
{ AD-738 570

INDUCTIVE METHODS FOR PROVING |

| PROPERTIES OF PROGRAMS

Z. Manna, et al

Stanford University

| Stanford, California

November 1971

STANFORD ARTIFICIAL INTELLIGENCE PROJECT

- MEMO AIM-154
© © COMPUTER SCIENCE DEPARTMENT
fd REPORT NO. 2S 243
QD

on

Oe

foe
et!

INDUCTIVE METHODS FOR PROVING
PROPERTIES OF PROGRAMS

BY

7ZOHAR MANNA

STEPHEN NESS

JEAN VUILLEMIN

NOVEMBER 1971

NATIONAL TECHNICAL
INFORMATION SERVICE

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

Fa
3 | A):
Se”

4

N OT 1 C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM

THE BEST COPY FURNISHED US BY THE SPONSOR-

ING AGENCY. ALTHOUGH IT IS RECOGNIZED

THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT

IS BEING RELEASED IN THE INTEREST OF MAK-

ING AVAILABLE AS MUCH INFORMATION AS

POSSIBLE.

/

STANFORD ARTIFICIAL INTELLIGENCE PROJECT November 1971

MEMO AIM-154

COMPUTER SCIENCE DEPARTMENT REPORT /
NO. CS 2k3

INDUCTIVE METHODS FOR PROVING

PROPERTIES OF PROGRAMS*

by

Zohar Manna

Stephen less
Jean Vuillemin

ABSTRACT: We have two main purposesin this paper. First,we
clarify and extend known results about computation of
recursive programs, emphasizing the difference between
the theoretical and practical approaches. Secondly, we

present and examine various known methods for proving
properties of recursive programs. Wediscuss in detail
two powerful inductive methods, computational induction
and structural induction, illustrating their applica-
tions by various examples. Wevalsc briefly discuss some
other related methods. . Co ——

he ——

Our aim in this work is to introduce inductive methods to

as wide a class of readers as possible and to demonstrate
thelr power as practical techniques. We ask the forgive-
ness oi our more theoretical-minded colleagues for our

occasional choice of clarity over precision.

*The research was supported by the Advanced Research Projects Agency of
the Office of the Secretary of Defense under Contract SD-183.

The views and conclusions contained in this document are those of the

authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information, Springfield, Virginia 22151.
Price: Full size copy $5.00; microfiche copy $.95.

LEAR TATA S~EpE NESS, JRA UILLEMINComputer Sclence Deg : oaak
Stanton University ”
~tanford, -nlifornl a

Abstract

we hava Wo mat- natn TTFirst, we clarify andpg in this paper. Br iatel; shogen ciples, that thcompatat : extend known resul suitavle partial ; that the cholce ofthe dilferc oo bet » procrams, emphazizing a suitable {nduction oe at data strustlureeal ween the theoretical Xai is and clear induct Licn hypothesis leads &approac Las Secondly tical wud practi i= coe Trit ot inductive proofli. AJL); «1 kd simplevarious kno.m methods sig on pregame and expmine oy gLat onal Indusztion amd am re Tow Uarecursive prograns. for proving prepertles of escentially oquivalent, © uetur inductionpowerful inl: We discuss in detail t reasons Jor keeping bot , there are practicaltion a rludtive methods, comput xtc vo tational in Nai, ping both of them in mind. ©and structural induct crputational induc. ial induction is vest suit =ind. Compu-application induction, illustrating © correciness and y vom} guited for proving tha 5 by various 1 Sirav.ie thelr becauze of it equivalence of program 3g weipouss gone other examples. We als : e of its simplicity; zg, anda other related = o briefly venient 7 =plicity it is partmE gm _n Pd -— lk
ponsible ard to 4 role he of readers as ot yi te usually easier to 8 ™ 8 cn ofeal techniques. nya ill cir power as practi- eS ron, how by structuralmare theoret the forgivenes n Section IgionalA a, collesgues Joke of a methods: an EI dttrtroduce two addi tonal- in . . hi - in ol wdInt roduc proving properties of Wo method proposed JorIntroduction tnduct f recursive :Many al ; BE, assertions erated 7 Fioge areuged Lo inductive methods have b lp {1905 Tor flowchart ep {1547}: = properties of a” : cen = yy Manns and Pouell [1 rang and genera-BEmose inciude for example Pe , Well-known programs). We show hak | 2670] for recursivestructural (nductlon recursicn induction fan be effectively trans any proof by these meiktational y inductive ’ . tively translated ¢ methodsfviipti assertions, coopu- rm tomm] inductio T to a proof byfixedpoint | on, truncation induction v Sop aust i0n. hy compuis to i induction. Our intention > on ato pregent and ox in thirting their applicatSaale these methods, re I. RECURSIVE PROGRADrecursive programs. proving propertics cf In taiz section, ve § m* prckIn Seti partial func a {mtroduce u thground 1c Lon I we give the theoretl sak oi JunCL ions, snd show its rel Reo ofnecessary tou . tical tack ive progra=d and th relation to recuo underceand the § sromz and thelr © oF resur-gpproach to recursiv 1d the fixedpoint ir computations.ing Scott [139 a srograms {essentially folle Partial Functions
Ee approach. We BN We wigh to osting inuuctive methods emphasize that while ten +o consider partial functtlpart Tix =olhods prove properties * * Apmalin 0) : . functions from aractice the function © ecuriive Programs, wrich may } BE Ggoeiiatn functionscomputation wa} computed oy sop 2 nich may i ha ur dafinad Fr Tasuppect : es differs from it. W % Son crn) ined for Some arguments. ForTugeery £icedpoint? computat t., We briefly ample, the quotient unct nT1 he cooputed function i pS ch sigure 2¢® Ip ; ¥ » TAPPIngcast fixelpoint. ion is identical to the R {pairs of real numbers) into R, ©- w nave no ', -

+1 In Section 11 ¥e exa~ine Ametions alue if y= 0. pParsialtion methols, 1.0. thy oy computational induce tiong arise naturally In conn .tTtTesed on t » methods in which the 1 tati nection with compsfi J 1 he gL.eps af the H nduction «dO Al & compat toys -iret present the ext he computation. We ting process ray give resSo 3 Scott {deBakker and 3c duetion nmetnod orts and run indefinitely for othx 1941) Exarples are pre Su 1 1% a1, in developing a theo i Iy Jor OLnErd.i gi applications ofatniro- Mmections it -heory for handling partialcus Ano R o y: : * c Ae «£ OF - -iinduction [Morris Bintting method, element tw to veprecent the val he FpsRias* Tq ; x iF= ¥ : et ri ak % = ELLir. Ps : Sue fixedpoint inducti 3 ralsyed let D denot ¢ undefined. Werk {1 3}. ron, ig described encte DU {wl , astuming «fDand ite applic Sinunue. induction metho ig the cartesian productprograne in Section III iii properties of ve «A , we let D0 ve 2s +
Painter {1 bp ou Ny for example by Helarthy and acompiler a proving the correct: nue regearch reported hTr an by Floyd 1 am’ ness rly A t dunn . or mere WAS = —tion of flo . [1977] for proving Advanced Regearch Prolect upported ty the: f flcwchart program: g termina. the Secretary hh Projects Agency of ih :this section sramsz. Our intention | etary of Defence under C £ the Office ofn iz to emphasize, by means of 0 under Centract 53-13i of sppro- 7

1

Any partial function f mapping oy into Ds a b {8,a% {a,b {b,aY {by b)
=ay then be considered az a total function mapping N 4 +oa ><a >< \

. . R . ws {aya (0 5) 5) {b,w)Dy into Dp: If If is undefined for deD, , we ~~ Enlet f{d) be w. (ap
Since we shall consider compositions of

: * * a ntpartial functicnc, we may need to corpute functions o (3xD)" x

with some arguments being undefined. Thus we must
+ext er fanetion

oea Coe y BaTPIRE 5; Ime By wa Hencionic Functionsction mapping D 0 - : :
E € 9 int 2s } such extensions fry function f computed Ly o progres has sheare discussed in the n fection. Partial -

’ ext cect 32 Prods Properly that whenever the input x is less definedcates are of con Ze a Ipec cage, sinc -
- : ur hal & 2ince & par than the input vy , the output f(x} iz lezsredicate is a partial functicn int

. P al iz5:into defined than f(y) . We therefore require that therue, aloe .

(true, false] extended function ff ros D, into >, be
monotonic, f.e.,

ihe Ordering © cn the Domain

To define appropriate extensions of partial . “
functions from D, into D, to total functione we lev (Dy =D,) deacte the set of all monotonic+ : .from Oy into D, sy We Tirst Introduce the functions from 2 into D, x

1 . If © haz only one argunent, monotonicitypartial ordering c on every extended domain

A. requires that {aw} be w., with one exception:D ~~ The partial ordering c iz intended to reqy a 2
correspond to the notion "is less defined than, the constant function f{x) «¢ for all xD .

and accordingly we define i by letting We Aa If rr han SANS arguments, 1.0; 9, i Ay eas KA
for all den’ . Note that distinct elements of Go it may have many different monotonic extengionz.
are unrelated by c : for distinct = and b A particularly important extension of any function

in D, neither acd nor t ~ a holds. 10 ot ir called the matural extention, defined by letting
- = ¥ eye oa

iz the cartesian product A] x I x A s We define trina) Se % ‘Whenever St least one of the
(8104448 3 € (by;200,0) when a, cL, for 4; 12 w.~ This corresponds intuitively to the
1’ ’ i mi h Rll n | -— at. | * A r FA TT. - =k ug 1cach 1, l<ic<n. duncilions computed by programs which must mow all

% thelr inputs before beginning execution {e.gple. IL DD = [a,b thenD = fa,b,} andExanpic {a,%} , (a,b, Algol call oy value).
(DxD) = {{wyw), (una),(8,0)«ery (a,b), (bya), (t;b}1.
The partial orderings on I and (0x2) are Examples. (a) The identity function, mapping any

- Ea - - or] a ~described in the diagrams below, where each cone * in D into itzeld, Iz obviously monotonic.

necting line indicates that the lower element is (B} The quotient Sunction, mapping {xX,¥) into
less defined than the upper element. {Lincs ime x/¥ , extended to a total function by letting xfo
plied by transitivity or reflexivity are not be Ww for any x in R , becomes monotonic by
chown.) the natural extension: let x/@ and fy be wwo +
A SE — forany x and y in R .

A partial ordering iz a binary relation which

is reflexive ((¥a){aca]), antisymmetric {¢} The equality predicate mapping DxD inte

and transitive ({¥a,b,c}{a = ba BCc mace). particulary interesting ways:
As usual, we write acb if ach and a ie {1} The natural extencion (weak equality),
not identical to b , ag b if acb does denoted by = , yields the value © whenever
not hold, ete. &t least one of its arguments iz @ . The weak

equality predicate y of course monctonie.
EE ——

Z We assume ill the functions of our examples to
be naturally extended, unless otherwise noted.

2

(11) Another extension (strong equality), (¢} The functions f, and £,» given bydenoted oy = , yields the value true when y z

toth arsuments are w and false when exactly f(z) = g{if p(x} then h, {x} clze nh (x))
cht arment iz wo 3 in other words, x zy if and

and only if xc y and yc x . The strong f(x} » If p(x} then (hn, (x)} else gh (x),
Spuliy predicate ic nct a monotonic mapping arc defined by composition of if-then-else, Pig;
fron UT xD into {true,false,w} , since hy ad hy. If p, eg, h and h, are mono
(md) = (4,4) but (we gas d) (i.e, tonic, f, and fare memoteaic. “here $2 an
false “rue) for d¢J . interesting relat fon Sotween these two functions:

{d) The if-then-else functicn, mapping (1) (x) gc r(x) forany x; (11) if
Spa keivin inte D, is defined for any aw) = w, when f(x) = £,{x} for any x. We

3 shall uge these results {and a Similar result when

te value of (if true then a else b) be a, § has ceveral arguments) often in later proofs. .
the value of {if false then s else Bb) be b , The Ordering © on Functions

It can be extended to a monotonic function mapping Let I and ; be two monotonic functions
{true, falze} x0" x0’ into D' by letting, for mapping D, to D » Be say that fgg, read
any a,bed’ ’ " f ir less defined than 8" IT 1x} c g(x)

+

the vilue of (ie trac Chas & elce Sd be a for any x in Dy : tals Pebetioy is !ndeed 3
the value of (if false then w elze b} be bu, farTiia: erdcrirg on (® = Dy) + Two Tunctions

Sil TE I. Ri— and are equal, f=g, iff ‘ce and gc
the value of (if w then a else b} be w. (nat 18, Ty iff x) = g(x) ror every

_— — = xD,) « We denote by 1 the function whier iz
licte that tniz is not the natural extensicn of always undefined: Hx) ls w for any xeDy "
if-then-else, - licte that 3 = Torany funstion ff. :

Compozition of Functions Infinite increasing coequences R .
An i-portant operation on functions is compo- & “1 S fg eee oF functions in (3; =Dy)

sition, which mllows functions to be defined in tre Ssaiol SAlnE. It 252 Be shown vast any chain
tems of simpler functions. If £ is a Munction has a uniquezis function In (2) -b3) ,
fries o} vs ot $9 g & fdiion fees 2! denoted by Hare) » Which har the characteristic
into D. , then the composition of ff and g properties that I, ¢ lin{f.} for every 1, and
ie the function from Dy into ot defined by] :
S(f(x}) for every x In o) . 2 i caer to for any functlon g guch that ce for
show that, if f and g are monotonic— every i, we have Linityd cg. ;
$0 ig their compositicn. Example. Consider the sequence of functions

Examples. (a) The function £ , given by a Srey natural numbers tefined by
f(x} = (4 x = 0 then 1 else x) , is defined by f(x} = {if x < ' hen x! elsew} . This sequence

composition of tne weak equality predicate, the IP = HEY1 Nin is
constant functions O and 1, the identity f° oT 0
function, and the if-then-else function. Since
&l11 these functicnz are monotonic; € iz ronotonic. Continuous Functionsls

(b) The function f, given by fix) = We now SErsiier & Puetion T rapping the
(if x = w <hen O else 1} , defined using the Spor Funct lena he! - 22) Into itself, called a
nonmonotonic predicate =, is not manotonie, functional; that Sp T takes any monotonic
since fiw) = 0 and 10) a 1} {ies, wc oo, frction fas itz argument and yields a nono-
but f(m) ¢ £0)). —- tonic function {rf} az ite: value. As for

2

functions, it is natural to restrict ourselves to identity functien. =
monotonic functionals, l.e., t such that TCg

irplies 2iflc tig] forall f and g in Fixedpoints
(0, - D) « For our purposes, however, we require The fundamental predercy ji a continuous
that functionals satisfy ao stronger property, functional * -~apping By - 3.) into jtgelfl is
called continuity: v is continuous if for any that it has a unigue least-fixedpoint Li » having
chain of functions tie two characteristic properties: i, = SE

f,efefc and, for any &, gc w7Tl{s] i-plles F ce.
ve have "a We can corpute F, a2 the limit of the chaln

ie : < 13

T(1,] cif] g tle] wi Ac:iilcr lille... as follows Irom Kleene= first recursion theorem [1550].

and Examples. All the functionals in the following

siim(f,)] 5 1i=(rlf, 1) i} examples are defined by composition of monotonici i Mretions and the function variable F and are
We usually specify a functional T by campos tharefore continuous by construction and have

giticn of known monotonic functions and the func- unique least fixedpoints.

tion variable F, denoted by t{Fl(x) ; when F (a) The functional t over (a if) ; given by
is replaced by any mown monotonic function g , . I = hyper :

the composition rules determine tlglix) . 1% tiFlix) = (if x = 0 then 1 else Fxv1))
can easily be shown that any functional defined by has as fixedpoints the functions

composition of monotonic functions and the function 50%) ® (Lf x = O then 1 else n)
variable F is continuous. : N

Examples. {a} The identity functional 1, The least Tixedpoint is
defines vy 1.[Fl{x) = F(x} , mapping ay ¥ in F(x) : (if x = O then 1 elseWw) .

» ke

(py, =D;} into itself, is clearly continuous. (k) The only {and therefore least) fixedpofat of

{bv} The constant functional 7 a defined ty the functicnal T over the integers given by+ ¥

*[F](x) = g(x) , mapping any f in (Dy =D) f(Fl{x) ® Lf x > 100 then x-10 else F(F(x+11)) ,
into the function ¢ , iz continuous.

is F, (x) z 4{f x > 100 then x=12 ele 91
{ec} The functional tv defined by tirl{x) =

{if x = © then 1 else F{x+1)) {iz constructed by {ec} The funétional tT over the integers, defined
composition of monotonic functiont |if-then-else , by
additicr, weak equality, and the constant functions rti! Hx, sx.) =

0 and 1} and the function variable F ; It is x :i 2 1} [Ee. +therefore continuous. Given any monotonic function if *1 a. Buen Xpt £252 Fx Fxg hXy 1
g over the integers, t{g] ir another monotonic has as fixedpoints the functicns
function over the integers:

£{%y1%,) " xy+1 ’

ir gnfl, then tiglix) = {if x = O then 1 cise Ww); g(xy9%,) = if x, 2X, then %,t1 else x.-1 , and
if gix) = x-1, then tigl{x) = (if x=0 then 1 else x} » n(x, s%,) s if {%, > x) A (xy=%, even)

then X,*1 else Ww

(d) The functional rt defined by T[F}(x) = Em HEE
{if wxIF(x) = x] then F(x} elsew) iz monotonic the latter being the least fixedpoint F (Morris
but not contimucus; if we consider the chain [1368]).

8, S8 C «++ where g(x) = (if x <4 then x 3
elec «) , tig] = Torany 1 so that We consider a functional Tt over (Dyi
Ln[gj1) = 0, whereas Tllia(e,)) 1s the to be given by coordinate functionals

%

Tyree? 5 SO that 1 ESVRER is the language.
- - + al * -(FyresFpls eves [Fhees 1) + It follows In the rest of this paper we use for {llustra

directly from the definition of the ordering on tion a particularly simple language, chosen because
i= - * ol: Tee £ Fg =

(03 0G that t is continuous iff each 7 of is a es to familiar langusces uch ac
iz continuous. A continuous functional ¥ over ALGCL or LISP. 4 Program in Gur IRNEUAEE,

(o} ~oH)? has a unique 1 rixedpoint calleda recursive definition or recursive progras,
Ly = a" +

Fe = F, ree Fy ¥ 3 that iz is of the fom
k B : F(x) <= TIF}(x)

i 1 n where T.F]{x) Is an expression representing com-
{b) For any fixedpoint ¢ = (8yrenmsn) of ¢, position of mown monotonic functions and pradi-

1.¢4y 6; = Tiley eng] for all i cates and the function variable TF ; applied to the
(1 <4 <n), LA = Tor all i individual variable =x bo. For exnmple, the

i

(1 <i<n) . following iz ® program for computing the factorial
function:

Exarmlie. Consider the functional TiF,F,] a F(x) <= if x = O then 1 else x-F{x-1) .
LIF FL lv FF1) over I —

¢ 3 Poa 2! 172 , This program resembles the ALGOL declaration
nteser procedure (x);: 3 E

elze 7X=1} + Fi(x-1}))
ARand and the LISP definition

TIFF Hx) (if x = 0 then O else F_ (x-1}). DEFINE

For any nell’ , tne pair (g,h) defined by (F (LAERA (X) (cord ((2£R0PX) 1)
(T {TREES ZX (F (Susi ONIN.

&, {x} © (if x20 v x=1 then 1 else {x-1)'n+1)
and Of course cur programs are rcaningless until

= emt ow we b | "n(x) : (if X = 0 then © else n) we describe the semantics of our AanSuast, laCe,
GOW 10 compute the function defined My a program.

is a Tixedpoint of tT , cince <, = Ten] and The next step iz therefore to ive computation
B_ 2 tle, h_) fand therefore {pr 5) " rules for executing programs. Our aim iz to ohare

on acterize the rules such that for every program- ’ x

(MERLE s+ The least fixedpoint iz the pair: Fx} <« 7iFi{x) the computed function will be
F w £ =

((3£ x. 0 yvxel then 1 else w) , exatily the least Cixedpoint Fo =

(if x <0 then 0 else w)) . - sss
- 4 Although our pro,ra==ing lanmuace is very 3i=-

pie, it lz powerful enough to expres: any
w - "partial recurcive™ function, hence ty Church's

Recursive Projrans thesiz any "computable™ function {see, for
So far, wn have been concerned only with example, Minsky [1%7]).

functions considered abstractly, as purely rathe- =f Ne shall ely be vagie in our deftmitions
matical oblects. For example, we thrught of the in thir section to avoid the introduction of

i, s 5 the notion of schemas and interpretations.factorisl Nunction as a certain -apping between Yor a £ 1 approach, zee Nanna and Prucli
arguments and values, without cons dering how the [1970] or Cadiou [1572].
mapping iz specified. To continue our dizcussion

we must introduce at ihis point = “progras=ing

larnpuage™ for specifying functions. A function

will be specified by a piece of code in the syntax Wh

of the lancuage and then will be executed accords :
ing to computation rules siven ty the sa-antice of

3

Cozputation Sequence (¢} leftnost outermost rule: Replace ealy tae
Let Fix) <= 7|Fi{x) be a program over some leftrost-outerzost occurrence of F . We

iain 3 . Fir a given input value dD (for denote the computed function ny Fro *
4 }y the pregras Io executed by constructing a

scguence of term: “ortyrtgrees » alled o ocompu-
tation requence for 4 , as follows: Example 1. We consider the recursive definition of

the "Ol-function®™ cover the integers:

{1} The first term t, is F{d} ; : i he *
(2) Foreash i, ¢ >0 ; the tem Sir is FR) + % 2 ER X-10 gle F(Feen2))

ovtained from t. in two steps: first We illustrate the computation sequences for x « 99
using the three rules.

{a} substitut.on: some occurrences of F

{see below) in t, are replaced by {a} Using Klcene's rule:
t[F] simultanec. 'y; and then Yo iz F(99)

(vt) simplification: known functions and if 35 > 100 then 73-10

predicates are replaced by their values, else F(F{5#11)) [ecubstitution;

whenever possible, until no further t, is F{F(110)} ici=plification}
simplificaticnz can be nade; if [if 110 > 100 then 110-10

(3) The sequence is finite and t_ is the final else F(F{L10+11))] > 200
term in the sequence if and only if no fur- then [if 110 > 100 then 110-10

ifier substitution or simplification can be clze F{F(110+11})]-10
applied to t_ (that iz, when t_ is an else F{F{{if 120 > 130
element of D'). then 0-10

else F{F{10+11)) 11}}

Coeputsticn Rules | [substitution]

A computation rule CO tells us which occurs te. i= PF{FI111)) {si=plificaticon]
rences of ¥ should be repisced by tiF) in each if {if 111 > 170 then 111-10
sutstitu:ion step. For a given computation rule else F{F{111+11}}] > 100
C , the program defines a partial function Fe then [if 111 » 100 then 111-10
mapping D' into D' az follows: If for input else F{F(111+11})]-10
2D’ the compatation sequence for & is finite, else F(F{[if 111 > 190
we ay that F.(d) iz defined and Fold) tos then 1lll-10
if the computation sequence for 4 is infinite, elze P{F{11l+11}) }+21))
we fay that F.(d) LX {substitution}

atMia 37S SRARDLSS SLIIPICRL Clu. : is 91. {simplification
(a) Xleene's computation rule: Replace sll in short, omitting simplifications and underlining

occurrences of F simultanecusly. We denote the cocurrences of FF used for substitution:

the computed function by PF. . (99) - F(E{110)) = £(F(111)) -91 . Thus,
h (99) = 01 .

{b} leftmost-innerrost rule: Replace only the a
leftnost-innermost occurrence of F (that (b) Using the leftmost-innermost rule:
is, the leftnost occurrence of F with all F(29} =-F(E{L10)) -F(100) =F(F(121)) =F{101) =01 .

argaments free of Fz j. We denote the Tins, Fp (99) 59s

corpited function by Fry « Tniz lz the rule {c) Using the leftmosi-outermost rule:
which corresponds to the usual stack-imple- F{99) - F{r{110})

mentation of recursion for lancuages like - if P2130} >120 then F{110}-10 else F(F{F{L10}+12})
LITP or AIGCL. Any procedure evaluates all = F{F{FI2I0}+11}) = ..a
its arguments before execution. - if F{110)+11 > 100 then F{110)-7 else ...

6

~ Y rt bey &= T{i17}«5 «GL . A Ty ensyT J{&} cannot be determined: hence, there

An important property of Ps ehould be A Sale oxwnistion rile io any computation
=enticred at this point (Cadiouw [1972)): rule which uses only safe substituticng. It can te
2s chown thot anv zafe Computation rule (2 a Zixeldpoint
SOT Bry computation rule ©, the commuted Mmotlonm : : oh

Ta if loos defined than the least lixeipoint, —
i, 0% Mecnets mule and the leftoost-cutovast nile are
fee TL, F, , but they are nct necczsarily

- - £* (ET. LL ET ¥ a] wy wy ® we

The leiftrort=tmoermost rule, bwwever, is not

galt. The Tollowin: example Illustrates a provram
A program may consist in general of a System

for which F,, £F_ { that ig, the leftmost-
of recursive definitions of the form LI t -

innermost rule is not a Jixedpoint rule.

} arple 2. Consider the svar over the integers

» Fixs¥) <= if x = Q then I else Fix=1L,F{x-y,¥}) .

re - - Th iF £ - iF, (x) <n ? [Fis eens FH) ; ane least fixedpoint Fg, is

where each ¥, is an expression representing & Folxy) = (if x > 0 then 1 else aw} .
+4 .composition of known monotonic functions and We compute P{1,0) using the lefMtmost-inner—cst

predicates and the function variables computation rule:
» a = 1 3 h! 8 a & on] ELFal +¥, applied to the individual variables F{1,0} = F{0,F{1,0) = F{0,F{0,F(2;20))) = ...

x = (XypeonsX} » The generalization of the come
L i and $0 one The Zeguence iz infinite, and therefore

putatior rules te systems of recursive defini- F(1,0) fn fn
tions {2 straicitforward; the computed function Li

F. of tie systen can be described as Fray) = (AE x20 v (x20Ay 20 {y divides x))
Vers reres¥e } » where each Fa is computed then 1 else@} , |

i n i
= - whenof ls = Jy ar Yome ka]

ar described above. The results of this sectio: which iz gtrictly less defined than F, .

£2211 hela for LysLiors of retursive definitions. Thi: exzrple iz closely alated to an example or
Nerris [1508]. =

CPispeint Cooputztion

All the methods for proving properties of In practice, the fixedpolint corputation wiles

procrans deserited in the rest of thls paper are deserided zo far (Kleene?s rule and the leftmost.

bagged on the arrusption that the computed Nunction outermost rule) lead to very ineffliclent computa.

te equnl Lo the leart fiedpoint. We are therefore tions. In the rest of thiz gection we dezoribe and

Intercyiod only In the computation rules that yield flustrate 2 flxedpoint computation rule, called

rales Tlredpoint o tation rules. cient eomputations. In fact, since our computation

Let ST denote any ters, where rules do net allow ¢he reuse of previously camputed
we use superseripic to distinguish the indiviiual values: of the program, the normal corputation rule

occurrences of Fin a . Suppose that we choose can be shown to perform the minimum possible mumber

for substitution the ocourrences Io, e.epF- (for ofsubstitutions (Vulllemin [1072]).
5 4 aE . l 4 1 * fy EL .

this iz a safe substitution if: gubstituiin: t{¥] for one occurrence of F

{el 1 121 a. posen as Tollowsr: we try {irct to replace the
{yr TON, oy t..2 SOOR , 1 prwngr id} J TI i ™

leli=most-outeormolt oogturrence of Fin tH hy

Intuit re the substitution iz safe if the values iF] , and start to evalante the necessary “ests in*

Fh reser ES arc act relevant: as long as the new ters, in order to eliminate the if-then-else
TF aeesfT are not mown, the ralue of connectives. If this is possible, we are done.

7

Otherwise, we cliooze a now ocowrence of F in We conpare oelow the mouber of substitutions

Lt, walch corresponds to the JMrzt 7 we had to voqui-od [or each carputation rule on this

test Juring the previcur emluaticon, ani repeat example.
*= - Ln

: ne a wf ar Ty oF 3 - ’ SE
in other words, the {dex iz 10 de the " .Y a 3% Rleone¥s rule: 2X

may Tea = a wa wow ;

evaluation of the ariumemis of <he Minction vard Losemaseo lsmopmmast tL
, - wo Te 4 . LC]

able: FT as much as posible. This rule is mmm, 3
juite close to Algol «0 "call by name" Tor pro-

Cequres. However, there are two important FuiXsy) = F (x7) tz mown az “Ackermann'zwl

differences: {a} absolutely no zide effects functien™ . This function is of cpecial interest
are allowed, and (bb) each argusent of the in recuriive Minot ion theory because it grows

procedures iz evaluated at mcst once, namely the caster than any primitive ~ecursive Manction:

first time {if ever) it is needed. for example, F (0,0) =1, F.{L1) = 5,
we dencte the ¢ ed function The i

pas ¥ Igy F(2,2) = 7, F.(3%3) =f, ad
normal rule iz safe, and it iz therefore a fixed- ¥

15

point rule. The rule can be implemented in 22
progrorming languages with almost no overhead, Fel LL) = 2° -3
and provides an attracttive alternative to call ar

by value, which ig not a fixedpoint rule, and

call by name, which is not efficient. Exarnle 4. Conzider the program over the
integers:

Exacple _. Consider the program over the natural

mubers Fler) © 28 x = © then 1 else Fla=1,F{xX=¥:¥))

a Frog 1 - - =f 1a -_ noreFlxyy) <= Lf x «0 then y+l We shall compute F{Z,1) , using the normal
xs Cc tation rule:else if y «0 then F{x-1,l1) puns '

else F{x=-1,F{1,y-1)). F(2p1) = F{1,7{1,1))

F{0,F{1-T{1,1),F{L1}}} =1 .Wo shall compute F{&,1) using the normal copus = £(0,F(2-F{2,1),F(L,1)}) = 1 ‘
tation rule. The occurrence of F chocen for we again compare the substitutions required:

i= I way A TEwm

substitution iz underlined. Novenl wales 3
ir. Fu. wok = ¥loone¥s miler 7
£(3,1) = F{1,F{2,0)) - F(L,F(1,1))

Lelftrost-innermast: 7
© Tf 3 1,701:

= F(1LEIGF(1,2))) = F(1,E(1,0)+1) Left=ort-outermost: 3
= F{L,F(0,1)+1} =~ (1,3) = F{0,F{1,2}}

= T{2,2)*1 = F{0,¥{1,1))+1 = F{1,1)+2

= PIO, F{1,0)+2 = F{1,2)42 «F{0,1)+: =5 .

Rote “kat in F{1,F{3,0}) , for exarple, the

inner coourrence of F war chosen for substitue

tion, vince trying to substitute for the outer F

would lead to '

if i Le O THOTT cus a

ClZ€ «us

which rejuires testing for the value of F{2,0) .

8

TT. LOMPUIATIONAL INTUCUION P(FY walenw are sisply conjunctions of inequalities:
wf BY 1 +1, nye a =, #1® 4 Ee

Tic firgt metho we shall decerite li cone AMF! THIF] y viiore 3 mf WO LW continuous
EY ge ow gw =

ceptually very cirmple: in order To prove Some Aen lend
proper. of & program, we show that It Iz am In this care, the Justification of the
{mrarisss during the courte of the computation. prinziple ig easy; if aia] = Bi] and

Tor simplicity, we shall first «plain the woiaiF] 2 BF] = 7iF)} zolelFll} » then by a
rethodor simple programs, Con ting of a . TP i¥ Progress sisting simple induction, ait ili] c 8le’lAl] Jor every
tingle regursive Zelinition, then gencralize to ;

my ~ - E i +

more complex progrant. { >0 + Therefore, since Bit (Ql alr, | ar
|]

ay i, aivillicelr]. By definition of
£

C tetignal Inducticn for a oinrle Recursive the 1i=it, this implies lim ait”(R]l c ale} ’WOEPULELIONA: Nui habn SUS ae At : =
Definitiontelinition and, a being continuous,

To prove the property P(E] of the function N :'F ow al iii {)) = liz afr" (Q] S BIF_;

F, defined ty F <s 1{F], it fz sufficient to: AT,] = olunir’if]] « Un alriA]] g SIF,]
i - Twmw *

{a} Check that P iz true before starting the Exarple 1. We wish to show that the pr -

Fix) <= if p(x) then x else F{F({hix}))
{bY Show that, if P {5 true at one step of the

doelin dempotent Dmetia . thatcomputation, it remaing true after the next Siines a3 SlSR he
FP. 5 F_ + By and nh , we understand respol-

grep, Lees, PF) implies Plz[F]) for $’¢ Thyme MW PWR PME ROP Epa
every F » sively any naturally ~xtended partial predicate ans -

function. We prove P(E.) , where PFT
In tao J

wy -— — 5 >

from PLY and YPIP(T) = P{e{F]}], infer KE) . |

- fd i "

Since thig rule 8 not valid for any P,~ ¥ ladin}) = F, (1) definition of R
: ,

we shall only consider admissible predicates— e if plu) then
ele F_(F (hfa}})

ry ———————————————————— eee ele F AF (hw)
- Cor:ider, Tor example, the returiive delini- definition of F

tice over the natural moter: Fix) < if x = 0 FRateslive »
then 1 elge x+Fix=l; , and the preilcate mn if then W

Piri: IPs} ew A x fw]. Them PR) and iin r, (5, (hie)))
Fp. -— - a fF E—

YFIPIF) = P{x7])}} hold: since Fix) iz a since pia) sw
total function (the factorial function), - pla)
P{i.) doer not hold.

a : 5 definition of
gr A clnsg AP cof admireible predicates can be if w then a elite b

defined uz:

LPs = (AP) A (AP) | YEP) eax) sefinition of 2
(EP) = (=P) v (FP) | R(X) | ali) c 8lFilx)

where Gf%) iz am firgt crder predicate,
and x and # are two contimusus functionals.

, 9
ll

(b} Show vYEIP(F) = P(riFi}} , i.e., {i.e., that ux+{y%z) » {X*¥)*z J} by proving P(E) ’EE ee ee eee

i Lk £ Fa Fir) » tir) Z whore P(r) iz F{x,y)*= | F{x,y*z) -

FL 7iFi{x)) = Fif pix) thes x « (a) P@) :

else F{F(h({x)))) Ax, vez 2 wre definition of Q
definition or v #2 ifw= A then 2

2 if p(x) then F(x) cire hiw)+(t{w)*z)

else F F(F(u(x)))) definition of append
distributing Fo E Since w= jis w
over conditional, o {xvy,z) . definition ofSince F{w) zw

EY ir pix) then x {b) YFiP{F) = P{tiF]}} :

else FAR(F(R{(x)))) t{Fli{x,y*2) = if x = 8 then y*:
definition of F_ else hx} F(r(x),y*z)

2 if pix) then x definition nf»

] else F(F(h(x))}) = if % = A thea vez
. - Fi fi rrInduction hypothesis elze Bx) ~(F(t(x),y)*2)

= {Fx} . definition of © induction hypothesis
- = if x = A then ye:

. elze (hx) F{e{x),y)):ihe next example ufes as Acealn the zet TT

of Jinite strings over a siven finite alphabet 2 definition of append
includin. the ply string A . There are three 2 {if x = A then y
tasic functions: else nix) F{t{x),v))*=

= hix) gives the head (first letter) of the distributing append
string x: over conditional,

tx) cives the tail of the string x {Late since rz = w
£ with Itz first letter removed); a T{F]x, yz .

LX concatenates the letter a 40 the definition of ¢ -tring x.

nls proc war done formally with the ICF proof
tor exaple, B(&D) «3, (XD) =cD, checker (Milner [1972a}).
3+CD = BCD . There function: satisfy the following . ;
propertics, for every x¢f and yoo :

Bixey) = x sy t{xey) =v, X¥y AA, Parallel Induction :
+ we chall now present an application of compu-

and yA A= By) ety) - ys tation induction ts proving Properties of two
Exenple 2. The program programi: F <= t{F] and ¢ <= o{G] . To prove

Flr) <= (Af xp, then y else h{x)+F(x(x),¥)) predicate, it iz ufficient to:
defines “te append function Fo {x,y} , denoted

X*¥ « We shall show that append iz asrociative . That iz, a confunction or inejualitics
alF,Gl 8I¥F,6] , where a =na 8 are contin-/ n onals.: Thiz rrztem {2 sometimes called linear LISP'. BUR functionals £There iz no difficulty involved in generalizing y

our proofs Lo real LISP pro-rass.

10

(a) Prove PL) 3 where p stands for any naturally extended partial
(b} Show that P(F,G) implies piriFl,2lch predicate, and kh and k for any naturally exten

fcrany F and G. ded partial functions. In order to prove that
That is, Felny) = G,{X¥)}) for all x and y, we shall

fre. PULA) and (¥5,G) [P(F.5) = P(2[F},5(5])] concider
infer P(F,,C,) P{F,G): Wx¥riir{x,r) =G{x,x)ia
s—— [G{xn{e)) - Bia(x,#1} 1}

Exarple3. Consider the prograns We prove P(F,,3,) , which l=plies Fo 2G, as
~ = =

Flypyp¥s) <= ify, = 0 then y, fellowes
else Fly =Lov yay) fa) PiiLi :

Glyps¥pr¥y) <= ify, = 0 then y, 0x%,5) = 2x3)] A 10063) = 2@@x¥))1 ,
else Glyy~1r¥ 27-1). since h{X) =w .

We want to zhow that both programs may be used to (v) {¥7,GH{P(F,G) =- Pirirl,clcD} ;—

compute the squarir ction; isel

that g te x) a or wyga Bh. H12iR%Y) = 30 00) oma vX eG {x r natural nus

. foe rr et any else h(F{k(x),¥))
¢ 5 e ££ p(x} then ¥

P{F,G): WxwyiF{y,x(x-3),X) = G{y,x"-¥"}} . elze h{5(x(x),¥))
We shall prove P(F,,G,) which, for y =x, induction hypothesis
simplifies to F_(x,0,x) = G {x,0) .

(2) PLLA) : Dy,xix-y),x) = Dy, x= =v) by else G{k(x},h{y)})
deflirition of 2. Induct lon hypothesis

{v) (¥F,G) {P{F,3) = Pix{Fl,ola)] ge ¢{CHx,¥) .
TIPHyx{x=3),%) es if v = © ,9 xlial®) eit (2) 2{Gi{x,n(¥)) = if p(x) then uy)

then x{x-0) — a
ie J else S{n{x),nh" {¥})ge Fly=1,x{x-y)ex —

Son 2 PARI RE = if p{x) then k{y)= Vom

= else h(G(k{x),h{)))then x

else Fly-1,x{x=~{y=1}),x) induction hypothesis

ify =0 ¢ h{o{Gi{x;¥)) . _then x° =
3 “3

else G{y-1,x"<{y=1)%) .
induction hypothesis owtational Induction for a Set ofRecursive- Pelinition:

B 5 a? We shall ziatc the computational inductioni

a L(2 a2 3) principle for a program consisting of two recursiveB - -tr -

wed G- £3 ¥ hey definitions," a YX Tul =

Oo Fy Te 2, [FF]

ExampleLk. Consider the two programs(Morris [1971] Fo <= 3.1F,0.] 3
Pix,y) <= if pix) then y else n(F{e(x),¥}) the generalization toc a system of n {n> 2)

recyraive definitions is straightforward.
G(x,¥) <= if p(x) then y else G(k(x),n(y)) , |

Te prove P(F, ,F_) , where P{F,,F.) i= an
Ty Ts 1**p

admizsible predicate, iW is sufficient to:

il

{a} Prove PLD) fransformations which Loave F, Invariant
{db} Show that, for all Fy and Fos

we can use computaticnal induction to prove
PFT) implies Pr (Fy, Flr 15,5, D) * useful theorem: about recursive de “initions. For

ut example, if we =odify a recursive definition
EL - -

F <= ¥{F] buy replacin: some occurrences of Fin‘ ;xm P,Q) and (YF, F,) {P{7,,¥,) = T{F] by either tiF] or F. + the function comeES a
Pi IF, 7, ht, lr, FL ’ pated by the new progras is precisely theTE eee. we

original F_.

i ‘2 +0 prove this, let us write t[F] a {FF},
in the following examples, we omit variables where we use the second Argument in t'{F,¥] to

and parentheses whenever possible. distinguish the occurrences of F which we wish
to replace. We define TF] = tH{Pv{F]] andExaspie5. Consider the program t [F] = TAF, 1; our goal is to show that

Fy <= if p then Fi Fh else Fag Fe x Pe, r Fe - We show this in two Steps:
J 72 ifathen©, else m (8) (Ff, c¥) ant (7, c5). Tis part 10Fy <= Lp then F,fTh else Tye ~~ 27

eagy since by definition of T, and Ts
- : Tr

i, <= if q then fF/F, else bh poem IR we (FR]. hat gs, 7, isa
in which p and q stand for any naturally ex- fixedpoint of both =; ad 1, , therefore,
tendel partial predicates, and rf, 8 and h for it lz more defined than both Fe and F, .any raturally extended partial functions. To prove i ¢
at Sp =F let PFLE,FLR) be) (F =2 ht) Wt Ng Fe] + This ean be+ EE

(7, ; Ty) A (F, = IF} ; we chow that shown by computational induction, {Hint:
| ; a prove PF ,F_ ,F_ } where PIF 2FoFy) isFE pf oR) as follows: © t, rary
{a) Pil, ow 31) -

Example ©. To prove that F{x) <= {Ff x > 10 thenAz) AR eM is true gince flaw) rw. ===. P i a—
X=10 else F(F(x+*1%}}) and G{x) <= if x > 10 thenLJ Yy cess Fy) (PFs easy) - X«lD elge G{x+l) define the same Munction over

P(x [F007 ireensT IF 00, 7 IN) . the natural nu=bersz, ome Just haz to replace

ERLEST VE 0% ¥ Lf p then FF. else Fg eince x13 > 10 , -
= ilp then Fi fF n else Fe Example 7. Consider the Tellowing program {Morris

induction hypothesis fleripy/ over the positive natural numbers:
TalF Fn Fy, Fy Fx) <= if x = 1 then ©

TF FFF] m if q then FF, clipe Th else {if even(x)
= .. i then F,(x/2)

® {if q then FF, else h) Fi(x) <= ££ x = 1 then 0 else F,{F (x)
induction hypothesis ee

= It {2 not known whether the Dunction F, {x} i=* ERIor Fas) * defined for all x cor not] a computer pPosran
0 Checked that it {3 defined for al} positive

integers up tog 36190 .

12

F.x) <= if x = 1 then 1 TIF Fx) r {1 x = I then ©
else (if even(x] ele (if even(x]

thar x/2 then F{(x/3}
xsl

else FF, (255) . aloe 0).

We ghall prove tiat F, = F. by “rang- Finally, we consider
1 2

forming the definition of F, and F, respec- 3[F Fe 1X) x (if x = 1 then O
tively, until we reach the same recursive defini- elze (if even(x)

tion. +Lion . then F,{x/2)¥Yirst, ® F_, » where: 2Ty %% else (24)

TEx) 2 {1£ Xx = 1 then © Clearly ¢{F.,F.l=7lFf,]; cince FF, sF ande— tm -— - _- 3

else (if even(x} ¥ = F_, we establizsn F_ =F as desired. —tT. - T a —-
then F{x/2} 2 : 2
else 7,[{Fi{3x+1}}) - Example 8. To prove F, = F_ for the program;

- h 4 TAF. elie

Since [odd(x) and x > 1} imply [even{3xel) F, <~ if phen F,F,F,7 £233 4
snd ‘xl >»1), F, <= if q then F.h else Xk

<= thenF. FT ellego

F(x) © (if x « 1 then © F, <= LL plbem Fife Zane
else {if even(x) F, <= if q then Fo¥.h else Fk

then F{x/2))

| Tel we first change the definitions of &, aud F, to
elze F(=—=))) -

” F, <= if p then F.F, Ff else” * oy he

Also r, z Fs where TAFT,] s 2 lP 7.000 and
i.¢., Fy <= if q then dT elie Ip’ »

T sotively, and then prove by corputational
vf,Fx) # {fx = 1 ari av. preys
a “ + po oe - =

shen O induction thats
elge (if even{x} {F, © Fu) LS {F, ¥, = Fy } .

then F.(x/2) | ; i
‘ "ual ra reader chomld be aware of “he aifTiculiies

“3 “3

Again F_, = F_. Wacre above mocificationt. -
JSd4

x2 FHP MX) 5 (fx <1 Crioation Industionwa Ee - EE ———————————
then 0 1f for some continuous functional t we define

]

else (if even{x) +he sequence of functions f° by letting :
men Fo{x/2) of eeln), teen
clze £, (F, (5, (==). -

hee a Ty & © «3 and T st] for all i<K »
shen the sare argurent used to establish the valid-

The result FF = F is easily establiched 0
Tats 2 ity of computational induction alro Shows the

Eo ;from the definition of F, by considering the ex)idity af the follewihy very similar rule:
whree cases for x = 1: true, false,

undefined{m} . Thus

13

i n !
from P{f°) and (eiemyip(eh) apr; 3 ro» 6 and that £ eo” forall n 22. (Weee——— eam

infer P(r.) . treat the cases for ns 0 and nn = 1 separately,
———————— , si LL # nH Loli ow dmne resemblance of this rule 40 the usual =athes fince to prove I xg we have to use the induc

* fo y Togemi Ea Te se a” wy -tamatical induction on natural nu=bers succests that “ion Hypothesis for both n-l and n-2 .)
8]) |

we consider a similar rule using complete induce {a} © = a : aa.
- Ji—

tion over natural rnbers of Morris [1971] called {r) pe a a ”
it truncation induction. More precisely,

In order to prove P{F,} » PIF} being an Aix) = If pix) then vy else nl £(a(x, ¥))
adniszible predicate, we show that for any natural 5 if pix} then v else w
number { , the truth of pe) for all J <i .® 31f pix} then y else 2" (x(x), a(¥))
implies the truth of P(f') . That is, PE

§ = » 4 i |

fron (¥4M){{(¥SeR such thar §<O)R(r) Jarvis), 9 Pod rr ngs
infer P(F,) " ——— eee

——— -}
(2,7) x if pix} then ¥ else al “xx, 71)

The validity of this rule iz established by first “. " A . definition of ££using induction on MN to chow that P{f) holds

for. all nell ; one can then use the proof given ® if p(x} then y elge 2 x, v1)
i pyed

above for the validity of computational induction. induction nypcthesis (n-1)
i an if p{x)} then ¥When the progr®: consists of a EySienm of —_— —_—

” fg fuirecursive definitions zuch as £18¢ BIL p{x(x})
then y

I F, <= = [® PIP I ;1 n= " =' Ha x else gE {x},
. nel

definition of ¢

zs iT pix) then y

3 1 LI i 43 F aw 4 i

; - - = Tar n=2 2,the truncation induction rule iz then precisely else ng” 1x2), 0030)the sarx+ ag above.

= if pix} then ¥

Example 5. (Morris [1971]}). We conzider asain else {if plk(x))
{gee Example k&) the two programs: then hiy)

ne2, 2F{x:¥) <= (if p(x} then y elze K(F{k(x),})) | else hf (2 {x),h(y))
G{xsy) <= {if pix} then » else o{u{x),n{¥1)), Induction hypothesis {n-2)

wher® p stands for any naturally extended partial x {f pix} then y else PL xix), m5)
= ; * u - TY Yar oS 2predaats, and nn and x for any naturally ex definition of £ 1

tended partial functions. find \: i *} - is 2 “{: 3in order to prove that both prograss define = 3 pix) phen sy re (k(x), u{3))

the same function, we check that £- ¥ 3 3» ; induction hypothesis (nl)EE —————————— ——— eee

he when applied to natural nusbers, “hese two 3 x, ¥). definition of 2
inductions are rjuivalent; “uz 4runcation -
induction and computational induction ars ~ .

bp 4 1gef 4 JE e Slightly i | -equivelent 7 a theoretical point of It iz often useful efine slightly different
view. Eqperience {n using both methods chows sequences of Dunctionzs 7 and then apply a gener
that they are elso equivalent In practice. alized fore of truncaz ton induction, 33 illustrated

in the next exarple. Keene's first recursion

; theore= can again be used fo establlizh the

1s

validity of such generalized truncation induction irom (¥aeD){{{¥oc3 2.t. b < a}P(L}] = Pla) 1} ,
rules, infer (Yeed)P{c) .

Since this induction S not valExample 10. We consider again the progras moe tal i fule is not valid fo
every ordered domain,~ we shall fipes charact:rize

Fie iy then J else Th , the ordered domains which are Thood® for indotion.
where 3 iz the identity function. We shall prove ¥c then prezent a general rule for proving state-
that Lo & Fy « For this purpose we define thre ments over such docains, called Structural induc.
sequence of functions rt in the following way: tion; complete induction, as well as many other

F— = 0 welleinown induction rules, lz = special case of
3 Structursl induction. Jinally, we sive several
>. (2] examples using Structural induction ta prove pro-
re 2 if p then § else rin, for n >0C 3; perties of recursively defined functions. |

note that for =n >2, it is not necessarily tne

i 1 fo ~

We shall prove the desired result by genera- A partially ordered set (5, <) Sensins of alized truncation induction, letting the induction fet 5 and a partial ordering < mS. A
; thesis be SS 2 Hh partially ordered set (3S, <} which contains no

We first check the cases n = 0 and now} infinite decreasing fequence Gy >a >a, >...
(the details ave omitted); then, aseuming that of elerentz of § iz called a well-founded set.

Ee Wane 4 ,

the induction hypothesis {s true for all i < LO xarplee. (a) The zet of all real numbers between
we a” ¢ und 1, ¥ith the usual ordering < iz partial.
Fre, (12 P then § else gi) ly ordered but not well-founded (consider the in-— — s :

definition of st2 finite decreasing fequence = » 2 >: > ees}

® iT p then did else Foglia, ‘b} The get 1 or itegers, with the ugual
£ if p then 3 elre Soi arla, ordering S + iz partially ordered but not well-
- od founded (consider 0 > «1 > «Zn... }.definition of -

» if'p then 5 else SI, {c} The ze NN orf natural meders, with the usual
| ordering <, is well-founded,

induction hypothesis
Ji og definition of Freh td} If IT is anv alphabet, then the get T of

all finite strincs over CZ (i.2.. seguences ofz or

dy complete induction, {tt follows that «5 letters of T), with the fubZiring relation :
i for all nel ; then Xleene's theorem can be Wy WW, IT ww is a substring of w. }; iz °
used to establish that x Py » a8 desired. - well-founded, -

I1i. STRUCTURAL INDUCTION Structural Induction- F EE — es ———————

oo TT ——— We may now state and prove the rule of struc-
One faniliar method of proving aszertions on tural induction on well-founded setg.omr/ Suppose

complete induction: in order to prove that +he = ®.d. 1 iz valid over the natural numbers with
a ordering < but “ails over the integers withstatement Plc} ir true for every natural mimber ordering < feconcider P which is always

¢ » We show that for any natural nusber = » the it false).

| it Is porsivle that for some Bs BS, neitherof Pla) . & <b nor b <a Polds.
ow

“hat is, Ir Structural induction ig soretizes alco called
asoetherian induction. When the ordering «Br a safle

i3 total, i{.8., Aa <b or tb x & holds for
any 853 , it is called transTinits induction.ee etm.

15

4

: | rg - : . =H wi Fi r %

'S,«} « If forany a in S, we can prove that > 2 -
the ruts *f Pla} is implied Ty the truth of and the usual ordering on natural numbers.
Plz) forall bd «<a, then Pie} is true for ra} If x=20 Pio) is F (yvsF (Fi) =
every© in 5 . Thatis:) : = Lah ry

Fr (¥)] , waleh iz clearly true definiticn
trem (vacS}[I¥DeS 2.2. b <a)P{b)] = Pia)} Si : = by %
infer (¥o<S)IPic) . of el .

-

To prove the validity of this rule, we show } Pat} .{2} If xX > 0 , we atiume A for 311 XT KX

+rat if the assumption is satisfied, there can te)and show x} .

no element in § for which P does not hold.

Consider the set A of elements acd such that For any ¥ Sa%s FF 2X

Pla) iz false. Let us ass=e that A is nonempty. n , I7 y =X = farm} | E 4 3 = fp=ge l a ¥ x;
Then, there is & least element a. such that £70 ’ 2 SHES EYied Ed -

a Ks, forany MA: otherwise, there would be iafinition co? F- = - tw

an infinite descending sequence i= Oo . Then, for \ :(gine x 0

amy clement + such that Ub < By » PE} =ust -
mold: that is, (¥YbeS 2.t. © < 8,)P(b} . But =F, (yay-x+ 1,7, {y-x+1})
the assumption then implies that P{a.} , in cone B definition of F

tradiction with the fact that s.cA . Therefore LE)
A mug: te empty, i.2.y Plc} must hold for all (since y-x+1 > 0)
elements C43 . . odw 7, [ypy-(x=1),F_ (y-(x-1}))

~R "1

Appl 1 &® 4 me i 4
we now give several exa~ples using structural - induction hypothesis

induction to prove properties of recursive ‘gince (x-1) <x and (x-1} £3}
ProIrans. Sush proofs require suitable By corplete induction then, Pix} holds for
shnices of Soth the partial ordering «< and of the

. } 211 xM +. In particular, IOr yy =X,
predicate FP . Some of the examples snow that tne F, (x, 0,F, (0) =F, (x} + Sime F, {0} = 4 and
partial ordering tc be chosen is not always the Ts a Te x

usual partial ordering on the domain. (ther exam. F_ (x,0,1) = F, (x) , we have *. = %. ne~e * a hk

ples illustrate that it {sz often uzeful to prove a des tied. 5 -
more general regult than the desired thecrem.

3iven n partially ordered set (8S, <) , we

Example1. {Cadiou) Factorial functicns. define the lexicographic ordering « on netuples
Consider the TWO programs of elements of § (i.¢s on elements of 2) oy

Fylx) <= ifx = 0 then 1 else x+F,{x-1) letting {(8yseeerd} x (Bypuene®} IF
dnd a, = by A ses AB, LI Amy < EN for some i,; 1 ci <n. Itoiz eazy tO show that iT (3. «)}
[ro(x) <= Fy(x,0,2) == at cilBT {5 well-founded, zo iz (§ . «) . For example,

Foxy) <= if x ay then = else F. (x,y, {y+1)z}) }- f {a} For the natural su=bers with the usual

Fey ans 2, compute XU = 1-2 ...x for every eriering < » the 3% WT <)} (3 wellsPopamdads (Noah. © {ou y if? a, <m, OF
xc in two different ways: 7 by ‘going up’ 12 2 Te 1.

2 in, = =.) A {n, €m,) (nCte ThA Lu.
fro 0 to x and Te. by Ygoing down' from Xx (1,19) € (51) y.
to 0 . We wish tc showthat F, ®F, ne »

| 2 1 {5} For the alpha®et T « [A1Byes33} with the
proof uses the predicate P(x) : ueusl ordering A <B <0 « vee <2; the get

16

x

{r~, $ Of Words of length three ‘= well. X «7 If y<x<gIm
Teuniels liote that this Is the eae) (where «< iz the usual orderin: on the interers);
elphavetic order: Cxfey ACK «< BAT < CAD « thus 101 « 190 « 3% « vas 5 DUS OP exa le, “\AT 02 £11. Cre can eosily check that (1, <) is

Ixa~sle 2, ACRer=ann's function, well-founded.
Consider the progra= Suppose F(x) = oy) for all yer such thas

¥ =X . We must show that F{x} = (x) .Alx,y) <= if x=0 then 1 *
else if y <0 then A(x-1,1) {a} For x >1w, (x) = ox) directly.

else A{x-1,A{x,y-1)). {(b} For 10 >x>w, F(x)» FAF {x011))
F, (x¢1)} » and since xv1 « x we havew h h th 4

e wish to saow that A (x,7) is defined for Fy (x) x F (x1) ~ g{xe1) by the induct tonBY Xp , i.e., that the Computation of A (x7) ssowption. But g{xel) = 91 & (x) , there.; t L 5 =always terminates. We hall use the Structural fore F(x) w g(x) .duction rule applied on (4°, <) . Asmming *
2 {2} Finally, for x «< XR, Fixer (F {x+11)) ,Ta Ap (x »¥') is de Or any {x',¥'} such and cince x+11 « x we have Fix) »that (xt, yv g ;har hy) 3 (3) 5 we show that A (x5) F(R (xe2)) ® Flelx+11}) by induction. Bus

"ust also be defined. &{x+11l}) = 91 , and we ow by induction that
(8) If x = 0, termination iz obvious. 01 = (01) #91, 20 B(x)» F(s(xe12))»

T.(91) r 91 vw g(x) , as desired,(b) 17 x40 ana ¥ = 0, we note that

{x=1,1% sy), so by the inducticn nYPo~ We could alternatively have Proven the ghove
thesis A {x~1,1) iz defined. Thus property by structural induction on the natural num-
A {X,¥) is alee defined, bers with the uzual ordering <<, using the rore

(€) Finally, if « FO and y jo , complicated predicate Pin): (Yx<I}x > 100-n =»

defined by the induction nypothesis; then, details of this proof and of the above proc! are
regardless of the value of A {%¥-1) , precisely the same. -(5-1, A (x, 5-1) S (GY) and the desired a
reIult follows by ancther application of the “ince the set (I »<} of finies nrings I
-nduction hypothesis. - with the substring relation is well-founded, we may

use It for structural induction. |s the following
In each of the preceding examples we uted the eiample we use an Induction wule thet can easily

ous Prom * 3 =ROFL natural ordering on the domain to perform the be derived } Structural induction, namely:
structural induction. In the next exa~ple it ip roc P(A} and {vxx Aa A PItiX)) < Pix}
natural to yze a Scmewnat surprising ordering. infer (¥en)pi <) AEE a

oo Fxample Lh. The reverse function.i »- by. 1a EYBraple 3. (Barstall) he 31-function The progras reverse >The Gl-functiorn NY it defired by the fol-
Inwing prozras over the interers: Teverse{x} <= F(x,a)

F(x) <= 4 x > 170 1hen x-13 elce F{Fixe11)) Fix,¥) << if x < 4 then y gise F(t{x),h{x)-y) ,
We wish to show that 7 « g, Where ¢ is sives as value over © the String made up of the

N * letters of x in reverge order. For example, if8x) ® 12x > 17 then x20 else a1 T= {A:3,C} then reverse(ACEB} « HECA .
The proof is by structuval induction or the well. we wizh 0 provl that reverse(x) is definedfounded zet (I, <) , vhere I ig the integers and that reverse{reverse(x}) = x for all xem
and < ig defined as follows: Of course, proving that reverse has this property

i7

dces not show that it actually reverses all words: or any a,c. and XT 3

many otier functions, e.g. the identity function, (1) reverse(x*a) = a-reverse(x) ,
alse satisfy this property.

{11} reverse{a-x) = reverse(:)%: , and

l. To prove that reverselx) is always defined, (141) peverse(s-{x*t)) = se{peverse{x)*a} .we let

if

P(x) be (¥y HE, (x,7) iz defined] . ample 5. Another reverse functicn.
We wish to chow that the program {due to

fa} If x = A, then 7, (x,¥) * y¥ , and thus Asharert)
F (x3) 1s defined.

fe} If x # A, since tix}« x we may R(x)<= if x = a

assume that F, (t{x},2) is defined for lhe a
any z= ; therefore Folt{x), h(x) -y) gise if +(x) =A

E

iz defined for all yer” . Thus Eaux
- f

IT follows by structura’ L.duction that also defines a reversing function on ol 3 $eCuy
Fo (59) is defined for all x,ycf , and in that R, (x) = reverse(x} for all xT . lote
particular, since reverse(x} = FE, (x,4) , that this procram uses only cone recursive defini
reverse(x) is defined for all xT . tion.

In the proof we chall use the following lee=a

2+ To prove reverse({reverse(x)) = x we let characterizing the eleents of T : for any
ES

P(x) be (¥yeI')lreverse(s(x,3)) = RE pater Ked,0r SD {LA US eR)
er X = y«(w*2] for some ycL , WE , and ey

The le=ra 12 easy to prove by a straightforward
{2} If x = A, then for any vy we have Slrnetiral tndiatton

reverse(F (x,7)) = reverse(y) = We now prove that R, = reverse by structural
nA * Fp (ye) * induction on (c, <) , where < ig the following

(¢) If x4 A, then for any y we have partial ordering:

reverse(F, (x,7)) X<y iI x lsagubstringof y or x Io
+ ym - we Lo] *I ze(F, (t(x), h(x} ¥)) a substring of reverzely) . One can check tha

m= {£,<) iz well-founded.
definition of F,
(since x £ A) Using the above lemma, the proof may be done

in three parts. ‘
= F (hix} y,t(x})

induction hypothesis fa) x = A: R, (x) = AT reverse(x) .

(since x > t(x)) {b} x<T 3 R, (x) E X = reverge{x) .
= F_{¥;h{x)-t(x) . oy - * ,

| T definiticn of 7, {e¢} x = y«{w*z) for some wf, WI , 2¢T :
(since nix)-y £ 2) R, (x)

@ Fo lypx) = BR, (£{x))} Ry (a(x) *R_($(R, (t())))
Therefore zoverga(F, (xy) e Fix) for definition of 8,-

SE MEE ptnpansieda fe eh, = (3, (v2) 5 (vB(£(R_(w2))))reverse{reverse{x)) = reverse(F (x,A}) * !
F(Asx) = x; az desired. - since h(x) =y,t(x) urs

x hireverze{w*z}) ‘By (¥<R_{t(reverse(w*z})})
Other properties of reverse may easily be | thdut ion 3 thesis: + tion.

Proven by structural induction. In particular, fzince woz < x)the following example uses the properties that,

18

2 alzsreverse(w)) R, (y +R (tiz-recerze(}}}) {p} Iranslation from Structural Induction toSuzputational Induction
property (1) of reverse Unlike cemputation~l indultticn, structural

e 2B (¥*R, (zeverze())) iniucticn -ay be used 10 prove zencral mathematical
a om a game EB Foaan WY ow - - = =

vroperties af ant = A at 1 vate than OIL proper=ices a Prograss
st owevers LT we restrict vurselves to proving pro

x +3 [yereverselreverselw ./ :Al kiss ita h porties of prograns,— Milner F197 0b] Las shown
induction ypothells ange zrwuseuwral induction can be nicely replaeod by

5 LJ

{gince reverse! %} <x) computational Induction. Jue next two examples
2 z=R_{y¥) propersy of reverse illustrate the use of this technique in fates waere

proven in previcus
exanple ? more direct sosputational induction fails.

{gince y.¥ =< X] EeCongider again the two programs of Exarple 1:

g 2s freverselvw) iy {ii} of reverse(rever: {w}*y) Property (ii; G4 TeEverst F(x} “= if x = 0 then 1 elie x+¥, (x-1) 3
 reverge{x) property (111) of reverse ai

f ! "y

we conclude that LIRES = reverse{x} for all F(x} ca Foxy 1} ,
-

X¢L 5 BE denired. = F.ix;¥s2} a ir X « ¥ then 2
else F {x,t {y*i) +2) .

Comparizon between Computational Induct ion and sik —_— : ween ir. HE

Although computatlonal induction and struct. equivalence Fx ® cannot he proven directly
. 3 3

induction appear to be quite differentHESL SBR/SURON ¥ ¥ * a ny coputaticnal induction. [owWever, wo Lan consi-
ethods, we shall show now soy proof using one . :REThOdL, N fF pres a der the demain of natural numbers to be recursively

sethod can be tranclated to a proof using the]P defined by Lhe progran

other.
nusteris) <= if x - 0 then true eloe nusber{z=1),

fa} Tranrlation Trin Coopatational Induction
10 orrustural induction and procesd Io prove Uy computational induztion on

Using the principle of structural industion this program that:
and the rypothesiz PY) and YRIP(F sP{t{F :: a) (P(F) = F(s{F DN] (x) ix ay vw ber(MICUF, (hi-%fy {y-x}) =
where PIF) iz taken to be airlc 8iF] fer - g %v fy [3

simplicity, we mutt prove PF, } + For that pur- T, v3}
te; we 8h consider a welleTounded ordering « .poses $ SL ponEIne S re The proof can now be carried on following the Iteps

aver T° which regemblez the computatien of -: B ¥ of tie proof of Dxarple li. =

ofF_} az follows: x =< 7vy iff the ¥lecne compu-ww) .

tation roquence— of al Fy }{x} is shorter than txample 7. Reverse function.
that of al Fy) . Uging the definition, it is forgider asain the program of Example &
straight forward to show that defining the reverse functiom:

+ + ;
«Dr 3} such that+ < x)Qiy)! = Qix

where 4{x) i= alf Hx) © 8f¥, Hx} 1 by truce; TT: Fix.» Co iL X w Al e FLIX), hix}ytural induction, it follows that (¥xeD R(x) 4 Fx.) 12 © » A then y else F{t{x},h{x}"¥) »
f.0 PIF}) .oP *? We shall show that reverse{x) fi.Cuy F (x40)

_ is defined vor any x in I' . For this purpdde,
Y Note that veverselw) < x , which iz ire we characterize the elements of I ty the program

because reverselw) is a substring of \
reverscl{x) , as may be seen Irom propert t- Qe Eereverse! ’ _- y ie) - More precizoly, when the well-founded orderingof reUorie.

A n fle ns aan be recursively defined.1.0... 30 s.t. THANX) f= and tv (Qily}e.

15

wordix} <= o{word}{x} , where (a) £, iz a fixedpoint of 1 , i.e, Ty 5 hh
LSHK) = {4 x « 4 then true else Git{x)}}. 8} f, is a fixedpoint of 3 » Lee, ff omglr],

We let P{F,G) be (¥x,yeT J {{3(x) A word(y)| ant
¥ori(Figx))} . (c} F, (x) is defined forany x in § .
(a) PLO) : [B{a) A word(y)}] & word({}{x,y)) The justification of thiz rule is easy: by

huces to wC uw, definition of ¥y » ¥e know that F(x) © f(x)
and F(x} a {x} » for any x in Db : therefore,

I :F(x) » f(x) = r(x) .(7{G1(x) A word(y)]

* ;X if x = A then vord(y) Example1. (McCarthy [196%6]). We consider again
else G(t(x)) A word(y) the function reverse , defined in Exampie

{Section 2). We wish to prove by recursion indus-definition of o tion that

® 1Z x = A then word(y) reverze(x*y) = reverse(y) * reverse(x)
eige G(t{x}) A word(h(x}-y) .

for all x,ye¢T .definition of word

For this purpose we choose the functional =

else word(F{t{x}, nlx) ¥})

T{Fl{x,y) = if XX « A then reverse{y}
induction kypothesis alsa Flex), y) enix) y

PXord(t[Fl{x,¥}) . definition of 1 Then using known properties of * gna reverse ,
Therefors, by computational induction, we nave: we get that

F a qr § i{word{x) a word(y)} © vord(F, (x,7)) \8) reverse{x*y} is a Yixedpeint of 1, zince

then reverse{y)

which for d= A gives word{x} = alae reversef (hx) «t(x})*y)vord{reverse(x}) ; i.e, reverze(x) iz defined 2if% 2 A
and its value is a word whenever x iz a word. = then reverse{y)

else reverse{h{x)-{t{x)*y)).

in this fection, we present two adilitional then reversely) .
LY, Fas 3methods for proving properties of programs: re- rise {reverse{t(x)*y)}*n{x)

curslon induction and inductive arsertions. We {1} reverse{y) + reverse{x} iz a Tixedpoint of v ,show that any proof by either of these methods can since
be effectively translated into a proof by compl-
tational induction {and therefore also into a reversely) * reverse(x)
proof by structural induction). Ril Ras

then reverse{y)ea

eize reverse(y) * reverse(x)
Recursicrn Induction Rif xenBE mm ==a

To prove the equivalence of two functions & then reversely)
- iF EB +. Eand I, over rome subdomain § of Db, f.e., Sie reversely) (reverse(t{x))*n(x})that f(x) = T,(x)} Tor all xcS, t is suffi.

cient to find a functional T such that:

20

if x =A % , no argument for the termination 2f G, is
thet reverze(y) possible {since, for instance, if pix) is always
else (reverze(y) * reverse{(t{s}})*u{x} . fulse, 4, 4&2 never defined). A property like

. W{xsy) = G{xn{y)} therefore cannot te proven
te) FL 5) iz defined for every X,y7L , as can by recursion inducilon (Morris (1971)).

ve shown by a straightforward induction cn 2 An interesting special dase of recursion fas
ixarple 2. We concider a system over the natural duction, for which no proof of termination ia
numbers in which the primitives are the predicate needed, was described in Section 2. To prove Lhe
zero(x) (true only when X is © }, the prede- equivalence of two recursively defined functions,
cesior function pred(x) (where pred(0) i: 0), cne can try to modify each definition until both
and the succesztor function suce{x) . In this definitions are the same, using transformations
system the program which leave the fixedpolnt unchanged. Thic method

was illustrated by Exarples © and 7 of Section 2.

23300, qe i Arete; It iz easy to show that every prool by recur-
Deny tion inducticn can be effectively translated to a
sire add(pred(x}, suzc(y)) proof by computational induction. Hint: =nssume

defines the addition function. We wish to prove £, sv{f,] and £, =x{r,] and prove P(2,)»
that succ{add(x,y)) = add(x,zucc(y}} for all where P(F) iz (Fc 5) a {Fc £) .
X; ye by recursion induction.

We concider the functional tv defined as Inductive Asserticn Method

Fx,y) ® (if zero(x) The =ozt widely vied method for proving pro-
thon suce(y) perties of flowchart programs, called the Inductive
cise P(prea(x),sucs(y))) . assertions method, was suggested by Floyd [1367].

We shall illustrate the method and lt: relation to

The Teader Tan easily verily that both Ametions computational inducticn on a ciple flowchart
sucelsddiix,¥}) and add{x,succly}} are fixedpoints ——
ef tT . Furtherrore, an easy induction on x shows CETARE
*nat Fe {%¥) is defined for any x and v in LL,

"which completes the proof. - —

It ig interesting to compare the preceding

example with Example & of Section 2, where we cone www F

sidered the progras CF.”

G{x,¥) <= if pix} ther y else G{k{x),h{yr})}

and proved that EA Co

WS, {%y) ® 8,0x,0(y)) for all x and ¥ . | itesIf we interpret pix) as zero{x) , k{x} aus Eiwiied—
predix} , and nly) as suee{y) , G (xv)
becones ada {X,y) s and the proof that We wigh to show that the above flowchart pro-
WS(2x) = G,(x,n(¥)} iz actually another proof gran over the natural numbers computes the factorial
that cucoladd{x,y}) s add{x.succ{¥)} « It is function, l.e., = = x! , whenever it terminates.
interesting to note that the alpgebralc manipula- To do thiz, we grrociate a predicate called an

ticnz used in both proofs are the zane. However, inductive assertion a{%p¥y07.) with the poi:
the proof Ly recursion induction needed an arsment labelled x in the progras, and chow that { rust

of termination; if we concider the definition be true for the values #7 the variables Es¥ya¥s

G{xs¥} <= if pix} then vy elze Gi{x{x},niy)} with whenever execution of pProcras ress 2 paint a.
no specific interpretation in mind for p, k and Thus, we ust show {a} nat toe assertion holds

21

when polvolnt

execution (i.e iz first reached after start+ Cu *} ne ¢ {wmt recaing ds) and anne an1 trie i Pruesidocp from a to when cne goes arc hve sasertime Si: (2970) generalimplies Qlx,y a (i.e., that y_ 4 und the erticns rathod to a generalized the inducedesived FL (Vy l)ey,) oT FEAR, LY) Sr By their method | Pply to recursive pro-, result we finally ¢ «3 prove the - sive program ab ad It follows thatfollows from the show (co) that when i+ + = AL0Ve canputel the I - Lhe recur-Frogran termingt RE2erion {xy x. } Pew induct | ee if and or a2 lactorial Nunctienes i? wh : Vie and only if Sher wa Tl.
e take 2eMHRU%50, 1,2) = 2 Wat(a) Qp(x7ppyy) to de y PR) = 2» xt)p(%,0,1) 1s 1 «of 2 = ¥y! . Then: Fp¥are MAL vy = x{bv} w ® *¢ atpune when <{x + Wh ;y Fi Fx and gg (else ’ ¥yr¥or¥,)2 rN. The Glas %sTy0¥,) » teen else YLIQ(x5yL (ype)en Be Gland) i $0,002) 70)i ¥. = {y. +1 wi | Yew) od iz + wi Xp¥ yr Yatyt). vee, (yytl) ey forts The formula i{=plies ;is true whenever § +d that § i

ez biart od Th [7 s¥ye¥) E ™ i ce¥,= ¥,! Fp =X amd Q(x ¢ We Sealer wey oustiy 2.)g =H iter v,=y J pip) 4 Lee, or=ula iz satisfied Yb <iy check tnat the above10 = xl asd Loplx . ¥ taking tl ¥
tions that the procf Ly that F xo 3 be Z.¥.1 « y_ xtcorrespond inductive Shae +1) cx! x= - a r Whichproof in Ss ton computat i dsrfer- between the as —- zs degired. ®t . Provesz natu cnal ind ne asgertions Q The &ir7She Tiouihart ral way, we must first t uct fon Qup(%ay,,¥22) should Qu{%yy,y,) and erence= Tr - - Ho Le = é
Following * program into a recurs anslate represents all poe e noted: Q(x,ythe techniau reive prosran a possible valu = $Y yp ¥s)find that the que of MeCartiy " * Fy , A% arc a ez cf the varl " LJoutput 2 ~ (1993s), rl XY sy 2 uring execut] ablesprogras iz compu of the above 1 hi iid Wyr¥iap3) repres futlcn, willefact(x) . and i = and the init velwren theod Fix,0,1) - Fa when computa | initial value of xFF _ L PTUERT ION ZLaTiD at X » ¥(%,5425.) wn ie AZ in the o we BIC Jd 1By -s © cageof flowehoe proud by th lowc ha»pL dg] y 7 Lae Yannu Pro = ProsTaRRS in1 2 translated ir vaeli method can ¥ weWie Z-5¢ Pig,v.+1, y * be 1%0 & prool Ub carily behall 1 Pi *1).y baring +h wr comput iprove by c . l ¥n) - g wat prodiicate fad tational inmdwnassF{x0,1) g xt, putational induction tn (¥00y av, eB} [Fix P(F} to be pis faiz x3 i i.€.y that the value pn Rat FRAE RIF)yt 7p 9h]= F : { « . . oh I +2 i =P{F) to be the ¢ . (%30,1) ig defined v pp 1} —OTE admissible as an — further illustrate thecate: on = te the use of(F557y 60) (~Q ue: Wi sethod, we brief ¢ of the inductiveF ¥.F * i | ons %i 0) W frix oF ple. We shall BE less fanobvi . y¥yr¥o) on xt number w ll show that oe I famipPiziFr]) «© welds. To thow tha ever it terminate progra= glven belowor every fun r PF} =» nu=h 03, Computed » When-cares: wetion Fo, =ber greater * , the smalles) either y = Syve consider a {=¢1 be rowan CX " 1 ost naturalfollows 4 1 ~%» in which wy wy” +@., that 2”irectly from n cage the ef. TT

se {rectly from {o) 15% ’ nan inductive azsertiomputat ; floweh ” sertion Q.(x,yPF.) ional induction “ art program, © . RplXayyey J for thvo ~Qa(x herelore h 1rd) siven t i Lise thefor all x F P¥ye¥e) vIF {x5 nave and check : sven by Qulxyy pradicateknown fre Wp ¥peF «But 11%) © x1 SR nck TNL Hoste it Fpr¥e) = (z=xt){a)) since px a WAY 1 : However PE satisfies thmho (x 0,1) : to hold, we conclud ’ » 1) iz fy lezn ntlgg EC tauieFJ poll REL a i “a . y Teped in 'T = x1 , az desired that tove, the noedicate : thiz' FP

| 22

~

Cae 2 Hy, >=tuny, -¢[= . a . ;
| gize {==yy) H(z, Myr{y,-v,) Sx

L 5

| ¥y = 1 Acknowledgments. We are indebted to Robin Milner
Tor many stimulating diczcuszsions.

REFERENCES

- J Yo = 37s FURSTALL {1%91. RE. M. Burztall, "Proving Propers
ties of Programs by Structural Induction”.

eanvene 3 Computer Journal, Vol. 12, pp. Li-48 (1963).

«<>» CADIOU [1972]. J. M. Cadiou, "Recursive Definitions
: false trae of Partial Functions and Their Computations®,
: _— ~ Ph.D. Thecols, Cozputer Science Department,
| = ; Stanford Univercity {to appesr).

BI Re : Le-n JeBAKKER and SCOTT {1969}. J. W. deBakker and Dana
' | Scott, “A Theory of Programs™, Unpublished meno.,

| ¥3 © vate FLOYD [197]. TR. We Flovd, "Azcignirs Meanings to
Programe. In Proceedings of & Syrpogiue in
Applied Msathemptics, Vol. 1G. Mathematical

) AEpectt Of comp.ter Science, Pps 19-22 (od.

We must show that there ig an inductive Je Ts» Eee Providence, Rhode Tzland,
acsertics W(%y¥y2¥ 59 ¥a) such that: American Mathema al Society (10575.

' wT = VLEINE [1950]. 8. Cu ¥leene, Introduction to Heta-
(¥xek)A(%,0, 141) . mathematics, D. Van liortrand, Princeton, lew

; ; Jergey (15%0).
RE TERRES|CTERMEIN C55)

- il Wola and PUELY [1970]. Zohar Manna snd Amir
= ify, >X% Pruell, "Fermallzsticn of Properties of Pune-

2 2 tionkl Prosrans”, JACK, Yol. 17, Nos ® (July

- rp CARTHY [1o0fal. Jol MeCartin, "Towards a Matheselge SX, 0 v LF *V*E, 5,0 MCCARTHY [1002] ohn Me Ws
else Qf ShMt LAEA AE 1] ratical Sclence of Computation”, In Information

- ; Processing: Proceedines of IFIP €2, Pp. ci-col,
ig true. We tage Sp to be (ed. Cu Ma Poppicwcii). Ansterdar, Korth

Holland {133}.

(vs <x} A fy, = (3.420) A (v. = 29,41) . MACARTHY [19935]. John Molarthy, “A Basic for a
N = 4 . = Mathematical Theory of Cormputation™. InComputer

The reader may check that thir ascertion chows Prosrarming and Formal Jvitenas pp. 52-70 (cds.
: P. Braffor. and De Hirecliverg). Amsterdam, lorth

ri k : pial pail er ee —————
‘The correcponding recursive program is western Joint Coeputer Conference, pp. co9=238.

lew Yors, Spartan books (10 1)+

ggrex} <= Fix0iL1) MeSARTHY and PAINTER 11971. John MeCarthy and |
'e Av Painter, "Correctness of a Compiler forE > . wood Jim Pain =F -

| Flxs¥ya¥oris) A Yop > X Arithmetic Fxpresgiont™. In ProCeedines of a
then v, Symposius in Applied Mathematics, Vel. 1%.

r of - z Mothe=atical Aspecti of Computer Jclence,

Siss F(x 5y2 LaF ¥* 2r¥ 422) , PE. Seki. [C3 Je T+ oChwartz}. Providence,
: " hode I[einnd, American Mathemstionl Society (1uGTh

and the Marna-Priuell formula {2 Rh : : ? ¥
i ~ MILNER {1372al. Robin Milner, "Logic for Computable

(Px, 28) {R(xs0,15 1,2) » 2° CX < z} Munctiong - Degoription of n Machine Implementa-
; tion®, Computer Sclence report, Stanford Univer-a - 5 LE PF ar

nST Yee 7p > sity {to appear).
then LY sor ¥aaly) wither [10728). Rovin Hilner, "Implementation and
ele YI,t1,0 37.027.t) Applications of Jeott'r Logis for Computable

* ny 3 Wyn rt dong™ rented at tre conference Proving- " LH] . lm CE A : | procanLo LY LRCLE LL

= URy yr ¥op¥ at) i] . Agsertions Abrut Prograns, las Cruces, Rew
. . } MEYI00 (JMUATY Lio)

Thig is satisfied ty taking Spl P1¥ 3 Yor ier 2) to a : }
be oS NIosY [15771. Marvin Vincky, Computation - Finite| : and Infinite Machines, PrentiCe-Hull (1007s

ie

:

MORRIS 1968}. James H. Morris, "lLambda-Calculus
Models of Prograrming Languages™; Pu.D. Thesis,
Project MAC, M.I.T. (MAC-TR-5T). Decemter 1948,

uoaRIsS [1971]. Jamez Ho Morris, "Another Resur-

sien Induction Prinoipaey SAC, Vol. 1k, Ho. 5,Pp. 51-25% (May 1971).

YAUR [1377]. ‘Peter Naur, "Proof of Algcoritlme by
General Snapshots™, BIT, Vol. © pp. 310-316
{(1¥7).

PARY, [1%€3]. David Park, "Fixpoint Induction and
Proofs of Program Properties”. In Bachine

Intelligence S (eds. B. Meltzer and D. Michie),
Edirourgn University Press (1569).

SCOTT (1969). Dana Scott, ™A Type Theoretical
Alternative to ISWIM, CCH, (WHY"™. Unpublizhed
notes, Oxford University (1965).

SCOTT [1970]. Dana Scott, "Outline of an Mathema-
tical Theory cf Computation, Oxford University
Comput ing laboratory, Prograrming Research
Group, Technical Monograph PRG-2 (Hovember 1970}.

VUILLENIN {1972). Jean Vuillenin, "Proof Techni-
ques for Recursive Progranms™, Ph.D. Thesis,
Computer Science Department, Stanford University
(to appear).

ok

