) , we show that .-\_(x,;-)

must alsc de defined.
(a) 1Ir xe0, termination iz obvicus.

() If x4i¢ ana ¥ =0, we note that
{x-1,1) g &), 2o by the inducticn nypo-
thesis A (x-1,1) 15 defined. Thus
A’{x,y) iz 2lzo defined.

(e) ¥inally, if x /0 ana i S
(%p¥=-1) g {x,¥) and A(%57-1)  is thnerefore
delined by the induction hypothesis; then,
vecardless of the value of Ar(x,y-l} >
(x-l.&,{x,:.'-i)': 5 {(5¥)  ani the desired
TEIult follows by another application of the
induction hypothesis. =
In each of the preceding examples we ured the
Ot nalural ordering on the domain to perfom the
Structural induction. In the next exarple it ig
natural 1o ufe 3 somewnat surpriszing ordering.

Example 3. {Burstall). 7he Gl-function.
The Gl-function ?? iz defired by the fol-
Iwing prozras oer the intesers:
F{x)} < AL % > 19 1hen x-12 else F{Fix+11)} .,

We wizh Lo show that ?,’ g, where g is
g{x) = if x > 179 then x-10 elee G1

The proof is by structural fndustion or the well-
founded zet (I, <), vhere I ig the integers
and < s defined as follows:

i7

X2y ifr r<xg<In

(wherse < i3 the usus} orderin: on the integggs);
THUE 101 < 100 € % < aau , us for example, \\
02 £1Y . Cme can e23ily check that (71, <) is
wellafouniag,

Suppoze F(¥) = e(y) for anx ¥¢I such that
¥ <X . We zust show that F?{x) ® {x) .

(8} ror x>0, i) = o(x) tiirecth‘.

{(®} For 10 >x>%, F(x) = ?1.(?'(1‘11}} =
?t{x*l) » and 2ince xvl « X we have
F'(x) = F:(x*l} = g{x*1} by the induction
assumption. But g{xel} = g1 = &{x} , theree
fore F?(x) ® gix) .

(¢} Finally, for x < %, P'(x} = r‘{rr(nnn »
and cince x+11 <« x wve have ?'fz) =
?‘(P,cxfn)) # F (e(x*11)) by induction. mus

(x+11} 2 31 , and ve know 5y induction that

(91} = g(91) e 91, 2o F{x) = P (g(o11)) »

[
E ¥
T

T
F,0(91) 7 91 w g(x) , as desired,

¥e could alternatively have Proven the above
Property by structural induction on the natural num-
bers with the uzual ordering <, using the move
complicated predicate P{n): (Yxcldfx > 100-n u»
F,i*) * g{x)] » The reader shoula mote that the
details of this Proof and of the sbove proet are
precisely the zare. -

Since the set (T, €} of Mni*a strings ¢
with the substring relation is well=founded, we nRy
use it for sirustural induction. [z the following
ciample we ufe an Induction wule that can easily
be derived from structural induction, namely:

fro P and (xS ) (x4 A P(tix)) < P(x)]
infer {‘!'cr:.J?s.(} ‘

Example L. The reverse functicn.

The program  reversze »

reverse{x} <= F(x,3)
F{x,¥) <« if x « 4 then ¥ else P{t{x),n{x)~y) ,

cives as value over z' the string made up of the
letters of x  in reverse order. For exazple, if
T = {A.3,C} then reverse{ACER) « BECK .

We wizh to provk that reverse{x) is defined
and that reverse{reverse(x)) = x  for all xeg .
Of course, Pproving that reverse has this property



dces not show that it actually reverscs all words:
many other functions, e.3. the identity function,
alzo satizfy this properiy.

1. 7o prove that reverse{x) is alusy:s defined,
we let

P{x) be (Y;ti.)i?’{x,:f) iz defined] .

(&} If x = &%, then F (x,¥) =y, and thus
F (6y) 1z defined.

(0} If x 4 A, since t{x) <x we may
aszume that 2 (t{x},2) is defined for
any = ; therefore ?‘t(t(x),h{x)'ﬂ
iz defined for all yer* . Thus
!"(x,y) is defired for any vy .

It follows by structura® fiduction that
I-‘*(x,y) is defined for all x,yc.g' y and in
particular, since reverse(x} = F!(x,lg) »
reverse(x) is defined for all x<I® .

2« To prove reversel{reverse(x)) = x we let

P{x} te (Yy(z‘)(rmrse(?_,(x,y)) =
??{st)! -
{2) If X = A, then for any v we have
rmrse(?r(x,y)) = reverze(y) =
F?(y’A) = ??f}'y‘) =

(¢} If x4 A, then forany y we have

reverse(¥_{%,3))
= reverse(F, (t{x),h(x)+¥))

definition of ?1
{zince x 7 &)

= F (hix) 3, t(x))
induetion hypothesis
{since x > t{x))

= ¥ (¥,h(x)-t(x)
definiticn of ?‘,

{zince hix)sy £ A)
2 F'h',x} .

Therefore 'm{ﬁ,( %)) = F(y,x) for
all x¥y¢L ; in particular, for ¥ 2 A,
reverse{reverse{x)) = reverae{r‘,(x,g\}) ]
F {Asx) = x , as desired. -
Other propertiez of reverse may eazily be
Proven by structural induction. In particular,
the following exarple uies the properties that,

-
for any ol and xeT
(1) reverse{x*a) = a-reverse{x) ,

(1%)  reverse{m-x) = reverse(x)}%z , and

(141} peverse(a-(x*t)} = v-{reverse{x}*s} .

Diample 5. Another reverse function.
We wish to rhow that the program (due to
Agheroft)

R{x) <= if % =
then 4
sise if t{x) =4
then x
else B(R(t(x)}) "R(u(x) R{t(R(tIx}})})

also defines a reversing function on 2,'E s Loy
that x'(x) ® reverse{x} for ali x<I' . lote
that this program uses caly one recursive definie
tien., '

In the proof we shall use the following lemma
characterizing the elarents of }:. : for any
.‘:f.:‘ s elther X = &, or xc@ (le«0sy (x) =4 ),
or x = y«(w*z) for zome ycL, wrI , and Z¢T -
The lemrma Iz easy to prove by s strajghtforward
structural induction.

We now prcvs that ?"r : reverze by structural

duc L,<), vhere < is the following

partial ordering:

x <y I£ff x iz a subsiring of ¥ er x iz

nduction on

[

& gudbztring of reversely) . One can check that
L
{E 5 <) iz well-founded.

Using the above lemma, the proof may be done
in three parts.

(@) x=&: R (x) = A= reverse(x) .
{b} =x<L : &‘(x) = x = reverse(x) .
{2} x = y«{w¥2) for some wf . wf s 2T :
R {x)
® KR, (£(x))) "R, (n(x) "R, (£(R, (£()))))
definition of R
@ h{ﬁ,(\"ﬁ)-Rt(:v’-ﬁt{t(!?,(w‘ﬂ)})
since hix) =y, t{x)wwes
= h(reverse(v*z)) ‘R, (y-R_ (t(reverse(w+z))))

’ induction hypothezis
fsince wez < x)



® h(z'remse(v})-a#(y-n'(tz_':-re:cr:c{w)}))
property (1} of reverse
€ ;-a'(:;-a‘_(. rse\!.')))
properties of hani t
® o-R {ysreversel reverselwl})

induction Typotheri

" -
{gince reverselw) <X}

@

:-n'{y-v} propersy of reverse
proven in previcus

example

g cereverse{y ) induction hypothesis
{gince y.w < x)

s =.{reverse{w)*y) property (11} of reverse

reverge{x) property ( i11) of reverse

We conciude that Rf{x} = reversel{x} for all

-
xeD 5 8z dezived.

3

m izon between Computal ional Induction and

Structural Induction

Altnough computatlonal induction and styucst-

ural inducticn appear to be guite different
methods, we shall shcw now
methed can be tranclated to a proof using the

other.

sy proof using one

f{2) Tranclation from Cec wyytational Induction
o Srructural Inductiom

.

Yeing the principle of structural industion
and the rypothesiz PR) ani WF{P(F) +PtiFD )

where PIF) iz taken o be airl g 8lF] fer
sizplicity, we mugt prove P{:-'?} . For that pur-
pose, we shall conzider & well-founded ordering <
over D' which regesblez the computaticn of
u{r‘ i oaz tollm : x =y Aiff the ¥leene compu~
tation *o-que-.ce—-— of u‘}‘ }{x)} is shorter than
that of -:IE7‘1]{)) Using the definitiom, it is
straight Jorward Lo chow that

(¥xeD*) ([ (¥yeD® such that ¥ < X)QGY ] = 22
vhere a(x) iz alF Mx) 2 8(F1{x) 3 b.; gtrucs
tural induction, it follows that {’}"r:} =)

1a€ey Pfi-"} .

= NHote that reverszelw) < x , which iz tre
besguse reverse(w) is :u!.\s.r"r of
reversc{xy , as may be seen Trom property 1e)
of yeverse.

2/1.9.-. 2n 5.t TANX) F @ and SR ew.

{6} Iranslation from Stxuctursl Induction o
_mtau al Induction

Unlike ocmputatlon~l Inducticn, structural
inducticn ray be uted to prove genersl rathematical
theorens, rather Shan just propertics of programs.
towever, 1T we restrict o selves Lo proving pro-
perties of progsran ceams,~ Wilner [1970b] has shown
shae srvustuval induction canm be nleely reploeod by
computational industion. Tue next two examples
§1lustrate the use of this
more direct cosputational induction fails.

technique in cases where

Bxample €. facsorial functions.
Congider again the two programs of Exazple 1:
Fl('x} <= if x = O then 1 glse x-?l(x-l) ’
ani
?EC-") <= F.{x,0p1)

F;{l,:.‘,z} <= if x =y then:z

elze T (x,y*1,{y*i)ez)

Since I-‘! and ':‘7 are computed differenmtly, the
1 3
equivalence F_ o= F cannot be proven directly
1 2
by computaticnal induction. [oWever, we fan consi-

der the demaln of natural nusbers to be recursively

defined by the progr

nusberis) <= i x
aunver 2=

. 0 *hen true else nusber{x-1},
and procesd to prove by computaticnal induttion o
this progra= that:

""‘)} »

(9%, 3) {ix >y vowrer(x}ic {5, (1%,

The procf can now be carried on, following the steps
of tne proof of Bxarple 1. B

—

1

>

txample 7. Reverse u
Sonsider ascnin the progras of Example &

unction.

definins the reverse function:
reversel{x) <= FixX,A)
e

FlX,y) <« Aif x » pthen ¥ else F{aIx),R{x}"3)

¥e shall show that revern c(x} & BT ?1(3:,3))
iz defined for any x in :" . For this purpose,

-
we characterize the elements of ty the progran

2

) ?ere precizely, when the well-founded ordering
can be recursively defined.




vord(x) <= clword](x} , where
H{SHx) = {if x = hen true else G{t{x)}).

Wekt?&m)be(ﬁﬁdJﬂﬂﬂﬂﬂﬁuﬂg
wori(Fig,¥))} .

(8) PL,Q) : (D) A ¥ord{y}] & word(il(x,y))
reduces o w Cw.
(8} ¥¥,GIP(F,G) = Pix{Flelg])} -

[5(G1(x) A word(y)]

¥ 1L x = A then word(y)
else G(t(x)) A word(y)

definition of o

® 12 x = A then word(y)
elge G(t{x)) a word(h{x}-y)
definition ef word
Tif x = & then werd{y)
else ¥ord(F{t{x},nl{x)y}}

induction Wypothesis

T word(T{Fl{x,¥)) . definition of ©

Therefore, by computational induction, we nave:

fword(x) A word(y}} ¢ wrd(? {x,5))
for ail x,yr‘._" »

which for = A gives word(x) <
word{rey erse(:“ 3 .oy, reverze(x) iz definea

and {ts value iz a word whenever x iz & word. =)

1V, OTHER METHODS

In
methods
cursion

this zection, we preseat two ndiitional
for proving properties of Programs: re-
induction and inductive acsertions. We
show that any proof by either of these methods can
be effect fvely translated into a proof by cempu-
tationel induction {and therefore also into a
proef by structural induction).

Recursicn Induction

To prove the equivalence of twe functions r
and rb ever rome subdomain 8§ of p s f.e.,
that o, (x) " (x) for all xeS, !t iz suffi.
cient to find a !'unctlmu T such that:

{a) fl iz & fixedpoint of = 2 Lews, !‘ s i 1,,
(8} £, is & fixedpoint of 3 » fee, £ oagr ],
and
] }‘!{z} is defined forany x n § .
The justification of thiz rule is easy: by
definition of ¥, 5 we znow that (x) &2 1{:l:)
and (x) ey (x} » for any x in D ; therefore,

for any X in 8, sgince F, {x) ic defines,
(x) s T (x} s T (x)

Example 1. (McCarthy [19638]). We conszider again
the function reverse , defined in Exampie
(Section ¥). We wish to prove by recursion indus-
tion that
reverse(x+y) = reverse(y) * reverse{x)
for all x,yeg" .

For this purpose we
defined by

choose the functional =+

TFI{x,¥) ® 52 x « A then reverse{y}

elze F{t{x),y)*n{x} .

——

Then using known pProperties of % and reverse ¥

we get that
{a} reverse(x*y) is a fixedpoint of = s since

reverse{x*y) = ifx =p
then reversely)

reverse((hfx) t{x})vy)

= A

reverse(y)

 reverse(h{x}-(t{x)*y)).

X = A

olge
Tifx
then

reversef{y)
{reverse{t{x}*y}} 'h(K)

(t)

reverse(y) * reverse(x)

since

is a fixedpoint of ¢ ,

reverse{y) * reverse(x)
= ifx

then

- A
reverse(y)¥a
glze reverse(y) * reverse(x)
z ifx
_t_!l_e&
elze

= A

reverse(y)

reverse(y) * {reverse(4({x)) *h{x})
ra




%= ifx=A
thet reverse{y)

elze [reverzely) * reverse{t{z}})+u{x} .

H -
fe} ?T',x,:,'} iz defined for every Xx,3«L , &3 can
ve ghown by & straishtforward induction on x.

Ixarple 2. We consider a systenm over the natural
numbers in which the primitives are the predicate
zero{x} (true only when x {5 © }, the prede-

cesgor function pred{x} (where pred{(0) iz 0},
and the successor function sgucc{x) . In this

systiex the progranm
add(x,y) <= if zero(x)
then vy
else add(pred(x},suzc(y))

defines the addition function. We wish to prove
that gucc{add(x,y)) = add(x,succly)) for all
X, ye¢¥ by recursion induction.

We congider the functicnal t defined as

tI{Fl{x,y) = {if zero(x)
then gucce(y)
else Fipred(x),suce{y})} .

The reader can easily verify that both functions

sucefedd(x,y)) and add{x,succ(y)}) are fixedpoints
SusSLEnd RcLlXy Suce

of 1T . Purtherrore, an easy induction on X shows
tnat .“z{x,:,') is defined for any x and y in K,

which completes the procl. 3

It is interesting to compare the preceding
example with Example & of Section 2, where we cone
sidered the progras

3{x,¥) <= if plx) then ¥ else G(k(x),n(x})
and proved that
03 (%) ® §,(x,n(y)) for all x and y .

1f we interpret p{x} as zero{x) , k(x} =ns
predix) , and n{y) as suce(y) , G, (x3)
tecomes add{x,y} , and the proof that

nG (%,y) = G,{x,h(y)} i actually snother prool
that succladd{x,y)) » add(x,suce(¥)} « It is
interesting to note that the algebralc manipula-
ticnz uzed in doth proofs are the same. However,
the proof Ly recurzion induction needed an argument
of temination; if we concider the definition
G{x,¥) <= if p(x) then y else G(k(x),h(y)) with
no specific interpretation in mind for p, k and

% , no arpgument for the terminastion of GJ is

pocsible (since, for instance, if p(x} i3 always
fulse, O,

W%y = G:{x,h{g)) therefore cannol te proven

¢s never deflined}. A property like
by recursion inducticn {Morris [1971)]).

An interesting special ¢ase of recursion in-
duction, for which no proof of temminmatiar ia
needed, was dezcribed in Sectien 2. To prove tne
cquivalence of two recursively defined functions,
cne can try to modify each definition until both
definitions are the sase, using transformation:
which leave the fixedpoint wunchanged. This melhod
was illustrated by Exa-pies 6 and 7 of Section 2.

It ig ecasy to show that every proofl by recur-

sion inducticn can be effectively tranzlated to 2
Hint:
= x{f,] and prove S I

chL} AR L) -
o - -

proof by computational induction. asgu=c

t‘lu'.'{:‘l} and f
where P(F) iz (

" Ta

Inductive Ascertion Method

The mort widely used method for proving pro-
perties of flowchart procgrams, called the Inductive

azsertions method, was suggested by Flopd [1267]}.

We shall illustrate the method and lts relation to
cocputational inducticn on a cimple flowchart
prograt.

We wigh to show that the above flowchart pro-
gram over the natural mu=bers computes the factarlial

function, f.e., = = x! , whenever it terminates.

To do this, we srsociate a predicate called an
inductive assertion ;{x.:;l,:f,__} with the pou
labelled X & ‘must

be true for the wvalucl &f the varisbles X5,

in the progras, and show that

whenever execution o progras yesac = point Q@ .

Thus, we =ust show (&} nat tne assertion holds



when polnt @ ig first resched after starting
execution (i.e., that Q(x,0,1}) holds) ani
(¥} that it remaing true when one soes arcund the
locp from @ to a (i.e., that ylfan[x,}'l,yzj
impliies Q(x,::lcl,{yf!) -yz) « To prove the
desired result we Tinslly show (o) that = = xt
follows from the azsertiom .“.,(x,yl,yg) when the
progranm terminates ({.e., that ¥y e XA Q(x,yl,ye)
irmplies ¥p = xt ).

We take Qr{x,yl,ye) to be ¥ = yll + Then:

{a} QF(x,O:I) is 1 =0t .

(b) We azpume y, 4 x ane Qe(%y35¥,) 5 tee,
Ya = ¥yl . Then QplX¥y 42, (yy*2)o5)  is
(yp*2)ey, = (v 1)1, teee, (B eyt =
(}'l"'l)-’! .

(¢} ¥e ascune ¥y =% and Qr(x,yl,::‘,_,) s Lo,
V=¥t ithen ¥, - 5t axt as desired.

To show that the procf by inductive asser-
tions corresponds to a computaticnal induction
proof in a natural way, we must first transiate
the Tlowchart program intc a8 recursive progran.
Following the tethnique of MeCarthy [1993a], we
find trnat the output 2 of the above Tlowchart
progras iz computed by the progras

fact(x) <= }‘{x,o,l)\

?(x,yl,;.‘z) <= if ¥y oex
then 5'2
clse !‘(x,;,'lﬂ,frl’l) ')‘3) .

We shall prove by computational induction thas
F?(I,i"",l} < xt , i.es, that the walue of P‘,{x,ﬂ,}.}
iz x1 whenever F_(x,0,1) iz defined. Ye take
P{F) to be the following sdmissible predicate:

f’xr.’f‘l:)'a‘n) [~Qp(x::"1.ve) v fF{x,:v'l,yz) z xti}.

Cbviously P(Q) holds. To show thas P(F} =
P(t{F]) for every function ¥, we consider two
cares: either ¥y =X, in which caze the proof
follows directly from {c} abdove, or ¥ £x,
which follows directly from {v).

By computational induction we therefore have
PE) » tiey, ~Qal%wys ) VIE (x5 55,) © xt]
for all X ¥ya¥ac o But szince QF(x,Q,z) is
known from (&) to hold, we cenclude that
r?(x,o,n € x!, as desired,

Hanng and Pnuell [1970] generalized the induce
tive assertions rethod to apply 1o recursive Pro-~
grams. Iy their method [t follows that the recur-
sive program above computer tae factorial functios,
when it terminates, if and only if there exists an
mducttve\:serttm “"3"1’:"2".'} such that

(Y%, 22 Q{%,0,1,2) » 2 » x1])

A ¥Ry e} AL vy~ x
180 Q%) 530 ¥,)
else “i“i(-‘t-&\_“‘lr()‘1"1)'?2;‘) =
Q(‘:)’r?:v‘}” »
£ true. (The formuls implies that .’;(x,::l,yz,z)
iz true whenever ‘:‘_. (1,31,3‘2) =2 .)

The reader may easily check that the shove
for=ula iz satisfied by taking the predicate
Qp(Xs¥,57.,92) %o te 2yt - yz-:i » whiclh proves
that FQ{x,Q,:} € x! as derired. ¥ The difference
between the ascertions Q?(x,yz,;;;_,} and
Q,.,@(z,:.-l,:,-‘z,:) should be noted: .'.?{x,;.'i,)-_?}
represents all possible values of the varisbles

ke

1¥ye¥, At arc O during executlon, while

b

£
-

Sy (x,,.'i,:;._,,:} represents the relation between the

inal value of = and the initial value of x » ¥y

g

*h

3y when computation starts at are a .
Az in the case of flowchart prograxs, the
proof by the Manns-Prueli method can cacily be

tranclated into s proof by computational inziu::i:fn:.

(54

aring the prodicate P{F) 2o be

(55,3, B F (60w ) oy, t € vy oxt]

To further illusirate the use of the inductive
azozertion method, we briefly present & less famie
liar example. We shall show that for any natural
numter X the flowchart progras given below, when-
ever it terminates, corputes the smallest natural
nusber greater than Jx , l.e., that z- £x <
(:fl)2 .

-/

~ Given an inductive azsertion QofX,¥,s¥ .} for the
5 73

flowchart progras, one can ttke the prelicate
Yepl¥p¥ors) slven by Qulx,y,¥.) = (z=x1)
and check that it al:zo ratizfies the scove
formuin. However, the preticste obtained in this
way I3 less natural than the nopdicate :},?
given atove.



We must show that there is an Inductive
nzeruc; &(:,yl,_.',,,:y}) such that:
(Vxes)a(x.o.l,l)
A (0GR Q%Y 5 ¥ 503 s)
- E :,'..f >x
then ¥§ < x < (ypp1)°

else Y Ly ¥t 3 yt2) ]
iz true. We take q}. o be

3 %) A (3, 2y,#1)

The regder rmay check that thizs asgertion shows
correctpess as desired.

= (D)) A (o -

‘ The cerresponding recursive progran is
sgridx) <= Flx,0,1,1)

Flag¥ys¥opys) <= ALy, > %

then v,

eise P,y Ly 0¥ 8 yatl)

and the Mamna-Pruell formuila is

2 ]
(¥, 2e N} [Q(x,0, 1, 1,2) = 2

> x

<x <z
A {‘xl?L’ ‘n!us"" 134 3"2

shen Q{0 Y)Y ¥ Yy)
velQln,y 2 v 0y

= q{‘l.fl’ye’y:!t) }} .

clze 42, ¥. 2, %)
s % :

This is satisfied by taking QGulh¥p¥osyos) to
be

s
.

>x then y, = =
cize {=-¥,) Sz l}(.e.'l)”\lr‘-,‘.s‘:l < x

< (=‘.‘fl) “ (z=y Myt Loy,

¥e are indedbted to Robin Milner
ing éizcussions.
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